
 

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023 

[Distribution Statement A] Approved for public release and unlimited distribution.  

SECURING UEFI: AN UNDERPINNING 

TECHNOLOGY FOR COMPUTING 
Vijay Sarvepalli (SEI) 

May 2023 

[Distribution Statement A] Approved for public release and unlimited distribution. 

Of the beginnings 

Each time you boot up your computer, software called firmware wakes up your computer, and often it 

remains active in the background, silently supporting the functions of the operating system. Origi-

nally, this software, known as the Basic Input/Output System (BIOS), contained a small amount of 

code without much more responsibility than to ensure that the operating system started up properly. 

Over decades, this firmware has grown in capability, size, and complexity. Many functions that used 

to be implemented either directly in hardware or in the operating system are now increasingly imple-

mented in this critical layer of software. 

Most modern desktops and servers have firmware based on a standard known as the Unified Extensi-

ble Firmware Interface (UEFI), which replaces BIOS. A typical UEFI-based firmware is composed of 

software components from several suppliers, often including code from open-source projects, all knit 

together by an original equipment manufacturer (OEM), such as a laptop manufacturer. These soft-

ware components are primarily written in low-level programming languages like C that facilitate di-

rect access to the hardware and physical memory. These software components require high-privilege 

access to the central processing unit (CPU). The Chain of Trust model in the UEFI standard is de-

signed to enable secure cryptographic verification of these components, establishing assurances that 

only trusted software is executed during the early boot cycle [Wilkins 2016]. Even after the boot cycle 

is complete, UEFI still provides an interface to the operating system to enable configuration changes 

or software updates to the firmware. 

Unlike the operating system, UEFI software remains invisible to most of us, despite its cr itical role in 

the functioning of a modern system. Because of its criticality and invisibility, vulnerabilities in UEFI-

related software pose high risks to system security. In an earlier blog, we explored why attackers find 

UEFI an attractive target for attacks [Sarvepalli 2022]. This paper highlights the technical and collabo-

rative efforts to secure the UEFI-based firmware that serves as a foundational piece of modern compu-

ting environments. 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2 

[Distribution Statement A] Approved for public release and unlimited distribution.  

Here be dragons 

The UEFI specification defines the requirements for the technologies that enable a machine to boot 

securely and to initialize the low-level software required to support the operating system. The specifi-

cation describes a framework for the development of hardware device drivers, a collection of applica-

tion programming interfaces including those required to support power management, and additional 

capabilities such as SecureBoot. Together these features specify the interfaces that enable a fully oper-

ational UEFI firmware software stack. This section highlights some of the challenges for doing secure 

development using UEFI specification with currently available tools and frameworks. 

Memory management in UEFI programming 

UEFI software is designed to run in what is known as the System Management Mode (SMM), an iso-

lated execution environment supported by x86 CPUs that executes with high privileges. This SMM 

operates on a dedicated and secure section of volatile System Management Random Access Memory 

[Wilkins 2015]. The SMM transition of the CPU is triggered by a System Management Interrupt 

(SMI) Handler [Yao 2019b]. An SMI Handler can be generated either from hardware (such as a de-

vice) or from software, should be handled with high priority, and cannot be ignored [Microsoft 2020]. 

The developer is expected to ensure that the System-Management Range Register is programmed to 

restrict access to the System Management Random Access Memory region and prevent any unauthor-

ized access. The operating system should use the abstract Communications Buffer interface and 

should not directly access System Management Random Access Memory or directly control the exe-

cution of the SMM [Yao 2019c]. 

Because memory access and SMM execution is complex, it is easy for software developers to get it 

wrong, introducing security bugs [Boone 2023]. Attackers can exploit these vulnerabilities to modify 

the behavior of code running in a high-privileged mode of the CPU, for example, causing a device 

driver, such as a Driver eXecution Environment, to leak memory or triggering an EFI Variable change 

that subverts the normal boot sequence. Testing UEFI code presents a variety of challenges that are 

unique to UEFI firmware environments and makes applying modern testing tools (e.g., static applica-

tion testing tools) more difficult. 

Challenges in establishing a root of trust 

UEFI Secure Boot is a feature defined in the UEFI Specification that guarantees that only valid third-

party firmware code can run in the OEM firmware environment [Yao 2019d]. UEFI firmware root of 

trust is the authoritative cryptographic source that can be relied on to verify the trustworthiness of the 

software used to bootstrap a computer’s software from the early stages of the boot process [Chamorro 

2020]. The goal is to provide hardware-initiated (immutable) validation that the firmware compo-

nent’s code has been provided by a trusted source and has not been tampered with [Zimmer 2016]. At 

each step of the boot process, a series of verification steps establish a chain of trust, where at each step 

a proven trustworthy component in turn validates the next, creating a transitive trust [Yao 2019a]. 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3 

[Distribution Statement A] Approved for public release and unlimited distribution.  

