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1. Overview of Project 

Penn State has conducted scale experiments of a complete auto-landing system in collaboration 
with the Naval Surface Warfare Center Carderock Division (NSWCCD). These experiments have 
taken advantage of low-cost commodities, electronics, and multi-rotor aircraft to demonstrate 
automatic landing capabilities via landings on ship models at the Carderock wave tank facilities. 
These experiments have dealt with the development and implementation of trajectory generation 
methods, scalable flight control laws, deck motion prediction algorithms, vision-based sensing, and 
state estimation. 

This project has provided three main contributions: 

1. The first rigorous model-scale experimental evaluation of autonomous landing guidance 
algorithms where reduction in scale was accounted for. These tests required the development 
of scalable flight control laws, allowing aircraft closed loop dynamics to be related across 
test scales. Further, two guidance algorithms were developed as part of this effort: a baseline 
“deck tracking” method that follows deck motions while closing the gap between the deck 
and aircraft at a constant rate, and an advanced method that utilizes quadratic programming 
optimization to plan a landing path directly to the predicted deck state at touchdown. The 
results have provided insight into the feasibility of using typical deck motion prediction 
methods directly in landing path optimization, as well as the potential benefits of taking this 
approach. 

 
2. The demonstration of autonomous landings in scaled wave conditions with vision-based 

sensing and estimation methods used directly in the control loop. The estimation method 
utilized measurements of fiducial markers (“AprilTags”) that are specifically designed for 
enabling relative pose estimation, and the vision and IMU measurements were fused via an 
unscented Kalman filter.  

 
3. The establishment of a hardware and software configuration for performing autonomous 

flight tests in the Maneuvering and Seakeeping Basin (MASK). This test setup has been 
thoroughly tested in over 200 autonomous flight tests and can be utilized for future 
autonomous landing and flight control research in the MASK facility. 



  

  

2           Activities and Accomplishments 

2.1 Hardware Design 

Two hardware platforms were built: a coaxial hexacopter and a quadcopter (see figures 1 and 2).  
The vehicles were designed to perform ship landing flight tests in the MASK facility at the Naval 
Surface Warfare Center. The driving requirement for both vehicles was water resistance. Sensitive 
electronics are housed in waterproof enclosures, leaving only the motors exposed. Wiring and 
hardware interfaces were sealed using rubber gasket material and adhesives. The electronic speed 
controllers (ESCs) were fitted to aluminum heatsinks to exchange heat outside the enclosures. In 
the case of the hexacopter, an upgraded fan was used to prevent thermal throttling of the onboard 
computer.  Initial flight tests showed both vehicles could perform back-to-back flights without 
overheating. 

The enclosures provided additional challenges for testing visual navigation methods. To mitigate 
these, an optically clear acrylic dome was used to house the camera in the hexacopter. A 3D printed 
camera mount with adjustable pitch angle was created to hold the camera in the center of the dome 
to minimize optical distortions. 

Both vehicles are equipped with a Pixhawk flight controller running the PX4 flight control 
firmware and an Odroid XU4 onboard computer. The Odroid uses the robotic operating system 
(ROS) to communicate with the Pixhawk and onboard camera, as well as the ground station 
computer.  This allows for state estimation and control to be performed either completely onboard 
the vehicle or with the assistance of a ground station computer and/or an external motion capture 
system if desired.  

 

Figure 1: Hexacopter UAV 



  

  

 

Figure 2: Quadcopter UAV 

2.2 Vision System 

A recursive nested AprilTag3 fiducial marker array from family tagCustom48h12 was used in 
vision-based sensing described here. The array is shown in figure 3.  The array was printed on a 24 
in square piece of Tyvek laminated on 1/8 in plywood and was affixed to the desired testing 
location. 

 
Figure 3: Recursive AprilTag marker array composed of four markers with IDs 0-4 from tag family 
tagCustom48h12. 

The on-board Jevois smart camera was programmed to detect and estimate the position and 
orientation of the marker array based on a 640x480px image.  The maximum advertised frame rate 
for the Onsemi AR0135 global shutter was 54Hz.  Fiducials were detected, and array pose is 
estimated and streamed over USB to ROS running on the Odroid computer at 48 Hz. 



  

  

Logic was imposed to only estimate the pose of the largest visible marker of all detected markers 
in the image.  This reduced the computational requirements at some cost to accuracy and reliability 
of marker pose estimation, however it could be desirable to estimate and spherically interpolate all 
detected marker quaternions in addition to simply averaging poses.  

2.3 State Estimation 

An Unscented Kalman Filter (UKF) was used to estimate the state vector, x, and the diagonal of 
the estimated state covariance matrix, P. The estimation of state was performed in a recursive 
fashion and allowed for continued operation in the case where slight gaps occurred in the vision-
based measurements (detections of the AprilTag).  The estimated state vector consisted of the 
position of the deck in the helicopter frame in meters, 321 Euler angles from the helicopter to the 
deck in radians, the velocity of the deck in the helicopter frame in m/s, and the deck angular 
velocities in rad/s/s. 

The measurement step utilized the relative position and orientation (pose) estimates of the fiducial 
array with respect to the camera frame streamed at 48Hz from the Jevois camera, transformed to 
the x-front, y-right, z-down vehicle body frame. This transformation allowed the use of a simple 
linear measurement model as the measurements are the first six estimated states: 

𝑧௖௔௠ = ൣ𝑟ௗ
௩ᇱ

𝜙ௗ
௩  𝜃ௗ

௩ 𝜓ௗ
௩൧

ᇱ
(1) 

The prediction step ran consistently at 78Hz and was calculated on a single thread from the 
incoming IMU data at 95Hz.  

𝑧ூெ௎ = [�̈�௩
௛  𝑝 𝑞 𝑟 𝜙௩

௛ 𝜃௩
௛  𝜓௩

௛]ᇱ (2) 

The prediction step propagates the state estimates of the nonlinear dynamic model F with assumed 
known process noise, n. The measurement step corrects the estimate using the measurement model 
G with assumed known measurement noise.  

𝑥ො௞ାଵୀி( ௑෠ೖ ,௡) (3) 

𝑥ො௞ାଵୀீ( ௑෡ ೖ ,௩) (4) 

The process model F was implemented in a fashion similar to that discussed in [1]. 

2.4 Control Design 

2.4.1 Scaling Methodology 

The UAV controller parameters used during ship landing experiments were determined by Froude 
scaling the closed loop dynamics of a typical full-scale manned rotorcraft similar in size to a UH-
60. Therefore, prior to discussing the controller design, the proposed scaling methodology will first 
be discussed.  

The closed loop aircraft dynamics were determined via Froude scaling. With this method, model 
scale distance is calculated by dividing full scale distance by the Froude number 𝑁ி. Model scale 
time is calculated by dividing full scale time by ඥ𝑁ி and frequency follows the inverse of this. 



  

  

Following these rules, we can derive the dynamic scaling laws shown in table 1 (note that we 
multiply by these scale factors to go from full to model scale). 

Table 1: Froude Scaling Factors 

 

The ratio of full to model scale hub-to-hub distance is usually taken as the Froude number when 
applying Froude scaling to multi-rotor aircraft control characteristics. Here, however, we propose 
using vehicle mass ratio to establish the scale factor. That is, our Froude number is calculated from 

𝑁ி = ቆ
𝑀௙௦

𝑀௠௙௦
ቇ

ଵ
ଷ

(5) 

where 𝑀௙௦ and 𝑀௠௦ represent full and model scale vehicle masses, respectively. The reason for 
using mass ratio is that, for tracking a trajectory, the UAV can be modelled as a point mass with a 
thrust vector. The bandwidth with which the thrust vector can rotate is prescribed in our attitude 
controller, and the bandwidth with which the thrust magnitude can vary is prescribed in our Z 
position controller. Additionally, the relative thrust to weight ratio can be particularly important 
when performing ship landings, as ship motions are often aggressive in heave. The downside to 
using mass ratio is that it is undesirable to have handling qualities requirements scale with vehicle 
mass since mass depends on payload, fuel, and other factors. Here, though, our goal is not to 
establish strict handling qualities requirements. Furthermore, the scaling factor is found from a cube 
root of mass ratio. Changes in the mass of either aircraft therefore do not have a large impact on 
the scaling factor unless they are very large compared to the nominal aircraft weight. Moving 
forward with our mass scaling law, the full-scale aircraft case that is considered here is a medium 
weight helicopter roughly the size of a UH-60.  The UAV used in experimentation weighs 6.6 
pounds, so taking the nominal full scale aircraft weight to be approximately 17,500 pounds we 
have: 

𝑁ி = ቆ
𝑀௙௦

𝑀௠௙௦
ቇ

ଵ
ଷ

= ൬
17,500 𝑙𝑏𝑠

6.6 𝑙𝑏𝑠
൰

ଵ
ଷ

≈ 13.8 (6) 

This scale factor of 𝑁ி = 13.8 was used for all scaling discussed in this report. 



  

  

2.4.2 Explicit Model Following Controllers 

The Explicit Model Following (EMF) control architecture is used to produce position-command 
position-hold and heading-command heading-hold controllers used by the autonomous control 
modes. A general EMF controller for a SISO plant is shown in figure 4. This architecture was 
chosen because, with an accurate model available for use in the feedforward inversion path, the 
closed loop transfer function will be approximately equivalent to the ideal response with the added 
time delay: 

𝐺஼௅(𝑠) ≈ 𝐺௜ௗ௘௔௟(𝑠)𝑒ିఛ௦ (7) 

The goal of tailoring vehicle tracking bandwidths is therefore easily achieved through the specified 
ideal response model. Furthermore, both UAVs were shown to be well modeled through the use of 
simple decoupled transfer functions, which lend themselves nicely to the EMF control strategy. 
The transfer function models used in control design were obtained via the frequency domain system 
identification (ID) process presented in [2]. 

