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This is the final report for the project entitled Wave-Optics Modeling of High-Frequency 
Propagation through the Structured Ionosphere (contract FA8650-20-C-1950) during which 
Boston College (BC) developed full-wave algorithms to model the propagation of HF waves in a 
structured ionosphere. 
 
HF systems used for over-the-horizon-radar (OTHR), communication, signal geolocation, and 
space-based surveillance must contend with ionospheric structuring, which significantly alters HF 
propagation and can adversely affect the primary mission of these sensors. Ionospheric structuring 
results from a wide variety of geophysical mechanisms at low-, mid-, and high-latitudes which 
manifest as sporadic-E, traveling ionospheric disturbances (TIDs), mid-latitude spread-F, 
equatorial plasma bubbles, auroral arcs, and polar cap patches. 
 
The traditional approach for modeling HF sky-wave propagation is by tracing rays through the 
ionosphere in the geometric optics approximation. While ray-tracing provides an accurate 
description of propagation conditions when the ionosphere is smooth (quiescent conditions), ray-
tracing is inadequate when ionospheric structure is present because diffraction and interference 
effects are neglected in the geometric optics approximation. Diffraction and interference cause 
rapid fading of the HF signals, which can play an important role in many radio propagation 
scenarios. To remedy this shortcoming, we explore wave-optics methods in which the wave nature 
of radiation is properly accounted for in the modeling. In addition to including diffraction and 
interference effects, wave-optics methods provide vastly improved wide-area diagnostics for the 
propagation environment (enhanced situational awareness), compared with traditional ray-trace 
methods. For trans-ionospheric propagation at VHF and higher frequencies there is a well-
developed scalar theory of propagation in random media. Our objective was to develop a wave-
optics method for the propagation of vector waves (which is necessary for modern polarization-
aware systems) at HF wavelengths in randomly structured media. 
 
In the process of validating the wave-optics approach we discovered a disparity between wave-
optics beam propagation and ray-optics prediction of the peak intensity trajectory.  Considerable 
effort was expended to understand the error. We uncovered a previously unknown fundamental 
limitation in the wave-optics approach when applied to HF propagation problems. In the final 
stages of the project, we explored wide-angle algorithms which offer the promise of obtaining 
highly accurate and efficient propagation modeling results including polarization effects when 
random ionospheric structure is present. Some of this later work was left only partially completed, 
unfortunately, because the project was not fully funded. 
 
 
  

1.0 SUMMARY 
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HF systems used for communication, signal geolocation, over-the-horizon-radar (OTHR), and 
space-based surveillance must contend with ionospheric structuring. This structuring alters HF 
propagation conditions and may adversely affect their primary mission. Ionospheric structuring 
results from a wide variety of geophysical mechanisms and plasma instabilities operating at low-, 
mid-, and high-latitudes which manifest as sporadic-E, traveling ionospheric disturbances (TIDs), 
mid-latitude spread-F, equatorial plasma bubbles, auroral arcs, and polar cap patches. Current 
techniques for modeling HF propagation in the presence of ionospheric structure are deficient in 
several respects, as discussed by Carrano et al. (2020). 
 
The traditional approach for modeling HF sky-wave propagation is by tracing rays. Ray-trace 
methods are derived from the WKB solution (geometric optics) for propagation through weakly 
inhomogeneous media. The WBK solution neglects diffraction effects and therefore ray-trace 
results degrade when the refractive index changes on scales comparable to the radius of the 1st 
Fresnel zone or smaller. Diffraction causes fluctuations in HF power, delay, Doppler, and arrival 
angle, which are crucial to include in system impact analyses but are not assessible using ray-trace 
methods. To remedy this shortcoming, we explore wave-optics methods in which the wave nature 
of radiation is properly accounted for in the modeling. Wave-optics deals with the study of physical 
phenomena including polarization, diffraction, and interference that lie outside the ray 
approximation of geometric optics. The term full-wave refers to methods which solve the complete 
set of Maxwell’s equations with minimal simplifying assumptions. In this report, we will use the 
terms ‘wave-optics’ and ‘full-wave’ interchangeably.  
 
While a full treatment of Maxwell’s equations is possible via the finite-difference time domain 
(FDTD) method, at least in principle, the computational requirements for solving large-scale HF 
propagation problems this way remain prohibitively expensive. One-wave forward-marching 
methods, such as parabolic wave equation (PWE) methods, can provide full-wave solutions much 
more efficiently for large-scale problems.  PWE models have been widely used to address small-
scale refractive index structure along tropospheric radio propagation paths (Dockery, 1998), but 
so far there have been relatively few applications of PWE methods to HF propagation in the 
ionosphere (Wagen and Yeh, 1989; Hocke and Igarashi, 2003). The main reason for this is that 
modeling ionospheric birefringence requires the solution of a vector problem. The theory of full-
wave methods for vector problems is more complex and less well-understood than for scalar 
problems. Accommodating birefringence is necessary for modeling propagation effects on modern 
polarization-aware HF systems. In this project, we develop a vector forward propagation equation 
(VFPE) method for addressing the vector propagation problem. Another, albeit less significant, 
reason that full-wave methods have not been widely used for ionospheric problems is that they 
provide intensity, phase, and arrival angle diagnostics but do not directly provide path-integrated 
quantities which HF operators require such as delay and Doppler. Chaudhury and Chaturvedi 
(2006) explain how power-flow trajectories may be traced through full-wave solutions to general 
electromagnetic problems. We leverage this idea to compute path integrated quantities through full 
wave-solutions for HF propagation in the ionosphere. 
 
There are many theoretical approaches to characterizing propagation in transparent media with 
reflecting boundaries.  EM fields depend on space, time, and frequency.  However, for the class of 

2.0 INTRODUCTION 
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problems of interest it is convenient to use the time-harmonic form of Maxwell’s equations, 
effectively eliminating the explicit time dependence, while constraining the type of media 
considered.  The interaction of EM waves with the earth’s ionosphere is characterized by a 
frequency-dependent tensor, which reduces to a diagonal form when the background magnetic 
field dependence is negligible, which is generally the case at frequencies much higher than HF. 
 
From Maxwell’s equations a vector or scalar wave equation is constructed, which is linear but 
inhomogeneous, except for the case of an idealized uniform background (e. g. free space).  There 
are two-approaches to constructing solutions.  In random media, small local perturbations act as 
induced sources.  However, unlike discrete scatterers, the effect of locally small interactions is a 
phase perturbation.  While it is recognized that this approach is limited to weak local interactions, 
the multiple phase screen theory suggests that large phase perturbations can be accommodated.  
While this is true, we found that phase gradients that are accommodated in geometrical optics, are 
not properly accommodated in wave-optics. The second approach incorporates the structure in the 
wave equation as position-dependent differential operators. The standard parabolic wave equation 
(PWE) is the most familiar manifestation of this approach.  However, in its simplest form it is 
restricted to small refractive propagation angles. In general, scattering angles at HF are 
significantly larger than the standard parabolic wave equation method can support. 
 
Constructing a full-wave diffraction theory that characterizes propagation in a highly refracting 
structured background is exceptionally demanding, while accurate and efficient ray-tracing 
algorithms have been available for decades. Two widely used diffraction algorithms incorporate 
computationally efficient split-step alternation between spatial Fourier domain propagation and a 
spatial-domain phase correction. The standard parabolic wave equation uses the narrow-angle 
form of the propagation operator (Levy, 2000, Eq. (3.30)). The forward propagation equation 
(FPE) as defined in our first publication related to this project (Rino and Carrano, 2021a,  Eq. 
(40)) uses an unrestricted propagation operator. This plus a companion paper (Rino and Carrano, 
2021b), developed and demonstrated an FPE for vector fields. However, a disparity was observed 
when FPE calculations of HF refraction by a Chapman layer were compared with ray-trace 
calculations (See Figures 6 and 7 in (Rino and Carrano, 2021b)). We will discuss the disparity, its 
ramifications, and several approaches to remedy the problem, throughout this report. 

 
In retrospect, the disparity might have been expected. The standard PWE is constrained 
intrinsically to a narrow range of propagation angles. A hierarchy of parabolic differential 
equation implementations, notationally (PDEs), have been constructed to accommodate the larger 
range of propagation angles needed to support refraction. Although the unrestricted FPE 
propagation operator accommodates a full range of propagation angles, the extended range of 
propagation angles is not supported by the FPE. 
 
2.1 Propagation in Inhomogeneous Media 
 
The essential elements of the theory of propagation in transparent inhomogeneous media are 
captured by the two-dimensional scalar wave equation 
 
 2 2 2( , ) ( , ) ( , ) 0x y k n x y x y  (1.1) 
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where (x;y) is the complex field and 

 2 ( , ) 1 ( , )n x y X x y . (1.2) 
 
For the earth’s ionosphere, X =( p/ )2. The plasma frequency, p, is proportional to the electron 
density. Angular frequency is  = 2 f and free-space wavenumber is k =2 f/c, where f is frequency 
and c is the vacuum velocity of light.  
 
The x axis is identified as the propagation reference direction (positive forward, negative 
backward). The y spatial Fourier decomposition of the field is defined as 
 

 ˆ( , ) ( ; ) exp( )
2
dx y x i y  (1.3) 

 
Evaluation of the Fourier transformation of (1.1) for constant n shows that 
 
 2 2 ˆ( / ) ( ; ) 0n k x , (1.4) 
 
which establishes a relation between the transverse spatial wavenumber, , and the horizontal 
wavenumber 
 
 2 2( ) ( / ) .xk k n k  (1.5) 
 
The Fourier domain operation 
 

 ˆ( , ) ( ; ) exp[ ( ) ]exp( ) ,
2x x
dx y x ik x i y  (1.6) 

 
advances the field from x to x+ x. Forward marching algorithms are effectively generalizations 
of the propagation operation, ( , )x x y . 
 
2.2 Induced-Source Methods 
 
The development of the theory of propagation in random media generally proceeds via 
rearrangement of (1.1) and (1.2) so that the refractive index perturbation, X, appears as an induced 
source: 
 

 
2 2

2 2 2

(1 ) 0k X
k k X

 (1.7) 

 
In two spatial dimensions, the solution to the second equation may be expressed in integral form 
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 2 1 2 2
0 0( , ) ( , ) ( , ) ( , ) ( ( ) ( ) ) / 4 ,x y x y k x y X x y iH k x x y y dx dy  (1.8) 

 
using the free-space Green’s function appearing in the brackets above. The field 0(x;y) is a 
solution to the free-space wave equation. Referring to the ( , ) ( , )x y X x y terms in (1.8) as 
induced sources comes from boundary-integral equation theory which identifies induced sources 
on discontinuous boundaries explicitly. The development in (Rino and Carrano, 2021a) was an 
attempt to use continuous boundary integrals to construct a forward marching solution. The 
development starts with the y Fourier transformation of (1.8). 
 

 0
0

exp[ ( ) | |]ˆ ˆ( ; ) ( ; ) ( ; ) ,
2 ( )
k ikg x xx x i S x dx

g
 (1.9) 

 
where S( ;x) is the y Fourier transform of the product ( , ) ( , )x y X x y and g( ) is given by 

 2( ) 1 ( / ) .g k k  (1.10) 
 
Forward and backward propagating waves are identified by the location of their induced sources 
relative to the point of observation. It follows that 

 0
0

exp[ ( ) | |]ˆ ˆ( ; ) ( ; ) ( ; )
2 ( )

xk ikg x xx x i S x dx
g

 (1.11) 

 exp[ ( ) | |]ˆ ( ; ) ( ; ) ,
2 ( )x

k ikg x xx i S x dx
g

 (1.12) 

where 
 
 ˆ ˆ ˆ( ; ) ( ; ) ( ; )x x x . (1.13) 
 
In the subsequent development it was assumed that an additive separation of free-propagation and 
media-interaction contributions could be maintained and that the known field at x could be 
identified as an initiating source. With these assumptions the spatial Fourier domain relation 

 ˆ ˆ( ; ) ( ; ) exp[ ( ) ] ( ; ) .
2 ( )

x x

x

ikx x x ikg x S x dx
g

 (1.14) 

 
would advance the field a small increment forward. Transforming the equation back to the spatial 
domain and using the approximation 
 

 
0

( ; ) exp( ) ( , ) ( , ) ,
2 ( ) 2 2

xik dk kS x dx iky i x y X x y x
g

�  (1.15) 
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produces the forward propagation equation (FPE), which forms the basis for our propagation 
modeling work: 
 

 ( , ) ( , ) ( , ) ( , ).
2x

d x y kx y i X x y x y
dx

 (1.16) 

 
We solve (1.16) numerically using the split-step method, which gives  
 

 ( , ) ( , ) exp{ ( , ) }.
2x
kx x y x y i X x y x  (1.17) 

 
The critical difference between the standard parabolic equation (PWE) and the FPE is the 
replacement of the narrow-angle propagation operator with an unrestricted propagation operator. 
Although the development suggests a generalization of the PWE, a consistent development of the 
theory will show that wave equation supports separate propagation and media interaction 
contributions only under narrow-angle scatter conditions. Moreover, generating a discrete 
sampling of (1.16) and following the same procedure that was used in (Rino and Carrano, 2021b) 
to calculate induced sources that support surface reflections leads to the same narrow-angle-scatter 
constraint. Ultimately, we learned that a consistent solution to the inhomogeneous wave equation 
cannot separate propagation and media interaction as additive contributions. 

