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1. Introduction

1.1 Background

Shock waves induce large pressure gradients, which are assumed to directly cause
microstructural tearing of the lung parenchyma leading to hemorrhaging.1–3 Broadly
speaking, injury pathology and progression are well understood4; however the de-
tails of how injury propagates through the lung parenchyma at the ultrastructural
(tissue fibers) and microstructural (air sac) level are not well understood and are
an active area of research.5–8 The approach undertaken by Freed et al.7 to model
the microstructural level necessitates a multiscale model of the whole lung tissue,
which includes the highly heterogeneous structure of the lung parenchyma as seen
from the microstructure in Fig. 1.

Fig. 1 Scanning electron micrograph of intact alveolar air sacs, adapted from Tsokos et al.3

The lung parenchyma is comprised of alveolar air sacs ranging from 100 to 330 µm
in diameter9 and connective tissues made up of a complex network of collagen and
elastin fibers.10 Collagen fibers in the parenchyma organize to form both an axial
fiber network that connects the central airways to the alveolar ducts and a network
that extends from the visceral pleura of the lung to the alveolar ducts. The elastin
fibers are connected to the collagen fibers via microfibrils and proteoglycans, the
latter which have chemical interactions in addition to topological interactions with
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the collagen fibrils. The composition and physical dimensions of these unique col-
lagen fibers play a great role in determining the stiffness of these networks. Further-
more, mechanical forces that act upon the extra-cellular matrix (ECM), in which the
collagen and elastin fibers reside, can induce the secretion of growth factors that ac-
celerate ECM remodeling and alter the microstructural composition of the collagen
and elastin networks.10

At low strain, the stress response of fibril network appears to be heterogeneous as
the elastin fibers bear much of the stress. However, at higher rates of strain, such as
those induced by a shock wave, elastin fibers are prone to rupture7 and the remain-
ing stress response percolates through the collagen fibril networks as the collagen
fibers start to extend to their uncoiled lengths. This increases the stress response
of the entire lung parenchyma.11 Bronchiole tubes also affect load distribution in
the impacted lung.8 The complex roles that collagen and elastin fibers play in the
dynamics of the lung parenchyma are beyond the scope of this report. These details
are discussed by Freed et al.7; here we focus on the role that poro-elasto-dynamics
plays at the mesoscopic level. Findings can be used to inform macroscopic, single-
phase models of the lung for 3-D modeling of much larger domains.5,6,12–15

1.2 Approach

Mixture theory was first established at finite strain by Truesdell and Toupin.16 More
recent works include those by Bowen17–19 and others20–23 for mixture theory applied
to porous media. Shock waves in mixtures were analyzed by Bowen and Wright.24,25

The theory of porous media (TPM) is an appropriate approximation to a more ro-
bust, but much more computationally expensive, fluid-structure interaction (FSI)
model at the pore length scale. In TPM, these interactions are smeared across a
continuum material point, thereby simplifying not just the discretization of the gov-
erning mathematical equations (namely, mass balance, momentum balance, energy
balance, and entropy inequality), but also the discretization of the geometry itself.

Lung parenchyma is a highly complex, heterogeneous material: refer to scanning
electron microscope images in Tsokos et al.3 Resolution would require represen-
tation by a detailed 3-D finite-element (FE) mesh to model the explicit FSI via,
for example, coupled computational fluid dynamics-computational solid mechanics
with arbitrary Lagrangian-Eulerian FE modeling. Such a framework would, in ad-
dition to being costly both to run the simulation and for mesh generation, be biased
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toward the structure of the FE mesh. As such, work is needed to first accurately sim-
ulate the deformation of lung parenchyma using a multiphysics approach, before
addressing damage and injury pathology at the microscale (i.e., alveolar regime)
and linking that to the mesoscale (i.e., parenchymal regime). Here we incorporate
TPM to take into account the different response times of the two constituents in the
lung parenchyma subjected to shock loading: solid skeleton (s) (lung parenchyma)
and the pore fluid (f) (air) that occupies the pore space.

Past numerical models involving TPM have typically addressed geological and
geotechnical engineering applications (e.g., soil consolidation problems) wherein
inertial terms are typically ignored, the solid and pore fluid constituents are nearly
incompressible, and strains are small.26,27 In other works,28–31 inertial terms are re-
tained, but small-strain theory is still assumed. In Li et al., Gajo and Denzer, and
Regueiro et al.,32–34 inertial terms are retained, constituents are compressible, non-
linear constitutive theory is present, and deformation is finite. However, in Li et
al. and Regueiro et al.,32,34 it was assumed that dynamic loading frequencies were
relatively small (O(101-102) rad/s), and therefore the acceleration of the fluid phase
was approximately the same as that of the solid phase, that is, af ≈ as = a.
In this work, we continue from Regueiro et al.34 but with the assumption that
for higher-strain rate loadings, af ̸= as, necessitating a “three-field” formula-
tion,34 and comparison to “two-field” formulation results. The three-field formu-
lation is not new, see Zienkiewicz and Shiomi35 for the initial theory and others36–41

for various numerical implementations. However, to the best of our knowledge,
no other authors have considered the following physics simultaneously: large de-
formations,32–34,38,42–56 inertial effects,28,29,31–34,36,38,41,43–45,48–50,52–59 nonlinearity of
constitutive theory for the phases,28,34,37,42,44–48,50,52–55,57 finitely compressible con-
stituents,28,29,33,34,41,43,50,54,58,60 and high strain-rate loading with nonlinear geometric
effects.

Furthermore, many works in TPM use implicit time-stepping methods (e.g., the
well-known Newmark-beta schemes) or semi-implicit time-stepping methods (e.g.,
Zienkiewicz et al.30 and others28,29,41) which, even for dynamic loadings, are not
always suitable computationally for shock loadings61,62 wherein small time steps are
required to resolve the shock physics. Those that do present explicit time integration
schemes generally stick to the well-known central-difference scheme or variations
thereof.52,56 In subsequent work by the current authors, various choices of explicit

3
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Fig. 2 The standard linear solid model, adapted from Simo and Hughes63

time integration schemes are presented and compared.

To help argue for the necessity of poromechanics models in this area of research
(i.e., porous biological tissues), we briefly compare the stress relaxation times be-
tween a purely viscoelastic model and a poroelastic model at small strain. Compar-
isons are furnished in the remainder of Section 1.2.

1.2.1 Linear Viscoelasticity in One Dimension at Small Strain

Consider the following viscoelastic standard linear solid model of Fig. 2 with axial
strain ϵ that can be decomposed into its elastic strain ϵe and viscoelastic strain ϵve

components. Then the total stress contributed by the two parallel elements of the
model can be expressed as

σ = E∞ϵ+ σv (1)

where E∞ is the steady-state elastic modulus and

σv = ηϵ̇ve = Eϵe = E(ϵ− ϵve) (2)
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where η is the viscosity of the dashpot. Rearranging Eq. 2 leads to the following
ordinary differential equation (ODE):

ϵ̇ve +
1

τ
ϵve =

1

τ
ϵ (3)

where τ = η/E is the time relaxation constant. We will solve for ϵve(t) using the
integration factor exp[t/τ ] and convolution integral as follows:

exp[t/τ ]ϵ̇ve +
1

τ
exp[t/τ ]ϵve =

1

τ
exp[t/τ ]ϵ,

⇒
t∫

−∞

d

ds
(exp[s/τ ]ϵve(s)) ds =

t∫
−∞

1

τ
exp[s/τ ]ϵ(s) ds,

⇒ exp[t/τ ]ϵve(t) =
1

τ

t∫
−∞

exp[s/τ ]ϵ(s) ds,

⇒ ϵve(t) =

t∫
−∞

1

τ
exp [(s− t)/τ)] ϵ(s) ds;

d

ds
(exp [(s− t)/τ ] ϵ(s)) =

1

τ
exp [(s− t)/τ)] ϵ(s) + exp [(s− t)/τ ] ϵ̇(s),

⇒ ϵve(t) =

t∫
−∞

d

ds
(exp [(s− t)/τ ] ϵ(s)) ds

︸ ︷︷ ︸
:=ϵ(t)

−
t∫

−∞

exp [(s− t)/τ ] ϵ̇(s) ds

(4)

Thus the total stress may be written as follows:

σ(t) = E∞ϵ(t) + E

t∫
−∞

exp [(s− t)/τ ] ϵ̇(s) ds =

t∫
−∞

G(t− s)ϵ̇(s) ds (5)

where the relaxation function is

G(t− s) := E∞ + E exp [−(t− s)/τ ] (6)
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Suppose, now, that we write the strain ϵ(t) in terms of the creep function J(t) as
follows:

ϵ(t) =

t∫
−∞

J(t− s)σ̇(s) ds; J(t) =
1

E∞

(
1− E

E∞
exp

[−E∞t

E0t

])
(7)

where we apply a step function for the total stress such that,

σ(t) = σ0H(t); σ̇(t) = σ0δ(t) (8)

Substitution of the above into Eq. 71 gives

ϵ(t) =

t∫
−∞

J(t− s)σ0δ(s) ds = σ0J(t) (9)

We will compare the effects of a creeping viscoelastic model to that of a poroelastic
model, the latter equations of which we will derive in the following section.