 

Figure 4: EMF controller for a general SISO plant. 

A block diagram depicting the position control modes for the lateral and longitudinal axes is shown 
in figure 5. The architecture consists of inner roll and pitch attitude-command-attitude-hold 
controllers and an outer position control loop. The inner attitude loop inversion models are based 
off system ID results and the feedback compensator is a simple PI controller. The ideal attitude 
model is given as a generic second order system. For example, for roll, we use 

𝐺థ,௜ௗ௘௔௟(𝑠) =
𝜔థ,௜ௗ௘௔௟

ଶ

𝑠ଶ + 2𝜁థ,௜ௗ௘௔௟𝜔థ,௜ௗ௘௔௟𝑠 + 𝜔థ,௜ௗ௘௔௟
ଶ  (8) 

For designing the outer loop controllers, we consider roll and pitch attitudes as the driving inputs 
and neglect the higher bandwidth attitude dynamics. The resulting approximate models for X and 
Y heading frame accelerations are then given as 

�̈�௛௙ = −𝑔𝜃      �̈�௛௙ = 𝑔𝜙 (9) 

This results in the typical acceleration feedforward term with a gain of 1/𝑔, as seen in figure 5. 
The outer loop ideal models are also generic second order systems, and PID control is used for 
position feedback compensation. Note that the position command filter inputs are given in the 
inertial frame. The X and Y velocity and position tracking errors, as well as the integral of position 
tracking error, are also calculated in the inertial frame. The tracking errors are then transformed to 
the aircraft heading frame prior to multiplying by the feedback gains. The same process is applied 



  

  

in the acceleration feedforward path. These transformations are necessary to produce appropriate 
pitch and roll commands, as our control gains are designed based off the heading frame model from 
equation 9. 

 

Figure 5: Lateral and longitudinal position control.  

The yaw axis controller uses the same structure as the roll and pitch attitude control loops, with a 
second order command model and PI feedback compensation. The vertical axis control is designed 
similarly to the lateral and longitudinal control loops, but with the absence of an inner loop as the 
transfer function from throttle input to vertical position command output is used directly in the 
feedforward inversion model. There is also no need for frame transformations in the vertical 
position controller.  

Note that this control architecture is being used in model scale experiments, where a portion of the 
intended tests includes varied reference tracking and disturbance rejection bandwidths. In order to 
have more meaningful carryover from model to full scale, the Froude scaling laws discussed in 
section 2.4.1 is used to scale the control laws. To exemplify how this scaling is performed, we will 
consider the longitudinal control axis. Say we have a full-scale model with a pitch tracking 
bandwidth denoted by 𝜔ఏ,௙௦. Following the Froude scaling framework, we simply scale this by 

ඥ𝑁ி to arrive at the model scale pitch command filter frequency: 

𝜔ఏ,௠௦ = 𝜔ఏ,௙௦ඥ𝑁ி (10) 

The outer loop position control bandwidth is then determined by dividing 𝜔ఏ,௖௙ by 5: 

𝜔௑,௖௙ =
𝜔ఏ,௖௙

5
 (11) 

This factor of 5 is a good rule of thumb for ensuring adequate frequency separation between the 
inner and outer control loops. 

The time delay included on position and velocity commands, denoted by 𝜏௫,௬ in figure 5, is also 
calculated based off the attitude command filter. For position control, the attitude dynamics are 
neglected in the inversion, so we capture the phase of the attitude dynamics with this delay. Recall 
that the attitude tracking dynamics are forced to approximate the attitude command filters plus 
some small time delay. For pitch, we write 



  

  

𝜃௎஺௏

𝜃௖௠ௗ
=

𝜔ఏ,௖௙
ଶ

𝑠ଶ + 2𝜁𝜔ఏ,௖௙𝑠 + 𝜔ఏ,௖௙
ଶ 𝑒ିఛഇ௦ (12) 

To approximate the phase of the attitude dynamics in equation 12, we calculate 𝜏௫,௬ as follows: 

𝜏௫,௬ =
1.65

𝜔ఏ,௖௙
+ 𝜏ఏ (13) 

Note that this is valid with the attitude command filter damping ratio set to 0.8, which was done 
for all command filters. By scaling 𝜏௫,௬  and 𝜔௑,௖௙  based off 𝜔ఏ,௖௙ , the position and attitude 
tracking responses are consistently scaled based off just the full-scale attitude tracking bandwidth 
𝜔ఏ,௙௦. Note that the above process is used for scaling the X and Y controllers, but for Z and yaw 

control we just need to scale command filter frequencies by ඥ𝑁ி as was done for pitch in equation 
10. 

The above process illustrates how reference tracking bandwidths were scaled for model-scale 
testing. The disturbance rejection bandwidths were Froude scaled as well through systematic choice 
of feedback gains. The tests here focus on variations in reference tracking bandwidths, however, 
and aerodynamic disturbances were not included in the experimental setup. The details of 
disturbance rejection scaling are therefore not discussed here, but details on the disturbance 
rejection scaling method can be found in [3]. Note, though, that the scaled disturbance rejection 
bandwidths were set to meet Froude scaled level 1 handling qualities per ADS-33E, and therefore 
the UAV had good disturbance rejection capabilities for all tests discussed.  

2.5 Trajectory Generation 

Two separate trajectory generation and control algorithms have been developed for autonomous 
shipboard landings, both of which send position and heading commands to the same EMF control 
laws. The first guidance algorithm is the “baseline” algorithm that performs purely deck relative 
navigation, tracking deck motions while closing the gap between the UAV and deck at a constant 
rate. The second is a quadratic programming (QP) based control algorithm that incorporates deck 
motion predictions. The difference between these two strategies is illustrated in figure 6.  If an 
aircraft has high control bandwidth and high maneuverability, a deck tracking approach is feasible, 
although it results in more maneuvering.  In theory, if a deck motion forecasting strategy is used, 

 

Figure 6: Illustration of baseline “deck tracking” algorithm versus QP optimization based algorithm that plans 
the landing path to a predicted deck state.  



  

  

less maneuvering is required, and feasible trajectories can be found with lower bandwidth and more 
restrictive constraints on acceleration and jerk. This hypothesis was investigated via experiments 
in the MASK. Both autonomy algorithms will be described in the following sections, preceded by 
a description of the hardware integration necessary for performing autonomous navigation. 

2.5.1 Hardware Integration 

 

 Figure 7: Implementation of trjectory generation and control algorithms on test hardware. 

To perform autonomous navigation, it is necessary to have an established architecture for 
communication between all onboard processing units and the ground station computer. A diagram 
depicting the test hardware configuration used for our baseline control algorithm is shown in figure 
7. Motion capture data is streamed over Wi-Fi to both the Pixhawk and the Odroid on board 
computer at 100 Hz. On the Pixhawk, the motion capture measurements of UAV pose are fused 
with IMU measurements by the PX4 extended Kalman filter. This allows PX4 to produce accurate 
position, velocity, and heading estimates. The PX4 state estimates are then sent to the Odroid to be 
used in path planning and control. The motion capture measurements of deck pose can be used 
directly in the path planning algorithms or can be substituted for using the onboard UKF. The 
onboard UKF estimates deck states relative to the UAV by fusing measurements sent to the Odroid 
from the onboard camera and Pixhawk IMU. With estimates of relative deck state and estimates of 
the inertial UAV pose produced by PX4, an estimate of the deck pose in the inertial frame can be 
calculated. For choosing to use either motion capture deck state information or deck state 
information from the onboard UKF, a flag can be set in the autonomy algorithm.  

To trigger the autonomous flight modes a switch on the pilot’s transmitter is used. Once this switch 
is selected, the trajectory generator begins sending commands to the UAV outer control loops. 
These outer loops are also run on the Odroid and will be discussed in detail in the control design 
section. The outer control loops produce angular rate and throttle commands, which are sent to the 
Pixhawk over a serial link at 100 Hz. 



  

  

It should be noted that the architecture shown in figure 7 is for the baseline control mode. For the 
QP control mode with deck motion predictions, the setup is identical except that the QP based 
control mode does not currently incorporate the onboard UKF. This is due to the higher 
computational load of the QP based control algorithm, preventing the integration of the QP landing 
algorithm and vision-based state estimation on the current hardware. With recent advances in small 
form factor computers, however, an updated on-board processing unit would likely be capable of 
running both the QP trajectory generation and vision-based state estimation in real-time.  

2.5.2 Baseline Trajectory 

A graphical depiction of the baseline path planning algorithm is shown in figure 8. Referring to 
figure 8, the baseline control mode starts by navigating the UAV to some initial waypoint for 
starting the approach to the deck. The approach point navigation phase then begins, where the UAV 
is guided to the so-called approach point, which is a point specified relative to low pass filtered 
deck position and the deck heading. The low pass filters serve as an approximation of the mean 
deck motion, so that the approach navigation phase does not introduce unnecessary tracking of ship 
oscillations. Once the approach point is reached, a final descent to the deck is initiated. Note that 
for both the approach point navigation and final landing stages, the generated trajectories are 
dictated by the 45-degree angle between the camera lens and the UAV body frame since the deck 
needs to remain in view of the onboard camera. The waypoint, approach, and landing navigation 
phases are described in detail in the following subsections. 

 
Figure 8: Landing sequence used during initial autonomous shipboard landings. 