2.3 Advantages of FPE Simulation for OTHR Propagation Modeling 
 
Forward propagation equation (FPE) modeling is a full-wave technique that marches the solution 
forward in space from one plane to the next. At each stage of the calculation, the electric field 
along each plane is expressed in terms of the angular spectrum of plane waves intersecting that 
plane. From the angular spectrum, it is straightforward to determine the amplitude and direction 
of all radio propagation modes anywhere in the computational domain. A windowing function is 
applied to the field surrounding a region of interest to improve localization in space and to suppress 
side-lobes. From this result, we can produce angle-of-arrival “maps,” which depict the spectrum 
of angle-of-arrival (AOA) at all locations on the ground (or in the air). These AOA maps identify 
all radio propagation modes reaching the target along with their individual amplitudes. These maps 
represent an advantage of full-wave simulation over ray-tracing in that is there is no need to 
specifically 'home' rays to identify the propagation modes connecting the transmitter and target.  

 
Figure 1, adapted from (Carrano et al., 2020) demonstrates the advantages of FPE full-wave 
modeling vs traditional ray-tracing for HF propagation problems. The plots in the top and bottom 
rows correspond to a different times (UT) in the development of traveling ionospheric disturbances 
(TID), an ionospheric phenomenon known to limit the performance of OTHR systems. The first 
plot in each row shows color contours of electron density from a physics-based ionosphere model 
(see Carrano et al., 2020 for full details), depicted in terms of plasma frequency. The second plot 
in each row shows color contours of HF signal intensity, obtained from the full-wave calculation. 
Superimposed on the intensity plots are white rays that have been explicitly traced from the 
transmitter using the ray-trace method of Coleman (1998). The third plot in each row shows color 
contours of the arrival angle spectrum. These angle of arrival ‘maps’ show the locus of all 
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directions from which incident waves are arriving and reflected waves are departing at each 
location on the ground. The arrival angle is depicted here as a function of local elevation angle 
while facing toward the receiver, such that incident rays have positive elevation angles and 
reflected rays have negative elevation angles. The arrival angle data are colored by spectral power, 
which indicates the magnitude of the contribution to the total received power from waves travelling 
in each direction. For all color contours, the color scale is relative with red indicating the highest 
values and blue indicating the lowest. White dots shown on the maps indicate the footprints on the 
ground for each traced ray that returns to the surface (not all launched rays return to Earth). The 
direction of the departing (reflecting) rays are also shown, to facilitate comparison with the wave-
optics result.

Figure 1. Plasma frequency (left), HF power (dB) (middle) and arrival angle (right) from wave-
optics simulation of a 20 MHz wave propagating through a developing ionospheric disturbance

At the first time shown (24 minutes before midnight), the ionosphere is mostly quiescent with only 
a nascent signature of TIDs developing in response to forcing by neutral winds. The wave-optics 
and ray-tracing calculations both predict single-mode propagation to ranges past 2000 km, while 
the wave-optics calculations also reveal a region of two-mode propagation (high and low ray 
reflections from the F region) at shorter ranges.  

At the second time shown (30 minutes past midnight), the TIDs are well-developed and exhibit a 
significant downward tilt in the zonal direction. Propagation at all ranges is now multi-modal, with 
at least four distinct modes of propagation present at ranges between 2000-2400 km. Only the full-
wave solution clearly reveals the structure of all propagation modes present. The footprints of the 
ray-tracing results tend to lie on one of the propagation modes indicated by the wave-optics 
solution. Without the wave-optics result for comparison, these ray-tracing footprints would appear 
randomly distributed and difficult to interpret. Also note that the plumes of depleted plasma begin 

23:36 UT

00:30 UT
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to act as conduits for HF power to penetrate through the F-region and leak out into space. As a 
result of this power leakage less power is available to illuminate targets on the ground, thereby 
reducing the efficiency of the radar. 
 
Despite the advantages of full-wave modeling, many quantities of interest to a radar operator, 
including group range and phase advance, require integration along specific propagation paths 
through the medium that connects two points. Such path integrated quantities are not provided 
directly by full-wave simulation, as they are with ray-tracing. Instead, they must be computed post-
facto from the full-wave solution. From the intensity of the electric field and the direction of travel 
we can compute the time-averaged Poynting flux vector. Trajectories of power-flow may be found 
by tracing along the Poynting vector (Chaudhury and Chaturvedi, 2005), in exactly the same way 
a magnetic field line tracer traces along the geomagnetic field. Later in this report, we show 
examples tracing the time-averaged Poynting vector field to obtain power flow trajectories at 
angles where the angle of arrival spectrum has appreciable power (i.e. for each propagation mode 
that the radar is likely to detect).  
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3.1 Scalar Propagation Modeling with the FPE 
 
The spectrum of angle of arrival angle obtained by wave-optics simulation may be used to quickly 
and robustly identify all sky-wave propagation modes that reach the target along with their 
individual amplitudes. Traditionally, these propagation modes are determined by tracing rays, by 
searching for rays that connect transmitter and receiver. This search is generally referred to as 
‘homing’ rays. The relevance to OTHR applications is that understanding how the target is 
illuminated is a crucial step toward modeling how energy will be reflected back to the radar for 
target detection and characterization.  
 
One of our initial tasks was to test our claim that the spectrum of arrival angle provided by wave-
optics correctly identifies all sky-wave propagation modes that reach a given location on the 
ground. Our methodology was to launch sky-wave rays from this location in the directions (arrival 
angles) of each propagation mode identified by wave-optics, and demonstrate that these rays 
indeed lead back to the transmitter. Initially, we attempted this for one of the scenarios described 
in Carrano et al., (2020) corresponding to highly disturbed ionospheric conditions that support 
many complex propagation modes. Unfortunately, we found that such traced rays did not always 
lead back to the receiver as we anticipated. At the time, we believed the reason for this  discrepancy 
might be a bug in our software. We took a number of steps to understand the problem.  
 
First, we considered a scenario corresponding to less disturbed ionospheric conditions, thinking 
that perhaps we would find agreement under less complex propagation conditions. When the 
discrepancy persisted for the less disturbed ionospheric scenario, we decided to consider a model 
ionospheric scenario where the propagation calculations can be solved analytically. Croft and 
Hoogasian (1968) presented an analytic solution for a sky-wave reflected from a single quasi-
parabolic layer, and we used this to validate our codes. From this exercise, we learned that our ray 
tracing algorithm is consistent with the exact solution while our wave-optics algorithm was not 
entirely so. 
 
The plots shown in Figure 2 show the results of wave-optics simulation for a 20 MHz wave 
propagating through a quasi-parabolic ionosphere. The left plot shows HF power in dB, while the 
right plot shows the arrival angle spectrum in dB. The latter indicates the direction of downward 
and upward moving waves at the ground as a function of local elevation angle. Color scales are 
relative with red indicating high values and blue indicating low values. As shown in the Figure, 
we obtain reasonable agreement between the wave-optics predictions, ray-trace predictions 
(superimposed white curves), and exact results for a quasi-periodic ionosphere (shown as red 
dashed curves in the arrival angle plot).  
 
However, we noted that our wave-optics code placed the second ground hop at a somewhat farther 
range than the exact solution (or the predictions from the ray-tracing code). Since the range to the 
first hop was correct but the range to the second was slightly too far, we decided to investigate our 
implementation of the boundary condition at the earth surface. For these calculations we used the 
approach by Hocke and Igarashi (2003), which implements the reflecting boundary condition at 
the earth surface by imposing an empirical refractive index profile beneath the earth surface. Our 

3.0 METHODS, ASSUMPTIONS AND PROCEDURES 
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presumption was that the range to the second hop was too far because the wave penetrated the 
earth surface several km before the wave was turned (thereby accumulating excess range). We 
were able to minimize this excess range by altering the profile to make the reflection occur closer 
to the surface. As we shall discuss later, however, this extra range was found to be inherent to the 
FPE approximation itself. Hence our early attempts to ‘compensate’ for this effect via modification 
of the boundary conditions, while effective, were also artificial.

We also implemented a different earth reflection boundary, using a staircase approximation to 
earth curvature, as described in Levy (2000). In this approach, a sine transform was used to prevent 
any penetration through the earth surface. The results using the Rino and Kruger boundary 
condition are shown in Figure 3 for comparison. Clearly shown in the arrival angle plot are 
spurious upward traveling waves at ranges past that of the skip zone. We believe these are due to 
knife-edge diffraction from discrete changes in the height of the earth surface from one screen to 
the next. In a later section, we discuss how to replace the staircase approximation with a shift-map 
approach that leads to better results (Rino and Kruger, 2001). The Rino and Kruger (2001) 
approach can support a general impedance boundary condition which is necessary to accurately 
model reflection from land, sea, and littoral regions.

Figure 2. Wave-optics simulation of a 20 MHz wave propagating through a quasi-parabolic 
ionosphere; the left plot shows HF power (dB), right plot shows arrival angle spectrum

Figure 3. Same as Figure 2 but using the method staircase method to impose reflection at the earth 
surface
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Once we verified that we had a working, partially validated, wave-optics code we explored 
techniques to compute path-integrated quantities from the wave-optics solution.  
 
 
3.2 Power-flow Trajectories 
 
Our aim is to trace power-flow trajectories through the wave-optics solution as a precursor to 
computing path integrated quantities such as range delay and phase advance. As explained by 
Chaudhury and Chaturvedi (2005), power-flow trajectories satisfy the following coupled 
differential equations, which we express in terms of the 2D coordinate system (x, z) employed by 
our wave-optics algorithm: 
 

 ,
| | | |

x zp pdx dz
ds dsp p

 (1.18) 

 
where p is the time-averaged Poynting flux and ds is a differential path element. For a plane wave 
traveling in an cold unmagnetized plasma, the Poynting flux is related to the electric field E as 
 

 
2

0

1 | | ˆ
2

nEp n  (1.19) 

 
where n is the refractive index, 0 is the impedance of free-space, and n̂ is a unit vector in the 
direction of the wavefront normal. The complex amplitude of the field u(z; x) is used to represent 
the slowly varying part of the electric field (any spatial component) with the temporal dependence 
removed. Along a phase screen located at x, the complex amplitude may be represented as a 
superposition of plane waves traveling in different directions: 
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where sin( k) = 2 k/N z is the propagation direction of the kth plane wave. The time-averaged 
Poynting flux for the kth plane wave is then  

 
2

0

2ˆ( ) ; (cos ,sin )
2k k k
n kx u x

N z
p . (1.21) 

 
Equation (1.21) defines a single time-averaged Poynting flux for each phase screen (since it 
depends only on the screen location x). To estimate the local Poynting flux at each grid location zj 
along the phase screen, we compute the FFT implied by (1.20) using a sliding Hamming window 
centered at zj, and then we sum over all plane waves k. We then trace power-flow trajectories by 
solving the differential equations in equation (1.18). Figure 4 shows the result. The colors indicate 
the magnitude of the time-averaged Poynting flux, while the white curves depict power-flow 
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trajectories. The left plot show arrows proportional to the magnitude and direction of the time-
averaged Poynting vector, while the right plot shows arrows proportional to only the direction of 
the Poynting vector. 

Figure 4. Magnitude of the time-averaged Poynting flux (colors) and power-flow trajectories 
(white curves)

These power-flow trajectories may be compared with rays traced using the theory of geometric 
optics (e.g. the white curves in Figures 2 and 3), which satisfy  

( , ) , ( , )d dx dn d dz dnn x z n x z
ds ds dx ds ds dz

. (1.22) 

Rays describe orthogonal trajectories to the geometrical wavefronts S(r)=constant, where S(r) is 
the so-called eikonal function which is proportional to phase. Average power flows in the direction 
of S(r). Equation (1.22) follows if the magnitude of S(r) equals the magnitude of n, which is a 
fundamental assumption of geometric optics. Comparing ray-paths in Figures 2 and 3 with the 
power-flow trajectories in Figure 4, we see that they are roughly equivalent in regions of space 
characterized by waves traveling in a single dominant direction. In other regions, for example, 
following the skip zone where downward traveling waves and upward traveling reflected waves 
are both present, the rays of geometric optics cross each other while power-flow trajectories do 
not. This is a consequence of summing the contributions to the Poynting flux from each plane 
wave incoherently. These calculations were performed while neglecting the geomagnetic field, in 
which case the medium is isotropic. In general, the wave normal direction is orthogonal to the 
wave front passing through that point, whereas the ray direction is the direction of energy flow at 
that point. These two directions need not be the same when magnetic field effects are included, 
since the medium is then anisotropic.   
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3.3 Vector Propagation modeling – Brent’s Method 
 
We discussed how we model the propagation of energy through wave-optics simulations. We also 
mentioned efforts to extend our wave-optics modeling capabilities to propagation in a magnetized 
plasma, which is an anisotropic birefringent medium. Until recently, it was our understanding that 
this had not been attempted previously. During a review of the literature, however, we found a 
paper by Brent et al. (1990) which presented a technique for modeling propagation through an 
anisotropic medium in the parabolic approximation. We implemented the algorithm by Brent et al. 
(1990) for propagation through a magnetized ionosphere, and we applied it to our problem of 
modeling the operation of an OTHR in sky-wave mode. 
 
