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ABSTRACT 

 Since Engel’s 1954 verification of Lanchester’s square law using Battle of Iwo 

Jima data, the homogenous Lanchester square law has been widely used as the default to 

approximate aggregate-level attrition in large modern battles. While this may work in 

some cases (particularly when forces are concentrated), there has been a death of efforts 

to assess the applicability of using other equations to fit the time-phased Iwo Jima battle 

data (for example the linear and log laws). Not all battles conform to a square law 

exponential attrition curve. Some battles (due to the nature or nuance of the scenario, 

battlefield, or engagement type) may lend themselves to being fitted better to linear, 

logarithmic, or several other equations. A better fit may lead to an improved 

understanding of future scenarios, which can help decision makers assign allocations for 

budgeting and deployment sizes and locations with better analytical support for approval 

of those decisions. This analysis revisits and replicates Engel’s approach to fitting 

Lanchester’s square law equation, extends it to other models, and finds/compares best 

fits. Using the attrition data from the Battle of Iwo Jima, we test the fitness (using 

R-squared values) of various Lanchester equations. Among many other discoveries, we 

find that Engel’s model (and many other models) fits the data very well. 
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EXECUTIVE SUMMARY 

The purpose of this study is to explore the assertions of Engel (1954) in his 

verification of Lanchester’s square law combat attrition equations, using historical data 

from the Battle of Iwo Jima during World War II. His work is replicated using the same 

original data set and analyzed using modern fitness test techniques. Furthermore, modern 

computing power is utilized to fit Lanchester models billions of times with various 

parameter values dictating the shape of the models. 

The two models Lanchester (1916) conceived are called the linear law and the 

square law. The linear law is described as a series of one-on-one duels on the battlefield, 

most applicable to ancient warfare or area fire. In this scenario, the attrition ratio of the two 

forces is independent of the force ratio. The square law, associated with modern warfare, 

describes combat where multiple units of a force can focus their aimed fire onto single 

targets. In this concentrated fire model, the attrition that a force suffers is proportional to 

the number of enemies. 

The linear law equations are: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑎𝑎 (1) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎𝑎𝑎 (2) 

and the square law equations are: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎 (3) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎 (4) 

where x and y are the force levels for each belligerent at time t, and a and b are the attrition 

coefficients for forces x and y, respectively. The attrition coefficients describe the rate of 

attrition suffered as a function of the forces. For example, in the square law equation (3), a 
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is the rate at which one y attrits the x force. For a time-step implementation, the x force 

suffers a losses for each y force per unit time. 

The above equations can be solved to give the force levels of each side as a function 

of time. In addition, exponent variables, p and q, can be added to the force level variables, 

x and y, to give a more generalized equation (Bracken 1995): 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑞𝑞𝑎𝑎𝑝𝑝 (5) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎𝑝𝑝𝑎𝑎𝑞𝑞  (6) 

 Here, q is the exponent variable for the force being attritted, and p is the exponent 

variable for the opposing force doing the attritting. Within Bracken’s model, one can 

produce the linear law equation by setting p and q equal to 1 and the square law when p = 

1 and q = 0.  

With the square law equations (3) and (4) and the daily U.S. casualty data for the 

Battle of Iwo Jima, Engel could plot fitted theoretical values against the actual recorded 

number of U.S. troops in action (Figure 1). 

Engel (1954) only looked at the square law and found his best-fit model 

analytically, and although he only used eyeball approximation to qualitatively assess 

fitness, he felt he had a “good” fit. When one uses an R-squared fitness test (between the 

historical force levels and the fitted force levels assuming a square law) to quantitatively 

assess the fitness of Engel’s square law fit, one gets a value of 0.9937. This is indeed a very 

good fitness value that supports Engel’s qualitative claim. 
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Plot of “(b) Troops Alive” includes U.S. forces WIA and MIA and can be disregarded for 
the purposes of this paper. 

Figure 1.   Plot of U.S. troops in action at the Battle of Iwo Jima. Source: 
Engel (1954) 

In this thesis, best-fit models are found numerically through successive iteration. 

To do this, the exponent variables, p and q, corresponding to the model type (square law, 

etc.) were first specified. Next, a pair of values for the attrition coefficients, a and b, were 

selected and used in equations (5) and (6) iteratively and sequentially from t = 0 to t = 36 

days—the length of the battle. Essentially, a time-phased battle was reconstructed using 

the selected attrition coefficients, the known initial force levels of x(0) = 54000 and y(0) = 

21500, and the known reinforcement values of 6,000 and 13,000 troops on the 3rd and 6th 

day, respectively. This generated a fitted time-phased series of force levels for the U.S. 

forces that could then be compared to the original force level data set using an R-squared 

fitness test—see Figure 2.  
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Figure 2.   Plot of actual active U.S. troops in battle with U.S. and Japan 

approximate values generated from the square law model 

This was repeated for a wide range of attrition coefficients, a and b, with each pair 

of coefficients having a calculated R-squared fitness associated with it. The model with the 

best (greatest) R-squared value was selected as the best fit and identified by its 

corresponding attrition coefficients, a and b.  

The process of determining the attrition coefficients, a and b, for the best-fit model 

was repeated for a wide range of exponent variables, p and q. This set of models with non-

binary exponent variables is referred to as the Bracken model in this paper (Bracken 1995). 

The general form equations (5) and (6) were used to calculate daily attrition with values of 

the exponent variables, p and q, ranging from p, q = 0 to p, q = 1.5.  

The final extension explored was the concept of attrition coefficients that change 

throughout the course of the battle. The actual recorded number of U.S. troops in action, x, 

along with the theoretical approximation time-phased Japanese force level, y (generated 

from Engel’s model with attrition coefficients, a and b, of 0.0544 and 0.0106, respectively), 

are used in equation (3) to solve for the time-phased attrition coefficient for the U.S. forces, 

a, for each day of the battle. As expected, and contrary to Lanchester’s assumption of a 
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constant attrition coefficient, the attrition coefficient has a high variance when calculated 

daily in this manner. In addition, an overall downward trend is observed.  

In conclusion, it was found that not only did Engel’s (1954) model provide a very 

good fit quantitatively speaking (R2 = 0.9937), but performed just as well (and with nearly 

the same parameters) as the calculated square law and Bracken models. The tabulated 

results (Table 1) summarize the findings. 

Table 1.   Model Fitness and Results Summary 

Model a b p q R2 

Engel 0.0544 0.0106 1 0 0.9937 

Square 0.0532 0.0105 1 0 0.9944 

Linear 2.30×10-6 2.28×10-6 1 1 0.9027 

Logarithmic 0.0108 0.516 0 1 0.9414 

Bracken 0.0331 0.00611 1.05 0.00 0.9946 

 

The table shows that the best-fit Bracken model has exponent variables, p and q, 

very similar to the square law model (p = 1, q = 0). Also of note is the similar effectiveness 

ratio found in the Engel, square law, and Bracken models (𝑎𝑎
𝑏𝑏
≅ 5). This makes sense as the 

exponent variables, p and q, are very similar across all three models. 

While the linear and logarithmic law models did not perform as well as the other 

models, they still showed R-squared fitness values above 0.90. Furthermore, when 

analyzing the contour plot of the fitness values of the various Bracken models, one sees a 

relatively large range of models with exponent variables, p and q, that give R-squared 

fitness values greater than 0.99. This finding rejects the notion that the square law-like 

models are the only ones with a very good fit. 
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I. INTRODUCTION 

A. OVERVIEW 

Military research has extensively used combat models since the start of  

World War II. Over the years, computers have been able to significantly expand the 

application and the depth of such models. One of the most fundamental components of 

most combat models deals with attrition, or the loss of forces. While many aggregate-level 

combat attrition models are rooted in some manner on the basic Lanchester equations, 

several have attempted to depict combat more accurately with the use of expansions or 

other modifications to those equations (Hartley and Helmbold 1995). 

The purpose of this study is to explore the assertions of Engel (1954) in his 

verification of Lanchester’s (1916) square law, using the historical data from the Battle of 

Iwo Jima during World War II. Lanchester’s work is replicated using the same original 

data set and analyzed using modern fitness test techniques. Furthermore, modern 

computing power is used to fit Lanchester models billions of times for added insight and 

sensitivity analysis. 