1.2.2 Linear Poroelasticity in One Dimension at Small Strain

Terzaghi’s 1-D consolidation theory64 makes the following assumptions:

1. The solid constituent is homogeneous.

2. The porous medium is fully saturated (i.e., there are only two constituents in
the porous medium: solid skeleton and pore fluid).

3. The solid constituent and pore fluid constituent are incompressible. Note that
the porous solid skeleton “matrix” remains compressible so that deformation
may occur.

4. The applied compression is purely vertical in the z direction (i.e., uniaxial
strain), and the motion of the pore fluid is purely vertical as well (i.e., unidi-
rectional flow).

5. Darcy’s law (sans inertia and body force terms) vz,f = −k̂γf dhdz , is valid, where
vz,f is the pore fluid seepage velocity in the z direction, k̂ is the hydraulic
conductivity, γf is the unit weight of the pore fluid, and h is the pressure
head.

6. The results are valid for small strain:

6



(a) k̂ is independent of the void ratio change ∆e and is assumed constant
during the consolidation process. Note that porosity n := e/(1 + e)).

(b) mv, the compressibility factor under uniaxial strain, is assumed con-
stant during the consolidation process (i.e., linear isotropic elasticity
will hold).

7. There are no sources or sinks of pore fluid.

From Assumptions 3, 4 and 7, the continuity equation reduces to

dvz(f)
dz

dxdydz = 0 (10)

which we may also write as

dvz(f)
dz

dxdydz =
dV

dt
(11)

Substitution of Darcy’s law into Eq. 10 gives

dvz(f)
dz

= −k̂γf
d2h

dz2
(12)

where the pressure head is defined as

h :=
pf
γf

+ z (13)

and the pore fluid pressure pf may be written as the summation of the fluid unit
weight γf times the position z and an excess pore fluid pressure pf,e. Thus, we can
rewrite Eq. 12 as

dvz(f)
dz

= −k̂ d
2pf,e
dz2

(14)

Now, assuming a linear isotropic elastic constitutive relation for the volumetric
strain for uniaxial strain under vertical stress, we may write

∆V

V
= mv∆σ

′ (15)
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Rearranging, dividing both sides by ∆t and taking the limit as ∆t→ 0 gives us

dV

dt
= mv

dσ′

dt
dxdydz (16)

Recall the effective stress principle where total stress σ is decomposed into solid
skeleton stress σ′ and pore fluid pressure pf (i.e., σ := σ′ + pf) for compressible
solid skeleton and nearly incompressible solid constituent. Here, we assume soil
mechanics convention for which the normal components of stress are positive in
compression, along with the pore fluid pressure pf . Decomposing the pore fluid
pressure in terms of the hydrostatic and excess pore fluid pressure as pf = γfz +

pf,e and then taking the time derivative of all four terms above provides the useful
relation

dσ′

dt
= −dpf,e

dt
(17)

Substitution of this result back into Eq. 16, equating with Eqs. 11 and 14, and rear-
ranging, gives us the following partial differential equation (PDE) for pf,e:

∂pf,e
∂t

= cv
∂2pf,e
∂z2

(18)

where the coefficient of consolidation cv = k̂/(mvγf). We further assume the fol-
lowing “drained” (i.e., atmospheric) boundary conditions:

pf,e(0, t) = 0, pf,e(2H, t) = 0 (19)

whereH is defined as the longest flow path to the drained boundary for a given pore
fluid molecule, and an initial pressure along the domain is defined as

pf,e(z, 0) = pf,e,0(z) (20)

Note that a drained boundary condition implies atmospheric pressure, which we
assume is referenced to 0 atm. This PDE may be solved using the method of sepa-
ration of variables where

pf,e(z, t) = F (z)Φ(t) (21)

8



and thus Eq. 18 becomes

1

F (z)

∂2F

∂z2
=

1

cvΦ(t)

∂Φ

∂t
(22)

Since the left- and right-hand sides of Eq. 22 are independent of t and z, respec-
tively, they must both be equal to some constant, which we denote by −A2. Solving
for F (z) yields

F (z) = c1 cos(Az) + c2 sin(Az) (23)

and likewise solving for Φ(t) yields

Φ(t) = c3 exp
[
−A2cvt

]
(24)

Then Eq. 21 may be rewritten as the product of these solutions:

pf,e = (c4 cos(Az) + c5 sin(Az)) exp
[
−A2cvt

]
(25)

where c4 = c1c3 and c5 = c2c3. Using the boundary condition given by Eq. 191

gives c4 = 0. Likewise, using the boundary condition given by Eq. 192 gives

pf,e(2H, t) = 0 = c5 sin
( nπ
2H

z
)
exp

[
−
( nπ
2H

)2

cvt

]
(26)

Since c5 is arbitrary, we may write the solution for the excess pore fluid pressure as
a summation over all n as

pf,e(z, t) =
∞∑
n=1

Bn sin
( nπ
2H

z
)
exp

[
−
( nπ
2H

)2

cvt

]
(27)

where Bn is a yet to be determined constant. Using our initial condition defined by
Eq. 20 allows us to write

pf,e,0(z) =
∞∑
n=1

Bn sin
( nπ
2H

z
)

(28)

This is a Fourier sine series, which when multiplied by sin(nπz/2H) allows us to
solve for Bn, making use of the orthogonality relation of two sinusoidal waves over

9



the period 2H , as

Bn =
1

H

2H∫
0

pf,e,0(z) sin
( nπ
2H

z
)
dz (29)

Substitution of this result back into Eq. 27 gives

pf,e(z, t) =
∞∑
n=1

 1

H

2H∫
0

pf,e,0(z) sin
( nπ
2H

z
)
dz

 sin
( nπ
2H

z
)
exp

[
−(nπ)2

4
T

]
(30)

where T = cvt/H is the dimensionless time factor. Consider now the case where
the initial excess pore fluid pressure is constant: pf,e,0(z) = tσ. Then we may solve
for Bn by integrating Eq. 29 directly as

Bn =
1

H

2H∫
0

tσ sin
( nπ
2H

z
)
dz =

2tσ

nπ
(1− cos(nπ)) (31)

which gives

pf,e(z, t) =
∞∑
n=1

2tσ

M
sin

(
M

H
z

)
exp

[
−M2T

]
(32)

where M = nπ/2.

1.2.3 Comparison of Linear Viscoelasticity and Poroelasticity in One Di-
mension at Small Strain

We now compare the 1-D uniaxial strain, unidirectional flow poroelastic response to
the creep viscoelastic response. Two columns of different heights H are modeled as
drawn in Fig. 3. Both columns, each with either of the poroelastic and viscoelastic
models, are subject to a Heaviside step function in boundary traction as shown in
Fig. 4.

This loading results in a constant initial stress with distance if we ignore gravi-
tational effects. Figure 5 shows that for the shorter column, the relaxation times
between the viscoelastic and poroelastic models are identical. For the taller col-
umn, the relaxation time for the viscoelastic model is identical to that of the shorter

10



Fig. 3 Schematic of the columns used for a thought experiment. The cross-sectional areas
are identical between both, but the second column is double the height of the first.

column. However, the relaxation time is significantly increased for the poroelastic
model. This is because the direct consideration of the pore fluid means that the solid
skeleton must displace said fluid before reaching steady-state displacement. In the
context of lung deformations, this is an important distinction to make because a
simple difference in geometry leads to drastically different deformation processes.

11



Fig. 4 The applied Heaviside step function applied to the top of the column
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Fig. 5 Comparison for soil sample with initial applied stress tσ = 100 kPa
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Fig. 6 Schematic for a cylindrical mesh used in the 1-D uniaxial strain simplification, where
the Q2-Q2-P1 element65 is highlighted. Here, d corresponds to the interpolated solid skeleton
(s) displacement solution, df corresponds to the interpolated pore fluid (f) displacement so-
lution, and θ corresponds to the interpolated pore fluid pressure solution at their respective
nodes in the FE model.

