

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

A DETAILED ANALYSIS AND OPTIMIZATION
OF THE MODIFIED POLAR DECODING RNTI

RECOVERY METHOD TO TRACK USER
ACTIVITY IN 5G NETWORKS

by

Christopher J. Richards

September 2022

Thesis Advisor: Murali Tummala
Co-Advisor: John C. McEachen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
A DETAILED ANALYSIS AND OPTIMIZATION OF THE MODIFIED
POLAR DECODING RNTI RECOVERY METHOD TO TRACK USER
ACTIVITY IN 5G NETWORKS

 5. FUNDING NUMBERS

 RE404

 6. AUTHOR(S) Christopher J. Richards

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 In this thesis, we analyze and optimize the modified polar decoding and syndrome matching radio
network temporary identifier (RNTI) recovery method to de-anonymize the physical downlink control
channel (PDCCH) in 5G networks. We present the impact on RNTI recovery of payload length, codeword
length, signal-to-noise ratio (SNR) and the Hamming and longest common substring (LCS) recovery
methods. Further, we consider the full set of RNTIs and downlink control information (DCI) fields that can
be examined for user activity data and propose methods to track user activity within radio networks from the
recovered data. Finally, we optimize the RNTI recovery method for different attacker scenarios to
demonstrate how an attacker can recover RNTIs, track UEs, and aggregate data about the UE usage patterns
and/or metadata about the user.

 14. SUBJECT TERMS
5G, downlink control information, DCI, Hamming, longest common substring, LCS,
physical downlink control channel, PDCCH, polar coding, radio network temporary
identifier, RNTI, signal-to-noise ratio, SNR, user equipment, UE

 15. NUMBER OF
PAGES
 159
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

A DETAILED ANALYSIS AND OPTIMIZATION OF THE MODIFIED POLAR
DECODING RNTI RECOVERY METHOD TO TRACK USER ACTIVITY IN 5G

NETWORKS

Christopher J. Richards
Lieutenant Commander, United States Navy

BS, Cornell University, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Murali Tummala
 Advisor

 John C. McEachen
 Co-Advisor

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 In this thesis, we analyze and optimize the modified polar decoding and syndrome

matching radio network temporary identifier (RNTI) recovery method to de-anonymize

the physical downlink control channel (PDCCH) in 5G networks. We present the impact

on RNTI recovery of payload length, codeword length, signal-to-noise ratio (SNR) and

the Hamming and longest common substring (LCS) recovery methods. Further, we

consider the full set of RNTIs and downlink control information (DCI) fields that can be

examined for user activity data and propose methods to track user activity within radio

networks from the recovered data. Finally, we optimize the RNTI recovery method for

different attacker scenarios to demonstrate how an attacker can recover RNTIs, track

UEs, and aggregate data about the UE usage patterns and/or metadata about the user.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PRIVACY IN MOBILE COMMUNICATIONS1
B. A DE-ANONYMIZATION ATTACK IN 5G ...3
C. THESIS OBJECTIVE ...3
D. RELATED WORK ..4
E. THESIS OVERVIEW ...5

II. BACKGROUND ..7
A. MOBILE COMMUNICATION METRICS..7

1. Wireless Communication Link Measurements7
2. Error Detection, Correction, and Polar Coding9

B. PHYSICAL CHANNELS IN 5G NETWORKS11
1. Downlink and Uplink Physical Channels11
2. PDCCH Encoding and Modulation ..12
3. PDCCH Demodulation and Decoding ..13

C. METHOD TO RECOVER RNTIS ..15
1. Modified Polar Decoding ...15
2. Syndrome Matching for RNTI Recovery16

D. TYPES OF RNTIS AND DCI MESSAGES IN THE 5G PDCCH18
1. RNTIs in the PDCCH ..18
2. DCI Messages in the PDCCH ...21

III. METHODOLOGY ..31
A. RECOVERY OF USER ACTIVITY ...31
B. DCI PAYLOAD ANALYSIS ..32

1. Expected DCI Payload Lengths ..32
2. Maximum DCI Length Due to Probability of Block Error......33

C. RNTI RECOVERY METHODOLOGY ...34
1. Selection of Optimal Hamming Threshold35
2. Increased Payload Length ...44
3. Increased Codeword Length ...44
4. Impact of Signal-to-Noise Ratio ..45
5. Hamming versus LCS Methods ..46

D. ASSESSMENTS OF USER ACTIVITY ..50
1. Activity Recovered from RNTIs ...51
2. Activity Recovered from DCI Messages53

E. ACTIVITY RECOVERY DEMONSTRATION56

viii

1. DCI Encoding of Control Information56
2. PDCCH Encoding of DCI ...57
3. Recovery of RNTI Through Syndrome Matching58
4. Evaluation of RNTI Recovery Success and Error

Probabilities ..59
5. Decoding of DCI Information and Assessment of UE

Activity ..60

IV. SIMULATION RESULTS AND ANALYSIS ...63
A. MAXIMUM DCI PAYLOAD MODEL ...63
B. MAXIMUM DCI PAYLOAD RESULTS ..64
C. RNTI RECOVERY MODEL..67

1. Input Variables and Factors ...67
2. MATLAB Model for RNTI and DCI Recovery69
3. Simulation Metrics ...71

D. RNTI RECOVERY RESULTS ..74
1. Effect of Increased Threshold ...75
2. Effect of Increased Payload Length ...77
3. Effect of Increased Codeword Length89
4. Effect of High and Low SNR...92
5. Effect of Recovery Method (LCS versus Hamming)96

E. ACTIVITY RECOVERY DISCUSSION ..103

V. CONCLUSIONS ..107
A. CONTRIBUTIONS..107
B. FUTURE WORK ...108

APPENDIX A. MAXIMUM DCI PAYLOAD MODEL MATLAB CODE111

APPENDIX B. RNTI RECOVERY MODEL MATLAB CODE115

LIST OF REFERENCES ..131

INITIAL DISTRIBUTION LIST ...135

ix

LIST OF FIGURES

Figure 1. Physical Downlink Control Channel Modulation and Coding
Process. Source: [3], [9]. ..13

Figure 2. Physical Downlink Control Channel Demodulation and Decoding
Process. Source: [3], [9]. ..14

Figure 3. Modified Polar Decoding and Syndrome Matching Process to
Recover RNTIs and Decode DCI Messages. Source: [3].16

Figure 4. Method to Optimize Recovery of UE Activity from PDCCH
Messages without A Priori Knowledge of the RNTI32

Figure 5. Methodology to Determine Maximum Payload Length, A for a
Codeword Length, E within 310blerP −= ...33

Figure 6. Modified Polar Decoding Method to Recover RNTIs in the Blind
from Intercepted PDCCH Messages. Source: [3].34

Figure 7. Relationship Between Codeword Length E , Payload A , Frozen Bits
F , and CRC for DCI Messages Encoded in the PDCCH35

Figure 8. Normalized Histogram of Hamming Distance Results Between One
Sequence and 152 Randomly Generated Sequences of Length (a)

10ε = and (b) 100ε = ..37

Figure 9. Mean, Median, and Variance for Hamming Results Between One
Sequence and Randomly Generated Sequences of Length

[1:100]ε = ..38

Figure 10. Normalized Results of Hamming Distance Results Between One
Sequence and 152 Randomly Generated Sequences of Length (a)

10ε = and (b) 100ε = Overlayed With Gaussian Probability
Density Functions of / 2HAMµ ε= and 2 / 4hamσ ε= 39

Figure 11. Probability Density of the Number of Channel Bit Errors in a
Sequence of 100ε = for QPSK and SNR = {0, 5, 10} dB40

Figure 12. Output Hamming Distance, HAMd in a Modified Polar Decoded
Sequence versus Input Channel Bit Errors for 100ε = 42

x

Figure 13. Histogram of Normalized LCS Results Between One Sequence and
152 Randomly Generated Sequences of Length (a) 10ε = and (b)

100ε = ...47

Figure 14. Mean, Median, and Variance for LCS Results Between One
Sequence and 152 Randomly Generated Sequences of Length

[1:100]ε = ..48

Figure 15. Output LCS, LCSd in a Modified Polar Decoded Sequence versus
Input Channel Bit Errors for 100ε = ...50

Figure 16. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 40A = , 5SNR = dB, 216E = , and DCI Payload 39
0a 59

Figure 17. Hamming Method RNTI Recovery Efficiency for 40A = , 216E = ,
5SNR = dB and DCI Payload 39

0a as shown by successP versus errorP 60

Figure 18. MATLAB Model to Determine Maximum Supported A for Each E
for 310blerP −≤ Requirement ...64

Figure 19. Probability of Block Error at Payload Lengths A = [12:140] and
Codeword Lengths E = {108, 128, 216, 256, 432, 512} with

0SNR = dB..65

Figure 20. Probability of Block Error at Varied Payload Lengths A = [12:140]
and Codeword Lengths E = {108, 126, 216, 256} with 5SNR = dB66

Figure 21. Probability of Block Error at Varied Payload Lengths A = [12:140]
and Codeword Lengths E = {108, 128} with 10SNR = dB66

Figure 22. MATLAB Model for PDCCH Encoding Following 3GPP Standards
[9] and [18]. ...69

Figure 23. MATLAB Model for Modified Polar Decoding and Syndrome
Matching to Recover RNTIs in the PDCCH as Developed in [3].70

Figure 24. MATLAB Model for RNTI Recovery for Matched Syndromes in the
PDCCH as Developed from [3]. ..71

Figure 25. Decision Tree and Output Metrics for MATLAB RNTI Recovery
Simulation. Source: [3]. ...72

Figure 26. Hamming Method RNTI Recovery errorP versus HAMτ for 216E = ,
5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}76

xi

Figure 27. Hamming Method RNTI Recovery successP versus HAMτ for 216E = ,
5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}77

Figure 28. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 108E = , 5SNR = dB, and A = {12, 17, 23, 28, 33}78

Figure 29. Hamming Method RNTI Recovery Efficiency for 108E = , 5SNR =
dB, and A = {12, 17, 23, 28, 33} as shown by successP versus errorP 79

Figure 30. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 128E = , 5SNR = dB, and Payloads A = {12, 21, 31, 40,
49} ..80

Figure 31. Hamming Method RNTI Recovery Efficiency for 128E = , 5SNR =
dB, and A = {12, 21, 31, 40, 49} as shown by successP versus errorP 80

Figure 32. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 216E = , 5SNR = dB, and A = {12, 22, 32, 42, 52, 63,
73, 83, 93, 103} ..82

Figure 33. Hamming Method RNTI Recovery Efficiency for 216E = , 5SNR =
dB and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown by

successP versus errorP ..82

Figure 34. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 256E = , 5SNR = dB, and A = {12, 25, 39, 52, 66, 79,
93, 106, 120, 133} ..83

Figure 35. Hamming Method RNTI Recovery Efficiency for 256E = , 5SNR =
dB, and A = {12, 25, 39, 52, 66, 79, 93, 106, 120, 133} as shown by

successP versus errorP ..84

Figure 36. Hamming Method RNTI Recovery Efficiency for 256E = , 5SNR =
, and A = {116, 118, 119, 120, 121, 122, 124} as shown by successP
versus errorP ..85

Figure 37. Rate-Matching Relationships between E and A in the PDCCH.
Source: [3]. ...85

Figure 38. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 432E = , 5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97,
112, 126, 140} ..86

xii

Figure 39. Hamming Method RNTI Recovery Efficiency for 432E = , 5SNR =
dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown by

successP versus errorP ...87

Figure 40. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 512E = , 5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97,
112, 126, 140} ..88

Figure 41. Hamming Method RNTI Recovery Efficiency for 512E = , 5SNR =
dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown by

successP versus errorP ..88

Figure 42. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 12A = , 5SNR = dB, and E = {108, 128, 216, 256, 432,
512} ..89

Figure 43. Hamming Method RNTI Recovery Efficiency for 12A = , 5SNR =
dB, and E = {108, 128, 216, 256, 432, 512} as shown by successP
versus errorP ..90

Figure 44. Hamming Method RNTI Recovery Efficiency for 5SNR = dB ,
E = {108, 128, 216, 256, 432, 512} and Set Ranges of A as shown
by successP versus errorP ..91

Figure 45. Hamming Method RNTI Recovery errorP versus HAMτ for 216E =
and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}93

Figure 46. Hamming Method RNTI Recovery successP versus HAMτ for 216E =
and A = {12, 22, 32, 42, 52, 63, 73, 93, 103} ...94

Figure 47. Hamming Method RNTI Recovery Efficiency for 216E = and A =
{12, 22, 32, 43, 52, 63, 73, 83, 93, 103} as shown by successP versus

errorP ...95

Figure 48. LCS Method RNTI Recovery (a) successP and (b) errorP versus LCSτ
for 216E = , 5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83,
93, 103} ..97

Figure 49. LCS Method RNTI Recovery Efficiency for 216E = , 5SNR = dB,
and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown by successP
versus errorP ..97

xiii

Figure 50. RNTI Recovery errorP versus τ for 216E = , 5SNR = dB, and A =
{12, 22, 32, 42, 52, 63, 73, 83, 93, 103} ..98

Figure 51. Hamming and LCS RNTI Recovery Efficiency for 216E = and
5SNR = dB at Selected Payloads as shown by successP versus errorP 99

Figure 52. Comparison of Hamming and LCS RNTI Recovery Efficiency
Across All Payloads and Codewords as specified in Table 20 as
shown by successP versus errorP ..101

Figure 53. Comparison of Hamming and LCS RNTI Recovery Efficiency for
216E = and 0SNR = dB at (a) 83A = (b) 93A = 102

Figure 54. Comparison of Hamming and LCS RNTI Recovery Efficiency for
216E = and 10SNR = dB for (a) 83A = and (b) 93A = 103

Figure 55. Concept for PDCCH Traffic Analysis of Known UE-RNTI
Relationships and Activity, as Derived from Recovered RNTIs and
Decoded DCI Messages ...104

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF TABLES

Table 1. Types of RNTIs Used in the PDCCH. Source: [17], [19].19

Table 2. Types of DCI Messages Used in the PDCCH. Source: [9], [17].21

Table 3. DCI 0_0 PUSCH Resource Allocations (Fallback). Source: [9], [17].23

Table 4. DCI 0_1 PUSCH Resource Allocations (Standard). Source: [9], [17].24

Table 5. DCI 1_0 PDSCH Resource Allocations (Fallback). Source: [9], [17].26

Table 6. DCI 1_1 PDSCH Resource Allocations (Standard). Source: [9], [17].27

Table 7. DCI 2_0 Provision of Slot Format Indicators. Source: [9], [17].28

Table 8. DCI 2_1 Provision of Pre-Emption Indications. Source: [9], [17].28

Table 9. DCI 2_2 Provision of Closed Loop Power Control Commands for
PUCCH and PUSCH. Source: [9], [17]. ..29

Table 10. DCI 2_3 Provision of Closed Loop Power Control Commands to
SRS. Source: [9], [17]. ...29

Table 11. Statistics of Hamming Distance Between One Sequence and 152
Randomly Generated Sequences of Length ε ={10, 100}37

Table 12. Probability Density for Number of Channel Bit Errors in QPSK41

Table 13. Modified Polar Decoding Output HAMd Corresponding to Channel
Bit Errors in Input for 100ε = ...43

Table 14. Median of LCS Between One Sequence and 152 Randomly
Generated Sequences of Length [1:100]ε = ..49

Table 15. Modified Polar Decoding Output LCSd Compared to Number of
Input Channel Bit Errors for 100ε = ...50

Table 16. Possible UE Activity Recovered from RNTIs Recovered in the
PDCCH ..53

Table 17. Activity Recovered from DCI Fields ...55

Table 18. DCI 0_0 Encoding for 1a to Trigger Decrease in MCS and Increase
in TPC Power Control ..57

xvi

Table 19. Maximum Payload for 310blerP −≤ and 5SNR = dB67

Table 20. MATLAB RNTI Recovery Simulation Inputs ..69

Table 21. RNTI Recovery Output Metrics. Source: [3]. ..74

xvii

LIST OF ACRONYMS AND ABBREVIATIONS

2G Second-generation Telecommunications
3G Third-generation Telecommunications
3GPP Third-generation Partnership Project
4G Fourth-generation Telecommunications
5G Fifth-generation Telecommunications
AWGN Additive White Gaussian Noise
BCCH Broadcast Control Channel
BWP Bandwidth Part
CBG Code Block Group
CE Control Element
CRC Cyclic Redundancy Check
C-RNTI Cell Radio Network Temporary Identifier
CSI Channel State Information
CS-RNTI Configured Scheduling Radio Network Temporary Identifier
dB Decibel
DCI Downlink Control Information
DMRS Demodulation Reference Signal
eMBB Enhanced Mobile Broadband
GF Galois Field
gNB gNodeB
GUTI Globally Unique Temporary User Equipment Identity
HARQ Hybrid Automatic Repeat Request
IMSI International Mobile Subscriber Identifier
INT-RNTI Interruption Radio Network Temporary Identifier
I-RNTI Inactive Radio Network Temporary Identifier
IoT Internet of Things
LCS Longest Common Substring
LDPC Low-density Parity-check
LLR Log-Likelihood Ratio
MAC Medium Access Control

xviii

MCS Modulation and Coding Scheme
MCS-C-RNTI Modulation and Coding Scheme Cell Radio Network Temporary

Identifier
MSB Most Significant Bit
MTC Machine-type Communications
nID Cell ID
NDI New Data Indicator
NG-RAN Next-generation Radio Access Network
NR New Radio
PBCH Physical Broadcast Channel
PDCCH Physical Downlink Control Channel
PDF Probability Distribution Function
PDSCH Physical Downlink Shared Channel
PRACH Physical Random-access Control Channel
PRB Physical Resource Block
P-RNTI Paging Radio Network Temporary Identifier
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Key
RA-RNTI Random-access Radio Network Temporary Identifier
RNTI Radio Network Temporary Identifier
RV Redundancy Version
SC Successive Cancellation
SCL Successive Cancellation List
SCS Successive Cancellation Stack
SFI Slot Format Indicator
SFI-RNTI Slot Format Indicator Radio Network Temporary Identifier
SI-RNTI System Information Radio Network Temporary Identifier
SNR Signal-to-Noise Ratio
SP-CSI-RNTI Semi-persistent Channel State Information Radio Network

Temporary Identifier

xix

SRS Sounding Reference Signal
SS Synchronization Signal
SUPI Subscriber Unique Permanent Identifier
TA Timing Advance
TB Transport Block
TC-RNTI Temporary Cell Radio Network Temporary Identifier
TMSI Temporary Mobile Subscriber Identity
TPC Transmit Power Control
TPC-PUSCH-RNTI Transmit Power Control Physical Uplink Shared Channel Radio

Network Temporary Identifier
TPC-PUCCH-RNTI Transmit Power Control Physical Uplink Control Channel Radio

Network Temporary Identifier
TPC-SRS-RNTI Transmit Power Control Sounding Reference Signal Radio Network

Temporary Identifier
UE User Equipment
URLCC Ultra-reliable Low Latency Communications
VoIP Voice over Internet Protocol
VRB Virtual Resource Block
XOR Exclusive OR

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

ACKNOWLEDGMENTS

First, I would like to thank my wife, Carly, for her endless support

and encouragement throughout this challenging and time-consuming endeavor.

Second, I’d like to thank my advisors Professors John McEachen and Murali Tummala.

Thank you for sharing your extensive subject knowledge, meticulous attention to detail,

and persistent dedication from the exploration phase to the final draft. It’s been a

great experience working through this process at the fantastic learning environment of

Naval Postgraduate School.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

At the end of 2021, the number of mobile subscriptions in the world reached an

estimated 8.1 billion, with a total mobile traffic estimate of 65 exabytes/minute [1]. Today,

almost 2 billion people have a mobile phone and while many utilize 2G through 4G

networks, fifth-generation (5G) mobile subscriptions are expected to grow from 660

million in 2021 to 4.4 billion in 2027 [1]. This increase in mobile subscriptions includes

IoT devices with 30.2 billion internet of things (IoT) device connections forecasted by 2027

[1]. With the ubiquity of mobile devices, many transported continually by users and others

performing critical tasks, privacy and security have become more important than ever. The

third-generation partnership (3GPP) standard for 5G mobile communications has made

significant improvements in mobile security and privacy [2]. However, in [3] a

methodology was demonstrated to de-anonymize the physical downlink control channel

(PDCCH) and recover a sample 12-bit message. The objective of this work is to expand on

[3] to determine the feasibility of recovering PDCCH messages in practice, optimize the

recovery method, and reveal user activity based on the information recovered. This work

is intended to inform the mobile telecommunications industry and standards organizations

on the vulnerabilities of the PDCCH so that further improvements may be made to the

privacy and security of next generation mobile telecommunications.

A. PRIVACY IN MOBILE COMMUNICATIONS

The transition in mobile standards from 2G through 5G have included significant

improvements in privacy and security for the users of the networks [4], [5]. A key aspect

of mobile security in 5G is privacy protection, which ensures information about user

equipment (UE) does not become available to others [6]. 2G standards first introduced an

identifier called the temporary mobile subscriber identifier (TMSI) to protect a user’s

international mobile subscriber identity (IMSI), which does not change and is associated

with the user’s mobile billing account [4]. The TMSI, however, had a vulnerability in that

the UE passed the IMSI itself to authenticate itself to a network before receiving a TMSI

and thus could be recovered and tracked by a prudent attacker [4]. Further, 2G standards

2

did not protect signaling traffic and failed to provide a mechanism for the UE to

authenticate the network prior to joining it [4]. The 3G security architecture improved on

2G by updating to stronger protection of signaling and reducing the requirement to send

the IMSI in the authentication process [4]. 4G improved mechanisms to prevent attackers

from learning mobile user identities by introducing the globally unique temporary user

equipment identity (GUTI), imposing encryption on signaling, and scrambling message

recovery with the radio network temporary identifier (RNTI) [5]. The RNTI provided a

unique and temporary address for a UE connected to a cell, which changed every time a

UE connected to a new cell [5]. 5G networks further improved security by upgrading the

authentication process and introducing the subscription permanent identifier (SUPI) and

subscription concealed identifier (SUCI) all while using RNTIs to locally control radio link

control channel signaling [2], [6].

The transformation to 5G is built upon technological advances that improve how

the mobile waveform is coded, scheduled, and transmitted, and further expands the

operating spectrum to include millimeter wave frequencies [7]. These advances are

advertised to establish new use cases built around ultra-reliable low latency

communications (URLCC), massive machine-type communication (MMTC) for the IoT,

and enhanced mobile broadband (eMBB) [7]. In all use cases, privacy and security are

paramount. In a URLCC use case such as a smart city using 5G to direct vehicular traffic,

the ability to identify a specific vehicle and track its movements can compromise the

privacy and possibly the security of the vehicle and its occupants. In an industrial MMTC

IoT use case, where 5G networks can be used in industries such as oil & gas refining, the

location and communications of critical safety devices could be compromised, leading to

physical or cyber attacks. Lastly, in a eMBB use case, which is expected to be heavily

utilized by mobile users, UE RNTI values could be correlated with the geographical

movements of an individual, leading to the individual being tracked as they move about or

change applications within the 5G cell.

3

B. A DE-ANONYMIZATION ATTACK IN 5G

In 5G networks, a UE is connected to the cellular network over the air via a radio

link to a gNodeB (gNB) [8]. Within the gNB to UE link, there exists a control channel

called the physical downlink control channel (PDCCH), and this channel directs the UE

when, where, and how it can find its downlink data and transmit its uplink data [8]. The

PDCCH is essentially directing traffic on the uplink and downlink to maintain the

connection between the gNB and UE so that texts, calls, and application data can

seamlessly flow. While all channels carrying the user data are encrypted, the PDCCH is

not encrypted but instead is scrambled by the UE temporary identifier for the control

channel, the RNTI [9]. Every PDCCH message is broadcast to all recipients and every UE

will attempt to descramble the received message; however, only the UE descrambling with

its own RNTI will be able to recover the message details [9].