B. BACKGROUND 

F. W. Lanchester’s (1916) observations of air combat during World War I and the 

naval battle at Trafalgar led to his derivation of the theory of quantifying the effects of 

force concentration and force ratios on attrition in battle. The two models he conceived as 

a result are called the linear law and the square law (Lanchester 1916). The linear law is 

described as a series of one-on-one duels on the battlefield, most applicable to ancient 

warfare or area fire. In this scenario, the attrition ratio of the two forces is independent of 

the force ratio. The square law, associated with modern warfare, describes combat where 

multiple units of a force can focus their aimed fire onto single targets. In this concentrated 

fire model, the attrition that a force suffers is proportional to the number of enemies. 

The linear law equations are: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑎𝑎 (1) 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎𝑎𝑎 (2) 

and the square law equations are: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎 (3) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎 (4) 

where x and y are the force levels for each belligerent at time t, and a and b are the attrition 

coefficients. The attrition coefficients describe the rate of attrition suffered as a function of 

the forces. For example, in the square law equation (3), a is the rate at which one y attrits 

the x force. For a time step implementation, the x force suffer a losses for each y force per 

unit time. An important assumption in Lanchester’s (1916) work is that these attrition 

coefficients remain constant during the battle.  

In addition, when evaluating numerically, the frequency that the force levels are 

incrementally evaluated at must also remain constant throughout the battle in order to 

maintain constant attrition coefficients; however, the time steps can be any length of time 

desired (with larger steps causing more approximation error). For example, this paper 

examines attrition in the battle of Iwo Jima in time steps of one day. This matches the 

resolution of the data, which consists of daily totals and casualties. 

The above equations can be solved to give the force levels of each side as a function 

of time. In addition, exponent variables, p and q, can be added to the force level variables, 

x and y, to give a more generalized equation (Bracken 1995): 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑞𝑞𝑎𝑎𝑝𝑝 (5) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑎𝑎𝑝𝑝𝑎𝑎𝑞𝑞  (6) 

 Here, q is the exponent variable for the force being attritted, and p is the exponent 

variable for the opposing force doing the attritting. Within Bracken’s model, one can 
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produce the linear law equation by setting p and q equal to 1 and the square law when p = 

1 and q = 0.  

Another notable model is when p = 0 and q = 1—commonly called the logarithmic 

law (Peterson 1967). This model describes battles where the attrition of a force is a function 

of its own force level and is independent of the opposing force level. Examples with 

attrition in this form include battles with extremely destructive fires/explosions (think 

cannon fodder) and battles where non-combat related attrition dominates (e.g., disease). 

C. LITERATURE REVIEW OF PAST ANALYSES  

(1) Lanchester’s Aircraft in Warfare 

Lanchester explores aircraft battles and attrition data from World War I. In his 

work, he derives his theories behind the relationship between force concentration and 

combat attrition. He uses the resulting square law and linear law as a means towards his 

recommendations for the relatively new concept of air warfare. He also extends the theory 

to include heterogeneous force composition, naval warfare, and other battle types 

(Lanchester 1916). 

(2) Engle on Lanchester 

Engel (1954) verifies Lanchester’s (1916) attrition model theory using real combat 

data. Using the U.S. casualty data from the battle at Iwo Jima, he explores the utilization 

of the square law model to fit the U.S. combat attrition. Although he mentions other models 

and their possible applicability, he does not extend his analysis to other attrition equations, 

such as the linear or logarithmic laws. The work fits data for all U.S. troops, as well as 

active U.S. troops (not killed, wounded, or missing). The fitness test used was simply a 

qualitative eyeball approximation. His recommendation is to use the equation that fits the 

battle type, then adjust the attrition coefficients depending on the factors of the battle (time, 

defensive position, etc.). Engel also notes that “the value of such analyses increases when 

repeated often enough to permit general conclusions to be drawn” (Engel 1954, p. 163). 



4 

(3) Robert Samz on Engel  

Samz (1972) verifies Engel’s analytical work on the battle of Iwo Jima, but then 

considers the effects of using alternate data sources for the battle. The primary difference 

in the data sets is the timing of the first-day landing forces during the battle. Samz explores 

what he considers to be a more typical and realistic sequence of reinforcements landing in 

such an amphibious assault. He replicates Engel’s process with the revised force and 

reinforcement data. However, the conclusion was that the revised data fit Lanchester’s 

square law attrition equations just as well. Fitness test used for this work was a modified 

version of Theil’s inequality coefficient (Samz 1972 p.51). 

(4) Hartley and Helmbold on Lanchester and Soeul  

Lanchester’s square law is tested against the data from the Inchon-Seoul campaign 

of the Korean War. Linear regression was used for fitting and testing of the square law 

model as well as their extension. Their extension effectively split the duration of the battle 

into three smaller durations. Fitness was tested separately for each of these “phases” of the 

battle, where the attrition coefficients were allowed to change between the different phases. 

Hartley and Helmbold’s (1995) conclusions are that the square law model does not 

sufficiently fit the data, nor did the time-phased extension. They also put emphasis on the 

point that, while the square law model may fit some situations, it does not fit this one and 

should not be used as a general-purpose attrition model for all warfare. 

(5) Bracken on Lanchester and Ardennes  

The objective of Bracken’s (1995) research was to fit the Lanchester equations to 

the Ardennes campaign attrition data set. An extension used in the analysis was using an 

additional “tactical” factor, d, to account for attacking and defending postures. This factor 

was essentially a daily variable signifying that one side was in a defensive mode during 

that day of the battle. The factor was multiplied along with the attrition coefficient, as 

applicable. The sum of squared residuals (SSR) was used to test for fitness of the different 

models. The analysis showed that the linear law model best fit the daily Ardennes campaign 

data. In addition, the results showed a clear advantage to the attacker. 
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(6) Fricker on Bracken and Ardennes  

This paper revises and extends the analysis by Bracken of the Ardennes campaign 

of World War II, using logarithmic transforms of the Lanchester equations. In addition, 

Fricker (1998) calls into question the applicability and sensibility of certain parameter 

values, particularly negative exponent parameters. He found that neither the Lanchester 

linear nor square laws fit the data well. Using SSR for fitness testing of all models, he 

found the best fit to be a model equation where p = 0 and q = 3. 

(7) Chen and Chu on Ardennes  

Chen and Chu (2001) explore the viability of changing the equations used to 

calculate force attrition from defensive to offensive (and vise-versa) throughout the battle. 

Using this idea of “shift time,” an analytical method was used to locate the optimal solution 

(Chen and Chu 2001, p. 653). They then applied this solution to the Ardennes data set and 

compared their results with Bracken’s. The primary finding is that the concept improves 

fitness to Ardennes (compared to Bracken) and can be applied to other campaigns/battles. 

Their research, however, considers only the linear law (with tactical factor, d) and the 

fitness test used was SSR.  

(8) Dinges on Lanchester and Kursk  

This NPS master’s thesis explores the validation of Lanchester equations as models 

of the attrition process for the newly released casualty data for the Battle of Kursk in World 

War II. His research found that the best-fitting model is the linear law model. In addition, 

he found that the extensive optimization of force weights (determining the weights for 

tanks, armored vehicles, and artillery that maximize R-squared) does not significantly 

improve the fit (Dinges 2001).  

(9) Bonder Lessons Learned  

Bonder (2002) introduces a hybrid analytic/simulation model to analyze the effects 

of attack speed and force concentration on attrition in battle. His research and experience 

reject the general use of Lanchester equations due to their “holistic” nature. In addition, he 



6 

recommends against the use of “firepower scores” as a hypothetical construct for modelling 

(Bonder 2002, p. 26). 

(10) Lucas and Turkes on Lanchester and Kursk and Ardennes  

This article re-examines Turkes’s (2000) thesis to fit Lanchester models to the 

datasets of the battles of Kursk and Ardennes. Defender parameters were used in all the 

models, and the battles were broken up into phases for some of the analysis. Using R-

squared for test of fitness, Lucas and Turkes’ conclusion was that none of the basic 

Lanchester laws fit the data well, and none consistently outperformed the others (2004). 