1.2.4 Geometric Model

In later analysis,65,66 we model an excised section of lung parenchyma as either a
uniform cylinder or uniform rectangular column. Our choice of geometry is some-
what arbitrary as long as the motion is uniaxial. If we assume uniaxial strain with
unidirectional flow (i.e., no permeation of air through the sides of the cylinder),
the overall geometry of the lung parenchyma becomes irrelevant because we can
reduce it to 1-D. This assumption is appropriate for immediate motions resulting
from shock loadings in which the magnitude of transverse motions (i.e., those per-
pendicular to the direction of the shock front) are small compared to the motions
aligned with the direction of the shock front. When making comparisons to other
software models, such as those in the LS-DYNA code,67 we typically assume a rect-
angular column for ease of meshing in other software frameworks, which has the
sole effect of altering the cross-sectional area when compared to the cylindrical col-
umn for fixed width or diameter (i.e., cylindrical area of πD2/4 ≈ 12.6 cm2, versus
rectangular area of L2 ≈ 1 cm2). The cylindrical geometry is shown in Fig. 6, and
the rectangular geometry is shown in Fig. 7. These geometries are considered in
more depth in subsequent reports on numerical methods and simulations.65,66
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Fig. 7 Schematic for a rectangular mesh used in the 1-D uniaxial strain simplification, where
the Q2-Q2-P1 element65 is highlighted. Here, d corresponds to the interpolated solid skeleton
(s) displacement solution, df corresponds to the interpolated pore fluid (f) displacement so-
lution, and θ corresponds to the interpolated pore fluid pressure solution at their respective
nodes in the FE model.
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1.3 Organization

The remainder of this report is organized in the following manner. Section 2 intro-
duces concepts for mixture theory and the TPM, and how these theories are applied
to porous lung parenchyma. Following this, the physical balance equations are de-
rived for a general constituent α and then derived for the mixture of the two phases:
solid (s) and fluid (f). In Section 3, we show how the balance equations allow us to
derive our constitutive equations. Conclusions summarizing the theoretical devel-
opments and mentioning subsequent applications65,66,68 follow in Section 4.

The term “elasticity” is used to refer to a quasi-static setting (i.e., inertial terms and
stress waves absent) with linear or nonlinear elastic constitutive behavior. The term
“elastodynamics” refers to a fully dynamic setting (i.e., inertial terms retained in the
momentum balance, leading to stress waves), again with linear or nonlinear elastic
behavior.

2. The Theory of Porous Media

An extensive background of TPM is provided by Bowen,17–19 Coussy,21 Ehlers20

and de Boer,22 and originally in Truesdell and Toupin.16 We will follow the notation
of Holzapfel69 (for solid mechanics) and de Boer.22

2.1 Concept of Volume Fractions

We assume that the porous solid continuum body constitutes a control space B
(current configuration of the solid skeleton) and that only liquids or gases in the
pores can leave this control space. Rather than modeling the exact microstructure
of the porous solid, we assume that the pores are modeled in a statistical sense
such that their specific locations are arbitrary. This concept of volume fraction is
illustrated in Fig. 8a. The volume fractions nα are defined such that they relate the
“real” differential volumes dvα of each constituent, or phase, α to the smeared (i.e.,
homogenized) total differential volume dv:

nα(x, t) =
dvα(x, t)

dv(x, t)
(33)

where x is the position vector in the current configuration B (see Fig.8b), and t
is current time. Thus, for any mixture, the constituents α occupying some control
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volume dv in the control space B must satisfy∑
α

nα(x, t) = 1 ,
∑
α

dvα(x, t) = dv(x, t) (34)

We furthermore assume that the constituents are immiscible (following the principle

of phase separation20) such that we can relate the partial mass density ρα, that is, the
mass density of constituent α occupying the total differential volume dv containing
multiple constituents, to the real mass density ραR, the mass density of constituent
α occupying the differential volume dvα containing only constituent α, as follows:

mα(x, t) =

∫
Bα

ραR(x, t)dvα(x, t)

=

∫
B
ραR(x, t)nα(x, t) dv(x, t) =

∫
B
ρα(x, t) dv(x, t)

(35)

where mα is the mass of constituent α in the control space B. Hereafter we assume
that variables written in the current configuration B are dependent on position x at
time t so as to simplify the notation. Similarly, variables written in the reference
configuration B0 are dependent on position X at time t.

2.2 Kinematics

The kinematics of a biphasic solid-fluid mixture theory, where α = s, f, and f is
either a liquid or a gas, and cannot be decomposed into both as is common in
triphasic solid-liquid-gas mixture theory,22 are shown in Fig. 8b. The vector x is the
spatial position vector which is occupied by both constituent material pointsXs and
Xf of the mixture such that x = χf(X f , t) = χs(Xs, t), where the material point
of the solid constituent is mapped from the reference position Xs to the current
position x through mapping χs. The inverse map is defined as Xα = χ−1

α (x, t),
assuming smoothly differentiable fields. The deformation gradient and its inverse
are defined as follows assuming Cartesian coordinates:

F α =
∂χα

∂Xα

, F−1
α =

∂Xα

∂x

FiI(α) =
∂χi(α)

∂XI(α)

, F−1
Ii(α) =

∂XI(α)

∂xi

(36)

The differential volumes dV f and dV s in their respective reference configurations
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0
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XXX f
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vvvf

χs(Xs)

χf(Xf)

χf(Yf)

Figure 2: Kinematics of a biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue. The continuum assumption of mixture theory
is evident in the assumption that solid (s) and fluid (f) constituents coexist at the
current position xxx, although their velocities vvvs and vvvf may be different; i.e., vvvf �= vvvs,
in general.

solid

fluid

mixture

dVf

dVs

dvFFF f

FFFs

Figure 3: Volumetric deformation of solid and fluid constituents in a biphasic mix-
ture (solid skeleton composed of alveolar tissue of the lung parenchyma).

Figure 2: Kinematics of a biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue. The continuum assumption of mixture theory
is evident in the assumption that solid (s) and fluid (f) constituents coexist at the
current position xxx, although their velocities vvvs and vvvf may be different; i.e., vvvf 6= vvvs,
in general.

volumes dVf and dVs in their respective reference configurations Bf
0 and Bs

0, both
map to the same differential volume dv in the current configuration B, through
their deformation gradients FFF f and FFFs.

The Jacobian of deformation for the two constituents is written as,

Js = detFFFs > 0 ; Jf = detFFF f > 0 (2)

dv = JsdVs = JfdVf (3)

dvα = nαdv = nαJαdVα (4)

dVf ⊂Bf
0 , dVs ⊂Bs

0 (5)

where we will typically drop the s superscripts and subscripts because the theory
of porous media assumes we follow the motion of the solid skeleton.

(b)

Fig. 8 Concept of volume fraction for biphasic (solid(s)-fluid(f)) mixture theory a), showing
solid skeleton composed of alveolar tissue. Note that in the theory of porous media, it is as-
sumed that the control space is that of the solid phase B := Bs, also known as “solid skeleton.”
Kinematics b) of a biphasic (solid-fluid) mixture theory.

Bf
0 and Bs

0 both map to the same differential volume dv in the current configuration
Bt through their deformation gradients F f and F s. The Jacobian of deformation for
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both constituents is defined as follows:

Js = detF s > 0; Jf = detF f > 0 (37)

dv = JsdVs = JfdVf (38)

dvα = nα dv = nαJαdVα (39)

dVf ⊂ Bf
0, dVs ⊂ Bs

0 (40)

We will convert all material time derivatives with respect to the solid (s) constituent
motion (equivalently, the solid skeleton motion; see note in Fig. 8a for details) such
that for constituent α the material time derivative is

Dα
t (□) =

Dα (□)

Dt
=

Ds (□)

Dt
+
∂(□)

∂x
· ṽα (41)

ṽα = vα − vs (42)

Ds
t(□) =

Ds (□)

Dt
=

∂(□)

∂t
+
∂(□)

∂x
· vs (43)

where ṽα is the relative velocity vector of the constituent α with respect to the solid
(s) constituent motion.