It has been shown in [3] that the lack of encryption presents a vulnerability as the

scrambling associated with the RNTI can be identified through a process called modified

polar decoding and syndrome matching [3]. While recovering the RNTI is not easy and

requires somewhat significant computational resources, the RNTI can be identified after

numerous iterations [3]. This RNTI recovery provides a path to de-anonymize the PDCCH

channel, recover the downlink control information (DCI) messages, and reveal information

about a user’s patterns, activities, and even location changes within the mobile

environment. A prudent attacker could track multiple devices across the network, logging

when the gNB changes parameters related to the device physical location or a change in

mode of operation, e.g., the device has started a voice-over-internet-protocol (VOIP) call.

C. THESIS OBJECTIVE

The objective of this thesis is to optimize the RNTI recovery method for the

expected PDCCH conditions in real-world 5G radio access networks (RANs). If an attacker

can efficiently recover RNTIs in a 5G network, they can descramble the DCI commands

sent in the PDCCH and in many cases track user activity on the network. Therefore, in this

thesis we assess a sophisticated attacker’s ability to recover RNTIs and track user activity

4

for different payload lengths, codeword lengths, and signal-to-noise-ratios that are

expected to be utilized.

To accomplish this objective, we first develop strategies to identify probable DCI

payload lengths in the PDCCH given probability of bit error constraints. Next, we evaluate

an optimal threshold to meet RNTI recovery goals in different mobile environments.

Further, we consider the impact on RNTI recovery of increased payload length, increased

codeword length, high and low signal-to-noise ratio, and Hamming versus longest common

substring (LCS) recovery methods. Finally, we consider the information recovered from

the DCI messages descrambled with the recovered RNTIs and evaluate how the

aforementioned factors impact our ability to track UE activity within the mobile

environment.

D. RELATED WORK

In [3], Gardner developed a method to recover RNTIs from intercepted PDCCH

messages using modified polar decoding and syndrome matching. This work demonstrated

the RNTI recovery method for a payload of 12 bits and codeword lengths around 128 bits.

In this thesis, we expand this method for payload and codeword lengths as expected in the

real-world 5G networks and develop additional techniques for an approach to optimize

RNTI recovery based on the mobile environment and attacker objectives.

Egilmez et. al [10] characterized the error correction and error detection

performance of the polar codes in the 3GPP 5G standard. This work demonstrated the

baseline probability of block error blerP performance of a PDCCH polar code for different

payload lengths A and provided observations on the viability of polar codes for future

standards. We develop a methodology in this thesis to evaluate the blerP of the PDCCH

polar code to compare results and then evaluate the RNTI recovery vulnerability exhibited

through polar coding to further appraise the viability of their use.

In [11], Garrett evaluated brute-force and known plaintext attacks against the

physical downlink shared channel (PDSCH) which uses low-density parity-check (LDPC)

codes for error correction. The work concluded that the LDPC coded PDSCH better

5

protected the anonymity of an RNTI against such attacks than the polar coded PDCCH. In

this thesis, we develop an attacker’s methodology to optimally attack the PDCCH to

provide further corroboration of the vulnerabilities of the polar coding used in the PDCCH.

E. THESIS OVERVIEW

The remainder of this thesis is structured as follows. Chapter II provides mobile

communication background, a 5G channel overview, the technical details of the method to

de-anonymize the PDCCH developed in [3], and the types of RNTIs and DCI messages

used in the PDCCH as established by the 3GPP standards. Chapter III describes how to

determine probable DCI payloads and optimize the methodology used for RNTI recovery

to ultimately track user activity. Chapter IV presents the simulation setup and results of the

DCI payload analysis and RNTI recovery methodology for practical payload and codeword

combinations at different threshold values, signal-to-noise ratios (SNR), and matching

methods. Chapter V concludes with the takeaways from the results and provides

recommendations for future work in analyzing 5G physical channel vulnerabilities.

Appendix A contains the MATLAB code for evaluating the DCI payload lengths within

probability of bit error constraints. Appendix B contains the MATLAB code to recover

RNTIs in the blind from scrambled PDCCH messages.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

In this chapter, we provide the foundation critical to understanding the

methodology to recover RNTIs and track user activity information from intercepted

PDCCH messages. An overview of mobile communication metrics is provided to develop

basic concepts with which we can analyze changes in the mobile environment. This is

followed by an overview of 5G physical channels to provide an understanding of the

importance of the PDCCH in controlling traffic in 5G networks. Next, we present a method

developed in [3] to use modified polar decoding and syndrome matching to recover RNTIs

in the blind from intercepted PDCCH messages. Finally, a detailed description of the

RNTIs and DCI messages used in 5G is provided as these identifiers and messages can be

used to recover user activity from the PDCCH.

A. MOBILE COMMUNICATION METRICS

In this thesis, we assess the activity of a user based on the changes to the encoded

information recovered from the intercepted PDCCH messages. This section provides a

brief introduction to important concepts in mobile communication, which are critical to

translating between physical changes in the channel and technical information gleamed

from the PDCCH.

1. Wireless Communication Link Measurements

The first wireless communication concept to understand is that of received power

RP in a communications link,

 T T R
R

C

P G GP
L

= (2.1)

where TP is the transmitted power, TG is the transmitter gain, RG is the receiver gain, and

CL is the path loss [12]. Further,

24

C
dL π

λ
 =  
 

 (2.2)

8

where d is the distance between the transmitter and reciever, and λ is the wavelength of

the communications link [12]. Cellular communications frequently operate with multipath

channels, but in general the relations of (2.1) and (2.2) can be used to estimate whether RP

increases or decreases as distance between the UE and gNB changes [12]. The takeaway

for analyzing PDCCH messages is that when a UE moves further from a gNB, RP will

decrease and can result in a request from the gNB for an increase in TP .

Second, it is important to understand the probability of channel bit error ,b QPSKP in

the PDCCH. The PDCCH uses coherently detected quadrature phase shift key (QPSK) to

modulate the bits onto the carrier waveform for transmission [9]. The probability of bit

error for coherently detected QPSK in an additive white Gaussian noise (AWGN) channel

is well established using the Q -function as

 ,
0

2 b
b QPSK

EP Q
N

 
=   

 
 (2.3)

where bE is the energy per bit, and 0N is the noise spectral density [13]. In the PDCCH,

as bE decreases or 0N increases, ,b QPSKP will increase since the Q -function output

decreases as its positive argument increases. To keep ,b QPSKP constant, this increase could

be counteracted by either driving an increase in bE or adding more error correction bits as

will be discussed in the next section. In mobile communications, due to high channel bit

error probabilities, error correction coding is typically applied to improve the information

bit error bP ; however, as ,b QPSKP increases or decreases, bP will as well.

Lastly, the signal-to-noise ratio (SNR) is an important metric to understand the

relationship between the gNB, the UE, and an attacker’s intercepting location. The SNR ,

typically represented in dB, is defined by

0

b bR

N

E RPSNR
P N B

= = (2.4)

9

where RP is the received signal power, NP is the noise power, bE is the energy per bit, bR

is the bit rate, 0N is the noise spectral density, and B is the signal bandwidth [12]. It is

important to note that an attacker passively monitoring the PDCCH will likely experience

a SNR different from that of the UE for which the communications are intended.

2. Error Detection, Correction, and Polar Coding

Central to this thesis are the concepts of error detection and error correction in

which errors in information bits can be respectively detected and corrected using code bits.

The first method we introduce is the calculation of the cyclic redundancy code (CRC),

which performs error detection only. In the PDCCH, a CRC is used to ensure the received

data bits, which carry a DCI message are not corrupted [9]. The CRC is calculated by taking

the cyclic generator polynomial

 24 23 21 20 17 15 13 12 8 4 2
24 1Cg x x x x x x x x x x x x= + + + + + + + + + + + + (2.5)

where x denotes a bit delay of a length equal to its exponent, and dividing 24Cg by the

data bits in Galois Field (GF)(2) [9]. The length 24-bit CRC is then appended to the length

A data bits to form a length K block [9]. This CRC, when calculated can determine

whether the data bits have been corrupted from the originally sent bits, or, as we will apply

in this thesis, when the data bits are uncorrupted and have been descrambled with the

correct scrambling sequence [3].

While error detection is used to confirm the A data bits have been accurately

received, it is necessary to add bits for error correction to reduce the information bit error

probability, bP , as mobile communication channels are known to have high channel error

probabilities. The PDCCH uses block error correction by means of polar coding, where K

bits (data + CRC) are encoded onto a block of N polar coded bits [14]. In polar coding,

first F N K= − zeros are inserted, referred to as frozen bits to generate a codeword of

length N [3]. The sequence locations in which the F bits are inserted are pre-determined

to place the K bits in the most reliable positions, i.e., in positions most likely to be

corrected if an error occurs in transmission [3], [14]. Once the length N polar coded block

is formed, the polar coding bits are generated by

10

 1 1
0 0
N N

Np n G− −= (2.6)

where 1
0
Np − are the polar coded bits, 1

0
Nn − are the input bits to polar coding, and NG is the

polarization matrix. It follows that

 2
n

NG G ⊗= (2.7)

where ⊗ is the Kronecker product, and multiplication is performed in GF(2) and

 2

1 0
1 1

G  
=  
 

 (2.8)

is the polarization matrix when 2N = [3], [14]. The end effect of the GF(2) polarization

matrix multiplication is that the K data + CRC bits are diffused throughout the N polar

coded bits so that when bit errors occur in transmission, it is possible to correct the errors

and fully recover the K bits [14]. The important concept to note here is that an increase in

F results in an increase in error correction capabilities, also referred to as code rate, r ,

which ultimately decreases the information bit error probability, bP . Throughout this thesis

we will vary payload length A and codeword length E , both of which directly impact the

size of F . For further background on polar coding and its error correction capabilities, the

reader is referred to [3], [10], and [14].

Polar decoding in this thesis follows [3] and uses log likelihood ratio (LLR) based

successive cancellation (SC) decoding to recover the K data + CRC bits from the length

N polar coded block. In this case, the received QPSK symbols are translated to LLR values

instead of hard 0 and 1 bits, which in the end improves error correction [3], [12]. The polar

decoding process, detailed in [3] and [12], inputs the LLR values and corrects errors in the

received bits to produce the recovered K data + CRC bits. The power of the polar decoding

is directly related to the number of frozen bits F , which is a key concept in this thesis. In

addition, there are more complex methods to perform polar decoding, such as successive

cancellation list (SCL) decoding and successive cancellation stack (SCS) decoding, to

improve the error correction capabilities requiring increased computational power; more

information can be found in [10], [15], [16], and [20].

11

B. PHYSICAL CHANNELS IN 5G NETWORKS

To understand the methodology used to recover RNTIs and decode DCI

information informing user activity, an overview of 5G communications channels is

provided. Specifically, it is imperative to understand the process to encode and decode

PDCCH messages as in this process is where a vulnerability to recover RNTIs lies. A brief

introduction to the method to recover RNTIs is provided in this section as well as an

overview of all the potentially recoverable user activity information.

1. Downlink and Uplink Physical Channels

The physical downlink channels in 5G networks consist of the physical broadcast

channel (PBCH), physical downlink control channel (PDCCH), and the physical downlink

shared channel (PDSCH) [18]. The PBCH broadcasts key information that a UE requires

to access the cell and is one of the first channels received when a UE attempts to connect

to a 5G network [17]. Once a UE is connected and authenticated, the PDDCH is used by

the gNB to transfer downlink configuration information via DCI messages [17]. These DCI

messages contain critical configuration information in which a UE receives its downlink

resource allocation so that it may transmit to the gNB and its uplink resource allocation so

that it may receive data transmissions from the gNB [17]. The downlink resource allocation

provides access to the PDSCH, a shared channel on which the UE can receive application

data, signaling messages, system information messages, paging messages, and some

control information [17].

On the uplink side, the physical channels are the physical random-access channel

(PRACH), the physical uplink control channel (PUCCH), and the physical uplink shared

channel (PUSCH) [18]. The PRACH is used by UEs connecting to the network to send

messages as required by the random-access procedure, which governs the process for a UE

to initially connect and authenticate to a network [17]. Once connected, the PUCCH is used

to transfer uplink configuration information via PUCCH format messages. These messages

are similar to DCI messages and control hybrid automatic repeat request (HARQ)

acknowledgments, scheduling requests, and channel state information (CSI) reports from

the UE. We note here that the PUCCH transmits information about the channel conditions

12

and similarly is polar coded and scrambled by a RNTI sequence, thus making it vulnerable

to the RNTI recovery methods discussed in this thesis. However, this thesis is limited in

scope to the PDCCH, chosen because it contains more valuable activity information than

the PUCCH. Finally, the PUSCH is a shared channel used to transfer application data,

signaling messages, and some control information [17]. The PUSCH resource allocation is

sent on the PDCCH, which is the focus of this thesis [17].

2. PDCCH Encoding and Modulation

To understand the nuances of the RNTI recovery process presented in [3], the

PDCCH modulation and coding process is detailed in this section. As shown in Figure 1,

data to be sent in the PDCCH is modified by scrambling, interleaving, polar encoding, and

rate matching processes prior to transmission, where all steps are governed by [18], a 3GPP

standard. The first step of note to this thesis is the CRC scrambling, which as discussed in

Section II.A.2 provides a method to confirm whether all errors have been corrected in the

data bits and for our purposes whether the data bits have been descrambled correctly if the

RNTI is not known a priori [3]. Second, the frozen bit insertion and polar coding, as

discussed in Section II.A.2, is the step in which the frozen bits are inserted, and the polar

coding method is applied. These two steps are critical to this thesis in that the impact of the

scrambling sequence and subsequent polar coding on the frozen bits will be analyzed to

recover the RNTI. The rate matching step which follows polar coding is in place to adjust

the polar coded block length N to the codeword length E , which is assigned by the gNB

according to the resources available [17]. In this step, if necessary, the length N block of

polar coded bits undergoes either repetition, shortening, or puncturing to be adjusted to

length E [9]. This thesis does not go into detail on the rate matching process, but the reader

can find the background in [9] and further explanation and examples in [3].

13

Figure 1. Physical Downlink Control Channel Modulation and Coding

Process. Source: [3], [9].

Next, it is important to note that the scrambling step uses a length-31 Gold sequence

initialized by a generator according to

 16 31(2) mod 2init RNTI IDc n η= ⋅ + (2.9)

where initc is the scrambling sequence initiator, RNTIn is the RNTI assigned, and IDη is the

assigned cell ID [18]. The 31mod 2 discards the 16th bit from the RNTI, thus reducing our

scrambling sequence space to 152 possibilities [3]. Once the rate matched bits of length E

are scrambled, the resultant bits are modulated and transmitted as QPSK symbols [18].

From the perspective of an attacker analyzing an intercepted PDCCH message, it is

important to note that while the output codeword length E will be recovered, the input

data length A will not be known and this length affects the frozen bit determination, frozen

bit insertion and rate matching steps in the encoding process. Further for the attacker, there

is no a priori knowledge of the RNTI, which determines the scrambling sequence used.

3. PDCCH Demodulation and Decoding

The PDCCH demodulation and decoding process, as shown in Figure 2, is

essentially the reverse of the encoding and modulation steps presented in the previous

section; for the UE, the possible lengths of the DCI message A and the RNTI will be

known [18]. A process called DCI size alignment is performed for the PDCCH in which

the gNB has configured its DCI messages to be no more than four sizes [9]. This is

accomplished through padding as explained in more detail in Section II.D.2, but for our

14

purposes it means that there are four possible values of A . The UE decoding the PDCCH

bits received will attempt to perform the DCI message recovery process for one of the four

sizes and if the CRC does not match the decoded bits, the UE will attempt to decode the

next size until the message is recovered or all four sizes are exhausted [9].

Figure 2. Physical Downlink Control Channel Demodulation and Decoding

Process. Source: [3], [9].

In this case, the demodulation is performed using LLR SC decoding, the RNTI

initiated sequence is applied to descramble the bits, and the remaining steps taken to encode

the message are reversed to recover the DCI message and the CRC [3], [9]. At this point,

the UE calculates a CRC for the received A data bits and compares it to the CRC decoded

within the K bits recovered [9]. If the CRC matches, then the data bits have been

successfully demodulated, descrambled, and decoded; if not, then there are three

possibilities. The first possibility is that the RNTI is not correct, and this message is

addressed to another UE. The second possibility is that the message length A is not correct

for this message, and the UE will attempt the process using the other three sizes. The last

possibility is that uncorrectable errors have occurred, and the message is unrecoverable.

We see through this process how the PDCCH uses its RNTI as an address in that every UE

will attempt to recover every PDCCH message but will only be able to descramble the

message if it has been scrambled by its assigned RNTI [3], [9]. The other takeaway here is

that every different A results in a different decoding sequence; therefore, for an attacker,

knowing the four possible A values or having some idea of what they may be is critical.

15

C. METHOD TO RECOVER RNTIS

So far, we have covered the PDCCH encoding, modulation, demodulation, and

decoding processes as designed in 5G networks. Now, we will cover how to exploit a

vulnerability [3] in which modified polar decoding and syndrome matching can be used to

decode DCI payloads from intercepted PDCCH messages without a priori knowledge of

the RNTI. The methodology used in this section is detailed extensively with proof and

examples in [3]; the reader is directed there for further information if desired.

1. Modified Polar Decoding

In [3], modified polar decoding was demonstrated as a method to identify the effect

of the RNTI initiated scrambling sequence on the frozen bits inserted for polar coding. As

shown in Figure 3, this method takes the LLR values recovered from the demodulation,

rate recovery, and sub-block deinterleaving steps and performs modified polar decoding

on those bits. To perform modified polar decoding, the recovered bit sequence is multiplied

by the polarization matrix to reverse the forward polar coding process applied in the

PDCCH encoding steps by

 1 1
0 0ˆ ˆN N

Nn p G− −= (2.10)

where 1
0ˆ Np − are the polar coded bits estimated from the received LLR values, 1

0ˆ
Nn − are the

received bits in which the polar coding process has been reversed, and NG is the

polarization matrix. From the modified polar decoding step output, we can take 1
0ˆ
Nn − and

select only the frozen bits to form an error pattern of length, E Kε = − [3].

In the case in which the RNTI is known, and descrambling is applied prior to polar

decoding, the error pattern consists of all frozen bits and thus will consist of all zeros except

when those zeros have been flipped due to additive white Gaussian noise (AWGN). In our

case of modified polar decoding, the error pattern is uniquely affected by the RNTI

scrambling sequence, considered as a form of non-random noise [3]. This pattern is still

affected by AWGN and therefore some bits will be further flipped due to the AWGN. The

takeaway of modified polar decoding is that it leaves us with an error pattern ε that is

affected by the RNTI scrambling sequence and AWGN.

16

Figure 3. Modified Polar Decoding and Syndrome Matching Process to

Recover RNTIs and Decode DCI Messages. Source: [3].

2. Syndrome Matching for RNTI Recovery

The method for determining the RNTI from the error pattern developed in [3] is to

pre-generate a syndrome table, which consists of all possible RNTI scrambled error

patterns and then to query the syndrome table for an error pattern match. Recall that there

are 152 possible RNTI initiated scrambling sequences; therefore, each syndrome table has
152 syndrome entries [3]. However, each codeword and payload combination generates a

different error pattern due to the number of frozen bits added and the unique sequence in

which the frozen bits are added [3]. As a result, many syndrome tables are generated;

however, once a syndrome table for a given codeword length E and payload length A is

created, it can be used in perpetuity [3]. There is some complexity to generating syndrome

tables for different rate-matching cases, but a method to develop the tables is presented in

[3], and for the purposes of this thesis, we can generate a syndrome table for any E and A

combination.

We must also consider that some of the error pattern bits will be flipped due to the

presence of AWGN, which is a major focus of this thesis. Since the intercepted PDCCH

sequence is affected by AWGN, the attacker cannot rely on a direct match but instead must

apply a threshold within which an error pattern and syndrome can be considered a match

[3]. The LCS method and the Hamming method can be used to filter matches to efficiently

recover the RNTI [3]. The Hamming method considers the Hamming distance between the

two sequences HAMd and is set as a maximum threshold HAMτ [3]. For a 10-bit example

with a randomly generated error pattern and syndrome,

17

 1 1 1
0 0 ,0HAMe sε ε εϕ− − −⊕ = (2.11)

[] [] []0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0⊕ =

where 1
0eε − is the error pattern, 1

0sε − is the syndrome, 1
,0HAM

εφ − is the exclusive OR (XOR)

result of the two, and ε is the length of the sequences. We find that
1

0
() 4HAM

i
d i

ε

ϕ
−

=

= =∑ , and

if HAM HAMd τ≤ , then the error pattern and syndrome will be considered a match. A matching

error pattern is then descrambled, and the CRC is checked to determine if the RNTI of that

syndrome is the correct RNTI.

Another method to compare the error pattern and the syndrome is the LCS method,

which considers the longest common substring LCSd of matching bits between the two

sequences and is set as a minimum threshold LCSτ [3]. For the same 10-bit randomly

generated example,

[]1
0 0 1 1 0 0 0 1 0 1 0eε − =

1
0 [1 1 0 0 0 1 0 0 1 0]sε − =

we find that 3LCSd = as the last three bits of the sequence match, which is the longest

common consecutive substring. Similar to the Hamming method, if LCS LCSd τ≥ , the

matching error pattern is then descrambled, and the CRC is checked to determine if the

RNTI of that syndrome is the correct RNTI. The last item we consider is that there are 152

possible RNTI initiated scrambling sequences, but 162 RNTIs that could be associated with

a UE. This problem is solved by descrambling with both the recovered RNTI RNTIn and the

identical 152 sequence but with a 16th MSB bit of 1, 152RNTIn + [3]. Descrambling and

decoding with both the RNTI values and checking for a correct CRC ensures that the entire

RNTI search space is exhausted.

18

D. TYPES OF RNTIS AND DCI MESSAGES IN THE 5G PDCCH

In this section, we provide an overview of the RNTIs and DCI formats used in 5G

networks as governed by the 3GPP NR standards [9], [18], and [19]. The types of RNTIs

that are used is important because, as we recover these RNTIs, we can identify what type

of activity is being directed by the gNB. Further, the DCI formats are uniquely scrambled

by different RNTIs and contain DCI fields with valuable information that can be used to

assess user activity.

1. RNTIs in the PDCCH

RNTIs are used as a unique address for DCI messages sent to specific UEs in the

PDCCH [17], [19]. When PDCCH message is received by a UE, the UE does not know

whether that message is intended for it or another UE and will demodulate the signal and

begin attempting to decode the message with its own RNTI in the descrambling step [20].

The polar decoding process is designed such that a UE will quickly be able to identify

whether its RNTI-initiated descrambling is correct and can abandon the process early if

not, saving resources and battery life [20]. However, if the RNTI descrambling is correct,

then the PDCCH message is descrambled, the DCI payload is retrieved, and the UE has

received its message [20]. Overall, the 3GPP standard for NR uses thirteen unique RNTIs

at the gNB level, and they are listed in Table 1. There is one RNTI used at the next-

generation radio access network (NG-RAN) level to track inactive UEs called the inactive

RNTI (I-RNTI), but since I-RNTI is not used to scramble PDCCH bits in the physical layer,

it is not further discussed in this thesis [8].

19

Table 1. Types of RNTIs Used in the PDCCH. Source: [17], [19].