2.5.2.1 Baseline Waypoint Navigation  

To navigate to the initial waypoint, the baseline control algorithm utilizes the high order tau 
guidance algorithm presented in [1] to generate position and heading commands. The tau guidance 
algorithm proposes a differential equation in terms of the distance to some goal and the velocity 
toward some goal, defined by 𝑥 and �̇� respectively. The value 𝑥 is referred to as the action gap and 
does not need to represent a spatial distance but can represent the distance between the current state 
and desired state for any degree of freedom. The higher order tau guidance algorithm from [1] 
proposes the following differential equation for trajectory generation: 



  

  

𝑥

�̇�
=

𝑘

3
ቆ𝑡 −

𝑇௚
ଷ

𝑡ଶ
ቇ (14) 

Here 𝑇௚  represents the time until contact with the goal (i.e., 𝑥൫𝑇௚൯ = 0), 𝑡  represents the time 
elapsed since the start of the trajectory, and 𝑘 is a parameter that can be used to tune the trajectory. 
Solving equation (14) for 𝑥(t) results in 

𝑥(𝑡) =
𝑥଴

𝑇௚

ଷ
௞ൗ

൫𝑇௚
ଷ − 𝑡ଷ൯

ଵ
௞ൗ

 (15) 

where 𝑥଴ represents the initial action gap at the start of the trajectory. For an overview of the 
motivation behind equation (14) and the effects of 𝑘 on the generated trajectories see [1].   

For the approach navigation, four trajectories are produced: 𝑋, 𝑌, and 𝑍 position trajectories and a 
heading trajectory. The distance between the actual and desired position and heading at the start of 
the trajectory are therefore taken as the initial gaps. For example, for the 𝑋 position degree of 
freedom  

𝑥଴,௑
ூ = 𝑋௪௣

ூ − 𝑋଴,௨௔௩
ூ  (16) 

where 𝑥଴,௑ is the initial action gap for the 𝑋 position trajectory, 𝑋௪௣ is the waypoint 𝑋 position, 
and 𝑋଴,௨௔௩  is the 𝑋  position of the UAV at the start of the waypoint navigation phase. The 
superscript 𝐼 denotes that these values are all expressed in the inertial frame.  

Note that equation (14) is designed to regulate the action gap to zero. The output of equation (15) 
therefore needs to be converted from values of  𝑥(t) for each degree of freedom to inertial position 
commands. This is done through the relation 

቎

𝑋௖௠ௗ
ூ

𝑌௖௠ௗ
ூ

𝑍௖௠ௗ
ூ

቏ = ቎

𝑋௪௣
ூ

𝑌௪௣
ூ

𝑍௪௣
ூ

቏ − ቎

𝑥௑
ூ

𝑥௒
ூ

𝑥௓
ூ

቏ (17) 

which is formulated so that as the value of the action gap goes to zero, the commanded position 
approaches the waypoint. Here 𝑥௑

ூ , 𝑥௒
ூ , and 𝑥௓

ூ  represent the action gap produced by equation (15) 
for the 𝑋, 𝑌, and 𝑍 position trajectories respectively. For the heading command, the relation is 
analogous to the position command: 

𝜓𝑐𝑚𝑑 = 𝜓𝑤𝑝 − 𝑥ట (18) 

In order to evaluate equation (15) the parameters 𝑘 and 𝑇௚ must be defined. For all four degrees of 
freedom the value of 𝑘 = 0.25 is used, as this produces trajectories that end with zero velocity and 
zero acceleration (i.e., �̇� = �̈� = 0. ). Choosing a value of 𝑇௚ is not quite as straight forward, as it is 
necessary to set values of 𝑇௚ that guarantee commands will not be overly aggressive. Here this is 
ensured by solving for 𝑇௚ for each of the four degrees of freedom based off a desired maximum 
magnitude of commanded acceleration over the course of the trajectory. Following this approach, 
the resulting expression for the time to contact is given in equation (19).  



  

  

𝑇௚ =  2.888ඨ
|𝑥଴|

�̈�௠௔௫

(19) 

Once equation (19) has been evaluated for all four degrees of freedom, the results are compared 
and the highest value is used as the time to contact for all trajectories. While the value of 𝑇௚ does 
not need to be the same for all four degrees of freedom, this ensures that each degree of freedom is 
only commanded as aggressively as it needs to be to reach the initial waypoint without slowing 
convergence. During testing with this approach, it was found that values of �̈�௠௔௫ = 0.5 𝑚/𝑠ଶ for 
the position trajectories and �̈�௠௔௫ = 50 𝑑𝑒𝑔/𝑠ଶ for the heading trajectory resulted in a smooth 
transition to the initial waypoint.  

2.5.2.2 Baseline Approach Navigation 

In the baseline algorithm’s approach navigation phase, the UAV is commanded from the initial 
waypoint to a point that is near the deck, but that keeps the landing gear safely outside of the wave 
amplitude. For the tests discussed here this point was chosen to be about 0.66 meters behind and 
0.66 meters above a low pass filtered deck position. The low pass filter serves as an approximation 
of the average deck motion. An example of this for the deck’s inertial 𝑋 position is shown in figure 
9. For the first flight tests in the MASK, the filter parameters were set to 𝜔௟௣௙ = 2 rad/s and 𝜁௟௣௙ =

1. The filter frequency was later reduced to 𝜔௟௣௙ = 0.5 𝑟𝑎𝑑/𝑠. The heading was commanded to 
match that of the deck.  

 
Figure 9: Deck position low pass filter. 

In this phase it is important that the UAV position commands converge to an endpoint relative to 
the filtered deck position. This point will be referred to as the approach point, which is a constant 
point relative to the low pass filtered ship in the ship heading frame but is not a constant point in 
the inertial frame. The approach point is specified in the deck heading frame so that as the deck 
yaws the UAV will adjust to remain directly behind the ship. The deck roll and pitch angles, 
however, do not have any effect on the UAV position command. Similar to the initial waypoint 
navigation phase, commands are produced with the use of the higher order tau guidance algorithm. 
The main difference here is that we no longer wish to approach a constant point. Additionally, in 
this phase a tau-based trajectory is only needed for the three position degrees of freedom, as the 
heading is just commanded to match that of the deck. In order to generate trajectories that converge 
to a moving point, several updates need to be made to equation (16) from the waypoint navigation 
section. The initial gaps are now taken as the difference between the UAV position and the desired 



  

  

position relative to the low pass filtered deck (referred to as the approach point) at the start of the 
approach phase. This is expressed as: 

቎

𝑥଴,௑
ூ

𝑥଴,௬
ூ

𝑥଴,௭
ூ

቏ = ൦

𝑋஽,௟௣௙
ூ

𝑌஽,௟௣௙
ூ

𝑍஽,௟௣௙
ூ

൪ + 𝑇ூ/஽,௛௙

⎣
⎢
⎢
⎡𝑋௔௣௣௥

஽,௛௙

𝑌௔௣௣௥
஽,௛௙

𝑍௔௣௣௥
஽,௛௙

⎦
⎥
⎥
⎤

− ቎

𝑋଴,௨௔௩
ூ

𝑌଴,௨௔௩
ூ

𝑍଴,௨௔௩
ூ

቏ (20) 

where 𝑋஽,௟௣௙
ூ , 𝑌஽,௟௣௙

ூ  , and 𝑍஽,௟௣௙
ூ   represent the low pass filtered inertial deck position, 𝑋௔௣௣௥

𝐷,ℎ𝑓 , 𝑌௔௣௣௥
஽,௛௙, 

and  𝑍௔௣௣௥
𝐷,ℎ𝑓  represent the approach point in the deck heading frame, and 𝑇ூ/஽,௛௙ is the transformation 

matrix from the deck heading frame to the inertial frame. To produce trajectories that converge to 
the approach point, the position, velocity, and acceleration command equations need to be updated 
to include the filtered deck states. The equation for position commands is 
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Note that the action gaps used to calculate the commands are still computed via equation (15) from 
the initial waypoint navigation section. 𝑘 = 0.25 was again used in these equations and 𝑇௚ was 
again calculated from equation (19) with �̈�௠௔௫ = 0.5 𝑚/𝑠ଶ for all three position trajectories. 

2.5.2.3 Landing Phase  

For the baseline guidance algorithm, the goal of the landing phase is to have the UAV contact the 
deck at the deck origin while remaining on a roughly 45-degree line in the ship 𝑋 − 𝑍 plane (as was 
shown in figure 8). This approach path is designed to keep the deck tag (located at the deck origin) 
in view of the onboard camera. 

To ensure the touchdown was not overly aggressive, the UAV was commanded to a constant 
vertical descent rate relative to the deck. This is calculated as  

�̇�௖௠ௗ
ூ = �̇�௨௔௩/஽ + �̇�஽

ூ  (22) 

where �̇�௨௔௩/஽ is the desired relative descent rate between the UAV and the deck. Here the value 
�̇�௨௔௩/஽ = 0.25 𝑚/𝑠 was used. The 𝑋  and 𝑌  position commands were then calculated using 
equation (23). 
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0
ቃ (23) 

In equation (23) the inertial 𝑋 and 𝑌 commands are updated to maintain an 𝑋 distance relative to 
the deck that is equivalent to the 𝑍  distance relative the deck when the relative 𝑋  distance is 
expressed in the deck heading frame. In other words, equation (23) commands the UAV to follow 
a 45-degree line relative to the deck in the ship 𝑋 − 𝑍 plane.  

The final aspect of the landing sequence is throttling down the UAV. Here the UAV was 
commanded to throttle down and contact the deck once the UAV landing gear achieved a relative 
𝑍 distance of 5 centimeters or less from the deck.  