2.3 Balance of Mass

The total mass of a constituent α in the current configuration B can be written as

mα =

∫
B

ραdv =

∫
B0

ραJαdVα (44)

After taking the material time derivative of mα with respect to the motion of α, the
balance of mass of constituent α can be written as

Dα
t mα =

∫
B

(Dα
t ρ

α + ρα div vα) dv =

∫
B

γ̂α dv (45)

where γ̂α is the mass supply of constituent α per unit total current volume. The
local form of Eq. 45 is, upon dividing by ραR,

Dα
t n

α +
nα

ραRD
α
t ρ

αR + nα div vα =
γ̂α

ραR (46)
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We assume that there is no supply of solid mass to the solid (s) constituent such
that γ̂s → 0, and that the solid (s) constituent of the soft porous material (i.e., the
solid skeleton wall material) is both thermally and mechanically incompressible:
ρsR := constant.

Following this, we may proceed with a constitutive assumption for the internal en-
ergy function of the fluid phase: it produces a pressure that depends only on its real
mass density: pf = pf(ρ

fR). Denoting the isentropic bulk modulus61,70 of the pore
fluid by Kη

f ,

Kη
f := ρfR ∂pf

∂ρfR

∣∣∣
ηf

(47)

Suppose then that pore fluid pressure is defined as pf(vf) where vf is the specific
volume of the pore fluid. It follows that

Df
tpf =

∂pf
∂vf

∣∣∣
ηf
Df

tv
f (48)

Then, using the definition given in Eq. 47,

Df
tpf =

Kη
f

ρfRD
f
tρ

fR (49)

Next, as we express the balance of mass for both constituents (i.e., the solid and
fluid) individually, the incompressibility assumption Dα

t ρ
αR → 0 is used for the

solid phase in Eq. 46 for α = s and Eq. 49 is used in Eq. 46 for α = f. Adding
these two equations together, then using the relationship between volume fractions
nf = 1− ns, the combined balance of mass of the mixture becomes

nf

Kη
f

Ds
tpf + div vs +

1

Kη
f

grad(pf) · (nf ṽf) + div(nf ṽf) =
γ̂f

ρfR (50)

We can map Eq. 50 back to the reference configuration of the solid skeleton B0 =

Bs
0 as

Jsn
f

Kη
f

Ds
tpf +Ds

tJs

+
Js
Kη

f

GRADs(pf) · F−1
s · (nf ṽf) + Js GRADs(n

f ṽf)
.. F−T

s =
Jsγ̂

f

ρfR

(51)
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where subscript or superscript s implies with respect to the motion of the solid
skeleton.

2.4 Balance of Linear Momentum

The balance of linear momentum for constituent α is written as

Dα
t

∫
B

ραvα dv

 =

∫
B

ραbα dv+

∫
Γ

tα da+

∫
B

hα dv (52)

After carrying through the material time derivative and applying the balance of
mass given by Eq. 45, applying the divergence theorem to the traction term tα, and
localizing the integral, we may write

divσα + ραbα + hα = ραaα + γ̂αvα (53)

where σα is the partial Cauchy stress, such that the total Cauchy stress σ = σs+σf ,
ρα is the partial mass density (total mass density ρ = ρs + ρf), bα is the body force
per unit mass on constituent α (e.g., acceleration due to gravity such that bα = g),
hα is the interaction body force from all other constituents on constituent α, aα is
the acceleration vector, and γ̂αvα is the mass supply momentum, which we typically
assume is negligible. Usually, the interaction body forces between constituents are
due to drag and will sum to zero because they are equal and opposite. Thus, these
forces do not affect the mixture as a whole such that hs + hf = 0. Via the balance
of angular momentum, it can be shown that the partial Cauchy stresses for each
constituent α are symmetric: σα = (σα)T .

Equation 53 can be mapped back to the reference configuration of the solid skeleton
for constituent α as

DIVsP
α
s + ρα0(s)b

α + Jsh
α = ρα0(s)aα + γ̂α0(s)vα (54)

where again, subscript s or (s) implies with respect to solid skeleton reference con-
figuration, such that ρα0(s) = Jsρ

α. From Eq. 54 we can derive the balance of linear
momentum equation for the biphasic mixture in the reference configuration Bs

0 us-
ing the following equations and assumptions:

1. Mixed constituent temperatures: θf = θs = θ
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2. Total Cauchy stress, and first Piola stress with respect to Bs
0:

σ = σs + σf , P s = P s
s + P f

s (55)

3. Decomposition of the solid partial Cauchy stress into an extra stress, here-
after referred to as the solid skeleton effective stress, and pore fluid pressure
(justified in Section 3, see also Ehlers20):

σs = σs
E − pfn

s1 (56)

4. Assume all mass supplies are negligible: γ̂α = 0

5. Assume body forces per unit mass are only due to gravity: bα = g, where g

is the acceleration vector of gravity.

We may then write the balance of linear momentum equation for the biphasic mix-
ture in the reference configuration Bs

0 as

DIVs P s + ρ0(s)g = ρs0(s)as + ρf0(s)af (57)

P s = P s
E + P f

E − JspfF
−T
s (58)

where for the two-field formulation, we will further assume that af ≈ as = a,
which should be valid only for slower dynamic loadings. With that assumption in
mind, the pore fluid viscous stress tensor P f

E drops from Eq. 58 because the con-
stitutive law that defines it in Section 3 includes spatial dependence on pore fluid
velocity, which cannot be determined without a third governing equation for the
pore fluid velocity. Note that under the assumption of a nearly inviscid pore fluid
(σf

E → 0), Eq. 58 may be rewritten as

P s = P s
E − JspfF

−T
s (59)

2.5 Balance of Linear Momentum of Pore Fluid

Equation 57 allows us to solve for the displacement of the solid skeleton (i.e., the
connective tissue network of the soft porous material), but not for the displacement
or velocity of the pore fluid (f) phase. Thus, we require an additional governing
equation.
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As motivated by satisfying the second law of thermodynamics in Clausius-Duhem
form (see Coussy21 or de Boer22), upon substitution of the balance of linear mo-
mentum of the pore fluid and neglecting the pore fluid extra stress (i.e., the viscous
component of total pore fluid stress), a generalized Darcy’s law may be formulated,
which relates the smeared relative velocity of the fluid to the Cauchy pore fluid
pressure gradient, fluid acceleration, and body force, such that

nf ṽf = −k̂
[
gradpf + ρfR(af − bf)

]
(60)

where k̂ is the hydraulic conductivity, a proportionality parameter in the Clausius-
Duhem inequality, that may be a function of fluid volume fraction nf (i.e., porosity),
and where it has been assumed that the solid skeleton’s permeability is isotropic.
Rewriting Eq. 60 after multiplying through by nf , and assuming bf = bs = b = g,
we have

ρfaf + nfgradpf +
(nf)2

k̂
(vf − vs)− ρfg = 0 (61)

We can map this to the reference configuration Bs
0,

ρf0(s)af + Jsn
f GRADs pf · F−1

s +
Js(n

f)2

k̂
(vf − vs)− ρf0(s)g = 0 (62)

Now we have three coupled governing equations that describe the kinematics of
the biphasic mixture: Eqs. 51, 57, and 62. We can use these equations to solve for
three unknown “fields” (i.e., three solution variables): Cauchy pore fluid pressure pf ,
solid skeleton displacement u (dropping subscript s), and pore fluid displacement
uf , respectively. This is commonly known as the (u-uf-pf) formulation. In the (u-
pf) formulation, we assume that the acceleration of the pore fluid (f) constituent is
approximately equal to the acceleration of the solid skeleton via af ≈ as = a. Thus,
we do not need to solve Eq. 62. We employ variational forms of these equations in
the total Lagrangian FE formulation in a follow-up report.65

To describe the evolution of phase entropies and temperatures, additional governing
equations are required, irrespective of whether or not thermo-mechanical coupling
and/or the mixed-temperature constituents are assumed. The governing equations
that describe the thermodynamics will end up being the balance of energy of each
phase, or the mixture, whichever is more appropriate. Note that in the context of the
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current application (i.e., high strain-rate loading of lung parenchyma), a mixture
energy balance may not be appropriate given the disparity in thermodynamic ma-
terial properties between the constituents. Regardless, constitutive relations must
be determined prior to numerical implementation of any balance equations. The
process for determining constitutive equations essentially begins in the next three
subsections, and it concludes with more details in Section 3.