The system works well in theory; however, putting it into practice has presented a number of chal-

lenges that have not been overcome. A vulnerability in any given component can undermine the entire 

chain of trust, leading to the execution of untrusted code at some point before the operating system is 

started. For example, a recent attack dubbed BlackLotus chains a two-staged attack to undermine the 

root of trust—one to put a vulnerable EFI bootloader (a small piece of operating system loading soft-

ware) in place and the second to use the vulnerability to undermine the chain of trust [Microsoft 

2023]. Thus it uses a signed piece of vulnerable software to bypass security features in UEFI such as 

SecureBoot. Another set of problems can arise from a stolen or a compromised cryptographic signing 

key, as seen in the recent compromise of source code and private keys in Micro-Star International 

firmware [Lakshmanan 2023]. Once a private key has been compromised, any system that is built with 

a component from the compromised supplier is also now at risk [Goodin 2023]. As all of the UEFI 

components on a single device operate with equally high privileges and have no inherent isolation 

from each other, there is no way to limit the damage from one such compromised piece of firmware.  

The current specification of the chain of trust also lacks sufficient fidelity to establish that all the rele-

vant parts of UEFI-related memory can be trusted [Microsoft 2022]. For example, it is possible to ver-

ify certain parts of the content in the protected memory such as UEFI driver code, but not the data that 

is identified as EFI Variable, essentially the runtime variable used to manage settings of the firmware. 

The UEFI standard addresses the risks due to compromised components—due to either a software vul-

nerability or a supply-chain compromise—through the Forbidden Signature Database (DBX).  

The forbidden DBX dilemma 

The DBX, also known as the UEFI Revocation List, is used during the boot sequence to determine 

whether any revocations apply to a particular binary that is stored in the PCI flash. A revocation list 

entry describes components in one of three ways: 

 an entry with the hash of a specific binary 

 a Public Key Infrastructure certificate (X509 form) 

 the hash of a certificate 

The UEFI specification requires that a security error is raised and the denied component is not pro-

cessed if it matches a deny-list entry in the DBX. Similarly, there is an allow list that does the opposite 

checks after the forbidden checks have completed. A component that is not explicitly present in the 

allow list will also not be processed. The UEFI Forum maintains a publicly available DBX for many 

known-bad binaries and compromised certificates at https://uefi.org/revocationlistfile. 

This DBX feature has proven to be difficult to manage in practice. The structure of DBX is complex 

because the structure depends on what is being blocked or allowed. For example, Microsoft’s Authen-

ticode signatures use a method of calculating the length of the header of the binary that is distinct from 

the traditional hash-based signature [Jones 2014]. These complexities could lead to flaws in imple-

mentation that allow for a deny list to be ignored, introducing the security risk from a vulnerable com-

ponent. Further, the software that updates the DBX performs no validation or verification to ensure 

https://uefi.org/revocationlistfile


SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4 

[Distribution Statement A] Approved for public release and unlimited distribution. 

that the intended component is successfully blocked. Any attempts to add such stolen Public Key In-

frastructure certificates from compromised suppliers could render unusable a number of computers 

with a component from that supplier. Similarly, blocking vulnerable components such as bootloaders 

from operating system suppliers, using Forbidden DBX, can cause interruption to many systems. This 

limits the UEFI Forum from adding entries to Forbidden DBX that can operationally impact many us-

ers and enterprises. Finally, there is a burden on the end user or the enterprise device management to 

ensure that a DBX update is applied and audited. Because the DBX is stored in the limited-size PCI 

flash storage with other operational UEFI firmware, the storage size is limited; vendors must con-

stantly work with such constraints and have not many tradeoffs to manage them. Firmware suppliers 

currently do not have a way to dynamically manage this list and deny access to insecure, vulnerable, 

or deprecated components. 

Supply chain confusion 

Supply chain issues are getting a lot of attention from the security community, much of it focused on 

what has been called “dependency confusion.” Firmware is a veritable monument to dependency con-

fusion. A typical OEM laptop or desktop may have 50 or more Pre-EFI Initialization modules and 

hundreds of Driver eXecution Environment modules inside its firmware [Matrosov 2022]. During the 

process of compiling, configuring, and assembling components into the intended final binary form, 

many components can end up modified and unscrutinized. A UEFI firmware supply chain typically 

involves independent BIOS vendors that inherit code from CPU manufacturers (and other reference 

implementations such as TianoCore or Project Mu). The independent BIOS vendors in turn provide 

their source code or a binary to original device manufacturers, who share the code, sometimes modi-

fied, with the final OEM.  