(11) Lucas and Dinges on Kursk  

Lucas and Dinges (2004) explore the expanded Kursk dataset and break the data 

into the battle’s natural (based on historical accounts) phases before fitting attrition 

equations. Using R-squared for their test of fitness, they found that the linear law fit best, 

that only combat unit data should be used, and that the battle should be broken into phases 

as applicable. 

(12) Nigel Perry on Lanchester  

Nigel Perry (2007) analyzes the applicability of the various Lanchester equations 

to different spaces of the battlefield and uses a fractal model to express the distribution of 

forces and the confined battle space at all scales. Specifically, the paper seeks to address 

the assumption made by previous works: No spatial distribution of forces, no variation of 

combat effectiveness, deterministic attrition, and no representation of battle termination 

conditions. His paper produces logical equations to be used to address these extensions and 

assumptions but does not test or apply them to any real-world data. 
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II. HISTORICAL OVERVIEW AND DATA SUMMARY 

A. HISTORICAL OVERVIEW OF THE BATTLE OF IWO JIMA 

“Victory here will be obtained by a slow, pulverizing pressure on the 
Japanese defenses.”  

—Major General Harry Schmidt, USMC (Morehouse 1946, p. vi). 

The battle was towards the end of the war and the Pacific Theater campaign. The 

data in this paper covers the force attrition from 19 February through 26 March 1945. Japan 

was on the defensive at the strategic as well as the operational levels. The island was used 

by the Japanese military throughout the war as a waypoint and relay for communications, 

aircraft, and supplies between the Japan mainland and the rest of the Southwest Pacific. 

While some portions of the island are generally flat (allowing for the construction 

of airfields), the degree of roughness of the terrain in many places was underestimated. The 

natural ridges and gorges allowed for “extremely effective military defenses” for the 

Japanese. The civilian population was estimated to be small, but at time of invasion there 

turned out to be no actual civilian population. The fortress was very strong,  

defensive tactics were advanced, and tenacity was “beyond all anticipation.” (Morehouse 

1946, pp. 5–8) 

Throughout December and January, American land-based aircraft, like B-29’s, 

attacked Iwo daily; however, air raids occurred for eight months leading up to amphibious 

assault. The Japanese island defenders were quite hardened to aerial attacks and 

bombardment by the time D-day occurred. The Japanese had several months to specifically 

prepare for an impending Allied amphibious assault. Nearly every conceivable defensive 

position, mineable ground, and playbook strategy was implemented and rehearsed well 

ahead of time (Morehouse 1946, pp. 1–4). 

For the Americans, forces were relatively refreshed from their previous 

engagements in the Pacific, and their experience levels varied. There were three main 

combat divisions used in the assault. Previous campaigns had given the 3rd & 4th Divisions 
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battle experience. Although 5th division had much less experience, it was able to train and 

practice the assault in Hawaii in January (Morehouse 1946, pp. 9–14).  

 
Figure 1. Map of Iwo Jima showing U.S. forces daily progress. Source: 

Morehouse (1946). 
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Weather on D-day was ideal for an amphibious assault. The Japanese were well 

prepared with mortars zeroed-in; there were high casualties for the landing forces on D-

day and the following week. D-day had split Japanese forces into two areas—the smaller 

of which was Mt. Suribachi to the South. It was defended primarily via caves and concrete 

structures (like the main part of island) (Morehouse 1946, pp. 21–26). However, the split 

attention of the allied forces during the first four days did not negatively affect combat 

performance due to the limited space available on both fronts. In other words, not having 

the southern forces available to help the northern forces for the first four days did not matter 

because there was not enough space and front line to put them to good use. 

Counterattacks were not a significant part of the Japanese plan. While there were 

some very minor night raids and nightly infiltration attempts, much of the Japanese 

doctrine on the island was to “dig-in” and defend (with the occasional withdraw to the next 

defensive layer) (Morehouse 1946, pp. 31–41). Seizure of the airfields did not greatly 

impact the flow of the battle (from an aviation standpoint). The airfields allowed for some 

emergency landings of allied aircraft in the area, but for the most part aerial attacks on the 

island were unchanged because of capturing the airfields.  

U.S. artillery and naval gunfire was used consistently on deep targets throughout 

the battle. U.S. tanks and Japanese anti-tank emplacements were constantly matched 

against each other throughout the course of the island progression. Finally, cave positions 

were defended and cleared at a consistent rate all the way to D+35 (Morehouse 1946, pp. 

43–50). 



10 

 
Figure 2. Landing beach as seen from Mt. Surabachi. Source: Office of 

Public and International Affairs (n.d.). 

B. DATA SUMMARY 

The source of the data is the daily casualty recordings from the historical accounts 

and official records from the battle of Iwo Jima. This information was compiled during the 

operation by the U.S. Marine Corps Historical Division and published in the book The Iwo 

Jima Operation by Capt. Clifford P. Morehouse, USMCR (1946). This is the same data 

source used by Engel (1954) in his verification of Lanchester (1916). 

The casualty data from the book is broken down in detail by division, group, 

company, and by day. This paper only considers the U.S. force casualties by days, as taken 

from the action reports from Task Force 51, Joint Expeditionary Forces. This data set lists 

the aggregate U.S. forces killed in action (KIA), wounded in action (WIA), and missing in 

action (MIA). This paper ultimately uses the number of active U.S. forces each day as the 
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data set used for analysis. As such, the known daily total casualties of those killed, 

wounded, or missing in action (KIA, WIA, and MIA, respectively) are subtracted from the 

known landing forces and reinforcement forces to get a running total of active U.S. troops 

each day of battle. The errors and assumptions in this data generation methodology are 

negligible, and is the same method used by Engel in his 1954 paper.  

  
Figure 3. Actual daily attrition data for U.S. forces. Source: Morehouse 

(1946). 
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Such detailed casualty data for the Japanese forces is not available, however, and 

the only usable data regarding Japanese force size over time is that there were 21,500 at 

the start of the battle (D+0) and approximately zero at the end of the recorded fighting 

(D+35). D+28 is the official end of the battle as declared by the operational U.S. Marine 

command at the time; and, although there were some residual Japanese forces deep within 

buried tunnels and bunkers that were exposed over the following days, weeks, months, and 

even years, they were relatively low in number and are not considered for the scope of this 

analysis (Morehouse 1946).  

There is found to be no statistically significant difference between the fitness 

performance of the models used in this paper when using either D+28 or D+35 as the last 

day of battle. Therefore, apart from verifying Engel’s calculations and model fitness, this 

paper uses casualty data through D+35. 
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III. VERIFICATION AND EXTENSION 

A. VERIFICATION 

1. Engel’s Process 

Before one can verify Engel’s (1954) work on the Lanchester (1916) square law 

equation fitting for the Battle of Iwo Jima, one must first understand what he did and how 

he did it. His first step was to calculate the Japanese forces’ attrition coefficient. He 

calculated this by dividing the total Japanese losses by the sum of the daily U.S. force levels 

across all 36 days, to include U.S. reinforcements. He incorporated American 

reinforcements by simply adding the reinforcement value (if any) to that day’s force level 

change. This has the effect of modifying equation (3) in the following way: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= P − 𝑎𝑎𝑎𝑎 (7) 

where P is the number of reinforcements for that day. Again, he assumed and approximated 

that there were zero Japanese forces remaining on the last day. This gives a Japanese 

attrition coefficient, b, of 0.0106 (Engel 1954). That is, the rate at which Japanese soldiers 

were attritted was b multiplied by the American force level. 

Next, he used the Lanchester square law equation (4) and the calculated value of b 

from above to generate a set of approximate theoretical values of the Japanese force levels, 

y, across the first 29 days. Engel chose to use only the first 29 days because although 

fighting continued and casualties were recorded to the 36th day, the island was officially 

declared secure on the 29th day. Engel (1954) “felt” that fighting after this declaration 

would be different enough as to cause a significant change to the attrition coefficients, a 

and b.  

Engel (1954) then found the attrition coefficient of the U.S. forces, a, using the 

same technique as for finding b, but instead using a timeframe of 29 says instead of 36. 