2.6 Balance of Energy

The first law of thermodynamics provides the balance of energy for the mixture as
a whole, and can be written in the current configuration B for phase α as

Dα
t [K

α(t) + Eα(t)] = Pα
ext(t) +Qα(t) + Ēα(t) (63)

where the kinetic energy is defined as

Kα(t) =

∫
B

1

2
ραvα · vαdv (64)

The internal energy is defined as

Pα
int(t) = Dα

t E
α(t) = Dα

t

∫
B

ραeα(x, t)dv (65)

where the eα is the internal energy per unit mass, sometimes referred to as εα in
other works on mixture theory and TPM.17,22 The external work on phase α is de-
fined as

Pα
ext(t) =

∫
Γ

tα · vαda+

∫
B

ραbα · vαdv (66)

where tα = n ·σα and Γ := ∂B. The rate of thermal work (i.e., the thermal power)
acting on an individual constituent is

Qα(t) = −
∫
Γ

qα · nda+
∫
B

ραrαdv (67)

where for phase α, qα is the heat flux vector, and rα is the heat input rate per unit
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mass. Lastly, the power supply to phase α by other phases is defined as

Ēα(t) =

∫
B

êαdv =

∫
B

(
ε̂α + hα · vα + γ̂α

[
eα +

1

2
vα · vα

])
dv (68)

where ε̂α arises from local interaction17 for energy supply to phase α from other
phases and êα is the total power density per unit volume supplied to phase α by
other phases.

Combining the above energy terms, Eqs. 64–68, the first law of thermodynamics
may be written as follows:

Dα
t

∫
B

(
1

2
ραvα · vα + ραeα

)
dv =

∫
Γ

tα · vαda+

∫
B

ραbα · vαdv

−
∫
Γ

qα · nda+
∫
B

(ραrα + êα)dv (69)

Start by applying the material time derivative to switch to reference configuration
Bα
0 :

Dα
t

∫
B

(1
2
ραvα · vα + ραeα

)
dv = Dα

t

∫
Bα
0

(1
2
ραvα · vα + ραeα

)
JαdVα (70)

Carry out material time derivative in reference configuration Bα
0 :

Dα
t

∫
Bα
0

(1
2
ραvα · vα + ραeα

)
JαdVα =

∫
Bα
0

([
Dα

t vα · vα +Dα
t e

α
]
(ραJα)

+
[1
2
vα · vα + eα

][
Dα

t ρ
αJα + ραDα

t Jα

])
dVα (71)

The first term in first set of brackets [ ] on the right-hand side (rhs) of Eq. 71 is
acceleration of phase α:

Dα
t vα := aα (72)

Substitution of Eq. 72 gives[
Dα

t vα · vα +Dα
t e

α
]
(ραJα) =

[
aα · vα +Dα

t e
α
]
(ραJα) (73)
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The first term in the third set of brackets [ ] on rhs of Eq. 71 is evaluated from
balance of mass:

Dα
t ρ

α = γ̂α − ρα div vα (74)

The second term in third set of brackets [ ] on rhs of Eq. 71 is evaluated from the
continuity equation:

Dα
t Jα = Jα div vα (75)

Substitution and simplification of these two gives[1
2
vα · vα + eα

][
Dα

t ρ
αJα + ραDα

t Jα

]
= γ̂α

[1
2
vα · vα + eα

]
Jα (76)

Rewriting the material time derivative of total internal energy in current configura-
tion such that JαdVα → dv:

Dα
t

∫
B

(
1

2
ραvα · vα + ραeα

)
dv

=

∫
B

(
ραaα · vα + ραDα

t e
α + γ̂α

[
eα +

1

2
vα · vα

])
dv

(77)

Next, apply divergence theorem to the boundary terms (external work via traction,
rate of thermal work via heat flux):∫

Γ

tα · vαda =

∫
B

div(σα · vα)dv (78)

∫
Γ

qα · nda =

∫
B

div qαdv (79)

Expand divergence on Cauchy stress and velocity:

div(σα · vα) = div(σα) · vα + σ .. lα (80)

where lα is the velocity gradient. Next, apply localization theorem such that the
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energy balance for phase α is written as

ραaα · vα + ραDα
t e

α + γ̂α
(
eα +

1

2
vα · vα

)
= div(σα) · vα + σ .. lα + ραbα · vα

− div qα + ραrα + êα

(81)

Third term on rhs of Eq. 81 can be rewritten by substituting balance of momentum:

ραbα = ραaα + γ̂αvα − divσα − hα (82)

Substitute into Eq. 81:

ραaα · vα + ραDα
t e

α + γ̂α
(
eα +

1

2
vα · vα

)
= div(σ)α · vα + σ .. lα

+(ραaα + γ̂αvα − divσα − hα) · vα − div qα + ραrα + êα (83)

The acceleration terms and divergence on partial Cauchy stress terms cancel, leav-
ing

ραDα
t e

α = σ .. lα − div qα + ραrα + êα + γ̂α
(1
2
vα · vα − eα

)
− hα · vα (84)

Note that this is equivalent to the derivation provided by Bowen17 if one substitutes
the definition of the total power density supply given by Eq. 68 such that

ραDα
t e

α = σα .. lα − div qα + ραrα + ε̂α (85)

2.7 Entropy Imbalance

Deriving an entropy imbalance for the mixture as a whole is preferred to deriving
one for individual constituents given that the latter can lead to incomplete constitu-
tive relations.22 We write ∑

α

Γα(t) ≥ 0 (86)

wherein

Γα(t) = Dα
t H

α(t)− Q̃α(t) (87)
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Thus, the imbalance of entropy can be written in the current configuration B as∑
α

Dα
t H

α(t) ≥
∑
α

Q̃α(t) (88)

where the total internal entropy of phase α is

Hα(t) =

∫
B

ραηαdv (89)

and the rate of total entropy input for phase α is

Q̃α(t) =

∫
B

1

θα
ραrαdv −

∫
Γ

1

θα
qα · nda (90)

Start by applying the material time derivative to switch to reference configuration
Bα
0 :

Dα
t

∫
B

ραηαdv = Dα
t

∫
Bα
0

ραηαJαdVα (91)

Carry out material time derivative in reference configuration Bα
0 :

Dα
t

∫
Bα
0

ραηαJαdVα =

∫
Bα
0

(
(ηαJα)D

α
t ρ

α + (ραJα)D
α
t η

α + (ραηα)Dα
t Jα

)
dVα (92)

The first and last terms are simplified using mass balance and continuity equation,
per Eqs. 74 and 75, respectively, such that

Dα
t

∫
Bα
0

ραηαJαdVα =

∫
Bα
0

(
ηαJαγ̂

α + (ραJα)D
α
t η

α
)
dVα (93)

Rewrite the material time derivative of total internal entropy in current configuration
such that JαdVα → dv:

Dα
t

∫
B

ραηαdv =

∫
B

(
ηαγ̂α + ραDα

t η
α
)
dv (94)

27



Apply divergence theorem to the heat flux term in rate of entropy input, Eq. 90:∫
Γ

1

θα
qα · nda =

∫
B

div
( 1

θα
qα

)
dv (95)

Finally, apply localization theorem such that entropy imbalance is written as

∑
α

(
γ̂αηα + ραDα

t η
α − 1

θα
ραrα + div

[ 1

θα
qα

])
≥ 0 (96)

2.8 Dissipation Inequality

In order to produce constitutive relations that adhere to the thermodynamic princi-
ples laid out by Truesdell and Toupin16 and Coleman and Noll,71 the second and
first laws will be combined to form the dissipation inequality, that is, the Clausius-
Duhem inequality. Introduce the Helmholtz free energy potential for each phase
as

ψα = eα − θαηα (97)

and substitute it into the first law, Eq. 84, such that

ραDα
t

(
ψα + θαηα

)
= σ .. lα − div qα + ραrα + êα + γ̂α

(1
2
vα · vα − eα

)
− hα · vα

(98)

Next, isolate the material time derivative on the phase entropy:

ραDα
t η

α =
1

θα

(
− ρα

[
Dα

t ψ
α + ηαDα

t θ
α
]
+ σα .. lα − div qα + ραrα + êα

+γ̂α
[1
2
vα · vα − eα

]
− hα · vα

)
(99)

Substitute this into the entropy balance, Eq. 96:

∑
α

1

θα

(
γ̂αθαηα − ρα

[
Dα

t ψ
α + ηαDα

t θ
α
]
+ σα .. lα − div qα + ραrα + êα

+γ̂α
[1
2
vα · vα − eα

]
− hα · vα − ραrα + θα div

[ 1

θα
qα

])
≥ 0 (100)

Recognize that heat source/sink terms cancel such that the total dissipation inequal-
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ity may be written as

∑
α

1

θα

(
ρα

[
Dα

t ψ
α + ηαDα

t θ
α
]
− σα .. lα − êα + γ̂α

[
ψα − 1

2
vα · vα

]
+ hα · vα

+
1

θα
grad(θα) · qα

)
≥ 0

(101)

Given the above summation over the mixture, iff θα = θ (i.e., mixed-temperature
constituents), we write∑

α

(
ρα

[
Dα

t ψ
α + ηαDα

t θ
α
]
− σα .. lα

+ γ̂α
[
ψα − 1

2
vα · vα

]
+ hα · vα +

1

θ
grad(θ) · qα

)
≥ 0

(102)

where by definition the power density supply terms have cancelled with one another,
and a constitutive relation for the local energy interaction term ε̂α is not needed.
This is the strategy that is pursued herein.