  

  

2.5.3 Quadratic Programming Based Trajectory with Deck Motion Prediction 

A high-level view of the QP guidance algorithm is shown in figure 10. The algorithm solves 
quadratic programming problems in real time to produce X, Y, and Z position commands, with the 
trajectory planned to match a future deck state prediction derived from autoregressive (AR) time 
series models. The deck forecasts are updated continuously during the approach, and therefore 
become more accurate as the landing progresses. This approach has the potential to reduce the 
required maneuvering, allowing feasible trajectories to be found with lower bandwidth and more 
restrictive constraints on acceleration and jerk. Here the MATLAB function “mpcActiveSetSolver'' 
was used to perform the QP optimizations. Note that no optimization solver was used to command 
UAV heading. Instead, the heading was commanded to track low-pass filtered deck heading, as the 
deck yaw motion was mild. 

 

Figure 10: High-level view of QP guidance algorithm. 

 

2.5.3.1 QP Trajectory Generation 

The method used to formulate the QP trajectory optimization problem is essentially the same as 
that used in the so-called “direct shooting" approach to linear MPC. The main difference here is 
that the prediction horizon is variable in length, vanishing during the final stages of the landing 
sequence. In both cases, the first step is to define a discrete linear time-invariant (LTI) state space 
model. Here the inertial X, Y, and Z translational dynamics are approximated by the theoretical 
ideal response with EMF control. The models are then discretized assuming a zero-order hold and 
accounting for time delays. For example, for X trajectory generation, discretizing and converting 
to state space form gives 

𝐺௑(𝑠) =
𝜔௑,௖௙

ଶ

𝑠ଶ + 2𝜁𝜔௑,௖௙𝑠 + 𝜔௑,௖௙
ଶ 𝑒ିఛ೉௦  →   

�⃑�௑,௞ାଵ = 𝐴௑�⃑�௑,௞ + 𝐵௑𝑢௑,௞ିఛ೏

�⃑�௑,௞ = 𝐶௑�⃑�௑,௞ + 𝐷௑𝑢௑,௞ିఛ೏

(24) 

where subscript 𝑘 represents the current time step, 𝜏ௗ  represents the number of full sample period 
delays, and fractional portions of the continuous time delay are absorbed into the state space model 



  

  

coefficients. Since the command filters are uncoupled, this approach allows separate QP 
optimization solvers to be run for each control axis. This boosts computational efficiency as the QP 
solvers can be run simultaneously on different CPU cores. 

Since the position command filters are second order, the position, velocity, and acceleration can be 
included in the state space model output vector and can therefore be included in the QP optimization 
penalty and constraint functions. But, to account for the fact that an aircraft cannot accelerate 
instantaneously, the QP algorithm also penalizes and constrains jerk. Jerk is therefore approximated 
by a back difference on the acceleration output. 

Once a discrete time model is obtained, the recursive nature of the state space equations is used to 
solve for the output and jerk at each point in the prediction horizon while also accounting for time 
delays in the discrete model. The resulting equations can then be combined with a quadratic cost 
function to transcribe a standard QP optimization problem of the form 

𝐽 =
1

2
𝑈ഥ்𝐻𝑈ഥ + 𝐹்𝑈ഥ     

𝑠. 𝑡.    𝐴௖𝑈ഥ ≤ 𝑏଴ 
(25) 

where 𝐽 represents the quadratic objective function, 𝑈ഥ  represents the decision variables (in this 
case the controls), and 𝐻  and 𝐹  are constant matrices. In addition, the constant matrix 𝐴஼  and 
constant vector 𝑏଴ define linear inequality constraints placed on the decision variables. The linear 
constraints are used to limit velocity, acceleration, and jerk during the landing, and also to constrain 
UAV altitude to be greater than the predicted deck altitude prior to the target land time. For more 
details on the QP transcription, refer to [3]. 

When transcribing the optimization problem, the cost function was written as 

𝐽 = ෍ ቂ൫�⃑�௥௘௙,௞ − �⃑�௞൯
்

𝑄൫�⃑�௥௘௙,௞ − �⃑�௞൯ + 𝑢௞
்𝑅𝑢௞ቃ

ேିଵ

௞ୀ଴

+ ෍ൣ𝑗௞
்𝑄୼𝑗௞൧

ேିଵ

௞ୀ଴

+𝑢ே
் 𝑅𝑢ே + 𝑁 ቂ൫�⃑�௥௘௙,ே − �⃑�ே൯

்
𝑆൫�⃑�௥௘௙,ே − �⃑�ே൯ + 𝑗ே

்𝑆୼𝑗ேቃ

(26) 

where 𝑁  represents the prediction horizon and 𝑄 , 𝑄୼ , 𝑆 , 𝑆୼ , and 𝑅  are diagonal weighting 
matrices. This equation includes penalties on the deviation of position, velocity, and acceleration 
outputs from a reference trajectory �⃗�௥௘௙, as well as penalties on jerk and control inputs. For the 
output reference errors and jerk, separate weights are used for the terminal and running costs. This 
allows for emphasis to be placed on the final point of the trajectory, which is particularly important. 
Also note that the terminal cost associated with jerk and output reference error is weighted by the 
number of points in the prediction horizon 𝑁. This is done because the horizon is variable in length. 
When the horizon is at a maximum, the running cost is higher due to more points in the summation, 
so the terminal weighting factor is also increased to avoid its impact being diluted. 

Since the prediction horizon itself is not included in the optimization, the time duration of the 
maneuver must be assigned prior to running the QP solver. Here, an initial land time was calculated 
with the equation  
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where subscript 0 denotes the UAV and deck positions at the start of the landing and 𝑎௑,௠௔௫ , 
𝑎௒,௠௔௫, and 𝑎௓,௠௔௫ are the QP planner acceleration limits. This equation was motivated by the tau 
guidance method used in the baseline algorithm and was found to produce reasonable land times 
that scale well with different initial distance from the deck. 

The QP algorithm also has the option to update the target land time during the approach based off 
the predicted deck states. The update is allowed to occur when there is between 1.5 and 3 seconds 
left in the maneuver. The lower bound was set at 1.5 seconds to avoid shifting the land point without 
leaving enough time for the UAV to react. The 3 second upper limit was chosen because deck 
predictions are known to be inaccurate at longer prediction horizons. When in this window, the 
algorithm can shorten the remainder of the maneuver by up to 3 time steps (0.3 seconds in this 
case) or extend the land time out to 3 seconds. Each time point in the considered landing window 
is assigned a cost, and the point with the lowest cost is selected as the new land time. The cost for 
each time point is given by 

𝐽௄ = 𝑤௓൫𝑍ௗ௣,௞
ூ − �̅�ௗ௣

ூ ൯ − 𝑤௓̇�̇�ௗ௣,௞
ூ + 𝑤థห𝜙ௗ௣,௞ห + 𝑤ఏห𝜃ௗ௣,௞ห + 𝑤௱௧ห𝑡௟௔௡ௗ,௞ − 𝑡௟௔௡ௗห (28) 

where 𝑑𝑝 denotes a predicted deck state, and the weighting factors were set to 𝑤௓  =  1, 𝑤௓̇ = 0.5, 
𝑊୼௧ = 0.15, and 𝑤థ  =  𝑤ఏ  =  0.06 ⋅ 180/𝑝𝑖. The first two terms of equation (28) were designed 
to target a point where the deck heave is near a high point but beginning to descend (note that Z is 
positive down in equation (28)). This was done to discourage landing when the deck is heaving 
upward significantly, or near the bottom of an oscillation and about to heave upward, which is a 
harder state to match at landing. The second two terms of equation (28) were included to discourage 
landing at a time with an extreme deck attitude and the last term was included to penalize changes 
from the current land time, so that large changes in land time are not made due to small changes in 
the other terms. This simple scheme for adjusting the targeted land time during the approach was 
found to work well in simulations, but as will be discussed in the experimental results section, had 
a negative effect at times during the experimental landings.  

Note that the QP guidance algorithm limits the horizon length to 𝑁௠௔௫ = 30 (corresponding to 3 
seconds with an update rate of Δ𝑡ொ௉ = 0.1 seconds) to keep the optimization problem small enough 
for real-time execution. The calculated maneuver duration is generally greater than 3 seconds, 
however. To address this, when there are more than 3 seconds remaining in the landing sequence, 
the reference trajectory included in the cost function is a simple straight line toward the predicted 
deck state at landing. This brings the UAV closer to the deck until less than 3 seconds are remaining. 
Once the time remaining is under 3 seconds, the reference trajectory is changed so that the target 
positions and velocities match the predicted deck positions and velocities at landing. The target 



  

  

final accelerations were set to motivate matching the predicted deck attitude at landing assuming 
the UAV heading frame accelerations can be approximated by  

�̈�௛௙ = −𝑔𝜃      �̈�௛௙ = 𝑔𝜙 (29)

Additionally, the time horizon begins being computed as 𝑁 =
௧௜௠௘ ௥௘௠௔௜௡௜௡௚

୼௧ೂು
, keeping the desired 

land time as the final point in the optimization. 

2.5.3.1 Deck Motion Predictions 

The deck motion predictions define the terminal deck state that we wish to match with the QP 
trajectory optimization. These predictions are produced by autoregressive (AR) time series models. 
The use of a time series method is appealing as it requires no model of the ship dynamics and 
computational cost can be kept reasonable. Additionally, past works have found this class of 
methods to converge to reasonable predictions with sufficient lead time for performing autonomous 
landings. Other time series methods have been applied to deck motion prediction in the literature, 
but the results appear comparable. The AR method was therefore chosen here due to its ease of 
implementation. 