We begin by reviewing the essential elements of the Brent et al. (1990) algorithm, and then we 
discuss its application to our problem. These authors solve the wave equation in a cylindrical 
coordinate system (Er, E , Ez), with Er as the range direction. Assuming that power flow is 
principally along the range direction, the parabolic approximation is invoked to replace the second-
order wave equation with a simpler set of coupled first order differential equations. These 
equations are solved using the split-step technique, which advances the solution through a 
sequence of phase screens oriented in the z-direction using three stages. First, the field is advanced 
in range to the next screen as if the medium were homogeneous. Second, the interaction of the 
wave with the medium is accounted for by imparting a phase change to the wave along the screen. 
Third, magnetic coupling is accounted for by rotating the field by an amount that depends upon 
the external magnetic field magnitude and direction. These three stages are performed 
mathematically as follows to march the field from screen n to screen n+1: 
 

 

1 2
1( )( ; ) exp exp

2 2

(stage 3) (stage 2) (stage 1)

n n

z z

E EkX z s rM r z i r F i F
E EU k  (1.23) 

In the above, F indicates a Fourier transform along the screen with spatial wavenumber s, r is the 
distance between phase screens along the range direction, k is the free-space wavenumber, X is the 
ratio of plasma frequency to transmission frequency (squared), and U is a factor to account for 
electron collisions. In equation (1.23), the elements of the 2x2 coupling matrix M are given by 
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 (1.24) 

 
where Y is proportional to the magnetic field strength, and lr is the direction cosine of the magnetic 
field in the range direction. 

 
The first two stages of this algorithm are nearly the same as in the wave-optics algorithm we have 
been using for an unmagnetized plasma (except that our propagator is slightly more general). 
Implementing the Brent et al., algorithm only required adding the third stage, applying magnetic 
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coupling, to our existing wave-optics code. Once we accomplished this we repeated the OTHR 
modeling simulation that we conducted previously (Figures 2 and 3), this time including magnetic 
field effects. The results of this simulation are shown in Figures 5 and 6. Color scales are relative 
with red = high and blue = low. The field was excited with a vertically polarized wave (along z) at 
the location of the OTHR (lower left). The arrival angle spectrum (dB) shows the direction of 
downward and upward travelling waves at the ground as a function of local elevation angle. 
 
 

 
Figure 5. HF power (dB) (left) and arrival angle spectrum (right) for wave-optics simulation of a 
20 MHz wave propagating through a quasi-parabolic ionosphere including magnetic field effects 
  
 
The intensity of the electric field is shown in Figure 5. It is instructive to compare this figure with 
the intensity shown in Figure 2 and 3, before magnetic field effects were included. When magnetic 
field effects are included there are two distinct concentrations of field intensity following the skip 
zone, whereas there is only one without magnetic field effects. We postulate that these two field 
concentrations correspond to the ordinary and extraordinary propagation modes, which are the 
characteristic waves in a cold magneto-plasma. Although the solution does not identify which 
mode is which during the computation, we have labeled the two modes on the plots in Figure 5 on 
the basis of independent ray-tracing calculations which we will discuss later.  
 

 
Figure 6. Azimuthal (left) and cross-range (right) components of the electric field for the same 
simulation as in Figure 5 
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O mode

O mode

X mode

Base of 
Ionosphere

|E |



15 
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 

 
Note the behavior of the field components is shown in Figure 6. Near the source, only the cross-
field component is present since the source is polarized in this direction (by our construction). 
There is no azimuthal contribution to the field until the wave crosses the base of the ionosphere, 
which is a discrete boundary for a quasi-parabolic ionosphere. Once the wave enters the 
ionosphere, the field components rotate due to the magnetic coupling, which requires that both an 
external field and plasma are present. In effect, when the linearly polarized transmitted wave enters 
the ionosphere it splits into the two characteristic waves for a birefringent magnetized plasma. 
These characteristic waves each have azimuthal and cross-field contributions. 
 

To support our interpretation of these results, we configured the magneto-ionic ray-tracer 
PHaRLAP (Cervera and Harris, 2014) to simulate this same OTHR propagation scenario. Figure 
7 shows the results, with rays corresponding to the ordinary (O) mode shown in blue and 
corresponding to the extraordinary (X) mode shown in red. The ray-paths for O and X are identical 
until the waves reach 200 km (dashed line), which is the base of the quasi-parabolic ionosphere 
that we imposed. After the waves cross this ionospheric boundary, the paths of the O and X modes 
diverge. In particular, the X-mode rays penetrate deeper into the ionosphere (i.e. attain a higher 
altitude) before they are reflected back down to Earth. As a result, the X-mode rays hit the ground 
at shorter range than the O-mode rays. Using the ray-tracer in this way, we are able to identify the 
two characteristic modes in the wave-optics calculation (Figure 5). In particular, the arrival angle 
plot shows excellent agreement between the wave-optics and ray-trace calculations for both 
ordinary and extraordinary modes.  
 
 

 
Figure 7. Rays for the ordinary (O) and extraordinary (X) modes using the magneto-ionic ray tracer 
PHaRLAP (left), arrival angle for the O and X rays determined via ray-tracing (right) 

 
 
Despite the apparent success of Brent et al.’s algorithm for incorporating magnetic field effects 
into the wave-optics model, there are some shortcomings which we would like to discuss. First, 
these authors found it necessary to linearize the susceptibility tensor in order to derive their results. 
This linearization restricts the validity of the simulations to the case where X<<1 and Y<<1. More 
specifically, the authors recommend restricting the technique to transmit frequencies >25MHz 
during daytime and >10 MHz during the night. Furthermore, their reliance on the parabolic 

X mode

O mode
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approximation restricts the range of scattering angles that can be modeled when ionospheric 
disturbances are present. In the next section, we describe an alternative approach, based on the 
vector forward-propagation equation (FPE), which can mitigate some (but not all) of these 
deficiencies. 
 
Before we conclude, we would like to illustrate a weakness of the algorithm by Brent et al., namely 
its ability to model Faraday rotation. Faraday rotation is a fundamental property of birefringent 
media in which the two characteristic modes travel at different speeds, thereby accumulating a 
relative phase difference as they propagate.  To study this effect using the Brent et al. algorithm, 
we simulated longitudinal propagation through a homogenous medium with a constant plasma 
frequency equal to 6 MHz. An 8 MHz wave that is linearly polarized wave along the z-direction 
was used as the excitation field. The magnetic field was oriented along the propagation direction 
(x). Figure 8 shows the field components in the plane transverse to the direction of propagation. 
Figure 9 shows the Faraday rotation angle ( ) from the numerical simulation (black line), which 
is given by the argument (i.e. arctangent) of the ratio Ey / Ez.  
 
 

 
Figure 8. Simulation of longitudinal propagation for a linearly polarized wave (along z) using the 
Brent et al. algorithm 
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Figure 9. Faraday rotation rate for the simulation shown in Figure 4 (black line), analytic rotation 
rate for the Brent et al. algorithm (green dashed line), and exact result for longitudinal 
propagation (red dotted line) 
 
 
From equations (1.23) and (1.24) it is straightforward to compute the Faraday rotation for the Brent 
et al. numerical algorithm in analytic form: 
 

 02 ( )
2

rXl Yk x x
U

 (1.25) 

 
This analytic result is shown in Figure 9 with a green dashed line, which is nearly indistinguishable 
from our simulation results. While it is encouraging that our simulation recovers this analytic 
result, neither agree with the exact result for longitudinal propagation through a cold magneto-
plasma, which is given by (Yeh and Liu, 1972): 

 0( )( ) 1 1
2 2 1 1L R
k k X Xn n x x

Y Y
, (1.26) 

where nL and nR represent the refractive indices for left and right circularly polarized waves, 
respectively. 
 
 
3.4 Vector Propagation Modeling – the VFPE 
 
The derivation of the vector forward propagation equation, which we refer to as the VFPE, draws 
heavily on material in Chapter 7 of Waves and Fields in Inhomogeneous Media (Chew, 1990). 
 
The following time-harmonic form of Maxwell’s equations characterize ionospheric propagation 
at frequencies above 3 MHz: 
 
 iE B  (1.27) 
 iH D  (1.28) 
 0B H  (1.29) 
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 0 0.D B  (1.30) 
 
The fields  and  are measured in flux units. The fields  and  represent electric and magnetic 
field intensities, respectively. The quantities 0 and 0 are fundamental constants such that 
 
 0 01/c  (1.31) 
 
is the vacuum velocity of light. Radio frequency and angular frequency are related as  = 2 . 
The dielectric tensor, , is defined as 
 
 I  (1.32) 
 
where I is the identity matrix and X is the susceptibility matrix, which is written as a product 
of a spatially varying scalar (X) and a 3 × 3 tensor ( ). Several seminal textbooks, e.g. Budden 
(1985), Yeh and Liu (1972), and Davies (1996), present calculations of the susceptibility matrix 
for a cold, collisionless plasma. The Appendix to our publication (Rino and Carrano, 2021a) 
summarizes the results together with a procedure for calculating the ordinary ( ) and extraordinary 
( ) characteristic modes that propagate in a uniform anisotropic ionosphere. 
 
The vector wave equation is obtained by eliminating  and : 
 
 2 2( / ) 0.cE E  (1.33) 
Applying the identity 
 
 2 ( ),E E E  (1.34) 
 
puts the wave equation in its more familiar form 
 
 2 2 2( / ) ( ).cE E E  (1.35) 
 
Whereas    =  and    =  follow from (1.27) and (1.28), the (   ) term is finite but 
usually neglected on the basis that the structure does not induce steep gradients. In this 
development we assume that the magnetic field is uniform, whereby the variation of the dielectric 
tensor is confined to the scalar multiplier . For the ionospheric medium the perturbation in 
refractive index is 
 
 2( / ) ,pX  (1.36) 
 
where  is the electron plasma frequency. For propagation calculations the vector homogeneous 
wave equation is written as 
 
 2 2 ( ) 0.k I XE E  (1.37) 
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To pursue the identification of characteristic modes, we let 
 
 0 ,X X X  (1.38) 
 
where X0 is spatially invariant. Proceeding formally, the free-space dyadic Green function is used 
to convert (1.37) to the equivalent integral representation 
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where 0( ) is a solution to the free-space wave equation, and 
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To identify the leading terms following the equal sign in (1.39), we make the following 
observation. If ( ) = 0, then ( ) must be a solution to the characteristic equation, namely a 
superposition of characteristic modes. It follows that 
 
 2 2

0 0( ) ( ) ( )[ (1/ ) ] (| |)c k X I k G dE r E r E r r r r . (1.41) 
 
With this equivalence, the development of the vector FPE follows the development of the scalar 
FPE in (Rino and Kruger, 2001). The following Weyl decomposition expresses the scalar Greens 
function as a summation of plane waves 
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The free-space wave vector is defined as 
 
 [ , ( )],gk  (1.43) 
 
where  
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Substituting (1.41) and (1.42) into (1.39) and evaluating the Fourier integrations leads to the 
following spatial Fourier domain representation: 
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where ˆ ( ; )zS  is the spatial Fourier transform of the product ( , ) ( , )X z E z and s is a unit vector 
pointing in the direction of propagation. The forward and backward propagating components can 
be identified by partitioning the integral over  
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Converting the incremental equations to differential form leads to the following coupled 
differential equations 
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The contributions of the integral terms are obtained by direct integration. The characteristic mode 
propagator is developed in detail in (Rino and Carrano, 2021a). 
 