If we were to naïvely multiply both sides of Eq. 101 by phase temperature under
the admittedly reasonable assumption that temperature, being a positive quantity,
would not change the sign of the dissipation inequality, then when carrying out the
summation of the dissipation inequality over constituents α = s, f, the power den-
sity supply terms would cancel. The issue with such a scenario is that if we were to
later invoke the energy balance in Eq. 85 for any one phase, the local energy interac-
tion term would not have been defined constitutively via the dissipation inequality.
This is also the difficulty that arises when supposing that the second law need only
be satisfied for an individual constituent. In that case, we might have written the
dissipation inequality for each phase as follows (equation unnumbered since it is
hypothetical):

ρα
[
Dα

t ψ
α + ηαDα

t θ
α
]
− σα .. lα − êα + γ̂α

[
ψα − 1

2
vα · vα

]
+ hα · vα

+
1

θα
grad(θ)α · qα ≥ 0

The power density supply terms êα would always cancel with one another when
summing over phases here because they are not temperature scaled as in Eq. 101.
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3. Constitutive Theory

3.1 Mixed-Temperature Model

In the mixed-temperature model, we may assume that there is no heat exchange
between constituents in the mixture: θs = θf = θ. Strictly speaking, this may not
be an appropriate assumption for strong shocks; however, the analytical solution23

for a strong compressive shock wave in air, when modeled as an ideal gas, shows
that at 50% compression the pressure rise due to entropy production is only 7 kPa
above the isentropic pressure of 178 kPa. Furthermore, Freed et al.7 provided evi-
dence that temperature fluctuations in lung parenchyma undergoing shock compres-
sion are minimal; rather, variance in elastic moduli give rise to larger fluctuations
in deformation fields. Considering these, and that the kinematic balance relations
become significantly more complex when multiphase temperatures are introduced
(i.e., θf ̸= θs), the current scope will assume a mixed temperature model (i.e., no
heat exchange between the constituents).

By definition, for a closed system, that is, without supply from an external source,∑
α

γ̂α = 0,
∑
α

hα = 0,
∑
α

êα = 0 (103)

Then, using Eq. 1032,3 to group the interaction force terms and eliminate the phase
power terms, the dissipation inequality may be written as

ρs
[
Ds

tψ
s + ηsDs

tθ
]
− σs .. ls +

1

θ
grad(θ) · (qs + qf)

+ ρf
[
Df

tψ
f + ηfDf

tθ
]
− σf .. lf + hf · ṽf ≥ 0

(104)

Following the approach of de Boer,22 Ehlers,20 Ghadiani,72 and Markert,73 we intro-
duce the saturation constraint to the Clausius-Duhem inequality given by Eq. 104,
namely,

ns + nf = 1, Ds
tn

s +Ds
tn

f = 0 (105)

which we can also express as

Ds
tn

s +Df
tn

f − grad(nf) · ṽf = 0 (106)

30



Utilization of the balance of mass,

nα

ραRD
α
t ρ

αR +Dα
t n

α + nα div vα =
γ̂α

ραR (107)

of each constituent (s) and (f) with assumption of negligible mass supplies, and
incompressible solid (s) constituent, allows us to write the saturation constraint as

ns div vs +
nf

ρfRD
f
tρ

fR + nf div vf + grad(nf) · ṽf = 0 (108)

The saturation constraint may be added to the Clausius-Duhem inequality, Eq. 104,
with the introduction of a Lagrange multiplier P , which will be identified later as
excess pore fluid pressure:

P
(
nsds

.. 1+
nf

ρfRD
f
tρ

fR + nfdf
.. 1+ grad(nf) · ṽf

)
= 0 (109)

Adding this to the Clausius-Duhem inequality, and, combining terms and exploiting
the symmetry of the partial Cauchy stress tensors, we may re-write the Clausius-
Duhem inequality for the mixed-temperature case as

ρsDs
tψ

s + ρfDf
tψ

f +
(
ρsηs

)
Ds

tθ + ρfηfDf
tθ

−
([

σs + Pns1
] .. ds +

[
σf + Pnf1

] .. df

)
+ (hf − Pgradnf) · ṽf +

1

θ
grad(θ) · (qs + qf)− P nf

ρfRD
f
tρ

fR ≥ 0

(110)

Introduce the so-called “extra” terms which we can define constitutively later,

σs
E = σs + Pns1,

σf
E = σf + Pnf1,

hf
E = hf − Pgradnf

(111)

and substitute back into Eq. 110:

ρsDs
tψ

s + ρfDf
tψ

f + ρsηsDs
tθ + ρfηfDf

tθ −
(
σs

E
.. ds + σf

E
.. df

)
+hf

E · ṽf − P nf

ρfRD
f
tρ

fR +
1

θ
gradθ · (qs + qf) ≥ 0 (112)
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3.1.1 Determination of the Helmholtz Free Energies

Discussion of how to formulate constitutive equations is discussed in detail by Cole-
man and Noll,71 Marsden and Hughes,74 and Truesdell,75 and specifically for TPM
by Truesdell and Toupin,16 Ehlers,20 and de Boer.22 Following the approach of Gha-
diani,72 the following response functions R must be determined:

R :=
{
ψs, ψf ,σs

E,σ
f
E,h

f
E, q

s, qf
}

(113)

which depend on a set S of variables:

R := R(S) (114)

where S is a subset of the fundamental constitutive variables V for a biphasic con-
tinuum with an elastic solid constituent:

V :=
{
θα, gradθα, nf , gradnf , ραR, gradραR,F α,GRADα F α,vf ,GRADf vf ,Xα

}
(115)

For an isotropic pore fluid, the deformation gradient F f must have the form76

F f = (detF f)
1/31 (116)

and thus F f must be substituted by detF f , which can be determined through poros-
ity nf and real fluid mass density ρfR in the absence of fluid mass supply γ̂f . Using
the principle of frame indifference, we may also substitute the pore fluid velocity
vf by the seepage velocity ṽf . The pore fluid velocity gradient GRADf vf may also
substituted by the deformation rate tensor df .

Furthermore, it can be shown through direct integration of Eq. 46 for α = s and
the incompressibility assumption, that porosity, solid (s) real mass density and its
gradient, are all functions of deformation F s, and thus they can be eliminated from
the set of constitutive variables S such that

S =
{
θ, gradθ, ρfR, gradρfR,F s,GRADs F s, ṽf ,df

}
(117)
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where we have also made use of θα = θ. Combining Eqs. 113, 114, and 117,

{
ψs, ψf ,σs

E,σ
f
E,h

f
E, q

s, qf
}
= R(θ, gradθ, ρfR, gradρfR,F s,GRADs F s, ṽf ,df)

(118)

Based on the principle of phase separation, that the Helmholtz free energy of con-
stituent α should depend only on the α variables, we may write

ψs := ψs(θ, gradθ,Cs,GRADs Cs),

ψf := ψf(θ, gradθ, ρfR, gradρfR, ṽf ,df)
(119)

where we have used the right Cauchy-Green tensor Cs = F T
s F s in place of F s.