The AR model formulation assumes that the current output can be described by a linear 
combination of lagged outputs plus additive zero mean white noise. This is expressed as 

�⃗�௞   = 𝛼ଵ�⃗�௞ିଵ  + 𝛼ଶ�⃗�௞ିଶ ⋯ + 𝛼ே೗ೌ೒
�⃗�௞ିே೗ೌ೒

+ �⃗�௞  (30) 

where output vectors �⃗� ∈ 𝑅௠, matrices 𝛼 ∈ 𝑅௠×௠, noise vector �⃗� ∈ 𝑅௠, and 𝑁௟௔௚ represents the 
number of lagged outputs. Here 𝑁௟௔௚ = 15 was used, as increases in accuracy leveled off when 
adding additional parameters. Transposing equation 30 and writing in matrix form, we have  
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or, in a more compact form, 

�⃗�௞
் = 𝑌ത௟௔௚𝛼ഫ + �⃗�௞  (32) 

This is then separated into one equation for each output: 

�⃗�ଵ
் = 𝑌ത௟௔௚𝛼ഫଵ + �⃗�ଵ

�⃗�ଶ
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⋮
�⃗�௠

் = 𝑌ത௟௔௚𝛼ഫ௠ + �⃗�௠

(33) 

Here 𝛼௜ represents the 𝑖௧௛ column of 𝛼. Each column vector 𝛼௜ is then estimated using a standard 
recursive least squares (LS) algorithm. While the problem could be formulated as one larger 
recursive LS problem, breaking the parameter update into 𝑚 smaller problems was found to be 
more computationally efficient due to smaller matrix inversions in the recursive update. With the 



  

  

estimate of 𝛼 obtained, we propagate the AR model into the future to cover the desired prediction 
horizon: 

�⃗�௞ାଵ
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்
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(34) 

Note that for predictions we are interested in the expected future output, so the zero mean white 
noise term is dropped. 

The above equations define the general process of estimating and propagating AR models for 
forecasting a time series. For forecasting deck states, two separate AR models are used: one for 
longitudinal and vertical states and one for lateral states. The output vectors used for each AR 
model are  
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(35) 

Deck vertical position and velocity are included with the longitudinal outputs as the correlation 
between ship pitch motion and ship deck heave was found to improve the AR predictions. Including 
all outputs in a single vector, however, was found to cause less reliable predictions at times. 

In equation 35 𝑋ௗ, 𝑌ௗ, �̇�ௗ, and �̇�ௗ are expressed in the averaged deck heading frame. This frame is 
defined by the heading of the deck averaged over the lagged time history stored in the AR model. 
The transformation of 𝑋ௗ and 𝑌ௗ from the inertial frame to the averaged deck heading frame is 
computed as 
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where 𝜓തௗ is the averaged deck heading. �̇�ௗ and �̇�ௗ are transformed in the same manner. Once the 
AR model predictions are produced in this frame, they are transformed back to the inertial frame 
for use by the trajectory generator.  

2.6  Experimental Setup in the MASK 

For the autonomous landing flight tests, the MASK facility OptiTrack motion capture was used to 
track the ship deck and UAV, with the motion capture software running on the ground control 
station (GCS). The unmanned ship vessel (USV) used was approximately 20 feet long and was 
loosely tethered in the wave pool. Tethering prevented the ship's heading and position from drifting 
significantly but allowed significant oscillations in position and attitude. A launch and recovery 
(L&R) zone was designated off the shore of the basin for UAV takeoff and landing between test 
runs. A picture of the test setup in the MASK facility is shown in figure 11 and a close-up of the 
model-scale ship can be seen in figures 1 and 2. 



  

  

 

Figure 11: Test setup in the MASK. 

2.7  Experimental Results 

The first flight tests in the MASK were conducted over a two-week period in August and September 
of 2021. These two weeks were focused on establishing communications between the UAV and 
the MASK facility motion capture system, on validating the baseline trajectory generation method 
and EMF control laws, and ultimately on evaluating the vision-based state estimation system 
through vision-based landings. 

Extensive flight testing was also performed over an eight-day test period in October 2022. During 
this test period the focus was on the evaluation of the autonomous landing trajectory generation 
methods. To achieve this, 149 autonomous landings were performed using both the baseline and 
QP optimization based trajectory generation algorithms. During testing the control laws were used 
to artificially degrade reference tracking bandwidths and constraints on acceleration and jerk, with 
the objective of studying the ability of both trajectory generation methods to cope with reduced 
maneuverability.  

2.7.1 Evaluation of Vision-Based Deck State Estimator in the MASK 

2.7.1.1 Validation of Deck State Estimator with Hovering Aircraft 

The first week of testing in the MASK was used to enable operation of the Optitrack motion capture 
system and gather vision-based state estimates with a moving deck. For these tests, the vehicle was 
commanded to hover for one-to-two-minute periods over the deck with the vision system and state 
estimator running. Motion capture data and vision-based estimates were logged simultaneously, 
allowing for evaluation of the vision estimates using the motion capture measurements. These tests 
were performed in six separate wave conditions, which are reported in table 2. Note that regular 
waves refers to a pure sinusoidal wave form with frequency as shown in table 2. Irregular waves 
refer to stochastic wave forms with the peak in the wave spectrum occurring at the frequency shown 
in table 2. The wave angle of 0 degrees indicates that the waves approached from the front of the 
ship, directly at the bow. 



  

  

Table 2: Wave conditions for initial deck state estimator evaluation. 

 

Deck position and orientation estimates for one flight and wave condition are shown in figures 12 
and 13. The error in the position and attitude estimates is shown in figures 14 and 15. These plots 
show good agreement between the UKF estimates and the ground truth, though there are some 
constant biases in the estimates. These biases are generally small, however, and are likely attributed 
to slight errors in the nominal orientation of the camera in the vehicle body frame. 

 
Figure 12: Sample plot of UKF position estimates compared to the ground truth. 

 
Figure 13: Sample plot of UKF attitude estimates compared to the ground truth. 



  

  

 
Figure 14: Sample plot of UKF position estimation error. 

 
Figure 15: Sample plot of UKF attitude estimation error. 

Figure 16 shows the error in the relative deck position state estimate versus time for eight different 
flights with the hexacopter hovering around 2.5 meters above the deck, with the deck subject to the 
wave conditions listed in table 1. The results show that the errors in the position estimates for each 
flight are consistently grouped within about 15 centimeters of one another and are largest in the Y 
degree of freedom. This is because the heading angle of the camera has a slight misalignment with 
the UAV body frame. Due to this, the error decreases with decreased distance from the deck.  



  

  

 
Figure 16: UKF position error for eight different flights. 

2.7.1.2 Estimator-Based Autonomous Landings in the MASK 

Fifteen autonomous landings were executed using the baseline guidance algorithm with the 
estimated relative deck states in the control loop. The wave motion parameters for these landings 
are listed in table 3. Note that the wave angle of 60 degrees in table 3 refers to waves approaching 
the deck from 60 degrees off the bow to starboard. 

Table 3: Wave conditions for estimator-based landings. 

 

Figure 17 shows the position of the vehicle relative to the deck for each of the 15 autonomous 
landings. Vision-based state estimates are plotted in red while the relative position calculated from 
the motion capture measurements is shown in blue. Figure 18 shows both the estimated and 
Optitrack-measured Euler angles describing the attitude of the vehicle relative to the deck. These 
results show that the Optitrack and estimated measurements generally agree quite well during the 
landing procedure.  



  

  

 
Figure 17: Position estimates compared to ground truth for all flights. 

 
Figure 18: Pitch estimates compared with ground truth for all flights. 

Figure 19 shows the estimated and true standard deviation of error for the first six state estimates, 
(xୢ

୦ yୢ
୦ zୢ

୦ ϕ 𝜃 𝜓), for all 15 on-board vision system and deck state estimator-based landings. 

𝝈்௥௨௘ = ඥ(𝒙ෝ − 𝒙)(𝒙ෝ − 𝒙)் (43) 

𝝈𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = √𝑇𝑟𝑎𝑐𝑒(𝑷) (44) 

Figure 20 shows the average of the estimated and true standard deviations of error for the first six 
state estimates for the same 15 landings vs Euclidean distance between the vehicle IMU and the 
marker array center. The large standard deviation of the error in the beginning of these plots is due 
to the fact that the camera does not yet have the tag in view. The large standard deviation at the end 



  

  

of the plots is because once the vehicle lands the camera again loses sight of the tag. At this point 
the landing has already been completed, however, and the deck state estimates no longer matter. 
Overall, these results, combined with the fact that all 15 landings were completed successfully, give 
confidence in the developed vision-based sensing and estimation algorithms. 

 
Figure 19: Estimated vs true average standard deviation of error in the UKF state estimates. 

 
Figure 20: Estimated vs true average standard deviation of error in the UKF state estimates. 

2.7.2 Evaluation of QP and Baseline Trajectory Generation Methods 

The tests conducted in the MASK in October 2022 focused on the evaluation of autonomous 
landing trajectory generation methods. The remainder of this section will discuss the test setup and 
results for these particular experiments. 



  

  

2.7.2.1 Wave Conditions 

The guidance algorithms were evaluated via landings in three separate stochastic wave conditions. 
The wave conditions are referred to as stochastic because a single sinusoidal wave form was not 
used. Rather, the waves are produced to match a realistic wave spectrum. The standard deviation 
(STD) and maximum difference from the mean are tabulated for each degree of freedom at each 
wave condition in table 4. Ship heading and heading rate were excluded from this table as 
oscillations in heading were mild for these tests. Note that 𝜔௣  in table 4 is the frequency 
corresponding to the peak in the wave amplitude spectrum, and 𝜓௪ is the wave heading. For wave 
conditions 1 and 2 the waves approached the bow of the ship directly, but for wave condition 3 the 
waves approached at an angle of 45 degrees to starboard. 

Wave condition 1 was the most mild, which is reflected by the deck motion statistics shown in table 
4. Wave conditions 2 and 3 were similar, but the 45 degree wave angle for condition 3 led to 
significantly more aggressive roll and sway motion and less aggressive surge motion. Wave 
condition 3 was found to be the most difficult for the autonomy algorithms to perform landings in, 
though it should be noted that this may not be entirely due to larger lateral motions. The wave 
makers in the MASK dissipate less energy with a 45 degree wave heading than with 0 degree wave 
heading, which leads to slightly more aggressive motions on average. 