Using this calculated value of 0.0544, he was able to calculate the set of fitted theoretical 

values of the U.S. force levels, x, across the first 29 days. With this, he can plot against the 

actual recorded number of U.S. troops in action (Figure 4).  
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Plot of “(b) Troops Alive” includes U.S. forces WIA and MIA and can be disregarded for 
the purposes of this paper. 

Figure 4. Plot of U.S. troops in action at the Battle of Iwo Jima. Source: 
Engel (1954). 

Although Engel (1954) only used eyeball approximation to qualitatively assess 

fitness, he found he had a good fit. When one uses an R-squared fitness test to quantitatively 

assess the fitness of Engel’s square law model versus actual force levels, one gets a value 

of 0.9937. This is a very good fitness value that supports Engel’s (1954) qualitative claim. 

2. Improving upon Engel’s Model 

Engel (1954) found his best-fit model analytically, but in this section a best-fit 

model is found numerically through successive iteration. To do this, a pair of values for 

the attrition coefficients, a and b, were selected and used in equations (3) and (4) iteratively 

and sequentially from t = 0 to t = 36 days—the length of the battle. Essentially, a time-

phased battle was reconstructed using the selected attrition coefficients, the known initial 

force levels of x(0) = 54000 and y(0) = 21500, the known final Japanese force level of y(36) 

= 0, and known reinforcement values, P, of 6000 and 13000 troops on the 3rd and 6th day, 
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respectively. This process generated a time-phased series of force levels for the U.S. forces 

that could then be compared to the original force level data set using an R-squared fitness 

test.  

This process was then repeated for a wide range of attrition coefficients, a and b, 

with each pair of coefficients having a calculated R-squared fitness associated with it. Due 

to there being no daily Japanese casualty data, one cannot determine the best-fit attrition 

coefficients, a and b, using a regression through the origin method, as in Fricker (1998). 

Therefore, a simple approach of systematic testing and checking many combinations was 

used. Initially, a broad range of attrition coefficient values were used to develop insight 

into the behavior of the model’s performance as a function of a and b (Figure 5).  

 
Figure 5. Contour plot of R-squared fitness of attrition coefficient a-b pairs 

for the square law model (no final Japanese force level restriction) 

Once the general shape, trend, and convexity was clear, the number and range of 

attrition coefficients used was adjusted until the best (greatest) R-squared values among 

the set were no less than four significant figures different. In addition, the final Japanese 

force level constraint was introduced (being previously lifted to provide Figure 5) gradually 
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towards the value of zero. This graduation is shown in Appendix A. square law model 

contour plots. The best (greatest) R-squared value among the set was then used to 

determine the attrition coefficients, a and b, that created the best-fit model. Figure 6 plots 

the actual U.S. force level versus the best fit obtained by this method. 

 
Figure 6. Plot of actual active U.S. troops in battle with U.S. and Japan 

approximate values generated from the  square law model 

After running through this process, it was found that the best-fit square law model 

has attrition coefficients, a and b, of 0.053150 and 0.010516, respectively. These are quite 

close to what Engle (1954) found. This model has a R-squared fitness of 0.9944—a slight 

improvement over Engel’s model.  

B. EXTENSIONS 

1. Other Lanchester Models 

a. linear law 

Finding a best-fit linear law model numerically was set up the same way as was 

done with the square law above, except the equations used to calculate daily attrition are 
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equations (1) and (2). Again, time-phased battles were reconstructed using a selected pair 

of attrition coefficients, a and b, from t = 0 to t = 36. The same known initial force levels, 

x(0) = 54000 and y(0) = 21500, and known reinforcement values, P(3) = 6000 and P(6) = 

13000 were used in the reconstruction. However, the final Japanese force level of y(36) = 

0 could not be used as a constraint, because models with an exponent variable, q, greater 

than zero cannot reach a force level of zero—they can only reach it asymptotically. 

Therefore, for the remainder of the models constructed in this paper, the final Japanese 

force level used as a known was y(36) = 200, or roughly 1% of the initial Japanese force 

level. This process still generated a time-phased series of force levels for the U.S. forces 

that could then be compared to the original force level data set using an R-squared fitness 

test.  

This process was repeated for a wide range of attrition coefficients, a and b, with 

each pair of coefficients having either a calculated R-squared fitness associated with it or 

a value of zero (in the case of no possible solution that fit the final Japanese force level 

constraint). Again, due to there being no daily Japanese casualty data, one cannot determine 

the best-fit attrition coefficients, a and b, using a regression through the origin method. 

Therefore, a simple approach of systematic testing and checking many combinations was 

used. The same numerical approach as before was used to narrow the range of values of 

attrition coefficients tested. The associated contour plots are found in Appendix B. linear 

law model contour plots. The best (greatest) R-squared value among the set was then used 

to determine the attrition coefficients, a and b, that created the best-fit model—see  

Figure 7 for a plot of the fit.  
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The best-fit linear law models show a more pronounced exponential curve for the Japanese 
forces than the square law models. Also note the U.S. forces fit is lower than the actual 
U.S. forces. 

Figure 7. Plot of actual active U.S. troops in battle with U.S. and Japan 
approximate values generated from linear law model 

After running through this process, it was found that the best-fit linear law model 

has attrition coefficients, a and b, of 2.304×10-6 and 2.280×10-6, respectively. This model 

has a R-squared fitness of 0.9027—not as good as the square law models above, but still a 

good fit by most standards.  

b. logarithmic law 

Finding a best-fit logarithmic law model numerically was set up the same way as 

was done with the linear law above, except the equations used to calculate daily attrition 

were equations (5) and (6) when p = 0 and q = 1 (Fricker 1998). Again, time-phased battles 

were reconstructed using a selected pair of attrition coefficients, a and b, from t = 0 to t = 

36. The same known initial force levels, x(0) = 54000 and y(0) = 21500, and known 

reinforcement values, P(3) = 6000 and P(6) = 13000 were used in the reconstruction. Just 
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as in the linear law, because the exponent variable, q, is greater than zero, the final Japanese 

force level used as a known was y(36) = 200.  

 
The best-fit logarithmic law models show an even more pronounced exponential curve for 
the Japanese forces than the linear law models. Also note the U.S. forces fit is mostly higher 
than the actual U.S. forces. 

Figure 8. Plot of actual active U.S. troops in battle with U.S. and Japan 
approximate values generated from the logarithmic law model 

After running through this process, it was found that the best-fit logarithmic law 

model has attrition coefficients, a and b, of 0.01075 and 0.5160, respectively. This model 

has a R-squared fitness of 0.9414—not as good as the square law models, but surprisingly 

better than the linear law model.  

2. Unconstrained p and q (Bracken) 

Next, the above process of determining the attrition coefficients, a and b, for the 

best-fit model was done repeatedly for a wide range of exponent variables, p and q. This 

model will be referred to as the Bracken model in this paper. The general form equations 
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(5) and (6) were used to calculate daily attrition with values of the exponent variables, p 

and q, ranging from p, q = 0 to p, q = 1.5.  

 
Figure 9. Plot of actual active U.S. troops in battle with U.S. and Japan 

approximate values generated from the Bracken model 

The result is a matrix of p-q pairs, each with a numerically calculated best-fit model, 

R-squared value, and attrition coefficients, a and b. The numerical calculation method used 

was very similar to the other model processes, except for the added behavior of the attrition 

coefficients, a and b, for each p-q pair. The selection of the range of a’s and b’s used for a 

given p-q pair changed several orders of magnitude depending on the p-q pair, as shown in 

Appendix D. Bracken model contour plots. The best-fit model calculated was for exponent 

variables of p = 1.05 and q = 0, having an R-squared fitness of 0.9946 and attrition 

coefficients, a and b, of 0.03311 and 0.006109, respectively. The best fit is very close to 

the square law. 

The contour plot of fitness values for the various p-q pairs (Figure 10) shows two 

interesting things. First, there is a significantly large range of models that can claim a very 
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good fit (R-squared greater than 0.99.). Second, the optimum model is likely to have a 

negative exponent variable, q. 

