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ABSTRACT 

 In this thesis, we analyze and optimize the modified polar decoding and syndrome 

matching radio network temporary identifier (RNTI) recovery method to de-anonymize 

the physical downlink control channel (PDCCH) in 5G networks. We present the impact 

on RNTI recovery of payload length, codeword length, signal-to-noise ratio (SNR) and 

the Hamming and longest common substring (LCS) recovery methods. Further, we 

consider the full set of RNTIs and downlink control information (DCI) fields that can be 

examined for user activity data and propose methods to track user activity within radio 

networks from the recovered data. Finally, we optimize the RNTI recovery method for 

different attacker scenarios to demonstrate how an attacker can recover RNTIs, track 

UEs, and aggregate data about the UE usage patterns and/or metadata about the user. 
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I. INTRODUCTION 

At the end of 2021, the number of mobile subscriptions in the world reached an 

estimated 8.1 billion, with a total mobile traffic estimate of 65 exabytes/minute [1]. Today, 

almost 2 billion people have a mobile phone and while many utilize 2G through 4G 

networks, fifth-generation (5G) mobile subscriptions are expected to grow from 660 

million in 2021 to 4.4 billion in 2027 [1]. This increase in mobile subscriptions includes 

IoT devices with 30.2 billion internet of things (IoT) device connections forecasted by 2027 

[1]. With the ubiquity of mobile devices, many transported continually by users and others 

performing critical tasks, privacy and security have become more important than ever. The 

third-generation partnership (3GPP) standard for 5G mobile communications has made 

significant improvements in mobile security and privacy [2]. However, in [3] a 

methodology was demonstrated to de-anonymize the physical downlink control channel 

(PDCCH) and recover a sample 12-bit message. The objective of this work is to expand on 

[3] to determine the feasibility of recovering PDCCH messages in practice, optimize the 

recovery method, and reveal user activity based on the information recovered. This work 

is intended to inform the mobile telecommunications industry and standards organizations 

on the vulnerabilities of the PDCCH so that further improvements may be made to the 

privacy and security of next generation mobile telecommunications. 

A. PRIVACY IN MOBILE COMMUNICATIONS 

The transition in mobile standards from 2G through 5G have included significant 

improvements in privacy and security for the users of the networks [4], [5]. A key aspect 

of mobile security in 5G is privacy protection, which ensures information about user 

equipment (UE) does not become available to others [6]. 2G standards first introduced an 

identifier called the temporary mobile subscriber identifier (TMSI) to protect a user’s 

international mobile subscriber identity (IMSI), which does not change and is associated 

with the user’s mobile billing account [4]. The TMSI, however, had a vulnerability in that 

the UE passed the IMSI itself to authenticate itself to a network before receiving a TMSI 

and thus could be recovered and tracked by a prudent attacker [4]. Further, 2G standards 
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did not protect signaling traffic and failed to provide a mechanism for the UE to 

authenticate the network prior to joining it [4].  The 3G security architecture improved on 

2G by updating to stronger protection of signaling and reducing the requirement to send 

the IMSI in the authentication process [4]. 4G improved mechanisms to prevent attackers 

from learning mobile user identities by introducing the globally unique temporary user 

equipment identity (GUTI), imposing encryption on signaling, and scrambling message 

recovery with the radio network temporary identifier (RNTI) [5]. The RNTI provided a 

unique and temporary address for a UE connected to a cell, which changed every time a 

UE connected to a new cell [5].  5G networks further improved security by upgrading the 

authentication process and introducing the subscription permanent identifier (SUPI) and 

subscription concealed identifier (SUCI) all while using RNTIs to locally control radio link 

control channel signaling [2], [6]. 

The transformation to 5G is built upon technological advances that improve how 

the mobile waveform is coded, scheduled, and transmitted, and further expands the 

operating spectrum to include millimeter wave frequencies [7]. These advances are 

advertised to establish new use cases built around ultra-reliable low latency 

communications (URLCC), massive machine-type communication (MMTC) for the IoT, 

and enhanced mobile broadband (eMBB) [7]. In all use cases, privacy and security are 

paramount.  In a URLCC use case such as a smart city using 5G to direct vehicular traffic, 

the ability to identify a specific vehicle and track its movements can compromise the 

privacy and possibly the security of the vehicle and its occupants. In an industrial MMTC 

IoT use case, where 5G networks can be used in industries such as oil & gas refining, the 

location and communications of critical safety devices could be compromised, leading to 

physical or cyber attacks. Lastly, in a eMBB use case, which is expected to be heavily 

utilized by mobile users, UE RNTI values could be correlated with the geographical 

movements of an individual, leading to the individual being tracked as they move about or 

change applications within the 5G cell. 
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B. A DE-ANONYMIZATION ATTACK IN 5G 

In 5G networks, a UE is connected to the cellular network over the air via a radio 

link to a gNodeB (gNB) [8]. Within the gNB to UE link, there exists a control channel 

called the physical downlink control channel (PDCCH), and this channel directs the UE 

when, where, and how it can find its downlink data and transmit its uplink data [8]. The 

PDCCH is essentially directing traffic on the uplink and downlink to maintain the 

connection between the gNB and UE so that texts, calls, and application data can 

seamlessly flow. While all channels carrying the user data are encrypted, the PDCCH is 

not encrypted but instead is scrambled by the UE temporary identifier for the control 

channel, the RNTI [9]. Every PDCCH message is broadcast to all recipients and every UE 

will attempt to descramble the received message; however, only the UE descrambling with 

its own RNTI will be able to recover the message details [9]. 

It has been shown in [3] that the lack of encryption presents a vulnerability as the 

scrambling associated with the RNTI can be identified through a process called modified 

polar decoding and syndrome matching [3]. While recovering the RNTI is not easy and 

requires somewhat significant computational resources, the RNTI can be identified after 

numerous iterations [3]. This RNTI recovery provides a path to de-anonymize the PDCCH 

channel, recover the downlink control information (DCI) messages, and reveal information 

about a user’s patterns, activities, and even location changes within the mobile 

environment. A prudent attacker could track multiple devices across the network, logging 

when the gNB changes parameters related to the device physical location or a change in 

mode of operation, e.g., the device has started a voice-over-internet-protocol (VOIP) call. 

C. THESIS OBJECTIVE 

The objective of this thesis is to optimize the RNTI recovery method for the 

expected PDCCH conditions in real-world 5G radio access networks (RANs). If an attacker 

can efficiently recover RNTIs in a 5G network, they can descramble the DCI commands 

sent in the PDCCH and in many cases track user activity on the network. Therefore, in this 

thesis we assess a sophisticated attacker’s ability to recover RNTIs and track user activity 
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for different payload lengths, codeword lengths, and signal-to-noise-ratios that are 

expected to be utilized. 

To accomplish this objective, we first develop strategies to identify probable DCI 

payload lengths in the PDCCH given probability of bit error constraints. Next, we evaluate 

an optimal threshold to meet RNTI recovery goals in different mobile environments. 

Further, we consider the impact on RNTI recovery of increased payload length, increased 

codeword length, high and low signal-to-noise ratio, and Hamming versus longest common 

substring (LCS) recovery methods. Finally, we consider the information recovered from 

the DCI messages descrambled with the recovered RNTIs and evaluate how the 

aforementioned factors impact our ability to track UE activity within the mobile 

environment. 

D. RELATED WORK 

In [3], Gardner developed a method to recover RNTIs from intercepted PDCCH 

messages using modified polar decoding and syndrome matching. This work demonstrated 

the RNTI recovery method for a payload of 12 bits and codeword lengths around 128 bits. 

In this thesis, we expand this method for payload and codeword lengths as expected in the 

real-world 5G networks and develop additional techniques for an approach to optimize 

RNTI recovery based on the mobile environment and attacker objectives.  

Egilmez et. al [10] characterized the error correction and error detection 

performance of the polar codes in the 3GPP 5G standard. This work demonstrated the 

baseline probability of block error blerP  performance of a PDCCH polar code for different 

payload lengths A  and provided observations on the viability of polar codes for future 

standards. We develop a methodology in this thesis to evaluate the blerP  of the PDCCH 

polar code to compare results and then evaluate the RNTI recovery vulnerability exhibited 

through polar coding to further appraise the viability of their use. 

In [11], Garrett evaluated brute-force and known plaintext attacks against the 

physical downlink shared channel (PDSCH) which uses low-density parity-check (LDPC) 

codes for error correction. The work concluded that the LDPC coded PDSCH better 
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protected the anonymity of an RNTI against such attacks than the polar coded PDCCH. In 

this thesis, we develop an attacker’s methodology to optimally attack the PDCCH to 

provide further corroboration of the vulnerabilities of the polar coding used in the PDCCH. 

E. THESIS OVERVIEW 

The remainder of this thesis is structured as follows. Chapter II provides mobile 

communication background, a 5G channel overview, the technical details of the method to 

de-anonymize the PDCCH developed in [3], and the types of RNTIs and DCI messages 

used in the PDCCH as established by the 3GPP standards. Chapter III describes how to 

determine probable DCI payloads and optimize the methodology used for RNTI recovery 

to ultimately track user activity. Chapter IV presents the simulation setup and results of the 

DCI payload analysis and RNTI recovery methodology for practical payload and codeword 

combinations at different threshold values, signal-to-noise ratios (SNR), and matching 

methods. Chapter V concludes with the takeaways from the results and provides 

recommendations for future work in analyzing 5G physical channel vulnerabilities. 

Appendix A contains the MATLAB code for evaluating the DCI payload lengths within 

probability of bit error constraints. Appendix B contains the MATLAB code to recover 

RNTIs in the blind from scrambled PDCCH messages. 
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II. BACKGROUND 

In this chapter, we provide the foundation critical to understanding the 

methodology to recover RNTIs and track user activity information from intercepted 

PDCCH messages. An overview of mobile communication metrics is provided to develop 

basic concepts with which we can analyze changes in the mobile environment. This is 

followed by an overview of 5G physical channels to provide an understanding of the 

importance of the PDCCH in controlling traffic in 5G networks. Next, we present a method 

developed in [3] to use modified polar decoding and syndrome matching to recover RNTIs 

in the blind from intercepted PDCCH messages. Finally, a detailed description of the 

RNTIs and DCI messages used in 5G is provided as these identifiers and messages can be 

used to recover user activity from the PDCCH. 

A. MOBILE COMMUNICATION METRICS 

In this thesis, we assess the activity of a user based on the changes to the encoded 

information recovered from the intercepted PDCCH messages. This section provides a 

brief introduction to important concepts in mobile communication, which are critical to 

translating between physical changes in the channel and technical information gleamed 

from the PDCCH. 

1. Wireless Communication Link Measurements 

The first wireless communication concept to understand is that of received power 

RP  in a communications link, 

 T T R
R

C

P G GP
L

=  (2.1) 

where TP  is the transmitted power, TG  is the transmitter gain, RG  is the receiver gain, and 

CL  is the path loss [12]. Further,  

 
24

C
dL π

λ
 =  
 

 (2.2) 
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where d  is the distance between the transmitter and reciever, and λ  is the wavelength of 

the communications link [12]. Cellular communications frequently operate with multipath 

channels, but in general the relations of (2.1) and (2.2) can be used to estimate whether RP  

increases or decreases as distance between the UE and gNB changes [12]. The takeaway 

for analyzing PDCCH messages is that when a UE moves further from a gNB, RP   will 

decrease and can result in a request from the gNB for an increase in TP .  

Second, it is important to understand the probability of channel bit error ,b QPSKP  in 

the PDCCH. The PDCCH uses coherently detected quadrature phase shift key (QPSK) to 

modulate the bits onto the carrier waveform for transmission [9]. The probability of bit 

error for coherently detected QPSK in an additive white Gaussian noise (AWGN) channel 

is well established using the Q -function as 

 ,
0

2 b
b QPSK

EP Q
N

 
=   

 
 (2.3) 

where bE  is the energy per bit, and 0N  is the noise spectral density [13]. In the PDCCH, 

as bE  decreases or 0N  increases, ,b QPSKP  will increase since the Q -function output 

decreases as its positive argument increases. To keep ,b QPSKP  constant, this increase could 

be counteracted by either driving an increase in bE  or adding more error correction bits as 

will be discussed in the next section. In mobile communications, due to high channel bit 

error probabilities, error correction coding is typically applied to improve the information 

bit error bP ; however, as ,b QPSKP  increases or decreases, bP  will as well. 

Lastly, the signal-to-noise ratio ( SNR ) is an important metric to understand the 

relationship between the gNB, the UE, and an attacker’s intercepting location. The SNR , 

typically represented in dB, is defined by 

 
0

b bR

N

E RPSNR
P N B

= =  (2.4) 
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where RP  is the received signal power, NP  is the noise power, bE  is the energy per bit, bR  

is the bit rate, 0N  is the noise spectral density, and B is the signal bandwidth [12]. It is 

important to note that an attacker passively monitoring the PDCCH will likely experience 

a SNR  different from that of the UE for which the communications are intended. 

2. Error Detection, Correction, and Polar Coding 

Central to this thesis are the concepts of error detection and error correction in 

which errors in information bits can be respectively detected and corrected using code bits. 

The first method we introduce is the calculation of the cyclic redundancy code (CRC), 

which performs error detection only. In the PDCCH, a CRC is used to ensure the received 

data bits, which carry a DCI message are not corrupted [9]. The CRC is calculated by taking 

the cyclic generator polynomial 

 24 23 21 20 17 15 13 12 8 4 2
24 1Cg x x x x x x x x x x x x= + + + + + + + + + + + +  (2.5) 

where x  denotes a bit delay of a length equal to its exponent, and dividing 24Cg  by the 

data bits in Galois Field (GF)(2) [9]. The length 24-bit CRC is then appended to the length 

A  data bits to form a length K  block [9]. This CRC, when calculated can determine 

whether the data bits have been corrupted from the originally sent bits, or, as we will apply 

in this thesis, when the data bits are uncorrupted and have been descrambled with the 

correct scrambling sequence [3]. 

While error detection is used to confirm the A  data bits have been accurately 

received, it is necessary to add bits for error correction to reduce the information bit error 

probability, bP , as mobile communication channels are known to have high channel error 

probabilities. The PDCCH uses block error correction by means of polar coding, where K  

bits (data + CRC) are encoded onto a block of N  polar coded bits [14]. In polar coding, 

first F N K= −  zeros are inserted, referred to as frozen bits to generate a codeword of 

length N  [3]. The sequence locations in which the F  bits are inserted are pre-determined 

to place the K  bits in the most reliable positions, i.e., in positions most likely to be 

corrected if an error occurs in transmission [3], [14]. Once the length N  polar coded block 

is formed, the polar coding bits are generated by 
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 1 1
0 0
N N

Np n G− −=  (2.6) 

where 1
0
Np −  are the polar coded bits, 1

0
Nn −  are the input bits to polar coding, and NG  is the 

polarization matrix. It follows that 

 2
n

NG G ⊗=  (2.7) 

where ⊗  is the Kronecker product, and multiplication is performed in GF(2) and  

 2

1 0
1 1

G  
=  
 

 (2.8) 

is the polarization matrix when 2N =  [3], [14]. The end effect of the GF(2) polarization 

matrix multiplication is that the K  data + CRC bits are diffused throughout the N  polar 

coded bits so that when bit errors occur in transmission, it is possible to correct the errors 

and fully recover the K  bits [14]. The important concept to note here is that an increase in 

F  results in an increase in error correction capabilities, also referred to as code rate, r , 

which ultimately decreases the information bit error probability, bP . Throughout this thesis 

we will vary payload length A  and codeword length E , both of which directly impact the 

size of F . For further background on polar coding and its error correction capabilities, the 

reader is referred to [3], [10], and [14]. 

Polar decoding in this thesis follows [3] and uses log likelihood ratio (LLR) based 

successive cancellation (SC) decoding to recover the K  data + CRC bits from the length 

N  polar coded block. In this case, the received QPSK symbols are translated to LLR values 

instead of hard 0 and 1 bits, which in the end improves error correction [3], [12]. The polar 

decoding process, detailed in [3] and [12], inputs the LLR values and corrects errors in the 

received bits to produce the recovered K  data + CRC bits. The power of the polar decoding 

is directly related to the number of frozen bits F , which is a key concept in this thesis. In 

addition, there are more complex methods to perform polar decoding, such as successive 

cancellation list (SCL) decoding and successive cancellation stack (SCS) decoding, to 

improve the error correction capabilities requiring increased computational power; more 

information can be found in [10], [15], [16], and [20]. 
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B. PHYSICAL CHANNELS IN 5G NETWORKS 

To understand the methodology used to recover RNTIs and decode DCI 

information informing user activity, an overview of 5G communications channels is 

provided. Specifically, it is imperative to understand the process to encode and decode 

PDCCH messages as in this process is where a vulnerability to recover RNTIs lies. A brief 

introduction to the method to recover RNTIs is provided in this section as well as an 

overview of all the potentially recoverable user activity information.  

1. Downlink and Uplink Physical Channels 

The physical downlink channels in 5G networks consist of the physical broadcast 

channel (PBCH), physical downlink control channel (PDCCH), and the physical downlink 

shared channel (PDSCH) [18]. The PBCH broadcasts key information that a UE requires 

to access the cell and is one of the first channels received when a UE attempts to connect 

to a 5G network [17]. Once a UE is connected and authenticated, the PDDCH is used by 

the gNB to transfer downlink configuration information via DCI messages [17]. These DCI 

messages contain critical configuration information in which a UE receives its downlink 

resource allocation so that it may transmit to the gNB and its uplink resource allocation so 

that it may receive data transmissions from the gNB [17]. The downlink resource allocation 

provides access to the PDSCH, a shared channel on which the UE can receive application 

data, signaling messages, system information messages, paging messages, and some 

control information [17].  

On the uplink side, the physical channels are the physical random-access channel 

(PRACH), the physical uplink control channel (PUCCH), and the physical uplink shared 

channel (PUSCH) [18]. The PRACH is used by UEs connecting to the network to send 

messages as required by the random-access procedure, which governs the process for a UE 

to initially connect and authenticate to a network [17]. Once connected, the PUCCH is used 

to transfer uplink configuration information via PUCCH format messages. These messages 

are similar to DCI messages and control hybrid automatic repeat request (HARQ) 

acknowledgments, scheduling requests, and channel state information (CSI) reports from 

the UE. We note here that the PUCCH transmits information about the channel conditions 
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and similarly is polar coded and scrambled by a RNTI sequence, thus making it vulnerable 

to the RNTI recovery methods discussed in this thesis. However, this thesis is limited in 

scope to the PDCCH, chosen because it contains more valuable activity information than 

the PUCCH. Finally, the PUSCH is a shared channel used to transfer application data, 

signaling messages, and some control information [17]. The PUSCH resource allocation is 

sent on the PDCCH, which is the focus of this thesis [17]. 

2. PDCCH Encoding and Modulation 

To understand the nuances of the RNTI recovery process presented in [3], the 

PDCCH modulation and coding process is detailed in this section. As shown in Figure 1, 

data to be sent in the PDCCH is modified by scrambling, interleaving, polar encoding, and 

rate matching processes prior to transmission, where all steps are governed by [18], a 3GPP 

standard. The first step of note to this thesis is the CRC scrambling, which as discussed in 

Section II.A.2 provides a method to confirm whether all errors have been corrected in the 

data bits and for our purposes whether the data bits have been descrambled correctly if the 

RNTI is not known a priori [3]. Second, the frozen bit insertion and polar coding, as 

discussed in Section II.A.2, is the step in which the frozen bits are inserted, and the polar 

coding method is applied. These two steps are critical to this thesis in that the impact of the 

scrambling sequence and subsequent polar coding on the frozen bits will be analyzed to 

recover the RNTI. The rate matching step which follows polar coding is in place to adjust 

the polar coded block length N  to the codeword length E , which is assigned by the gNB 

according to the resources available [17]. In this step, if necessary, the length N  block of 

polar coded bits undergoes either repetition, shortening, or puncturing to be adjusted to 

length E  [9]. This thesis does not go into detail on the rate matching process, but the reader 

can find the background in [9] and further explanation and examples in [3]. 
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Figure 1. Physical Downlink Control Channel Modulation and Coding 

Process. Source: [3], [9]. 

Next, it is important to note that the scrambling step uses a length-31 Gold sequence 

initialized by a generator according to  

 16 31( 2 ) mod 2init RNTI IDc n η= ⋅ +  (2.9) 

where initc  is the scrambling sequence initiator,  RNTIn  is the RNTI assigned, and IDη  is the 

assigned cell ID [18]. The 31mod 2  discards the 16th bit from the RNTI, thus reducing our 

scrambling sequence space to 152  possibilities [3]. Once the rate matched bits of length E  

are scrambled, the resultant bits are modulated and transmitted as QPSK symbols [18]. 

From the perspective of an attacker analyzing an intercepted PDCCH message, it is 

important to note that while the output codeword length E  will be recovered, the input 

data length A  will not be known and this length affects the frozen bit determination, frozen 

bit insertion and rate matching steps in the encoding process. Further for the attacker, there 

is no a priori knowledge of the RNTI, which determines the scrambling sequence used. 