It is the nature of the UEFI that vendors at different levels of the supply chain provide code, libraries , 

and components to other vendors along the supply chain. Software can of course be easily copied, 

modified, and appended, especially when the original source code is easily available, making it diffi-

cult to track versions and address bugs. The UEFI firmware supply chain is quite complex, and the fi-

nal OEM device manufacturers, like Dell or Lenovo, have typically contributed less than 10% of the 

code. Essentially these OEM’s may not have immediate visibility of close to 90% of the UEFI compo-

nents included in the devices they sell. Each of these suppliers is also part of the transitive chain of 

trust that is entirely based on the security of their Public Key Infrastructure. Even if an OEM adheres 

to the proper rules and trusts only specific suppliers, the risk of one such supplier’s private key infor-

mation being compromised can undermine all the devices that inherited such trust [Roy 2021]. Fur-

ther, a vulnerability found in a UEFI module or a boot loader from anywhere in this supply chain can 

have impacts up and down the chain, causing a ripple effect that risks the final assembled device. Fi-

nally, very few OEM vendors are able to generate and provide anything that comes close to a compre-

hensive software bill of materials of their UEFI components, making impact assessment and auditing a 

feat to accomplish for enterprise system managers and end users.  



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5 

[Distribution Statement A] Approved for public release and unlimited distribution.  

Synthesis of challenges 

Stepping back, we can see that although in principle the UEFI defines a modular framework for as-

sembling a firmware image for distribution, it does not provide the sort of modularized architecture 

we’ve come to associate with today’s operating systems, hypervisors, and other execution environ-

ments. There are several phases to the boot process where these modules are executed with an optional 

capability to interact with other components. To make things even worse, in order to support certain 

configuration management features, some of these modules are also expected to accept untrusted input 

from the user or network and process it along with the stored information such as EFI Variables and 

device configuration data, for example, Boot Configuration Data. A successful attack and compromise 

of one of these modules could provide unrestricted access that could compromise the entire platform. 

Why would threat actors target UEFI? 

Malware families such as LoJax and BlackLotus represent threats that have used UEFI as a tool to 

gain persistence on systems after initial compromise. Persistence is one reason threat actors might find 

UEFI an attractive target. In this section, we discuss three other reasons that actors are drawn to attack 

UEFI: its relative invisibility to defenders, the slow or inconsistent patching cadence due to UEFI sup-

pliers’ lack of product security incident response team maturity, and access and execution privileges 

that, if compromised, could be used to avoid detection by any defender processes in the operating sys-

tem. 

Defenders seek recovery, attackers seek persistence: exploiting UEFI for 

long-term persistence 

As threats have evolved, many companies have begun to acknowledge the reality that attackers will 

eventually gain some sort of access. Due to a flaw in either the setup or in the software, attacks are 

bound to find their way into systems. The focus lately has been on denying persistence or long-term 

access to the attackers. Some simple interruptions such as reboots, change of credentials , or riddance 

of the initial attack vector are all being adopted and even acknowledged as part of the National Insti-

tute of Standards and Technology (NIST) SI-14 Non-Persistence System Integrity Controls (Special 

Publication 800-53, Revision 5).  

This basically means attackers now have to pursue methods that will give them both stealth and per-

sistence. Many of the attacks against UEFI provide an attractive target for both objectives. Because 

UEFI infections can survive reboots and even reinstallation of the operating system, UEFI firmware is 

a profitable target. UEFI itself has many of the essential components of an operating system, such as 

networking, allowing the attacker a long-term ability to maintain access and even update the malicious 

firmware modules to maintain access indefinitely. Recent attacks such as MoonBounce and Black-

Lotus have illustrated how malware can use UEFI for persistence. These malware families have so far 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6 

[Distribution Statement A] Approved for public release and unlimited distribution.  

focused on highly visible targets within UEFI images. Microsoft’s blog post about BlackLotus detec-

tion outlines several ways that an administrative user in the operating system can detect a BlackLotus 

infection, for example [Microsoft 2023]. However, other (harder to access) features of the UEFI stand-

ard would provide attackers with much more invisibility. 

The hidden enemy: you can’t defend what you can’t see 

As the old adage goes, “absence of evidence is not evidence of absence.” UEFI firmware has a huge 

security weakness. It’s difficult to know what is actually present in a firmware at installation time and 

hard to perform runtime security monitoring [Rohner 2021]. Many vendors attempt to make it difficult 

to access and audit the PCI flash, where a persistent copy of the firmware is installed. There are few 

antivirus, anti-malware, and endpoint detection and response tools that can audit the UEFI boot sec-

tions, alert organizations on changes to the firmware, or attempt to recover from an infection. While 

the operating system itself can access UEFI through system and kernel calls to the application pro-

gramming interface that UEFI specifically exposes and provides, it is difficult to guarantee a full reset 

of the SPI flash such that an infection has been entirely removed and the threat neutralized. The CPU 

itself limits this access, which further limits the ability of an operating system or application running 

under normal conditions to perform any activity to prevent malicious activity against UEFI firmware. 

Patch me if you can: patching isn’t the routine activity it should be 

Patch Tuesday is the one entry you can expect to see on just about every IT and security professional’s 

calendar. Every week security professionals learn about the latest issues and apply hot fixes, patches, 

and security updates to a number of systems that they manage. A lot of effort and time are spent plan-

ning, scheduling, and applying updates in a way that minimizes disruptions: these teams dread apply-

ing updates that require reboots, machine-level access, and physical access. While there are many 

good techniques to update UEFI firmware, they are difficult to implement in practice. There is always 

a risk of SPI flash corruption and potentially “bricking” the entire device. 