 
Figure 10. Contour plot of R-squared fitness of p-q pairs from Bracken model 

This contour plot is the result of over 100 p’s and 100 q’s for a total of over 10,000 

models. For each of these, thousands of attrition coefficients were used to obtain a fit. One 

should also carefully note the R-squared fitness levels chosen for this contour plot. These 

levels show the general trend of performance across good (greater than 0.99) and bad (less 

than 0.99) models. For a constant level step contour plot, see Appendix D. Bracken model 

contour plots. Of note is the wide range of possible p and q values that yield good fits.  

3. Changing Attrition Coefficient 

The final extension explored was the concept of attrition coefficients that change 

throughout the course of the battle—even daily. The two main limitations encountered 

when exploring this extension with the Iwo Jima data set stem from the issue of only having 

time-phased data for one of the belligerents. The first limitation was that only the time-

phased attrition coefficient for the U.S. forces, a, could be usefully calculated and analyzed. 
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The second was that the time-phased Japanese force level data, y, was limited to a 

theoretical approximation generated from a model. The model used to generate the 

theoretical approximation for this extension was the square law model created by Engel 

(1954).  

The actual recorded number of U.S. troops in action, x, along with the theoretical 

approximation time-phased Japanese force level, y (generated from Engel’s model with 

attrition coefficients, a and b, of 0.0544 and 0.0106, respectively), were used in equation 

(3) to solve for the time-phased attrition coefficient for the U.S. forces, a, for each day of 

the battle. As expected, the attrition coefficient has a high variance when calculated daily 

in this manner. This is in stark contrast to the fits assuming constant attrition coefficients 

throughout the battle. We also observe an overall downward trend, which is highlighted by 

the simple linear regression (Figure 11).  

 
The negative slope, β, of this downward trend is statistically significant with a p-value < 
0.0132.  

Figure 11. Attrition coefficient, a, calculated daily with linear trendline 
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The downward trend of the U.S. attrition coefficient, a, over time indicates either 

an increase in U.S. combat efficiency (𝑏𝑏 𝑎𝑎� ) over time or a decrease in battle intensity (𝑎𝑎𝑏𝑏) 

over time. However, since the actual Japanese force levels are not known, the actual 

Japanese attrition coefficient, b, is also not known. Therefore, while neither efficiency nor 

intensity can be confirmed, this finding is consistent with the concept of a battle having 

diminishing intensity as the battle progresses. Finally, it is worth noting that using a 

deterministic approximation to a stochastic variable may result in biased outcomes (Lucas 

2000). 

The process of fitting a linear regression to the time-phased attrition coefficient for 

the U.S. forces, a, for each day of the battle was repeated for a battle duration of 29 days 

vice 36. Figure 12 shows the resulting trendline for the truncated dataset. 

 
The negative slope, β, of this downward trend is not statistically significant with a p-value 
< 0.7831.  

Figure 12. Attrition coefficient, a, calculated daily with linear trendline (29 
days) 

The result this time was a regression line with still a negative slope; however, the 

slope was not significant at any meaningful level (p-value < 0.7831). This means that either 
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Engel’s (1954) concerns about the additional seven days affecting the attrition coefficients 

were merited in this case or there are not enough data points to show overwhelming 

statistical support towards any hypothesis. 
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IV. CONCLUSIONS AND RECOMMENDATIONS  

A. CONCLUSIONS 

1. Results Summary 

“The homogeneous Lanchester square law cannot be regarded as a proven attrition 

algorithm for warfare; however, the square law cannot be regarded as disproved either” 

(Hartley and Helmbold 1995). 

Not only did Engel’s (1954) model provide a very good fit quantitatively speaking 

(R squared = 0.9937), but it performed just as well (and with nearly the same parameters) as 

the best/optimal calculated square law and Bracken models. The tabulated results (Table 

1) summarize the findings. 

Table 1. Model fitness and results summary 

Model a b p q R2 

Engel 0.0544 0.0106 1 0 0.9937 

Square 0.0532 0.0105 1 0 0.9944 

Linear 2.30×10-6 2.28×10-6 1 1 0.9027 

Logarithmic 0.0108 0.516 0 1 0.9414 

Bracken 0.0331 0.00611 1.05 0.00 0.9946 

 

The table shows that the best-fit Bracken model has exponent variables, p and q, 

very similar to the square law model (p = 1, q = 0). Also of note is the similar effectiveness 

ratio found in the Engel, square law, and Bracken models (𝑎𝑎 𝑏𝑏� ≅ 5). This makes sense as 

the exponent variables, p and q, are very similar across all three models. 

While the linear and logarithmic law models did not perform as well as the other 

models, they still showed R-squared fitness values above 0.90. Furthermore, when 
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analyzing the contour plot of the fitness values of the various Bracken models (Figure13), 

one sees a relatively large range of models with exponent variables, p and q, that give R-

squared fitness values greater than 0.99. 

 
Figure 13. Contour plot of R-squared fitness of p-q pairs from Bracken model 

(constant increments) 

The contour plot of R-squared fitness values at increments of 0.01 (Figure 13) 

highlights the relative size of the area of models with p-q pairs that can provide a fitness 

above 0.99. While the linear and logarithmic law models do not quite fit within this area, 

there are many other models that do. This finding rejects the notion that the square law-

like models are the only ones with a very good fit. 

2. Discussion 

To the extent that both sides concentrate their forces, the Lanchester square 
equations should be expected to hold. If, however, the campaign is best 
characterized as a collection of small engagements where the quantitatively 
superior side is not usually locally superior, the Lanchester linear equations 
should hold. (Bracken, 1995) 
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The large range of models that provide a very good fit may be explained by the fact 

that in this battle only one of the belligerent’s data is known. This means that when a model 

is only judged on its fitness towards one belligerent (the U.S.), it has much more freedom 

with regards to the unknown and unjudged belligerent (the Japanese.)  This freedom is seen 

very clearly between the square law and linear law forces plots (Figure 6 and Figure 7) and 

the differences of each’s theoretical approximation of the Japanese forces (red line.)  The 

models only need to satisfy the constraints of the first and last day for the Japanese force 

levels. If the Japanese daily attrition data was known, the fitness performance of the models 

would likely change drastically. 

The circumstances of a battle matter. The type of battle seen at Iwo Jima is 

extremely rare. It was a fight to the death, there were no shifts in offense or defense, and it 

was consistent and continuous fighting and fighting style from start to finish (no massively 

decisive maneuvers or flanking involved.)  The attrition models that fit the Battle of Iwo 

Jima will not necessarily fit other battles very well. The factors that must be considered 

range in the thousands (such as technology, terrain, weather, leadership, morale, political 

pressures, culmination points, etc.), and determine what kind of model is best to use. 

Although the attrition coefficients for the best-fit Bracken models followed a 

general pattern as a function of the p-q pair (Figure 14 and Figure 15), the range of valid 

a-b pairs for a given p-q pair was often extremely narrow.  
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Figure 14. Contour plot of attrition coefficients, a, for best-fit Bracken models 

 
Figure 15. Contour plot of attrition coefficients, b, for best-fit Bracken models 

In some instances, the range of valid a-b pairs required precision of five significant 

figures or more to detect. It was analogous to finding a needle in the Pacific Ocean or a 
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speck of space debris orbiting the earth. The Bracken model contour plot (Figure 10), for 

example, was the result of over 3.2 billion iterations of battled simulated and tested for 

fitness. This was despite the knowledge of the a-b pairs following a general pattern. 

B. RECOMMENDATIONS FOR FUTURE WORK 

• More extensions could be of value. Specifically, having different 

equations for each belligerent (different set of exponent variables, p and q, 

for the U.S. and Japanese forces.)  However, special care should be taken 

during analysis to address the fact that the Japanese attrition values are 

theoretical approximations and allow much more flexibility of all the 

models—potentially masking actual model performances. 

• The extension of the Bracken model into the negative exponent variables, 

p and q. Specifically, the optimum Bracken model had q = 0, which is at 

the lower limit of the range of the variable tested. The optimum Bracken 

model could very well have a negative exponent variable, q. While not 

traditionally accepted as sensible, a negative q does have real-world 

application. A negative q value for a force essentially means that those 

forces attrite slower as their numbers increase and faster as their number 

decrease. This concept could be explained by combat performance 

affected by morale which, in turn, is affected by the apparent strength in 

numbers. Other examples include ancient warfare phalanx formations and 

modern warfare where cover and covering fire is paramount and 

dependent on force density (such as certain tank warfare or the Battle of 

Iwo Jima.) 