3. PDCCH Demodulation and Decoding 

The PDCCH demodulation and decoding process, as shown in Figure 2, is 

essentially the reverse of the encoding and modulation steps presented in the previous 

section; for the UE, the possible lengths of the DCI message A  and the RNTI will be 

known [18]. A process called DCI size alignment is performed for the PDCCH in which 

the gNB has configured its DCI messages to be no more than four sizes [9]. This is 

accomplished through padding as explained in more detail in Section II.D.2, but for our 
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purposes it means that there are four possible values of A . The UE decoding the PDCCH 

bits received will attempt to perform the DCI message recovery process for one of the four 

sizes and if the CRC does not match the decoded bits, the UE will attempt to decode the 

next size until the message is recovered or all four sizes are exhausted [9].  

 
Figure 2. Physical Downlink Control Channel Demodulation and Decoding 

Process. Source: [3], [9]. 

In this case, the demodulation is performed using LLR SC decoding, the RNTI 

initiated sequence is applied to descramble the bits, and the remaining steps taken to encode 

the message are reversed to recover the DCI message and the CRC [3], [9]. At this point, 

the UE calculates a CRC for the received A  data bits and compares it to the CRC decoded 

within the K  bits recovered [9]. If the CRC matches, then the data bits have been 

successfully demodulated, descrambled, and decoded; if not, then there are three 

possibilities. The first possibility is that the RNTI is not correct, and this message is 

addressed to another UE. The second possibility is that the message length A  is not correct 

for this message, and the UE will attempt the process using the other three sizes. The last 

possibility is that uncorrectable errors have occurred, and the message is unrecoverable. 

We see through this process how the PDCCH uses its RNTI as an address in that every UE 

will attempt to recover every PDCCH message but will only be able to descramble the 

message if it has been scrambled by its assigned RNTI [3], [9]. The other takeaway here is 

that every different A  results in a different decoding sequence; therefore, for an attacker, 

knowing the four possible A  values or having some idea of what they may be is critical.  
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C. METHOD TO RECOVER RNTIS 

So far, we have covered the PDCCH encoding, modulation, demodulation, and 

decoding processes as designed in 5G networks. Now, we will cover how to exploit a 

vulnerability [3] in which modified polar decoding and syndrome matching can be used to 

decode DCI payloads from intercepted PDCCH messages without a priori knowledge of 

the RNTI. The methodology used in this section is detailed extensively with proof and 

examples in [3]; the reader is directed there for further information if desired. 

1. Modified Polar Decoding  

In [3], modified polar decoding was demonstrated as a method to identify the effect 

of the RNTI initiated scrambling sequence on the frozen bits inserted for polar coding. As 

shown in Figure 3, this method takes the LLR values recovered from the demodulation, 

rate recovery, and sub-block deinterleaving steps and performs modified polar decoding 

on those bits. To perform modified polar decoding, the recovered bit sequence is multiplied 

by the polarization matrix to reverse the forward polar coding process applied in the 

PDCCH encoding steps by 

 1 1
0 0ˆ ˆN N

Nn p G− −=  (2.10) 

where 1
0ˆ Np −  are the polar coded bits estimated from the received LLR values, 1

0ˆ
Nn −  are the 

received bits in which the polar coding process has been reversed, and NG  is the 

polarization matrix. From the modified polar decoding step output, we can take 1
0ˆ
Nn −  and 

select only the frozen bits to form an error pattern of length, E Kε = −  [3].  

In the case in which the RNTI is known, and descrambling is applied prior to polar 

decoding, the error pattern consists of all frozen bits and thus will consist of all zeros except 

when those zeros have been flipped due to additive white Gaussian noise (AWGN). In our 

case of modified polar decoding, the error pattern is uniquely affected by the RNTI 

scrambling sequence, considered as a form of non-random noise [3]. This pattern is still 

affected by AWGN and therefore some bits will be further flipped due to the AWGN. The 

takeaway of modified polar decoding is that it leaves us with an error pattern ε  that is 

affected by the RNTI scrambling sequence and AWGN. 
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Figure 3. Modified Polar Decoding and Syndrome Matching Process to 

Recover RNTIs and Decode DCI Messages. Source: [3]. 

2. Syndrome Matching for RNTI Recovery 

The method for determining the RNTI from the error pattern developed in [3] is to 

pre-generate a syndrome table, which consists of all possible RNTI scrambled error 

patterns and then to query the syndrome table for an error pattern match. Recall that there 

are 152  possible RNTI initiated scrambling sequences; therefore, each syndrome table has 
152  syndrome entries [3]. However, each codeword and payload combination generates a 

different error pattern due to the number of frozen bits added and the unique sequence in 

which the frozen bits are added [3]. As a result, many syndrome tables are generated; 

however, once a syndrome table for a given codeword length E  and payload length A  is 

created, it can be used in perpetuity [3]. There is some complexity to generating syndrome 

tables for different rate-matching cases, but a method to develop the tables is presented in 

[3], and for the purposes of this thesis, we can generate a syndrome table for any E  and A  

combination. 

We must also consider that some of the error pattern bits will be flipped due to the 

presence of AWGN, which is a major focus of this thesis. Since the intercepted PDCCH 

sequence is affected by AWGN, the attacker cannot rely on a direct match but instead must 

apply a threshold within which an error pattern and syndrome can be considered a match 

[3]. The LCS method and the Hamming method can be used to filter matches to efficiently 

recover the RNTI [3]. The Hamming method considers the Hamming distance between the 

two sequences HAMd  and is set as a maximum threshold HAMτ  [3].  For a 10-bit example 

with a randomly generated error pattern and syndrome, 
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0 0 ,0HAMe sε ε εϕ− − −⊕ =  (2.11) 
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0sε −  is the syndrome, 1
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εφ −  is the exclusive OR (XOR) 

result of the two, and ε  is the length of the sequences. We find that 
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−

=

= =∑ , and 

if HAM HAMd τ≤ , then the error pattern and syndrome will be considered a match. A matching 

error pattern is then descrambled, and the CRC is checked to determine if the RNTI of that 

syndrome is the correct RNTI.  

Another method to compare the error pattern and the syndrome is the LCS method, 

which considers the longest common substring LCSd  of matching bits between the two 

sequences and is set as a minimum threshold LCSτ  [3]. For the same 10-bit randomly 

generated example,  

[ ]1
0 0 1 1 0 0 0 1 0 1 0eε − =  

1
0 [1 1 0 0 0 1 0 0 1 0]sε − =  

we find that 3LCSd =  as the last three bits of the sequence match, which is the longest 

common consecutive substring. Similar to the Hamming method, if LCS LCSd τ≥ , the 

matching error pattern is then descrambled, and the CRC is checked to determine if the 

RNTI of that syndrome is the correct RNTI. The last item we consider is that there are 152  

possible RNTI initiated scrambling sequences, but 162  RNTIs that could be associated with 

a UE. This problem is solved by descrambling with both the recovered RNTI RNTIn  and the 

identical 152  sequence but with a 16th MSB bit of 1, 152RNTIn +  [3]. Descrambling and 

decoding with both the RNTI values and checking for a correct CRC ensures that the entire 

RNTI search space is exhausted. 
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D. TYPES OF RNTIS AND DCI MESSAGES IN THE 5G PDCCH 

In this section, we provide an overview of the RNTIs and DCI formats used in 5G 

networks as governed by the 3GPP NR standards [9], [18], and [19]. The types of RNTIs 

that are used is important because, as we recover these RNTIs, we can identify what type 

of activity is being directed by the gNB. Further, the DCI formats are uniquely scrambled 

by different RNTIs and contain DCI fields with valuable information that can be used to 

assess user activity. 

1. RNTIs in the PDCCH 

RNTIs are used as a unique address for DCI messages sent to specific UEs in the 

PDCCH [17], [19]. When PDCCH message is received by a UE, the UE does not know 

whether that message is intended for it or another UE and will demodulate the signal and 

begin attempting to decode the message with its own RNTI in the descrambling step [20]. 

The polar decoding process is designed such that a UE will quickly be able to identify 

whether its RNTI-initiated descrambling is correct and can abandon the process early if 

not, saving resources and battery life [20]. However, if the RNTI descrambling is correct, 

then the PDCCH message is descrambled, the DCI payload is retrieved, and the UE has 

received its message [20]. Overall, the 3GPP standard for NR uses thirteen unique RNTIs 

at the gNB level, and they are listed in Table 1. There is one RNTI used at the next-

generation radio access network (NG-RAN) level to track inactive UEs called the inactive 

RNTI (I-RNTI), but since I-RNTI is not used to scramble PDCCH bits in the physical layer, 

it is not further discussed in this thesis [8]. 
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Table 1. Types of RNTIs Used in the PDCCH. Source: [17], [19]. 

RNTI DCI 
Format 

Application Value 

SI-RNTI 1_0 PDSCH resources for System Information FFFF 
P-RNTI 1_0 PDSCH resources for Paging Messages FFFE 
RA-RNTI 1_0 PDSCH resources for Random-access 

Response (RAR) 
 
 
 
 
 
 
 
 
Random 
(0001-
FFEF) 

TC-RNTI 0_0, 1_0 PDSCH resources for MSG3 re-
transmissions, PDSCH resources for MSG4 

C-RNTI 0_0, 1_0, 
1_0, 1_1 

PUSCH and PDSCH resources for 
application data and control plane signaling 

MCS-C-RNTI 0_0, 1_0, 
1_0, 1_1 

Dynamic selection of low Spectral Efficiency 
MCS Table for PDSCH and PUSCH 

CS-RNTI 0_0, 1_0, 
1_0, 1_1 

Configured Grant Scheduling for PUSCH, 
Semi-Persistent Scheduling for PDSCH 

TPC-PUSCH-
RNTI 

2_2 Closed loop uplink power control commands 
for PUSCH 

TPC-PUCCH-
RNTI 

2_2 Closed loop uplink power control commands 
for PUCCH 

TPC-SRS-
RNTI 

2_3 Closed loop uplink power control commands 
for the SRS 

INT-RNTI 2_1 Interruption signaled using Pre-emption 
Indications 

SFI-RNTI 2_0 Dynamic changes to the slot format signaled 
using Slot Format Indicators 

SP-CSI-RNTI 0_1 Trigger to activate/deactivate Semi-Persistent 
CSI reporting from the UE 

 

Considering the RNTIs in Table 1, we first point out the fact that the SI-RNTI and 

P-RNTI have fixed hexadecimal values of FFFF and FFFE, respectively. These RNTIs are 

not unique to a UE and are used to scramble system information and paging messages 

which all UEs receive; therefore, they are not of interest to our user activity tracking 

methodology [8]. The random-access RNTI (RA-RNTI) and the temporary cell RNTI (TC-

RNTI) are used in the random-access procedure to assign an identifier to a UE first 

connecting, or in some cases reconnecting, to a network [21]. The RA-RNTI is initially 

assigned based on calculated cellular parameters, and then the gNB assigns a TC-RNTI to 

the UE to release the RA-RNTI back for another UE attempting to join [21]. Frequently 

the TC-RNTI is then promoted to cell RNTI (C-RNTI) once the UE is authenticated [21].  
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The C-RNTI is the primary RNTI assigned to a UE for the gNB to dynamically allocate 

resources on the PDCCH [8]. While the use of the C-RNTI itself does not indicate the use 

of any special features, we considered it as the primary means to track UEs on mobile 

networks in this thesis.  

Next, we consider the modulation and coding scheme cell RNTI (MCS-C-RNTI), 

the configured scheduling RNTI (CS-RNTI), and the semi-persistent channel state 

information RNTI (SP-CSI-RNTI). These RNTIs are used to activate a specific mode of 

operation in a UE of which the UE has been pre-configured to expect [8]. The use of the 

MCS-C-RNTI triggers dynamic MCS changes, the CS-RNTI triggers semi-persistent 

scheduling in the downlink or configured grant in the uplink, and the SP-CSI-RNTI triggers 

the use of semi-persistent CSI reporting on the PUSCH [8]. The identification of these 

RNTIs is useful in this thesis because they indicate possible changes in mode of operation 

that may be associated with a specific application or state of the UE. The RNTIs considered 

so far are used to scramble DCI format 0_0, 0_1, 1_0, and 1_1 messages, which direct 

scheduling of resources on the PUSCH and PDSCH [19].  

Further, we consider the RNTIs used to scramble DCI format 2_0, 2_1, 2_2, and 

2_3 messages, which are typically addressed to groups of UEs [9]. In these cases, the group 

of UEs would share the RNTI used to scramble these messages; within the DCI message, 

each UE would have a field reserved for its UE-specific command [9]. The transmit power 

control PUSCH RNTI (TPC-PUSCH-RNTI) and transmit power control PUCCH RNTI 

(TPC-PUCCH-RNTI) are used to scramble DCI 2_2 format messages to direct closed loop 

power control commands on the PUSCH and PUCCH, respectively [9]. Similarly, the 

transmit power control sounding reference signal RNTI (TPC-SRS-RNTI) is used to 

scramble DCI 2_3 format messages and direct closed loop power control commands for 

the SRS [9]. The INT-RNTI, used to scramble DCI 2_1 format messages, is used to indicate 

pre-emption in the downlink, which indicates to the group that its transmissions are being 

interrupted for time critical transmissions from another UE, which could be valuable 

information for our UE activity tracking [8]. The last RNTI in the PDCCH is the SFI-RNTI, 

used to scramble DCI format 2_0 and to direct a change to slot format in which the gNB 

can dynamically reconfigure resources for optimal use [8], [17]. The use of these RNTIs 
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to deduce user activity and track changes to user activity will be discussed in Section 

III.D.1. 

2. DCI Messages in the PDCCH 

In this section, we will describe the DCI formats and the information contained 

within each as governed by the 3GPP NR standards. These DCI payloads when encoded 

are scrambled by the aforementioned RNTIs; therefore, recovering a RNTI for an 

intercepted PDCCH message allows for the DCI payload to be unscrambled. The DCI 

messages contain valuable configuration information for the PUSCH and PDSCH and 

identify special features activated [17]. Table 2 presents the types of DCI formats used in 

the PDCCH. The ‘Fallback’ messages are designed to maintain a connection when 

coverage deteriorates as they do not have as many configurable fields as the ‘Standard’ 

messages and are therefore smaller payloads, allowing for higher code rates to be used 

[17]. DCI formats 0_0 and 0_1 are used to dynamically schedule resource allocations on 

the PUSCH [9]. DCI formats 1_0 and 1_1 are used to dynamically schedule resource 

allocations on the PDSCH [9]. The DCI formats designed to support group messaging are 

DCI format 2_0, which notifies UEs of the slot format, DCI 2_1, which notifies UEs of a 

pre-emption for time critical transmission, DCI 2_2, which is used to transmit TPC 

commands for PUCCH and PUSCH, and DCI 2_3, which is used to transmit TPC 

commands for SRS [9]. 

Table 2. Types of DCI Messages Used in the PDCCH. Source: [9], [17]. 

DCI Format Application 
0_0 ‘Fallback’ DCI format for uplink resource allocations on PUSCH 
0_1 ‘Standard’ DCI format for uplink resource allocations on PUSCH 
1_0 ‘Fallback’ DCI formats for downlink resource allocations on PDSCH 
1_1 ‘Standard’ DCI format for downlink resource allocations on PDSCH 
2_0 Provision of Slot Format Indicators (SFI)  
2_1 Provision of Pre-emption Indications 
2_2 Provision of closed loop power control commands applicable to 

PUCCH and PUSCH 
2_3 Provision of closed loop power control commands applicable to SRS 
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a. DCI 0_0 and 0_1 PUSCH Resource Allocations 

The PUSCH allocations as directed by DCI formats 0_0 and 0_1 tell the UE how 

to operate when sending information to the gNB on the PUSCH [17]. First, we will consider 

the ‘Fallback’ format, DCI 0_0, and the comprehensive list of DCI fields for this format as 

shown in Table 3. The UE will be assigned specific time and frequency resources to use 

through the frequency domain resource assignment and time domain resource assignment 

fields [17]. While this uplink data on the PUSCH will be encrypted, this information can 

reveal when the UE is active on the channel. Further, the MCS, New Data Indicator, HARQ 

process number, and TPC Command for Scheduled PUSCH fields all contain information 

that can be used to inform the strength of the connection, which can be used to reveal 

information about UE activity, which will be discussed further in Section III.D.2. The 

uplink/supplemental uplink indicator field can additionally be used to inform the number 

of uplinks that the UE is active on [17]. Table 4 shows the comprehensive list of DCI fields 

for the ‘Standard’ DCI format 0_1, which as can be seen contains many more configurable 

options. In addition to the DCI fields listed above, the SRS Resource Indicator, SRS 

request, and CSI request fields could reveal additional information about the strength of 

the connection. Lastly, the carrier indicator field can indicate that the UE is configured 

across multiple carriers [17]. 
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Table 3. DCI 0_0 PUSCH Resource Allocations (Fallback). Source: [9], 
[17]. 

Field Brief Description of Field Contents 
Identifier for DCI Format Differentiates DCI format 0_0 and 1_0 
Frequency Domain 
Resource Assignment 

Allocates a source of resource blocks in the frequency 
domain 

Time Domain Resource 
Assignment 

Determines slot offset, PUSCH Mapping Type, starting 
symbol and number of allocated symbols 

Frequency Hopping Flag Indicates whether frequency hopping is applied 
Modulation and Coding 
Scheme (MCS) 

Defines modulation and coding scheme via 3GPP lookup 
table 

New Data Indicator Indicates if resource allocation is for a re-transmission 
Redundancy Version Indicates the puncturing pattern after channel coding 
HARQ Process Number Indicates the HARQ process to use the resource allocation 
TPC Command for 
Scheduled PUSCH 

Used for closed loop power control as UE is directed to 
increase, decrease, or maintain power 

Padding Added to DCI 0_0 to match size with DCI 1_0 to minimize 
UE blind decoding attempts 

Uplink/Supplemental 
Uplink Indicator 

Indicates whether resource allocation is for the normal 
uplink carrier or the supplemental uplink carrier 
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Table 4. DCI 0_1 PUSCH Resource Allocations (Standard). Source: [9], 
[17]. 

Field Brief Description of Field Contents 
Identifier for DCI Format Differentiates DCI format 0_1 and 1_1 
Carrier Indicator Configures cross carrier scheduling between cells 
Uplink/Supplemental 
Uplink Indicator 

Indicates whether resource allocation is for normal uplink 
carrier or supplemental uplink carrier 

Bandwidth Part Indicator Identifies BWP for frequency domain resource allocation 
Frequency Domain 
Resource Assignment 

Allocates a source of resource blocks in the frequency 
domain 

Time Domain Resource 
Assignment 

Determines slot offset, PUSCH Mapping Type, starting 
symbol and number of allocated symbols 

Frequency Hopping Flag Indicates whether frequency hopping is to be applied 
Modulation and Coding 
Scheme 

Defines modulation and coding scheme via 3GPP lookup 
table 

New Data Indicator Indicates if resource allocation is for a re-transmission 
Redundancy Version Indicates the puncturing pattern after channel coding 
HARQ Process Number Indicates the HARQ process to use the resource allocation 
1st Downlink Index HARQ acknowledgment procedure for downlink data 
2nd Downlink Index HARQ acknowledgment procedure for downlink data 
TPC Command for 
Scheduled PUSCH 

Used for closed loop power control as UE is directed to 
increase, decrease, or maintain power 

SRS Resource Indicator Used to select SRS resources 
Precoding Information & 
Number of Layers 

If codebook based, selects Transmitted Precoded Matrix 
Indicator and number of layers 

Antenna Ports Indicates which logical antenna ports the UE should use 
SRS Request Triggers SRS Resource Sets configured for aperiodic trigger 
CSI Request Selects CSI “Trigger State” for aperiodic CSI trigger state 
CBG Transmission 
Information 

Used to select Code Block Groups to transmit uplink data 

PTRS-DMRS Links a Phase Tracking Reference Signal (PTRS) to a 
Demodulation Reference Signal (DMRS) 

Beta Offset Indicator Configures weights to be applied during the rate matching 
of uplink control information on the PUSCH 

DMRS Sequence 
Indicator 

If transfer precoding disabled, initializes pseudorandom 
sequence which populates DMRS Resource Elements  

UL-SCH Indicator Indicates if UL-SCH transmitted on the PUSCH 
Padding Added to match DCI 0_1 size if UE configured for both 

Supplemental and Normal uplink 
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b. DCI 1_0 and 1_1 PDSCH Resource Allocations 

The PDSCH allocations as directed by DCI formats 1_0 and 1_1 tell the UE how 

to operate when receiving information from the gNB on the PDSCH [4]. First, we will 

consider the ‘Fallback’ format, DCI 1_0. The comprehensive list of DCI fields for this 

format is shown in Table 5. Similar to the PUSCH, the UE will be assigned specific time 

and frequency resources to use through the frequency domain resource assignment and 

time domain resource assignment fields, which can indicate when the UE is active [4]. In 

this format, the MCS, New Data Indicator, HARQ process number, TPC Command for 

Scheduled PUCCH, PUCCH to HARQ Feedback Timing Indicator, and Random-access 

Preamble Index fields all contain information that can be used to inform the strength of the 

connection. These can also be used to reveal information about UE activity, which will be 

discussed further in Section III.D.2. The uplink/supplemental uplink indicator can 

additionally be used to inform the number of uplink that the UE is active on. Table 6 shows 

the comprehensive list of DCI fields for the ‘Standard’ DCI format 1_1, which again 

contains many more configurable options. In addition to the DCI fields listed above, the 

SRS request field could reveal additional information about the strength of connection.  
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Table 5. DCI 1_0 PDSCH Resource Allocations (Fallback). Source: [9], 
[17]. 