Table 4: Ship motion properties for MASK tests performed in October 2022. 

 

To give a qualitative feel for deck motion, a segment of deck heave at wave condition 2 is plotted 
in figure 21. Only heave is plotted here because the deck motion was most aggressive in heave for 
all wave conditions, though significant oscillations in surge and sway were present as well. 
Referring to figure 21, two important aspects of the deck motion can be noted. First, the motions 
are irregular and difficult to predict, which is essential for accurate evaluation of the QP guidance 
algorithm as it incorporates deck motion predictions. Also, it should be noted that the deck regularly 
undergoes motions that are quite aggressive for the scale the tests were conducted at. At times the 
deck goes through oscillations with amplitudes around 35 to 40 centimeters, meaning the deck goes 



  

  

through a total throw of 70-80 centimeters, and this occurs in a time span of 1 to 2 seconds. Relative 
to the UAV, a throw of 70 centimeters is around 125 percent the UAV lateral hub-to-hub distance 
(which is approximately 53 centimeters). 

 

Figure 21: Sample deck heave motion time history. 

2.7.2.2 Test Cases 

A total of 149 autonomous landings were performed (79 with the QP guidance algorithm and 70 
with the baseline algorithm), with 10 different flight controller configurations used. The controller 
configurations are summarized in table 5. At least 10 landings were performed for each 
combination of control case and wave condition. However, in instances where the UAV battery 
had enough capacity remaining to perform additional landings before switching test cases, 
additional landings were recorded. 

Table 5: Landing test cases. 

 

Referring to table 5, control cases 1 - 5 used the QP algorithm, but with varied pitch, roll, and heave 
tracking bandwidths to simulate reduced aircraft mobility. The values corresponding to high, 



  

  

medium, and low cases are reported in table 6, which were chosen by Froude scaling realistic values 
for an aircraft similar to a UH-60. 

Table 6: Tracking bandwidth cases for QP algorithm. 

 

Control cases 6-10 used the baseline algorithm, with pitch and roll tracking bandwidth fixed to the 
high configuration and heave tracking bandwidth varied. Note that control cases 6-9 used Z 
bandwidths that were significantly higher than the “High" configuration used for the QP algorithm. 
For these cases, the bandwidth is reported directly in table 5. This was done because the deck 
relative commands produced by the baseline guidance algorithm were passed directly into the UAV 
altitude controller command filter, and the UAV lags the deck motion increasingly as command 
filter frequency is reduced.  The baseline controller was therefore first tested with a very high Z 
bandwidth (30 rad/s) to simulate a case where the aircraft can track the deck with minimal lag. The 
command filter frequency was then progressively reduced until the lag was too great to perform 
soft landings. This occurred by the time the Z bandwidth was reduced to the “High" case used for 
QP landings (i.e., control case 10). 

For all control cases, except for control case 6, the X and Y bandwidths were assigned by dividing 
the pitch and roll bandwidth by 5, ensuring adequate frequency separation between the inner and 
outer loops. For control case 6 the X and Y bandwidths were set 10 rad/s, giving a faster response, 
but with a higher potential for significant overshoot. 

For cases with the QP algorithm, jerk limits were also varied with tracking bandwidth. For example, 
when heave was in the high bandwidth configuration, the maximum Z axis jerk constraint is set to 
±9 𝑚/𝑠ଷ. When heave was in the medium and low bandwidth configurations this was reduced to 
𝑗௓,௠௔௫ =  ±7 𝑚/𝑠ଷ and 𝑗௓,௠௔௫ = ±5 𝑚/𝑠ଷ, respectively. The X and Y jerk limits were tied to the 
pitch and roll bandwidths in the same manner. To simulate the QP algorithm controlling an aircraft 
with reduced maneuverability some restriction of output constraints is necessary, because if the 
constraints are too loose the optimal control algorithm can overdrive the command filter input to 
compensate for the reduced tracking bandwidth. For the UAVs used during testing this would not 
be problematic as the reduced bandwidth is artificial, but for a full-scale aircraft, bandwidth limits 
are related to real physical limitations such as actuator rate saturations. Here jerk was restricted 
because it was found to be the most common constraint to approach a limit, and also is related to 
actuator rate saturation. The acceleration and velocity output constraints were fixed to 𝑉௠௔௫ =
± 7 𝑚/𝑠 and 𝑎௠௔௫ =  ±3.5 𝑚/𝑠ଶ. 

2.7.2.3 Deck Motion Prediction Accuracy 

Prior to assessing the performance of each landing algorithm, discussion of the deck state prediction 
accuracy is pertinent as the predictions are used directly in the QP guidance algorithm. To give a 
qualitative feel for the deck prediction accuracy, a representative sample of deck heave predictions 



  

  

produced during flight is given in figure 22. This shows that the predictions are very accurate at 
0.5 seconds ahead, but the accuracy drops off quickly. At just 1.5 seconds ahead, errors in both 
magnitude and phase of the predicted heave are significant. By 2.5 seconds ahead, the heave 
magnitude is regularly under-predicted, and in some cases the prediction does not deviate far from 
the mean of the heave oscillations. 

 

Figure 22: Model scale deck heave predictions. 

These observations are supported by the prediction accuracy statistics calculated across trials 
shown in figure 23. The errors for a single “trial'' were computed as follows:  

1. A time point in a given landing flight test was chosen. 
2. The deck motion predictions produced at the chosen time point were saved. 
3. The saved predictions were compared to the actual deck motion over the next three 

seconds. 
The time points chosen to evaluate the predictions were spaced out by at least 3 seconds in all cases. 
This ensured that directly adjacent time points were not used when calculating prediction errors, 
providing trials taken at a more diverse set of conditions. The number of trials used to calculate the 
prediction error statistics was increased until the mean and standard deviation converged. 

Looking at the wave condition 2 prediction errors shown in figure 23, it can be seen that X and Y 
prediction errors start converging to the true deck value at slightly over 1.5 seconds out and the 
heave predictions begin to converge between 1 and 1.5 seconds out. On average, the long-term 
position prediction errors are slightly under the mean value of deck motion. For example, the 
average deck heave deviation from the mean is about 9 cm, while the average heave prediction 
error at 2.5 seconds is about 6 cm, though in many cases the long-term prediction errors are more 
than double this value. The attitude errors also follow the expected trend, decreasing in the final 
second of the prediction horizon. The same is true for the velocity predictions, but the velocity 
predictions also exhibit a number of sharp spikes in prediction error, which sometimes occur with 



  

  

under 1 second remaining in the prediction horizon. This is related to occasional data buffering that 
occurred when sending deck measurements from the ground station to the UAV over wifi. When 
this happens, small step-like inputs are passed through the filters used to estimate deck velocity, 
resulting in spikes in the velocity estimates. Since the AR model calculates future outputs based 
off past outputs, this can result in sharp spikes appearing in the predictions. Despite these issues, it 
will be shown that QP algorithm was able to perform well with the quality of deck predictions 
obtained here. 

 

Figure 23: Position, velocity, and attitude prediction error statistics from landings performed at wave 
condition 2 (see tables 5 and 6). 

It should also be noted that the prediction quality is dependent on both the frequency and magnitude 
of deck motion. If the prediction error statistics shown in figure 23 scaled following the Froude 
scaling method used for determining model-scale UAV bandwidths, then the model-scale 
predictions converging at 1.5 seconds ahead would translate to full-scale predictions converging at 
slightly over 5 seconds ahead. A formal study would need to be conducted to understand the validity 



  

  

of this scaling, but full-scale simulations with similar time-series based prediction methods have 
shown 5-second ahead predictions that appear at least qualitatively similar to this assumption. The 
effect of deck motion aggressiveness on prediction performance can be seen from figure 24, where 
position prediction errors at wave condition 1 (the most mild wave condition) are notably lower 
than the errors calculated at wave conditions 2 and 3. 

 

Figure 24: Position prediction errors for each wave condition. 

2.7.2.4 Sample Landing Time Histories 

A sample landing at wave condition 2 with the baseline guidance algorithm is shown in figure 25 
and a time lapse corresponding to this trajectory is shown in figure 26. Similarly, a sample landing 
at wave condition 2 with the QP guidance algorithm is shown in figure 27, and a time lapse of this 
landing is shown in figure 28. In both cases, a successful landing was completed with low terminal 
deck-relative positions and velocities. 

For the baseline landing case, the relative descent rate at touchdown was very close to the 0.25 𝑚/𝑠 
descent rate bias commanded in the baseline guidance algorithm. This is not surprising as the Z 
bandwidth for control case 7 was high and the UAV could effectively track the deck. The baseline 
algorithm also matched X and Y velocity well in this instance, but this is somewhat coincidental as 
the X and Y command filter for control case 7 was low enough to introduce significant lag in X 
and Y translation. Also, note that the sharp changes in attitude that occur shortly after deck contact 
are due to a combination of rigid landing gear on the UAV and the throttle being cut several 
centimeters above the deck. 

For the QP landing case, similar relative velocities were obtained at landing but deck oscillations 
that would have been followed using the baseline guidance algorithm were largely ignored. This 
illustrates how the QP algorithm can reduce the required maneuvering, though the baseline “deck 
tracking” method is simple and effective when the aircraft has the required control authority. Also, 
for the case shown in figure 27, the land-time update scheme included in the QP algorithm shifted 
the land time from a point with significant upward heave to a point near a peak in the oscillations. 
This prevented the UAV from needing to change direction to match heave motion at landing. It 
will be shown in the following subsections, however, that the land time update harmed performance 
in many other cases. The QP algorithm also manages to match deck attitude in this case, though 
deck attitude was small at landing. The capability of the landing algorithms to consistently match 



  

  

position, velocity, and attitude will be clarified through the statistics presented in the following 
subsections. 