UEFI specification allows for firmware updates to be supplied as UEFI Capsule updates using Firm-

ware Management Protocol, which requires the kernel or Ring 0 privilege for installation. The UEFI 

Capsule has a well-defined structure with a Globally Unique Identifier and an update component that 

provides a reliable way to deliver updates. The producer of the system firmware is expected to pack-

age updates in a particular way, adding digital signatures that can be verified and using application 

programming interfaces to install them. A typical laptop or desktop may have 50 Pre-EFI Initialization 

modules and 180 Driver eXecution Environment modules inside its firmware. Depending on which 

firmware component is being updated, an essential security update may have to traverse a tortuous 

path through the supply chain of chip vendors, independent BIOS vendors, OEMs, original device 

manufacturers, and independent hardware vendors to appear in an end user’s system. Sometimes these 

vendors also provide their own custom software to update and patch their components, independently 

of the final OEM or other supply-chain stakeholders. These updates may require manual intervention 

such as download, verification, installation, and, in some cases, cumbersome reset of the core compo-

nents that require reboot (for example, the Trusted Platform Module). It should be assumed that the 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7 

[Distribution Statement A] Approved for public release and unlimited distribution. 

mean time to patch for firmware is potentially much longer than the 150 days observed in traditional 

software patching [de Vries 2020]. Attackers can take advantage of these delays to target their attack 

during this vulnerable period and gain high-privilege access. 

The M-mode phenomenon: even more privileged access 

The RISC-V, an open-standard instruction set architecture, defines three modes of privilege levels. In 

increasing order of privilege, they are user-mode (U-mode), supervisor mode (S-mode), and machine 

mode (M-mode). In the M-mode is the highest privilege mode provided to firmware and boot loaders. 

The SMM available in x86 architectures is the most salient example of an implementation mode in-

tended for similar high-privileged tasks. This mode of operation is below the operating system, which 

runs in Ring 0, and is typically identified as Ring -2 (pronounced ring minus two). This high-privi-

leged mode is a very attractive target for attackers because it gives them a higher privilege than the 

operating system on the machine, while they benefit from the lack of tools to supervise and audit ac-

tions of processes running below Ring 0. Although the effort required to exploit UEFI firmware is 

high, the attacker who successfully exploits any weakness is rewarded with a persistent high-privi-

leged access. 

The road ahead: secure by design to modernize UEFI firmware 

A staggering 286.2 million Windows-based PCs were sold in 2022, despite the 16.2% fall in PC sales 

that year. The Compatibility Support Mode that allows legacy BIOS to run on these devices is absent 

from almost all of them, virtually forcing the adoption of UEFI. UEFI is now actively running on hun-

dreds of millions of machines worldwide. Each of these devices has firmware running on processors 

on the mother board and on the integrated (or latter-attached) peripherals. Fortunately, there are a vari-

ety of efforts to identify the actions required to secure the UEFI firmware ecosystem. Probably the 

most definitive source for guidance on UEFI can be found in the NIST Platform Firmware Resiliency 

Guidelines (SP 800-193) [Regenscheid 2018]. While it is difficult to predict the next threat and the 

goals of the adversary, if UEFI ecosystem partners fix the “known unknowns” in the UEFI firmware, 

they will make it harder for attackers to gain privileged footholds in these systems. 

Build a robust attestation ecosystem 

The discovery of the BlackLotus malware has highlighted how signed but vulnerable firmware is 

likely to remain a threat for a long time. The DBX represents only a part of the solution. An enhanced 

capability to dissect and block software that should no longer be trusted is essential. Dynamic Root of 

Trust for Measurement is one such approach for a dynamically verifiable trust that can restrict access 

to untrusted or newly introduced components [Brannock 2021]. Remote attestation is another capabil-

ity that provides a trusted network resource that can dynamically verify code and add it to a trusted 

software list, either on first use or as needed. Remote attestation is already used by Apple’s iBoot and 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8 

[Distribution Statement A] Approved for public release and unlimited distribution.  

Google’s CoreBoot to verify any changes to firmware [Hudson 2019]. This type of attestation, with a 

sealed secret and a monotonic firmware versioning, can prevent tampering, rollback attacks, and any 

attempts to use compromised components to reduce the integrity of a system [Rutkowska 2015]. The 

next version of this type of technology, such as SecureBoot, should inherently be able to provide attes-

tation capabilities to ensure a dynamic chain of trust. Mechanisms to block or restrict the execution of 

a group of binaries and disabling sets of vulnerable components should also be made inherently avail-

able as part of the firmware verification. 

Improve the memory safety of critical UEFI code 

UEFI firmware security requires rigorous discipline in memory management. The reference imple-

mentations, such as Tianocore and Project Mu, should provide this discipline by default. Vendors are 

likely to reuse the widely available code to develop their implementations. These reference implemen-

tations have not been adequately verified. 