Field Description of Field Contents 
Identifier for DCI Format Differentiates DCI format 0_0 and 1_0 
Short Message Indicator Differentiates paging only or paging and scheduling 
Short Messages Informs UE with message regarding the BCCH 
Frequency Domain 
Resource Assignment 

Allocates a source of resource blocks in the frequency 
domain 

Time Domain Resource 
Assignment 

Determines slot offset, PUSCH Mapping Type, starting 
symbol and number of allocated symbols 

VRB-to-PRB Mapping Indicates if interleaving is used on PDSCH 
Modulation and Coding 
Scheme (MCS) 

Defines modulation and coding scheme via 3GPP lookup 
table 

Transport Block Scaling Configures scaling factor for transport block size 
New Data Indicator Indicates if resource allocation is for a re-transmission 
Redundancy Version Indicates the puncturing pattern after channel coding 
HARQ Process Number Indicates the HARQ process to use the resource allocation 
Downlink Assignment 
Index 

Updates the number of accumulated number of 
transmissions requiring acknowledgment for HARQ 

TPC Command for 
Scheduled PUCCH 

Used for closed loop power control as UE is directed to 
increase, decrease, or maintain power 

PUCCH Resource 
Indicator 

Instructs UE to use a specific PUCCH resource when 
returning HARQ acknowledgments 

PDSCH to HARQ 
Feedback Timing 

Determines number of slots between reception of the 
PDSCH and transmissions of the HARQ acknowledgments 

Random-access Preamble 
Index 

For PDCCH Order, specifies preamble for contention free 
random access or triggers contention based random access 

UL/SUL Indicator Indicates whether resource allocation is for the normal 
uplink carrier or the supplemental uplink carrier 

SS/PBCH Index Indicates SS/PBCH block for random access 
PRACH Mask Index Indicates PRACH occasion used for random access 
System Information 
Indicator 

Indicates whether PDSCH resource allocation for 
transmission of system information is for SIB1 or other 

Reserved Bits Added to ensure all variants of DCI 1_0 have equal size 
Padding Added to match size of DCI 1_0 and 0_0 
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Table 6. DCI 1_1 PDSCH Resource Allocations (Standard). Source: [9], 
[17]. 

Field Description of Field Contents 
Identifier for DCI Format Differentiates DCI format 0_1 and 1_1 
Carrier Indicator Configures cross carrier scheduling 
Bandwidth Part Indicator Identifies BWP for frequency domain resource allocation 
Frequency Domain 
Resource Assignment 

Allocates a source of resource blocks in the frequency 
domain 

Time Domain Resource 
Assignment 

Determines slot offset, PUSCH Mapping Type, starting 
symbol and number of allocated symbols 

VRB to PRB Mapping Indicates if interleaving is used on PDSCH 
PRB Bundling Size 
Indicator 

Sets precoding for all contiguous Physical Resource Blocks 
within a Precoding Resource Block Group 

Rate Matching Indicator Sets rate matching to puncture PDSCH resources due to 
‘Reserved Resources’ 

Zero Power CSI 
Reference Signal Trigger 

Triggers aperiodic Zero Power (ZP) CSI Reference Signal 
resources 

Transport Block 1  
MCS, NDI, RV 

Modulation Coding Scheme, New Data Indicator, 
Redundancy Version for Transport Block 1 

Transport Block 2 
MCS, NDI, RV 

Modulation Coding Scheme, New Data Indicator, 
Redundancy Version for Transport Block 2 

HARQ Process Number Indicates the HARQ process to use the resource allocation 
Downlink Assignment 
Index 

Updates the number of accumulated number of transmissions 
requiring acknowledgment for HARQ 

TPC Command for 
Scheduled PUCCH 

Used for closed loop power control as UE is directed to 
increase, decrease, or maintain power 

PUCCH Resource 
Indicator 

Instructs UE to use a specific PUCCH resource when 
returning HARQ acknowledgments 

PDSCH to HARQ 
Feedback Timing 

Determines number of slots between reception of the PDSCH 
and transmissions of the HARQ acknowledgments 

Antenna Ports Indicates which logical antenna ports the UE should use 
Transmission 
Configuration Indication 

Dynamically changes Quasi Co-Location assumptions for the 
PDSCH 

SRS Request Triggers SRS Resource Sets configured for aperiodic trigger 
CBG Transmission 
Information 

Used to configure Code Block Groups to transmit downlink 
data 

CBG Flushing Out 
Information 

Indicates if set of Code Block Groups being retransmitted can 
be combined with previous transmissions 

DMRS Sequence 
Initialization 

If transfer precoding disabled, initializes pseudorandom 
sequence which populates DMRS Resource Elements  

Padding Included if UE receives 1_1 in multiple search spaces 
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c. DCI 2_0, 2_1, 2_2, and 2_3 UE Group Common Signaling 

The DCI format 2_0, which notifies a group of UEs of the slot format, is shown in 

Table 7, where each indicator represents a command to a different UE in the group. The 

DCI format 2_1, which notifies a group of UEs of a pre-emption for time critical 

transmission is shown in Table 8. While the recovery of a DCI format 2_1 message only 

reveals the group of UEs that are not conducting time critical transmissions, in a broader 

UE tracking environment, this information descrambled could be of some value. Table 9 

shows the DCI format 2_2, which is used to transmit TPC commands for PUCCH and 

PUSCH, which could certainly be valuable in understanding that the connection has 

become stronger or weaker for that group requiring the TPC command. Finally, the DCI 

format 2_3, which is used to transmit TPC commands for SRS is shown in Table 10, and 

similarly may be indicative of a change in the strength of connection requiring an increase 

or decrease in power. 

Table 7. DCI 2_0 Provision of Slot Format Indicators. Source: [9], [17]. 

Field Description of Field Contents 
Slot Format Indicator 1 Identifies slot format configuration for first UE 
Slot Format Indicator 2 Identifies slot format configuration for second UE 
… … 
Slot Format Indicator n Identifies slot format configuration for nth UE 

Table 8. DCI 2_1 Provision of Pre-Emption Indications. Source: [9], [17]. 

Field Description of Field Contents 
Pre-Emption Indication 1 Specifies time/frequency resources pre-empted for first UE 
Pre-Emption Indication 2 Specifies time/frequency resources pre-empted for second UE 
… … 
Pre-Emption Indication n Specifies time/frequency resources pre-empted for nth UE 
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Table 9. DCI 2_2 Provision of Closed Loop Power Control Commands for 
PUCCH and PUSCH. Source: [9], [17]. 

Field Description of Field Contents 
Block Number 1 PUCCH and PUSCH TPC command for first UE 
Block Number 2 PUCCH and PUSCH TPC command for second UE 
…  
Block Number n PUCCH and PUSCH TPC command for nth UE 
Padding Depends upon size of DCI 1_0 

Table 10. DCI 2_3 Provision of Closed Loop Power Control Commands to 
SRS. Source: [9], [17]. 

Field Description of Field Contents 
Block Number 1 SRS Request and TPC command for first UE 
Block Number 2 SRS Request and TPC command for second UE 
… … 
Block Number n SRS Request and TPC command for nth UE 
Padding Depends upon size of DCI 1_0 

 

In this chapter, we have provided an overview of mobile communication metrics, 

the background behind 5G physical channels, a method to recover RNTIs in the blind in 

the PDCCH, and a detailed description of the RNTIs and DCI messages as directed by the 

3GPP NR standards. In the next chapter, we present our methodology to optimize the 

recovery of RNTIs for different codeword lengths E , and payload lengths A , across 

different mobile environments and attacker goals.  
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III. METHODOLOGY 

In Chapter II, we provided an overview of mobile communication metrics, the 5G 

physical channels and the method developed in [3] to recover RNTIs through modified 

polar decoding and syndrome matching.  In this chapter, we provide our methodology to 

optimize the recovery of RNTIs for different payload and codeword combinations and 

assess user activity based on the recovered RNTIs and DCI information. At the end of this 

chapter, we include a RNTI recovery walkthrough to demonstrate the optimization steps 

and how a user’s activity can be assessed. 

A. RECOVERY OF USER ACTIVITY 

The methodology presented in this section, as shown in Figure 4, attempts to find 

the optimal parameters of modified polar decoding and syndrome matching to recover 

RNTIs and decode DCI messages without a priori knowledge of the RNTI. First, the 

assessed length of the codeword E , is used to determine the probable payload length, A , 

of the DCI message encoded. Next, the threshold values τ , to be used in the RNTI recovery 

method developed in [3] are evaluated. If the initial A  and τ  values attempted in the model 

do not successfully recover the RNTI, the payload and threshold search spaces are 

expanded. Once RNTIs are recovered, knowledge of successP , which is the probability that 

a RNTI will be recovered for a given intercepted PDCCH message and errorP , which is the 

probability that a syndrome not generated from the correct RNTI is passed by τ ,  allow for 

optimization of the model for further RNTI recoveries. For the recovered RNTIs, the 

associated DCI messages can be descrambled and decoded to reveal different types of user 

activity, such as a change to geographical location or a change in reliability mode from 

normal to URLCC. 
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Figure 4. Method to Optimize Recovery of UE Activity from PDCCH 

Messages without A Priori Knowledge of the RNTI 

B. DCI PAYLOAD ANALYSIS 

A DCI message, sent on the PDCCH, carries information directing the UE how to 

operate on the PUSCH and PDSCH or directs group signaling for SRS power, pre-emption, 

and slot-format. The allowed lengths for DCI messages are 12-140 bits [5]. To recover the 

RNTI in the blind, the actual length of the DCI payload of length A  must be determined. 

To test all possible A  lengths would require up to 128 different payload trials. Testing each 

payload can consume significant resources as the RNTI recovery algorithm attempts to 

match with up to 152  possible scrambling sequences. This section considers methods to find 

the most probable DCI payload lengths in the PDCCH. 

1. Expected DCI Payload Lengths 

While DCI message size ranges from 12-140 bits, in practice DCI 0_0, 0_1, 1_0, 

and 1_1 formats will likely be around 70-80 bits in length, including the 24-bit CRC [7]. 

There will be up to four different DCI message sizes in total and a UE will in the blind 

attempt to decode each size until a message is recovered or all sizes are exhausted [9]. DCI 

1_1 and DCI 0_0 formats will have unique sizes, DCI 1_1 format is matched in size with 

DCI 0_1 format, and the fourth size is utilized by messages activating features through DCI 

2_0, 2_1, 2_2, and/or 2_3 formats [9], [22]. DCI 0_0, 0_1, 1_0, and 1_1 formats are 

typically scrambled by a C-RNTI initiated sequence while the DCI 2_0, 2_1, 2_2, and 2_3 

formats are typically scrambled by a RNTI unique to the purpose of the respective 

messages; e.g., the TPC-SRS-RNTI scrambles DCI 2_3 format [9], [22]. Overall, the DCI 

0_0, 0_1, 1_0, and 1_1 formats are the most desirable target as those DCIs contain the 

PDSCH and PUSCH control information directly related to user activity and are usually 

Determine DCI 
payload lenghts 

and fit to 
codewords

Recover RNTIs 
using modified polar 

decoding and 
syndrome matching

Assess RNTI 
recovery success 

and error 
probabilities

Decode DCI and 
assess user 

activity



33 

all associated with the same C-RNTI. The DCI 2_0, 2_1, 2_2, and 2_3 formats are typically 

associated with a RNTI shared by a group of UEs and without further information would 

not uniquely identify a specific UE [9]. For optimal RNTI recovery, an initial search space 

of DCI payload lengths of 70–80 bits is prudent. If searching the initial range is 

unsuccessful in recovering the RNTI, a pragmatic approach would be to iteratively expand 

the search out from the 70–80-bit range (e.g., 69, 81, 68, 82, etc.). 

2. Maximum DCI Length Due to Probability of Block Error 

For a given E , as A  increases, the number of frozen bits F  available for polar 

coding error correction decreases, reducing the code rate r  and the error correction 

capability of the polar code. For mobile communications, a maximum 310blerP −=   is typical 

in practice [20]. To determine the maximum payload to maintain the desired blerP  for a 

given E , the PDCCH encoding and decoding process are simulated in MATLAB to find 

the payload at which 310blerP −=  as shown in Figure 5. Of note, the blerP  will be affected 

by the decoding method (LLR SC is used), the SNR , and the number of antennas used. 

Greater computational power of the decoder, higher SNR , and more antennas will allow 

for larger payloads to be sent within a codeword before exceeding the acceptable limit of 
310blerP −=  [20]. The probability of block error in a simulation can be calculated by the 

number of block errors per total number of blocks sent, where any bit error in a block 

results in a block error [20]. The expectation is that blerP  will increase as increased A  

results in a smaller F .  Larger E  will be able to support larger A  as they have more bits 

available to be allocated as frozen bits. 

  
Figure 5. Methodology to Determine Maximum Payload Length, A  for a 

Codeword Length, E  within 310blerP −=  
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C. RNTI RECOVERY METHODOLOGY 

In [3], it was demonstrated that a RNTI can be recovered in the blind from 

intercepted PDCCH messages with a much-improved efficiency to a brute force approach. 

This section describes the method to optimize the method to recovery a RNTI shown in 

Figure 6.  As described in detail in Section II.C, for an unknown RNTI, an intercepted 

PDCCH sequence is demodulated, rate recovered, sub-block deinterleaved, and mapped 

from LLR values to bits [3], [9]. At this point, for a known RNTI, the scrambling sequence 

would be applied to descramble the bits prior to polar decoding [3]. To apply modified 

polar decoding, polar decoding is applied to the bits without descrambling as the 

scrambling sequence is unknown [3]. The result of the modified polar decoding process 

produces a sequence of bits defined as an error pattern of length ε  [3]. In addition to successP  

and errorP , we define our RNTI recovery efficiency RNTIη  as the ratio of successful RNTI 

recoveries to the total RNTI syndromes passed by τ . 

 
Figure 6. Modified Polar Decoding Method to Recover RNTIs in the Blind 

from Intercepted PDCCH Messages. Source: [3]. 

A given codeword E  will contain 24A+  bits of payload and CRC and F  frozen 

bits as shown in Figure 7. As discussed in Section II.B.2, E  is scrambled by a sequence 

initiated by the UE RNTI. Recall that there are 162  possible RNTIs, but only the 15 least 

significant bits are used to initiate the scrambling sequence in the PDCCH encoding and 

decoding process [9]. We recall that 

 16 31( 2 ) mod 2init RNTI IDc n η= ⋅ +  (3.1) 
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where initc  is the scrambling sequence initiator,  RNTIn  is the RNTI assigned, and IDη  is the 

assigned cell ID [18]. As the inserted frozen bits are always zeros and the scrambling 

sequence when applied acts as non-random noise to uniquely flip these zeros, a syndrome 

table is pre-generated in which each 15-bit RNTI sequence is applied, and the resultant 

error syndromes are found [3]. The error pattern, 1
0eε −  of length Fε =  recovered from the 

intercepted PDCCH sequence in the blind can then be uniquely matched to a syndrome 
1

0sε −  to identify the RNTI used in the intercepted PDCCH sequence [3]. Each payload and 

codeword combination will produce a unique set of syndromes, so if the payload length is 

unknown, the attacker must iteratively attempt the syndrome matching process for all 

probable payloads until a match is found [3].  

 
Figure 7. Relationship Between Codeword Length E , Payload A , Frozen 

Bits F , and CRC for DCI Messages Encoded in the PDCCH 

1. Selection of Optimal Hamming Threshold 

The optimization of HAMτ  is considered here and the optimization of LCSτ  is 

considered in section III.C.5 where the methods are compared. Recall from Section II.C.2 

that the Hamming method considers the Hamming distance HAMd  between the two 

sequences and is set as a maximum threshold HAMτ  [3]. For RNTI recovery, the optimal 

HAMτ  is influenced by the mobile environment, specifically the number of UEs/RNTIs in 

use, the amount of PDCCH traffic intercepted, and the specific goals of the RNTI recovery 

activity. Consider two attackers who are intercepting PDCCH messages and recovering 

RNTIs. The first attacker intercepts frequent PDCCH messages with only a handful of UEs 

active on the gNB cell. As there are few UEs and many PDCCH messages, this attacker 

can set a low HAMτ  that results in a low individual successP  but will still recover all RNTIs 

due to the large number of messages in which they can process. Once the RNTIs are 
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recovered, this attacker can decode DCI messages for all the UEs in the mobile 

environment and potentially track their activity. A second attacker operates in an 

environment where they are infrequently intercepting PDCCH messages and have many 

UEs connected to the gNB. Since they receive messages infrequently, they need to 

maximize their chance of recovering an RNTI for each intercepted PDCCH message. This 

attacker will use their maximum resources on each intercepted message by setting a high 

HAMτ  to ensure they recover their targeted RNTI to track UE activity. This second attacker 

certainly operates in a more challenging environment, but instead of tracking all UEs, they 

may only be targeting one specific UE that can be confirmed to be linked to a recovered 

RNTI by other means. 

To determine an optimal HAMτ , consider a completely random error pattern of length 

ε . If we are to compare this random sequence to every possible sequence of length ε , the 

Hamming distance HAMd  between sequences will vary between 0HAMd =  when the 

sequence is an exact match and HAMd ε=  when the every bit is opposite. The median 

HAMm , mean HAMµ  and variance 2
HAMσ  are determined empirically by calculating the 

Hamming distance between a randomly generated sequence and 152  other randomly 

generated sequences, repeated for 100 trials. The results are shown in Figure 8 and Table 

11, and we conclude that / 2HAM HAMm µ ε= = . 
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Figure 8. Normalized Histogram of Hamming Distance Results Between 

One Sequence and 152  Randomly Generated Sequences of Length (a) 
10ε =  and (b) 100ε =  

Table 11. Statistics of Hamming Distance Between One Sequence and 152  
Randomly Generated Sequences of Length ε ={10, 100} 

 10ε =  100ε =  
Mean 5 50 
Median 5 50 
Variance 2.5 25 

 

Further analyzing the relationship between ε  and HAMd , we find that the 

distribution of  HAMd  follows a Gaussian distribution with mean / 2HAMµ ε=  and variance 

2 / 4HAMσ ε=  where the relationships were found by analyzing [1:100]ε =  for 100 trials 

each, and the results are shown in Figure 9. Note in Figure 9 that the mean and median are 

identical lines; therefore, the probability density function for HAMd  can be represented by 

 
( )22 /21( )

/ 2

HAM

HAM

d

d HAMf d e
ε

ε

πε

− −

=  (3.2) 
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where  ε  is the length of the error pattern, or more generally the length of a generic binary 

sequence. This distribution fits the data well for the trials of  10ε =  and 100ε =  as shown 

in Figure 10. 

 
Figure 9. Mean, Median, and Variance for Hamming Results Between One 

Sequence and Randomly Generated Sequences of Length [1:100]ε =  
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Figure 10. Normalized Results of Hamming Distance Results Between One 
Sequence and 152  Randomly Generated Sequences of Length (a) 10ε =  
and (b) 100ε =  Overlayed With Gaussian Probability Density Functions 

of / 2HAMµ ε=  and 2 / 4hamσ ε=  

We can also consider the SNR  and the channel bit error rate, bP  to determine an 

initial HAMτ . Consider cases of SNR = {0, 5, 10} dB for an error pattern of length 100ε = . 

In this case, we can calculate the probability of i  channel bit errors as 

 , , ,(1 )i i
i errors b QPSK b QPSKP P P

i
εε − 

= − 
 

 (3.3) 

where  ,b QPSKP  is the probability of QPSK channel bit error and ε  is the length of the error 

pattern. We can estimate that 

 ( ),
0

2 2b
b QPSK

EP Q Q SNR
N

 
= ≈  

 
 (3.4) 

We plot the results of (3.3) and (3.4) for SNR = {0, 5, 10} dB and 100ε =  to generate a 

probability density function (PDF) as shown in Figure 11 and Table 12. From the 
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probability density functions, the expected values of the number of channel bit errors for 

SNR = {0, 5, 10} dB are {7.9, 0.60, 3.9×10-4}, respectively. 