 

Figure 25: Sample landing time history with baseline guidance algorithm. 

 

 

 



  

  

 

 

 

 

Figure 26: Time-lapse corresponding to sample the baseline landing shown in figure 25. 

 

 

 

 



  

  

 

 

 

Figure 27: Sample landing time history with QP guidance algorithm. 



  

  

 

Figure 28: Time-lapse corresponding to the sample QP landing shown in figure 27. 

2.7.2.5 Position, Velocity, and Attitude Landing Errors 

The deck-relative position and velocity errors are shown for all flight tests in figures 29 and 30. 
Focusing first on the baseline landing algorithm, the results show the simple deck tracking method 
to provide low deck-relative descent rates for all high bandwidth conditions tested in wave 
conditions 1 and 2. For example, control case 6 in wave condition 1 (the most mild wave condition) 
and control case 8 in wave condition 2 (the “moderate” wave condition, though deck motion was 
still quite aggressive) both led to deck-relative descent rates of under 0.4 m/s for all landings, with 
averages close to the 0.25 m/s 𝑍 velocity bias commanded in the baseline landing algorithm. For 
control case 7 in wave condition 2 the results are similar, though two landings did end with relative 
descent rates of around 0.45 m/s. While testing, however, landings that were no longer visibly 
perceived as “soft” did not occur until relative descent rates of around 0.6 m/s. One such landing 



  

  

occurred for control case 6 in wave condition 3 (the most aggressive wave condition), though the 
other landings at this test condition had impact velocities of around 0.4 m/s or less. 

   

Figure 29: X and Y position landing errors with baseline (left) and QP (right) guidance algorithms. 

 

Figure 30: Deck-relative landing velocities at touchdown. The faded markers are values from individual 
landings, the bold markers show the average value, and the one-sided error bar represents 2𝜎 of the deck-
relative landing velocity magnitudes. 

The 𝑋 and 𝑌 position and rate errors were also typically low for control case 6, both in wave 
condition 1 and the more aggressive wave condition 3. All landings performed with control case 6 
led to 𝑋 and 𝑌 position errors of less than 18 cm and 𝑋 and 𝑌 velocity errors under 0.42 m/s. For 
control cases 7-10, however, there were instances with 𝑋 velocity errors of around 0.6 m/s and the 
position errors shown in the left plot of figure 29 are clearly inflated as well. This difference in 
performance was expected as, referring back to table 5, 𝑋 and 𝑌 bandwidth was highest for control 
case 6. Further, despite the lack of frequency separation between the inner and outer loops for 
control case 6, the frequency of deck motion was low enough to avoid significant overshoot 
resulting from commanding the UAV to track the deck. If roll and pitch bandwidths are not high, 
however, simply using a high outer loop command filter frequency may not be a tractable solution. 



  

  

The position and velocity errors reported in figures 29 and 30 also clearly illustrate the effect of 
reduced 𝑍 bandwidth on baseline algorithm performance. For example, moving from control case 
8 to control case 9 at wave condition 2, the 𝑍 bandwidth was reduced from 15 rad/s to 6 rad/s. This 
effectively adds an additional delay on the deck relative commands: the command filter frequency 
of 𝜔௭ = 15 𝑟𝑎𝑑/𝑠 corresponds to a delay of about 0.11 seconds, while 𝜔௓  =  6 𝑟𝑎𝑑/𝑠 translates 
to a delay of about 0.27 seconds. As expected, the reduced bandwidth leads to increased impact 
velocities, demonstrating that deck tracking can be sensitive to increased lag. When moving to 
control case 10, 𝜔𝑧 = 3.71 rad/s was used (equivalent to the “high” bandwidth case for the QP 
landings), leading to a large delay of about 0.44 seconds and resulting in excessively high impact 
velocities. Additionally, with the UAV and deck altitudes out of phase, 𝑋 position errors also 
increased due to the UAV contacting the deck prior to the expected land time. 

Examining the results reported in figure 30 for the QP landings, on the other hand, shows the QP 
landing algorithm is insensitive to reduced bandwidth. In wave conditions 1 and 2, control cases 1-
5 all provide low velocity errors on average, though there is one outlier for control case 4 at wave 
condition 2 which resulted in a 𝑍 velocity error of close to 0.6 m/s. There is also a slight increase 
in the average 𝑋 velocity error when moving from control case 1 to 3 at wave condition 2. This is 
likely due to the decreased 𝑋 and 𝑌 bandwidths and restricted jerk constraints for control cases 2 
and 3, but the total deviation in average velocity error is under 0.1 m/s when comparing control 
cases 1 and 3. The 𝑋 and 𝑌 position landing errors follow a similar trend, with errors being roughly 
consistent across test cases and remaining around 20 cm or less for the majority of cases in wave 
conditions 1 and 2. 

There were several cases where the QP algorithm did not perform well, however. Looking at the 
velocity errors for control case 1 at wave condition 3, hard landings resulted in two cases, one of 
which also terminated with a very large position error. The QP algorithm also performed poorly in 
terms of attitude matching at touchdown. This is shown by the results in figure 31, where the QP 
landings terminated with deck-relative pitch attitudes of close to 15 degrees in several instances. 
The pitch attitude errors were often greater than those obtained with the baseline algorithm, despite 

 
Figure 31: Deck relative landing attitude. The faded markers are values from individual landings, the bold 
markers show the average value, and the one-sided error bar represents 2𝜎 of deck-relative landing attitudes. 



  

  

the fact that the QP algorithm included some motivation for attitude matching in the cost function 
(albeit through a simplified relationship between attitude and acceleration). It will be shown in the 
following subsection, however, that the vast majority of cases where the QP algorithm performed 
poorly likely would have been averted with a change to the land-time update algorithm. 

Despite the poor attitude matching performance, these results illustrate one of the major advantages 
of using a guidance algorithm like the QP method presented here. That is, integrating deck motion 
predictions and an optimal control solver allow the guidance algorithm to plan ahead for the aircraft 
dynamics and expected deck motions. Here, this allowed the QP algorithm to adequately match 
deck positions and velocities at lower bandwidths than the baseline landing algorithm. With a 
sequential loop closure architecture used to control 𝑋 and 𝑌 translation, this in turn allows the outer 
loop controllers to be designed assuming adequate frequency separation. With the baseline 
algorithm, on the other hand, the outer loop command filter frequency was set to balance a trade-
off between speed of response and overshoot. 

The QP algorithm also has the potential to plan ahead for more restrictive output constraints. For 
the QP algorithm, this is different than planning for reduced bandwidth. The highly weighted 
terminal cost used to motivate matching deck state at touchdown outweighs the cost placed on 
control inputs. Without constraints included, the optimal control algorithm may therefore just 
increase the magnitude of control inputs to compensate for reduced bandwidth. With stringent 
output constraints included, however, the optimization algorithm may need to plan the landing path 
with the control action spread out over a larger time range, which also requires that deck motion 
predictions converge with enough lead time to avoid a rapidly changing desired terminal state at 
the end of the trajectory. Here, tests with restricted jerk constraints were included to study the 
ability of the QP algorithm to plan ahead for reduced mobility. The results showed the reduced jerk 
constraints to have little impact on performance, but the jerk constraints may simply have not been 
restricted enough to have a large impact. To better understand the extent to which the QP algorithm 
is capable of planning ahead for more stringent output constraints, additional testing with further 
restricted acceleration and jerk limits would need to be conducted. 

2.7.2.6 Accelerations During Landing 

Another hypothesized advantage of the QP algorithm was that accelerations during landing could 
be reduced, as deck motions do not need to be tracked. This proved not to be the case, however. 
Referring to the results shown in figure 32, the baseline algorithm did result in large 𝑍 accelerations 
around 2-2.5 seconds before landing, but this is an artifact of the baseline guidance logic. It was 
around this time in the landing sequence where the baseline algorithm would switch from tracking 
low pass filtered deck motion to tracking actual deck motion while descending. This introduces a 
small step input, resulting in sharp throttle commands and more aggressive accelerations. This 
behavior could have been averted by phasing in the switch between the approach and landing stages 
of the baseline algorithm, but this does illustrate an advantage of the QP algorithm: the QP 
algorithm results in smoothly regulated accelerations without the need to manage transitions 
between flight modes. 

Looking at later time points in the landing sequence, the baseline and QP algorithms resulted in 
comparable 𝑍 acceleration magnitudes, though the baseline landing accelerations are defined by 
those of the deck and more aggressive deck motion may change this result. The QP guidance 
algorithm also generally resulted in higher 𝑋 accelerations, but this was due to the 𝑋 command 
filter frequency resulting in heavily filtered deck- relative commands for all baseline tests 



  

  

conducted at wave condition 2. It should also be noted that the QP accelerations remained within 
the specified 3.5 𝑚/𝑠ଶ constraint for all cases but one case. This one instance was due to the 
landing gear contacting the deck slightly harder than usual at touchdown, resulting in a spike in the 
acceleration in the final 0.2 seconds of the plotted trajectory. 

 

Figure 32: Accelerations during the last 5 seconds of landing for flights conducted at wave condition 2. 

2.7.2.7 Factors Affecting QP Algorithm Performance 

To understand the robustness of the QP algorithm, it is necessary to understand why the QP 
algorithm performed poorly in some instances. Here it was found that there were three con- 
tributing factors: the quality of deck motion predictions, the aggressiveness of deck motion at 
landing, and the land time update scheme included in the QP algorithm. 