Memory management verification can also enhance the adoption of capabilities. For example, an in-

put/output memory management unit protects against direct memory access as the default case at the 

early boot phases [Yao 2017]. Vendors and their security partners should thoroughly audit and restrict 

the use of critical SMI Handlers and use SMI Handler Profiles to ensure limited and secure use of 

high-privilege access to only necessary components. SMI Handlers should be avoided when not 

needed, as recommended on the UEFI Forum [Wilkins 2015]. Organizations should develop software 

auditing capabilities, such as CodeQL, to support developers by profiling SMM code development so 

that the memory-safe programming audit itself is codified and enforceable. The UEFI community 

should support, encourage, and reward researchers, educational institutions, and partners to contribute 

to such enhancements and pursue such memory-safe methods for the industry. 

Apply least privilege and component isolation principles to UEFI code 

As noted, the design of a UEFI image is in some sense both modular and flat.  As UEFI looks more 

and more like its own operating system, today’s enclaving technologies—such as Intel® Software 

Guard Extensions, Advanced Micro Devices® Secure Encrypted Virtualization, and the Arm® 

TrustZone®—need to be extended into UEFI. There is also a need for memory isolation between boot 

applications. In November 2022, Microsoft announced an aspiration toward achieving this goal using 

EFI_MEMORY_ATTRIBUTE_PROTOCOL, but much of the current code continues to work without 

any such isolation. At this time, most firmware implementations have not adopted this isolation 

model. In 2023 UEFI PlugFest also brought to life the Universal Scalable Firmware efforts, which in-

clude a specific call to action to deprivilege and thereby isolate the UEFI Third-Party Option ROM 

(read-only memory) using Ring 3 OEM SMM. This type of principle of least privilege is also much 

needed to reduce risk that attackers could gain untethered access to the CPU from UEFI modules or 

components. As UEFI firmware continues to grow with multiple firmware components, at times dy-

namically introduced, component isolation has become an essential design need in the UEFI ecosys-

tem. The design of the UEFI layer should incorporate mechanisms so that the consequences  of the 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9 

[Distribution Statement A] Approved for public release and unlimited distribution.  

failure or compromise of any particular component do not introduce failure or compromise to the en-

tire device. 

Embrace firmware component transparency and verification 

A software bill of materials (SBOM) is a nested inventory, a list of ingredients that make up software 

components. UEFI firmware includes many binary components built by a host of vendors, further 

adopted and modified as needed, with the OEM’s contribution of code representing less than 10% of 

the total code. This code includes third-party libraries as well as code copied directly from third par-

ties. In an ideal world, this SBOM is stored alongside the firmware image in the PCI flash and is up-

dated routinely to reflect the most accurate picture of the contents of the image. In principle, most of 

the required capabilities are in place to maintain an accurate SBOM, yet few OEM vendors today are 

able to provide an SBOM that accurately represents the current firmware present on the system. The 

value of maintaining SBOMs in vulnerability management is undisputed, and accurate SBOMs are ar-

guably one of the most important elements of supply-chain accountability. Integrating SBOMs into 

UEFI software development and firmware creation in the reference implementation can simplify ef-

forts and bring cumulative value to accountability in the UEFI community. 

Develop robust and non-intrusive patching 

In an ideal future state, UEFI firmware patches will be applied routinely as part of normal IT opera-

tions. There are two challenges to realizing this ideal. First, the patching process must be standardized, 

and the mystery taken out of decisions to apply patches, so that organizations and end users have a 

straightforward way to apply patches. Second, this mechanism must be implemented in such a way 

that updates can be applied without interruption to operations. UEFI component vendors should adopt 

UEFI’s standards-based transparent interfaces and avoid any custom software that could delay or dis-

rupt automated and reliable device management [Rothman 2022]. There has been a gradual adoption 

of Linux Vendor Firmware Service [Richardson 2020] and Windows Update as standard ways of up-

dating UEFI firmware, and this practice should be adopted and shared within the UEFI community. 

Vendors are also urged to explore uninterrupted and non-intrusive ways to apply UEFI firmware 

patches. Traditionally these patches require reboot, device reset, and, in some cases, an interactive 

user intervention or physical presence at the device. Vendors should provide updates that can support 

a wide variety of use cases from laptops, desktops, and servers to headless devices that support UEFI 

firmware. 

The future of UEFI security 

As alluded to earlier, the UEFI standard is here to stay and is only expected to grow in its usage and 

adoption. It is important for the UEFI community to embrace these challenges and respond to them in 

a timely manner. While we do not know how the threat landscape will evolve, we know about the 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10 

[Distribution Statement A] Approved for public release and unlimited distribution. 

gaps and threat motivators that have briefly been highlighted here. Our focused, consistent, and regu-

lar actions in the coming years should steer UEFI firmware more confidently into the unchartered ter-

ritories into which our computing industry will keep forging ahead. 