RNTI DCI
Format

Application Value

SI-RNTI 1_0 PDSCH resources for System Information FFFF
P-RNTI 1_0 PDSCH resources for Paging Messages FFFE
RA-RNTI 1_0 PDSCH resources for Random-access

Response (RAR)

Random
(0001-
FFEF)

TC-RNTI 0_0, 1_0 PDSCH resources for MSG3 re-
transmissions, PDSCH resources for MSG4

C-RNTI 0_0, 1_0,
1_0, 1_1

PUSCH and PDSCH resources for
application data and control plane signaling

MCS-C-RNTI 0_0, 1_0,
1_0, 1_1

Dynamic selection of low Spectral Efficiency
MCS Table for PDSCH and PUSCH

CS-RNTI 0_0, 1_0,
1_0, 1_1

Configured Grant Scheduling for PUSCH,
Semi-Persistent Scheduling for PDSCH

TPC-PUSCH-
RNTI

2_2 Closed loop uplink power control commands
for PUSCH

TPC-PUCCH-
RNTI

2_2 Closed loop uplink power control commands
for PUCCH

TPC-SRS-
RNTI

2_3 Closed loop uplink power control commands
for the SRS

INT-RNTI 2_1 Interruption signaled using Pre-emption
Indications

SFI-RNTI 2_0 Dynamic changes to the slot format signaled
using Slot Format Indicators

SP-CSI-RNTI 0_1 Trigger to activate/deactivate Semi-Persistent
CSI reporting from the UE

Considering the RNTIs in Table 1, we first point out the fact that the SI-RNTI and

P-RNTI have fixed hexadecimal values of FFFF and FFFE, respectively. These RNTIs are

not unique to a UE and are used to scramble system information and paging messages

which all UEs receive; therefore, they are not of interest to our user activity tracking

methodology [8]. The random-access RNTI (RA-RNTI) and the temporary cell RNTI (TC-

RNTI) are used in the random-access procedure to assign an identifier to a UE first

connecting, or in some cases reconnecting, to a network [21]. The RA-RNTI is initially

assigned based on calculated cellular parameters, and then the gNB assigns a TC-RNTI to

the UE to release the RA-RNTI back for another UE attempting to join [21]. Frequently

the TC-RNTI is then promoted to cell RNTI (C-RNTI) once the UE is authenticated [21].

20

The C-RNTI is the primary RNTI assigned to a UE for the gNB to dynamically allocate

resources on the PDCCH [8]. While the use of the C-RNTI itself does not indicate the use

of any special features, we considered it as the primary means to track UEs on mobile

networks in this thesis.

Next, we consider the modulation and coding scheme cell RNTI (MCS-C-RNTI),

the configured scheduling RNTI (CS-RNTI), and the semi-persistent channel state

information RNTI (SP-CSI-RNTI). These RNTIs are used to activate a specific mode of

operation in a UE of which the UE has been pre-configured to expect [8]. The use of the

MCS-C-RNTI triggers dynamic MCS changes, the CS-RNTI triggers semi-persistent

scheduling in the downlink or configured grant in the uplink, and the SP-CSI-RNTI triggers

the use of semi-persistent CSI reporting on the PUSCH [8]. The identification of these

RNTIs is useful in this thesis because they indicate possible changes in mode of operation

that may be associated with a specific application or state of the UE. The RNTIs considered

so far are used to scramble DCI format 0_0, 0_1, 1_0, and 1_1 messages, which direct

scheduling of resources on the PUSCH and PDSCH [19].

Further, we consider the RNTIs used to scramble DCI format 2_0, 2_1, 2_2, and

2_3 messages, which are typically addressed to groups of UEs [9]. In these cases, the group

of UEs would share the RNTI used to scramble these messages; within the DCI message,

each UE would have a field reserved for its UE-specific command [9]. The transmit power

control PUSCH RNTI (TPC-PUSCH-RNTI) and transmit power control PUCCH RNTI

(TPC-PUCCH-RNTI) are used to scramble DCI 2_2 format messages to direct closed loop

power control commands on the PUSCH and PUCCH, respectively [9]. Similarly, the

transmit power control sounding reference signal RNTI (TPC-SRS-RNTI) is used to

scramble DCI 2_3 format messages and direct closed loop power control commands for

the SRS [9]. The INT-RNTI, used to scramble DCI 2_1 format messages, is used to indicate

pre-emption in the downlink, which indicates to the group that its transmissions are being

interrupted for time critical transmissions from another UE, which could be valuable

information for our UE activity tracking [8]. The last RNTI in the PDCCH is the SFI-RNTI,

used to scramble DCI format 2_0 and to direct a change to slot format in which the gNB

can dynamically reconfigure resources for optimal use [8], [17]. The use of these RNTIs

21

to deduce user activity and track changes to user activity will be discussed in Section

III.D.1.

2. DCI Messages in the PDCCH

In this section, we will describe the DCI formats and the information contained

within each as governed by the 3GPP NR standards. These DCI payloads when encoded

are scrambled by the aforementioned RNTIs; therefore, recovering a RNTI for an

intercepted PDCCH message allows for the DCI payload to be unscrambled. The DCI

messages contain valuable configuration information for the PUSCH and PDSCH and

identify special features activated [17]. Table 2 presents the types of DCI formats used in

the PDCCH. The ‘Fallback’ messages are designed to maintain a connection when

coverage deteriorates as they do not have as many configurable fields as the ‘Standard’

messages and are therefore smaller payloads, allowing for higher code rates to be used

[17]. DCI formats 0_0 and 0_1 are used to dynamically schedule resource allocations on

the PUSCH [9]. DCI formats 1_0 and 1_1 are used to dynamically schedule resource

allocations on the PDSCH [9]. The DCI formats designed to support group messaging are

DCI format 2_0, which notifies UEs of the slot format, DCI 2_1, which notifies UEs of a

pre-emption for time critical transmission, DCI 2_2, which is used to transmit TPC

commands for PUCCH and PUSCH, and DCI 2_3, which is used to transmit TPC

commands for SRS [9].

Table 2. Types of DCI Messages Used in the PDCCH. Source: [9], [17].

DCI Format Application
0_0 ‘Fallback’ DCI format for uplink resource allocations on PUSCH
0_1 ‘Standard’ DCI format for uplink resource allocations on PUSCH
1_0 ‘Fallback’ DCI formats for downlink resource allocations on PDSCH
1_1 ‘Standard’ DCI format for downlink resource allocations on PDSCH
2_0 Provision of Slot Format Indicators (SFI)
2_1 Provision of Pre-emption Indications
2_2 Provision of closed loop power control commands applicable to

PUCCH and PUSCH
2_3 Provision of closed loop power control commands applicable to SRS

22

a. DCI 0_0 and 0_1 PUSCH Resource Allocations

The PUSCH allocations as directed by DCI formats 0_0 and 0_1 tell the UE how

to operate when sending information to the gNB on the PUSCH [17]. First, we will consider

the ‘Fallback’ format, DCI 0_0, and the comprehensive list of DCI fields for this format as

shown in Table 3. The UE will be assigned specific time and frequency resources to use

through the frequency domain resource assignment and time domain resource assignment

fields [17]. While this uplink data on the PUSCH will be encrypted, this information can

reveal when the UE is active on the channel. Further, the MCS, New Data Indicator, HARQ

process number, and TPC Command for Scheduled PUSCH fields all contain information

that can be used to inform the strength of the connection, which can be used to reveal

information about UE activity, which will be discussed further in Section III.D.2. The

uplink/supplemental uplink indicator field can additionally be used to inform the number

of uplinks that the UE is active on [17]. Table 4 shows the comprehensive list of DCI fields

for the ‘Standard’ DCI format 0_1, which as can be seen contains many more configurable

options. In addition to the DCI fields listed above, the SRS Resource Indicator, SRS

request, and CSI request fields could reveal additional information about the strength of

the connection. Lastly, the carrier indicator field can indicate that the UE is configured

across multiple carriers [17].

23

Table 3. DCI 0_0 PUSCH Resource Allocations (Fallback). Source: [9],
[17].

Field Brief Description of Field Contents
Identifier for DCI Format Differentiates DCI format 0_0 and 1_0
Frequency Domain
Resource Assignment

Allocates a source of resource blocks in the frequency
domain

Time Domain Resource
Assignment

Determines slot offset, PUSCH Mapping Type, starting
symbol and number of allocated symbols

Frequency Hopping Flag Indicates whether frequency hopping is applied
Modulation and Coding
Scheme (MCS)

Defines modulation and coding scheme via 3GPP lookup
table

New Data Indicator Indicates if resource allocation is for a re-transmission
Redundancy Version Indicates the puncturing pattern after channel coding
HARQ Process Number Indicates the HARQ process to use the resource allocation
TPC Command for
Scheduled PUSCH

Used for closed loop power control as UE is directed to
increase, decrease, or maintain power

Padding Added to DCI 0_0 to match size with DCI 1_0 to minimize
UE blind decoding attempts

Uplink/Supplemental
Uplink Indicator

Indicates whether resource allocation is for the normal
uplink carrier or the supplemental uplink carrier

24

Table 4. DCI 0_1 PUSCH Resource Allocations (Standard). Source: [9],
[17].

Field Brief Description of Field Contents
Identifier for DCI Format Differentiates DCI format 0_1 and 1_1
Carrier Indicator Configures cross carrier scheduling between cells
Uplink/Supplemental
Uplink Indicator

Indicates whether resource allocation is for normal uplink
carrier or supplemental uplink carrier

Bandwidth Part Indicator Identifies BWP for frequency domain resource allocation
Frequency Domain
Resource Assignment

Allocates a source of resource blocks in the frequency
domain

Time Domain Resource
Assignment

Determines slot offset, PUSCH Mapping Type, starting
symbol and number of allocated symbols

Frequency Hopping Flag Indicates whether frequency hopping is to be applied
Modulation and Coding
Scheme

Defines modulation and coding scheme via 3GPP lookup
table

New Data Indicator Indicates if resource allocation is for a re-transmission
Redundancy Version Indicates the puncturing pattern after channel coding
HARQ Process Number Indicates the HARQ process to use the resource allocation
1st Downlink Index HARQ acknowledgment procedure for downlink data
2nd Downlink Index HARQ acknowledgment procedure for downlink data
TPC Command for
Scheduled PUSCH

Used for closed loop power control as UE is directed to
increase, decrease, or maintain power

SRS Resource Indicator Used to select SRS resources
Precoding Information &
Number of Layers

If codebook based, selects Transmitted Precoded Matrix
Indicator and number of layers

Antenna Ports Indicates which logical antenna ports the UE should use
SRS Request Triggers SRS Resource Sets configured for aperiodic trigger
CSI Request Selects CSI “Trigger State” for aperiodic CSI trigger state
CBG Transmission
Information

Used to select Code Block Groups to transmit uplink data

PTRS-DMRS Links a Phase Tracking Reference Signal (PTRS) to a
Demodulation Reference Signal (DMRS)

Beta Offset Indicator Configures weights to be applied during the rate matching
of uplink control information on the PUSCH

DMRS Sequence
Indicator

If transfer precoding disabled, initializes pseudorandom
sequence which populates DMRS Resource Elements

UL-SCH Indicator Indicates if UL-SCH transmitted on the PUSCH
Padding Added to match DCI 0_1 size if UE configured for both

Supplemental and Normal uplink

25

b. DCI 1_0 and 1_1 PDSCH Resource Allocations

The PDSCH allocations as directed by DCI formats 1_0 and 1_1 tell the UE how

to operate when receiving information from the gNB on the PDSCH [4]. First, we will

consider the ‘Fallback’ format, DCI 1_0. The comprehensive list of DCI fields for this

format is shown in Table 5. Similar to the PUSCH, the UE will be assigned specific time

and frequency resources to use through the frequency domain resource assignment and

time domain resource assignment fields, which can indicate when the UE is active [4]. In

this format, the MCS, New Data Indicator, HARQ process number, TPC Command for

Scheduled PUCCH, PUCCH to HARQ Feedback Timing Indicator, and Random-access

Preamble Index fields all contain information that can be used to inform the strength of the

connection. These can also be used to reveal information about UE activity, which will be

discussed further in Section III.D.2. The uplink/supplemental uplink indicator can

additionally be used to inform the number of uplink that the UE is active on. Table 6 shows

the comprehensive list of DCI fields for the ‘Standard’ DCI format 1_1, which again

contains many more configurable options. In addition to the DCI fields listed above, the

SRS request field could reveal additional information about the strength of connection.

26

Table 5. DCI 1_0 PDSCH Resource Allocations (Fallback). Source: [9],
[17].

Field Description of Field Contents
Identifier for DCI Format Differentiates DCI format 0_0 and 1_0
Short Message Indicator Differentiates paging only or paging and scheduling
Short Messages Informs UE with message regarding the BCCH
Frequency Domain
Resource Assignment

Allocates a source of resource blocks in the frequency
domain

Time Domain Resource
Assignment

Determines slot offset, PUSCH Mapping Type, starting
symbol and number of allocated symbols

VRB-to-PRB Mapping Indicates if interleaving is used on PDSCH
Modulation and Coding
Scheme (MCS)

Defines modulation and coding scheme via 3GPP lookup
table

Transport Block Scaling Configures scaling factor for transport block size
New Data Indicator Indicates if resource allocation is for a re-transmission
Redundancy Version Indicates the puncturing pattern after channel coding
HARQ Process Number Indicates the HARQ process to use the resource allocation
Downlink Assignment
Index

Updates the number of accumulated number of
transmissions requiring acknowledgment for HARQ

TPC Command for
Scheduled PUCCH

Used for closed loop power control as UE is directed to
increase, decrease, or maintain power

PUCCH Resource
Indicator

Instructs UE to use a specific PUCCH resource when
returning HARQ acknowledgments

PDSCH to HARQ
Feedback Timing

Determines number of slots between reception of the
PDSCH and transmissions of the HARQ acknowledgments

Random-access Preamble
Index

For PDCCH Order, specifies preamble for contention free
random access or triggers contention based random access

UL/SUL Indicator Indicates whether resource allocation is for the normal
uplink carrier or the supplemental uplink carrier

SS/PBCH Index Indicates SS/PBCH block for random access
PRACH Mask Index Indicates PRACH occasion used for random access
System Information
Indicator

Indicates whether PDSCH resource allocation for
transmission of system information is for SIB1 or other

Reserved Bits Added to ensure all variants of DCI 1_0 have equal size
Padding Added to match size of DCI 1_0 and 0_0

27

Table 6. DCI 1_1 PDSCH Resource Allocations (Standard). Source: [9],
[17].

Field Description of Field Contents
Identifier for DCI Format Differentiates DCI format 0_1 and 1_1
Carrier Indicator Configures cross carrier scheduling
Bandwidth Part Indicator Identifies BWP for frequency domain resource allocation
Frequency Domain
Resource Assignment

Allocates a source of resource blocks in the frequency
domain

Time Domain Resource
Assignment

Determines slot offset, PUSCH Mapping Type, starting
symbol and number of allocated symbols

VRB to PRB Mapping Indicates if interleaving is used on PDSCH
PRB Bundling Size
Indicator

Sets precoding for all contiguous Physical Resource Blocks
within a Precoding Resource Block Group

Rate Matching Indicator Sets rate matching to puncture PDSCH resources due to
‘Reserved Resources’

Zero Power CSI
Reference Signal Trigger

Triggers aperiodic Zero Power (ZP) CSI Reference Signal
resources

Transport Block 1
MCS, NDI, RV

Modulation Coding Scheme, New Data Indicator,
Redundancy Version for Transport Block 1

Transport Block 2
MCS, NDI, RV

Modulation Coding Scheme, New Data Indicator,
Redundancy Version for Transport Block 2

HARQ Process Number Indicates the HARQ process to use the resource allocation
Downlink Assignment
Index

Updates the number of accumulated number of transmissions
requiring acknowledgment for HARQ

TPC Command for
Scheduled PUCCH

Used for closed loop power control as UE is directed to
increase, decrease, or maintain power

PUCCH Resource
Indicator

Instructs UE to use a specific PUCCH resource when
returning HARQ acknowledgments

PDSCH to HARQ
Feedback Timing

Determines number of slots between reception of the PDSCH
and transmissions of the HARQ acknowledgments

Antenna Ports Indicates which logical antenna ports the UE should use
Transmission
Configuration Indication

Dynamically changes Quasi Co-Location assumptions for the
PDSCH

SRS Request Triggers SRS Resource Sets configured for aperiodic trigger
CBG Transmission
Information

Used to configure Code Block Groups to transmit downlink
data

CBG Flushing Out
Information

Indicates if set of Code Block Groups being retransmitted can
be combined with previous transmissions

DMRS Sequence
Initialization

If transfer precoding disabled, initializes pseudorandom
sequence which populates DMRS Resource Elements

Padding Included if UE receives 1_1 in multiple search spaces

28

c. DCI 2_0, 2_1, 2_2, and 2_3 UE Group Common Signaling

The DCI format 2_0, which notifies a group of UEs of the slot format, is shown in

Table 7, where each indicator represents a command to a different UE in the group. The

DCI format 2_1, which notifies a group of UEs of a pre-emption for time critical

transmission is shown in Table 8. While the recovery of a DCI format 2_1 message only

reveals the group of UEs that are not conducting time critical transmissions, in a broader

UE tracking environment, this information descrambled could be of some value. Table 9

shows the DCI format 2_2, which is used to transmit TPC commands for PUCCH and

PUSCH, which could certainly be valuable in understanding that the connection has

become stronger or weaker for that group requiring the TPC command. Finally, the DCI

format 2_3, which is used to transmit TPC commands for SRS is shown in Table 10, and

similarly may be indicative of a change in the strength of connection requiring an increase

or decrease in power.

Table 7. DCI 2_0 Provision of Slot Format Indicators. Source: [9], [17].

Field Description of Field Contents
Slot Format Indicator 1 Identifies slot format configuration for first UE
Slot Format Indicator 2 Identifies slot format configuration for second UE
… …
Slot Format Indicator n Identifies slot format configuration for nth UE

Table 8. DCI 2_1 Provision of Pre-Emption Indications. Source: [9], [17].

Field Description of Field Contents
Pre-Emption Indication 1 Specifies time/frequency resources pre-empted for first UE
Pre-Emption Indication 2 Specifies time/frequency resources pre-empted for second UE
… …
Pre-Emption Indication n Specifies time/frequency resources pre-empted for nth UE

29

Table 9. DCI 2_2 Provision of Closed Loop Power Control Commands for
PUCCH and PUSCH. Source: [9], [17].

Field Description of Field Contents
Block Number 1 PUCCH and PUSCH TPC command for first UE
Block Number 2 PUCCH and PUSCH TPC command for second UE
…
Block Number n PUCCH and PUSCH TPC command for nth UE
Padding Depends upon size of DCI 1_0

Table 10. DCI 2_3 Provision of Closed Loop Power Control Commands to
SRS. Source: [9], [17].

Field Description of Field Contents
Block Number 1 SRS Request and TPC command for first UE
Block Number 2 SRS Request and TPC command for second UE
… …
Block Number n SRS Request and TPC command for nth UE
Padding Depends upon size of DCI 1_0

In this chapter, we have provided an overview of mobile communication metrics,

the background behind 5G physical channels, a method to recover RNTIs in the blind in

the PDCCH, and a detailed description of the RNTIs and DCI messages as directed by the

3GPP NR standards. In the next chapter, we present our methodology to optimize the

recovery of RNTIs for different codeword lengths E , and payload lengths A , across

different mobile environments and attacker goals.

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

III. METHODOLOGY

In Chapter II, we provided an overview of mobile communication metrics, the 5G

physical channels and the method developed in [3] to recover RNTIs through modified

polar decoding and syndrome matching. In this chapter, we provide our methodology to

optimize the recovery of RNTIs for different payload and codeword combinations and

assess user activity based on the recovered RNTIs and DCI information. At the end of this

chapter, we include a RNTI recovery walkthrough to demonstrate the optimization steps

and how a user’s activity can be assessed.

A. RECOVERY OF USER ACTIVITY

The methodology presented in this section, as shown in Figure 4, attempts to find

the optimal parameters of modified polar decoding and syndrome matching to recover

RNTIs and decode DCI messages without a priori knowledge of the RNTI. First, the

assessed length of the codeword E , is used to determine the probable payload length, A ,

of the DCI message encoded. Next, the threshold values τ , to be used in the RNTI recovery

method developed in [3] are evaluated. If the initial A and τ values attempted in the model

do not successfully recover the RNTI, the payload and threshold search spaces are

expanded. Once RNTIs are recovered, knowledge of successP , which is the probability that

a RNTI will be recovered for a given intercepted PDCCH message and errorP , which is the

probability that a syndrome not generated from the correct RNTI is passed by τ , allow for

optimization of the model for further RNTI recoveries. For the recovered RNTIs, the

associated DCI messages can be descrambled and decoded to reveal different types of user

activity, such as a change to geographical location or a change in reliability mode from

normal to URLCC.

32

Figure 4. Method to Optimize Recovery of UE Activity from PDCCH

Messages without A Priori Knowledge of the RNTI

B. DCI PAYLOAD ANALYSIS

A DCI message, sent on the PDCCH, carries information directing the UE how to

operate on the PUSCH and PDSCH or directs group signaling for SRS power, pre-emption,

and slot-format. The allowed lengths for DCI messages are 12-140 bits [5]. To recover the

RNTI in the blind, the actual length of the DCI payload of length A must be determined.

To test all possible A lengths would require up to 128 different payload trials. Testing each

payload can consume significant resources as the RNTI recovery algorithm attempts to

match with up to 152 possible scrambling sequences. This section considers methods to find

the most probable DCI payload lengths in the PDCCH.

1. Expected DCI Payload Lengths

While DCI message size ranges from 12-140 bits, in practice DCI 0_0, 0_1, 1_0,

and 1_1 formats will likely be around 70-80 bits in length, including the 24-bit CRC [7].

There will be up to four different DCI message sizes in total and a UE will in the blind

attempt to decode each size until a message is recovered or all sizes are exhausted [9]. DCI

1_1 and DCI 0_0 formats will have unique sizes, DCI 1_1 format is matched in size with

DCI 0_1 format, and the fourth size is utilized by messages activating features through DCI

2_0, 2_1, 2_2, and/or 2_3 formats [9], [22]. DCI 0_0, 0_1, 1_0, and 1_1 formats are

typically scrambled by a C-RNTI initiated sequence while the DCI 2_0, 2_1, 2_2, and 2_3

formats are typically scrambled by a RNTI unique to the purpose of the respective

messages; e.g., the TPC-SRS-RNTI scrambles DCI 2_3 format [9], [22]. Overall, the DCI

0_0, 0_1, 1_0, and 1_1 formats are the most desirable target as those DCIs contain the

PDSCH and PUSCH control information directly related to user activity and are usually

Determine DCI
payload lenghts

and fit to
codewords

Recover RNTIs
using modified polar

decoding and
syndrome matching

Assess RNTI
recovery success

and error
probabilities

Decode DCI and
assess user

activity

33

all associated with the same C-RNTI. The DCI 2_0, 2_1, 2_2, and 2_3 formats are typically

associated with a RNTI shared by a group of UEs and without further information would

not uniquely identify a specific UE [9]. For optimal RNTI recovery, an initial search space

of DCI payload lengths of 70–80 bits is prudent. If searching the initial range is

unsuccessful in recovering the RNTI, a pragmatic approach would be to iteratively expand

the search out from the 70–80-bit range (e.g., 69, 81, 68, 82, etc.).

2. Maximum DCI Length Due to Probability of Block Error

For a given E , as A increases, the number of frozen bits F available for polar

coding error correction decreases, reducing the code rate r and the error correction

capability of the polar code. For mobile communications, a maximum 310blerP −= is typical

in practice [20]. To determine the maximum payload to maintain the desired blerP for a

given E , the PDCCH encoding and decoding process are simulated in MATLAB to find

the payload at which 310blerP −= as shown in Figure 5. Of note, the blerP will be affected

by the decoding method (LLR SC is used), the SNR , and the number of antennas used.