• More work is needed with the concept of changing attrition coefficients, a 

and b. Possible extensions include performance of models with changing 

attrition coefficients, affects of changing the attrition coefficients at 

frequencies lower than daily, and exploring attrition coefficients changing 

in a non-linear fashion. 



30 

• The constraint of the final Japanese force level of 200 was chosen 

arbitrarily for the most part. There is value in exploring in more detail the 

merits of other constraint values and analyzing performance impacts on 

models, specifically the linear law model. 

• Finally, the methods and models shown here, specifically the changing 

coefficients, have applicability to other battle data sets. Any battle where 

time-phased attrition data exists for both belligerents is of great interest. 
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APPENDIX A. SQUARE LAW MODEL CONTOUR PLOTS 

 
Figure 16. Contour plot of R-squared fitness for the square law model (final 

Japanese force level restriction y(36) = 2000) 

 
Figure 17. Contour plot of R-squared fitness for the square law model (final 

Japanese force level restriction y(36) = 1000) 
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Figure 18. Contour plot of R-squared fitness for the square law model (final 

Japanese force level restriction y(36) = 200) 

 
Figure 19. Contour plot of R-squared fitness for the square law model (final 

Japanese force level restriction y(36) = 50) 
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Figure 20. Contour plot of R-squared fitness for the square law model (final 

Japanese force level restriction y(36) = 1) 
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APPENDIX B. LINEAR LAW MODEL CONTOUR PLOTS 

 
Figure 21. Contour plot of R-squared fitness for the linear law model (final 

Japanese force level restriction y(36) = 20000) 

 
Figure 22. Contour plot of R-squared fitness for the linear law model (final 

Japanese force level restriction y(36) = 2000) 
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Figure 23. Contour plot of R-squared fitness for the linear law model (final 

Japanese force level restriction y(36) = 1000) 

 
Figure 24. Contour plot of R-squared fitness for the linear law model (final 

Japanese force level restriction y(36) = 200) 
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Figure 25. Contour plot of R-squared fitness for the linear law model (final 

Japanese force level restriction y(36) = 50) 
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APPENDIX C. LOGARITHMIC LAW MODEL CONTOUR PLOTS 

 
Figure 26. Contour plot of R-squared fitness for the logarithmic law model 

(final Japanese force level restriction y(36) = 2000) 

 
Figure 27. Contour plot of R-squared fitness for the logarithmic law model 

(final Japanese force level restriction y(36) = 1000) 
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Figure 28. Contour plot of R-squared fitness for the logarithmic law model 

(final Japanese force level restriction y(36) = 200) 

 
Figure 29. Contour plot of R-squared fitness for the logarithmic law model 

(final Japanese force level restriction y(36) = 50) 
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APPENDIX D. BRACKEN MODEL CONTOUR PLOTS 

 
Figure 30. Contour plot (no model labels) of R-squared fitness of p-q pairs 

from the Bracken model 

 
Figure 31. Contour plot (no model labels) of R-squared fitness of p-q pairs 

from the Bracken model (expanded high-fitness) 
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Figure 32. Contour plot (no model labels) of R-squared fitness of p-q pairs 

from the Bracken model (constant increments) 

 
Figure 33. Contour plot (no model labels) of attrition coefficients, a, for the 

best-fit Bracken models 
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Figure 34. Contour plot (no model labels) of attrition coefficients, b, for the 

best-fit Bracken models 
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APPENDIX E. R PROGRAM CODE 

##### Givens ##### 
 
x_true = c(54000, 52839, 50945, 56026,  
           54885, 53744, 66150, 65245,  
           64373, 62869, 62334, 61400,  
           60662, 59544, 59340, 59076,  
           58774, 58191, 57254, 56636,  
           56055, 55303, 54791, 54393,  
           53933, 53342, 53067, 52799,  
           52730, 52603, 52502, 52407,  
           52299, 52150, 52150, 52150,  
           52135) 
 
x_add = c(0,  0,  0,  6000,  0,  0,   
          13000,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0) 
 
y_add = c(0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0,  0,  0,  0,  0,  0,   
          0) 
 
x_0 = 54000 
y_0 = 21500 
 
days_total = 36 
days = seq( 0, days_total )  
# sequence of days during the battle 
 
y_end_err = 200   
# Y forces must end the battle with zero +/- this value 
 
##### Engel calculations ##### 
 
x_test = c( 54000, 52830, 51692, 56584, 55506, 54460,  
            66447, 65464, 64521, 63615, 62746, 61913,  
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            61117, 60357, 59632, 58942, 58286, 57664,  
            57076, 56521, 55999, 55509, 55052, 54627,  
            54233, 53871, 53540, 53241, 52972, 52734,  
            52526, 52349, 52203, 52086, 51999, 51943,  
            51916) 
 
##### Functions ##### 
 
# Creating a "get R-squared" function 
getR = function(test) { 
  if (is.na(test)){ 
    return(-1)  
# returning negative R-squared value if NA to help identify 
  } 
  return(summary( 
    lm(data = data.frame(x_true,test)))$r.squared) 
} 
  # getR(x_test) 
 
# Function to Generate X vector from input of a, b, p, q 
gen_x = function(a, b, p, q) { 
  x_new = x_0 
  y_new = y_0 
  for (i in seq( 2, length(days) )) { 
     
    x_new[i] = x_new[i-1]  
               - a * y_new[i-1]^p * x_new[i-1]^q 
               + x_add[i] 
    y_new[i] = y_new[i-1]  
               - b * x_new[i-1]^p * y_new[i-1]^q 
     
    if ((x_new[i] <= 0)  
# if X forces are negative 
      | (y_new[i] > y_0)  
# if Y forces are more than start strength 
      | (y_new[i] < -y_end_err)  
# if Y forces go negative more than the tolerance 
      | ((abs(y_new[i]) > y_end_err) & (i == length(days)))  
# if Y forces are greater than the tolerance at last day 
      | (is.nan(x_new[i]))  
# if X values become not a number 
      | (is.nan(y_new[i]))  
# if Y values become not a number 
      ){ # kill the battle and return NA 
      return(NA) 
    } 
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  } 
  return (x_new) 
} 
 
# Function to Generate Y vector from input of a, b, p, q 
# the only difference from the gen_x function is the return 
value 
gen_y = function(a, b, p, q) { 
  x_new = x_0 
  y_new = y_0 
  for (i in seq( 2, length(days) )) { 
     
    x_new[i] = x_new[i-1]  
               - a * y_new[i-1]^p * x_new[i-1]^q 
               + x_add[i] 
    y_new[i] = y_new[i-1]  
               - b * x_new[i-1]^p * y_new[i-1]^q 
     
    if ((x_new[i] <= 0)  
# if X forces are negative 
      | (y_new[i] > y_0)  
# if Y forces are more than start strength 
      | (y_new[i] < -y_end_err)  
# if Y forces go negative more than the tolerance 
      | ((abs(y_new[i]) > y_end_err) & (i == length(days)))  
# if Y forces are greater than the tolerance at last day 
      | (is.nan(x_new[i]))  
# if X values become not a number 
      | (is.nan(y_new[i]))  
# if Y values become not a number 
      ){ # kill the battle and return NA 
      return(NA) 
    } 
  } 
  return (y_new) 
} 
 
# Function to Generate attrition vector, a, from input of 
X, Y, p, q 
gen_a = function(X, Y, p, q) { 
  a_new = 0 
  b_new = 0 
   
  for (i in seq( 1, length(days)-1 )) { 
    a_new[i] = ( X[i] - X[i+1] + x_add[i+1])  
               / ( X[i]^q * Y[i]^p ) 