The material time derivatives of the Helmholtz free energy functions are

Ds
tψ

s =
∂ψs

∂θ
Ds

tθ +
∂ψs

∂(gradθ)
Ds

t(gradθ)

+
∂ψs

∂Cs

Ds
tCs +

∂ψs

∂(GRADsCs)
Ds

t(GRADs Cs)

(120)

Df
tψ

f =
∂ψf

∂θ
Df

tθ +
∂ψf

∂(gradθ)
Df

t(gradθ) +
∂ψf

∂ρfRD
f
tρ

fR+

∂ψf

∂(gradρfR)
Df

t(gradρ
fR) +

∂ψf

∂ṽf

Df
tṽf +

∂ψf

∂df

Df
tdf

(121)
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3.1.2 Evaluation of the Clausius-Duhem Inequality

Returning our attention to Eq. 112, we may substitute the material time derivatives
of the Helmholtz free energy functions:(
ρs
∂ψs

∂θ
+ ρsηs

)
Ds

tθ + ρs
∂ψs

∂(gradθ)
Ds

t(gradθ) +
(
ρs
∂ψs

∂Cs

Cs −
1

2Js
Ss

E

)
.. Ds

tCs

+ρs
∂ψs

∂(GRADs F s)
Ds

t(GRADs F s) +
(
ρf
∂ψf

∂θ
+ ρfηf

)
Df

tθ

+ρf
∂ψf

∂(gradθ)
Df

t(gradθ) +
(
ρf
∂ψf

∂ρfR − P nf

ρfR

)
Df

tρ
fR

+ρf
∂ψf

∂(gradρfR)
Df

t(gradρ
fR) + ρf

∂ψf

∂ṽf

Df
tṽf +

∂ψf

∂df

Df
tdf − σf

E
.. df

+hf
E · ṽf +

1

θ
gradθ · (qs + qf) ≥ 0

(122)

where we have used the identities

Ds
tCs = 2F T

s dsF s, σs
E =

1

Js
F sS

s
EF

T
s (123)

to transform the solid extra stress to the reference configuration of the solid skele-
ton.

Using the Coleman and Noll71 argument, the following constitutive relations must
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hold: (
ρs
∂ψs

∂θ
+ ρsηs

)
= 0 ⇒ ρs0(s)η

s = −
∂(ρs0(s)ψ

s)

∂θ
,

∂ψs

∂(gradθ)
= 0,(

ρs
∂ψs

∂Cs

Cs −
1

2Js
Ss

E

)
= 0 ⇒ Ss

E = 2
∂(ρs0(s)ψ

s)

∂Cs

,

∂ψs

∂(GRADs Cs)
= 0,(

ρf
∂ψf

∂θ
+ ρfηf

)
= 0 ⇒ ηf = −∂ψ

f

∂θ
,

∂ψf

∂(gradθ)
= 0,(

ρf
∂ψf

∂ρfR − P nf

ρfR

)
= 0 ⇒ P = (ρfR)2

∂ψf

∂ρfR ,

∂ψf

∂(gradρfR)
= 0,

∂ψf

∂ṽf

= 0,

∂ψf

∂df

= 0

(124)

and

D = σf
E
.. df − hf

E · ṽf −
1

θ
grad(θ) · (qs + qf) ≥ 0 (125)

From Eq. 124, we can deduce that the Helmholtz free energy functions simplify to

ψs := ψs(θ,Cs),

ψf := ψf(θ, ρfR)
(126)

Given the dependence of solid entropy and stress on the solid Helmholtz free en-
ergy, we must have

σs := σs(θ,Cs),

ηs := ηs(θ,Cs)
(127)
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and analogously for the pore fluid,

P := P(ρfR),

ηf := ηf(θ, ρfR)
(128)

3.1.3 Identification of the Lagrange Multiplier

From thermodynamic principles (e.g., Davison,61 Clayton62,70) for a compressible
fluid with free energy as a function of specific volume vf and temperature θf , we
know that

∂ψf

∂vf
= −pf ⇒

∂ψf

∂ρfR

∂ρfR

∂vf
= −pf ⇒ (ρfR)2

∂ψf

∂ρfR = pf (129)

Therefore by using Eq. 1247, we see that the Lagrange multiplier P is identified as
excess pore fluid pressure, such that the partial Cauchy stresses for each constituent
are defined as

σs = σs
E − pfn

s1,

σf = σf
E − pfn

f1
(130)

with

hf
E = hf − pfgradn

f (131)

3.1.4 Identifying Constitutive Relations

From Eq. 125, we must find the following set of response functions for D:

{
σf

E, ε̂
f ,hf

E, q
s, qf

}
:= Υ(S) (132)

where

S =
{
θ, gradθ, ρfR, gradρfR,Cs,GRADs Cs, ṽf ,df

}
(133)

In order to identify the form of the response functions as they relate to the set
of constitutive variables, we will expand D into equilibrium and non-equilibrium
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parts:

D = D0(S0) +Dn(S) (134)

where

D0(S) := 0; D(S0) := 0 (135)

and the initial state is at thermal and mechanical equilibrium:

S0 = {θ = θ0, gradθ = 0, ρfR = ρfR
0 , gradρ

fR = 0,Cs = 1,

GRADs Cs = 0, ṽf = 0,df = 0} (136)

Thus, it follows that the response functions satisfy

σf
E(S) = σf

En
(S),

hf
E(S) = hf

En
(S),

qs(S) = qs
n(S),

qf(S) = qf
n(S)

(137)

Next, we make the following constitutive assumptions about the functional depen-
dencies of the response functions. The pore fluid extra stress σf

E is identified as the
fluid frictional stress for a single-phase fluid, and, assuming a Newtonian fluid law,
it is directly related to the pore fluid deformation rate tensor df . The heat fluxes
qs and qf are assumed to depend only on the mixture temperature gradient via
Fourier’s law. Lastly, the interaction term hf

E depends on the interaction variable ṽf

(the seepage velocity). In other words,

σf
E := σf

E(df),

hf
E := hf

E(ṽf),

qs := qs(θ),

qf := qf(θ)

(138)
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which leads to the following linearizations of the response functions using a Taylor
series expansion around S0 and neglecting higher order terms:

σf
En
(S) = σf

E0
+
∂σf

En

∂df

∣∣∣
S0

df ,

hf
En
(S) = hf

E0
+
∂hf

En

∂ṽf

∣∣∣
S0

ṽf ,

qs
n(S) = qs

0 +
∂qs

∂(gradθ)

∣∣∣
S0

gradθ,

qf
n(S) = qf

0 +
∂qf

∂(gradθ)

∣∣∣
S0

gradθ

(139)

It is assumed that the initial values of the response functions are zero based on
Eq. 136, such that the Taylor series expansion simplifies to

σf
En
(S) =

4

Z fdf ,

hf
En
(S) = Swṽf ,

qs
n(S) = kθsgradθ,

qf
n(S) = kθfgradθ

(140)

where we have defined

4

Z f :=
∂σf

En

∂df

∣∣∣
S0

,

Sw :=
∂hf

En

∂ṽf

∣∣∣
S0

,

kθs :=
∂qs

∂(gradθ)

∣∣∣
S0

,

kθf :=
∂qs

∂(gradθ)

∣∣∣
S0

(141)

Thus the reduced dissipation inequality, Eq. 125, becomes

D = (
4

Z fdf)
.. df − (Swṽf) · ṽf −

grad(θ)

θ

(
grad(θ) · (kθs + kθf )

)
≥ 0 (142)
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To satisfy the inequality, each term must be non-negative by itself, and thus the
following restrictions must hold:

4

Z f → positive definite,

−Sw → positive definite,

−kθs → positive definite,

−kθf → positive definite

(143)

Substitution of Eq. 143 back into Eq. 140 gives,

σf
E =

4

Z fdf ,

hf
E = −Swṽf ,

qs = −kθsgradθ,

qf = −kθfgradθ

(144)

3.1.5 Defining Proportionality Parameters

A common choice for the fourth-order tensor Z f is a simple Newtonian fluid law
(see Holzapfel69 p. 203):

4

Z f := nfκf(1⊗ 1) + 2nfηf(1⊗ 1)
23
T (145)

where κf and ηf are the bulk and shear viscosity of the pore fluid, respectively.