References and further reading 

[Boone 2023] 

Boone, J. Stepping Insyde System Management Mode. NCC Group. April 2023. https://research.

nccgroup.com/2023/04/11/stepping-insyde-system-management-mode/ 

[Brannock 2021] 

Brannock, K. & Ueno, A. Intel®  Hardware Shield: Trustworthy SMM on the Intel vPro®  Platform. In-

tel. May 2021. https://cdrdv2-public.intel.com/756963/DRTM-based-computing_

whitepaper_FINAL_MAY2021.pdf 

[Chamorro 2020] 
Chamorro, D. & Chow, R. Anchoring Trust: A Hardware Secure Boot Story. The Cloudflare Blog. 

November 2020. https://blog.cloudflare.com/anchoring-trust-a-hardware-secure-boot-story/ 

[de Vries 2020] 
de Vries, R. & Wennekers, J. How Do You Measure the Success of Your Patch Management Efforts? 

Security Intelligence. January 2020. https://securityintelligence.com/posts/how-do-you-measure-the-

success-of-your-patch-management-efforts/ 

[Garrett 2015] 
Garrett, M. Beyond Anti Evil Maid: Protecting Hardware from Early Boot Attacks. CoreOS. Decem-

ber 2015. https://lab.dsst.io/32c3-slides/slides/7343.pdf 

[Goodin 2023] 
Goodin, D. Leak of MSI UEFI Signing Keys Stokes Fears of “Doomsday” Supply Chain Attack. Ars 

Technica. May 2023. https://arstechnica.com/information-technology/2023/05/leak-of-msi-uefi-sign-

ing-keys-stokes-concerns-of-doomsday-supply-chain-attack/ 

[Hudson 2019] 

Hudson, T. Trust, Lies and Attestation. Lower Layer Labs. 2019. https://hardwear.io/netherlands-

2019/presentation/roots-of-trust-attestation-keynote-talk-hardwear-io-nl-2019.pdf 

[Jones 2014] 

Jones, P. The UEFI Security Databases. The Uncooperative Organization. October 2014. 

https://blog.uncooperative.org/uefi/linux/secure%20boot/2014/10/23/uefi-security-databases.html 

https://research.nccgroup.com/2023/04/11/stepping-insyde-system-management-mode/
https://research.nccgroup.com/2023/04/11/stepping-insyde-system-management-mode/
https://cdrdv2-public.intel.com/756963/DRTM-based-computing_whitepaper_FINAL_MAY2021.pdf
https://cdrdv2-public.intel.com/756963/DRTM-based-computing_whitepaper_FINAL_MAY2021.pdf
https://blog.cloudflare.com/anchoring-trust-a-hardware-secure-boot-story/
https://securityintelligence.com/posts/how-do-you-measure-the-success-of-your-patch-management-efforts/
https://securityintelligence.com/posts/how-do-you-measure-the-success-of-your-patch-management-efforts/
https://lab.dsst.io/32c3-slides/slides/7343.pdf
https://hardwear.io/netherlands-2019/presentation/roots-of-trust-attestation-keynote-talk-hardwear-io-nl-2019.pdf
https://hardwear.io/netherlands-2019/presentation/roots-of-trust-attestation-keynote-talk-hardwear-io-nl-2019.pdf
https://blog.uncooperative.org/uefi/linux/secure%20boot/2014/10/23/uefi-security-databases.html


SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11 

[Distribution Statement A] Approved for public release and unlimited distribution.  

[Lakshmanan 2023] 
Lakshmanan, R. MSI Data Breach: Private Code Signing Keys Leaked on the Dark Web. The Hacker 

News. May 2023. https://thehackernews.com/2023/05/msi-data-breach-private-code-signing.html 

[Matrosov 2022] 
Matrosov, A.; Vasilenko, Y.; Ermolov, A.; & Thomas, S. Breaking Firmware Trust from Pre-EFI: Ex-

ploiting Early Boot Phases. Blackhat USA 2022. May 2022. https://i.blackhat.com/USA-

22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-EFI.pdf (media: 

https://www.youtube.com/watch?v=Z81s7UIiwmI) 

[Microsoft 2020] 
System Management Mode Deep Dive: How SMM Isolation Hardens the Platform. Microsoft Security 

Blog. November 2020. https://www.microsoft.com/en-us/security/blog/2020/11/12/system-manage-

ment-mode-deep-dive-how-smm-isolation-hardens-the-platform/ 

[Microsoft 2022] 
UEFI Memory Mitigations. Microsoft Build. December 2022. https://learn.microsoft.com/en-us/win-

dows-hardware/drivers/bringup/uefi-ca-memory-mitigation-requirements 

[Microsoft 2023] 
Guidance for Investigating Attacks Using CVE-2022-21894: The BlackLotus Campaign. Microsoft 

Security Blog. April 11, 2023. https://www.microsoft.com/en-us/security/blog/2023/04/11/guidance-

for-investigating-attacks-using-cve-2022-21894-the-blacklotus-campaign/ 

[Regenscheid 2018] 

Regenscheid, A. Platform Firmware Resiliency Guidelines. NIST SP 800-93. National Institute of 

Standards and Technology. May 2018. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-193.pdf 

[Richardson 2020] 
Richardson, B.; Zimmer, V.; Kinney, M. & Hughes, R. Capsule Updates & LVFS: Improving System 