Greater computational power of the decoder, higher SNR , and more antennas will allow

for larger payloads to be sent within a codeword before exceeding the acceptable limit of
310blerP −= [20]. The probability of block error in a simulation can be calculated by the

number of block errors per total number of blocks sent, where any bit error in a block

results in a block error [20]. The expectation is that blerP will increase as increased A

results in a smaller F . Larger E will be able to support larger A as they have more bits

available to be allocated as frozen bits.

Figure 5. Methodology to Determine Maximum Payload Length, A for a

Codeword Length, E within 310blerP −=

Determine DCI
payload and

codeword lenghts

Test all possible
DCI payloads for
each codeword

Measure
probability of
block error for
each codeword

Determine
maximum

payload within
limit

34

C. RNTI RECOVERY METHODOLOGY

In [3], it was demonstrated that a RNTI can be recovered in the blind from

intercepted PDCCH messages with a much-improved efficiency to a brute force approach.

This section describes the method to optimize the method to recovery a RNTI shown in

Figure 6. As described in detail in Section II.C, for an unknown RNTI, an intercepted

PDCCH sequence is demodulated, rate recovered, sub-block deinterleaved, and mapped

from LLR values to bits [3], [9]. At this point, for a known RNTI, the scrambling sequence

would be applied to descramble the bits prior to polar decoding [3]. To apply modified

polar decoding, polar decoding is applied to the bits without descrambling as the

scrambling sequence is unknown [3]. The result of the modified polar decoding process

produces a sequence of bits defined as an error pattern of length ε [3]. In addition to successP

and errorP , we define our RNTI recovery efficiency RNTIη as the ratio of successful RNTI

recoveries to the total RNTI syndromes passed by τ .

Figure 6. Modified Polar Decoding Method to Recover RNTIs in the Blind

from Intercepted PDCCH Messages. Source: [3].

A given codeword E will contain 24A+ bits of payload and CRC and F frozen

bits as shown in Figure 7. As discussed in Section II.B.2, E is scrambled by a sequence

initiated by the UE RNTI. Recall that there are 162 possible RNTIs, but only the 15 least

significant bits are used to initiate the scrambling sequence in the PDCCH encoding and

decoding process [9]. We recall that

 16 31(2) mod 2init RNTI IDc n η= ⋅ + (3.1)

35

where initc is the scrambling sequence initiator, RNTIn is the RNTI assigned, and IDη is the

assigned cell ID [18]. As the inserted frozen bits are always zeros and the scrambling

sequence when applied acts as non-random noise to uniquely flip these zeros, a syndrome

table is pre-generated in which each 15-bit RNTI sequence is applied, and the resultant

error syndromes are found [3]. The error pattern, 1
0eε − of length Fε = recovered from the

intercepted PDCCH sequence in the blind can then be uniquely matched to a syndrome
1

0sε − to identify the RNTI used in the intercepted PDCCH sequence [3]. Each payload and

codeword combination will produce a unique set of syndromes, so if the payload length is

unknown, the attacker must iteratively attempt the syndrome matching process for all

probable payloads until a match is found [3].

Figure 7. Relationship Between Codeword Length E , Payload A , Frozen

Bits F , and CRC for DCI Messages Encoded in the PDCCH

1. Selection of Optimal Hamming Threshold

The optimization of HAMτ is considered here and the optimization of LCSτ is

considered in section III.C.5 where the methods are compared. Recall from Section II.C.2

that the Hamming method considers the Hamming distance HAMd between the two

sequences and is set as a maximum threshold HAMτ [3]. For RNTI recovery, the optimal

HAMτ is influenced by the mobile environment, specifically the number of UEs/RNTIs in

use, the amount of PDCCH traffic intercepted, and the specific goals of the RNTI recovery

activity. Consider two attackers who are intercepting PDCCH messages and recovering

RNTIs. The first attacker intercepts frequent PDCCH messages with only a handful of UEs

active on the gNB cell. As there are few UEs and many PDCCH messages, this attacker

can set a low HAMτ that results in a low individual successP but will still recover all RNTIs

due to the large number of messages in which they can process. Once the RNTIs are

36

recovered, this attacker can decode DCI messages for all the UEs in the mobile

environment and potentially track their activity. A second attacker operates in an

environment where they are infrequently intercepting PDCCH messages and have many

UEs connected to the gNB. Since they receive messages infrequently, they need to

maximize their chance of recovering an RNTI for each intercepted PDCCH message. This

attacker will use their maximum resources on each intercepted message by setting a high

HAMτ to ensure they recover their targeted RNTI to track UE activity. This second attacker

certainly operates in a more challenging environment, but instead of tracking all UEs, they

may only be targeting one specific UE that can be confirmed to be linked to a recovered

RNTI by other means.

To determine an optimal HAMτ , consider a completely random error pattern of length

ε . If we are to compare this random sequence to every possible sequence of length ε , the

Hamming distance HAMd between sequences will vary between 0HAMd = when the

sequence is an exact match and HAMd ε= when the every bit is opposite. The median

HAMm , mean HAMµ and variance 2
HAMσ are determined empirically by calculating the

Hamming distance between a randomly generated sequence and 152 other randomly

generated sequences, repeated for 100 trials. The results are shown in Figure 8 and Table

11, and we conclude that / 2HAM HAMm µ ε= = .

37

Figure 8. Normalized Histogram of Hamming Distance Results Between

One Sequence and 152 Randomly Generated Sequences of Length (a)
10ε = and (b) 100ε =

Table 11. Statistics of Hamming Distance Between One Sequence and 152
Randomly Generated Sequences of Length ε ={10, 100}

 10ε = 100ε =
Mean 5 50
Median 5 50
Variance 2.5 25

Further analyzing the relationship between ε and HAMd , we find that the

distribution of HAMd follows a Gaussian distribution with mean / 2HAMµ ε= and variance

2 / 4HAMσ ε= where the relationships were found by analyzing [1:100]ε = for 100 trials

each, and the results are shown in Figure 9. Note in Figure 9 that the mean and median are

identical lines; therefore, the probability density function for HAMd can be represented by

()22 /21()

/ 2

HAM

HAM

d

d HAMf d e
ε

ε

πε

− −

= (3.2)

38

where ε is the length of the error pattern, or more generally the length of a generic binary

sequence. This distribution fits the data well for the trials of 10ε = and 100ε = as shown

in Figure 10.

Figure 9. Mean, Median, and Variance for Hamming Results Between One

Sequence and Randomly Generated Sequences of Length [1:100]ε =

39

Figure 10. Normalized Results of Hamming Distance Results Between One
Sequence and 152 Randomly Generated Sequences of Length (a) 10ε =
and (b) 100ε = Overlayed With Gaussian Probability Density Functions

of / 2HAMµ ε= and 2 / 4hamσ ε=

We can also consider the SNR and the channel bit error rate, bP to determine an

initial HAMτ . Consider cases of SNR = {0, 5, 10} dB for an error pattern of length 100ε = .

In this case, we can calculate the probability of i channel bit errors as

 , , ,(1)i i
i errors b QPSK b QPSKP P P

i
εε − 

= − 
 

 (3.3)

where ,b QPSKP is the probability of QPSK channel bit error and ε is the length of the error

pattern. We can estimate that

 (),
0

2 2b
b QPSK

EP Q Q SNR
N

 
= ≈  

 
 (3.4)

We plot the results of (3.3) and (3.4) for SNR = {0, 5, 10} dB and 100ε = to generate a

probability density function (PDF) as shown in Figure 11 and Table 12. From the

40

probability density functions, the expected values of the number of channel bit errors for

SNR = {0, 5, 10} dB are {7.9, 0.60, 3.9×10-4}, respectively.

Figure 11. Probability Density of the Number of Channel Bit Errors in a

Sequence of 100ε = for QPSK and SNR = {0, 5, 10} dB

0 5 10 15 20

Channel Bit Errors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y
D

en
si

ty

SNR = 0 dB

SNR = 5 dB

SNR = 10 dB

41

Table 12. Probability Density for Number of Channel Bit Errors in QPSK

Number of
Channel Bit Errors

Probability Density
for 0SNR = dB

Probability Density
for 5SNR = dB

Probability Density
for 10SNR = dB

0 2.77×10-4 5.50×10-1 1.00
1 2.36×10-3 3.30×10-1 3.87×10-4
2 9.99×10-3 9.77×10-2 7.42×10-8
3 2.79×10-2 1.91×10-2 9.38×10-12
4 5.77×10-2 2.78×10-3 8.81×10-16
5 9.45×10-2 3.19×10-4 6.55×10-20
6 1.28×10-1 3.03×10-5 4.02×10-24
7 1.46×10-1 2.44×10-6 2.09×10-28
8 1.45×10-1 1.70×10-7 9.40×10-33
9 1.27×10-1 1.04×10-8 3.72×10-37
10 9.85×10-2 5.66×10-10 1.31×10-41
11 6.88×10-2 2.77×10-11 4.15×10-46
12 4.36×10-2 1.23×10-12 1.19×10-50
13 2.52×10-2 5.00×10-14 3.13×10-55
14 1.34×10-2 1.86×10-15 7.52×10-60
15 6.54×10-3 6.39×10-17 1.67×10-64
16 2.96×10-3 2.03×10-18 3.44×10-69
17 1.25×10-3 6.01×10-20 6.57×10-74
18 4.92×10-4 1.66×10-21 1.17×10-78
19 1.81×10-4 4.29×10-23 1.96×10-83
20 6.27×10-5 1.04×10-24 3.08×10-88

If we can predict the number of errors in the channel for a given SNR , we can run

an input sequence through modified polar decoding to predict the number of subsequent

bit errors in the output sequence. Recall that modified polar decoding is performed by
1 1

0 0ˆ ˆN N
Nn p G− −= , where 1

0ˆ Np − are the polar coded bits estimated from the received LLR

values, 1
0ˆ
Nn − are the received bits in which the polar coding process has been reversed, and

NG is the polarization matrix. Using a random sequence of 100ε = , we input the sequence

to modified polar decoding and then repeated the modified polar decoding with bit errors

added to the input sequence. The results of the modified polar decoded sequence bit errors,

which is the equivalent of the Hamming distance HAMd between the sequence with input

errors and the initial sequence with no errors, are shown in Figure 12 and Table 13. We

can then select a HAMτ based on the SNR and subsequent ,b QPSKP . It will be found in

42

Chapter IV that the RNTI recovery process cannot achieve high successP when predicting

modified polar decoded sequence bit errors given SNR as shown here. Instead, the number

of polar decoded sequence bit errors should be used as a minimum value for HAMτ as below

this value, RNTI recoveries become very challenging.

Figure 12. Output Hamming Distance, HAMd in a Modified Polar Decoded

Sequence versus Input Channel Bit Errors for 100ε =

0 2 4 6 8 10

Channel Bit Errors

0

5

10

15

20

25

30

35

40

45

50
M

od
ifi

ed
 P

ol
ar

 D
ec

od
ed

 S
eq

ue
nc

e
Bi

t E
rro

rs

43

Table 13. Modified Polar Decoding Output HAMd Corresponding to Channel
Bit Errors in Input for 100ε =

Number of
Channel Bit Errors

Modified Polar Decoding
Output HAMd

0 0
1 17
2 24
3 30
4 33
5 37
6 39
7 41
8 42
9 44
10 44

Without knowledge of SNR , when considering a starting for RNTI recovery, using

the median value / 2HAM HAMmτ ε= = would be expected to result in a 0.50errorP ≈ as half

of the error patterns will be filtered through the threshold; however, errorP at / 2HAMτ ε=

is somewhat lower since in the RNTI recovery trials the RNTI iterative loop will break

once the correct RNTI is found, which can be estimated to happen about halfway through

the RNTI search space. As a result, a prudent estimate for 0.50errorP ≈ varies between

/ 2HAMτ ε= and 3 / 4HAMτ ε= . Once the baseline successP and errorP are determined, a target

HAMτ can be chosen, which would be optimized based on the number of PDCCH messages

intercepted and the goals of the attacker.

For example, if ten PDCCH messages from the same RNTI are intercepted and an

arbitrary Hamming distance threshold 33HAMτ = results in 0.30successP = , then by (3.1)

where ()success mP is the overall probability of success for messages with the same RNTI and

m is the number of messages processed,

 () 1 (1)m
success m successP P= − − (3.5)

44

we conclude that we will have ultimately recovered the RNTI with (10) 0.97successP = and

can decode all ten of the messages. It should be clear that an attacker attempting to optimize

the computing resources expended should choose the strictest threshold that meets the

desired RNTI recovery requirement.

2. Increased Payload Length

We can see from Figure 7, as the payload A increases, the number of frozen bits

F decreases; therefore, the number of error pattern bits ε to be compared to a syndrome

decreases as Fε = . In utilizing the Hamming method, which calculates the HAMd between

error patterns of length ε , there are now fewer bits in the calculation; therefore, HAMd

outputs will be lower and more patterns will fall within a fixed HAMτ . In most cases, it is

desirable to run the RNTI recovery algorithm at a consistent computational power;

therefore, we want to maintain errorP constant across payload lengths. To achieve this goal,

HAMτ should be decreased to adjust for the decrease in ε caused by the increased A ;

however, the threshold is not the only factor affecting the results due to an increase in A .

Once HAMτ is adjusted to account for the change in ε , the increased A can affect successP

independently of errorP . For one, F is smaller; therefore, there are less frozen bits for error

correction purposes resulting in a lower code rate r that will make it more difficult to

recover the RNTI as some errors will be uncorrectable. This has a particularly big impact

in low SNR cases where correctly received bits are at a premium.

3. Increased Codeword Length

In practice, the codeword length E in which a payload is sent will vary based on

the resources available on the PDCCH and the maximum blerP ; therefore, it is important to

analyze the impact of E on RNTI recovery. Referring to Figure 7, for a given payload A ,

as E is increased, F increases significantly. In practice, increases in E would result in

an increase from 108E = to 216E = and 432E = , which means an increase in F of 108

and 216 bits, respectively. As Fε = , the increase in F requires adjustments to HAMτ as

described in the previous section. Since more frozen bits are added, HAMτ would need to be

45

increased based on the number of frozen bits added to adjust for the impact of the Hamming

calculation on successP and errorP . Once HAMτ is adjusted, we consider the impact of

increasing E on successP and errorP . As F is larger, r is higher, which improves successP as

there is less of a likelihood that the RNTI will be unrecoverable. For this reason, successP and

Rη are expected to be higher for larger E .

4. Impact of Signal-to-Noise Ratio

The SNR of the PDCCH signal received from the gNB is determined by

 24
R T T R

N
N

P P G GSNR
P dP π

λ

= =
 
 
 

 (3.8)

where RP is the received signal power, TP is the transmitted power, NP is the noise power,

TG is the gain of the transmitter, RG is the gain of the receiver, λ is the wavelength of the

transmission, and d is the distance between the transmitter and receiver [12]. It is evident

that SNR is influenced by the NP (AWGN) and the distance of the UE from the gNB. If

the UE experiences low SNR , the gNB will adjust TP to ensure error-free communications.

On the other hand, the intercepted messages from the gNB and the UE will likely be

received at a different location, which could be further away from the gNB. Consequently,

in this thesis we consider low SNR cases as a very real possibility for RNTI recovery

operations.

The ability to recover a RNTI degrades significantly as SNR decreases due to the

resultant increase in ,b QPSKP as given by

 (),
0

2 2()b
b QPSK

EP Q Q SNR
N

 
= ≈  

 
 (3.9)

where bE is the energy per bit, 0N is the noise spectral density, and SNR is the signal-to-

noise ratio [13]. To maintain successP , HAMτ must be increased to account for the increase

in bit errors and this can be done to an extent at the expense of more computing resources

46

expended. Further, if ,b QPSKP is too high, there are cases where the error correction

capabilities of the polar coding are exceeded resulting in uncorrectable errors and thus

another case of an unrecoverable RNTI.

5. Hamming versus LCS Methods

The difference in performance between the Hamming and LCS Methods as

analyzed in [3] for 12A = found that the Hamming method had a slight advantage at the

lower 5SNR = dB while the LCS method had a slight advantage at the higher 8SNR = dB

when limiting 410errorP −≤ . In this thesis, we evaluate the Hamming and LCS methods for

E = {108, 128, 216, 256, 432, 512} with SNR = {0, 5, 10} dB and we consider much

higher errorP cases that we expect an attacker to use. Further, we consider the optimization

of RNTI recovery in which the Hamming and LCS methods have unique nuances. Recall

that the LCS method considers the longest common substring LCSd of matching bits

between the two sequences, and if LCS LCSd τ≥ , then the syndrome and error pattern are

considered a match and the CRC is checked to determine if the RNTI is correct. The LCS

distance LCSd will vary between 0LCSd = where the sequences are the exact opposite of

each other and LCSd ε= where the entire sequences match exactly. The mean LCSµ , median

LCSm , and variance 2
LCSσ of LCSd are determined empirically by calculating the LCS

between a randomly generated RNTI and 152 other randomly generated RNTIs, repeated

for 100 trials. The results for 10ε = and 100ε = are shown in Figure 13.

47

Figure 13. Histogram of Normalized LCS Results Between One Sequence and

152 Randomly Generated Sequences of Length (a) 10ε = and (b) 100ε =

We find that the relationship between LCSd and ε much less straightforward in the

LCS case than for the Hamming case, and so we run the same model for the range of

[1:100]ε = to attempt to empirically determine the relationship. We are interested in LCSm

because this value will allow us to establish a baseline LCSτ for 0.50errorP ≈ , which we can

then adjust to be slightly less restrictive due to the fact that a RNTI is matched on average

halfway through the set of 152 possible values. However, we see in Figure 14 that the LCSm

does not change significantly over long changes in sequence length and then jumps at ε =

{5, 10 22, 45, 90}. On the other hand, we observe that LCSµ and 2
LCSσ increase

logarithmically as ε increases, and specifically we found that 3log()LCSµ ε≈ is a very

close approximation as shown in Figure 14.

48

Figure 14. Mean, Median, and Variance for LCS Results Between One

Sequence and 152 Randomly Generated Sequences of Length [1:100]ε =

The statistics of LCS has been studied before for the purposes of molecular

evolution and computational biology and [23] has established upper and lower bounds on

the expected LCS while [24] has found the distribution can be scaled to match the Tracy-

Widom distribution of the largest eigenvalue of a random matrix whose entries are drawn

from a Gaussian unitary ensemble. Our results by inspection appear to also be similar to

the aforementioned Tracy-Widom distribution, but it is important to note that the difference

between our study and that of [23], [24] is that we are evaluating a LCS in which the indices

of the sequence must also match while in [23], [24] the matching LCS can be in different

locations in the two sets.

Consequently, when considering a starting LCSτ for RNTI recovery, LCSτ for

0.50errorP ≈ should be set according to Table 14 while extrapolating for 100ε > utilizing

3log()LCSµ ε= to guide the estimate of LCSm . We also note LCSτ is much less variable to

changes in ε than HAMτ with LCSm being constant for long increases of ε , an important

concept we will expand on in Chapter IV. In practice, the RNTI recovery method can be

run at an assessed LCSτ , and then the effect of E , A , and SNR can be estimated by

49

measuring the resultant successP , errorP and Rη . Once the RNTI recovery metrics are

measured are measured, LCSτ can be adjusted accordingly to achieve desired results.

Table 14. Median of LCS Between One Sequence and 152 Randomly
Generated Sequences of Length [1:100]ε =

 4ε ≤ 5 10ε≤ < 10 22ε≤ < 22 45ε≤ < 45 90ε≤ < 90 100ε≤ ≤

Median 2≤ 2 3 4 5 6

As we did for the Hamming distance method, if the SNR is known or can be

estimated, then we can find a minimum LCSτ by analyzing the effect of channel bit errors,

,b QPSKP on the modified polar decoded sequence LCS. Recall that Figure 11 and Table 12

show the probability density of the number of channel bit errors at SNR = {0, 5, 10} dB.

We apply those input channel bit errors to modified polar decoding and show the output of

LCS results in Figure 15 and Table 15. We find through successP results in Chapter IV that

the expected LCS in the modified polar decoded sequence should be used as a maximum

LCSτ for RNTI recovery as it does not result in high successP as expected, instead provides a

baseline maximum.

50

Figure 15. Output LCS, LCSd in a Modified Polar Decoded Sequence versus

Input Channel Bit Errors for 100ε =

Table 15. Modified Polar Decoding Output LCSd Compared to Number of
Input Channel Bit Errors for 100ε =

Number of Channel
Bit Errors

Modified Polar Decoding
Output LCSd

0 100
1 46
2 32
3 24
4 19
5 16
6 14
7 12
8 22
9 10
10 9

D. ASSESSMENTS OF USER ACTIVITY

Once the RNTI recovery process has been optimized to meet the goals of the

attacker, we now must consider what information the attacker has gained access to and how

0 1 2 3 4 5 6 7 8 9 10

Channel Bit Errors

0

10

20

30

40

50

60

70

80

90

100

M
od

ifi
ed

 P
ol

ar
 D

ec
od

ed
 S

eq
ue

nc
e

LC
S

51

it can be used to track user activity. To do this, we analyze which RNTIs and which DCI

parameters are exploitable.

1. Activity Recovered from RNTIs

RNTIs serve many purposes in the PDCCH, but first and foremost are used as an

address for PDCCH messages to UEs [9]. The purpose of this section is to associate the

recovery of certain RNTIs with specific user activity. When a UE first connects to a gNB

through the PDCCH random-access procedure, the gNB assigns a RA-RNTI and then a

TC-RNTI to allow for the addressing of the UE in the PDCCH [19]. Recovering a RA-

RNTI or TC-RNTI addressed message is an indication that a new UE has entered the

geographical area or that a UE is reconnecting from a disconnected state. Once the UE is

authenticated and a C-RNTI is established, an increase in user activity could be associated

with an increase in the frequency of PDCCH messages addressed to that C-RNTI. Further,

it is hypothesized a change in the user’s location resulting in a decrease in SNR could

result in an increase in traffic addressed to that C-RNTI as the gNB may need to fine-tune

UE control parameters more frequently.

The MCS-C-RNTI is used by the gNB to transition the UE to a higher or lower

reliability modulation and coding scheme (MCS). This is done by changing the MCS index

and/or MCS table itself for which the UE references when deciphering the fields of a DCI

message [9]. If configured, the gNB will transition from scrambling the DCI messages to

the UE with a C-RNTI to a MCS-C-RNTI [17]. This could be due to distance from the

gNB, a degraded channel, or a change in operating mode [17]. The MCS-C-RNTI is

frequently used for URLCC applications, but any UE could be configured with a MCS-C-

RNTI [17]. Further, the TPC-PUSCH-RNTI and TPC-PUCCH-RNTI are used to adjust

the power of the UE transmissions and can be utilized to increase power in an attempt to

offset degraded channel conditions [17]. The use of a TPC-PUSCH-RNTI and TPC-

PUCCH-RNTI again could indicated a change in user location or that the user is

experiencing interference. Another RNTI that may be activated in degraded channel

conditions is the SP-CSI RNTI. This RNTI is in use when a gNB may require more frequent

CSI measurements from the UE such as when the UE is engaged in a voice or video call

52

[17]. Overall, these RNTIs associated with degraded channels can be linked to an

observable change in geographic location to match the RNTI to a specific UE or be used

to inform the attacker of a change in a tracked UE location.

Beyond tracking changes to the channel, other RNTIs are used to trigger a UE into

certain modes of operation as signaled by the gNB. The MCS-C-RNTI was previously

discussed and could fall into this category for high reliability applications, such as those

used by URLCC devices. Additionally, the CS-RNTI is used by the gNB to trigger a

configured scheduling mode in which the UE has a configured grant resource allocation in

which it transmits rather than receiving a resource allocation on the PDCCH each time it

requires an uplink transmission [17]. The CS-RNTI is used by the gNB to manage

applications with a predictable and periodic traffic pattern, such as VoIP or URLCC

communications and to conserve signaling resources in machine-type communications

(MTC), which require small and infrequent packets [17]. In the first case, recovering a CS-

RNTI can alert an attacker that a UE is making a VoIP call or using a similar application.