 
Figure 11. Probability Density of the Number of Channel Bit Errors in a 

Sequence of 100ε =  for QPSK and SNR = {0, 5, 10} dB 
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Table 12. Probability Density for Number of Channel Bit Errors in QPSK 

Number of 
Channel Bit Errors 

Probability Density 
for 0SNR =  dB 

Probability Density 
for 5SNR =  dB 

Probability Density 
for 10SNR =  dB 

0 2.77×10-4 5.50×10-1 1.00 
1 2.36×10-3 3.30×10-1 3.87×10-4 
2 9.99×10-3 9.77×10-2 7.42×10-8 
3 2.79×10-2 1.91×10-2 9.38×10-12 
4 5.77×10-2 2.78×10-3 8.81×10-16 
5 9.45×10-2 3.19×10-4 6.55×10-20 
6 1.28×10-1 3.03×10-5 4.02×10-24 
7 1.46×10-1 2.44×10-6 2.09×10-28 
8 1.45×10-1 1.70×10-7 9.40×10-33 
9 1.27×10-1 1.04×10-8 3.72×10-37 
10 9.85×10-2 5.66×10-10 1.31×10-41 
11 6.88×10-2 2.77×10-11 4.15×10-46 
12 4.36×10-2 1.23×10-12 1.19×10-50 
13 2.52×10-2 5.00×10-14 3.13×10-55 
14 1.34×10-2 1.86×10-15 7.52×10-60 
15 6.54×10-3 6.39×10-17 1.67×10-64 
16 2.96×10-3 2.03×10-18 3.44×10-69 
17 1.25×10-3 6.01×10-20 6.57×10-74 
18 4.92×10-4 1.66×10-21 1.17×10-78 
19 1.81×10-4 4.29×10-23 1.96×10-83 
20 6.27×10-5 1.04×10-24 3.08×10-88 

 

If we can predict the number of errors in the channel for a given SNR , we can run 

an input sequence through modified polar decoding to predict the number of subsequent 

bit errors in the output sequence. Recall that modified polar decoding is performed by 
1 1

0 0ˆ ˆN N
Nn p G− −= , where 1

0ˆ Np −  are the polar coded bits estimated from the received LLR 

values, 1
0ˆ
Nn −  are the received bits in which the polar coding process has been reversed, and 

NG  is the polarization matrix. Using a random sequence of 100ε = , we input the sequence 

to modified polar decoding and then repeated the modified polar decoding with bit errors 

added to the input sequence. The results of the modified polar decoded sequence bit errors, 

which is the equivalent of the Hamming distance HAMd  between the sequence with input 

errors and the initial sequence with no errors, are shown in Figure 12 and Table 13. We 

can then select a HAMτ  based on the SNR  and subsequent ,b QPSKP . It will be found in 
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Chapter IV that the RNTI recovery process cannot achieve high successP  when predicting 

modified polar decoded sequence bit errors given SNR  as shown here. Instead, the number 

of polar decoded sequence bit errors should be used as a minimum value for HAMτ  as below 

this value, RNTI recoveries become very challenging. 

 
Figure 12. Output Hamming Distance, HAMd  in a Modified Polar Decoded 

Sequence versus Input Channel Bit Errors for 100ε =  
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Table 13. Modified Polar Decoding Output HAMd  Corresponding to Channel 
Bit Errors in Input for 100ε =  

Number of 
Channel Bit Errors 

Modified Polar Decoding 
Output HAMd   

0 0 
1 17 
2 24 
3 30 
4 33 
5 37 
6 39 
7 41 
8 42 
9 44 
10 44 

 

Without knowledge of SNR , when considering a starting  for RNTI recovery, using 

the median value / 2HAM HAMmτ ε= =  would be expected to result in a 0.50errorP ≈  as half 

of the error patterns will be filtered through the threshold; however, errorP  at / 2HAMτ ε=  

is somewhat lower since in the RNTI recovery trials the RNTI iterative loop will break 

once the correct RNTI is found, which can be estimated to happen about halfway through 

the RNTI search space. As a result, a prudent estimate for 0.50errorP ≈  varies between 

/ 2HAMτ ε=  and 3 / 4HAMτ ε= . Once the baseline successP  and errorP  are determined, a target 

HAMτ  can be chosen, which would be optimized based on the number of PDCCH messages 

intercepted and the goals of the attacker.  

For example, if ten PDCCH messages from the same RNTI are intercepted and an 

arbitrary Hamming distance threshold 33HAMτ =  results in 0.30successP =  , then by (3.1) 

where ( )success mP  is the overall probability of success for messages with the same RNTI and 

m  is the number of messages processed,  

 ( ) 1 (1 )m
success m successP P= − −  (3.5) 
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we conclude that we will have ultimately recovered the RNTI with (10) 0.97successP =  and 

can decode all ten of the messages. It should be clear that an attacker attempting to optimize 

the computing resources expended should choose the strictest threshold that meets the 

desired RNTI recovery requirement.  

2. Increased Payload Length 

We can see from Figure 7, as the payload A  increases, the number of frozen bits 

F  decreases; therefore, the number of error pattern bits ε  to be compared to a syndrome 

decreases as Fε = . In utilizing the Hamming method, which calculates the HAMd  between 

error patterns of length ε , there are now fewer bits in the calculation; therefore, HAMd  

outputs will be lower and more patterns will fall within a fixed HAMτ . In most cases, it is 

desirable to run the RNTI recovery algorithm at a consistent computational power; 

therefore, we want to maintain errorP  constant across payload lengths. To achieve this goal, 

HAMτ  should be decreased to adjust for the decrease in ε  caused by the increased A ; 

however, the threshold is not the only factor affecting the results due to an increase in A . 

Once HAMτ  is adjusted to account for the change in ε , the increased A  can affect successP  

independently of errorP . For one, F  is smaller; therefore, there are less frozen bits for error 

correction purposes resulting in a lower code rate r  that will make it more difficult to 

recover the RNTI as some errors will be uncorrectable. This has a particularly big impact 

in low SNR  cases where correctly received bits are at a premium. 

3. Increased Codeword Length 

In practice, the codeword length E  in which a payload is sent will vary based on 

the resources available on the PDCCH and the maximum blerP ; therefore, it is important to 

analyze the impact of E  on RNTI recovery. Referring to Figure 7, for a given payload A , 

as E  is increased, F  increases significantly. In practice, increases in E  would result in 

an increase from 108E =  to 216E =  and 432E = , which means an increase in F of 108 

and 216 bits, respectively. As Fε = , the increase in F  requires adjustments to HAMτ  as 

described in the previous section. Since more frozen bits are added, HAMτ  would need to be 
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increased based on the number of frozen bits added to adjust for the impact of the Hamming 

calculation on successP  and errorP . Once HAMτ  is adjusted, we consider the impact of 

increasing E  on successP  and errorP . As F  is larger, r  is higher, which improves successP  as 

there is less of a likelihood that the RNTI will be unrecoverable. For this reason, successP and 

Rη  are expected to be higher for larger E . 

4. Impact of Signal-to-Noise Ratio 

The SNR  of the PDCCH signal received from the gNB is determined by 

 24
R T T R

N
N

P P G GSNR
P dP π

λ

= =
 
 
 

 (3.8) 

where RP  is the received signal power, TP  is the transmitted power, NP  is the noise power, 

TG  is the gain of the transmitter, RG  is the gain of the receiver, λ  is the wavelength of the 

transmission, and d  is the distance between the transmitter and receiver [12]. It is evident 

that SNR  is influenced by the NP  (AWGN) and the distance of the UE from the gNB. If 

the UE experiences low SNR , the gNB will adjust TP  to ensure error-free communications. 

On the other hand, the intercepted messages from the gNB and the UE will likely be 

received at a different location, which could be further away from the gNB. Consequently, 

in this thesis we consider low SNR  cases as a very real possibility for RNTI recovery 

operations. 

The ability to recover a RNTI degrades significantly as SNR  decreases due to the 

resultant increase in ,b QPSKP  as given by 

 ( ),
0

2 2( )b
b QPSK

EP Q Q SNR
N

 
= ≈  

 
 (3.9) 

where bE  is the energy per bit, 0N  is the noise spectral density, and SNR  is the signal-to-

noise ratio [13]. To maintain successP  , HAMτ  must be increased to account for the increase 

in bit errors and this can be done to an extent at the expense of more computing resources 
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expended. Further, if ,b QPSKP  is too high, there are cases where the error correction 

capabilities of the polar coding are exceeded resulting in uncorrectable errors and thus 

another case of an unrecoverable RNTI. 

5. Hamming versus LCS Methods 

The difference in performance between the Hamming and LCS Methods as 

analyzed in [3] for 12A =  found that the Hamming method had a slight advantage at the 

lower 5SNR =  dB while the LCS method had a slight advantage at the higher 8SNR =  dB 

when limiting 410errorP −≤ . In this thesis, we evaluate the Hamming and LCS methods for 

E = {108, 128, 216, 256, 432, 512} with SNR = {0, 5, 10} dB  and we consider much 

higher errorP  cases that we expect an attacker to use. Further, we consider the optimization 

of RNTI recovery in which the Hamming and LCS methods have unique nuances. Recall 

that the LCS method considers the longest common substring LCSd of matching bits 

between the two sequences, and if LCS LCSd τ≥ , then the syndrome and error pattern are 

considered a match and the CRC is checked to determine if the RNTI is correct. The LCS 

distance LCSd  will vary between 0LCSd =  where the sequences are the exact opposite of 

each other and LCSd ε=  where the entire sequences match exactly. The mean LCSµ , median 

LCSm , and variance 2
LCSσ  of LCSd  are determined empirically by calculating the LCS 

between a randomly generated RNTI and 152  other randomly generated RNTIs, repeated 

for 100 trials. The results for 10ε =  and 100ε =  are shown in Figure 13. 
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Figure 13. Histogram of Normalized LCS Results Between One Sequence and 

152  Randomly Generated Sequences of Length (a) 10ε =  and (b) 100ε =  

We find that the relationship between LCSd  and ε  much less straightforward in the 

LCS case than for the Hamming case, and so we run the same model for the range of 

[1:100]ε =  to attempt to empirically determine the relationship. We are interested in LCSm  

because this value will allow us to establish a baseline LCSτ  for 0.50errorP ≈ , which we can 

then adjust to be slightly less restrictive due to the fact that a RNTI is matched on average 

halfway through the set of 152  possible values. However, we see in Figure 14 that the LCSm

does not change significantly over long changes in sequence length and then jumps at ε =

{5, 10 22, 45, 90}. On the other hand,  we observe that  LCSµ  and 2
LCSσ  increase 

logarithmically as ε  increases, and specifically we found that 3log( )LCSµ ε≈  is a very 

close approximation as shown in Figure 14.  
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Figure 14. Mean, Median, and Variance for LCS Results Between One 

Sequence and 152  Randomly Generated Sequences of Length [1:100]ε =  

The statistics of LCS has been studied before for the purposes of molecular 

evolution and computational biology and [23] has established upper and lower bounds on 

the expected LCS while [24] has found the distribution can be scaled to match the Tracy-

Widom distribution of the largest eigenvalue of a random matrix whose entries are drawn 

from a Gaussian unitary ensemble. Our results by inspection appear to also be similar to 

the aforementioned Tracy-Widom distribution, but it is important to note that the difference 

between our study and that of [23], [24] is that we are evaluating a LCS in which the indices 

of the sequence must also match while in [23], [24] the matching LCS can be in different 

locations in the two sets. 

Consequently, when considering a starting LCSτ  for RNTI recovery, LCSτ for 

0.50errorP ≈  should be set according to Table 14 while extrapolating for 100ε >  utilizing 

3log( )LCSµ ε=  to guide the estimate of LCSm . We also note LCSτ  is much less variable to 

changes in ε  than HAMτ  with LCSm  being constant for long increases of ε , an important 

concept we will expand on in Chapter IV.  In practice, the RNTI recovery method can be 

run at an assessed LCSτ , and then the effect of E , A , and SNR  can be estimated by 
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measuring the resultant successP , errorP  and Rη . Once the RNTI recovery metrics are 

measured are measured,  LCSτ  can be adjusted accordingly to achieve desired results. 

Table 14. Median of LCS Between One Sequence and 152  Randomly 
Generated Sequences of Length [1:100]ε =  

 4ε ≤  5 10ε≤ <  10 22ε≤ <  22 45ε≤ <  45 90ε≤ <  90 100ε≤ ≤  

Median 2≤  2 3 4 5 6 

 

As we did for the Hamming distance method, if the SNR  is known or can be 

estimated, then we can  find a minimum LCSτ  by analyzing the effect of channel bit errors, 

,b QPSKP  on the modified polar decoded sequence LCS. Recall that Figure 11 and Table 12 

show the probability density of the number of channel bit errors at SNR = {0, 5, 10} dB. 

We apply those input channel bit errors to modified polar decoding and show the output of 

LCS results in Figure 15 and Table 15. We find through successP  results in Chapter IV that 

the expected LCS in the modified polar decoded sequence should be used as a maximum 

LCSτ  for RNTI recovery as it does not result in high successP  as expected, instead provides a 

baseline maximum. 
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Figure 15. Output LCS, LCSd  in a Modified Polar Decoded Sequence versus 

Input Channel Bit Errors for 100ε =  

Table 15. Modified Polar Decoding Output LCSd  Compared to Number of 
Input Channel Bit Errors for 100ε =  

Number of Channel 
Bit Errors 

Modified Polar Decoding 
Output LCSd  

0 100 
1 46 
2 32 
3 24 
4 19 
5 16 
6 14 
7 12 
8 22 
9 10 
10 9 

 

D. ASSESSMENTS OF USER ACTIVITY 

Once the RNTI recovery process has been optimized to meet the goals of the 

attacker, we now must consider what information the attacker has gained access to and how 
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it can be used to track user activity. To do this, we analyze which RNTIs and which DCI 

parameters are exploitable. 

1. Activity Recovered from RNTIs 

RNTIs serve many purposes in the PDCCH, but first and foremost are used as an 

address for PDCCH messages to UEs [9]. The purpose of this section is to associate the 

recovery of certain RNTIs with specific user activity. When a UE first connects to a gNB 

through the PDCCH random-access procedure, the gNB assigns a RA-RNTI and then a 

TC-RNTI to allow for the addressing of the UE in the PDCCH [19]. Recovering a RA-

RNTI or TC-RNTI addressed message is an indication that a new UE has entered the 

geographical area or that a UE is reconnecting from a disconnected state. Once the UE is 

authenticated and a C-RNTI is established, an increase in user activity could be associated 

with an increase in the frequency of PDCCH messages addressed to that C-RNTI. Further, 

it is hypothesized a change in the user’s location resulting in a decrease in SNR  could 

result in an increase in traffic addressed to that C-RNTI as the gNB may need to fine-tune 

UE control parameters more frequently.  

The MCS-C-RNTI is used by the gNB to transition the UE to a higher or lower 

reliability modulation and coding scheme (MCS). This is done by changing the MCS index 

and/or MCS table itself for which the UE references when deciphering the fields of a DCI 

message [9]. If configured, the gNB will transition from scrambling the DCI messages to 

the UE with a C-RNTI to a MCS-C-RNTI [17]. This could be due to distance from the 

gNB, a degraded channel, or a change in operating mode [17]. The MCS-C-RNTI is 

frequently used for URLCC applications, but any UE could be configured with a MCS-C-

RNTI [17]. Further, the TPC-PUSCH-RNTI and TPC-PUCCH-RNTI are used to adjust 

the power of the UE transmissions and can be utilized to increase power in an attempt to 

offset degraded channel conditions [17]. The use of a TPC-PUSCH-RNTI and TPC-

PUCCH-RNTI again could indicated a change in user location or that the user is 

experiencing interference.  Another RNTI that may be activated in degraded channel 

conditions is the SP-CSI RNTI. This RNTI is in use when a gNB may require more frequent 

CSI measurements from the UE such as when the UE is engaged in a voice or video call 
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[17]. Overall, these RNTIs associated with degraded channels can be linked to an 

observable change in geographic location to match the RNTI to a specific UE or be used 

to inform the attacker of a change in a tracked UE location. 

Beyond tracking changes to the channel, other RNTIs are used to trigger a UE into 

certain modes of operation as signaled by the gNB. The MCS-C-RNTI was previously 

discussed and could fall into this category for high reliability applications, such as those 

used by URLCC devices. Additionally, the CS-RNTI is used by the gNB to trigger a 

configured scheduling mode in which the UE has a configured grant resource allocation in 

which it transmits rather than receiving a resource allocation on the PDCCH each time it 

requires an uplink transmission [17]. The CS-RNTI is used by the gNB to manage 

applications with a predictable and periodic traffic pattern, such as VoIP or URLCC 

communications and to conserve signaling resources in machine-type communications 

(MTC), which require small and infrequent packets [17]. In the first case, recovering a CS-

RNTI can alert an attacker that a UE is making a VoIP call or using a similar application. 

In the latter cases, a CS-RNTI recovered can identify a device has transitioned to a URLCC 

mode or a mode in which only MTC are in use. 

The INT-RNTI is used to address a group of UEs when the gNB requires an 

interruption for time-critical transmissions in the downlink [19]. This RNTI is sent to a 

group of UEs and while little information is revealed about the group, recovery of the INT-

RNTI provides knowledge that a separate UE, not included in the group, is conducting 

time-critical transmissions. Lastly, one caveat of RNTIs used to scramble DCI 0_0, 0_1, 

1_0, and 1_1 messages is that the RNTI recovery methodology presented in this thesis is 

not able to deduce which type of RNTI is scrambling the DCI message in the PDCCH 

without further information. For example, if only one RNTI is recovered, there is no way 

to know if it is the C-RNTI or a MCS-C-RNTI or a CS-RNTI as all scramble the same 

types of DCI messages. To gain valuable intelligence from these RNTIs, UE and RNTI 

relationships must be continuously tracked to identify new RNTIs and changes in traffic 

patterns of active RNTIs. Table 16 summarizes possible UE activity and RNTIS that could 

be indicative of that activity. 
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Table 16. Possible UE Activity Recovered from RNTIs Recovered in the 
PDCCH 

UE Activity RNTIs Indicative of Activity 
UE has changed geographic location or 
is experiencing interference 

RA-RNTI 
TC-RNTI 
C-RNTI 
MCS-C-RNTI 
TPC-PUSCH-RNTI 
TPC-PUCCH-RNTI 
TPC-SRS-RNTI 
SP-CSI-RNTI 
TC-RNTI 
RA-RNTI 

UE is in a URLCC mode (critical IoT) MCS-C-RNTI 
UE is in a SPS mode (VoIP call, 
URLCC, MTC) 

CS-RNTI 
SP-CSI-RNTI 

A UE in the cell is conducting time-
critical transmissions 

INT-RNTI 

A UE in the cell is first connecting or 
re-connecting to the cell 

RA-RNTI, TC-RNTI 

2. Activity Recovered from DCI Messages 

Once the RNTI is recovered, the DCI message that is scrambled by the RNTI can 

be fully recovered, which reveals further information about the activity of the UE. DCI 

messages contain a myriad of information directing the UE how to operate on the PUSCH 

and PDSCH channels and what PDCCH features are activated for the UE. Similar to the 

RNTI, the information recovered from DCI messages can reveal user activity to include 

geographic location changes and mode of operation. The full list of information carried by 

DCI messages is listed in Section II.D.2 (specifically, see Tables 3–10).  

First and foremost, changes to a UE geographical location can be revealed through 

information updated by the gNB in DCI messages. Recall that the received power is given 

by 

 T T R
R b b

C

P G GP E R
L

= =  (3.10) 

where the increase in an increase in CL  leads to a decrease in  RP   and bE , which by 
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 
 (3.11) 

causes an increase in ,b QPSKP  [12], [13]. This increase in ,b QPSKP  causes an increase in the 

information bit error rate bP . The requirement to maintain bP  should trigger the gNB to 

change DCI fields to direct the UE to offset the higher bP  either by increasing TP , changing 

the MCS or if necessary adjust other DCI fields to compensate, e.g., HARQ reporting and 

CSI reporting. Working backwards, if we observe a change in DCI fields directing a higher 

TP  or otherwise changing requirements to combat high bP , we can deduce that the UE may 

be moving further away from the gNB. Further, potential changes to geographic location 

can be correlated with the timing advance (TA) assigned to the UE transmissions. A TA is 

typically assigned as a medium access control (MAC) layer control element (CE), which 

is a header applied to the MAC layer in the PBCH, PRACH, or PDSCH [19]. Once a RNTI 

is recovered and DCI messages decoded, the UE TA can be recovered by monitoring the 

PDSCH frequency and time resources assigned in the DCI 1_0 and 1_1 messages for the 

TA MAC CE. 

A change in location resulting in a degraded channel would result in the gNB 

directing the UE to change to a more reliable MCS in the PUCCH and PDSCH. This is 

accomplished by changing the bit value of the MCS field [5]. The gNB could also adjust 

the HARQ Process Number field to change to a more frequent HARQ reporting mode [17]. 