48 

    b_new[i] = ( Y[i] - Y[i+1] + y_add[i+1])  
               / ( Y[i]^q * X[i]^p ) 
  } 
   
  return(a_new) 
} 
 
# Function to Generate attrition vector, b, from input of 
X, Y, p, q 
# the only difference from the gen_a function is the return 
value 
gen_b = function(X, Y, p, q) { 
  a_new = 0 
  b_new = 0 
   
  for (i in seq( 1, length(days)-1 )) { 
    a_new[i] = ( X[i] - X[i+1] + x_add[i+1])  
               / ( X[i]^q * Y[i]^p ) 
    b_new[i] = ( Y[i] - Y[i+1] + y_add[i+1])  
               / ( Y[i]^q * X[i]^p ) 
  } 
   
  return(b_new) 
} 
 
# Plot function - plots true X and both modeled forces 
plot_single = function(x_forces, y_forces){ 
  plot( days, x_true,  
        ylim= c(0,max(x_true)), xlim= c(days[1],max(days)),  
        xlab = "Day", ylab = "Force Level", 
        main = "U.S. Forces per day\nVisual Plot") 
  legend("right", legend = c("U.S. Actual", "U.S.", 
"Japan"), col= c("black", "blue","red"), pch=c(1,NA,NA), 
lty=c(0,1,1)) 
   
  points(days,x_forces,type="l", col= "blue") 
   
  points(days,y_forces,type="l", col= "red") 
} 
 
##### SQUARE LAW ##### 
 
p = 1 
q = 0 
 
a_best_sqr = 0 
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b_best_sqr = 0 
r_best_sqr = 0 
 
a_min = .040 
a_max = .065 
a_step = (a_max-a_min)/1000 
a_seq = seq( a_min, a_max, a_step) 
 
b_min = .0095 
b_max = .0115 
b_step = (b_max-b_min)/1000 
b_seq = seq( b_min, b_max, b_step) 
 
r_mat_sqr = a_seq%*%t(b_seq) *0  
# inititalize the 2D R-squared array 
 
for (a_i in seq(1, length(a_seq))) {   
# a_i is the index for grabbing an a 
  for (b_i in seq(1, length(b_seq))) {   
# b_i is the index for grabbing a b 
    r_new = getR(gen_x(a_seq[a_i], b_seq[b_i], p, q)) 
    r_mat_sqr[a_i, b_i] = r_new 
    } 
} 
contour(a_seq,b_seq,r_mat_sqr,  
        levels=c(.1, .25, .5, .75, .9, .95, .99), 
        xlab = "a", ylab = "b", 
        main = "Square Law\nContour Plot", 
        col = rainbow(7), 
        lwd = 2) 
r_best_sqr = max(r_mat_sqr) 
a_best_sqr = a_seq[ which(r_mat_sqr==r_best_sqr, 
arr.ind=T)[1] ] 
b_best_sqr = b_seq[ which(r_mat_sqr==r_best_sqr, 
arr.ind=T)[2] ] 
 
r_best_sqr 
a_best_sqr 
b_best_sqr 
 
plot_single(gen_x(a_best_sqr, b_best_sqr, p, q), 
gen_y(a_best_sqr, b_best_sqr, p, q)) 
 
##### LINEAR LAW ##### 
 
p = 1 
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q = 1 
 
a_best_lin = 0 
b_best_lin = 0 
r_best_lin = 0 
 
a_min = 0e-6 
a_max = 5e-6 
a_step = (a_max-a_min)/1000 
a_seq = seq( a_min, a_max, a_step) 
 
b_min = a_min 
b_max = a_max 
b_step = (b_max-b_min)/1000 
b_seq = seq( b_min, b_max, b_step) 
 
r_mat_lin = a_seq%*%t(b_seq) *0  
# inititalize the 2D R-squared array 
 
for (a_i in seq(1, length(a_seq))) {   
# a_i is the index for grabbing an a 
  for (b_i in seq(1, length(b_seq))) {   
# b_i is the index for grabbing a b 
    r_new = getR(gen_x(a_seq[a_i], b_seq[b_i], p, q)) 
    r_mat_lin[a_i, b_i] = r_new 
  } 
} 
contour(a_seq,b_seq,r_mat_lin,  
        levels=c(.1, .25, .5, .75, .9, .95, .99), 
        xlab = "a", ylab = "b", 
        main = "Linear Law\nContour Plot", 
        col = rainbow(7), 
        lwd = 2) 
r_best_lin = max(r_mat_lin) 
a_best_lin = a_seq[ which(r_mat_lin==r_best_lin, 
arr.ind=T)[1] ] 
b_best_lin = b_seq[ which(r_mat_lin==r_best_lin, 
arr.ind=T)[2] ] 
 
r_best_lin 
a_best_lin 
b_best_lin 
 
plot_single(gen_x(a_best_lin, b_best_lin, p, q), 
gen_y(a_best_lin, b_best_lin, p, q)) 
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##### LOG LAW ##### 
 
p = 0 
q = 1 
 
#a_best_log = 0 
#b_best_log = 0 
#r_best_log = 0 
 
a_min = 0 
a_max = .025 
a_step = (a_max-a_min)/1000 
a_seq = seq( a_min, a_max, a_step) 
 
b_min = 0 
b_max = 1.2 
b_step = (b_max-b_min)/1000 
b_seq = seq( b_min, b_max, b_step) 
 
r_mat_log = a_seq%*%t(b_seq) *0  
# inititalize the 2D R-squared array 
 
for (a_i in seq(1, length(a_seq))) {   
# a_i is the index for grabbing an a 
  for (b_i in seq(1, length(b_seq))) {   
# b_i is the index for grabbing a b 
    r_new = getR(gen_x(a_seq[a_i], b_seq[b_i], p, q)) 
    r_mat_log[a_i, b_i] = r_new 
  } 
} 
contour(a_seq,b_seq,r_mat_log,  
        levels=c(.1, .25, .5, .75, .9, .95, .99), 
        xlab = "a", ylab = "b", 
        main = "Log Law\nContour Plot", 
        col = rainbow(7), 
        lwd = 2) 
r_best_log = max(r_mat_log) 
a_best_log = a_seq[ which(r_mat_log==r_best_log, 
arr.ind=T)[1] ] 
b_best_log = b_seq[ which(r_mat_log==r_best_log, 
arr.ind=T)[2] ] 
 
r_best_log 
a_best_log 
b_best_log 
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plot_single(gen_x(a_best_log, b_best_log, p, q), 
gen_y(a_best_log, b_best_log, p, q)) 
 
##### BRACKEN ##### 
 
battle_counter = 0 
p_best = 0 
q_best = 0 
a_best = 0 
b_best = 0 
r_best = 0 
 
p_min = p_step * 0 
p_max = p_step * 100 
p_step = (1.5)/100 
p_seq = seq( p_min, p_max, p_step) 
 
q_min = q_step * 0 
q_max = q_step * 100 
q_step = (1.5)/100 
q_seq = seq( q_min, q_max, q_step) 
 
r_mat = p_seq%*%t(q_seq) *0  
# initialize the 2D R-squared array 
a_mat = p_seq%*%t(q_seq) *0  
# initialize the 2D R-squared array for best a 
b_mat = p_seq%*%t(q_seq) *0  
# initialize the 2D R-squared array for best b 
 
bottom = 1e-2  
# default starting a/b search range (2 orders of magnitude) 
 
for ( p_i in p_seq ) {  # p_i is the value of the current p 
 
  p_ind = round(p_i/p_step+1)  
# p_ind is the index of the current p 
   
  for ( q_i in q_seq ) {   
# q_i is the value of the current q 
 
    resolve = 500  
# starting resolution each initial search within a p/q 
    r_best_in = 0  
# r squared of best a/b for current p/q (inner) 
    q_ind = round(q_i/q_step+1)  
# q_ind is the index of the current q 
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    while (resolve <= 500*2^0 & r_best_in <= 0){ 
# adjust exponent to increase number of deeper scanning 
# exponent of zero means just the initial scan 
# exponent of 1 means allow one additional scan  
# if nothing found in first pass (doubling resolution) 
      a_best_in = 0 
      b_best_in = 0 
      r_best_in = 0 
       