In the latter cases, a CS-RNTI recovered can identify a device has transitioned to a URLCC

mode or a mode in which only MTC are in use.

The INT-RNTI is used to address a group of UEs when the gNB requires an

interruption for time-critical transmissions in the downlink [19]. This RNTI is sent to a

group of UEs and while little information is revealed about the group, recovery of the INT-

RNTI provides knowledge that a separate UE, not included in the group, is conducting

time-critical transmissions. Lastly, one caveat of RNTIs used to scramble DCI 0_0, 0_1,

1_0, and 1_1 messages is that the RNTI recovery methodology presented in this thesis is

not able to deduce which type of RNTI is scrambling the DCI message in the PDCCH

without further information. For example, if only one RNTI is recovered, there is no way

to know if it is the C-RNTI or a MCS-C-RNTI or a CS-RNTI as all scramble the same

types of DCI messages. To gain valuable intelligence from these RNTIs, UE and RNTI

relationships must be continuously tracked to identify new RNTIs and changes in traffic

patterns of active RNTIs. Table 16 summarizes possible UE activity and RNTIS that could

be indicative of that activity.

53

Table 16. Possible UE Activity Recovered from RNTIs Recovered in the
PDCCH

UE Activity RNTIs Indicative of Activity
UE has changed geographic location or
is experiencing interference

RA-RNTI
TC-RNTI
C-RNTI
MCS-C-RNTI
TPC-PUSCH-RNTI
TPC-PUCCH-RNTI
TPC-SRS-RNTI
SP-CSI-RNTI
TC-RNTI
RA-RNTI

UE is in a URLCC mode (critical IoT) MCS-C-RNTI
UE is in a SPS mode (VoIP call,
URLCC, MTC)

CS-RNTI
SP-CSI-RNTI

A UE in the cell is conducting time-
critical transmissions

INT-RNTI

A UE in the cell is first connecting or
re-connecting to the cell

RA-RNTI, TC-RNTI

2. Activity Recovered from DCI Messages

Once the RNTI is recovered, the DCI message that is scrambled by the RNTI can

be fully recovered, which reveals further information about the activity of the UE. DCI

messages contain a myriad of information directing the UE how to operate on the PUSCH

and PDSCH channels and what PDCCH features are activated for the UE. Similar to the

RNTI, the information recovered from DCI messages can reveal user activity to include

geographic location changes and mode of operation. The full list of information carried by

DCI messages is listed in Section II.D.2 (specifically, see Tables 3–10).

First and foremost, changes to a UE geographical location can be revealed through

information updated by the gNB in DCI messages. Recall that the received power is given

by

 T T R
R b b

C

P G GP E R
L

= = (3.10)

where the increase in an increase in CL leads to a decrease in RP and bE , which by

54

 ,
0

2 b
b QPSK

EP Q
N

 
=   

 
 (3.11)

causes an increase in ,b QPSKP [12], [13]. This increase in ,b QPSKP causes an increase in the

information bit error rate bP . The requirement to maintain bP should trigger the gNB to

change DCI fields to direct the UE to offset the higher bP either by increasing TP , changing

the MCS or if necessary adjust other DCI fields to compensate, e.g., HARQ reporting and

CSI reporting. Working backwards, if we observe a change in DCI fields directing a higher

TP or otherwise changing requirements to combat high bP , we can deduce that the UE may

be moving further away from the gNB. Further, potential changes to geographic location

can be correlated with the timing advance (TA) assigned to the UE transmissions. A TA is

typically assigned as a medium access control (MAC) layer control element (CE), which

is a header applied to the MAC layer in the PBCH, PRACH, or PDSCH [19]. Once a RNTI

is recovered and DCI messages decoded, the UE TA can be recovered by monitoring the

PDSCH frequency and time resources assigned in the DCI 1_0 and 1_1 messages for the

TA MAC CE.

A change in location resulting in a degraded channel would result in the gNB

directing the UE to change to a more reliable MCS in the PUCCH and PDSCH. This is

accomplished by changing the bit value of the MCS field [5]. The gNB could also adjust

the HARQ Process Number field to change to a more frequent HARQ reporting mode [17].

A change in HARQ reporting could also be revealed in the Downlink Assignment Index,

which determines the number of transmissions requiring acknowledgment before a HARQ

request is sent or the PUCCH to HARQ Feedback Timing Indicator for which the gNB

could increase the number of slots between PDSCH reception and the transmission of

HARQ acknowledgment in a degraded channel [17].

Further, the TPC Command for Scheduled PUSCH and the TPC Command for

Scheduled PUCCH fields are used as a gNB command to the UE to increase power on the

PUSCH or PUCCH, respectively, in the event of a degraded channel [17]. The New Data

Indicator field may be more frequently be set to zero in a degraded channel as this field

indicates a re-transmission [17]. Similarly, the TB Block Scaling field can be adjusted by

55

the gNB to increase redundancy [17]. Lastly, the SRS Resource Indicator, SRS Request,

and CSI Request fields can also be adjusted by the gNB to direct the UE to send more SRS

and/or CSI messages in a degraded channel situation [17]. While this discussion was

initiated for a degraded channel due to a change in geographic location, the same

conclusions could be drawn for a degraded channel caused by interference.

In the initial access case, the Random-access Preamble Index field would be used

for the PDCCH Random-access Procedure, indicative that a UE that is first connecting or

re-connecting to the gNB [17]. DCI messages also reveal indications of URLCC mode and

carrier configuration. In the MCS field, frequently used with devices in URLCC mode, this

could reveal a factory IoT device or other type of UE designed for URLCC [17]. The

Uplink/Supplemental Uplink Indicator and Carrier Indicator fields, which reveal that a

device is configured on multiple uplinks or carriers [17]. Table 17 summarizes possible UE

activity and DCI fields that could be indicative of that activity.

Table 17. Activity Recovered from DCI Fields

UE Activity DCI Fields Indicative of Activity
UE has changed geographic
location or is experiencing
interference

Modulation and Coding Scheme
HARQ Process Number
TPC Command for Scheduled PUSCH
TPC Command for Scheduled PUCCH
TPC Command for SRS
SRS Resource Indicator
SRS Request
CSI Request
New Data Indicator
TB Scaling Indicator
Downlink Assignment Index
PUCCH to HARQ Feedback Timing Indicator
Random-access Preamble Index

UE is in a URLCC mode Modulation and Coding Scheme
UE is being configured across
multiple carriers or links

Uplink/Supplemental Uplink Indicator
Carrier Indicator

A UE in the cell is conducting
time-critical transmissions

Pre-emption Indication

56

E. ACTIVITY RECOVERY DEMONSTRATION

In this section, we will demonstrate the recovery of user activity from a DCI

message starting from the PDCCH interception. This example evaluates a specific payload-

codeword combination to demonstrate the methodology to recover activity information

through RNTI recovery and highlights the parameters that will later be adjusted to optimize

the RNTI recovery process over a broad range of payloads, codewords, and channel

conditions.

1. DCI Encoding of Control Information

In this example, let us assume the UE is moving away from the gNB; therefore, the

gNB will reduce the complexity of the uplink MCS and increase the requested power from

the UE to maintain a constant bP . Note that on the gNB transmitter side, the transmitted

power of the downlink will likely be adjusted as well, but since the gNB controls the

transmitter, the gNB has no need to send out a message to the UE to do so. It is assumed

that the gNB and UE are using the Fallback DCI formats and, therefore, the gNB will assign

the updates to the UE in a DCI 0_0 PUSCH Resource Allocation (Fallback) message.

The UE operating on the PUSCH is assumed to initially be using MCS index table

4, index, 19MCSI = , which corresponds to 64QAM, target code rate, 0.554r = , spectral

efficiency 3.3223spectralη = . As the UE has moved away from the gNB, we will assume the

MCS is reduced to MCS index table 4 3MCSI = , which corresponds to QPSK, 0.245r =

and 0.4902spectralη = [17]. In the DCI 0_0, the MCS field is encoded at the bit level as [0 0

0 1 1]. Additionally, the gNB and UE are assumed to be using closed loop power control,

and the gNB will issue a transmit power control (TPC) command to increase the UE

transmitted power on the PUSCH. To accomplish this, the DCI 0_0 field TPC Command

for Scheduled PUSCH field is set to [1 0], which selects the third element in the set of {-4,

-1, 1, 4} and directs a power increase from the UE of 1 dB [17]. All other DCI fields are

assumed to remain constant for this example. As laid out in Table 18, once the DCI

parameters are selected, the DCI 0_0 message at the bit level is

39
0a = [0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1],

57

where 39
0a is the DCI payload bit string of length 40 bits.

Table 18. DCI 0_0 Encoding for 1a to Trigger Decrease in MCS and
Increase in TPC Power Control

Field Number of Bits Bits Assigned
Identifier for DCI Formats 1 0
Frequency Domain Resource
Assignment

Depends on size
of uplink BWP

0110011101101

Time Domain Resource
Assignment

4 0010

Frequency Hopping Flag 1 0
Modulation and Coding Scheme 5 00011
New Data Indicator 1 0
Redundancy Version 2 11
HARQ Process Number 4 1000
TPC Command for Scheduled
PUSCH

2 10

Padding 6 (depends on
DCI 1_0 size)

000000

Uplink/Supplemental Uplink
Indicator

1 or 0 1

2. PDCCH Encoding of DCI

The DCI is now encoded for transmission in the PDCCH. An RNTI is randomly

assigned in the range of [1,65534], and an arbitrary cell ID 10IDη = is used. To prepare the

DCI for transmission, the PDCCH encoding and modulation process as described in

Section II.B.2 is performed. First, 24 CRC bits are calculated and inserted by scrambling

and interleaving. The resultant block is encoded through polar coding followed by sub-

block interleaving and rate matching to the codeword length E , then scrambling with an

RNTI initialized sequence. Finally, the DCI message, now encoded in a codeword of length

E is modulated and sent as QPSK symbols [9]. For this example, 216E = was selected,

which is a typical value for a PDCCH codeword [22]. During rate matching, the polar

coded sequence, which expands the block to 256N = bits, is shortened to 216E = bits

58

by removing frozen bits (puncturing). The scrambled 216E = bits are QPSK modulated

and transmitted as 108 complex QPSK symbols.

3. Recovery of RNTI Through Syndrome Matching

This section follows the methodology developed in [3] to recover the RNTI in the

blind by using modified polar decoding and syndrome matching. To simulate real channel

conditions, AWGN noise is added and then the received QPSK signals are demodulated to

log-likelihood ratio (LLR) values. First, the 216E = bit sequence is rate recovered to the

polar coding block size of 256N = by reversing the puncturing step of the encoding

process. Next, the sub-block interleaving is reversed and the LLR values are mapped to

bits. Modified polar decoding is then performed to recover an error pattern of length Fε =

where the error bit indices are uniquely affected by the RNTI initiated scrambling

sequence. The error pattern is compared to a pre-generated syndrome table of all possible
152 RNTI initiated scrambling sequences for the combination of 216E = and 40A = . In

this example, the Hamming distance thresholds used are HAMτ = {5, 14, 24, 33, 43, 52, 62,

71, 81, 90}.

In each HAMτ case, if the Hamming distance between the received error pattern and

an entry in the syndrome table is less than HAMτ , then that syndrome is considered a match

and the associated RNTI is used to descramble the received PDCCH message and decode

the DCI data bits and CRC bits. If a CRC calculated from the DCI data bits matches the

CRC recovered from the PDCCH message, then the syndrome is considered correct and

the RNTI is recovered. The HAMτ range was chosen to evaluate successP and errorP over a

broad range of cases from 5HAMτ = where very few, if any, Hamming distance calculations

outside of the correct RNTI sequence will meet the threshold and 90HAMτ = where we

approach the brute force case of evaluating every RNTI possibility. We know that

24 152F E Aε = = − − = ; therefore, we expect 0.50errorP = to fall between

/ 2 76HAMτ ε= = and 3 / 4 114HAMτ ε= = . Once we select a HAMτ to meet our RNTI

recovery goals, the threshold can be held relatively constant as described in Section 3.E.4.

59

4. Evaluation of RNTI Recovery Success and Error Probabilities

We ran 300 trials at each HAMτ to evaluate the impact of HAMτ on successP , errorP

and Rη . The results, as seen in Figure 16, show the expected monotonic increase in successP

and errorP with HAMτ . The estimate of 0.50errorP = between / 2 76HAMτ ε= = and

3 / 4 114HAMτ ε= = is validated in Figure 16 (b). Further, we see in Figure 16 (b) that errorP

increases significantly above 60HAMτ = when we are still achieving 0.50successP ≈ as seen

in Figure 16 (a); therefore, if we were operating in an environment in which we are

intercepting frequent PDCCH messages, this is a HAMτ that uses resources very efficiently.

However, if we are in an environment where we want to ensure we recover RNTIs as a

very high successP , then we need to consider Figure 17, which shows RNTI recovery

efficiency Rη as we attempt to increase the number of RNTIs recovered. The Rη

relationship between successP and errorP is mostly linear, but we keep in mind that this is a

log-log scale, so while Rη is linear, the resources expended to achieve a higher successP are

increasing exponentially.

Figure 16. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 40A = , 5SNR = dB, 216E = , and DCI Payload 39
0a

60

Figure 17. Hamming Method RNTI Recovery Efficiency for 40A = ,

216E = , 5SNR = dB and DCI Payload 39
0a as shown by successP versus

errorP

5. Decoding of DCI Information and Assessment of UE Activity

As the RNTI is recovered, the attacker can now decode the DCI message and

recover the payload bits that carry DCI field information. In this case, we recover the DCI

bits

1â = [0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1]

where 1â represents the DCI payload bits recovered. In the fields relevant for UE activity

tracking, first the MCS is field is recovered as [0 0 0 1 1], which corresponds to MCS index

table 4 3MCSI = directing QPSK, 0.245r = , and 0.4902spectralη = , a decrease in MCS from

our initial value. Second, the TPC Command for Scheduled PUSCH field is revealed to be

[1 0], which directs a power increase from the UE of 1 dB.

Note that in this example, we assume that the attacker has some prior knowledge

of the UE state, presumably from previous RNTI recovered DCI messages. Since the

attacker knows that the MCS field has been changed to a lower code rate and spectral

efficiency and the TPC Command for Scheduled PUSCH has been increased, the attacker

can deduce that the UE is moving further from the gNB. With this information and a

10 -4 10 -3 10 -2 10 -1 10 0

Probability of Error, P error

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 40

61

possible method to associate the UE to this activity (e.g., location of interference, visual of

UE moving, only UE in area, etc.), the RNTI can be linked to a UE for further tracking. It

is not beyond noting that if the attacker were to generate interference on a target UE to

intentionally degrade the channel, they could use this to determine which RNTIs DCI

messages are directed to offset the degraded channel and now can associate that RNTI with

the UE being interfered with.

In this chapter, we have provided the methodology for optimizing the recovery of

RNTIs in different mobile environments. We discussed the impact on RNTI recovery of

,A E , SNR , and Hamming versus LCS methods. We presented an empirical statistical

analysis of the Hamming and LCS distances to understand how τ can be used as a lever

to control the RNTI recovery successP , errorP and Rη . Finally, we provided a RNTI recovery

walkthrough to demonstrate how an attacker could adjust parameters and methods to

optimally recover user activity in a specific scenario.

62

THIS PAGE INTENTIONALLY LEFT BLANK

63

IV. SIMULATION RESULTS AND ANALYSIS

In Chapter III, we presented the methodology to determine probable DCI payload

lengths and to optimize recovering RNTIs using modified polar decoding and syndrome

matching to decode DCI messages and assess user activity. This chapter provides the

structure of the MATLAB models used for the DCI payload and RNTI recovery

simulations and then presents the results for E = {108, 128, 216, 256, 432, 512}. For each

E , results of RNTI recovery are presented for a range of payloads using the Hamming

method. Further we consider RNTI recovery results at varying SNR and using the LCS

method. Finally, we present a discussion of what UE activity can be recovered using the

RNTIs recovered by these methods.

A. MAXIMUM DCI PAYLOAD MODEL

A 310blerP −≤ is typical in mobile communications, so to find the maximum

supported DCI payloads within this blerP , a simulation was created utilizing the MATLAB

5G toolbox to model the encoding and decoding of the PDCCH channel as shown in Figure

18. First, randomly generated DCI payload of lengths A = [12,140] are encoded onto a

codeword of length E , QPSK modulated, and simulated to be sent over an AWGN

channel. The recovered codeword is demodulated, decoded, and error corrected through

the polar coding built in to the PDCCH encoding and decoding process. The recovered

payload is then compared to the sent payload. If they are not identical, then a block error

has occurred. The simulation is repeated for the codeword lengths E = {108, 128, 216, 256,

432, 512}. The output metric of this model is number of block errors per blocks sent or

blerP where it should be noted that any bit error in a block will result in a block error. We

simulated 50,000 trials at SNR = {0, 5, 10} dB and measured the number of block errors.

The large number of trials was necessary as there are few errors when A is small or E is

large as the polar coding applied in the PDCCH process has considerable error correction

capabilities. The output data was analyzed to determine the maximum A for each E that

meets the 310blerP −≤ requirement.

64

Figure 18. MATLAB Model to Determine Maximum Supported A for Each

E for 310blerP −≤ Requirement

It is important to note that the polar decoding function in this model is accomplished

by successive cancellation (SC) decoding, which is equivalent to successive cancellation

list (SCL) decoding with list length, 1L = [20]. In practice, the L may be higher, a typical

value can be as high as 8L = , and this will allow for larger payloads to be sent within the

codeword limits [20]. However, in this thesis, the SCL decoding of 1L = sets a baseline

and the assumed maximum payload can be adjusted as an input to the activity recovery

model. Similarly, this thesis assumes one antenna, but additional antennas can improve the

overall recovery of data bits [3].

B. MAXIMUM DCI PAYLOAD RESULTS

The results of 50,000 trials at all possible payloads, A = [12:140] , codeword

lengths E = {108, 128, 216, 256, 432, 512}, and varying SNR = {0, 5, 10} dB are

presented in Figures 19, 20, and 21, respectively. The results confirm that larger codewords

can support larger payloads within 310blerP −≤ . In fact, for 5SNR = dB the codewords E =

{432, 512} are not limited by the maximum 310blerP −= and can support up to the maximum

DCI payload of 140 bits. For the 5SNR = dB case, which will be evaluated in detail, the

maximum DCI payloads are listed in Table 19.

Under poor channel conditions, as shown in Figure 19 for 0SNR = dB, the

maximum DCI payloads are further limited. In this case, codewords E = {108, 128} cannot

support any DCI payloads within the desired blerP , codewords E = {216, 256} can only

support small payloads of approximately 50A ≤ , and codewords E = {432, 512} now are

limited and cannot support the maximum 140A = . If the SNR were this low in practice,

the gNB would most likely increase 512E > or take other means outside of channel coding

65

to manage the high blerP . On the other hand, under good channel conditions, as shown in

Figure 21 for 10SNR = dB, the maximum DCI payload lengths meeting 310blerP −≤ are

much higher. Codewords E = {216, 256, 432, 512} can support all DCI payloads up to the

maximum 140 bits while codewords E = {108, 128} are limited by the blerP but can support

much higher payloads than the baseline 5SNR = dB case.

Figure 19. Probability of Block Error at Payload Lengths A = [12:140] and

Codeword Lengths E = {108, 128, 216, 256, 432, 512} with 0SNR = dB

0 20 40 60 80 100 120 140

Payload Length, A

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 B
lo

ck
 E

rro
r,

P
bl

er

E = 108

E = 128

E = 216

E = 256

E = 432

E = 512

66

Figure 20. Probability of Block Error at Varied Payload Lengths A = [12:140]

and Codeword Lengths E = {108, 126, 216, 256} with 5SNR = dB

Figure 21. Probability of Block Error at Varied Payload Lengths A = [12:140]

and Codeword Lengths E = {108, 128} with 10SNR = dB

0 20 40 60 80 100 120 140

Payload Length, A

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 B
lo

ck
 E

rro
r,

P
bl

er

E = 108

E = 128

E = 216

E = 256

75 80 85 90 95 100 105

Payload Length, A

10 -5

10 -4

10 -3

10 -2

10 -1

Pr
ob

ab
ilit

y
of

 B
lo

ck
 E

rro
r,

P
bl

er

E = 108

E = 128

67

Table 19. Maximum Payload for 310blerP −≤ and 5SNR = dB

Codeword Length Maximum Payload
108 33
128 49
216 103
256 133
432 140+
512 140+

C. RNTI RECOVERY MODEL

The simulation to recover RNTIs from intercepted PDCCH messages is modeled

using the MATLAB 5G toolbox and MATLAB code developed in [3]. The goal of the

simulation is to input the bit stream of a PDCCH codeword without knowledge of the RNTI

and ultimately recover the DCI bits from which user activity can be determined. While a

brute force method can be attempted, the modified polar coding and syndrome matching

technique presented in [3] is expanded to the full spectrum of payload lengths within

several practical codeword lengths. The simulation metrics and thresholds are analyzed for

changes to A , E , SNR , τ , and recovery method to determine optimal RNTI recovery for

different mobile traffic environments and distinctive UE tracking goals.

1. Input Variables and Factors

First, the DCI payload range A and codeword lengths E are considered, and in

this thesis we choose the A and E inputs to the RNTI recovery simulation to reflect values

used in practice as much as possible. The codeword lengths in practice are E = {108, 216,

432} [10]. As RNTI recovery becomes increasingly effective at large codeword lengths

due to the increase in frozen and error pattern bits for evaluation, this simulation was

limited in scope to codeword length up to 432E = for practical values. For the practical

values, simulations were also run at the associated polar coding codeword lengths E =

{128, 256, 512}, where the codeword bits are matched to the polar coding bits, but due to

the mechanisms of polar coding are constrained to 2nN = in size. The payloads A are

spaced to explore the entire range of possible results for each E . The minimum allowed

68

DCI payload length is 12A = , and the maximum was chosen to be the lesser of the

maximum allowed DCI payload 140A = or the maximum A found for 310blerP −≤ as

discussed in Section IV.B and presented in Table 19 [9]. As shown in Table 20, the A

values to be tested were linearly spaced between the minimum and maximum A to produce

five total values for E = {108, 128} and ten total values for E = {216, 256, 432, 512}; more

values were added in the latter cases to account for the larger range of possible payloads.

In Sections IV.D.1 through IV.D.4, the Hamming distance method is used to

determine if an error pattern and a syndrome are considered a match; therefore, Hamming

distance thresholds are set as simulation inputs. The maximum HAMτ was chosen to be

/ 2HAM Eτ = as this threshold value approaches the brute force case. For the minimum,

5HAMτ = was chosen as this was shown by trial and error to significantly limit errorP while

still recovering RNTIs. Recall that 24E Aε= + + and a threshold between / 2HAMτ ε=

and 3 / 4HAMτ ε= will result in 0.50errorP ≈ . Within the minimum and maximum HAMτ ,

threshold values were linearly spaced to produce five total values for codewords E = {108,

128} as shown in Table 20. Also shown in Table 20, for the larger codewords E = {216,

256, 432, 512}, ten threshold values were linearly spaced between minimum and maximum

to produce ten total values, this time for the larger range of possible Hamming distances

due to an increase in ε .