The individual impact of each of these factors is clarified by studying the plots shown in figure 33. 
Figure 33a plots the velocity norm at landing against the relative-descent rate at touchdown for all 
QP landings. As the deck motion was dominated by translational oscillations, the velocity norm is 
representative of the aggressiveness of deck motion. This plot shows that the cases with the three 
highest impact velocities all landed at times where deck velocity norm is large, which is an expected 
result. 

More interestingly, figure 33a also reveals the impact of the land time update scheme. The markers 
plotted as a red “x” in figure 33a represent cases where the land time update scheme elected to 



  

  

shorten the land time by a slight amount (the target land time was not reduced by more than 0.3 
seconds in any case), and the black “*” markers represent all other QP landings. If the cases with 
shortened land times are all discarded, then every landing where the deck velocity norm was under 
0.6 m/s but the relative descent rate was over about 0.3 m/s would be removed. Further, only one 
landing with a relative descent rate of greater than 0.5 m/s would be retained. This landing is 
marked by “Flight 59” on figure 33a and, by comparison with figure 33b, it is seen that abnormally 
poor deck heave predictions occurred during the final 0.5 seconds of the landing. Further, the deck 
was moving aggressively at touchdown for this case. Also, it should be noted that while removing 
the QP landings with shortened maneuver duration would remove slightly over 50 percent of the 
QP landing cases, the removed cases are not disproportionately biased toward cases with high deck 
velocity norms at landing. For example, 5 of 8 cases with a deck velocity norm greater than 0.5 m/s 
would be removed, and 5 of 10 cases with a deck velocity norm of greater than 0.45 m/s would be 
removed. The removed landings are heavily biased toward cases with high impact velocities, 
however. 

 

Figure 33: (a) Deck velocity norm vs. deck-relative descent rate at landing with shortened QP flights 
removed. (b) Predicted deck altitude at landing during final 3 seconds of all QP flights. 

The land time update scheme also negatively impacted QP algorithm attitude errors at touchdown. 
This can be observed by comparing figure 34a and figure 31. In figure 34a, the shortened QP flights 
are removed and all QP landings with a pitch attitude error greater than about 7.5 degrees are 
removed. The reason for this is that the slightly shortened land time requires a more aggressive 
trajectory to be planned, resulting in the UAV flaring pitch attitude at the end of the trajectory to 
match deck surge velocity. The flared pitch attitudes often resulted in the rear landing gear 
contacting the deck, increasing the relative pitch attitude at touchdown. This also inflates the 
velocity errors at touchdown, which is clearly seen by comparing figure 34b and figure 30. With 
the shortened QP landings removed, the cases with the largest 𝑋 and 𝑍 velocity errors are removed. 
These results are interesting, as a major point of concern prior to testing was the fidelity of the deck 
motion predictions. In the vast majority of cases, however, poor deck motion predictions proved 
not to be the culprit of poor performance. 



  

  

 

(a) Deck-relative landing attitude. 

 

(b) Deck relative landing velocities. 

Figure 34: Deck-relative landing velocity and attitude with shortened QP flights removed. The faded 
markers are values from individual landings, the bold markers show the average value, and the one-sided 
error bar represents 2𝜎 of the deck-relative error magnitude. 

3. Findings and Conclusions 

The first two-week test period in the MASK facility focused on the evaluation of the vision-based 
state estimation system. As part of this effort, a monocular camera-based deck state estimation 
algorithm was developed and demonstrated in model-scale autonomous landing experiments. The 
estimation algorithm utilizes an unscented Kalman filter to fuse IMU measurements with 
measurements of the pose of a recursive array of ApriTag fiducial markers. During these tests, the 
estimation scheme was also integrated with the baseline trajectory generation algorithm with the 



  

  

purpose of validating the EMF control laws that have been developed while testing the use of the 
deck state estimator in the control loop. Fifteen successful autonomous landings were performed 
with the vision-based estimates used in the control loop. The results showed the UKF estimator 
performs well and can provide precise deck-relative state estimates that enable autonomous 
shipboard landings. The estimator performance could be improved through further optimized 
measurement and process noises, however. 
 
The second test period in the MASK focused on the evaluation of advanced guidance algorithms 
for shipboard landings. As part of this effort, 149 autonomous ship landings were performed with 
two separate guidance algorithms: a baseline algorithm that commands a simple deck-relative path, 
and a quadratic programming based algorithm that plans the landing path to a predicted future deck 
state. Both guidance algorithms provided inertial position and heading commands to a Froude 
scaled EMF control law, and the control laws were used to perform tests with progressively reduced 
reference tracking bandwidths and jerk constraints. Based on the results of these experiments, the 
following observations and conclusions can be made: 
 

1. The baseline “deck tracking” landing strategy is both simple and effective when the UAV 
has the bandwidth required to track deck motions. This is supported by the low average 
velocity errors obtained with the baseline algorithm in high- bandwidth configurations. The 
deck tracking method is sensitive to additional sources of lag, however. 

2. The inclusion of deck state predictions and the ability to plan for the system dynamics 
allowed the QP algorithm to plan more direct landing paths, and also to perform landings 
with significantly lower tracking bandwidths than the baseline algorithm. But, in order to 
better understand the ability of the QP algorithm to plan for more restrictive acceleration 
and jerk constraints, additional testing with more stringent output constraints would be 
required. 

3. Long term deck state predictions produced by the AR models were often unreliable, with 
the predictions typically beginning to converge toward the true deck state with 1.5 seconds 
or less remaining in the landing. Additionally, the velocity predictions often exhibited 
intermittent points with spikes in the prediction errors. This was due to intermittent 
buffering issues that occurred when sending ship measurement data over WiFi to the UAV. 

4. Despite poor long term deck state predictions, the QP landing algorithm was able to match 
position and velocity well in the majority of cases. There were, however, several outlier 
cases with deck-relative landing velocities greater than 0.5 m/s. Additionally, there were a 
handful of cases where the QP algorithm led to deck-relative pitch angles of greater than 
10 degrees at landing. 

5. It was hypothesized that robustness to poor deck state predictions would be a limiting factor 
for the QP algorithm. These results, however, indicate that the land time update scheme 
was the culprit in the majority of cases where the QP algorithm showed poor performance. 
Removing cases where the maneuver duration was slightly decreased was found to remove 
almost all instances where a high deck-relative pitch attitude or velocity occurred at 
landing. The one exception to this was a case where deck altitude prediction errors were 
exceedingly poor during the last 0.5 seconds of the maneuver, and it is believed that this 



  

  

was related to data buffering issues that occurred occasionally during testing. These results 
give confidence in the feasibility of incorporating deck motion predictions directly in path 
planning, provided the deck state measurements used in the prediction scheme are not low 
quality. 

4. Transitions and Impacts  

The development of deck state estimation, trajectory generation, and control algorithms provides 
an opportunity for technology transition to our partners at the U.S. Naval Surface Warfare Center 
Carderock Division for use in autonomous shipboard landing solutions. 

5. Collaborations 

We are working this project in collaboration with U.S. Naval Surface Warfare Center Carderock 
Division, Sea-Based Aviation and Aeromechanics Branch, Code 882.  Dr. Anish Sydney is our 
main point of contact.  Experimental testing was conducted at the Maneuvering and Sea Keeping 
(MASK) basin at the NSWCCD.  

6. Personnel  

Principal investigators: 
 
Joseph F. Horn, 1.5 person months 
Not a National Academy Member 
 
Jack W. Langelaan, 1.5 person months 
Not a National Academy Member 

7. Students 

Duncan Nicholson, M.S. Student (graduated August 2022), 24 person months 

Christopher Hendrick, Ph.D. Student, 28.5 person months 

Emma Jaques, M.S. Student, 21 person months 

8. Technology Transfer 

None to report. 

9. Products, Publications, Patents, License Agreements, etc. 

Conference Publications: 

1. Christopher M. Hendrick et al. “Scaled Experiments in Flight Control Design for 
Autonomous Landing in High Sea States”. In: AIAA AVIATION 2022 Forum.  DOI: 
10.2514/6.2022- 3280.  eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2022-3280.  URL: 
https://arc.aiaa.org/doi/abs/10.2514/6.2022-3280. 



  

  

2. Nicholson, D. V., Hendrick, C. M., Jaques, E. R., Langelaan, J. W., Horn, J. F., and Sydney, 
A. J., “Scaled Experiments in Estimation for Autonomous Landing in High Sea States,” 
AIAA Aviation 2022 Forum, AIAA, Chicago, Illinois, 2022. 

3. Hendrick, C. M., and Horn, J. F., “Analysis of Flight Control and Trajectory Planning for 
Autonomous Ship Landing Using Small-Scale UAVs,” 48th European Rotorcraft Forum, 
ERF 2022, Winterthur, Switzerland, September 6-8, 2022. 

4. Hendrick, C.M, Jaques, E. R., Langelaan, J. W., and Horn, J. F. “Evaluation of 
Autonomous Ship Landing Systems at the Maneuvering and Seakeeping Basin,” Vertical 
Flight Society 79th Annual Forum, West Palm Beach, Florida, May 2023. 

Journal Papers 

1. Hendrick, C. M., and Horn, J. F., “Scalable Guidance and Control Laws for Model-Scale 
Analysis of Autonomous Ship Landing Systems,” submitted to CAES Aeronautical 
Journal, currently under review. 

Plan to submit an updated version of  “Evaluation of Autonomous Ship Landing Systems at the 
Maneuvering and Seakeeping Basin” to the Journal of the American Helicopter Society. 
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Author: Duncan Nicholson 
Institution: The Pennsylvania State University 
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Expect another Ph.D thesis by Christopher Hendrick by December 2023 and another M.S. thesis 
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