Transformation back to the spatial-domain requires evaluation of the integral 
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We note that 
 
 (| |) / (2 ).G d i k  (1.49) 
 
We assume that the variation of the source term ( , )zS  is such that it may be taken outside 
the integral. As in the scalar case, we make this approximation so that the resulting VFPE equation 
is expressible in terms of additive contributions from media interaction and free-space 
propagation—this is required for efficient solution of the VFPE via the split-step method. 
Proceeding with this assumption (1.48) can be written  
 

 2 2( , )[ (1/ ) ] (| |) ( , ).
2
kk z I k G d i zS �  (1.50) 

 
In retrospect, this assumption is difficult to justify given that the solution to (1.48) is yet unknown. 
Therefore, we cannot hope to demonstrate that the assumption is valid in all scenarios. In section 
3.9, we argue that the approximation should be justifiable when gradients are sufficiently small 
and when the transmit frequency is sufficiently high. 
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Substituting (1.50) into (1.48) gives the vector FPE, which can be written as follows: 
 

 ( , ) ( , ) ( , ) ( , ).
2c

d z kz i X z z
dz

E E  (1.51) 

where 
 

 0 2
ˆ( , ) ( , ) exp{ ( ) }exp{ }

(2 )c
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If ( , ) = 0, the propagation operator characterizes propagation in a homogeneous anisotropic 
background medium. This is the only case for which 0  1. We argue that in a structured medium, 
self-consistency requires that we assign 0 = 1 in the above, in which case the  subscript may be 
omitted. To see this, note that with ( , ) = 0, equations (1.51)-(1.52) characterize HF 
propagation in a uniform medium or a medium with  invariant structure that varies slowly with 
. However, neither the field interacting with the inhomogeneous structure nor the result, ( , 
) ( , ), is constrained to be a superposition of characteristic modes. It follows that the only 

consistent form of the FPE with  finite is 
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with 
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If the derivation had started with 0 = 0, this result would follow. To demonstrate consistency, we 
consider the zero magnetic field limit,  2  and  = . With   , it follows that 

 , which shows that the scalar FPE is a special case of the vector FPE when the external 
magnetic field effects are negligible. The only constraint on the magnitude of  is that  < 1, 
which is ensured by operation above the electron plasma critical frequency. 
 
The vector FPE is fully three-dimensional. However, the computational examples in this report 
will be considered in its two-dimensional form with  replaced by . Our paper (Rino and Carrano, 
2021a) shows numerous applications of the VFPE for modeling HF propagation in uniform, 
layered, and fully inhomogeneous birefringent media. 
 
Implementation via the Split-Step Method 
 
Accepting (1.53) and (1.54) as defining relations, the VFPE integration cycle is initiated with a 
computation of the interaction of the field with the structure between two defining planes separated 
by . This is achieved by solving the FPE with the propagation operator neglected: 
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With the diagonal decomposition 
 
 1V DV , (1.56) 
 
which is guaranteed by the structure of , the media interaction contribution is reduced to three 
uncoupled equations, 
 

 ( , ) ( , ) ( , ).
2

dV y z ki X y z DV y z
dz

E E  (1.57) 

 
The solution is 
 

 1( , ) exp{ ( , ) } ( , ).
2
ky z V i X y z D z V y zE E  (1.58) 

The notation E distinguishes the field as an intermediate result to be propagated over the distance 
between the defining z-planes. 
 
3.5 Comparing Brent’s Algorithm with the VFPE 
 
After implementing the vector FPE algorithm described in the previous section, we compared the 
results with Brent’s more restrictive vector algorithm (1990). Figure 10 shows the propagation of 
a 20 MHz signal through a quasi-parabolic ionosphere using Brent’s method (left) and the vector 
FPE (right). The topmost plots show total field intensity. The middle and lower plots show the 
magnitude of the z and y components of the electric field, respectively. The illumination source 
was linearly polarized in the z-direction. Both algorithms predict that the downward refracted wave 
will split into two components as a consequence of the externally applied magnetic field. The 
splitting occurs because of the birefringence of the ionospheric medium, whereby the ordinary and 
extraordinary modes travel at different speeds and therefore experience differential refraction 
effects.   
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Figure 10. Propagation of a 20 MHz signal propagating through a quasi-parabolic ionosphere 
simulated using Brent’s method (left) and the vector FPE (right) 
  

3.6 Boundary Conditions for the Earth Surface 
 
When we use the vector FPE approach to simulate the interaction of HF waves with the ionospheric 
plasma, we have noted that the approximations we use to impose boundary conditions at the earth 
surface sometimes produce an unacceptable amount of numerical ‘noise’. In this section, we 
describe our efforts to improve the treatment of reflecting boundary conditions, particularly when 
the boundary surface is curved. 
 
With the completion to publication of the boundary-free VFPE (Rino and Carrano, 2021a) we 
concentrated on surface reflection issues. It is straightforward to implement reflection from a 
planar boundary, as in the simulation shown in Figure 11. The reflection is imposed via the method 

Base of 
Ionosphere

Brent’s Algorithm Vector FPE
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of images (e.g. Levy, 2000), whereby the complex Fourier transform that appears in the propagator 
for the components of the field is replaced with a sine transform. A phase shift along the screen is 
imposed to translate the boundary to the bottom of the grid. The sine transform enforces the 
boundary condition for a perfectly conducting surface, which is zero field at the surface. A second 
phase shift is then applied to translate the field back up to the curved boundary. 
 

 
Figure 11. VFPE simulation of multi-hop propagation over a flat perfectly conducting surface 
 
 
The propagating beams shown in Figure 11 do not show any evidence of spurious noise at the 
boundary because it is flat. Once we apply curvature to the boundary we observed the noise to 
problem to appear. The numerical experiments we performed suggest that the amount of noise 
generated is strongly dependent on the spatial sampling used to conduct the simulation.  
 
To study this effect in closer detail, we simplified the problem by removing both the plasma and 
the magnetic field from the simulation. The problem we were left to model was the propagation of 
a thin beam launched downward through free space toward a perfectly conducting planar 
boundary. The results of the simulation are shown in Figure 12. The spatial separation between 
phase screens ( x) was chosen to be 2 km in this example, which corresponds to approximately 70 
wavelengths ( ) at 10 MHz. As shown in Figure 12, energy was conserved perfectly as the wave 
propagated, and no numerical noise was evident. In Figure 13, we repeated this simulation for a 
curved conducting boundary meant to represent the Earth’s surface. All other parameters of the 
simulation were held fixed while we experimented with the spatial separation ( x) between the 
phase screens. The three panels from left to right show results for successively smaller spatial 
separations: x =70 , x =2 , and x =1 , respectively. In each case, there was energy loss upon 
reflection and also numerical noise. Thankfully, both of these problems became less pronounced 
as the x decreases. We observed that a spatial sampling x , reduces the noise to an acceptable 
level. A small amount of energy is still lost upon reflection, however. 
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Figure 12. Reflection of a thin beam from a perfectly conducting planar boundary

Figure 13. Reflection of a thin beam from a perfectly conducting curved boundary

While we expect the image method will still be a viable and computationally efficient approach 
for implementing reflecting boundary conditions within the VFPE framework, we decided it would 
be productive to treat the problem more generally. A boundary surface delineates a discontinuous 
change in the propagation medium. Surface currents must flow on the boundary to support the 
discontinuous change. These currents are defined by surface boundary integral equations (BIEs), 
which formally involve the entire surface. In our second paper published during this project (Rino 
and Carrano, 2021b), we show that the BIEs can be setup for forward marching solutions that are 
fully consistent with the VFPE.

50 km
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However, a much simpler shift-mapping method was introduced by Kuttler and Dockery (1991) 
and Dockery and Kuttler (1996). The only change needed to accommodate a non-planar surface 
is the addition of a phase shift that translates the reference to the surface: 
 
 1{ ( ) }exp{ ( ( ) ( ))}.y y n ne ikg z i f z f zxp  (1.59) 
 
It was shown in both Rino and Ngo (1997) and Rino and Kruger (2001) that BIE and shift-map 
solutions agreed very well. However, the comparisons used sub-wavelength propagation-step 
sampling for both the BIE and shift-map results. For accommodating smooth surface reflections 
in VFPE split-step solutions we find that near-wavelength sampling provides good results as 
indicated by total field intensity conservation through the surface reflection (Rino and Carrano, 
2021b). 
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Given the theoretical framework we have constructed to model the propagation of vector waves 
through the inhomogeneous ionosphere, we apply it to our intended application. Specifically, we 
are interested in how ionospheric structure affects the power, arrival angle, and polarization of HF 
waves and how these effects may impact the performance on an OTHR system. We begin by 
modeling HF propagation through traveling ionospheric disturbances which may be encountered 
at all geographic latitudes. Then we consider HF propagation through equatorial plasma bubbles, 
which are manifestations of a plasma interchange instability that occurs after sunset at low 
latitudes. These are the primary results of our investigation. Following this, we will discuss some 
shortcomings of the methodology—in particular, the fact that VFPE tends to underpredict the 
amount of refractive bending that occurs at HF wavelengths—and how this deficiency might be 
remedied.  
 
4.1 Propagation of Vector Waves through Traveling Ionospheric Disturbances 
 
Traveling ionospheric disturbances (TID) are a particular type of ionospheric structuring caused 
by the propagation of acoustic and gravity waves from the lower neutral atmosphere into the 
ionosphere, causing quasi-periodic variations in the local electron density. The presence of TIDs 
are known to limit the performance of HF systems used for OTHR, communications, and 
geolocation because the electron density perturbations can cause large variations in signal power, 
delay, Doppler and arrival angle (Yau et al., 2006; Bianchi et al., 2013). Wave-optics simulation 
is ideal for exploring the effects of TIDs on HF wave propagation since it directly provides the 
illumination power everywhere in space. We simulated a sinusoidal perturbation representative of 
a typical medium scale TID, and we modeled propagation through this structure using the vector 
FPE. Initially, we found the results difficult to interpret because there are several other mechanisms 
that can produce fading of the signal even in the absence of TIDs. These mechanisms include 
multipath fading, polarization fading, and terrestrial multipath. We conducted a series of numerical 
experiments designed to isolate each of these mechanisms so that we could study them, in turn, 
before re-introducing the TID into the simulation.  
 
Figures 14-17 show the results of numerical experiments we performed to understand the sources 
of signal fading in the absence of TIDs. The arrangement of plots in each figure is the same. The 
plot at the upper left shows the plasma frequency used for the simulation (a quasi-parabolic 
ionosphere with 10 MHz critical frequency, 300 km peak height, and 100 km layer thickness). A 
20 MHz signal linearly polarized along the z-axis was transmitted from the location x=-1600 km 
(just outside the lower left corner of the image). The three panels in the middle row show color 
contours of total signal intensity, the intensity of left-hand circular polarization (LHCP), and the 
intensity of right-hand circular polarization (RHCP) throughout the computational domain. The 
three panels in the bottom row show line plots of total power on the ground, LHCP power on the 
ground, and RHCP power on the ground, respectively.  
 
The first of these experiments (Figure 14) was configured with no magnetic field and no earth 
surface. By this we mean that downward traveling waves are not reflected when the reach the 
ground, they simply pass through it to be absorbed at the lower computational boundary. This is 
the simplest of the scenarios we ran, and yet the power variations on the ground are still rather 

4.0 RESULTS AND DISCUSSION 
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complex. There is very little power on the ground in the skip zone (also called the shadow zone), 
and there are notable high-frequency power fluctuations at ranges just past the skip zone. These 
power fluctuations are due to the superposition of low and high (Pedersen) rays which interfere 
constructively and destructively. This type of signal fading is referred to as multipath fading, and 
it commonly observed near the skip zone in HF experiments (see section 7.7.2 of Davies, 1990). 
The second of these experiments (Figure 15) was configured with a magnetic field of strength 
2.7 10-5 Tesla oriented along the +x axis and no earth surface. The total power at the ground 
resembles the previous case (with no magnetic field), with multipath fading evident at the skip 
zone. The two circular polarizations, on the other hand, show significant fading at all ground 
ranges. This type of fading is referred to as polarization fading, and it is caused by Faraday rotation 
of the electric field vector in response to the external magnetic field. Note that the total power, 
consisting of the summation of the two circular polarizations, does not exhibit fluctuations. The 
Faraday rotation effect rotates the field vector but does not alter its magnitude. Note that near the 
skip zone we have a superposition both multipath and polarization fading, which is why the fading 
of total power in this region differs slightly from that shown in Figure 14.  
 
The third of these experiments (Figure 16) was configured with no magnetic field but with a 
perfectly conducting earth surface, which reflects waves that are incident upon it. Due to this 
reflection, two hops of the signal occur within the computational domain. There is a skip zone 
following each signal hop, and multipath fading can be observed at ranges following each skip 
zone. Signal fluctuations are present at all ranges in this case, as in the previous. However, in this 
case the fluctuations are due to terrestrial multipath (mixing of direct path and reflected signals), 
rather than polarization rotation (which does not occur in this case since the magnetic field is 
absent). The terrestrial multipath is quite pronounced in this simulation because the transmitter is 
effectively situated a few km above the earth’s surface, due to our choice of boundary condition 
(Hocke et al., 2003) which allows the waves to penetrate beneath the surface before reflecting. It 
is interesting to note that terrestrial multipath and polarization fading look quite similar. One way 
to distinguish them is to note that terrestrial multipath produces fading of the total signal power, 
whereas polarization fading does not. 
 