69

Table 20. MATLAB RNTI Recovery Simulation Inputs

Codeword
Length (E)

Payload Lengths (A) Hamming Threshold Values
(HAMτ)

108 12, 17 23, 28, 33 5, 13, 21, 28, 36
128 12, 21, 31, 40, 49 5, 15, 26, 36, 46
216 12, 22, 32, 42, 52, 63, 73,

83, 93, 103
5, 14, 24, 33, 43, 52, 62, 71,
81, 90

256 12, 25, 39, 52, 66, 79, 93,
106, 120, 133

5, 17, 28, 40, 52, 63, 75, 87,
98, 110

432 12, 26, 40, 55, 69, 83, 97,
112, 126, 140

5, 26, 48, 69, 90, 112, 133,
154, 176, 197

512 12, 26, 40, 55, 69, 83, 97,
112, 126, 140

5, 31, 57, 83, 109, 134, 160
186, 212, 238

2. MATLAB Model for RNTI and DCI Recovery

The intercepted PDCCH message is first generated using the MATLAB 5G toolbox

functions of nrDCIEncode() and nrPDCCH(), which are derived from 3GPP 5G

standards TS 38.212 [9] and TS 38.211 [18], respectively. The function nrDCIEncode()

takes the payload of length A , the RNTI, and the codeword length E as inputs and

performs the CRC attachment, polar coding, and rate matching to output the encoded DCI

bits. The input payload bits of length A and the RNTI are randomly generated in our

model. Inputs to the function nrPDCCH() are the encoded DCI bits, IDη , and RNTI, and

outputs are the complex QPSK modulation symbols. The overall model used in MATLAB

to generate the PDCCH QPSK symbols is shown in Figure 22. Next, AWGN is added to

the QPSK symbols using awgn() to simulate realistic channel conditions.

Figure 22. MATLAB Model for PDCCH Encoding Following 3GPP

Standards [9] and [18].

70

At this point, if the RNTI is known, the functions nrPDCCHDecode() and

nrDCIDecode() can be used to demodulate and decode the DCI message. However,

since the PDCCH message is recovered in the blind, the modified polar decoding and RNTI

recovery process demonstrated in [3] is used. First, the nrSymbolDemodulate()

function is used, which demodulates the received QPSK + AWGN symbols using soft

decision decoding into LLR values. Next, the steps of rate matching and sub-block

interleaving are reversed from the encoding process and the LLR values are mapped to

bits. The step that is omitted is the descrambling since the RNTI is unknown, thus the

output block is 2nN = polar coded bits scrambled by a Gold sequence initiated by the

RNTI. The modified frozen bits of length F of this scrambled sequence are extracted as

the error pattern and compared via Hamming distance to the error pattern syndromes pre-

generated for all possible RNTIs [3]. A schematic diagram of this method is shown in

Figure 23, and the output of this stage is a syndrome of length Fε = that matches the error

pattern within a Hamming distance threshold HAMτ . This is an iterative process that

attempts to match each syndrome for all RNTI possibilities sequentially from 1RNTIn =

through 152RNTIn = and breaks the loop only if a decoded CRC correctly matches the CRC

calculated for the recovered DCI bits as described in the next few steps [3].

Figure 23. MATLAB Model for Modified Polar Decoding and Syndrome

Matching to Recover RNTIs in the PDCCH as Developed in [3].

For an error pattern that matches a syndrome within the Hamming distance

threshold, we then go back to the associated LLR values and perform the descrambling,

rate matching and sub-block deinterleaving to recover the unscrambled polar coded bits

[3]. These unscrambled bits are then decoded using nrPolarDecode() and recovered

71

by nrCRCDecode() as shown in Figure 24. For the actual RNTI used to encode,

nrPDCCHDecode() and nrDCIDecode() could replace the descrambling, rate

matching, sub-block deinterleaving and polar decoding steps performed by manual

functions nrPolarDecode() and nrCRCDecode(). However, since we do not know

if the matching syndrome is associated with the correct RNTI, the process is broken down

to allow for the calculation of the CRC from the DCI bits, which can be compared to the

decoded CRC recovered from descrambling. To check the CRC, nrCRCDecode() is

used and if the calculated CRC matches the decoded CRC, then the RNTI is determined to

be correct and the iterative loop comparing error patterns to syndrome matches is ended,

and the RNTI is considered recovered. If the calculated CRC does not match the recovered

CRC, then the iterative process continues for 1RNTIn = through 152RNTIn = . The RNTI from

the next match within HAMτ is used to descramble that syndrome match, and the process

is repeated until the correct RNTI is found or the entire set of RNTI syndrome matches is

evaluated [3].

Figure 24. MATLAB Model for RNTI Recovery for Matched Syndromes in

the PDCCH as Developed from [3].

3. Simulation Metrics

As the received error pattern is compared to each RNTI associated syndrome, there

are five possible outcomes as first presented in [3] and shown in Figure 25. To optimize

the RNTI recovery process, the True Positive case should be maximized while minimizing

the False Positives. This will optimize the processing required to recover the RNTI as each

case in which a syndrome match is processed within the threshold, the descrambling,

decoding, and CRC check calculations must be completed.

72

Figure 25. Decision Tree and Output Metrics for MATLAB RNTI Recovery

Simulation. Source: [3].

Probabilities successP and errorP are the focus in this thesis as we are evaluating

successfully recovered RNTIs (successP) and the resources expended by processing

syndromes within the threshold but not resulting in a recovered RNTI (errorP). To calculate

our statistics in terms of simulation outcomes, we define the probability that a RNTI will

be recovered for a given intercepted PDCCH message

 TruePositive
success

trials

nP
N

= (4.1)

where TruePositiven is the number of True Positive outcomes, and trialsN is the number of trials

or the number of PDCCH messages processed. A True Positive is the case where the correct

RNTI syndrome is passed by τ , decoded, and verified as the correct RNTI by CRC check.

Further, we define the probability that a syndrome not generated from the correct RNTI is

passed by τ as

73

 152
TypeI TypeIIb

error
trials

n n
P

N
+

=
⋅

 (4.2)

where TypeIn is the number of False Positive (Type I) errors, TypeIIbn is the number of False

Negative (Type IIb) errors, and trialsN is the number of trials or the number of PDCCH

messages processed. A False Positive (Type I) error occurs when a syndrome is within τ

but is not the correct RNTI syndrome, thus is rejected once the CRC bits are checked. A

False Negative (Type IIb) will occur if the correct RNTI syndrome is within τ , but the

CRC bits do not check due to bit errors, and in our model this will be counted within errorP

since we don’t know that the CRC check failure was in fact the correct RNTI. This case is

only common in low SNR scenarios and since this RNTI syndrome is only one of 152 , it

does not statistically impact errorP . A False Negative (Type IIa) is a failure of the RNTI

syndrome to be matched to the error pattern within τ and is accounted for as approximately

1 successP− , where the approximate characterization is due to the possibility of a False

Negative (Type IIb) error. Similarly, a True Negative is the case where the incorrect RNTI

syndrome is not properly matched within τ and is accounted for as 1 .errorP−

The last statistic we define is the RNTI recovery efficiency Rη as the ratio of

successful RNTI recoveries to the total RNTI syndromes passed by the τ , which we can

calculate as

 15 15

1
(2 1) 2

TruePositive success success
R

TypeI TypeIIb TruePositive error success error

n P P
n n n P P P

η  = = ≈  + + ⋅ − +  
 (4.3)

We note that for a brute force case, 15 15

1 0
2 1 (2 1) 1

success
R

error success

P
P P

η = = =
⋅ + ⋅ − +

, and for a

perfect recovery case 15 15

1 1
2 0 (2 1) 1

success
R

error success

P
P P

η = = =
⋅ + ⋅ − +

. We caution the reader

that 1Rη = does not mean that all RNTIs are recovered but that any RNTI that is recovered

is done with perfect efficiency, i.e., with no more extra computations than necessary.

74

Finally, we expand on the metrics established in [6] to explain how adjusting

parameters can drive model outcomes, the factors that significantly influence the respective

outcomes are described in Table 21. It is important to note that to achieve a higher

probability of True Positive, directly increasing successP , the threshold τ for matching error

patterns to syndromes should be relaxed. However, this also increases the probability of

False Positives, increasing errorP . Therefore, in a real-world mobile environment, it is

recommended to establish successP and errorP for a τ resulting in 0.50errorP ≈ , and

subsequently adjust τ in real time to optimize RNTI recovery. As will be shown in Section

IV.D.4, higher SNR results in an increase in True Positives without significantly effecting

False Positives, thus resulting in a much higher recovery efficiency, Rη .

Table 21. RNTI Recovery Output Metrics. Source: [3].

Model Outcome Description of Result Significant Influence(s)
True Positive Received frozen bit pattern matches

syndrome within threshold, CRC
bits check, the RNTI is successfully
recovered

Relaxed threshold →
higher likelihood
Increased SNR → higher
likelihood

False Negative
(Type IIb)

For the correct RNTI, received
frozen bit pattern matches syndrome
within threshold, CRC bits do not
check

Increased SNR → lower
likelihood

False Positive
(Type I)

Received frozen bit pattern matches
syndrome within threshold, CRC
bits do not check

Relaxed threshold →
higher likelihood

False Negative
(Type IIa)

For the correct RNTI, received
frozen bit pattern does not match
syndrome within threshold

Relaxed threshold → lower
likelihood
Increased SNR → lower
likelihood

True Negative Received frozen bit pattern does not
match syndrome within threshold

Relaxed threshold → lower
likelihood

D. RNTI RECOVERY RESULTS

The results presented in this section cover 300 trials for each payload length A and

codeword length E combination evaluated at the Hamming and LCS threshold values τ

75

presented in Table 20. Sections IV.D.1 through IV.D.3 evaluate the effect of increased

HAMτ , increased A , and increased E on successP , errorP , and Rη , respectively. In Sections

IV.D.4 and IV.D.5, a codeword of 216E = is used to evaluate the effect of high and low

SNR and the differences between the Hamming and LCS methods, respectively.

1. Effect of Increased Threshold

This section considers the impact of increasing HAMτ between an error pattern and

a syndrome on successP , errorP , and Rη for A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} with

216E = across the range of HAMτ = {5, 14, 24, 33, 43, 52, 62, 71, 81, 90}. The symmetry

of the results across A , as shown in Figure 26, show that for larger A , HAMτ can be

decreased to maintain errorP constant, and this agrees with our analysis in Section II.C.2.

We estimate from the results that, to maintain errorP constant, every increase in A of

approximately 10 bits, which subsequently decreases F and ε by 10 bits, requires an

decrease in HAMτ of approximately five bits. This is consistent with / 2HAMµ ε= where an

increase to ε of 10 results in an increase to HAMµ of five, which was derived in Section

III.C.2. We will also find that this shift is SNR agnostic as we adjust SNR in Section

IV.D.4. Typically, A will not be exactly known for the intercepted PDCCH message, thus

errorP will be significantly impacted by the initial HAMτ .

76

Figure 26. Hamming Method RNTI Recovery errorP versus HAMτ for 216E = ,

5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}

The significance of adjusting HAMτ is shown Figure 27, where we observe that the

successP is much more tightly grouped than errorP as we increase HAMτ . We conclude that if

HAMτ is not properly adjusted, errorP can increase significantly with a less substantial

increase in successP , resulting in wasted resources in processing incorrect RNTIs. Another

thing to note from Figure 27 is that for larger A and subsequent smaller ε , successP does

increase faster as HAMτ increases, and this is due to the fact that there less bits in ε , thus

2 / 4HAMσ ε= is smaller. A prudent Hamming distance simulation must be adjusted

regularly for probable DCI payload lengths; however, we will find in Section IV.D.5 that

the LCS method does not share this property and is more robust to changes in A .

0 20 40 60 80 100

Hamming Threshold, HAM

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

77

Figure 27. Hamming Method RNTI Recovery successP versus HAMτ for

216E = , 5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}

2. Effect of Increased Payload Length

This section presents the individual results of increased A on successP and errorP for

fixed codeword lengths E = {108, 128, 216, 256, 432, 512}, SNR = 5 dB, and the

Hamming distance method. Within a given E , A is expected to vary for different DCI

messages, and in this section we analyze how the change in payload length impacts RNTI

recovery.

a. Codeword Length of 108

The codeword length 108E = is expected to be used in practice but will likely only

support small payloads as the maximum DCI payload for 310blerP −≤ at 5SNR = dB is

33A = as found in Section IV.B. For 108E = , the payloads of A = {12, 17, 23, 28, 33}

were evaluated at HAMτ = {5, 13, 21, 28, 36}. Figure 28 (a) shows that successP increases

monotonically and nearly linearly as HAMτ increases across the tested range. successP is

higher for larger A for a given HAMτ , but this is only due to the higher errorP at these HAMτ

cases as more RNTIs are being filtered through the threshold. The errorP results in Figure

28 (b) show as expected that the largest A results in the highest errorP for a given HAMτ due

0 20 40 60 80 100

Hamming Threshold, HAM

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

78

to the decrease in ε as explained in Section III.C.2. If we compare successP and errorP to

evaluate the RNTI recovery efficiency Rη , as shown in Figure 29, we find that in fact

smaller A can recover RNTIs more efficiently for a fixed errorP , and this is due to the

increase in ε and F resulting in a higher code rate r as described in Section III.C.2.

Figure 28. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 108E = , 5SNR = dB, and A = {12, 17, 23, 28, 33}

79

Figure 29. Hamming Method RNTI Recovery Efficiency for 108E = ,

5SNR = dB, and A = {12, 17, 23, 28, 33} as shown by successP versus

errorP

b. Codeword Length of 128

The codeword length 128E = is a theoretical case to match the polar block coding

length of 128N = and would only support small payloads as the maximum DCI payload

for 310blerP −≤ at 5SNR = dB is 49A = as found in Section IV.B. For 128E = , the

payloads of A = {12, 21, 31, 40, 49} were evaluated at HAMτ = {5, 15, 26, 36, 46}. From

Figure 30, we see that successP and errorP follow the same monotonically increasing trends

as for 108E = , but as the payloads are spaced out more so are the results. If we compare

successP and errorP to evaluate Rη , as shown in Figure 31, we again find that smaller A can

recover RNTIs more efficiently for a fixed errorP due to the increase in ε and F resulting

in a higher r as described in Section III.C.2.

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 17

A = 23

A = 28

A = 33

80

Figure 30. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 128E = , 5SNR = dB, and Payloads A = {12, 21, 31, 40, 49}

Figure 31. Hamming Method RNTI Recovery Efficiency for 128E = ,

5SNR = dB, and A = {12, 21, 31, 40, 49} as shown by successP versus
errorP

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 21

A = 31

A = 40

A = 49

81

c. Codeword Length of 216

The codeword length 216E = is expected to be used in practice and support most

payloads as the maximum DCI payload for 310blerP −≤ at 5SNR = dB is 103A = as found

in Section IV.B. For 216E = , the payloads of A = {12, 22, 32, 42, 52, 63, 73, 83, 93,

103} were evaluated at HAMτ = {5, 14, 24, 33, 43, 52, 62, 71, 81, 91}. From Figure 32, we

see that successP and errorP follow the same monotonically increasing trends as for smaller

codewords, but here for the larger A values we begin to see successP and errorP reach their

maximums. successP maximizes and becomes flat as we approach 1successP = while errorP

oscillates around the value of 0.50errorP = . This oscillation can be explained by the fact

that the RNTI recovery simulation will find the correct RNTI on average halfway through

the RNTI search space, thus will hover around 0.50errorP = for a brute force case, which is

what we experience for the large A and high HAMτ values chosen for this simulation.

The brute force case is not unique to the E length but depends on the length of the

error pattern ε and HAMτ value chosen. If we analyze 103A = on 216E = , we find that

24 89E Aε = − − = , and this will correspond to / 2 44.5HAMµ ε= = and

2 / 4 4.72HAM HAMσ σ ε= = = where HAMσ is the standard deviation of the Hamming

distance. From Figure 32 (b), we observe that 103A = begins to oscillate around

0.50errorP = at 62HAMτ = , which is 3.7 standard deviations from HAMµ , which due to the

Gaussian distribution results in over 99.9% of the RNTI syndrome patterns within

62HAMτ = . Finally, we compare successP and errorP to evaluate Rη , as shown in Figure 33,

we continue to demonstrate that smaller A can recover RNTIs more efficiently for a fixed

errorP due to the increase in ε and F resulting in a higher code rate as described in Section

III.C.2.

82

Figure 32. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 216E = , 5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83,
93, 103}

Figure 33. Hamming Method RNTI Recovery Efficiency for 216E = ,

5SNR = dB and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown
by successP versus errorP

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

83

d. Codeword Length of 256

The codeword length 256E = is a theoretical case to match the polar coding block

length of 82 256N = = and would support almost all payloads as the maximum DCI

payload for 310blerP −≤ at 5SNR = dB is 133A = as found in Section IV.B. For 256E = ,

the payloads of A = {12, 25, 39, 52, 66, 79, 93, 106, 120, 133} were evaluated at HAMτ =

{5, 17, 28, 40, 52, 63, 75, 87, 98, 110}. From Figure 34, we see that successP and errorP follow

the same monotonically increasing trends as for smaller codewords, and we see successP and

errorP reach their maximums. As we compare successP and errorP to evaluate Rη , as shown

in Figure 35, we continue to demonstrate that smaller A can recover RNTIs more

efficiently for a fixed errorP . For 256E = , an interesting case occurs at 120A = as

observed in Figures 34 and 35 where 0successP = for HAMτ = {5, 17, 28, 40}, well below the

expected successP for that payload.

Figure 34. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 256E = , 5SNR = dB, and A = {12, 25, 39, 52, 66, 79, 93, 106,
120, 133}

84

Figure 35. Hamming Method RNTI Recovery Efficiency for 256E = ,

5SNR = dB, and A = {12, 25, 39, 52, 66, 79, 93, 106, 120, 133} as shown
by successP versus errorP

To further investigate the 120A = case, additional cases were simulated at A =

{116, 118, 119, 120, 121, 122, 124}, and the results are shown in Figure 36. We find that

in this range only the specific payload and codeword combination of 256E = and 120A =

has poor results. A possible explanation to this anomaly is that this is the result of a

boundary case between rate matching methods. In Figure 37, it can be seen that 256E =

and 120A = is at the boundary between the repetition, shortening, and no rate-matching

methods. At 256E = and 120A = , no rate-matching is applied because the codeword

length is a factor of two and therefore matches with the polar coding block length N . The

fact that different rate-matching techniques would be applied if the codeword was one bit

longer or one bit shorter could be an indication that there is a unique effect in the polar

coding or encoding process that causes this anomaly in RNTI recovery.

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 25

A = 39

A = 52

A = 66

A = 79

A = 93

A = 106

A = 120

A = 133

85

Figure 36. Hamming Method RNTI Recovery Efficiency for 256E = ,

5SNR = , and A = {116, 118, 119, 120, 121, 122, 124} as shown by
successP versus errorP

Figure 37. Rate-Matching Relationships between E and A in the PDCCH.

Source: [3].

e. Codeword Length of 432

The codeword length 432E = is expected to be used in practice and support all

payloads as the maximum DCI payload for 310blerP −≤ at 5SNR = dB is not limited by up

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 116

A = 118

A = 119

A = 120

A = 121

A = 122

A = 124

86

to the maximum allowed 140A = as found in Section IV.B. For 432E = , the payloads of

A = {12, 26, 40 55, 69, 83, 97, 112, 126, 140} were evaluated at HAMτ = {5, 26, 48, 69,

90, 112, 133, 154, 176, 197}. From Figure 38, we see that successP and errorP follow the same

monotonically increasing trends as for smaller codewords but here for the larger A values,

and we see successP and errorP reach their maximums. As we compare successP and errorP to

evaluate Rη , as shown in Figure 39, we continue to demonstrate that smaller A can recover

RNTIs more efficiently for a fixed errorP .

Figure 38. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 432E = , 5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97, 112,
126, 140}

87

Figure 39. Hamming Method RNTI Recovery Efficiency for 432E = ,

5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown
by successP versus errorP

f. Codeword Length of 512

The codeword length 512E = is a theoretical case to match the polar coding block

length of 92 512N = = and would support all payloads as found in Section IV.B. For

512E = , the payloads of A = {12, 26, 40 55, 69, 83, 97, 112, 126, 140} were evaluated

at HAMτ = {5, 31, 57, 83, 109, 134, 160, 186, 212, 238}. From Figure 40, we see that successP

and errorP follow the same monotonically increasing trends as for smaller codewords but

here for the larger A values, and we see successP and errorP reach their maximums. As we

compare successP and errorP to evaluate Rη , as shown in Figure 41, we continue to

demonstrate that smaller A can recover RNTIs more efficiently for a fixed errorP .

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140

88

Figure 40. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 512E = , 5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97, 112,
126, 140}

Figure 41. Hamming Method RNTI Recovery Efficiency for 512E = ,

5SNR = dB, and A = {12, 26, 40, 55, 69, 83, 97, 112, 126, 140} as shown
by successP versus errorP

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140

89

3. Effect of Increased Codeword Length

As the codeword length E is expected to change based on the DCI message length

A and the resources available in the PDCCH, this section evaluates the effect of increasing

E on RNTI recovery probabilities. As E increases, the number of frozen bits F increases

and as a result so does the length of the error pattern ε . Figure 42 shows the results of

RNTI recovery simulations for a consistent payload of 12A = across all codewords E =

{108, 128, 216, 256, 432, 512} using the HAMτ values respective to each E as presented in

Table 20. We note that in Figure 42 (a), successP increases monotonically with HAMτ , but for

larger codewords the slope of the relationship decreases since as ε increases, the variance

increases according to 2 / 4HAMσ ε= . This means that for a larger codeword, a one-bit

increase in HAMτ will not cause as big of a change in the number of syndrome matches

allowed through the threshold as for a smaller codeword, which is the biggest driving force

of successP . In Figure 42 (b), we observer that errorP , while low for the small 12A = , is nearly

identical for all codewords but shifted as / 2HAMµ ε= will affect the number of syndromes

filtered.

Figure 42. Hamming Method RNTI Recovery (a) successP and (b) errorP versus

HAMτ for 12A = , 5SNR = dB, and E = {108, 128, 216, 256, 432, 512}

90

We also consider the increase in RNTI recovery efficiency, Rη as E increases and

the results are shown in Figure 43. As we have introduced in Section III.C.2, with larger

F and ε , we can recover RNTIs more efficiently due to the higher code rate and a less

likelihood of the correct RNTI being rejected by the threshold. Figure 43 shows that as E

increases, Rη increases as well. The results are not as distinctive for codewords close in

size, but we can clearly see that E = {432, 512} demonstrate higher Rη than E = {108,

128}. As we consider a gNB choosing a codeword, the benefit of a larger E is that it has

a higher code rate, but the downsides are that more PDCCH resources are expended and

the RNTI can more easily and more efficiently be recovered by an attacker. Lastly, in

Figure 44, we compare the effect of increasing codeword has on Rη across all E , A , and

HAMτ evaluated in this thesis.

Figure 43. Hamming Method RNTI Recovery Efficiency for 12A = , 5SNR =

dB, and E = {108, 128, 216, 256, 432, 512} as shown by successP versus
errorP

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

E = 108

E = 128

E = 216

E = 256

E = 432

E = 512

91

Figure 44. Hamming Method RNTI Recovery Efficiency for 5SNR = dB ,

E = {108, 128, 216, 256, 432, 512} and Set Ranges of A as shown by
successP versus errorP

(a) 108E =

(b) 128E =

(c) 216E =

(d) 256E =

(e) 432E =

(f) 512E =

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 17

A = 23

A = 28

A = 33

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 21

A = 31

A = 40

A = 49

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 25

A = 39

A = 52

A = 66

A = 79

A = 93

A = 106

A = 120

A = 133

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 26

A = 40

A = 55

A = 69

A = 83

A = 97

A = 112

A = 126

A = 140

92

4. Effect of High and Low SNR

As discussed in Section III.C.5, we expect an attacker to experience a different

SNR than the UE, and therefore we evaluate effect of SNR on the RNTI recovery

simulation in this section. We choose a base case of 216E = using the A and HAMτ values

established for this codeword in Table 20 and used previously in Section IV.D.2.c. First,

we evaluate the effect of SNR on errorP and the results are shown in Figure 45 (a) 0SNR =

dB, (b) 5SNR = dB, and (c) 10SNR = dB. The results are identical with some minor

differences at very low errorP that can be attributed to the limited number of trials. We

conclude that due to the random nature of the RNTI initiated scrambling and the large

number of syndomes (152), errorP is not affected by the SNR .