When determining the form of kθα , we may assume isotropic heat conduction for
simplicity such that

kθα =

k
θα 0 0

0 kθ
α

0

0 0 kθ
α

 (ei ⊗ ej) (146)

(147)

The permeability tensor Sw may be defined as

Sw := (nf)2(Ks)−1 =
(nf)2

k̂
1 (148)
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where Ks is the intrinsic permeability of the solid skeleton, which we have also
taken to be isotropic for sake of simplicity, and k̂ is the hydraulic conductivity
defined as

k̂ :=
κ
ηf

F
(
nf
)

F
(
nf
0

) (149)

where κ is the intrinsic permeability of the solid skeleton (units of m−2), and F is
a nonlinear function of porosity nf accounting for change in hydraulic permeability
due to change in porosity (e.g., the Kozeny-Carman relation):

F
(
nf
)
:=

(
nf
)3

1− (nf)2
(150)

Recall that

hf
E := hf − pfgradn

f (151)

Following this, we may use the balance of momentum, Eq. 53, for α = f and taking
γ̂f = 0 and bf = bs = b, and Eq. 1302 to substitute the term hf − pfgradn

f in
Eq. 151, such that

hf
E = ρf(af − bf)− divσf

E + nfgradpf (152)

Then we may establish a generalized Darcy’s law by substitution of Eq. 152 into
Eq. 1443 using the definition for Sw in Eq. 148:

nf ṽf = −k̂
(
ρfR(af − b) + gradpf −

1

nf
divσf

E

)
(153)

Often, we choose to ignore the pore fluid extra stress such that σf
E ≈ 0; this is

what is meant when the pore fluid is assumed to be nearly-inviscid. The hydraulic
conductivity, k̂, is still associated with pore fluid viscosity (see Eq. 149). In this
case, Eq. 153 simplifies to Eq. 60.
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3.2 Constituent Modeling

In the event that adiabatic conditions are assumed, then, for high rate loading perti-
nent to stress waves, including shocks, it is more convenient to work with an internal
energy formulation than a free energy formulation.23,62 Shock wave propagation is
neither isentropic nor isothermal. Legendre transformations can be used to replace
Eq. 1241,3,5,7 with constitutive equations in terms of internal energy functionals eα.
First, assume a functional dependence of internal energy and temperature of each
phase as

(ρs0(s)e
s) = (ρs0(s)e

s)(Cs, η
s), θ = θ(Cs, η

s), ef = ef(ρfR, ηf), θ = θ(ρfR, ηf)

(154)

Then, chain-rule differentiation of Eq. 154 in combination with Eqs. 1241,3,5,7 and
Eq. 129 leads to the following constitutive relations:

θ =
1

ρs0(s)

∂(ρs0(s)e
s)

∂ηsE
=
∂ef

∂ηf
,

Ss
E = 2

∂(ρs0(s)e
s)

∂Cs

,

pf = (ρfR)2
∂ef

∂ρfR

(155)

Thus, only one constituent’s internal energy function is sufficient to describe the
temperature of the mixture if that constituent’s entropy can be determined from the
corresponding energy balance.

3.2.1 Hyperelastic Solid Skeleton

Oftentimes it is easier to constitutively define the solid skeleton stress (i.e., the
solid extra stress) in terms of the symmetric second Piola-Kirchhoff effective stress
Ss

E which is what follows herein. However, for future numerical implementation,
we convert one reference leg to the current configuration and use the first Piola-
Kirchhoff stress via

P s
E = F sS

s
E (156)

One of the most common strain-energy functionals for modeling nonlinear elastic
materials undergoing large deformations is the neo-Hookean elastic strain-energy

41



functional:

W s(Cs, Js(Cs)) =
1

2
λ(ln Js)

2 − µ(ln Js) +
1

2
µ(trCs − 3) (157)

The solid skeleton isentropic Lamé parameters are µ and λ := Kskel − 2
3
µ. Thus,

the internal energy function for the solid skeleton may be written as

(ρs0(s)e
s)(Cs, η

s
E) := W s(Cs, Js(Cs)) + ρs0(s)θ0(η

s − ηs0)
[
1− γs ln Js +

ηs − ηs0
2csV

]
(158)

Thermoelastic coupling is invoked via the inclusion of a constant Grüneisen param-
eter of the solid γs, and csV is the specific heat of the solid at constant volume per
unit mass. The mixture temperature and second Piola effective stress are then, from
Eq. 1551,2,

θ = θs0

[
1− γs ln Js +

ηE − ηs0
csV

]
,

Ss
E = µ1+ (λ ln Js − µ− ρs0(s)θ

s
0γ

s[ηsE − ηsE0])C
−1
s

(159)

In Eq. 159, thermo-mechanical coupling can be neglected by assuming γs → 0.
This is assumed herein, as a non-zero Grüneisen parameter would allow for thermal

compressibility of the solid, violating an earlier assumption that Ds
tρ

sR := 0. The
Grüneisen parameter for the solid skeleton of the lung parenchyma was calculated
to be negligibly small in prior research,14,23,77 supporting its omission in the current
work.

3.2.2 Pore Fluid

The following form for the internal energy of the pore fluid is assumed,

ef(ρfR, ηf) := − 1

ρfR

[
Kη

f ln
(ρfR

ρfR
0

)
+Kη

f + pf0

]
+ θ0

[
(ηf − ηf0) +

(ηf − ηf0)
2

2cfV

]
(160)

where pf0 is the fluid pressure at reference density ρfR
0 and recalling Kη

f is the isen-
tropic bulk modulus of the fluid. The reference entropy per unit mass, and spe-
cific heat at constant volume per unit mass of the fluid are ηf0, and cfV . Applying
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Eqs. 1553,4 allows us to derive the pressure-density and temperature-entropy as

pf = Kη
f ln(ρ

fR/ρfR
0 ) + pf0 ⇒ ρfR = ρfR

0 exp [(pf − pf0)/K
η
f ] ,

θ = θ0[1 + (ηf − ηf0)/c
f
V ]

(161)

Applying the Df
t operation to Eq. 1611 with Kη

f = constant produces Eq. 49.

3.2.3 A Note on Neglecting Thermomechanical Coupling

Because stresses (including pressures) and entropies are decoupled in the consti-
tutive equations, the governing equations of momentum and mass conservation are
unaffected by entropy or temperature fields. The computational implementation and
results in related68 and later works65,66 focus on mechanical phenomena, whereby
entropies, temperatures, and free and internal energy densities of phases need never
be calculated explicitly. Dissipation and temperature changes, including possible
heat conduction, can all still take place, but the thermal variables are not calculated
in the forthcoming simulations since they do not affect the mechanical solutions.
Accordingly, there is no need to prescribe values of specific heat capacities or ther-
mal conductivities of phases.

In principle, an equation for the entropy rate of each phase can be obtained from ma-
nipulation of Eq. 85, but this derivation is not undertaken herein since entropy does
not affect the mechanical fields of current focus. Future work will extend Eqs. 158
and 160 to include full stress-entropy and temperature-deformation couplings via
inclusion of local energy interactions. Refer to Ghadiani72 for an example of this,
using a neo-Hookean model for the solid (s) constituent and the ideal gas law for
the pore fluid (f) constituent.
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4. Conclusions

We have presented a finite-strain framework of a biphasic mixture (i.e., coupled
pore fluid flow and solid skeleton deformation) of a soft porous material (i.e., lung
parenchyma) for high strain-rate dynamic loading. Our constitutive theory was non-
linear elastic and accounted for the compressibility of the pore air. The formulation
herein did not make assumptions regarding the equivalency of acceleration of pore
fluid to that of solid skeleton, but rather allowed them to be different. Furthermore,
by use of the solid extra stress,20,70 we were able to distinguish between solid skele-
ton, pore fluid (air) and total pressures, and stresses. Such metrics are important for
understanding how damage from shock waves, or other impact events (e.g., blunt
trauma from sports injury or vehicular collisions), will propagate through the porous
lung tissue.

While the focus here was primarily on the deformation response of lung parenchyma,
the general framework developed can be extended to measure the deformation re-
sponse of other soft porous biological tissues (e.g., the brain), and, more broadly,
other soft porous materials such as foams. Subsequent reports65,66 address numer-
ical implementation of the theory in a 1-D FE context and simulations of shock
waves through the tissue-air mixture.
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List of Symbols, Abbreviations, and Acronyms

TERMS:

1-D one-dimensional

3-D three-dimensional

ARL Army Research Laboratory

DEVCOM US Army Combat Capabilities Development Command

ECM extra-cellular matrix

f fluid

FE finite element

FSI fluid-structure interaction

ODE ordinary differential equation

PDE partial differential equation

RHS right-hand side

s solid

TPM theory of porous media

MATHEMATICAL SYMBOLS:

e internal energy per unit mass

F, FiJ deformation gradient

p Cauchy pressure

t time

u, uk displacement

V volume

x, xk Cartesian spatial coordinates

X, XK Cartesian reference coordinates

η entropy per unit mass

ψ free energy per unit mass
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θ temperature

ρ mass density

σσσ, σij Cauchy stress

υυυ, υk velocity
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