A change in HARQ reporting could also be revealed in the Downlink Assignment Index, 

which determines the number of transmissions requiring acknowledgment before a HARQ 

request is sent or the PUCCH to HARQ Feedback Timing Indicator for which the gNB 

could increase the number of slots between PDSCH reception and the transmission of 

HARQ acknowledgment in a degraded channel [17].  

Further, the TPC Command for Scheduled PUSCH and the TPC Command for 

Scheduled PUCCH fields are used as a gNB command to the UE to increase power on the 

PUSCH or PUCCH, respectively, in the event of a degraded channel [17]. The New Data 

Indicator field may be more frequently be set to zero in a degraded channel as this field 

indicates a re-transmission [17]. Similarly, the TB Block Scaling field can be adjusted by 
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the gNB to increase redundancy [17].  Lastly, the SRS Resource Indicator, SRS Request, 

and CSI Request fields can also be adjusted by the gNB to direct the UE to send more SRS 

and/or CSI messages in a degraded channel situation [17]. While this discussion was 

initiated for a degraded channel due to a change in geographic location, the same 

conclusions could be drawn for a degraded channel caused by interference.   

In the initial access case, the Random-access Preamble Index field would be used 

for the PDCCH Random-access Procedure, indicative that a UE that is first connecting or 

re-connecting to the gNB [17]. DCI messages also reveal indications of URLCC mode and 

carrier configuration. In the MCS field, frequently used with devices in URLCC mode, this 

could reveal a factory IoT device or other type of UE designed for URLCC [17]. The 

Uplink/Supplemental Uplink Indicator and Carrier Indicator fields, which reveal that a 

device is configured on multiple uplinks or carriers [17]. Table 17 summarizes possible UE 

activity and DCI fields that could be indicative of that activity. 

Table 17. Activity Recovered from DCI Fields 

UE Activity DCI Fields Indicative of Activity 
UE has changed geographic 
location or is experiencing 
interference 

Modulation and Coding Scheme 
HARQ Process Number 
TPC Command for Scheduled PUSCH 
TPC Command for Scheduled PUCCH 
TPC Command for SRS 
SRS Resource Indicator 
SRS Request 
CSI Request 
New Data Indicator 
TB Scaling Indicator 
Downlink Assignment Index 
PUCCH to HARQ Feedback Timing Indicator 
Random-access Preamble Index 

UE is in a URLCC mode Modulation and Coding Scheme 
UE is being configured across 
multiple carriers or links 

Uplink/Supplemental Uplink Indicator  
Carrier Indicator 

A UE in the cell is conducting 
time-critical transmissions 

Pre-emption Indication 
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E. ACTIVITY RECOVERY DEMONSTRATION 

In this section, we will demonstrate the recovery of user activity from a DCI 

message starting from the PDCCH interception. This example evaluates a specific payload-

codeword combination to demonstrate the methodology to recover activity information 

through RNTI recovery and highlights the parameters that will later be adjusted to optimize 

the RNTI recovery process over a broad range of payloads, codewords, and channel 

conditions.  

1. DCI Encoding of Control Information 

In this example, let us assume the UE is moving away from the gNB; therefore, the 

gNB will reduce the complexity of the uplink MCS and increase the requested power from 

the UE to maintain a constant bP . Note that on the gNB transmitter side, the transmitted 

power of the downlink will likely be adjusted as well, but since the gNB controls the 

transmitter, the gNB has no need to send out a message to the UE to do so. It is assumed 

that the gNB and UE are using the Fallback DCI formats and, therefore, the gNB will assign 

the updates to the UE in a DCI 0_0 PUSCH Resource Allocation (Fallback) message. 

The UE operating on the PUSCH is assumed to initially be using MCS index table 

4, index, 19MCSI = , which corresponds to 64QAM, target code rate, 0.554r = , spectral 

efficiency 3.3223spectralη = . As the UE has moved away from the gNB, we will assume the 

MCS is reduced to MCS index table 4 3MCSI = , which corresponds to QPSK, 0.245r =  

and 0.4902spectralη =  [17]. In the DCI 0_0, the MCS field is encoded at the bit level as [0 0 

0 1 1]. Additionally, the gNB and UE are assumed to be using closed loop power control, 

and the gNB will issue a transmit power control (TPC) command to increase the UE 

transmitted power on the PUSCH. To accomplish this, the DCI 0_0 field TPC Command 

for Scheduled PUSCH field is set to [1 0], which selects the third element in the set of {-4, 

-1, 1, 4} and directs a power increase from the UE of 1 dB [17]. All other DCI fields are 

assumed to remain constant for this example. As laid out in Table 18, once the DCI 

parameters are selected, the DCI 0_0 message at the bit level is  

39
0a = [0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1],  
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where 39
0a  is the DCI payload bit string of length 40 bits. 

Table 18. DCI 0_0 Encoding for 1a  to Trigger Decrease in MCS and 
Increase in TPC Power Control 

Field Number of Bits Bits Assigned 
Identifier for DCI Formats 1 0 
Frequency Domain Resource 
Assignment 

Depends on size 
of uplink BWP 

0110011101101 

Time Domain Resource 
Assignment 

4 0010 

Frequency Hopping Flag 1 0 
Modulation and Coding Scheme 5 00011 
New Data Indicator 1 0 
Redundancy Version 2 11 
HARQ Process Number 4 1000 
TPC Command for Scheduled 
PUSCH 

2 10 

Padding 6 (depends on 
DCI 1_0 size) 

000000 

Uplink/Supplemental Uplink 
Indicator 

1 or 0 1 

 

2. PDCCH Encoding of DCI  

The DCI is now encoded for transmission in the PDCCH. An RNTI is randomly 

assigned in the range of [1,65534], and an arbitrary cell ID 10IDη = is used. To prepare the 

DCI for transmission, the PDCCH encoding and modulation process as described in 

Section II.B.2 is performed. First, 24 CRC bits are calculated and inserted by scrambling 

and interleaving. The resultant block is encoded through polar coding followed by sub-

block interleaving and rate matching to the codeword length E , then scrambling with an 

RNTI initialized sequence. Finally, the DCI message, now encoded in a codeword of length 

E  is modulated and sent as QPSK symbols [9].  For this example, 216E =  was selected, 

which is a typical value for a PDCCH codeword [22]. During rate matching, the polar 

coded sequence, which expands the block to 256N =  bits, is shortened to 216E =  bits 
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by removing frozen bits (puncturing). The scrambled 216E =  bits are QPSK modulated 

and transmitted as 108 complex QPSK symbols. 

3. Recovery of RNTI Through Syndrome Matching 

This section follows the methodology developed in [3] to recover the RNTI in the 

blind by using modified polar decoding and syndrome matching. To simulate real channel 

conditions, AWGN noise is added and then the received QPSK signals are demodulated to 

log-likelihood ratio (LLR) values. First, the 216E =  bit sequence is rate recovered to the 

polar coding block size of 256N =  by reversing the puncturing step of the encoding 

process. Next, the sub-block interleaving is reversed and the LLR values are mapped to 

bits. Modified polar decoding is then performed to recover an error pattern of length Fε =  

where the error bit indices are uniquely affected by the RNTI initiated scrambling 

sequence. The error pattern is compared to a pre-generated syndrome table of all possible 
152  RNTI initiated scrambling sequences for the combination of 216E =  and 40A = . In 

this example, the Hamming distance thresholds used are HAMτ = {5, 14, 24, 33, 43, 52, 62, 

71, 81, 90}.  

In each HAMτ  case, if the Hamming distance between the received error pattern and 

an entry in the syndrome table is less than HAMτ , then that syndrome is considered a match 

and the associated RNTI is used to descramble the received PDCCH message and decode 

the DCI data bits and CRC bits. If a CRC calculated from the DCI data bits matches the 

CRC recovered from the PDCCH message, then the syndrome is considered correct and 

the RNTI is recovered. The HAMτ  range was chosen to evaluate successP  and errorP  over a 

broad range of cases from 5HAMτ =  where very few, if any, Hamming distance calculations 

outside of the correct RNTI sequence will meet the threshold and 90HAMτ =  where we 

approach the brute force case of evaluating every RNTI possibility. We know that 

24 152F E Aε = = − − = ; therefore, we expect 0.50errorP =  to fall between 

/ 2 76HAMτ ε= =  and 3 / 4 114HAMτ ε= = . Once we select a HAMτ  to meet our RNTI 

recovery goals, the threshold can be held relatively constant as described in Section 3.E.4. 
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4. Evaluation of RNTI Recovery Success and Error Probabilities 

We ran 300 trials at each HAMτ  to evaluate the impact of  HAMτ  on  successP  , errorP

and Rη . The results, as seen in Figure 16, show the expected monotonic increase in successP  

and errorP  with HAMτ . The estimate of 0.50errorP =  between / 2 76HAMτ ε= =  and  

3 / 4 114HAMτ ε= =  is validated in Figure 16 (b). Further, we see in Figure 16 (b) that errorP  

increases significantly above 60HAMτ =  when we are still achieving  0.50successP ≈  as seen 

in Figure 16 (a); therefore, if we were operating in an environment in which we are 

intercepting frequent PDCCH messages, this is a HAMτ  that uses resources very efficiently. 

However, if we are in an environment where we want to ensure we recover RNTIs as a 

very high successP , then we need to consider Figure 17, which shows RNTI recovery 

efficiency Rη  as we attempt to increase the number of RNTIs recovered. The Rη  

relationship between successP  and errorP  is mostly linear, but we keep in mind that this is a 

log-log scale, so while Rη  is linear, the resources expended to achieve a higher successP  are 

increasing exponentially. 

 
Figure 16. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 40A = , 5SNR =  dB, 216E = , and DCI Payload 39
0a  
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Figure 17. Hamming Method RNTI Recovery Efficiency for 40A = , 

216E = , 5SNR =  dB and DCI Payload 39
0a  as shown by successP  versus 

errorP   

5. Decoding of DCI Information and Assessment of UE Activity  

As the RNTI is recovered, the attacker can now decode the DCI message and 

recover the payload bits that carry DCI field information. In this case, we recover the DCI 

bits  

1â = [0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1] 

where 1â  represents the DCI payload bits recovered. In the fields relevant for UE activity 

tracking, first the MCS is field is recovered as [0 0 0 1 1], which corresponds to MCS index 

table 4 3MCSI =  directing QPSK, 0.245r = , and 0.4902spectralη = , a decrease in MCS from 

our initial value. Second, the TPC Command for Scheduled PUSCH field is revealed to be 

[1 0], which directs a power increase from the UE of 1 dB.  

Note that in this example, we assume that the attacker has some prior knowledge 

of the UE state, presumably from previous RNTI recovered DCI messages. Since the 

attacker knows that the MCS field has been changed to a lower code rate and spectral 

efficiency and the TPC Command for Scheduled PUSCH has been increased, the attacker 

can deduce that the UE is moving further from the gNB. With this information and a 
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possible method to associate the UE to this activity (e.g., location of interference, visual of 

UE moving, only UE in area, etc.), the RNTI can be linked to a UE for further tracking. It 

is not beyond noting that if the attacker were to generate interference on a target UE to 

intentionally degrade the channel, they could use this to determine which RNTIs DCI 

messages are directed to offset the degraded channel and now can associate that RNTI with 

the UE being interfered with. 

In this chapter, we have provided the methodology for optimizing the recovery of 

RNTIs in different mobile environments. We discussed the impact on RNTI recovery of

,A  E , SNR , and Hamming versus LCS methods. We presented an empirical statistical 

analysis of the Hamming and LCS distances to understand how τ  can be used as a lever 

to control the RNTI recovery successP , errorP  and Rη . Finally, we provided a RNTI recovery 

walkthrough to demonstrate how an attacker could adjust parameters and methods to 

optimally recover user activity in a specific scenario. 
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IV. SIMULATION RESULTS AND ANALYSIS 

In Chapter III, we presented the methodology to determine probable DCI payload 

lengths and to optimize recovering RNTIs using modified polar decoding and syndrome 

matching to decode DCI messages and assess user activity. This chapter provides the 

structure of the MATLAB models used for the DCI payload and RNTI recovery 

simulations and then presents the results for E =  {108, 128, 216, 256, 432, 512}. For each 

E , results of RNTI recovery are presented for a range of payloads using the Hamming 

method. Further we consider RNTI recovery results at varying SNR  and using the LCS 

method. Finally, we present a discussion of what UE activity can be recovered using the 

RNTIs recovered by these methods. 

A. MAXIMUM DCI PAYLOAD MODEL 

A 310blerP −≤  is typical in mobile communications, so to find the maximum 

supported DCI payloads within this blerP , a simulation was created utilizing the MATLAB 

5G toolbox to model the encoding and decoding of the PDCCH channel as shown in Figure 

18. First, randomly generated DCI payload of lengths A =  [12,140] are encoded onto a 

codeword of length E , QPSK modulated, and simulated to be sent over an AWGN 

channel. The recovered codeword is demodulated, decoded, and error corrected through 

the polar coding built in to the PDCCH encoding and decoding process. The recovered 

payload is then compared to the sent payload. If they are not identical, then a block error 

has occurred. The simulation is repeated for the codeword lengths E = {108, 128, 216, 256, 

432, 512}. The output metric of this model is number of block errors per blocks sent or 

blerP  where it should be noted that any bit error in a block will result in a block error. We 

simulated 50,000 trials at SNR = {0, 5, 10} dB and measured the number of block errors. 

The large number of trials was necessary as there are few errors when A  is small or E  is 

large as the polar coding applied in the PDCCH process has considerable error correction 

capabilities. The output data was analyzed to determine the maximum A  for each E  that 

meets the 310blerP −≤  requirement. 
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Figure 18. MATLAB Model to Determine Maximum Supported A  for Each 

E  for 310blerP −≤  Requirement 

It is important to note that the polar decoding function in this model is accomplished 

by successive cancellation (SC) decoding, which is equivalent to successive cancellation 

list (SCL) decoding with list length, 1L =  [20]. In practice, the L  may be higher, a typical 

value can be as high as 8L = , and this will allow for larger payloads to be sent within the 

codeword limits [20]. However, in this thesis, the SCL decoding of 1L =  sets a baseline 

and the assumed maximum payload can be adjusted as an input to the activity recovery 

model. Similarly, this thesis assumes one antenna, but additional antennas can improve the 

overall recovery of data bits [3]. 

B. MAXIMUM DCI PAYLOAD RESULTS 

The results of 50,000 trials at all possible payloads, A =  [12:140] , codeword 

lengths E = {108, 128, 216, 256, 432, 512}, and varying SNR = {0, 5, 10} dB are 

presented in Figures 19, 20, and 21, respectively. The results confirm that larger codewords 

can support larger payloads within 310blerP −≤ . In fact, for 5SNR =  dB the codewords E =

{432, 512} are not limited by the maximum 310blerP −=  and can support up to the maximum 

DCI payload of 140 bits. For the 5SNR =  dB case, which will be evaluated in detail, the 

maximum DCI payloads are listed in Table 19.  

Under poor channel conditions, as shown in Figure 19 for 0SNR =  dB, the 

maximum DCI payloads are further limited. In this case, codewords E = {108, 128} cannot 

support any DCI payloads within the desired blerP , codewords E = {216, 256} can only 

support small payloads of approximately 50A ≤ , and codewords E = {432, 512} now are 

limited and cannot support the maximum 140A = . If the SNR  were this low in practice, 

the gNB would most likely increase 512E >  or take other means outside of channel coding 
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to manage the high blerP . On the other hand, under good channel conditions, as shown in 

Figure 21 for 10SNR =  dB, the maximum DCI payload lengths meeting 310blerP −≤  are 

much higher. Codewords E = {216, 256, 432, 512} can support all DCI payloads up to the 

maximum 140 bits while codewords E = {108, 128} are limited by the blerP  but can support 

much higher payloads than the baseline 5SNR =  dB case. 

 
Figure 19. Probability of Block Error at Payload Lengths A =  [12:140] and 

Codeword Lengths E = {108, 128, 216, 256, 432, 512} with 0SNR =  dB 
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Figure 20. Probability of Block Error at Varied Payload Lengths A = [12:140] 

and Codeword Lengths E = {108, 126, 216, 256} with 5SNR =  dB 

 
Figure 21. Probability of Block Error at Varied Payload Lengths A = [12:140] 

and Codeword Lengths E = {108, 128} with 10SNR =  dB 
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Table 19. Maximum Payload for 310blerP −≤  and 5SNR =  dB 

Codeword Length Maximum Payload  
108 33 
128 49 
216 103 
256 133 
432 140+ 
512 140+ 

 

C. RNTI RECOVERY MODEL 

The simulation to recover RNTIs from intercepted PDCCH messages is modeled 

using the MATLAB 5G toolbox and MATLAB code developed in [3]. The goal of the 

simulation is to input the bit stream of a PDCCH codeword without knowledge of the RNTI 

and ultimately recover the DCI bits from which user activity can be determined. While a 

brute force method can be attempted, the modified polar coding and syndrome matching 

technique presented in [3] is expanded to the full spectrum of payload lengths within 

several practical codeword lengths. The simulation metrics and thresholds are analyzed for 

changes to A , E , SNR , τ , and recovery method to determine optimal RNTI recovery for 

different mobile traffic environments and distinctive UE tracking goals. 

1. Input Variables and Factors 

First, the DCI payload range A  and codeword lengths E  are  considered, and in 

this thesis we choose the A  and E  inputs to the RNTI recovery simulation to reflect values 

used in practice as much as possible. The codeword lengths in practice are E = {108, 216, 

432} [10]. As RNTI recovery becomes increasingly effective at large codeword lengths 

due to the increase in frozen and error pattern bits for evaluation, this simulation was 

limited in scope to codeword length up to 432E =  for practical values. For the practical 

values, simulations were also run at the associated polar coding codeword lengths E =

{128, 256, 512}, where the codeword bits are matched to the polar coding bits, but due to 

the mechanisms of polar coding are constrained to 2nN =  in size. The payloads A  are 

spaced to explore the entire range of possible results for each E . The minimum allowed 
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DCI payload length is 12A = , and the maximum was chosen to be the lesser of the 

maximum allowed DCI payload 140A =  or the maximum A  found for 310blerP −≤  as 

discussed in Section IV.B and presented in Table 19 [9]. As shown in Table 20, the A  

values to be tested were linearly spaced between the minimum and maximum A  to produce 

five total values for E = {108, 128} and ten total values for E = {216, 256, 432, 512}; more 

values were added in the latter cases to account for the larger range of possible payloads. 

In Sections IV.D.1 through IV.D.4, the Hamming distance method is used to 

determine if an error pattern and a syndrome are considered a match; therefore, Hamming 

distance thresholds are set as simulation inputs. The maximum HAMτ  was chosen to be 

/ 2HAM Eτ =  as this threshold value approaches the brute force case. For the minimum, 

5HAMτ =  was chosen as this was shown by trial and error to significantly limit errorP  while 

still recovering RNTIs. Recall that 24E Aε= + +  and a threshold between / 2HAMτ ε=  

and 3 / 4HAMτ ε=  will result in 0.50errorP ≈ . Within the minimum and maximum HAMτ , 

threshold values were linearly spaced to produce five total values for codewords E = {108, 

128} as shown in Table 20. Also shown in Table 20, for the larger codewords E = {216, 

256, 432, 512}, ten threshold values were linearly spaced between minimum and maximum 

to produce ten total values, this time for the larger range of possible Hamming distances 

due to an increase in ε . 
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Table 20. MATLAB RNTI Recovery Simulation Inputs 

Codeword 
Length ( E ) 

Payload Lengths ( A ) Hamming Threshold Values 
( HAMτ ) 

108 12, 17 23, 28, 33 5, 13, 21, 28, 36 
128 12, 21, 31, 40, 49 5, 15, 26, 36, 46 
216 12, 22, 32, 42, 52, 63, 73, 

83, 93, 103 
5, 14, 24, 33, 43, 52, 62, 71, 
81, 90 

256 12, 25, 39, 52, 66, 79, 93, 
106, 120, 133 

5, 17, 28, 40, 52, 63, 75, 87, 
98, 110  

432 12, 26, 40, 55, 69, 83, 97, 
112, 126, 140  

5, 26, 48, 69, 90, 112, 133, 
154, 176, 197 

512 12, 26, 40, 55, 69, 83, 97, 
112, 126, 140 

5, 31, 57, 83, 109, 134, 160 
186, 212, 238 

 

2. MATLAB Model for RNTI and DCI Recovery 

The intercepted PDCCH message is first generated using the MATLAB 5G toolbox 

functions of nrDCIEncode() and nrPDCCH(), which are derived from 3GPP 5G 

standards TS 38.212 [9] and TS 38.211 [18], respectively. The function nrDCIEncode() 

takes the payload of length A , the RNTI, and the codeword length E  as inputs and 

performs the CRC attachment, polar coding, and rate matching to output the encoded DCI 

bits. The input payload bits of length A  and the RNTI are randomly generated in our 

model. Inputs to the function nrPDCCH() are the encoded DCI bits, IDη , and RNTI, and 

outputs are the complex QPSK modulation symbols. The overall model used in MATLAB 

to generate the PDCCH QPSK symbols is shown in Figure 22. Next, AWGN is added to 

the QPSK symbols using awgn() to simulate realistic channel conditions.  