Next, we evaluate the effect of of SNR on successP , and the results are shown in

Figure 46 (a) 0SNR = dB, (b) 5SNR = dB, and (c) 10SNR = dB. Here, as expected, we

find a significant increase in successP as SNR increases. We recall that a higher SNR will

lead to a lower probability of channel bit error ,b QPSKP and recalling Figure 11 will have a

lower number of channel bit errors. Further, once the correct error pattern is filtered to be

checked for CRC, the subsequent low bP also means there is a low probability that the

CRC will be corrupted. In conclusion, these two factors lead to a high probability that the

RNTI will be recovered succesfully at high 10SNR = dB case as validated by the results.

For the low 0SNR = dB case, the opposite effect is expected and we actually observe a

successP limit where there are uncorrectable errors such that even as we increase HAMτ and

move towards the brute force case, the probability that we match the CRC is limited. We

observe limits for A = {73, 83, 93 103} of successP ≈ {0.65, 0.50, 0.25, 0.15} where this is

the case. Finally, we recall that success
R

error

P
P

η ∝ and since successP increases significantly for

increasing SNR while errorP remains constant, we expect Rη to also increase significantly

for increasing SNR . These results are shown in Figure 47 for (a) 0SNR = dB, (b) 5SNR =

dB, and (c) 10SNR = dB.

93

Figure 45. Hamming Method RNTI Recovery errorP versus HAMτ for 216E =

and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}

(a) 0SNR = dB

(b) 5SNR = dB

(c) 10SNR = dB

0 20 40 60 80 100

Hamming Threshold, HAM

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

0 20 40 60 80 100

Hamming Threshold, HAM

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

0 20 40 60 80 100

Hamming Threshold, HAM

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

94

Figure 46. Hamming Method RNTI Recovery successP versus HAMτ for

216E = and A = {12, 22, 32, 42, 52, 63, 73, 93, 103}

(a) 0SNR = dB

(b) 5SNR = dB

(c) 10SNR = dB

0 20 40 60 80 100

Hamming Threshold, HAM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

0 20 40 60 80 100

Hamming Threshold, HAM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

0 20 40 60 80 100

Hamming Threshold, HAM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

95

Figure 47. Hamming Method RNTI Recovery Efficiency for 216E = and

A = {12, 22, 32, 43, 52, 63, 73, 83, 93, 103} as shown by successP versus
errorP

(a) 0SNR = dB

(b) 5SNR = dB

(c) 10SNR = dB

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

96

5. Effect of Recovery Method (LCS versus Hamming)

In this section, we evaluate using the LCS method to determine whether error

patterns match syndromes within a τ and compare the results to the Hamming method.

The LCS method calculates the longest common substring of matching bits between the

two and we determined in Section II.C.6 that we can use 3log()LCSµ ε= to estimate the

median LCSm , which serves as a starting LCSτ such that 0.50errorP ≈ . Increasing LCSτ has

an opposite effect of an increase of HAMτ as for the LCS method fewer error patterns will

match substrings of greater lengths with syndromes, thus the matching filter becomes more

restrictive.

a. LCS Baseline Case

We first consider our baseline case of 216E = with A = {12, 22, 32, 42, 52, 63,

73, 83, 93, 103} and LCSτ ={5, 10, 14, 24, 33, 43, 52, 62, 71, 81, 90}. We have generated

the LCSτ range by modifying the HAMτ range, adding a threshold of 10LCSτ = to increase

the fidelity at low thresholds as LCSd will be lower on average than HAMd . The results of

the LCS method for 216E = are presented in Figure 48 where we observe the

monotonically decreasing behavior for successP and the exponentially decreasing behavior

for errorP . We note that for the LCS method, errorP does not change signficiantly over the

range of A and LCSτ , which is due to the fact that the mean estimate 3log()LCSµ ε= does

not change significantly for small changes in ε . Lastly, we demonstrate the Rη results in

Figure 49, and we observe the same behavior as the Hamming method in that we can

recover RNTIs more efficiently for smaller A due to the higher code rate and higher

likelihood of being filtered correctly due to the larger ε .

97

Figure 48. LCS Method RNTI Recovery (a) successP and (b) errorP versus LCSτ

for 216E = , 5SNR = dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93,
103}

Figure 49. LCS Method RNTI Recovery Efficiency for 216E = , 5SNR =

dB, and A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} as shown by successP
versus errorP

We want to further explore the difference in errorP versus τ between the Hamming

and LCS methods, and we show the results for comparison in Figure 50 (a) Hamming

10 -8 10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
P

su
cc

es
s

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

98

method and (b) LCS method. As we observe in Figure 50 (b), the LCS method has an

advantage in that errorP does not change signficiantly over the range of A and .LCSτ The

significance of this result is that an attacker running a RNTI recovery process would not

need to adjust LCSτ for different A within a recovered E . Considering that the attacker

will know E from the number of QPSK symbols intercepted but not A makes this result

even more substantial.

Figure 50. RNTI Recovery errorP versus τ for 216E = , 5SNR = dB, and

A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103}

Finally, we compare Rη for 216E = and 5SNR = dB between the Hamming and

LCS methods to determine if one is more efficient than the other in recovering RNTIs. This

result is best illustrated individually for select A as shown in Figure 51. We conclude that

neither Hamming nor LCS method presents a decisive advantage in Rη at 5SNR = dB.

(a) Hamming Method

(b) LCS Method

0 20 40 60 80 100

Hamming Threshold, HAM

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

0 20 40 60 80 100

LCS Threshold,
LCS

10 -8

10 -6

10 -4

10 -2

10 0

Pr
ob

ab
ilit

y
of

 E
rro

r,
 P

er
ro

r

A = 12

A = 22

A = 32

A = 42

A = 52

A = 63

A = 73

A = 83

A = 93

A = 103

99

Figure 51. Hamming and LCS RNTI Recovery Efficiency for 216E = and

5SNR = dB at Selected Payloads as shown by successP versus errorP

(a) 12A =

(b) 32A =

(c) 52A =

(d) 73A =

(e) 93A =

(f) 103A =

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

100

b. LCS versus Hamming Across All Codewords

Next, we expand to evaluate the LCS method across all codewords E = {108, 128,

216, 256, 432, 512} and payloads A as specified for each codeword in Table 20. The

results are shown in Figure 52, and we observe that the Hamming method becomes slightly

more effective than LCS at E = {432, 512}. While we do not have any definitive theory as

to why this is the case, we postulate that it may have to do with the fact that asε increases,

more matching substrings can exist within these longer error patterns, which could result

in an increase in errorP . We note that the 120A = and 256E = case, as can be identified in

Figure 52 (d) with the outlier lines to the far right of the plot, has the same anomaly in

successP in the LCS method as was found earlier in the Hamming method. This further backs

the hypothesis that the anomaly has to do with the PDCCH encoding and decoding process,

possibly the polar coding, and is not associated with the recovery method.

101

Figure 52. Comparison of Hamming and LCS RNTI Recovery Efficiency

Across All Payloads and Codewords as specified in Table 20 as shown by
successP versus errorP

(a) 108E =

(b) 128E =

(c) 216E =

(d) 256E =

(e) 432E =

(f) 512E =

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

102

c. LCS versus Hamming at High and Low SNR

We conclude our LCS analysis by considering any advantages of LCS and

Hamming methods at high or low SNR . In [3], it was found that the Hamming method had

a slight advantage at the lower 5SNR = dB while the LCS method had a slight advantage

at the higher 8SNR = dB when limiting 410errorP −≤ . In this thesis, we consider much

higher errorP as a practical setup is expected to have reasonable computational power to

pursue a high successP at the cost of high errorP . We consider our baseline case of 216E =

with A = {12, 22, 32, 42, 52, 63, 73, 83, 93, 103} and LCSτ ={5, 10, 14, 24, 33, 43, 52, 62,

71, 81, 90}, and we show selected results in Figure 53 for 0SNR = dB and Figure 54 for

10SNR = dB. We find that for 0SNR = dB there is a slight advantage to the Hamming

method, and for 10SNR = dB there is a slight advantage to the LCS method as predicted

and shown for one case in [3]. These advantages are most prevalent at the higher A as

fewer error pattern bits lead to more constrained matching.

Figure 53. Comparison of Hamming and LCS RNTI Recovery Efficiency for

216E = and 0SNR = dB at (a) 83A = (b) 93A =

 (a)

 (b)

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

10 -3

10 -2

10 -1

10 0

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

103

Figure 54. Comparison of Hamming and LCS RNTI Recovery Efficiency for

216E = and 10SNR = dB for (a) 83A = and (b) 93A =

E. ACTIVITY RECOVERY DISCUSSION

Overall, the goal of the RNTI recovery process is to de-anonymize the PDCCH

channel and recover activity of the UEs. Traffic analysis and information from sources

other than intercepted PDCCH messages are required to match RNTIs to UEs. First, new

devices connecting or re-connecting to a gNB present an opportunity to link a UE to a

RNTI if a new RNTI is recovered at the same time. Second, measuring the frequency of

PDCCH messages sent to a specific RNTI and associating UE activity with an increase in

messages can be used to link the two. In many cases, the association of a UE with a RNTI

requires another information source such as visual confirmation of the UE entering the area

or another selector that reveals the UE is performing an action to increase PDCCH

messages. One such possibility is to link the TA recovered from the MAC CE on the

PDSCH to the recovered and associated RNTI. It has been shown that for 5G numerologies

the TA can be used to localize a UE with a 95% circular error probability on the order of

10-100 m depending on the numerology, number of remote radio heads, and beamforming

applications [25], [26].

Once RNTI and UE associations are established, the goal is to monitor PDCCH

messages for changes in UE activity. Once a RNTI is recovered, all PDCCH DCI messages

can be decoded, and the associated parameters recovered. The DCI parameters can be

 (a)

 (b)

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

10 -6 10 -4 10 -2 10 0

Probability of Error, P error

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

,
 P

su
cc

es
s

Hamming

LCS

104

tracked to identify changes that would reveal a change in geographic location, change in

mode, or the use of an application by a tracked UE as presented in Section III.D.2. In Figure

55, a concept of RNTI-UE relationship and activity tracking is envisioned where recovered

RNTIs, PDCCH message rates, recovered DCI information revealing directed power,

mode of operation, and MCS, and any other recovered information are monitored for a

mobile environment.

Figure 55. Concept for PDCCH Traffic Analysis of Known UE-RNTI

Relationships and Activity, as Derived from Recovered RNTIs and
Decoded DCI Messages

In summary, we presented the simulation model and results of the maximum DCI

payload and RNTI recovery processes. We evaluated how τ , A , E , and the recovery

method impact successP , errorP , and Rη . We validated our assumptions and statistical

derivations that ε , which changes with A and E , is a critical driver of successP , errorP , and

Rη . Further, we showed that SNR can drastically change the successP and Rη of RNTI

recovery and should be maximized by an attacker. We concluded that the LCS method can

be used more easily by an attacker looking to hold computational resources constant

105

through a consistent errorP . Finally, we presented a basic strategy to use decoded DCI

messages and RNTI-UE traffic analysis to track UEs operating in a mobile environment.

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

V. CONCLUSIONS

In this thesis, we have evaluated the ability for an attacker to recover RNTIs and

reveal user activity from the DCI messages and RNTIs in the PDCCH. We considered the

impact of the threshold, payload size, codeword size, high and low SNR , and Hamming

versus LCS methods. We performed statistical analysis of the Hamming and LCS methods

to assist in choosing the optimal threshold to meet the needs of the mobile environment

and the attacker’s RNTI recovery goals. We also considered what probable DCI lengths

would be used in the PDCCH and how to RNTI recovery thresholds based on the blerP ,

SNR , and E . Finally, we presented the successP , errorP , and Rη of RNTI recovery and

proposed a model for tracking user activity through RNTI recoveries.

A. CONTRIBUTIONS

Through the statistical analysis of data from the Hamming and LCS methods, we

developed probability distributions for the expected Hamming distance and LCS distance.

We found that the Hamming distance follows a Gaussian distribution with / 2HAMµ ε=

and 2 / 4HAMσ ε= , where ε is the length of the sequence; for LCS, LCSµ and 2
LCSσ increase

logarithmically as ε increases and specifically 3log()LCSµ ε≈ for 100ε < . Further, we

determined how a channel bit error can propagate through the modified polar decoding step

in RNTI recovery and presented the expected Hamming and LCS outputs for input channel

bit errors ranging from one to ten.

When comparing RNTI recovery threshold methods, we found that the LCS method

can be more optimal for a real-world simulation in that the threshold will not need to be

adjusted for changes in payload length. The Hamming method, however, can be more

finely tuned when compared to the LCS method. Further, we confirmed for a case of

216E = that the Hamming method has a slight advantage at low SNR while the LCS

method has a slight advantage at high SNR .

108

For the RNTI recovery methodology, we presented results on successP , errorP , and Rη

across a myriad of payloads, codewords, SNR s and recovery methods to demonstrate that

a decrease in payload length, an increase in codeword length, and high SNR all improve

RNTI recovery efficiency Rη . Further, we considered the activity of a UE that could be

recovered from the decoded DCI messages and presented a model in which recovered

RNTIs and information recovered from DCI fields can be used to determine the change in

geographic location or the change in operating mode of a UE. This model shows the real-

world possibilities of utilizing the RNTI recovery methodology to track UEs through a 5G

network.

B. FUTURE WORK

The methods presented in this thesis can certainly be put into practice to recover

RNTIs in a simulated PDCCH channel. In a physical experiment, the PDCCH channel

would be monitored for codewords, and these would be intercepted and processed to

recover RNTIs. This experiment could be used to validate the assumptions used in

assessing that the activity of a UE if changing location or changing mode of operation could

be deduced from intercepted DCI messages. In the experiment, a UE can be established on

a PDCCH with the gNB and then the UE can be moved further or closer to the gNB to

monitor the change in DCI messaging associated with the change in geographic location.

Further, the experiment could be repeated for changing mode of operation to URLCC or to

an application utilizing a CS-RNTI and CS-associated messaging, such as VOIP. Finally,

the experiment could test the optimization methods by adjusting threshold values to

validate the RNTI recovery probabilities and efficiencies.

Further work first identified in [3], considers the application of the RNTI recovery

model and optimization to the PUCCH, which similarly utilizes RNTI initiated scrambling

and polar coding thus is vulnerable to the same methods. While the PDCCH certainly is

more enticing in terms of the information recovered, the PUCCH contains HARQ

acknowledgments, scheduling requests, and CSI reports from the UE. For a sophisticated

attacker, a RNTI recovery model that recovers both the PDCCH and PUCCH could use the

109

two to gain a comprehensive understanding of the mobile environment and the UEs

operating in it.

While this thesis evaluated the RNTI recovery successP , errorP , and Rη for various E

and A combinations to include rate-matching cases, the impact of rate-matching was not

specifically evaluated during this study. A future work could refer to [3] for further details

on the effect of rate matching on modified polar decoding and syndrome matching and

compare and contrast the RNTI recovery statistics for the different rate matching cases.

The 256E = and 120A = boundary case would certainly be of interest, and it is postulated

that there are other boundary cases and/or optimization cases for which the RNTI recovery

statistics exceed the expected values due to rate-matching effects.

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

APPENDIX A. MAXIMUM DCI PAYLOAD MODEL MATLAB
CODE

The MATLAB code in this Appendix was developed using the MATLAB 5G

toolbox to simulate the encoding and modulation of PDCCH messages in a AWGN

channel, adapted in part from [25]. In this code, we encode a random message of length A

onto a block of length E in accordance with the 3GPP standard, modulate the bits to QPSK

symbols, and add AWGN according to a specified SNR . We then receive, demodulate,

and decode a recovered message. If bit errors occur between the recovered message and

the sent message, then a block error is recorded. The process is repeated for a large number

of trials at different A , E and the results of blerP are presented.

clearvars
clear all

Input Testing Info

%Input Testing Info
teststotal=10
minpayload=12
maxpayload=140
codewords=[108 128 216 256 432 512]

%initialize output data vectors
bler=zeros(1,maxpayload);
errorlog=zeros(teststotal,maxpayload);
trackerBLER=zeros(length(codewords),maxpayload);
codetrack=1;

for codeword=codewords
for payload=minpayload:1:maxpayload
payload
tic
for tests=1:teststotal

System Parameters

112

nID = 10; % pdcch-DMRS-ScramblingID
rnti = randi([1 65519]); % C-RNTI for PDCCH in a UE-specific
search space
A = payload; % Number of DCI message bits
E = codeword; % Number of bits for PDCCH resources
if E-A>24 %break if payload too large

DCI Encoding

dciBits = randi([0 1],A,1,'int8');
dciCW = nrDCIEncode(dciBits,rnti,E);

PDCCH Symbol Generation

sym = nrPDCCH(dciCW,nID,rnti);

Channel

snrdB=5;
rxSym = awgn(sym,snrdB,'measured');

PDCCH Decoding

noiseVar = 10.^(-snrdB/10); % assumes unit signal power
rxCW = nrPDCCHDecode(rxSym,nID,rnti,noiseVar);

DCI Decoding

listLen = 1; % polar decoding list length
[decDCIBits,mask] = nrDCIDecode(rxCW,A,listLen,rnti);

isequal(mask,0);
blockdecoded=isequal(decDCIBits,dciBits);

Error Calculation

errorlog(tests,payload)=blockdecoded;
else
errorlog(tests,payload)=NaN;
end
end %end tests loop
toc
errors=size(errorlog(errorlog(:,payload)==0),1);
total=errors+size(errorlog(errorlog(:,payload==1)),1);

113

if E-A>24
 bler(payload)=errors/total;
else
 bler(payload)=NaN;
end
end %end payload loop

trackerBLER(codetrack,:)=bler;
codetrack=codetrack+1
end %end codeword loop

%Plot BLER versus Payload Size
figure()
plot([1:1:maxpayload],trackerBLER)
ylabel('Block Error Rate')
xlabel('Payload Size (bits)')
grid on

%Plot BLER versus Payload Size (semilog)
figure()
semilogy([1:1:maxpayload],trackerBLER)
ylabel('Block Error Rate')
xlabel('Payload Size (bits)')
grid on

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

APPENDIX B. RNTI RECOVERY MODEL MATLAB CODE

The MATLAB code in this Appendix is adapted from [3], which was designed to

demonstrate the RNTI recovery methodology for 12A = , E = {74, 86, 128, 144}. In this

code, we expand the model to cover the entire range of A = [12:140] and all possible E .

Further, this code incorporates the MATLAB 5G functions in lieu of some functions

manually developed in [3]. Overall, this MATLAB model simulates the encoding and

modulation process, modified polar decoding with syndrome matching, and RNTI

recovery, and presents the successP , errorP , and Rη results.

clearvars
clear all

1. Define Testing Variables and Loops

startmodel=tic;
%set variable limits for testing
payloadlengths=[12 22 32 42 52 63 73 83 93 103] %set payload(s) to be
analyzed
tests=10 %set number of tests
% set hamming or lcs threshold methodlogy in Section 4, limits below
thresholdvalues=[5 14 24 33 43 52 62 71 81 91]

%Testing variables
threshtotalcounter=1; payloadcounter=1;

%initialize trackers for code speed
numpayloads=length(payloadlengths);
numthreshs=length(thresholdvalues);
tracker=zeros(numpayloads*numthreshs,6);
type1errors=zeros(numpayloads,numthreshs);
successes=zeros(numpayloads,numthreshs);
RNTIsmatchedavg=zeros(numpayloads,numthreshs);

%For loop for each payload length
for payload=payloadlengths
threshcounter=1;
%initialize tracking variables for matches and errors

116

match=0; nomatch=0; thresh=0; false=0; threshold_matches=0;

%For loop for each threshold value
for threshold=thresholdvalues
tic

%For loop for number of tests at each payload, threshold
for testcounter=1:tests

2. Define DCI message parameters

E = 216; % rate-matching codeword length
nRNTI = randi([1 65519]); % rnti value, legal range is [1 65519]
nID = 10; % cell scrambling ID
a = randi([0 1],payload,1); % data payload
snr = 5; % define SNR level for channel

3. PDCCH encoding

dciCW=nrDCIEncode(a,nRNTI,E); %encode DCI message
sym = nrPDCCH(dciCW,nID,nRNTI); %generate QPSK symbol
rxSym = awgn(sym,snr,'measured'); %add AWGN

4. RNTI Recovery

Demodulate

rxLLR = nrSymbolDemodulate(rxSym,"QPSK"); % demodulate received symbols
to LLR values

Determine frozen bit set qF and information bit set qI

% Get N
K=length(a)+24; %add CRC bits
nMax = 9; % maximum n value for N
N = nr5g.internal.polar.getN(K,E,nMax);

% Get sequence for N, ascending ordered
s10 = nr5g.internal.polar.sequence; % Nmax=10
idx = (s10 < N);
qSeq = s10(idx); % 0-based

% Get frozen, information bit indices sets, qF, qI
jn = nr5g.internal.polar.subblockInterleaveMap(N); % 0-based
qFtmp = []; qFPunc = [];

117

if E < N
 if K/E <= 7/16 % puncturing
 for i = 0:(N-E-1)
 qFPunc = [qFPunc; jn(i+1)]; % punctured bits
 end
 if E >= 3*N/4
 uLim = ceil(3*N/4-E/2);
 qFtmp = [qFPunc; (0:uLim-1).']; % extra freezing
 else
 uLim = ceil(9*N/16-E/4);
 qFtmp = [qFPunc; (0:uLim-1).']; % extra freezing
 end
 qFtmp = unique(qFtmp);
 else % shortening
 for i = E:N-1
 qFtmp = [qFtmp; jn(i+1)]; % shortened bits
 end
 end
end

% Get qI from qFtmp and qSeq
qI = zeros(K,1);
j = 0;
for i = 1:N
 ind = qSeq(N-i+1); % flip for most reliable
 if any(ind==qFtmp)
 continue;
 end
 j = j+1;
 qI(j) = ind;
 if j==(K)
 break;
 end
end

% Form the frozen bit vector
qF = setdiff(qSeq,qI); % sorted doesn't matter now

Rate-recovery

if E == N % no rate matching
 outN = rxLLR;
 syndromeBits = qF+1; % syndrome bits are the full set of frozen
indices (change from zero-indexing)

118

 type = 'noRM';
elseif E > N % repetition
 outN = rxLLR(1:N);
 syndromeBits = qF+1; % syndrome bits are the full set of frozen
indices (change from zero-indexing)
 type = 'rep';
elseif K/E <= 7/16 % puncturing
 outN = zeros(N,1); % place zeros in punctured indices
 outN(end-E+1:end) = rxLLR;
 syndromeBits = setdiff(qF,qFPunc)+1; % syndrome bits don't include
punctured indices
 type = 'punc';
else % shortening
 outN = 9e20*ones(N,1); % place large value in shortened indices
 outN(1:E) = rxLLR;
 syndromeBits = setdiff(qF,qFtmp)+1; % syndrome bits don't include
shortened indices
 type = 'short';
end

Sub-block deleaving

out = zeros(N,1); % initialize out
out(jn+1) = outN; % perform deleaving

Map LLR values to bits

out(out >= 0) = 0;
out(out < 0) = 1;