The fourth of these experiments (Figure 17) was configured with the magnetic field and perfectly 
conducting ground surface. The signal fades that result are a linear superposition of multipath 
fading (high and low rays), polarization fading, and terrestrial multipath (direct path mixing of 
direct path and reflected signals). Quite a complex pattern of HF signal fading at the ground is 
present, even without any irregular structure in the ionosphere. These results and conclusions are 
not new, but they are important to keep in mind when attempting to interpret results obtained under 
more complex ionospheric conditions. Next, we show the behavior of the signal fading once TIDs 
have been introduced in the simulation. 
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Figure 14. Vector FPE simulation with no ground and no magnetic field

Multipath fadingp No fading No fading
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Figure 15. Vector FPE simulation with ground but no magnetic field

Figure 16. Vector FPE simulation with ground but no magnetic field

Multipath fadingp Polarization fading Polarization fading

Multipath fadingp Terrestrial multipath Terrestrial multipath

Terrestrial 
multipath
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Figure 17. Vector FPE simulation with ground and magnetic field

To model the effect of TIDs on HF propagation, we modulated the background ionosphere in our 
simulation with a sinusoidal perturbation that is representative of a typical medium scale TID. We 
assumed a 500 km wavelength and 30 min period, which results in a TID velocity of 280 m/s. The 
perturbation is altitude dependent, with a peak at the altitude HmF2. The full details of the TID 
model we implemented are given as equation 7.1 in (Paznukhov, 2004). Figures 18-23 show a 
snapshot of the simulation results every 300 sec, which is 1/6 of the TID period. 

We can infer a number of observations from the results of these simulations. First, it rather easier 
to interpret the total power, rather than the power of the individual circular polarizations, since the 
latter are complicated by polarization fading while the total power is not. Next, it is helpful to 
consider ranges that are not near either skip zone in order to avoid the effects of multipath fading 
(interfering high and low rays). What remains at the remaining ranges is terrestrial multipath with 
the effects of the TID superimposed upon it. From our previous study (Figures 16-17), we know 
that terrestrial multipath exhibits a quasi-periodic behavior with a ‘local’ wavelength that tends to 
increase with range (at least for this particular geometry). The fading pattern due to terrestrial 
multipath is time-invariant, whereas the effects of the TIDs change with time. A sequential 
examination of the plots in Figures 18-23 show how the TIDs modulate the fading pattern caused 
by terrestrial multipath, by distorting the propagation paths of energy propagating throughout the 
space. We note that real TIDs are considerably more complex than the simple sinusoidal model 
considered here. Hence, the modulation of the propagated wavefronts will be more complex also. 
Wave-optics simulation is an ideal framework for studying these effects, as the wide-area context 
it provides is extremely helpful for identifying and interpreting the various wave propagation 
phenomena at work and also their interplay.

Multipath fadingp Polarization fading
+ terrestrial multipathultip

Polarization fading
+ terrestrial multipath
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Figure 18. TID simulation at t=0 sec 

 
 

 
Figure 19. TID simulation at t=300 sec (1/6 cycle) 

TID Model at t=0 sec (start of cycle)
10% perturbation

= 500 km
P = 30 min

TID Model at t=300 sec (1/6 cycle)
10% perturbation

= 500 km
P = 30 min
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Figure 20. TID simulation at t=600 sec (2/6 cycle) 
 

 

 
Figure 21.  TID simulation at t=900 sec (3/6 cycle) 

TID Model at t=600 sec (2/6 cycle)
10% perturbation

= 500 km
P = 30 min

TID Model at t=900 sec (3/6 cycle)
10% perturbation

= 500 km
P = 30 min
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Figure 22. TID simulation at t=1200 sec (4/6 cycle) 
 

 
Figure 23. TID simulation at t=1500 sec (5/6 cycle) 

TID Model at t=1200 sec (4/6 cycle)
10% perturbation

= 500 km
P = 30 min

TID Model at t=1500 sec (5/6 cycle)
10% perturbation

= 500 km
P = 30 min
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4.2 Propagation of Vector Waves through Developing Spread-F 
 
Equatorial plasma bubbles (EPB) are ionospheric structures consisting of partially depleted back-
ground plasma superimposed with turbulence consisting of irregularities with a wide range of 
spatial scales, from tens of km to meters or less. Equatorial plasma bubbles form in the equatorial 
ionosphere after sunset when recombination of the bottomside ionosphere causes sharp vertical 
gradients in density that are unstable to the generalized Rayleigh-Taylor mechanism (which 
resembles the instability that causes a less dense neutral fluid to rise through a heavy fluid that is 
balanced above it). The plasma turbulence embedded within EPBs produces scintillation of radio-
waves that transect them, and degrade the performance of radar, communications, and global 
navigation satellite systems. EPBs in the low-latitude ionosphere are responsible for producing 
most intense natural scintillation observed anywhere in the world. 
 
For this study we used an electron density field provided by direct numerical simulation of EPB 
structures provided by Yokoyama (2017). Yokoyama produced this numerical density field by 
evolving the continuity and steady-state momentum equations for ions and electrons and the 
divergence-free current condition. The details of the calculation are provided in his paper, and a 
snapshot of the evolving density field (in units of cm-3) is shown in Figure 24. The longitudinal 
extent of Yokoyama’s computational domain is 3 deg (330 km), however, which is much smaller 
than the HF propagation circuits in which we are interested. Therefore, it was necessary to extend 
Yokoyama’s data in some fashion for our intended purpose. Initially, we experimented with a 
simple periodic extension of the data in longitude, but this produced very many EPB structures 
with almost no region of quiescent ionosphere in between. We decided that a more physically 
realistic configuration could be produced by replicating a small number of structures via periodic 
extension (we chose three), and then embedding these structures in a background consisting of a 
zonal average of the data (to smooth out the disturbances). The result is shown in Figure 25, 
expressed in terms of plasma frequency (MHz). 
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Figure 24. Electron density field containing EPBs generated by Yokoyama (2017) 
 
 
Next, we performed the propagation simulation by solving the vector FPE. We assumed a 15 MHz 
transmitted wave with vertical polarization. We implemented a fairly wide beam with the aim of 
fully-illuminating the EPB structures. We used 1500 samples along the x-axis, yielding a spatial 
resolution of x = 2 km. We used 218 samples along the z-axis, yielding the sub-wavelength spatial 
sampling z = 4.00 m. We assumed a magnetic field strength of 2.7 10-5 Tesla, directed along the 
+z-axis. Finally, we assumed infinitely conducting boundary conditions at the Earth surface. 
Figures 26-29 show the results of the vector FPE simulation. We repeated this simulation using 4 
times more samples along the propagation direction, and noted no substantial changes in the results 
(which suggests that our sampling is probably adequate). 
 
In this simulation, by construction, the HF wave travels through a smooth ionosphere until the first 
EPB structure is encountered at approximately -300 km. The smooth ionosphere refracts the 
transmitted wave, turning some of the power enough to travel beneath the EPB structure leaving 
it largely unaffected by its presence. At higher altitudes, the HF wave interacts directly with the 
EPB structure, which causes a filamentary structure to develop in the wave intensity. Very many 
distinct propagation paths through the disturbed regions are evident as these filaments are refracted 
and multiply scattered by irregularities in the underlying turbulence. The close-up of the 
interaction region shown in Figure 28 highlights these filamentary structures, which are known to 
be associated with strong focusing effects (Martin and Flatté, 1998). Similar filamentary structure 
adorns the cover of Rino’s book on scintillation (2011). Many of the filaments survive in-tact when 
the wave returns to Earth, producing strong localized enhancements in the power along the ground 
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(plot not shown). Interspersed between these localized enhancements are signal fades. These fades 
and enhancements are a manifestation of HF scintillation that would be measured by a receiver 
located in the illumination region on the ground (i.e. at ranges past the skip zone). Other filaments 
are refracted upward through the topside into space, not returning to the ground. The highly 
complex illumination pattern on the ground could not be predicted via tracing rays because 
diffraction effects are not modeled. This represents a major advantage of the wave-optics approach. 
 
While these filaments in some ways resemble the striations of the configuration space model (Rino 
et al., 2018), these two phenomena are in fact unrelated.  Striations are associated with magnetic 
lines of force, which organize the plasma into tube-like structures due to the increased mobility of 
electrons along the magnetic field direction. Filaments are enhancements in wave intensity caused 
by refractive focusing under conditions of very strong scatter.  
 
 

 
Figure 25. Plasma frequency used in our vector FPE simulations 
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Figure 26. Total HF intensity from the vector FPE simulation 
 
 

 
Figure 27. Left-hand circularly polarized power from the vector FPE simulation 
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Figure 28. Right-hand circularly polarized power from the vector FPE simulation 
 

 
Figure 29. Close-up of the region where HF waves interact with the equatorial plasma bubbles 
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4.3 VFPE and Ray Theory 
 
At this point, we return out attention to the consistency between VFPE and ray-trace solutions to 
vector propagation problems, since we noted some discrepancies that we wish to better understand. 
 
Solutions to the wave equation and the VFPE are constrained only by the susceptibility tensor, 

( , ) . In particular, there is no prior identification of characteristic modes. In Rino and Carrano 
(2021a) we showed that in a medium with gradients confined to the propagation direction, 
solutions to the two-dimensional VFPE can be constructed from superpositions of O and X 
characteristic modes. The characteristic modes are defined by the Appleton–Hartree equations as 
summarized in the Appendix to (Rino and Carrano, 2021a). The more general identification of 
characteristic modes in inhomogeneous media comes from ray theory, which starts with the 
assumption that the field can be approximated locally as 
 
 0( , ) ( , ) exp{ ( , )},y z y z i y zE E  (1.60) 
 
where E0(y,z) varies slowly compared to the eikonal, (y,z). 
 
Surfaces of constant ( , ) identify wave fronts. Rays are paths normal to the wavefronts. Rays 
are identified by a formal minimization procedure that constructs the shortest paths connecting 
two points in the medium. The connecting rays are defined by their direction angles at the point of 
initiation. Introducing the susceptibility matrix leads to a quadratic equation whose roots identify 
the characteristic modes being traced. To the extent that  =   along the ray, the magnitude of 

 defines the local refractive index. Ray theory shows as well that the fields associated with the 
characteristic modes have orthogonal elliptical polarizations. 
 
Regarding comparisons between FPE realizations and ray theory, it has been observed that VFPE 
field structures respond to gradients in the propagation medium with local propagation direction 
changes. Spatial wavenumber intensity peaks identify local propagation directions. Lines 
connecting the tangent vectors are effectively ray paths. To associate ray paths with characteristic 
modes the VFPE  and  field components are combined to extract orthogonal elliptically 
polarized field components. Formally, 
 
 ,M x yE E S E  (1.61) 
 
where  =  or = 1 for linear or circular incident polarization, respectively. Anticipating the 
association with characteristic modes, we let  =  and  =  as tentative mode associations. 
 
Figures 30 and 31 summarize extensions of the Chapman layer result introduced in (Rino and 
Carrano, 2021a), figures 9 and 10. The upper frames in Figures 30 and 31 show the intensities of 
the candidate mode fields constructed as described above. The lower frames show the 
corresponding spectral-domain intensities plotted against normalized spatial wavenumber. The ±1 

 range includes all propagating waves. The peak intensities of the extracted modes and their 
spectral decompositions can be associated with ray positions and directions, respectively. 
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Discontinuous direction reversals identify the locations of surface reflections. The extracted peak 
intensities and directions are shown in Figure 32. 

 
Figure 33 shows a comparison of the VFPE O and X mode traces from the upper frame of Figure 
31 with ray-trace calculations from the PHaRLAP code. The ray-trace solutions (blue) are refracted 
back toward the surface before the VFPE solutions (red). In effect, the VFPE media interaction is 
weaker than it should be. Although it is purely conjectural, if ( ) were the leading term in a 
perturbation series, the more accurate form would be ( ) + ( )2 ure 34 shows that the 
VFPE-Ray trace comparison improved when the corrected media-interaction term, X X+X2/2, 
was used. The PHaRLAP ray trace and the VFPE results are indistinguishable on the scale plotted. 
The same agreement was found when the magnetic field direction was varied and when the 
magnetic field was set to zero. Note that in Figures 32, 33, and 34 tracks of peak intensity are 
shown rather than the fields themselves. 
 