 
Figure 22. MATLAB Model for PDCCH Encoding Following 3GPP 

Standards [9] and [18]. 
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At this point, if the RNTI is known, the functions nrPDCCHDecode() and 

nrDCIDecode() can be used to demodulate and decode the DCI message. However, 

since the PDCCH message is recovered in the blind, the modified polar decoding and RNTI 

recovery process demonstrated in [3] is used. First, the nrSymbolDemodulate() 

function is used, which demodulates the received QPSK + AWGN symbols using soft 

decision decoding into LLR values. Next, the steps of rate matching and sub-block 

interleaving are reversed from the encoding process and the LLR values are mapped to 

bits. The step that is omitted is the descrambling since the RNTI is unknown, thus the 

output block is 2nN =  polar coded bits scrambled by a Gold sequence initiated by the 

RNTI. The modified frozen bits of length F  of this scrambled sequence are extracted as 

the error pattern and compared via Hamming distance to the error pattern syndromes pre-

generated for all possible RNTIs [3]. A schematic diagram of this method is shown in 

Figure 23, and the output of this stage is a syndrome of length Fε =  that matches the error 

pattern within a Hamming distance threshold HAMτ . This is an iterative process that 

attempts to match each syndrome for all RNTI possibilities sequentially from 1RNTIn =  

through 152RNTIn =  and breaks the loop only if a decoded CRC correctly matches the CRC 

calculated for the recovered DCI bits as described in the next few steps [3]. 

 
Figure 23. MATLAB Model for Modified Polar Decoding and Syndrome 

Matching to Recover RNTIs in the PDCCH as Developed in [3]. 

For an error pattern that matches a syndrome within the Hamming distance 

threshold, we then go back to the associated LLR values and perform the descrambling, 

rate matching and sub-block deinterleaving to recover the unscrambled polar coded bits 

[3]. These unscrambled bits are then decoded using nrPolarDecode() and recovered 
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by nrCRCDecode() as shown in Figure 24. For the actual RNTI used to encode, 

nrPDCCHDecode() and nrDCIDecode() could replace the descrambling, rate 

matching, sub-block deinterleaving and polar decoding steps performed by manual 

functions nrPolarDecode() and nrCRCDecode(). However, since we do not know 

if the matching syndrome is associated with the correct RNTI, the process is broken down 

to allow for the calculation of the CRC from the DCI bits, which can be compared to the 

decoded CRC recovered from descrambling. To check the CRC, nrCRCDecode() is 

used and if the calculated CRC matches the decoded CRC, then the RNTI is determined to 

be correct and the iterative loop comparing error patterns to syndrome matches is ended, 

and the RNTI is considered recovered. If the calculated CRC does not match the recovered 

CRC, then the iterative process continues for 1RNTIn =  through 152RNTIn = . The RNTI from 

the next match within HAMτ   is used to descramble that syndrome match, and the process 

is repeated until the correct RNTI is found or the entire set of RNTI syndrome matches is 

evaluated [3]. 

 
Figure 24. MATLAB Model for RNTI Recovery for Matched Syndromes in 

the PDCCH as Developed from [3]. 

3. Simulation Metrics 

As the received error pattern is compared to each RNTI associated syndrome, there 

are five possible outcomes as first presented in [3] and shown in Figure 25. To optimize 

the RNTI recovery process, the True Positive case should be maximized while minimizing 

the False Positives. This will optimize the processing required to recover the RNTI as each 

case in which a syndrome match is processed within the threshold, the descrambling, 

decoding, and CRC check calculations must be completed.  
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Figure 25. Decision Tree and Output Metrics for MATLAB RNTI Recovery 

Simulation. Source: [3]. 

Probabilities successP  and errorP  are the focus in this thesis as we are evaluating 

successfully recovered RNTIs ( successP ) and the resources expended by processing 

syndromes within the threshold but not resulting in a recovered RNTI ( errorP ). To calculate 

our statistics in terms of simulation outcomes, we define the probability that a RNTI will 

be recovered for a given intercepted PDCCH message 

 TruePositive
success

trials

nP
N

=  (4.1) 

where TruePositiven  is the number of True Positive outcomes, and trialsN  is the number of trials 

or the number of PDCCH messages processed. A True Positive is the case where the correct 

RNTI syndrome is passed by τ , decoded, and verified as the correct RNTI by CRC check. 

Further, we define the probability that a syndrome not generated from the correct RNTI is 

passed by τ as 
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TypeI TypeIIb

error
trials

n n
P

N
+

=
⋅

 (4.2) 

where  TypeIn  is the number of False Positive (Type I) errors, TypeIIbn  is the number of False 

Negative (Type IIb) errors, and trialsN  is the number of trials or the number of PDCCH 

messages processed. A False Positive (Type I) error occurs when a syndrome is within τ  

but is not the correct RNTI syndrome,  thus is rejected once the CRC bits are checked. A 

False Negative (Type IIb) will occur if the correct RNTI syndrome is within τ , but the 

CRC bits do not check due to bit errors, and in our model this will be counted within  errorP  

since we don’t know that the CRC check failure was in fact the correct RNTI. This case is 

only common in low SNR  scenarios and since this RNTI syndrome is only one of 152 , it 

does not statistically impact errorP . A False Negative (Type IIa) is a failure of the RNTI 

syndrome to be matched to the error pattern within τ  and is accounted for as approximately 

1 successP− , where the approximate characterization is due to the possibility of a False 

Negative (Type IIb) error. Similarly, a True Negative is the case where the incorrect RNTI 

syndrome is not properly matched within τ  and is accounted for as 1 .errorP−  

The last statistic we define is the RNTI recovery efficiency Rη  as the ratio of 

successful RNTI recoveries to the total RNTI syndromes passed by the τ , which we can 

calculate as 

 15 15

1
(2 1) 2

TruePositive success success
R

TypeI TypeIIb TruePositive error success error

n P P
n n n P P P

η  = = ≈  + + ⋅ − +  
 (4.3) 

We note that for a brute force case, 15 15

1 0
2 1 (2 1) 1

success
R

error success

P
P P

η = = =
⋅ + ⋅ − +

, and for a 

perfect recovery case 15 15

1 1
2 0 (2 1) 1

success
R

error success

P
P P

η = = =
⋅ + ⋅ − +

. We caution the reader 

that 1Rη =  does not mean that all RNTIs are recovered but that any RNTI that is recovered 

is done with perfect efficiency, i.e., with no more extra computations than necessary.  
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Finally, we expand on the metrics established in [6] to explain how adjusting 

parameters can drive model outcomes, the factors that significantly influence the respective 

outcomes are described in Table 21. It is important to note that to achieve a higher 

probability of True Positive, directly increasing successP , the threshold τ  for matching error 

patterns to syndromes should be relaxed. However, this also increases the probability of 

False Positives, increasing errorP . Therefore, in a real-world mobile environment, it is 

recommended to establish successP  and errorP  for a τ  resulting in 0.50errorP ≈ , and 

subsequently adjust τ  in real time to optimize RNTI recovery. As will be shown in Section 

IV.D.4, higher SNR  results in an increase in True Positives without significantly effecting 

False Positives, thus resulting in a much higher recovery efficiency, Rη . 

Table 21. RNTI Recovery Output Metrics. Source: [3]. 

Model Outcome Description of Result Significant Influence(s) 
True Positive Received frozen bit pattern matches 

syndrome within threshold, CRC 
bits check, the RNTI is successfully 
recovered 

Relaxed threshold → 
higher likelihood  
Increased SNR → higher 
likelihood 

False Negative 
(Type IIb) 

For the correct RNTI, received 
frozen bit pattern matches syndrome 
within threshold, CRC bits do not 
check 

Increased SNR → lower 
likelihood 

False Positive 
(Type I) 

Received frozen bit pattern matches 
syndrome within threshold, CRC 
bits do not check 

Relaxed threshold → 
higher likelihood  
 

False Negative 
(Type IIa) 

For the correct RNTI, received 
frozen bit pattern does not match 
syndrome within threshold 

Relaxed threshold → lower 
likelihood  
Increased SNR → lower 
likelihood 

True Negative Received frozen bit pattern does not 
match syndrome within threshold 

Relaxed threshold → lower 
likelihood  

 

D. RNTI RECOVERY RESULTS 

The results presented in this section cover 300 trials for each payload length A  and 

codeword length E  combination evaluated at the Hamming and LCS threshold values τ
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presented in Table 20. Sections IV.D.1 through IV.D.3 evaluate the effect of increased 

HAMτ , increased A , and increased E  on successP , errorP , and Rη , respectively. In Sections 

IV.D.4 and IV.D.5, a codeword of 216E =  is used to evaluate the effect of high and low 

SNR  and the differences between the Hamming and LCS methods, respectively. 

1. Effect of Increased Threshold 

This section considers the impact of increasing HAMτ  between an error pattern and 

a syndrome on successP , errorP , and Rη  for A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} with 

216E =  across the range of HAMτ =  {5, 14, 24, 33, 43, 52, 62, 71, 81, 90}. The symmetry 

of the results across A , as shown in Figure 26, show that for larger A , HAMτ  can be 

decreased to maintain errorP  constant, and this agrees with our analysis in Section II.C.2. 

We estimate from the results that, to maintain errorP  constant, every increase in A  of 

approximately 10 bits, which subsequently decreases F  and ε  by 10 bits, requires an 

decrease in HAMτ  of approximately five bits. This is consistent with / 2HAMµ ε=  where an 

increase to ε  of 10 results in an increase to HAMµ  of five, which was derived in Section 

III.C.2. We will also find that this shift is SNR  agnostic as we adjust SNR  in Section 

IV.D.4. Typically, A  will not be exactly known for the intercepted PDCCH message, thus 

errorP  will be significantly impacted by the initial HAMτ .  
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Figure 26. Hamming Method RNTI Recovery errorP versus HAMτ  for 216E = , 

5SNR =  dB, and A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} 

The significance of adjusting HAMτ  is shown Figure 27, where we observe that the 

successP  is much more tightly grouped than errorP  as we increase HAMτ . We conclude that if  

HAMτ  is not properly adjusted, errorP can increase significantly with a less substantial 

increase in successP , resulting in  wasted resources in processing incorrect RNTIs. Another 

thing to note from Figure 27 is that for larger A  and subsequent smaller ε , successP  does 

increase faster as HAMτ  increases, and this is due to the fact that there less bits in ε , thus 

2 / 4HAMσ ε=  is smaller.  A prudent Hamming distance simulation must be adjusted 

regularly for probable DCI payload lengths; however, we will find in Section IV.D.5 that 

the LCS method does not share this property and is more robust to changes in A . 
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Figure 27. Hamming Method RNTI Recovery successP versus HAMτ  for 

216E = , 5SNR =  dB, and A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} 

2. Effect of Increased Payload Length 

This section presents the individual results of increased A  on successP  and  errorP  for  

fixed codeword lengths E =  {108, 128, 216, 256, 432, 512}, SNR = 5 dB, and the 

Hamming distance method. Within a given E , A  is expected to vary for different DCI 

messages, and in this section we analyze how the change in payload length impacts RNTI 

recovery. 

a. Codeword Length of 108 

The codeword length 108E =  is expected to be used in practice but will likely only 

support small payloads as the maximum DCI payload for 310blerP −≤  at 5SNR =  dB is 

33A =  as found in Section IV.B. For 108E = , the payloads of A =  {12, 17, 23, 28, 33} 

were evaluated at HAMτ =  {5, 13, 21, 28, 36}. Figure 28 (a) shows that successP  increases 

monotonically and nearly linearly as HAMτ  increases across the tested range. successP  is 

higher for larger A  for a given HAMτ , but this is only due to the higher errorP  at these HAMτ  

cases as more RNTIs are being filtered through the threshold. The errorP  results in Figure 

28 (b) show as expected that the largest A  results in the highest errorP for a given HAMτ  due 
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to the decrease in ε  as explained in Section III.C.2. If we compare successP  and errorP  to 

evaluate the RNTI recovery efficiency Rη , as shown in Figure 29, we find that in fact 

smaller A  can recover RNTIs more efficiently for a fixed errorP , and this is due to the 

increase in ε  and F  resulting in a higher code rate r  as described in Section III.C.2. 

 
Figure 28. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for  108E = , 5SNR =  dB, and A =  {12, 17, 23, 28, 33} 
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Figure 29. Hamming Method RNTI Recovery Efficiency for 108E = , 

5SNR =  dB, and A =  {12, 17, 23, 28, 33} as shown by successP  versus   

errorP   

b. Codeword Length of 128 

The codeword length 128E =  is a theoretical case to match the polar block coding 

length of 128N =  and would only support small payloads as the maximum DCI payload 

for 310blerP −≤  at 5SNR =  dB is 49A =  as found in Section IV.B. For 128E = , the 

payloads of A =  {12, 21, 31, 40, 49} were evaluated at HAMτ =  {5, 15, 26, 36, 46}. From 

Figure 30, we see that successP  and errorP  follow the same monotonically increasing trends 

as for 108E = , but as the payloads are spaced out more so are the results. If we compare 

successP  and errorP  to evaluate Rη , as shown in Figure 31, we again find that smaller A  can 

recover RNTIs more efficiently for a fixed errorP  due to the increase in ε  and F  resulting 

in a higher r  as described in Section III.C.2. 
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Figure 30. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 128E = , 5SNR =  dB, and Payloads A =  {12, 21, 31, 40, 49} 

 
Figure 31. Hamming Method RNTI Recovery Efficiency for 128E = ,

5SNR =  dB, and A = {12, 21, 31, 40, 49} as shown by successP  versus 
errorP   
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c. Codeword Length of 216 

The codeword length 216E =  is expected to be used in practice and support most 

payloads as the maximum DCI payload for 310blerP −≤  at 5SNR =  dB is 103A =  as found 

in Section IV.B. For 216E = , the payloads of A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 

103} were evaluated at HAMτ =  {5, 14, 24, 33, 43, 52, 62, 71, 81, 91}. From Figure 32, we 

see that successP  and errorP  follow the same monotonically increasing trends as for smaller 

codewords, but here for the larger A  values we begin to see successP  and errorP  reach their 

maximums. successP  maximizes and becomes flat as we approach 1successP =  while errorP  

oscillates around the value of 0.50errorP = . This oscillation can be explained by the fact 

that the RNTI recovery simulation will find the correct RNTI on average halfway through 

the RNTI search space, thus will hover around 0.50errorP =  for a brute force case, which is 

what we experience for the large A  and high HAMτ  values chosen for this simulation.  

The brute force case is not unique to the E  length but depends on the length of the 

error pattern ε  and HAMτ  value chosen.  If we analyze 103A =  on 216E = , we find that 

24 89E Aε = − − = , and this will correspond to / 2 44.5HAMµ ε= =  and 

2 / 4 4.72HAM HAMσ σ ε= = =  where HAMσ  is the standard deviation of the Hamming 

distance. From Figure 32 (b), we observe that 103A =  begins to oscillate around 

0.50errorP =  at 62HAMτ = , which is 3.7 standard deviations from HAMµ , which due to the 

Gaussian distribution results in over 99.9% of the RNTI syndrome patterns within 

62HAMτ = . Finally, we compare successP  and errorP  to evaluate Rη , as shown in Figure 33, 

we continue to demonstrate that smaller A  can recover RNTIs more efficiently for a fixed 

errorP  due to the increase in ε  and F  resulting in a higher code rate as described in Section 

III.C.2. 
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Figure 32. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 216E = , 5SNR =  dB, and A =  {12, 22, 32, 42, 52, 63, 73, 83, 
93, 103} 

 
Figure 33. Hamming Method RNTI Recovery Efficiency for 216E = , 

5SNR =  dB and A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown 
by successP  versus errorP   
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d. Codeword Length of 256 

The codeword length 256E =  is a theoretical case to match the polar coding block 

length of 82 256N = =  and would support almost all payloads as the maximum DCI 

payload for 310blerP −≤  at 5SNR =  dB is 133A =  as found in Section IV.B. For 256E = , 

the payloads of A =  {12, 25, 39, 52, 66, 79, 93, 106, 120, 133} were evaluated at HAMτ =  

{5, 17, 28, 40, 52, 63, 75, 87, 98, 110}. From Figure 34, we see that successP  and errorP  follow 

the same monotonically increasing trends as for smaller codewords, and we see successP  and 

errorP  reach their maximums. As we compare successP  and errorP  to evaluate Rη , as shown 

in Figure 35, we continue to demonstrate that smaller A  can recover RNTIs more 

efficiently for a fixed errorP . For 256E = , an interesting case occurs at 120A =  as 

observed in Figures 34 and 35 where 0successP =  for HAMτ = {5, 17, 28, 40}, well below the 

expected successP for that payload. 

 
Figure 34. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 256E = , 5SNR =  dB, and A =  {12, 25, 39, 52, 66, 79, 93, 106, 
120, 133} 
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Figure 35. Hamming Method RNTI Recovery Efficiency for 256E = , 

5SNR =  dB, and A =  {12, 25, 39, 52, 66, 79, 93, 106, 120, 133} as shown 
by successP  versus errorP   

To further investigate the 120A =  case, additional cases were simulated at A =

{116, 118, 119, 120, 121, 122, 124}, and the results are shown in Figure 36. We find that 

in this range only the specific payload and codeword combination of  256E =  and 120A =  

has poor results. A possible explanation to this anomaly is that this is the result of a 

boundary case between rate matching methods. In Figure 37, it can be seen that 256E =  

and 120A =  is at the boundary between the repetition, shortening, and no rate-matching 

methods. At 256E =  and 120A = , no rate-matching is applied because the codeword 

length is a factor of two and therefore matches with the polar coding block length N . The 

fact that different rate-matching techniques would be applied if the codeword was one bit 

longer or one bit shorter could be an indication that there is a unique effect in the polar 

coding or encoding process that causes this anomaly in RNTI recovery.  

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 25

A = 39

A = 52

A = 66

A = 79

A = 93

A = 106

A = 120

A = 133



85 

 
Figure 36. Hamming Method RNTI Recovery Efficiency for 256E = , 

5SNR = , and A = {116, 118, 119, 120, 121, 122, 124} as shown by 
successP  versus errorP   

 
Figure 37. Rate-Matching Relationships between E  and A  in the PDCCH. 

Source: [3]. 
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to the maximum allowed 140A =  as found in Section IV.B. For 432E = , the payloads of 

A =  {12, 26, 40 55, 69, 83, 97, 112, 126, 140} were evaluated at HAMτ =  {5, 26, 48, 69, 

90, 112, 133, 154, 176, 197}. From Figure 38, we see that successP  and errorP  follow the same 

monotonically increasing trends as for smaller codewords but here for the larger A  values, 

and we see successP  and errorP  reach their maximums. As we compare successP  and errorP  to 

evaluate Rη , as shown in Figure 39, we continue to demonstrate that smaller A  can recover 

RNTIs more efficiently for a fixed errorP . 

 
Figure 38. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 432E = , 5SNR =  dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 
126, 140} 
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Figure 39. Hamming Method RNTI Recovery Efficiency for 432E = , 

5SNR =  dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown 
by successP  versus errorP   

f. Codeword Length of 512 

The codeword length 512E =  is a theoretical case to match the polar coding block 

length of 92 512N = =  and would support all payloads as found in Section IV.B. For 

512E = , the payloads of A =  {12, 26, 40 55, 69, 83, 97, 112, 126, 140} were evaluated 

at HAMτ =  {5, 31, 57, 83, 109, 134, 160, 186, 212, 238}. From Figure 40, we see that successP  

and errorP  follow the same monotonically increasing trends as for smaller codewords but 

here for the larger A  values, and we see successP  and errorP  reach their maximums. As we 

compare successP  and errorP  to evaluate Rη , as shown in Figure 41, we continue to 

demonstrate that smaller A  can recover RNTIs more efficiently for a fixed errorP . 
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Figure 40. Hamming Method RNTI Recovery (a) successP  and (b)  errorP  versus 

HAMτ  for 512E = , 5SNR =  dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 
126, 140} 

 
Figure 41. Hamming Method RNTI Recovery Efficiency for 512E = , 

5SNR =  dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown 
by successP  versus errorP   
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3. Effect of Increased Codeword Length 

As the codeword length E  is expected to change based on the DCI message length 

A  and the resources available in the PDCCH, this section evaluates the effect of increasing 

E  on RNTI recovery probabilities. As E  increases, the number of frozen bits F  increases 

and as a result so does the length of the error pattern ε . Figure 42 shows the results of 

RNTI recovery simulations for a consistent payload of 12A =  across all codewords E =

{108, 128, 216, 256, 432, 512} using the HAMτ  values respective to each E  as presented in 

Table 20. We note that in Figure 42 (a),  successP  increases monotonically with HAMτ , but for 

larger codewords the slope of the relationship decreases since as ε  increases, the variance 

increases according to 2 / 4HAMσ ε= . This means that for a larger codeword, a one-bit 

increase in HAMτ  will not cause as big of a change in the number of syndrome matches 

allowed through the threshold as for a smaller codeword, which is the biggest driving force 

of successP . In Figure 42 (b), we observer that errorP , while low for the small 12A = , is nearly 

identical for all codewords but shifted as / 2HAMµ ε=  will affect the number of syndromes 

filtered. 