Modified polar decoding

% Get G, nth Kronecker power of kernel
n = log2(N);
ak0 = [1 0; 1 1]; % Arikan's kernel
allG = cell(n,1); % Initialize cells
for i = 1:n
 allG{i} = zeros(2^i,2^i);
end
allG{1} = ak0; % Assign cells
for i = 1:n-1
 allG{i+1} = kron(allG{i},ak0);
end
G = allG{n};

119

% Decode using matrix multiplication
z = mod(out'*G,2)';

Modified Syndrome Query

% check if syndrome table exists in working directory, if not create it
if isfile(sprintf('K%d_E%d_N%d.mat',K,E,N))
 load(sprintf('K%d_E%d_N%d.mat',K,E,N))
else
 % Ensure the function is saved to the appropriate file name
before running
 if E >= N % for no rate-match and repetition, the syndrome table can
be computed directly
 s = zeros(N,2^15);
 syndromeTable = zeros(N,2^15);
 for n = 1:2^15
 s(:,n) = nrPDCCHPRBS(nID,n,N); % determine scrambling
sequence
 s(jn+1,n) = s(:,n); % deleave
 syndromeTable(:,n) = mod(s(:,n)'*G,2); % polar decoding
 end
 filename = sprintf('K%d_E%d_N%d.mat',K,E,N);
 save(filename,'syndromeTable')

 else % for puncturing and shortening, full process must be gone
through using dummy data segment and rnti value

 nRNTID = randi([1 65519]);
 aD = randi([0 1],[K-24,1]);

 cVecD = nrCRCEncode(aD,"24C",nRNTID);

 % Input is a single code block and assumes CRC bits are included
 piD = nr5g.internal.polar.interleaveMap(K);
 inIntrD = cVecD(piD+1);

 % Get sequence for N, ascending ordered
 s10D = nr5g.internal.polar.sequence; % Nmax=10
 idxD = (s10D < N);
 qSeqD = s10D(idxD); % 0-based

 % Get frozen, information bit indices sets, qF, qI
 jn = nr5g.internal.polar.subblockInterleaveMap(N); % 0-based
 qFtmp = [];
 if E < N

120

 if K/E <= 7/16 % puncturing
 for i = 0:(N-E-1)
 qFtmp = [qFtmp; jn(i+1)]; % punctured bits
 end
 if E >= 3*N/4 % extra freezing
 uLim = ceil(3*N/4-E/2);
 qFtmp = [qFtmp; (0:uLim-1).'];
 else % extra freezing
 uLim = ceil(9*N/16-E/4);
 qFtmp = [qFtmp; (0:uLim-1).'];
 end
 qFtmp = unique(qFtmp);
 else % shortening
 for i = E:N-1
 qFtmp = [qFtmp; jn(i+1)]; %#ok
 end
 end
 end

 % Get qI from qFtmp and qSeq
 qI = zeros(K,1);
 j = 0;
 for i = 1:N
 ind = qSeq(N-i+1); % flip for most reliable
 if any(ind==qFtmp)
 continue;
 end
 j = j+1;
 qI(j) = ind;
 if j==(K)
 break;
 end
 end

 % Form the frozen bit vector
 qF = setdiff(qSeq,qI); % sorted doesn't matter now

 F = zeros(N,1);
 F(qF+1) = ones(length(qF),1);

 % Generate u
 uD = zeros(N,1); % doubles only

 % CRC-Aided Polar (CA-Polar)
 uD(F==0) = inIntrD; % Set information bits (interleaved)

121

 % Encode using matrix multiplication
 encOutD = mod(uD'*G,2)';

 % Sub-block interleaving
 yD = encOutD(jn+1);

 % Bit selection
 if K/E <= 7/16
 % puncturing (take from the end)
 outED = yD(end-E+1:end);
 else
 % shortening (take from the start)
 outED = yD(1:E);
 end

 cSeqD = nrPDCCHPRBS(nID,nRNTID,length(outED));
 scrambledD = xor(outED,cSeqD);

 symD = nrSymbolModulate(scrambledD,'QPSK');

 rxScrLLRD = nrSymbolDemodulate(symD,"QPSK");

 rxLLRD = NaN(E,2^15+1);
 rxLLRD(:,end) = rxScrLLRD(:,1);

 for n = 1:2^15
 descrambleSequenceD =
nrPDCCHPRBS(nID,n,E,"MappingType","signed");
 rxLLRD(:,n) = rxScrLLRD.*descrambleSequenceD;
 end

 if K/E <= 7/16
 % puncturing (put at the end)
 outND = zeros(N,2^15+1); % 0s for punctures
 for n = 1:2^15+1
 outND(end-E+1:end,n) = rxLLRD(:,n);
 end
 else
 % shortening (put at the start)
 outND = 1e20*ones(N,2^15+1); % use a large value for 0s
 for n = 1:2^15+1
 outND(1:E,n) = rxLLRD(:,n);
 end
 end

122

 % Sub-block deinterleaving
 outD = zeros(N,2^15+1);
 outD(jn+1,:) = outND;

 outD(outD >= 0) = 0;
 outD(outD < 0) = 1;

 control = mod(outD(:,end)'*G,2)';
 syndromeTable = NaN(N,2^15);

 for n = 1:2^15
 temp = mod(outD(:,n)'*G,2)';
 syndromeTable(:,n) = xor(temp,control);
 end

 filename = sprintf('K%d_E%d_N%d.mat',K,E,N);
 save(filename,'syndromeTable')
 end
end

Determine matching syndromes

% define determination threshold

for n = 1:2^15 % for each syndrome in syndrome table...

 %%% *** Comment out the next six lines if using Hamming distance
 qFcheck = ~xor(z(syndromeBits),syndromeTable(syndromeBits,n))'; %
compare error pattern to given syndrome
 bitChange = find(diff([0,qFcheck,0]==1)); % find differences between
error pattern syndrome table
 startIndex = bitChange(1:2:end-1); % determine starting indices of
matching strings
 bitCount = bitChange(2:2:end)-startIndex; % determine lengths of
matching strings
 lcson=1;
 if max(bitCount) >= threshold

 %%% *** Comment out the next three lines if using LCS method.
 %ham = pdist([z(syndromeBits)';
syndromeTable(syndromeBits,n)'],"hamming")*length(syndromeBits);
 %lcson=0;
 %if ham <= threshold
 threshold_matches=threshold_matches+1;

123

 scrSeq = nrPDCCHPRBS(nID,n,E,"MappingType","signed"); % determine
signed scrambling sequence
 decodeIntLLR = rxLLR.*scrSeq; % apply scrambling sequence

 switch type
 case 'noRM' % no rate matching
 decodeIntLLR_RM = decodeIntLLR;
 case 'rep' % repetition
 decodeIntLLR_RM_temp = zeros(N,2);
 decodeIntLLR_RM_temp(1:N,1) = decodeIntLLR(1:N);
 decodeIntLLR_RM_temp(1:E-N,2) = decodeIntLLR(N+1:E);
 decodeIntLLR_RM = sum(decodeIntLLR_RM_temp,2); % sum
repeated values
 case 'punc' % puncturing
 decodeIntLLR_RM = zeros(N,1);
 decodeIntLLR_RM(end-E+1:end) = decodeIntLLR; % place
zeros at start
 case 'short' % shortening
 decodeIntLLR_RM = 9e20*ones(N,1);
 decodeIntLLR_RM(1:E) = decodeIntLLR; % place large values
at end
 end

 decodeLLR = zeros(N,1); % initialize decodeLLR
 decodeLLR(jn+1) = decodeIntLLR_RM; % deleave

 dataIntScr=nrPolarDecode(decodeLLR,K,E,1,9,logical(0),24);
%#ok<LOGL> %polar decoding

 pi = nr5g.internal.polar.interleaveMap(K); % obtain deleaving
indicies
 dataScr = NaN(1,length(pi)); % initialize dataScr
 dataScr(pi+1) = dataIntScr; % deleave data + crc bits
 [data, CRCerr]=nrCRCDecode([ones(24,1); dataScr'],'24C',n); %pad
with 24 ones as nrDCIEncode calculates CRC with this padding

 %need to determine how to capture n+2^15 case - must do valid
bit
 if CRCerr==0 % if all crc bits check, rnti is n
 detRNTI=n;
 break
 elseif CRCerr==2^15 % if all but 1 crc bits check, rnti is n+2^15
 detRNTI=n+2^15;
 break
 end

124

 end %end loop checking for syndromes that meet threshold

 if n == 2^15 % if syndrome table searched through without finding
match, give no result message
 detRNTI=-1;
 end
end %end search threshold for each possible syndrome

%update total number of matches, errors
if detRNTI==-1
 nomatch=nomatch+1;
elseif detRNTI==nRNTI
 match=match+1;
else
 false=false+1;
end

end %end tests loop
toc

%track values and log at threshtotalcounter which continually increments
tracker(threshtotalcounter,1)=payload; %log current payload
tracker(threshtotalcounter,2)=threshold; %log current threshold
tracker(threshtotalcounter,3)=match; %out of number of tests
tracker(threshtotalcounter,4)=nomatch; %out of number of tests
tracker(threshtotalcounter,5)=false; %out of number of tests
tracker(threshtotalcounter,6)=threshold_matches; %log total
threshold_matches for thresh/payload combo

%sum values from tracker and hold in long term logs
type1errors(payloadcounter,threshcounter)=(tracker(threshtotalcounter,6)-
tracker(threshtotalcounter,3))/tests/2^15; %threshold matches per test
(minus correct) divided by total potential matches
successes(payloadcounter,threshcounter)=tracker(threshtotalcounter,3)/tes
ts; %avg total successes logged
RNTIsmatchedavg(payloadcounter,threshcounter)=tracker(threshtotalcounter,
6)/tests; %avg per combo
threshcounter=threshcounter+1 %increments each threshold change, then
resets
threshtotalcounter=threshtotalcounter+1; %continually increments each
threshold change

%reset counters
match=0; nomatch=0; false=0; threshold_matches=0;
end %end threshold loop

125

threshcounter=threshcounter-1; %reset for last value
payloadcounter=payloadcounter+1
end %end payload loop

Generate Various Plots for Analysis

%plots
%Plot 1 Probability of Success versus Threshold
figure()
hold off
plot(thresholdvalues, successes', '-o')
ax = gca;
ax.LineStyleOrder = '-';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Success, {\it P_{success}}')
if lcson==1
 xlabel('LCS Threshold')
else
 xlabel('Hamming Threshold, {\it \tau_{HAM}}')
end
grid on
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
legend('Location', 'northeastoutside')
figure(1)
getpdf=gcf;
exportgraphics(getpdf,'plotsuccess.pdf')

%Plot 2 Probability of Error versus Threshold
figure()
hold off
plot(thresholdvalues, type1errors','--o')
ax = gca;
ax.LineStyleOrder = '--';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Error, {\itP_{error}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
if lcson==1
 xlabel('LCS Threshold')
else

126

 xlabel('Hamming Threshold, {\it\tau_{HAM}}')
end
grid on
legend('Location', 'northeastoutside')
getpdf=gcf;
exportgraphics(getpdf,'ploterror.pdf')

%Plot 3 Probability of Error versus Probability of Success (log-log)
figure()
loglog(type1errors', successes','-o')
ax = gca;
ax.LineStyleOrder = '-';
ax.YColor = 'black';
colororder('default')
hold on
ylabel('Probability of Success, {\itP_{success}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
xlabel('Probability of Error, {\itP_{error}}')
grid on
legend('Location', 'northeastoutside')
getpdf=gcf;
exportgraphics(getpdf,'plotmixed.pdf')
axis([10E-9 1 10E-3 1])

%Plot 4 Probability of Success versus Number of Matched RNTIs
figure()
hold off
for plotcount=1:(length(payloadlengths))
 plot(RNTIsmatchedavg(plotcount,:), successes(plotcount,:),'-o')
 hold on
end
ax = gca;
ax.LineStyleOrder = '--';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Success, {\itP_{success}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
xlabel('Matched RNTIs')
grid on
legend('Location', 'northeastoutside')

127

%Plot 5 Probability of Error versus Threshold (semilog)
figure()
hold off
semilogy(thresholdvalues, type1errors','--o')
ax = gca;
ax.LineStyleOrder = '--';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Error, {\it P_{error}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
axis([0 100 10e-9 1])
if lcson==1
 xlabel('LCS Threshold')
else
 xlabel('Hamming Threshold, {\it \tau_{HAM}}')
end
grid on
legend('Location', 'northeastoutside')

%Plot 6 Probability of Success versus Matched RNTIs (semilog)
figure()
hold off
for plotcount=1:(length(payloadlengths))
 semilogx(RNTIsmatchedavg(plotcount,:), successes(plotcount,:),'-o')
 hold on
end
ax = gca;
ax.LineStyleOrder = '--';
ax.YColor = 'black';
colororder('default')
ylabel('Success Rate')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
xlabel('Matched RNTIs')
grid on
legend('Location', 'northeastoutside')

%Plot 7 Probability of Success versus Probability of Error
figure()
plot(type1errors', successes','-o')
ax = gca;

128

ax.LineStyleOrder = '-';
ax.YColor = 'black';
colororder('default')
hold on
ylabel('Probability of Success, {\itP_{success}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
xlabel('Probability of Error, {\itP_{error}}')
grid on
legend('Location', 'northeastoutside')
getpdf=gcf;
exportgraphics(getpdf,'plotmixed.pdf')

%Plot 8 3D Plot of PRobability of Success versus Probability of Error and
%Threshold
figure()
plot3(thresholdvalues, type1errors', successes')
grid on
xlabel('Hamming Threshold, {\it\tau_{HAM}}')
zlabel('Probabililty of Success')
ylabel('Probability of Error')
legend(strsplit(num2str((payloadlengths))))

%Plot (1X2) Probability of Success verus Threshold and Proabability of
%Error
figure()
subplot(1,2,1)
box on
hold on
plot(thresholdvalues, successes', '-o')
ax = gca;
ax.LineStyleOrder = '-';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Success, {\itP_{success}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
legend('Location', 'northwest')
axis([0 100 0 1])
ylabel('Probability of Success, {\itP_{success}}')
if lcson==1
 xlabel('LCS Threshold')
else

129

 xlabel('Hamming Threshold, {\it\tau_{HAM}}')
end

grid on
subplot(1,2,2)
hold off
plot(thresholdvalues, type1errors','--o')
ax = gca;
ax.LineStyleOrder = '--';
ax.YColor = 'black';
colororder('default')
ylabel('Probability of Error, {\itP_{error}}')
legend('{\itA = }12', '{\itA = }22', '{\itA = }32', '{\itA = }42', '{\itA
= }52', '{\itA = }63', '{\itA = }73', '{\itA = }83', '{\itA = }93', '{\itA
= }103')
if lcson==1
 xlabel('LCS Threshold')
else
 xlabel('Hamming Threshold, {\it\tau_{HAM}}')
end
grid on
legend('Location', 'northwest')
endmodel=toc(startmodel)

130

THIS PAGE INTENTIONALLY LEFT BLANK

131

LIST OF REFERENCES

[1] Ericsson, “Ericsson Mobility Report, June 2022”, Stockholm, Sweden, 2022
[Online]. Available: https://www.ericsson.com/49d3a0/assets/local/reports-
papers/mobility-report/documents/2022/ericsson-mobility-report-june-2022.pdf

[2] Security architecture and procedures for 5G System, 3GPP TS 33.501 version
15.4.0 Release 15, 2019 [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/133500_133599/133501/15.04.00_60/ts_1335
01v150400p.pdf

[3] B. Gardner, “An efficient methodology to de-anonymize the 5G-New Radio
Physical Downlink Control Channel”, M.S. thesis, Dept. of Electrical and
Computer Engineering, NPS, Monterey, CA, US, 2020 [Online]. Available:
https://calhoun.nps.edu/handle/10945/65524

[4] P. Chandra, Bulletproof Wireless Security, GSM, UMTS, 802.11 and Ad Hoc
Security, Burlington, MA, USA: Newnes, 2005.

[5] Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile
Telecommunications System (UMTS); LTE; 3GPP System Architecture
Evolution (SAE); Security Architecture, 3GPP TS 33.401 version 15.7.0 Release
15, 2019 [Online]. Available:
https://www.etsi.org/deliver/etsi_ts/133400_133499/133401/15.07.00_60/ts_1334
01v150700p.pdf]

[6] S. Rommer, P. Hedman, M. Olsson, L. Frid, S. Sultana, and C. Mulligan, 5G Core
Networks, Powering Digitalization, San Diego, CA, USA: Academic Press, 2020.

[7] Qualcomm, “3GPP Release 17: Completing the first phase of the 5G evolution”,
San Diego, CA, 2022, [Online]. Available:
https://www.qualcomm.com/content/dam/qcomm-martech/dm-
assets/documents/download-our-5g-nr-rel-17-presentation.pdf

[8] NR; NR and NG-RAN Overall Description; Stage 2 (Release 15), 3GPP Standard
38.300, 2021 [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s
pecificationId=3191

[9] NR; Multiplexing and channel coding (Release 15), 3GPP Standard 38.212, 2021
[Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s
pecificationId=3214

132

[10] Z. B. K. Egilmez, L. Xiang, R. G. Maunder, and L. Hanzo, “The Development,
Operation and Performance of the 5G Polar Codes,” IEEE Communications
surveys and tutorials, vol. 22, no. 1, pp. 96-122, 2020 [Online]. Available:
https://doi.org/10.1109/COMST.2019.2960746

[11] J. Garrett, “An evaluation of de-anonymization attacks against physical downlink
shared channel data in 5G new radio”, M.S. thesis, Dept. of Electrical and
Computer Engineering, NPS, Monterey, CA, US, 2021 [Online]. Available:
https://calhoun.nps.edu/handle/10945/68323

[12] W. Stallings, Data and Computer Communications, 9th ed. Upper Saddle River,
NJ, USA: Pearson, 2011.

[13] T. T. Ha, Theory and Design of Digital Communication Systems, New York, NY,
USA: Cambridge University Press, 2011.

[14] W. Stallings, 5G Wireless: A Comprehensive Introduction, Boston, MA, USA:
Addison-Wesley, 2021.

[15] I. Taland and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory,
vol.61, pp. 2213–2226, May2015.

[16] K. Niuand and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commun.
Lett., vol.16, pp. 1668–1671, October 2012.

[17] C. Johnson, 5G New Radio in Bullets. Farnham, England: Chris Johnson, 2019.

[18] NR; Physical channels and modulation (Release 15), 3GPP Standard 38.211,
2021 [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s
pecificationId=3213

[19] NR; Medium Access Control (MAC) protocol specification (Release 15), 3GPP
Standard 38.321, 2021 [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s
pecificationId=3194

[20] L. Xiang, Z. B. K. Egilmez, R. G. Maunder, and L. Hanzo, “CRC-Aided
Logarithmic Stack Decoding of Polar Codes for Ultra Reliable Low Latency
Communication in 3GPP New Radio,” IEEE access, vol. 7, pp. 28559-28573,
2019 [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2901596

[21] NR; Physical layer procedures for control (Release 15), 3GPP Standard 38.213,
2021 [Online]. Available:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?s
pecificationId=3215

133

[22] K. Takeda, H. Xu, T. Kim, K. Schober and X. Lin, "Understanding the Heart of
the 5G Air Interface: An Overview of Physical Downlink Control Channel for 5G
New Radio," IEEE Communications Standards Magazine, vol. 4, no. 3, pp. 22-29,
September 2020 [Online]. Available:
https://doi.org/10.1109/MCOMSTD.001.1900048

[23] V. Chvatal and D. Sankoff, “Longest common subsequences of two random
sequences,” Journal of applied probability, vol. 12, no. 2, pp. 306-315, 1975
[Online]. Available: https://doi.org/10.2307/3212444

[24] S. N. Majumdar and S. Nechaev, “Exact asymptotic results for the Bernoulli
matching model of sequence alignment,” Physical review. E, Statistical,
nonlinear, and soft matter physics, vol 72, no. 2 Pt 1, pp. 020901-020901, 205
[Online]. Available: https://doi.org/10.1103/PhysRevE.72.020901

[25] A. Schacht, “Position Estimate Fidelity from TAG Multilateration Attack within
the 5G Environment”, M.S. thesis, Dept. of Electrical and Computer Engineering,
NPS, Monterey, CA, US, 2021 [Online]. Available:
https://calhoun.nps.edu/handle/10945/67177

[26] K. Foster, “Implications for Location Privacy in 5G”, M.S. thesis, Dept. of
Electrical and Computer Engineering, NPS, Monterey, CA, US, 2021 [Online].
Available: https://calhoun.nps.edu/handle/10945/67712

134

THIS PAGE INTENTIONALLY LEFT BLANK

135

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Sep_Richards_Christopher_First8
	22Sep_Richards_Christopher
	I. Introduction
	A. Privacy in Mobile Communications
	B. A De-Anonymization Attack in 5G
	C. Thesis Objective
	D. Related Work
	E. Thesis Overview

	II. Background
	A. Mobile Communication Metrics
	1. Wireless Communication Link Measurements
	2. Error Detection, Correction, and Polar Coding

	B. Physical Channels in 5G Networks
	1. Downlink and Uplink Physical Channels
	2. PDCCH Encoding and Modulation
	3. PDCCH Demodulation and Decoding

	C. Method to Recover RNTIs
	1. Modified Polar Decoding
	2. Syndrome Matching for RNTI Recovery

	D. Types of RNTIs and DCI Messages in the 5G PDCCH
	1. RNTIs in the PDCCH
	2. DCI Messages in the PDCCH
	a. DCI 0_0 and 0_1 PUSCH Resource Allocations
	b. DCI 1_0 and 1_1 PDSCH Resource Allocations
	c. DCI 2_0, 2_1, 2_2, and 2_3 UE Group Common Signaling

	III. Methodology
	A. Recovery Of User Activity
	B. DCI Payload Analysis
	1. Expected DCI Payload Lengths
	2. Maximum DCI Length Due to Probability of Block Error

	C. RNTI Recovery Methodology
	1. Selection of Optimal Hamming Threshold
	2. Increased Payload Length
	3. Increased Codeword Length
	4. Impact of Signal-to-Noise Ratio
	5. Hamming versus LCS Methods

	D. Assessments of User Activity
	1. Activity Recovered from RNTIs
	2. Activity Recovered from DCI Messages

	E. Activity Recovery Demonstration
	1. DCI Encoding of Control Information
	2. PDCCH Encoding of DCI
	3. Recovery of RNTI Through Syndrome Matching
	4. Evaluation of RNTI Recovery Success and Error Probabilities
	5. Decoding of DCI Information and Assessment of UE Activity

	IV. Simulation Results and Analysis
	A. Maximum DCI Payload Model
	B. Maximum DCI Payload Results
	C. RNTI Recovery Model
	1. Input Variables and Factors
	2. MATLAB Model for RNTI and DCI Recovery
	3. Simulation Metrics

	D. RNTI Recovery Results
	1. Effect of Increased Threshold
	2. Effect of Increased Payload Length
	a. Codeword Length of 108
	b. Codeword Length of 128
	c. Codeword Length of 216
	d. Codeword Length of 256
	e. Codeword Length of 432
	f. Codeword Length of 512

	3. Effect of Increased Codeword Length
	4. Effect of High and Low SNR
	5. Effect of Recovery Method (LCS versus Hamming)
	a. LCS Baseline Case
	b. LCS versus Hamming Across All Codewords
	c. LCS versus Hamming at High and Low SNR

	E. Activity Recovery Discussion

	V. Conclusions
	A. Contributions
	B. Future Work

	Appendix A. Maximum DCI Payload Model MATLAB Code
	Appendix B. RNTI Recovery Model MATLAB Code
	List of References
	initial distribution list