Firmware Updates. FOSDEM 2020. February 2020. https://archive.fosdem.org/2020/sched-

ule/event/firmware_culisfu/attachments/slides/3709/export/events/attachments/firm-

ware_culisfu/slides/3709/FOSDEM_2020_Intel_Capsule_Update.pdf 

[Rohner 2021] 

Rohner, B. & Ruoff, T. DHS CISA Strategy to Fix Vulnerabilities Below the OS Among Worst Of-

fenders. RSA Conference 2021. May 2021. https://static.rainfocus.com/rsac/us21/sess/

1602603692582001zuMc/finalwebsite/2021_US21_TECH-W13_01_DHS-CISA-Strategy-to-Fix-

Vulnerabilities-Below-the-OS-Among-Worst-Offenders_1620749389851001CH5E.pdf 

https://thehackernews.com/2023/05/msi-data-breach-private-code-signing.html
https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-EFI.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Matrosov-Breaking-Firmware-Trust-From-Pre-EFI.pdf
https://www.youtube.com/watch?v=Z81s7UIiwmI
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://www.microsoft.com/en-us/security/blog/2020/11/12/system-management-mode-deep-dive-how-smm-isolation-hardens-the-platform/
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/uefi-ca-memory-mitigation-requirements
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/uefi-ca-memory-mitigation-requirements
https://www.microsoft.com/en-us/security/blog/2023/04/11/guidance-for-investigating-attacks-using-cve-2022-21894-the-blacklotus-campaign/
https://www.microsoft.com/en-us/security/blog/2023/04/11/guidance-for-investigating-attacks-using-cve-2022-21894-the-blacklotus-campaign/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_culisfu/attachments/slides/3709/export/events/attachments/firmware_culisfu/slides/3709/FOSDEM_2020_Intel_Capsule_Update.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_culisfu/attachments/slides/3709/export/events/attachments/firmware_culisfu/slides/3709/FOSDEM_2020_Intel_Capsule_Update.pdf
https://archive.fosdem.org/2020/schedule/event/firmware_culisfu/attachments/slides/3709/export/events/attachments/firmware_culisfu/slides/3709/FOSDEM_2020_Intel_Capsule_Update.pdf
https://static.rainfocus.com/rsac/us21/sess/1602603692582001zuMc/finalwebsite/2021_US21_TECH-W13_01_DHS-CISA-Strategy-to-Fix-Vulnerabilities-Below-the-OS-Among-Worst-Offenders_1620749389851001CH5E.pdf
https://static.rainfocus.com/rsac/us21/sess/1602603692582001zuMc/finalwebsite/2021_US21_TECH-W13_01_DHS-CISA-Strategy-to-Fix-Vulnerabilities-Below-the-OS-Among-Worst-Offenders_1620749389851001CH5E.pdf
https://static.rainfocus.com/rsac/us21/sess/1602603692582001zuMc/finalwebsite/2021_US21_TECH-W13_01_DHS-CISA-Strategy-to-Fix-Vulnerabilities-Below-the-OS-Among-Worst-Offenders_1620749389851001CH5E.pdf


SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12 

[Distribution Statement A] Approved for public release and unlimited distribution.  

[Rothman 2022] 
Rothman, M. & Zimmer, V. Understanding UEFI Firmware Update and Its Vital Role in Keeping 

Computing Systems Secure. Embedded Computing Design. June 2022. https://embeddedcompu-

ting.com/technology/security/software-security/understanding-uefi-firmware-update-and-its-vital-role-

in-keeping-computing-systems-secure 

[Roy 2021] 
Roy, J. B. Understanding Windows 10 UEFI Secure Boot: How It Helps to Secure Pre-Boot Phase. 

How to Manage Devices. June 2021. https://www.anoopcnair.com/windows-10-uefi-secure-boot-

guide/ 

[Rutkowska 2015] 
Rutkowska, J. Towards Reasonably Trustworthy Laptops. UEFI Plugfest. December 2015. 

https://lab.dsst.io/32c3-slides/slides/7352.pdf 

[Sarvepalli 2022] 
Sarvepalli, V. UEFI – Terra Firma for Attackers. SEI Insights. August 2022. https://in-

sights.sei.cmu.edu/blog/uefi-terra-firma-for-attackers/ 

[Schwartz 2022] 
Schwartz, M. Understanding and Preventing Dependency Confusion Attacks. FOSSA. June 2022. 

https://fossa.com/blog/dependency-confusion-understanding-preventing-attacks/ 

[Wilkins 2015] 
Wilkins, D. UEFI Firmware: Securing SMM. UEFI Plugfest. May 2015. https://uefi.org/sites/de-

fault/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%20Securing%20SMM.pdf 

[Wilkins 2016] 
Wilkins, R. & Nixon, T. The Chain of Trust: Keeping Computing Systems More Secure. UEFI. June 

2016. https://uefi.org/sites/default/files/resources/UEFI%20Forum%20White%20Paper%20-

%20Chain%20of%20Trust%20Introduction_Final.pdf 

[Yao 2017] 

Yao, J.; Zimmer, V. J.; & Zeng, S. A Tour Beyond BIO: Using IOMMU for DMA Protection in UEFI 

Firmware. Intel 2017. https://www.intel.com/content/dam/develop/external/us/en/documents/intel-

whitepaper-using-iommu-for-dma-protection-in-uefi.pdf 

[Yao 2019a] 
Yao, J. & Zimmer, V. J. Intel® Boot Guard. Understanding UEFI Secure Boot Chain. June 2019. 