 
Figure 42. Hamming Method RNTI Recovery (a) successP  and (b) errorP  versus 

HAMτ  for 12A = , 5SNR =  dB, and E = {108, 128, 216, 256, 432, 512} 
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We also consider the increase in RNTI recovery efficiency, Rη  as E  increases and 

the results are shown in Figure 43. As we have introduced in Section III.C.2, with larger 

F and ε , we can recover RNTIs more efficiently due to the higher code rate and a less 

likelihood of the correct RNTI being rejected by the threshold. Figure 43 shows that as E  

increases, Rη  increases as well. The results are not as distinctive for codewords close in 

size, but we can clearly see that E = {432, 512} demonstrate higher Rη  than E = {108, 

128}. As we consider a gNB choosing a codeword, the benefit of a larger E  is that it has 

a higher code rate, but the downsides are that more PDCCH resources are expended and 

the RNTI can more easily and more efficiently be recovered by an attacker. Lastly, in 

Figure 44, we compare the effect of increasing codeword has on Rη  across all E , A , and 

HAMτ  evaluated in this thesis. 

 
Figure 43. Hamming Method RNTI Recovery Efficiency for 12A = , 5SNR =  

dB, and E = {108, 128, 216, 256, 432, 512} as shown by successP  versus 
errorP   
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Figure 44. Hamming Method RNTI Recovery Efficiency for 5SNR =  dB , 

E = {108, 128, 216, 256, 432, 512} and Set Ranges of A  as shown by 
successP  versus errorP   

 

(a) 108E =  

 

(b) 128E =  

 

(c) 216E =  

 

(d) 256E =  

 

(e) 432E =  

 

(f) 512E =  

 

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 17

A = 23

A = 28

A = 33

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 21

A = 31

A = 40

A = 49

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 25

A = 39

A = 52

A = 66

A = 79

A = 93

A = 106

A = 120

A = 133

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140



92 

4. Effect of High and Low SNR 

As discussed in Section III.C.5, we expect an attacker to experience a different 

SNR  than the UE, and therefore we evaluate effect of SNR  on the RNTI recovery 

simulation in this section. We choose a base case of 216E =  using the A  and HAMτ  values 

established for this codeword in Table 20 and used previously in Section IV.D.2.c. First, 

we evaluate the effect of SNR  on errorP  and the results are shown in Figure 45 (a) 0SNR =

dB, (b) 5SNR =  dB, and (c) 10SNR =  dB. The results are identical with some minor 

differences at very low errorP  that can be attributed to the limited number of trials. We 

conclude that due to the random nature of the RNTI initiated scrambling and the large 

number of syndomes ( 152 ), errorP  is not affected by the SNR .  

Next, we evaluate the effect of of SNR  on successP , and the results are shown in 

Figure 46 (a) 0SNR =  dB, (b) 5SNR =  dB, and (c) 10SNR =  dB. Here, as expected, we 

find a significant increase in successP  as SNR  increases. We recall that a higher SNR  will 

lead to a lower probability of channel bit error ,b QPSKP  and recalling Figure 11 will have a 

lower number of channel bit errors. Further, once the correct error pattern is filtered to be 

checked for CRC, the subsequent low bP   also means there is a low probability that the 

CRC will be corrupted. In conclusion, these two factors lead to a high probability that the 

RNTI will be recovered succesfully at high 10SNR =  dB case as validated by the results. 

For the low 0SNR =  dB case, the opposite effect is expected and we actually observe a 

successP  limit where there are uncorrectable errors such that even as we increase HAMτ  and 

move towards the brute force case, the probability that we match the CRC is limited. We 

observe limits for A =  {73, 83, 93 103} of successP ≈  {0.65, 0.50, 0.25, 0.15} where this is 

the case. Finally, we recall that success
R

error

P
P

η ∝  and since successP  increases significantly for 

increasing SNR  while errorP  remains constant, we expect Rη  to also increase significantly 

for increasing SNR . These results are shown in Figure 47 for (a) 0SNR =  dB, (b) 5SNR =  

dB, and (c) 10SNR =  dB. 
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Figure 45. Hamming Method RNTI Recovery errorP  versus HAMτ  for 216E =  

and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}  
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Figure 46. Hamming Method RNTI Recovery successP  versus HAMτ  for 

216E =  and A =  {12, 22, 32, 42, 52, 63, 73, 93, 103} 
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Figure 47. Hamming Method RNTI Recovery Efficiency for 216E =  and 

A =  {12, 22, 32, 43, 52, 63, 73, 83, 93, 103} as shown by successP  versus 
errorP   

 

(a) 0SNR =  dB 
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(c) 10SNR =  dB 
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5. Effect of Recovery Method (LCS versus Hamming) 

In this section, we evaluate using the LCS method to determine whether error 

patterns match syndromes within a τ  and compare the results to the Hamming method. 

The LCS method calculates the longest common substring of matching bits between the 

two and we determined in Section II.C.6 that we can use 3log( )LCSµ ε=  to estimate the 

median LCSm , which serves as a starting LCSτ  such that 0.50errorP ≈ . Increasing LCSτ  has 

an opposite effect of an increase of HAMτ  as for the LCS method fewer error patterns will 

match substrings of greater lengths with syndromes, thus the matching filter becomes more 

restrictive. 

a. LCS Baseline Case 

We first consider our baseline case of 216E =  with A = {12, 22, 32, 42, 52, 63, 

73, 83, 93, 103} and LCSτ ={5, 10, 14, 24, 33, 43, 52, 62, 71, 81, 90}. We have generated 

the LCSτ  range by modifying the HAMτ  range, adding a threshold of 10LCSτ =  to increase 

the fidelity at low thresholds as LCSd  will be lower on average than HAMd . The results of 

the LCS method for 216E =  are presented in Figure 48 where we observe the 

monotonically decreasing behavior for successP  and the exponentially decreasing behavior 

for errorP . We note that for the LCS method, errorP  does not change signficiantly over the 

range of A  and LCSτ , which is due to the fact that the mean estimate 3log( )LCSµ ε=  does 

not change significantly for small changes in ε . Lastly, we demonstrate the Rη  results in 

Figure 49, and we observe the same behavior as the Hamming method in that we can 

recover RNTIs more efficiently for smaller A  due to the higher code rate and higher 

likelihood of being filtered correctly due to the larger ε . 
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Figure 48. LCS Method RNTI Recovery (a) successP  and (b) errorP  versus LCSτ  

for 216E = , 5SNR =  dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 
103} 

 
Figure 49. LCS Method RNTI Recovery Efficiency for 216E = , 5SNR =  

dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown by successP  
versus errorP   

We want to further explore the difference in errorP  versus τ  between the Hamming 

and LCS methods, and we show the results for comparison in Figure 50 (a) Hamming 

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103



98 

method and (b) LCS method. As we observe in Figure 50 (b), the LCS method has an 

advantage in that errorP  does not change signficiantly over the range of A  and .LCSτ  The 

significance of this result is that an attacker running a RNTI recovery process would not 

need to adjust LCSτ  for different A  within a recovered E . Considering that the attacker 

will know E  from the number of QPSK symbols intercepted but not A  makes this result 

even more substantial.  

 
Figure 50. RNTI Recovery errorP  versus τ  for 216E = , 5SNR =  dB, and 

A =  {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}  

Finally, we compare Rη  for 216E =  and 5SNR =  dB between the Hamming and 

LCS methods to determine if one is more efficient than the other in recovering RNTIs. This 

result is best illustrated individually for select A  as shown in Figure 51. We conclude that 

neither Hamming nor LCS method presents a decisive advantage in Rη  at 5SNR =  dB. 
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Figure 51. Hamming and LCS RNTI Recovery Efficiency for 216E =  and 

5SNR =  dB at Selected Payloads as shown by successP  versus errorP  
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b. LCS versus Hamming Across All Codewords 

Next, we expand to evaluate the LCS method across all codewords E = {108, 128, 

216, 256, 432, 512} and payloads A  as specified for each codeword in Table 20. The 

results are shown in Figure 52, and we observe that the Hamming method becomes slightly 

more effective than LCS at E = {432, 512}. While we do not have any definitive theory as 

to why this is the case, we postulate that it may have to do with the fact that asε  increases, 

more matching substrings can exist within these longer error patterns, which could result 

in an increase in  errorP . We note that the 120A =  and 256E =  case, as can be identified in 

Figure 52 (d) with the outlier lines to the far right of the plot, has the same anomaly in 

successP  in the LCS method as was found earlier in the Hamming method. This further backs 

the hypothesis that the anomaly has to do with the PDCCH encoding and decoding process, 

possibly the polar coding, and is not associated with the recovery method. 
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Figure 52. Comparison of Hamming and LCS RNTI Recovery Efficiency 

Across All Payloads and Codewords as specified in Table 20 as shown by 
successP  versus errorP  

 

(a) 108E =  

 

(b) 128E =  

 

(c) 216E =  

 

(d) 256E =  

 

(e) 432E =  

 

(f) 512E =  

 

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error,  P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

, 
 P

su
cc

es
s

Hamming

LCS



102 

c. LCS versus Hamming at High and Low SNR 

We conclude our LCS analysis by considering any advantages of LCS and 

Hamming methods at high or low SNR . In [3], it was found that the Hamming method had 

a slight advantage at the lower 5SNR =  dB while the LCS method had a slight advantage 

at the higher 8SNR =  dB when limiting 410errorP −≤ . In this thesis, we consider much 

higher errorP  as a practical setup is expected to have reasonable computational power to 

pursue a high  successP  at the cost of high errorP . We consider our baseline case of 216E =  

with A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} and LCSτ ={5, 10, 14, 24, 33, 43, 52, 62, 

71, 81, 90}, and we show selected results in Figure 53 for 0SNR =  dB and Figure 54 for 

10SNR =  dB. We find that for 0SNR =  dB there is a slight advantage to the Hamming 

method, and for 10SNR =  dB there is a slight advantage to the LCS method as predicted 

and shown for one case in [3]. These advantages are most prevalent at the higher A  as 

fewer error pattern bits lead to more constrained matching. 

 
Figure 53. Comparison of Hamming and LCS RNTI Recovery Efficiency for 

216E =  and 0SNR =  dB at (a) 83A =  (b) 93A =  
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Figure 54. Comparison of Hamming and LCS RNTI Recovery Efficiency for 

216E =  and 10SNR =  dB for (a) 83A = and (b) 93A =  

E. ACTIVITY RECOVERY DISCUSSION 

Overall, the goal of the RNTI recovery process is to de-anonymize the PDCCH 

channel and recover activity of the UEs. Traffic analysis and information from sources 

other than intercepted PDCCH messages are required to match RNTIs to UEs. First, new 

devices connecting or re-connecting to a gNB present an opportunity to link a UE to a 

RNTI if a new RNTI is recovered at the same time. Second, measuring the frequency of 

PDCCH messages sent to a specific RNTI and associating UE activity with an increase in 

messages can be used to link the two. In many cases, the association of a UE with a RNTI 

requires another information source such as visual confirmation of the UE entering the area 

or another selector that reveals the UE is performing an action to increase PDCCH 

messages. One such possibility is to link the TA recovered from the MAC CE on the 

PDSCH to the recovered and associated RNTI. It has been shown that for 5G numerologies 

the TA can be used to localize a UE with a 95% circular error probability on the order of 

10-100 m depending on the numerology, number of remote radio heads, and beamforming 

applications [25], [26].   

Once RNTI and UE associations are established, the goal is to monitor PDCCH 

messages for changes in UE activity. Once a RNTI is recovered, all PDCCH DCI messages 

can be decoded, and the associated parameters recovered. The DCI parameters can be 
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tracked to identify changes that would reveal a change in geographic location, change in 

mode, or the use of an application by a tracked UE as presented in Section III.D.2. In Figure 

55, a concept of RNTI-UE relationship and activity tracking is envisioned where recovered 

RNTIs, PDCCH message rates, recovered DCI information revealing directed power, 

mode of operation, and MCS, and any other recovered information are monitored for a 

mobile environment.   

 
Figure 55. Concept for PDCCH Traffic Analysis of Known UE-RNTI 

Relationships and Activity, as Derived from Recovered RNTIs and 
Decoded DCI Messages 

In summary, we presented the simulation model and results of the maximum DCI 

payload and RNTI recovery processes. We evaluated how τ , A , E , and the recovery 

method impact successP , errorP , and Rη . We validated our assumptions and statistical 

derivations that ε , which changes with A  and E , is a critical driver of successP , errorP , and 

Rη . Further, we showed that SNR  can drastically change the successP  and Rη  of RNTI 

recovery and should be maximized by an attacker. We concluded that the LCS method can 

be used more easily by an attacker looking to hold computational resources constant 
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through a consistent errorP . Finally, we presented a basic strategy to use decoded DCI 

messages and RNTI-UE traffic analysis to track UEs operating in a mobile environment. 
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V. CONCLUSIONS 

In this thesis, we have evaluated the ability for an attacker to recover RNTIs and 

reveal user activity from the DCI messages and RNTIs in the PDCCH. We considered the 

impact of the threshold, payload size, codeword size, high and low SNR , and Hamming 

versus LCS methods. We performed statistical analysis of the Hamming and LCS methods 

to assist in choosing the optimal threshold to meet the needs of the mobile environment 

and the attacker’s RNTI recovery goals. We also considered what probable DCI lengths 

would be used in the PDCCH and how to RNTI recovery thresholds based on the blerP , 

SNR , and E . Finally, we presented the successP , errorP , and Rη  of RNTI recovery and 

proposed a model for tracking user activity through RNTI recoveries. 

A. CONTRIBUTIONS 

Through the statistical analysis of data from the Hamming and LCS methods, we 

developed probability distributions for the expected Hamming distance and LCS distance. 

We found that the Hamming distance follows a Gaussian distribution with  / 2HAMµ ε=  

and 2 / 4HAMσ ε= , where ε  is the length of the sequence; for  LCS, LCSµ  and 2
LCSσ  increase 

logarithmically as ε  increases and specifically 3log( )LCSµ ε≈  for 100ε < . Further, we 

determined how a channel bit error can propagate through the modified polar decoding step 

in RNTI recovery and presented the expected Hamming and LCS outputs for input channel 

bit errors ranging from one to ten. 

When comparing RNTI recovery threshold methods, we found that the LCS method 

can be more optimal for a real-world simulation in that the threshold will not need to be 

adjusted for changes in payload length. The Hamming method, however, can be more 

finely tuned when compared to the LCS method. Further, we confirmed for a case of 

216E =  that the Hamming method has a slight advantage at low SNR  while the LCS 

method has a slight advantage at high SNR . 
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For the RNTI recovery methodology, we presented results on successP , errorP , and Rη  

across a myriad of payloads, codewords, SNR s and recovery methods to demonstrate that 

a decrease in payload length, an increase in codeword length, and high SNR  all improve 

RNTI recovery efficiency Rη . Further, we considered the activity of a UE that could be 

recovered from the decoded DCI messages and presented a model in which recovered 

RNTIs and information recovered from DCI fields can be used to determine the change in 

geographic location or the change in operating mode of a UE. This model shows the real-

world possibilities of utilizing the RNTI recovery methodology to track UEs through a 5G 

network. 

B. FUTURE WORK 

The methods presented in this thesis can certainly be put into practice to recover 

RNTIs in a simulated PDCCH channel. In a physical experiment, the PDCCH channel 

would be monitored for codewords, and these would be intercepted and processed to 

recover RNTIs. This experiment could be used to validate the assumptions used in 

assessing that the activity of a UE if changing location or changing mode of operation could 

be deduced from intercepted DCI messages. In the experiment, a UE can be established on 

a PDCCH with the gNB and then the UE can be moved further or closer to the gNB to 

monitor the change in DCI messaging associated with the change in geographic location. 

Further, the experiment could be repeated for changing mode of operation to URLCC or to 

an application utilizing a CS-RNTI and CS-associated messaging, such as VOIP. Finally, 

the experiment could test the optimization methods by adjusting threshold values to 

validate the RNTI recovery probabilities and efficiencies. 

Further work first identified in [3], considers the application of the RNTI recovery 

model and optimization to the PUCCH, which similarly utilizes RNTI initiated scrambling 

and polar coding thus is vulnerable to the same methods. While the PDCCH certainly is 

more enticing in terms of the information recovered, the PUCCH contains HARQ 

acknowledgments, scheduling requests, and CSI reports from the UE. For a sophisticated 

attacker, a RNTI recovery model that recovers both the PDCCH and PUCCH could use the 
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two to gain a comprehensive understanding of the mobile environment and the UEs 

operating in it. 

While this thesis evaluated the RNTI recovery successP , errorP , and Rη  for various E  

and A  combinations to include rate-matching cases, the impact of rate-matching was not 

specifically evaluated during this study. A future work could refer to [3] for further details 

on the effect of rate matching on modified polar decoding and syndrome matching and 

compare and contrast the RNTI recovery statistics for the different rate matching cases. 

The 256E =  and 120A =  boundary case would certainly be of interest, and it is postulated 

that there are other boundary cases and/or optimization cases for which the RNTI recovery 

statistics exceed the expected values due to rate-matching effects.   
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APPENDIX A.  MAXIMUM DCI PAYLOAD MODEL MATLAB 
CODE 

The MATLAB code in this Appendix was developed using the MATLAB 5G 

toolbox to simulate the encoding and modulation of PDCCH messages in a AWGN 

channel, adapted in part from [25]. In this code, we encode a random message of length A  

onto a block of length E  in accordance with the 3GPP standard, modulate the bits to QPSK 

symbols, and add AWGN according to a specified SNR . We then receive, demodulate, 

and decode a recovered message. If bit errors occur between the recovered message and 

the sent message, then a block error is recorded. The process is repeated for a large number 

of trials at different A , E  and the results of blerP  are presented. 

 

clearvars 
clear all 

Input Testing Info 

%Input Testing Info 
teststotal=10 
minpayload=12 
maxpayload=140 
codewords=[108 128 216 256 432 512] 
 
%initialize output data vectors 
bler=zeros(1,maxpayload); 
errorlog=zeros(teststotal,maxpayload); 
trackerBLER=zeros(length(codewords),maxpayload); 
codetrack=1; 
 
for codeword=codewords 
for payload=minpayload:1:maxpayload 
payload 
tic 
for tests=1:teststotal 

System Parameters 
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nID = 10;           % pdcch-DMRS-ScramblingID 
rnti = randi([1 65519]);         % C-RNTI for PDCCH in a UE-specific 
search space 
A = payload;             % Number of DCI message bits 
E = codeword;            % Number of bits for PDCCH resources 
if E-A>24 %break if payload too large 

DCI Encoding 

dciBits = randi([0 1],A,1,'int8'); 
dciCW = nrDCIEncode(dciBits,rnti,E); 

PDCCH Symbol Generation 

sym = nrPDCCH(dciCW,nID,rnti); 

Channel 

snrdB=5; 
rxSym = awgn(sym,snrdB,'measured'); 

PDCCH Decoding 

noiseVar = 10.^(-snrdB/10);     % assumes unit signal power 
rxCW = nrPDCCHDecode(rxSym,nID,rnti,noiseVar); 

DCI Decoding 

listLen = 1;                    % polar decoding list length 
[decDCIBits,mask] = nrDCIDecode(rxCW,A,listLen,rnti); 
 
isequal(mask,0); 
blockdecoded=isequal(decDCIBits,dciBits); 

Error Calculation 

errorlog(tests,payload)=blockdecoded; 
else 
errorlog(tests,payload)=NaN; 
end 
end %end tests loop 
toc 
errors=size(errorlog(errorlog(:,payload)==0),1); 
total=errors+size(errorlog(errorlog(:,payload==1)),1); 
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if E-A>24 
    bler(payload)=errors/total; 
else 
    bler(payload)=NaN; 
end 
end %end payload loop 
 
trackerBLER(codetrack,:)=bler; 
codetrack=codetrack+1 
end %end codeword loop 
 
 
%Plot BLER versus Payload Size 
figure() 
plot([1:1:maxpayload],trackerBLER) 
ylabel('Block Error Rate') 
xlabel('Payload Size (bits)') 
grid on 
 
%Plot BLER versus Payload Size (semilog) 
figure() 
semilogy([1:1:maxpayload],trackerBLER) 
ylabel('Block Error Rate') 
xlabel('Payload Size (bits)') 
grid on 
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APPENDIX B.  RNTI RECOVERY MODEL MATLAB CODE 

The MATLAB code in this Appendix is adapted from [3], which was designed to 

demonstrate the RNTI recovery methodology for 12A = , E =  {74, 86, 128, 144}. In this 

code, we expand the model to cover the entire range of A =  [12:140] and all possible E . 