 

 
 
Figure 30. Upper frame shows the dB intensity of the elliptically polarized beam response 
identified as the O mode, lower frame is the corresponding spectral intensity normalized to the 
wave vector magnitude in dB units 
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Figure 31. Upper frame is the dB intensity opposite elliptically polarized beam response identified
as the X mode, lower frame is the corresponding spectral intensity normalized to the wave vector 
magnitude in dB units 
 

 
Figure 32. Upper frame shows the O mode (red) and X mode (blue) peaks, lower frame shows the 
corresponding spectral-domain peaks plotted against propagation direction 
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Figure 33. Upper frame compares the O-mode trace shown in the upper frame of Figure 32 (red) 
with the O-mode trace predicted by the PHaRLAP code (blue), lower frame shows the same 
comparison for the X-mode trace and the PHaRLAP code prediction 
 
 

 

Figure 34. Recalculation of VFPE result shown in Figure 33 with VFPE correction 
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The results show that split-step integration of the VFPE in the HF frequency range introduces a 
bias. Because the bias persists in the  = 0 limit, the scalar form of FPE can be used to explore 
possible sources of the bias. Equation (39) in (Coleman, 2008)  is the  = 0 limiting form of the 
ray equation, which is rewritten here as 
 

 
2

2 .d dn dn n
ds ds ds

r r  (1.62) 

 
The result is well known. Equation (3.2.1.2) in Born and Wolf (1999), which is the same ray 
equation, was derived directly from the scalar wave equation 
 
 2 2 2( , ) ( , ) ( , ) 0.y z k n y z y z  (1.63) 
 
Propagation in transparent inhomogeneous media proceeds from a source to a destination. We 
refer to the common situation where propagation in the opposite direction is negligible as the 
forward approximation. Isolating forward propagation proceeds in one of two ways. The most 
commonly used approach starts with a formal factorization of (1.63). For example, 
 

 2 2 2 1/2 2 2 2 1/2( ( , )) ( ( , )) ( , ) 0.d di k n y z i k n y z y z
dz dz

 (1.64) 

 
Forward propagation is characterized by  
 

 2 2 2 1/2( ( , )) ( , ) 0.d i k n y z y z
dz

 (1.65) 

 
Alternatively, the definition  
 
 2 ( , ) 1 ( , )n y z X y z  (1.66) 
 
can be used to identify structure-induced sources. Following the same development that was used 
to derive equation (24) in (Rino and Carrano, 2021a), we find that  
 

 

2 (1)
0

( , ) ( , ) ( | |) / (4 ) ( , ) ( , )

( , ) ( , ) ( , )
2

d y z y z k H k y y i X y z y z dy
dz

ky z i X y z y z
 (1.67) 

 
The structure interaction approximation above, which extracts the y=y’ contribution from the 
integral, is at least partly responsible for the discrepancy between VFPE and ray-tracing that we 
have observed. Consider, for example, a plane wave (with uniform phase) that interacts with a 



45 
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

sinusoidally varying medium such that (y)=1, X(y)=A sin( y) with |A|<<1. The restriction on A
limits this analysis to very weak perturbations such that the propagation very nearly follows 
straight lines. In that case,

(1)
0 2

1( | |) / (4 ) ( , ) ( , ) sin
2 1 ( / )
kH k y y i X y z y z dy i A y

k
 (1.68) 

This is precisely the approximate result i(k/2)X(y,z) (y,z) times the correction factor that appears 
in curly braces above. The correction factor converges to unity in the high-frequency limit, in 
which case the second line of (1.67) becomes exact. Apparently, the same is true if the 
wavenumber of the sinusoid ( ) becomes very small. In short, the correction factor is significant 
only when the spatial scale of the sinusoid becomes comparable to the wavelength. Figure 35
shows the relative error as a function of the ratio /k. 

Since the structure interaction approximation (1.67) is justifiable for any harmonic with >k 
(within the confines of our rather restrictive assumptions), we can construct more complicated 
media via linear superposition, provided we exclude structure with scale sizes close to the transmit 
wavelength. While admittedly crude, this analysis provides a rough handle on the error we can 
expect to incur from this approximation. 

Figure 35. Relative error in the structure interaction approximation as a function of /k

To put these results in perspective, at 10 MHz the signal wavelength is about 30m. The scale height 
of a typical Chapman ionosphere is about 60 km, or roughly 2000 wavelengths. The relative error 
in this case is about 1x10-7, which is quite small. However, a typical 1500 km propagation path is 
roughly 50,000 wavelengths long, so may well be possible for this small error to accumulate and 
produce a measurable deflection in the path when the wave travels long distances.
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In summary, the FPE equation method (and also the standard PWE method), marches the field 
forward via separate media-interaction and propagation contributions. This invites split-step 
integration, which applies the media-interaction and propagation terms sequentially. The cost of 
this separation is a decrease in accuracy when variations in the medium approach the wavelength 
scale. By way of comparison, the ray equation (1.62) mixes the effects of refractive index variation 
and redirection of evolving rays. It is well known that ray theory also breaks down when variations 
in the structure approach the wavelength scale, but for different reasons. Apparently, the FPE 
begins to degrade in accuracy sooner (i.e. when structure variations are larger) than the ray-theory 
because the media-interaction and propagation terms are treated separately. 
 
4.4 Locally Homogeneous Wavefield Extrapolation 
 
In the previous section, we investigated possible reasons for the discrepancy we have noted 
between the VFPE and ray-theory. We proposed an empirical correction that can improve the 
agreement under certain circumstances. In this section we present an alternative approach that 
appears to correct the problem, at least for the propagation scenarios that we considered.  
 
Two papers were presented at the URSI General assembly in a session organized by the sponsor 
of this project. Our second paper (Rino and Carrano, 2021b), just recently published, attracted the 
attention of Prof. Lewis Fishman, a mathematician who has worked extensively with the 
Helmholtz equation and propagation in transparent media. A fruitful collaboration has begun, in 
which Prof Fishman has carefully reviewed our analysis while we have shared numerical solutions 
of our problems of interest using his proposed forward propagation algorithms for solving the 
Helmholtz equation.  
 
Recall that the scalar forward propagation equation (FPE) is given by 
 

 ( , ) ( , ) ( , ) ( , )
2
kz z i X z z

z
 (1.69) 

 
where the free-space propagation operation ( , )z advances the forward-propagating field 
along the reference direction (z): 
 

 2
ˆ( , ) ( , ) exp[ ( ) ]exp[ ]

(2 )
dz z z ikg z i . (1.70) 

 
The FPE was derived from the Helmholtz equation by treating the interaction of the wave with the 
medium as an induced source. Fishman et al. (1984) proposed an alternative forward propagation 
equation based on a field-splitting approach: 
 

 
1/22 2 2( , ) ( ) ( , ) 0z i k n z

z
, (1.71) 
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where n2=1-X is the refractive index. Equation (1.71) is apparently exact for the case of a range-
independent medium. Fishman et al. explain in their papers (1984; 1987) that the square root in 
the second term does not define the propagation operator. Taylor and operator series expansions 
of this so-called “square root operator” are both non-uniform and singular. Fishman et al. (1984; 
1987) spend a great deal of effort developing various approximations for the square-root operator 
and investigating the implications.  
 
In particular, Fishman (1987) evaluates the asymptotic symbol limits for the case of arbitrary 
angle, weak inhomogeneity, and arbitrary frequency (gradient), along with the subsequent limit of 
high frequency.  In both of these parameter regimes, the lead term is the symbol for the free space 
(homogeneous medium) propagator. Fishman (1987) proposes the following high-frequency 
approximate marching algorithm for a locally homogeneous medium where the refractive index 
variation is independent of range: 
 

 2 2
2

ˆ( , ) ( , ) exp[ ( ( ) ( / ) )]
(2 )

dz z z i k n k z  (1.72) 

 
Note that if the refractive index were actually constant, the solution to (1.71) would be simply 

 

 2 2
2

ˆ( , ) ( , ) exp[ ( ( / ) )]
(2 )

dz z z i k n k z . (1.73) 

In this sense, Fishman’s high-frequency asymptotic marching algorithm may be viewed as an 
extrapolation of the above from a homogeneous (constant) medium to a locally homogeneous 
medium. For this reason, (1.72) is often referred to locally homogeneous wavefield extrapolation 
(LHWE). Our description here is solely intended to help interpret how the method works from a 
physical point of view—it is not a derivation. For a rigorous derivation of the LHWE technique, 
see (Fishman, 1987). 
 
In our problems of interest, the medium is not range-independent but changes sufficiently slowly 
in the marching direction relative to the wavelength that (1.72) is still able to accurately advance 
the field, as we show using numerical examples. Note that (1.72) advances the field while 
simultaneously interacting with the refractive index structure. There are no separate media 
interaction and free-space propagation operations, as there are in split-step solutions to equations 
(1.69) and (1.70). We have long suspected that our use of the free-space propagator to advance the 
field provides an inadequate approximation at HF wavelengths, resulting in the discrepancy we 
have noted with geometric optics (ray-tracing).  
 
We note that the discrete approximation of (1.72) using the trapezoid rule for quadrature requires 
one FFT and one large matrix multiplication to be carried out for each marching step. This is 
significantly more computationally expensive than the split-step solution of our FPE which 
requires two FFTs per marching step. However, we can accelerate the matrix multiplication 
calculation in several ways. Firstly, we can filter the field to reduce its bandwidth as suggested by 
Fishman et al. (1987), and secondly, we can implement this more-costly scheme to advance the 
field only where it is evolving rapidly, using the cheaper split-step algorithm to advance the field 
in other regions. The important point is that the off-diagonal, directional, terms in (1.72) make an 
important contribution to the field at HF, and we will show how their inclusion can resolve the 
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discrepancy between the VFPE and geometric optics. First, however, we show the results of a 
numerical experiment performed using Fishman’s algorithm applied to a simple model problem in 
order to test that our implementation is correct. 
 
The model problem considered is a beam propagating past a dielectric cylinder with uniform 
material properties. Figure 36 compares solutions to this problem using the standard split-step 
solution to our FPE and Fishman’s algorithm. The left plots show the standard split-step solution 
to the FPE. The middle plots show the solution using Fishman’s forward propagation algorithm. 
The right plots show cross-sections from both solutions at a fixed propagation distance along the 
range direction. The top and bottom rows show results for values of X=-0.05 and X=-0.15, 
respectively. The solutions appear to be quite similar, at least visually. For a more quantitative 
comparison we also show the intensity along a transverse cross-section at a fixed propagation 
distance. We find that when the dielectric cylinder represents a small absolute perturbation (X=-
0.05) of the background medium, the two solutions are indistinguishable, which suggests that our 
numerical implementation is correct. When the absolute perturbation is larger (X=-0.15), however, 
differences between the two solutions become apparent. We believe that in this regime some of 
the approximations used to derive the FPE begin to break down. While an exact solution to this 
model problem does exist, and could be used to determine which numerical solution is the more 
accurate, it is cumbersome to compute. Therefore, we will return to our problem of interest 
(reflection of a beam of HF frequency from the ionosphere) before making additional comparisons 
of the algorithms. 

 
Figure 36. Plasma frequency for a Chapman ionosphere (peak = 9 MHz) and geometric optics 
(ray-trace) solution for an HF beam (15 MHz) reflecting from the ionosphere 
 
We return to the problem of a beam reflecting from the ionosphere. Figure 37 shows a color-plot 
of plasma frequency in the ionosphere, which we have taken to be a Chapman profile with a peak 
of 9 MHz. When we launch a narrow beam of HF power (15 MHz in this example) upwards toward 
the ionosphere, it is refracted back downward to the ground. The white lines in Figure 37 show the 

X = -0.05

X = -0.15
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geometric optics solution for a small fan of rays (three separate rays) within the beam which follow 
the path of the signal to the location where it would intersect a curved Earth surface. While we 
normally use a curved earth surface to represent the lower boundary in our propagation 
simulations, we use a flat boundary in this example for the sake of simplicity. We use an absorbing 
layer at the upper boundary to implement the outbound radiation condition. 
Figure 38 shows the intensity of the field obtained via standard split-step numerical solution of our 
FPE. Notice how the beam ‘overshoots’ the correct reflection point and returns to earth farther 
downrange from the transmitter than it should. This is the discrepancy with geometric optics we 
have been trying to resolve. This simulation used 24000 points along the x-direction (6 samples 
per wavelength) and 216 = 65536 points along the z-direction (0.44 samples per wavelength). 

 
Next, we repeated the FPE numerical solution but using much cruder sampling in range (500 points 
along the x-direction). These results are shown in Figure 39. Low resolution was used in this case 
to facilitate a fair comparison with Fishman’s algorithm which is more expensive to compute. 
When taking fewer range steps, the beam is less well-resolved but still clearly ‘overshoots’ the 
geometric optics solution, as before.  
 
Figure 40 shows the solution using the marching algorithm proposed in Fishman et al. (1987), 
specifically his equations (16)-(17) with the high-frequency approximation of the operator symbol 
(his equation 25). Notice how the beam is now well-centered on the geometric optics solution (the 
discrepancy is gone). Apparently, the accurate solution for this model problem requires the 
inclusion of off-diagonal terms in (1.72) which Fishman et al. (1987) suggested may be interpreted 
as local reflection operators. This calculation required 15 hours to perform using the same 
sampling as the split-step FPE result shown in Figure 38 which required just a few minutes to 
compute (thanks to the efficiency of  FFT). To produce these results, we followed a very simple 
procedure to speed up the calculation; we invoked Fishman’s algorithm wherever the X was 
nonzero, and solved the FPE elsewhere. It is possible to improve the efficiency of the algorithm 
by filtering the field in the Fourier domain, parallelizing the time-consuming matrix multiplication, 
and restricting the application of Fishman algorithm to regions with large refractive index 
gradients. 
 