      a_adjust = (( p_i + 1.2/1.12*q_i )  
                  -.70  
                  + log(bottom,10)/2/4) *-4  
# adjustment based on p/q for a 
      b_adjust = (( p_i + 1.0/1.45*q_i )  
                  -.60  
                  + log(bottom,10)/2/5) *-5  
# adjustment based on p/q for b 
# these equations are tailored specifically 
# to this problem and the a/b behavior 
       
      a_seq = 10^a_adjust  
              / bottom ^ ( c( 1 : resolve )/resolve -1 ) 
      b_seq = 10^b_adjust  
              / bottom ^ ( c( 1 : resolve )/resolve -1 ) 
# these create the sequences of a and b 
# to be used for testing.   
# They are essentially logarithmic sequences 
   
      r_mat_in = a_seq%*%t(b_seq) *0  
# initialize the 2D R-squared array 
   
      for (a_i in seq(1, length(a_seq))) {   
# a_i is the index for grabbing an a 
        for (b_i in seq(1, length(b_seq))) {   
# b_i is the index for grabbing a b 
          
          r_mat_in[a_i, b_i] = getR( gen_x(a_seq[a_i], 
b_seq[b_i], p_i, q_i) ) 
          battle_counter = battle_counter + 1 
        } # for b 
      } # for a 
       
      r_best_in = max(r_mat_in) 
      resolve = resolve *2  
# double the resolution (if opted for above) 
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    } # while loop 
 
    a_best_in = a_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[1] ] 
    b_best_in = b_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[2] ] 
# record the a and b that gave the best fit 
     
    a_best_in_org = a_best_in 
    b_best_in_org = b_best_in 
    r_best_in_org = r_best_in 
# saves copy of best model from initial scan 
# for for this p/q 
     
    r_best_in = 0 # reset best r 
    if (max(r_mat_in) <= 0) {next} 
# if no valid models so far for this p/q 
# then skip to next p/q  
# (leaving r as zero for this p/q) 
     
    zoom_lvl = 1 # initialize zoom level 
    while ( abs(( r_best_in - max(r_mat_in) )) / (r_best_in 
+ max(r_mat_in)) > .0001 & zoom_lvl <= 10){ 
# adjust tolerance level between best 
# and second-best r-squared values(ex: .0001) 
# this loop keeps zooming in on the 
# next best model until the tolerance 
# is met. 
       
      if (r_best_in < max(r_mat_in)){ 
        r_best_in = max(r_mat_in) 
        a_best_in = a_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[1] ] 
        b_best_in = b_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[2] ] 
      } 
 
      a_min = a_best_in  
              * ( 1 + ( a_seq[1]/a_seq[2] - 1 ) / 3 ) 
      a_max = a_best_in  
              * ( 1 + ( a_seq[2]/a_seq[1] - 1 ) / 3 ) 
      a_seq = c( a_min, a_best_in, a_max) 
     
      b_min = b_best_in  
              * ( 1 + ( b_seq[1]/b_seq[2] - 1 ) / 3 ) 
      b_max = b_best_in  
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              * ( 1 + ( b_seq[2]/b_seq[1] - 1 ) / 3 ) 
      b_seq = c( b_min, b_best_in, b_max) 
       
      r_mat_in = a_seq%*%t(b_seq) *0  
# initialize the 3x3 R-squared array  
 
      for (a_i in seq(1, length(a_seq))) {   
# a_i is the index for grabbing an a 
        for (b_i in seq(1, length(b_seq))) {   
# b_i is the index for grabbing a b 
           
          r_mat_in[a_i, b_i] = getR( gen_x(a_seq[a_i], 
b_seq[b_i], p_i, q_i) ) 
          battle_counter = battle_counter + 1 
        } # for b 
      } # for a 
 
      if (max(r_mat_in) < 0) {r_mat_in = r_mat_in *0} 
     
      zoom_lvl = zoom_lvl +1 
    } # while loop 
 
print(c(p_ind-1, q_ind-1, r_mat[p_ind, q_ind], r_best_in, 
((which(p_i==p_seq)-
1)*length(q_seq)+which(q_i==q_seq))/length(p_seq%*%t(q_seq)
)*100)) 
# this print statement is used  
# to display the current progress  
# and status during long runs 
     
    if (r_best_in < max(r_mat_in)){ 
      r_best_in = max(r_mat_in) 
      a_best_in = a_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[1] ] 
      b_best_in = b_seq[ which(r_mat_in==r_best_in, 
arr.ind=T)[2] ] 
    } 
      else { 
        a_best_in = a_best_in_org  
        b_best_in = b_best_in_org  
        r_best_in = r_best_in_org 
        }# picking best results  
         # (or original input if timed-out) 
     
    if (r_mat[p_ind, q_ind] < r_best_in){ 
      r_mat[p_ind, q_ind] = r_best_in 
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      a_mat[p_ind, q_ind] = a_best_in 
      b_mat[p_ind, q_ind] = b_best_in 
    } # update r_mat if new best is found at that p/q 
     
    if (r_mat[p_ind, q_ind] > r_best){ 
      a_best = a_best_in 
      b_best = b_best_in 
      r_best = r_best_in 
    } # if best r 
  } # for q 
} # for p 
 
p_seq = seq( 0, 1.5, p_step) 
q_seq = seq( 0, 1.5, q_step) 
# reset p/q range (if changed) 
 
cont_lvl = c(.25, .5, .75, .9, .95, .98, .99, .991, .992, 
.993, .994) 
# c(.25, .5, .75, .9, .95, .98, .99) 
# seq(.25,1,.01) 
# c(.25, .5, .75, .9, .95, .98, .99, .991, .992, .993, 
.994) 
# various contour levels to use 
contour(p_seq,q_seq,r_mat,  
        levels = cont_lvl, 
        xlab = "p", ylab = "q", 
        main = "Bracken\nContour Plot R-Squared", 
        col = rainbow(length(cont_lvl), v=.85), 
        lwd = 2) 
 
p_best = p_seq[ which(r_mat==r_best, arr.ind=T)[1] ] 
q_best = q_seq[ which(r_mat==r_best, arr.ind=T)[2] ] 
 
p_best 
q_best 
r_best 
a_best 
b_best 
battle_counter 
 
plot_single(gen_x(a_best, b_best, p_best, q_best), 
gen_y(a_best, b_best, p_best, q_best)) 
 
#### Changing attrition Coefficient #### 
 
# a_cac vector will have one less length than X/Y vectors 
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days_cac = days[-1] 
 
# input parameters used to generate y forces 
a = a_best_sqr #0.0544 
b = b_best_sqr #0.0106 
p =  1 
q =  0 
 
x_cac = x_true              # given x forces 
y_cac = gen_y( a, b, p, q ) # generate y forces 
 
a_cac = gen_a( x_cac, y_cac, p, q )  
# calculate vector of a's 
 
model_cac = lm(a_cac~days_cac)  
# store linear regression model of a's 
 
summary(model_cac) 
 
# Plot the chart 
plot( days_cac ,a_cac,  
      col = "blue",  
      main = "Daily Changing Attrition Coefficient", 
      abline( lm(a_cac~days_cac),  
              col = "lightblue",  
              lty = "dotted",  
              lwd = 3), 
      pch = 16,  
      xlab = "Day",  
      ylab = "Attrition Coefficient, a") 
 
#### Changing attrition Coefficient 28-days#### 
 
# a_cac vector will have one less length than X/Y vectors 
days_cac = days[1:29] 
days_cac = days_cac[-1] 
 
# input parameters used to generate y forces 
a = 0.0544 
b = 0.0106 
p =  1 
q =  0 
 
x_cac = x_true[1:29]              # given x forces 
y_cac = gen_y( a, b, p, q )[1:29] # generate y forces 
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a_cac = gen_a( x_cac, y_cac, p, q )[1:28]  
# calculate vector of a's 
 
model_cac = lm(a_cac~days_cac)  
# store linear regression model of a's 
 
summary(model_cac) 
 
# Plot the chart 
plot( days_cac ,a_cac,  
      col = "blue",  
      main = "Daily Changing Attrition Coefficient", 
      abline( lm(a_cac~days_cac),  
              col = "lightblue",  
              lty = "dotted",  
              lwd = 3), 
      pch = 16,  
      xlab = "Day",  
      ylab = "Attrition Coefficient, a") 
 
# end 
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