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/in-

tel_boot_guard 

https://embeddedcomputing.com/technology/security/software-security/understanding-uefi-firmware-update-and-its-vital-role-in-keeping-computing-systems-secure
https://embeddedcomputing.com/technology/security/software-security/understanding-uefi-firmware-update-and-its-vital-role-in-keeping-computing-systems-secure
https://embeddedcomputing.com/technology/security/software-security/understanding-uefi-firmware-update-and-its-vital-role-in-keeping-computing-systems-secure
https://www.anoopcnair.com/windows-10-uefi-secure-boot-guide/
https://www.anoopcnair.com/windows-10-uefi-secure-boot-guide/
https://lab.dsst.io/32c3-slides/slides/7352.pdf
https://insights.sei.cmu.edu/blog/uefi-terra-firma-for-attackers/
https://insights.sei.cmu.edu/blog/uefi-terra-firma-for-attackers/
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%20Securing%20SMM.pdf
https://uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015%20Firmware%20-%20Securing%20SMM.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Forum%20White%20Paper%20-%20Chain%20of%20Trust%20Introduction_Final.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Forum%20White%20Paper%20-%20Chain%20of%20Trust%20Introduction_Final.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-whitepaper-using-iommu-for-dma-protection-in-uefi.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-whitepaper-using-iommu-for-dma-protection-in-uefi.pdf
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard


SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13 

[Distribution Statement A] Approved for public release and unlimited distribution. 

[Yao 2019b] 
Yao, J. & Zimmer, V. J. Memory Protection in SMM. Understanding UEFI Secure Boot Chain. June 

2019. https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-

protection-in-smm 

[Yao 2019c] 

Yao, J. & Zimmer, V. J. Memory Protection in UEFI. Understanding UEFI Secure Boot Chain. June 

2019. https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-

protection-in-uefi 

[Yao 2019d] 
Yao, J. & Zimmer, V. J. UEFI SecureBoot: Glossary. Understanding UEFI Secure Boot Chain. June 

2019. https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/glossary 

[Zimmer 2016] 
Zimmer, V. & Krau, M. Establishing the Root of Trust. UEFI. August 2016. https://uefi.org/sites/de-

fault/files/resources/UEFI%20RoT%20white%20paper_Final%208%208%2016%20%28003%29.pdf 

https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-protection-in-smm
https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-protection-in-smm
https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-protection-in-uefi
https://edk2-docs.gitbook.io/a-tour-beyond-bios-memory-protection-in-uefi-bios/memory-protection-in-uefi
https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/glossary
https://uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%25208%2016%20%28003%29.pdf
https://uefi.org/sites/default/files/resources/UEFI%20RoT%20white%20paper_Final%208%25208%2016%20%28003%29.pdf


SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14 

[Distribution Statement A] Approved for public release and unlimited distribution.  

Legal Markings 

Copyright 2023 Carnegie Mellon University. 

This material is based upon work funded and supported by the Department of Homeland Security un-

der Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Soft-

ware Engineering Institute, a federally funded research and development center sponsored by the 

United States Department of Defense. 

The view, opinions, and/or findings contained in this material are those of the author(s) and should not 

be construed as an official Government position, policy, or decision, unless designated by other docu-

mentation. 

References herein to any specific commercial product, process, or service by trade name, trade mark, 

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommenda-

tion, or favoring by Carnegie Mellon University or its Software Engineering Institute.  

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE 

ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE 

MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR 

IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF 

FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT 

MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, 

TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

 

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited 

distribution.  Please see Copyright notice for non-US Government use and distribution. 

Internal use:* Permission to reproduce this material and to prepare derivative works from this material 

for internal use is granted, provided the copyright and “No Warranty” statements are included with all 

reproductions and derivative works. 

External use:* This material may be reproduced in its entirety, without modification, and freely dis-

tributed in written or electronic form without requesting formal permission. Permission is required for 

any other external and/or commercial use. Requests for permission should be directed to the Software 

Engineering Institute at permission@sei.cmu.edu. 

* These restrictions do not apply to U.S. government entities. 

DM23-0545 



SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15 

[Distribution Statement A] Approved for public release and unlimited distribution.  

Contact Us 
Softw are Engineering Institute 

4500 Fifth Avenue, Pittsburgh, PA 15213-2612 

Phone : 412/268.5800 | 888.201.4479 

Web: w ww.sei.cmu.edu 

Email: info@sei.cmu.edu 