The upshot of this analysis is that we believe we have finally resolved the discrepancy between 
the FPE and geometric optics. Apparently, the discrepancy was caused by making approximations 
during the induced source derivation of the FPE that are not valid in the HF regime except when 
the perturbation | X| is very small. Fishman’s algorithm provides more accurate results when the 
perturbation is representative of propagation problems of practical interest at HF wavelengths. A 
combination of the two algorithms should provide a viable means of solving these problems. We 
should note that LHWE does not strictly conserve energy, however (Fishman, 1987). We observed 
a power enhancement at the turning point that we believe to be, at least partly, spurious (not 
shown).  
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Figure 37. Plasma frequency for a Chapman ionosphere (peak = 9 MHz) and geometric optics 
(ray-trace) solution for an HF beam (15 MHz) reflecting from the ionosphere

Figure 38. Adequately sampled FPE solution (colors) and geometric optics (white)
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Figure 39. Coarsely sampled FPE solution (colors) and geometric optics (white)

Figure 40. Coarsely sampled solution using Fishman’s algorithm and geometric optics (white)
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4.5 Corrected FPE vs Locally Homogeneous Wavefield Extrapolation 
 
Throughout this project we have noted that small but systematic errors can accumulate when 
advancing the wavefield using the VFPE at HF wavelengths. Moreover, it is relatively easy to 
inadvertently ‘compensate’ for these small errors by making additional errors (e.g. altering 
boundary conditions to make AoA maps consistent with ray-tracing, or altering the effective speed 
of waves in the medium to increase refraction effects).  
 
In this section, we purposely chose a geophysical environment for which even very small 
propagation errors would be clearly accentuated. We compare the accuracy of uncorrected FPE, 
corrected FPE, and LHWE methods with an independent ray-trace solution. For our test problem, 
we chose to transmit a 12 MHz signal at 32  elevation through a Chapman ionosphere with peak 
electron density NmF2=1012 m-3, peak height hmF2=250 km, and scale height Hs=50 km without 
magnetic field effects. We assumed a flat earth and applied perfectly conducting boundary 
conditions. To insure the discretely sampled numerical solution had converged in each case, we 
doubled the resolution in both altitude and range and repeated the simulation several times until 
the result no longer changed. We restrict our attention in this section to scalar problems, since if 
that cannot be not solved correctly then neither can the vector problem. 
 
The numerical solution of this model problem using uncorrected FPE required 3 minutes of 
computation time. The results are shown in Figure 41. An independent ray-trace is shown in white, 
for reference. We found that the uncorrected FPE result does not converge to the true result (ray-
trace) in the limit of infinitely fine spatial sampling x 0, z 0. Instead, the FPE predictions 
remain under-refracted in comparison with ray-trace result, and the errors accumulate to 
unacceptable levels as the wave progresses downrange. For the sake of completeness, we repeated 
this simulation using the standard parabolic equation (PWE) and found the errors to be 
considerably larger (not shown). Hence uncorrected FPE is an improvement over the standard 
PWE, but the errors remain unacceptably large for this problem.  
 
 

 
Figure 41. Propagation of a narrow beam at 12 MHz predicted by the uncorrected FPE method 

FPE Independent 
ray trace

Calculation time: 3 min

El=32
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In Rino and Carrano (2021b) we proposed an empirical correction for the FPE that is intended to 
adjust the phase speed of waves in the medium. The correction is achieved by replacing X in the 
FPE with X + X2/2. The numerical solution to our model problem using corrected FPE is shown in 
Figure 42. Note that the FPE result is now in very good agreement with the ray-trace. The 
computation time is unchanged by the correction. 
 
Empirical correction works very well for propagation in a Chapman ionosphere, and effectively 
preserves the computational efficiency of split-step Fourier methods. Hence, it does provide a 
viable solution to our problem. However, careful scrutiny of the result reveals a small error in the 
reflection height, and a slight shift in footprint locations from their true locations. More 
importantly, we have noted significant inaccuracies with this approach when solving problems 
involving stronger refraction. It is entirely possible that this simple correction may not be helpful 
for solving propagation problems in generally inhomogeneous media. In any case, theoretical 
justification of the correction is tenuous at best, so it should be used only with careful discretion. 
 
 

 
Figure 42. Propagation of a narrow beam at 12 MHz predicted by the corrected FPE method 
 
 
Finally, we solve the model problem using locally homogeneous wavefield extrapolation (LHWE). 
The results are in excellent agreement with the ray-trace result. The numerical calculation required 
108 hours, however, which is a significant increase compared to the other methods. A substantial 
reduction is computation time can be achieved by filtering high-frequency components of the 
solution, but this can result in spurious artifacts and a reduction in dynamic range. No spectral 
filtering was used to produce the result shown in Figure 43. 
 
 

Corrected FPE Independent 
ray trace

Calculation time: 3 min

El=32
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Figure 43. Propagation of a narrow beam at 12 MHz predicted by the locally homogeneous 
wavefield extrapolation method 
 
 
At the 2022 Beacon Satellite Symposium in August, we also presented a numerical solution for 
this model problem using the so-called Split-Step Padé (SSP) method by Collins (1993). We found 
that this method produced results as accurate as LHWE method while requiring only 1.3 hours of 
computation time. Hence, the method is nearly as efficient as the FPE while providing better 
accuracy, and without the need for empirical correction factors. For additional details, we refer the 
interested reader to our Beacon Satellite Symposium presentation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LHWE Independent 
ray trace

Calculation time: 108 hours

El=32
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5.0 CONCLUSIONS 
 
Over the past decade the forward propagation equation (FPE) has been used to characterize the 
propagation of electromagnetic (EM) waves in randomly irregular media. Following published 
papers that extended the scalar FPE to lower frequencies, we developed a vector FPE that 
accommodated polarization effects. The ionospheric constitutive relation for HF propagation is a 
3×3 tensor. An eigenvector decomposition was applied to transform the vector FPE equation into 
3 independent scalar equations, which were integrated separately. The updated transformed 
components were then transformed back to the defining vector field components. The results, 
which were published in (Rino and Carrano, 2021a), seemed to capture all the expected HF 
characteristics. For example, with no prior identification of characteristic modes the constructed 
vector fields produced oppositely polarized fields, which exhibited Faraday rotation. Results 
published in (Rino and Carrano, 2021b) extended the development to accommodate more realistic 
(dielectric) boundary surfaces. 
 
A disparity was observed between the trajectory of the FPE beam peak intensity and the calculated 
path of a ray launched in the direction of the initiating beam field. There was also a discrepancy in 
the predicted Faraday rotation rate. These disparities appeared to be a progressive bias, which 
suggested an underestimate of the effective perturbation strength. We found that adding a quadratic 
correction to the linear media interaction term brought the FPE 
results into agreement with the ray trace for the case of a Chapman ionosphere, as shown in (Rino 
and Carrano, 2021b), figure 8. Further exploration showed that the quadratic correction did not 
work in all cases, however. It ultimately became clear that FPE split-step integration cannot be 
extended to the HF frequency range with accepting a considerable error when the perturbation is 
large. 
 
This led to an exploration of alternative procedures, particularly parabolic wave differential 
equation (PDE) methods, which have been used successfully for acoustic propagation in the ocean 
and seismic propagation below the earth’s surface. In its simplest form, the standard parabolic 
wave equation is intrinsically restricted to a narrow range of propagation angles. When Fourier 
domain split-step integration is used, the propagation operator is implemented in a form that 
restricts the range of supported propagation angles. The FPE uses an exact free-space propagator, 
which extends the range of propagation angles in a way that does not immediately suggest the 
departure from ray-trace results. 
 
This discovery was frustrating because a Chapman layer bounded by a reflecting spherical earth is 
an exceptionally benign environment for geometrical optics, with or without the effects of the 
earth’s magnetic field. Whereas the exact propagation of a focused beam in a homogeneous 
environment is easily achieved, correctly accommodating a small refractive index gradient is 
theoretically and computationally demanding. Progress is being made, but we cannot be certain 
whether an entirely satisfactory solution has emerged. The LHWE method appears to be very 
accurate, but it does not strictly conserve energy. It is orders of magnitude slower than the VFPE 
in terms of computation time. None of the methods we explored as potential alternatives to the 
VFPE have been systematically tested for generally inhomogeneous birefringent ionospheric 
media at HF wavelengths. We proceed from this point by reviewing the limitations of the FPE 
method with a more detailed comparison between beam propagation and ray optics. Our hope is 
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that through the study of the relationship between these two we might discover a viable way to 
correct the FPE results while maintaining energy conservation and fast execution time. 
 
The FPE is usually written as a first-order differential equation. The following two-dimensional 
form of the scalar FPE is sufficient for illustration: 
 

 ( , ) ( , ) ( , ) ( , ),
2x

d x y kx y i X x y x y
dx

 (1.74) 

 
where (x,y) is the scalar wavefield and X(x,y) is a constitutive parameter that defines the 
interaction of (x,y) with the structured propagation medium. The refractive index is defined as 
 
 ( , ) 1 ( , ).n x y X x y  (1.75) 
 
For the ionosphere X(x,y)=( p/ )2, where p is the plasma frequency in radians ( =2 f), which 
lies in the HF frequency range (1<f<30 MHz) The term ( , )x x y  denotes the free-space 
propagation operator: 

 ˆ( , ) ( , ) exp{ ( ) }exp{ } ,
2x x
dx y y ik x i y  (1.76) 

where k=2 f/c, 
 
 2 2 1/2( ) ( )xk k , (1.77) 
 
and  
 
 ˆ ( , ) ( , ) exp{ } .y x y i y dy  (1.78) 
 
is the spatial (transverse) Fourier decomposition of (x,y). 
 

x propagation steps must be small enough to resolve 2 phase 
changes over the critical range (| | < k). Moreover, attempts to integrate the FPE with additive 
phase-quadrature increments do not conserve total intensity. Alternative integration procedures 
must be used to generate numerically stable results. The split-step form 
 

 ( , ) ( , ) exp{ ( , ) },
2x
kx x y x y i X x y x  (1.79) 

 
which conserves total intensity, was used for all of our results except those generated via locally 
homogeneous wavefield extrapolation. For FPE and narrow-angle PDE applications (such as the 
standard parabolic wave equation method), a region of non-zero X(x,y) is defined within a larger 
propagation space. An initiating field is defined at x = 0. The field is propagated incrementally. 
The structure within each slab is applied as a phase perturbation. This multiple-phase-screen 
procedure has been and continues to be a guiding principle for characterizing propagation in 
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structured ionospheric media. The low-frequency limitation is explicit in the narrow-angle PDE 
methods. 
 
 
Propagation in Inhomogeneous Media at Low Frequencies 
 
The defining two-dimensional scalar wave equation 
 
 2 2 2( , ) ( , ) 0x y k n x y  (1.80) 
 
can be written with the structure term on the right-hand side, 
 
 2 2 2( , ) ( , ) ( , ) ( , )x y k x y k X x y x y , (1.81) 
 
where equation (1.75) has been used. This equation can be expressed as an integrodifferential 
equation 
 
 2 (1) 2 2

0( , ) ( , ) ( , ) ( , ) [ ( ) ( ) / (4 ) ,xx y x y k X x y x y H k x x y y i dx dy  (1.82) 

 
where (1)

0H is the zero order Hankel function of the first kind. The integral equation (1.82) shows 
explicitly that every structure element in the propagation space is an induced source that potentially 
interacts with every other structure element, including a usually dominant singular contribution 
from the element at the field location. 
 
A complete solution must accommodate fields propagating in the forward and backward direction 
with respect to the x axis as a reference. The problem is simplified significantly if propagation 
directed back toward the source is neglected. The forward approximation is implemented by 
limiting the x’ x‘ <  
 
Integral Equation Methods 
 
Under the forward approximation the field beyond x is completely defined by the field at x and the 
structure beyond x. This implies that a forward marching FPE-type solution can be constructed. 
The FPE itself can be extracted from the incremental form of (1.82) by taking the X(x’,y’) (x’,y’) 
term outside the integration over x’ i/k. A variant of this 
procedure was used to derive the FPE in (Rino and Carrano, 2021a) and (Rino and Carrano, 
2021b). In effect, only the singular contribution is retained. In and (Rino and Carrano, 2021b) the 
surface reflection was calculated by converting the boundary integral equations to a discrete 
system of triangular (forward) Ricatti equations that can be solved directly. 
 
The possibility of using the same procedure over a continuous region was explored. It was found 
that, unlike the surface-scatter implementation, no discrete sampling could be constructed for 
stable recursive evaluation. Theoretical formulations lead to the same conclusion. Geometrical 
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optics, as reviewed in the next section, provides some insight into why obtaining a tractable 
theoretical solution has been so difficult. 
 