Further, this code incorporates the MATLAB 5G functions in lieu of some functions 

manually developed in [3]. Overall, this MATLAB model simulates the encoding and 

modulation process, modified polar decoding with syndrome matching, and RNTI 

recovery, and presents the successP , errorP , and Rη  results. 

 

clearvars 
clear all 

1. Define Testing Variables and Loops 

startmodel=tic; 
%set variable limits for testing 
payloadlengths=[12 22 32 42 52 63 73 83 93 103] %set payload(s) to be 
analyzed 
tests=10    %set number of tests 
% set hamming or lcs threshold methodlogy in Section 4, limits below 
thresholdvalues=[5 14 24 33 43 52 62 71 81 91] 
 
%Testing variables 
threshtotalcounter=1; payloadcounter=1;  
 
%initialize trackers for code speed 
numpayloads=length(payloadlengths); 
numthreshs=length(thresholdvalues); 
tracker=zeros(numpayloads*numthreshs,6); 
type1errors=zeros(numpayloads,numthreshs); 
successes=zeros(numpayloads,numthreshs); 
RNTIsmatchedavg=zeros(numpayloads,numthreshs); 
 
%For loop for each payload length 
for payload=payloadlengths 
threshcounter=1; 
%initialize tracking variables for matches and errors 
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match=0; nomatch=0; thresh=0; false=0; threshold_matches=0; 
 
%For loop for each threshold value 
for threshold=thresholdvalues 
tic 
 
%For loop for number of tests at each payload, threshold 
for testcounter=1:tests 

2. Define DCI message parameters 

E = 216; % rate-matching codeword length 
nRNTI = randi([1 65519]); % rnti value, legal range is [1 65519] 
nID = 10; % cell scrambling ID 
a = randi([0 1],payload,1); % data payload  
snr = 5; % define SNR level for channel 

3. PDCCH encoding 

dciCW=nrDCIEncode(a,nRNTI,E); %encode DCI message 
sym = nrPDCCH(dciCW,nID,nRNTI); %generate QPSK symbol 
rxSym = awgn(sym,snr,'measured'); %add AWGN 

4. RNTI Recovery 

Demodulate 

rxLLR = nrSymbolDemodulate(rxSym,"QPSK"); % demodulate received symbols 
to LLR values 

Determine frozen bit set qF and information bit set qI 

% Get N 
K=length(a)+24; %add CRC bits 
nMax = 9;      % maximum n value for N 
N = nr5g.internal.polar.getN(K,E,nMax); 
 
% Get sequence for N, ascending ordered 
s10 = nr5g.internal.polar.sequence;          % Nmax=10 
idx = (s10 < N); 
qSeq = s10(idx);                            % 0-based 
 
% Get frozen, information bit indices sets, qF, qI 
jn = nr5g.internal.polar.subblockInterleaveMap(N);  % 0-based 
qFtmp = []; qFPunc = []; 
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if E < N 
    if K/E <= 7/16  % puncturing 
        for i = 0:(N-E-1) 
            qFPunc = [qFPunc; jn(i+1)];   % punctured bits 
        end 
        if E >= 3*N/4 
            uLim = ceil(3*N/4-E/2); 
            qFtmp = [qFPunc; (0:uLim-1).']; % extra freezing 
        else 
            uLim = ceil(9*N/16-E/4); 
            qFtmp = [qFPunc; (0:uLim-1).']; % extra freezing 
        end 
        qFtmp = unique(qFtmp); 
    else            % shortening 
        for i = E:N-1 
            qFtmp = [qFtmp; jn(i+1)];   % shortened bits 
        end 
    end     
end 
 
% Get qI from qFtmp and qSeq 
qI = zeros(K,1); 
j = 0; 
for i = 1:N 
    ind = qSeq(N-i+1);      % flip for most reliable 
    if any(ind==qFtmp) 
        continue; 
    end 
    j = j+1; 
    qI(j) = ind; 
    if j==(K) 
        break; 
    end 
end 
 
% Form the frozen bit vector 
qF = setdiff(qSeq,qI);     % sorted doesn't matter now 

Rate-recovery 

if E == N % no rate matching 
    outN = rxLLR; 
    syndromeBits = qF+1; % syndrome bits are the full set of frozen 
indices (change from zero-indexing) 
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    type = 'noRM'; 
elseif E > N % repetition  
    outN = rxLLR(1:N); 
    syndromeBits = qF+1; % syndrome bits are the full set of frozen 
indices (change from zero-indexing) 
    type = 'rep'; 
elseif K/E <= 7/16 % puncturing 
    outN = zeros(N,1); % place zeros in punctured indices 
    outN(end-E+1:end) = rxLLR; 
    syndromeBits = setdiff(qF,qFPunc)+1; % syndrome bits don't include 
punctured indices 
    type = 'punc'; 
else % shortening 
    outN = 9e20*ones(N,1);  % place large value in shortened indices 
    outN(1:E) = rxLLR; 
    syndromeBits = setdiff(qF,qFtmp)+1; % syndrome bits don't include 
shortened indices 
    type = 'short'; 
end 

Sub-block deleaving 

out = zeros(N,1); % initialize out 
out(jn+1) = outN; % perform deleaving 

Map LLR values to bits 

out(out >= 0) = 0; 
out(out < 0) = 1; 

Modified polar decoding 

% Get G, nth Kronecker power of kernel 
n = log2(N); 
ak0 = [1 0; 1 1];   % Arikan's kernel 
allG = cell(n,1);   % Initialize cells 
for i = 1:n 
    allG{i} = zeros(2^i,2^i); 
end 
allG{1} = ak0;      % Assign cells 
for i = 1:n-1 
    allG{i+1} = kron(allG{i},ak0); 
end 
G = allG{n}; 
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% Decode using matrix multiplication 
z = mod(out'*G,2)'; 

Modified Syndrome Query 

% check if syndrome table exists in working directory, if not create it 
if isfile(sprintf('K%d_E%d_N%d.mat',K,E,N)) 
    load(sprintf('K%d_E%d_N%d.mat',K,E,N)) 
else 
        % Ensure the function is saved to the appropriate file name 
before running 
    if E >= N % for no rate-match and repetition, the syndrome table can 
be computed directly 
        s = zeros(N,2^15); 
        syndromeTable = zeros(N,2^15); 
        for n = 1:2^15 
            s(:,n) = nrPDCCHPRBS(nID,n,N); % determine scrambling 
sequence 
            s(jn+1,n) = s(:,n); % deleave 
            syndromeTable(:,n) = mod(s(:,n)'*G,2); % polar decoding 
        end 
        filename = sprintf('K%d_E%d_N%d.mat',K,E,N); 
        save(filename,'syndromeTable') 
         
    else % for puncturing and shortening, full process must be gone 
through using dummy data segment and rnti value 
        
        nRNTID = randi([1 65519]); 
        aD = randi([0 1],[K-24,1]); 
         
        cVecD = nrCRCEncode(aD,"24C",nRNTID); 
         
        % Input is a single code block and assumes CRC bits are included 
        piD = nr5g.internal.polar.interleaveMap(K); 
        inIntrD = cVecD(piD+1); 
         
        % Get sequence for N, ascending ordered 
        s10D = nr5g.internal.polar.sequence;          % Nmax=10 
        idxD = (s10D < N); 
        qSeqD = s10D(idxD);                            % 0-based 
         
        % Get frozen, information bit indices sets, qF, qI 
        jn = nr5g.internal.polar.subblockInterleaveMap(N);  % 0-based 
        qFtmp = []; 
        if E < N 
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            if K/E <= 7/16  % puncturing 
                for i = 0:(N-E-1) 
                    qFtmp = [qFtmp; jn(i+1)];   % punctured bits 
                end 
                if E >= 3*N/4 % extra freezing 
                    uLim = ceil(3*N/4-E/2); 
                    qFtmp = [qFtmp; (0:uLim-1).']; 
                else % extra freezing 
                    uLim = ceil(9*N/16-E/4); 
                    qFtmp = [qFtmp; (0:uLim-1).']; 
                end 
                qFtmp = unique(qFtmp); 
            else            % shortening 
                for i = E:N-1 
                    qFtmp = [qFtmp; jn(i+1)];   %#ok 
                end 
            end 
        end 
         
        % Get qI from qFtmp and qSeq 
        qI = zeros(K,1); 
        j = 0; 
        for i = 1:N 
            ind = qSeq(N-i+1);      % flip for most reliable 
            if any(ind==qFtmp) 
                continue; 
            end 
            j = j+1; 
            qI(j) = ind; 
            if j==(K) 
                break; 
            end 
        end 
         
        % Form the frozen bit vector 
        qF = setdiff(qSeq,qI);     % sorted doesn't matter now 
         
        F = zeros(N,1); 
        F(qF+1) = ones(length(qF),1); 
         
        % Generate u 
        uD = zeros(N,1);     % doubles only 
         
        % CRC-Aided Polar (CA-Polar) 
        uD(F==0) = inIntrD;   % Set information bits (interleaved) 
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        % Encode using matrix multiplication 
        encOutD = mod(uD'*G,2)'; 
         
        % Sub-block interleaving 
        yD = encOutD(jn+1); 
         
        % Bit selection 
        if K/E <= 7/16 
            % puncturing (take from the end) 
            outED = yD(end-E+1:end); 
        else 
            % shortening (take from the start) 
            outED = yD(1:E); 
        end 
         
        cSeqD = nrPDCCHPRBS(nID,nRNTID,length(outED)); 
        scrambledD = xor(outED,cSeqD); 
         
        symD = nrSymbolModulate(scrambledD,'QPSK'); 
         
        rxScrLLRD = nrSymbolDemodulate(symD,"QPSK"); 
         
        rxLLRD = NaN(E,2^15+1); 
        rxLLRD(:,end) = rxScrLLRD(:,1); 
         
        for n = 1:2^15 
            descrambleSequenceD = 
nrPDCCHPRBS(nID,n,E,"MappingType","signed"); 
            rxLLRD(:,n) = rxScrLLRD.*descrambleSequenceD; 
        end 
         
        if K/E <= 7/16 
            % puncturing (put at the end) 
            outND = zeros(N,2^15+1);          % 0s for punctures 
            for n = 1:2^15+1 
                outND(end-E+1:end,n) = rxLLRD(:,n); 
            end 
        else 
            % shortening (put at the start) 
            outND = 1e20*ones(N,2^15+1);      % use a large value for 0s 
            for n = 1:2^15+1 
                outND(1:E,n) = rxLLRD(:,n); 
            end 
        end 
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        % Sub-block deinterleaving 
        outD = zeros(N,2^15+1); 
        outD(jn+1,:) = outND; 
         
        outD(outD >= 0) = 0; 
        outD(outD < 0) = 1; 
         
        control = mod(outD(:,end)'*G,2)'; 
        syndromeTable = NaN(N,2^15); 
         
        for n = 1:2^15 
            temp = mod(outD(:,n)'*G,2)'; 
            syndromeTable(:,n) = xor(temp,control); 
        end 
         
        filename = sprintf('K%d_E%d_N%d.mat',K,E,N); 
        save(filename,'syndromeTable') 
    end 
end 

Determine matching syndromes 

% define determination threshold 
 
for n = 1:2^15 % for each syndrome in syndrome table... 
     
    %%% *** Comment out the next six lines if using Hamming distance 
    qFcheck = ~xor(z(syndromeBits),syndromeTable(syndromeBits,n))'; % 
compare error pattern to given syndrome 
    bitChange = find(diff([0,qFcheck,0]==1)); % find differences between 
error pattern syndrome table 
    startIndex = bitChange(1:2:end-1); % determine starting indices of 
matching strings 
    bitCount = bitChange(2:2:end)-startIndex; % determine lengths of 
matching strings 
    lcson=1; 
    if max(bitCount) >= threshold 
         
    %%% *** Comment out the next three lines if using LCS method. 
     %ham = pdist([z(syndromeBits)'; 
syndromeTable(syndromeBits,n)'],"hamming")*length(syndromeBits); 
     %lcson=0; 
     %if ham <= threshold 
        threshold_matches=threshold_matches+1; 
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        scrSeq = nrPDCCHPRBS(nID,n,E,"MappingType","signed"); % determine 
signed scrambling sequence 
        decodeIntLLR = rxLLR.*scrSeq; % apply scrambling sequence 
         
        switch type 
            case 'noRM' % no rate matching 
                decodeIntLLR_RM = decodeIntLLR; 
            case 'rep' % repetition 
                decodeIntLLR_RM_temp = zeros(N,2); 
                decodeIntLLR_RM_temp(1:N,1) = decodeIntLLR(1:N); 
                decodeIntLLR_RM_temp(1:E-N,2) = decodeIntLLR(N+1:E); 
                decodeIntLLR_RM = sum(decodeIntLLR_RM_temp,2); % sum 
repeated values 
            case 'punc' % puncturing 
                decodeIntLLR_RM = zeros(N,1); 
                decodeIntLLR_RM(end-E+1:end) = decodeIntLLR; % place 
zeros at start 
            case 'short' % shortening 
                decodeIntLLR_RM = 9e20*ones(N,1); 
                decodeIntLLR_RM(1:E) = decodeIntLLR; % place large values 
at end 
        end 
         
        decodeLLR = zeros(N,1); % initialize decodeLLR 
        decodeLLR(jn+1) = decodeIntLLR_RM; % deleave 
       
        dataIntScr=nrPolarDecode(decodeLLR,K,E,1,9,logical(0),24); 
%#ok<LOGL> %polar decoding 
 
        pi = nr5g.internal.polar.interleaveMap(K);  % obtain deleaving 
indicies 
        dataScr = NaN(1,length(pi)); % initialize dataScr 
        dataScr(pi+1) = dataIntScr; % deleave data + crc bits 
        [data, CRCerr]=nrCRCDecode([ones(24,1); dataScr'],'24C',n); %pad 
with 24 ones as nrDCIEncode calculates CRC with this padding 
         
        %need to determine  how to capture n+2^15 case - must do valid 
bit 
        if CRCerr==0 % if all crc bits check, rnti is n 
            detRNTI=n; 
            break 
        elseif CRCerr==2^15 % if all but 1 crc bits check, rnti is n+2^15 
            detRNTI=n+2^15; 
            break 
        end 
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    end %end loop checking for syndromes that meet threshold 
 
    if n == 2^15 % if syndrome table searched through without finding 
match, give no result message 
        detRNTI=-1; 
    end 
end %end search threshold for each possible syndrome 
 
%update total number of matches, errors 
if detRNTI==-1 
    nomatch=nomatch+1; 
elseif detRNTI==nRNTI 
   match=match+1; 
else 
    false=false+1; 
end 
 
end %end tests loop 
toc 
 
%track values and log at threshtotalcounter which continually increments 
tracker(threshtotalcounter,1)=payload;      %log current payload 
tracker(threshtotalcounter,2)=threshold;   %log current threshold 
tracker(threshtotalcounter,3)=match;        %out of number of tests 
tracker(threshtotalcounter,4)=nomatch;      %out of number of tests 
tracker(threshtotalcounter,5)=false;        %out of number of tests 
tracker(threshtotalcounter,6)=threshold_matches;    %log total 
threshold_matches for thresh/payload combo 
 
%sum values from tracker and hold in long term logs 
type1errors(payloadcounter,threshcounter)=(tracker(threshtotalcounter,6)-
tracker(threshtotalcounter,3))/tests/2^15;  %threshold matches per test 
(minus correct) divided by total potential matches 
successes(payloadcounter,threshcounter)=tracker(threshtotalcounter,3)/tes
ts;            %avg total successes logged 
RNTIsmatchedavg(payloadcounter,threshcounter)=tracker(threshtotalcounter,
6)/tests;      %avg per combo 
threshcounter=threshcounter+1 %increments each threshold change, then 
resets 
threshtotalcounter=threshtotalcounter+1; %continually increments each 
threshold change 
 
%reset counters 
match=0; nomatch=0; false=0; threshold_matches=0; 
end %end threshold loop 



125 

threshcounter=threshcounter-1; %reset for last value 
payloadcounter=payloadcounter+1 
end %end payload loop 

Generate Various Plots for Analysis 

%plots 
%Plot 1 Probability of Success versus Threshold 
figure() 
hold off 
plot(thresholdvalues, successes', '-o') 
ax = gca; 
ax.LineStyleOrder = '-'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Success, {\it P_{success}}') 
if lcson==1 
    xlabel('LCS Threshold') 
else 
    xlabel('Hamming Threshold, {\it \tau_{HAM}}') 
end 
grid on 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
legend('Location', 'northeastoutside') 
figure(1) 
getpdf=gcf; 
exportgraphics(getpdf,'plotsuccess.pdf') 
 
%Plot 2 Probability of Error versus Threshold 
figure() 
hold off 
plot(thresholdvalues, type1errors','--o') 
ax = gca; 
ax.LineStyleOrder = '--'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Error, {\itP_{error}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
if lcson==1 
    xlabel('LCS Threshold') 
else 



126 

    xlabel('Hamming Threshold, {\it\tau_{HAM}}') 
end 
grid on 
legend('Location', 'northeastoutside') 
getpdf=gcf; 
exportgraphics(getpdf,'ploterror.pdf') 
 
%Plot 3 Probability of Error versus Probability of Success (log-log) 
figure() 
loglog(type1errors', successes','-o') 
ax = gca; 
ax.LineStyleOrder = '-'; 
ax.YColor = 'black'; 
colororder('default') 
hold on 
ylabel('Probability of Success, {\itP_{success}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
xlabel('Probability of Error, {\itP_{error}}') 
grid on 
legend('Location', 'northeastoutside') 
getpdf=gcf; 
exportgraphics(getpdf,'plotmixed.pdf') 
axis([10E-9 1 10E-3 1]) 
 
%Plot 4 Probability of Success versus Number of Matched RNTIs 
figure() 
hold off 
for plotcount=1:(length(payloadlengths)) 
    plot(RNTIsmatchedavg(plotcount,:), successes(plotcount,:),'-o') 
    hold on 
end 
ax = gca; 
ax.LineStyleOrder = '--'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Success, {\itP_{success}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
xlabel('Matched RNTIs') 
grid on 
legend('Location', 'northeastoutside') 
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%Plot 5 Probability of Error versus Threshold (semilog) 
figure() 
hold off 
semilogy(thresholdvalues, type1errors','--o') 
ax = gca; 
ax.LineStyleOrder = '--'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Error, {\it P_{error}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
axis([0 100 10e-9 1]) 
if lcson==1 
    xlabel('LCS Threshold') 
else 
    xlabel('Hamming Threshold, {\it \tau_{HAM}}') 
end 
grid on 
legend('Location', 'northeastoutside') 
 
%Plot 6 Probability of Success versus Matched RNTIs (semilog) 
figure() 
hold off 
for plotcount=1:(length(payloadlengths)) 
    semilogx(RNTIsmatchedavg(plotcount,:), successes(plotcount,:),'-o') 
    hold on 
end 
ax = gca; 
ax.LineStyleOrder = '--'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Success Rate') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
xlabel('Matched RNTIs') 
grid on 
legend('Location', 'northeastoutside') 
 
%Plot 7 Probability of Success versus Probability of Error 
figure() 
plot(type1errors', successes','-o') 
ax = gca; 
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ax.LineStyleOrder = '-'; 
ax.YColor = 'black'; 
colororder('default') 
hold on 
ylabel('Probability of Success, {\itP_{success}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
xlabel('Probability of Error, {\itP_{error}}') 
grid on 
legend('Location', 'northeastoutside') 
getpdf=gcf; 
exportgraphics(getpdf,'plotmixed.pdf') 
 
%Plot 8 3D Plot of PRobability of Success versus Probability of Error and 
%Threshold 
figure() 
plot3(thresholdvalues, type1errors', successes') 
grid on 
xlabel('Hamming Threshold, {\it\tau_{HAM}}') 
zlabel('Probabililty of Success') 
ylabel('Probability of Error') 
legend(strsplit(num2str((payloadlengths)))) 
 
%Plot (1X2) Probability of Success verus Threshold and Proabability of 
%Error 
figure() 
subplot(1,2,1) 
box on 
hold on 
plot(thresholdvalues, successes', '-o') 
ax = gca; 
ax.LineStyleOrder = '-'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Success, {\itP_{success}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
legend('Location', 'northwest') 
axis([0 100 0 1]) 
ylabel('Probability of Success, {\itP_{success}}') 
if lcson==1 
    xlabel('LCS Threshold') 
else 
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    xlabel('Hamming Threshold, {\it\tau_{HAM}}') 
end 
 
grid on 
subplot(1,2,2) 
hold off 
plot(thresholdvalues, type1errors','--o') 
ax = gca; 
ax.LineStyleOrder = '--'; 
ax.YColor = 'black'; 
colororder('default') 
ylabel('Probability of Error, {\itP_{error}}') 
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA 
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA 
= }103') 
if lcson==1 
    xlabel('LCS Threshold') 
else 
    xlabel('Hamming Threshold, {\it\tau_{HAM}}') 
end 
grid on 
legend('Location', 'northwest') 
endmodel=toc(startmodel)  
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