Operator Methods and Geometric Optics 
 
The development starts with the operator form of (1.80), which is interpreted as a functional 
relation involving formal operators defined by the operator symbols x and i  
 
 2 2( . ) [ ( )].D i k n xx  (1.83) 
 
The identification of the operator symbols anticipates the continuously varying position and 
direction of a beam interacting with a smoothly varying medium. Solutions can be constructed by 
minimizing the field operation 
 
 * * 2( , ) ( ) ( . ) ( ) .D i dx x x x  (1.84) 
 
The mi ) is evaluated for a field, , which 

) = 0 (Tracy et al., 2014). However, with the assumption that 
the field has the form 
 
 exp( ),A i  (1.85) 
 
a minimization procedure can be applied directly to the derivative form of the operator. The  
result is the eikonal equation 
 
 2 2.n  (1.86) 
 
The eikonal equation is solved by constructing rays that satisfy the ray-equation form of the eikonal 
equation 
 

 ,d dyn n
ds ds

 (1.87) 

 
where s denotes the distance along the ray and =dy/ds denotes the ray direction. 
 
Although geometrical optics does not require formal operators for its development that leads to an 
algorithmic solution, the connection emphasizes that agreement with geometrical optics as a 
necessary condition. Moreover, no problem-specific constraints should be required. 
The construction of geometric optics rays requires specification only of the refractive index and 
its gradient. Moreover, because geometrical optics requires smoothly varying propagation media, 
a first-order difference gradient calculation is adequate. A ray can be initiated anywhere in the 
propagation space and propagated in any direction. No matter how complex the medium may be, 
each ray retains its integrity. A ray bundle is formally an exact geometric representation of point-
source excitation from anywhere in the medium. Whereas our original use of geometrical optics 
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compared only the peak intensity variation of a focused beam, geometrical optics also predicts the 
variation of a ray bundle. 
 
Figure 44 shows the ray heights (upper frame) and tangents (lower frame) that define a bundle of 
rays launched from a point on the surface represented by the green curve. The angular extent of 
the ray bundle is 2 degrees. To confine the computation to the FPE propagation space, rays are 
initiated from their intercept directions and angles in the initiation plane at z 
Following our earlier convention, the ray propagation reference is the z axis with y vertical. In the 
ray trace xyz system, x = 0, y <= z, and z < x. The rays are reflected about the surface normal at 
the point of interception. Ray trajectories are determined entirely by the refractive index gradients 
encountered. Ray sampling is determined by the ray-trace algorithm. However, because of the 
smooth variation of the rays, interpolation to the z-sampling for propagation calculations is readily 
achieved. Mirror surface reflections are implemented whenever a ray intercepts the ray boundary. 
The highly idealized propagation environment emphasized the critical analytic challenge, namely 
refractive redirection of the ray bundle. 
 

 

 

Figure 44: Upper frame shows the height of rays effectively emanating from a point outside the 
surface, lower frame shows the tangent of the ray angle, which is equivalent to the spatial 
wavenumber divided by the wavelength 

Rays are defined by surfaces of constant phase, which can be recovered by mapping the optical 
path defined by the integral of the ray path and the refractive index. Because of the large path 
variation, it is convenient to display the variation of the optical path relative to the central ray 
defining the direction of the ray bundle. Figure 45 shows ray-bundle optical-path variations 
relative to the optical path variation of the central ray. The phase associated with a ray bundle is 
the change in the optical path across the beam. The y variation of the beam phase is very nearly 
linear, which suggests that eikonal surfaces are mainly steering the rays that form the ray bundle. 
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Now consider the problem of interest, namely propagating a focused beam into the Chapman layer. 
In principle the propagation calculations can be initiated with any field in the initiating plane. To 
match a ray bundle, the phase variation from a point source on the surface is applied in the initiation 
plane with a Gaussian taper about the ray intercept. The Gaussian taper defines the beam width. A 
phase offset is applied so that the peak intensity in the initiation plane coincides with the central 
ray intercept, whereby the beam intensity peak and the propagation direction determined by the 
spectral intensity peak are aligned with the central ray. For comparisons to geometric optics rays 
are launched from the beam intercept points. 

 

 
Figure 45: Optical path variation with respect to the central ray, which defines the beam direction 

 
As suggested by the optical path variation, the beam peak intensity and the beam propagation 
direction can be varied incrementally by applying linear spatial wavenumber phase and linear 
position phase variations. Because the redirection only involves phase changes, total intensity is 
preserved. The upper frame of Figure 46 shows the directed-beam field intensity with the rays 
within the beam overlaid. The lower frame shows the spectral intensity plotted against . The 
central ray tangent that was used to steer the beam is overlaid. The only significant directed-beam 
and ray-bundle differences occur where the beam reversal takes place. 

 
We know that the peak field intensity or path loss, varies inversely with the beam width. In free 
space the variation is proportional to the optical path distance along the central ray. However, 
where the beam direction is reversed the beam width is zero. The bounding upward and downward 
rays cross. The beam intensity variation must accommodate the singularity. However, the region 
that captures the singularity, appears to be small, which suggests the possibility of truncating the 
minimum beam width. 

 
Figure 47 shows the result. The beam-width estimate is corrected for the propagation direction of 
the beam with respect to the y axis. In the same way that the direction and position of a propagating 
beam can be incrementally changed, the peak intensity of the beam can be modulated in such way 
that total intensity is preserved. Implementing the scaling requires an interpolation of the beam. 
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Figure 46: Upper frame shows the field intensity of a beam constrained to follow the height and 
direction of the central ray in the bundle 
 
 
Figure 48 shows the directed-beam propagating with scaling proportional to the beam width 
variation from its central ray propagation expansion. Total intensity is conserved exactly. The 
result is certainly not exact, but it could be improved calculation of the beam path loss, which is 
likely to be provided by a ray-trace code such as PHaRLAP. The fact that refractive redirection of 
a propagating beam involves a singularity may be indicative of complexity. However, the fact that 
deviations from central ray steering are small imply that the most demanding computation can be 
confined to small segments of the propagation space. 
 

 
Figure 47: Path loss variation derived from geometric optics beam width estimate 
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Figure 48: Scaled directed beam computation for comparison to Figure 46 
 
 
Concluding Remarks 
 
High frequency (HF) sky-wave systems used for over-the-horizon-radar (OTHR), communication, 
and signal geolocation must contend with ionospheric structuring, which affects propagation and 
can adversely impact the primary mission of these sensors. Ionospheric structuring results from a 
variety of geophysical mechanisms that operate at low-, mid-, and high-latitudes and manifest as 
sporadic-E, traveling ionospheric disturbances (TIDs), mid-latitude spread-F, equatorial plasma 
bubbles, auroral arcs, and polar cap patches. Propagation modeling at HF wavelengths is 
traditionally performed via numerical ray-tracing, but the results become difficult to interpret when 
ionospheric structure creates highly multi-modal propagation (Carrano et al., 2020). Full-wave 
techniques offer the advantage of providing the electric and magnetic fields throughout the region. 
The improved spatial context is useful as HF waves often interact with irregularities over very long 
distances (hundreds or thousands of km).   
 
While a full treatment of Maxwell’s equations via finite-difference time domain (FDTD) methods 
should be possible, at least in principle, the computational requirements for solving large-scale HF 
propagation problems of practical interest remain prohibitive. Previous forward marching 
propagation modeling techniques, such as parabolic wave equation (PWE) methods, provide an 
efficient solution to large-scale problems, but have been under-utilized for ionospheric 
applications partly because of their inability to model the effects of an external magnetic field. The 
Earth’s magnetic field causes significant polarization effects at HF wavelengths that must be 
modeled to assess the performance of modern polarization-aware HF systems. To remedy this 
situation, we developed a vector forward propagation equation (VFPE) method for modeling the 
interaction of vector waves through a structured ionosphere in the presence of an external magnetic 
field (Rino and Carrano, 2021a). Interaction of the waves with a perfectly conducting curved earth 
surface is implemented using the method of images. The ordinary (O) and extraordinary (X) 
propagation modes are extracted from the full-wave solution (vector electric field) post-facto. 
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Traces of intensity peaks in the extracted O and X mode solutions are compared with the results 
of rays traced with scalar and magnetoionic ray-tracing.  
 
We applied the VFPE to model the propagation of vector waves through traveling ionospheric 
disturbances at mid-latitudes and developing equatorial spread F structures at low latitudes. 
Several manifestations of HF fading and polarization changes were observed as a consequence of 
the presence of ionospheric structure along the propagation path. These include terrestrial 
multipath fading, ionospheric multipath fading, and polarization fading which can occur in 
isolation or in concert. Additionally, diffraction causes scintillation of the HF signals when 
Fresnel-scale sized irregularities are encountered along the propagation path. Developing 
equatorial spread F structure causes strong multiple scatter of HF signals, resulting in the 
development of random filamentary regions with enhanced signal and signal fades caused by 
focusing and defocusing effects. We also observed that plumes of depleted plasma may act as 
conduits for HF power to leak into the topside ionosphere and out into space. When this occurs, 
less power is available to illuminate targets on the ground, thereby reducing the efficiency of the 
radar. None of these phenomena would be easily revealed with traditional ionospheric ray-tracing. 
Instead, ray-tracing results become difficult to interpret when ionospheric structure is present 
because the ray footprints on the ground appear to be distributed randomly. The wave-optics results 
show that while the propagation environment is complex for these scenarios, it often remains 
systematic, with multiple modes of propagation clearly defined for all ranges. We believe the 
additional information provided by wave-optics can be leveraged to improve OTHR performance. 
 
One unanticipated difficulty we encountered during this research is that wave-optics modeling via 
split-step Fourier methods (which include the standard PWE and both the FPE and VFPE) can 
produce inaccurate modeling results at HF because of the very large scattering angles involved. 
During this project, we explored wide-angle algorithms that can provide accurate full-wave 
propagation results at HF, at the expense of increased computational cost. The first is a high-
frequency operator symbol construction derived from phase space path integral methods (Fishman 
& McCoy, 1987), also referred to as locally homogenous wavefield extrapolation (LHWE). We 
found this method to be very accurate but also very computationally expensive.  This 
approximation advances the field while simultaneously interacting with the refractive structure. 
There are no separate media interaction and free-space propagation operations with this method, 
as there are when solving the VFPE equation via the split-step method. We have long suspected 
that our use of the free-space propagator to advance the field provides an inadequate approximation 
at HF wavelengths, resulting in the discrepancy we have noted with geometric optics (ray-tracing).  
 
We asked Prof. Louis Fishman, a mathematician who has dedicated several decades to study of 
the Helmholtz equation, to help us better understand why the LHWE method is more accurate than 
the FPE. His response was that the forward propagation equation resembles the arbitrary-angle, 
weak-inhomogeneity, arbitrary-frequency (gradient) asymptotic limit of the composition equation 
derived in (Fishman & McCoy, 1984). Further, taking the high-frequency limit, reveals a more 
general form of the FPE, where the “media-interaction” term now has an additional, multiplicative 
factor involving directional effects. The FPE results by arbitrarily setting the angular variable to 
zero, effectively treating this term as if it were a one-dimensional formulation. This is an ad hoc 
result, and it is not surprising that there is insufficient turning of the wavefront resulting from the 
suppression of the necessary angular effects in the “perturbation” term. 
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Just as the available funding for this project was running out, we briefly explored a wide-angle 
method called the split-step Padé (SSP) method (Collins, 1993). Our initial investigations suggest 
that this method is equally accurate as LHWE for HF problems but also relatively efficient (each 
run requires only a few hours on a standard PC). It can be shown that the LHWE and SSP 
propagators can be applied to vector problems using the diagonal decomposition approach 
described in section 3.4. With this extension to vector problems, it becomes possible to explore 
polarization effects due to ionospheric birefringence even for problems involving wide-angle 
scattering phenomena. Our recent experiments with beam steering suggest that the FPE informed 
by ray-trace diagnostics might also be an effective and efficient approach. In the future, we would 
like to explore the use of these algorithms to better understand how vector HF waves interact with 
ionospheric structure, including equatorial plasma bubbles, sporadic-E, traveling ionospheric 
disturbances (TIDs), and field-aligned irregularities at high-latitudes. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 
 
BIE boundary integral equation 
EM electromagnetic 
FDTD finite-difference time domain 
FPE forward propagation equation 
HF high frequency 
LHWE locally homogeneous wavefield extrapolation 
OTHR over the horizon radar 
PWE parabolic wave equation 
SSP split-step Padé 
TID traveling ionospheric disturbance 
VFPE  vector forward propagation equation 
B magnetic flux 
D displacement flux 
E  electric field 
G free-space Green’s function 
H  magnetic field 

1
0H  Hankel function of the first kind of order zero  

I  identity matrix  
S(r)  eikonal function 
X  ratio of plasma frequency to signal frequency (squared) 
X  susceptibility matrix 
U  factor to account for electron collisions 
c  speed of light in vacuum 
f  signal frequency 
k   free-space signal wavenumber 
n  refractive index 
n̂  unit vector in the direction of the wavefront normal 
p  time-averaged Poynting flux  

0 permittivity of free space 
 dielectric tensor 
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0  impedance of free-space 
x  free space propagation operator (marches the field a distance x along the x-axis) 

  a solution to the wave equation 
0  a solution to the homogeneous wave equation (in free-space) 
  signal angular frequency 
p  plasma frequency 
  Faraday rotation angle 

 
 
 

 


