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- Provides uniform API for graph algorithms ool
in the language of linear algebra
= Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)
= Current version of C API Specification is 2.0
- C offers great portability (Python, bindings, etc.), but has some disadvantages...
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- Generics make C implementations complex o | |e
(6 o o0
= No introspection, hints (e.g., types, storage, performance)
- Interoperability is/was not high enough priority - John Gibert, HPEC 2022
- Too hard to mix GraphBLAS calls with calls to other libraries.
- Too hard to use GraphBLAS with user data structures and code
In existing packages.
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Getting data in...

e Data is duplicated internally

o Complexity of import function
not guaranteed

/* Multiply a matrix */
GrB_Matrix multiply(my_matrix_type* a, GrB_Matrix b)

{
GrB_Index *rowptr = a->rowptr;
GrB_Index *colind = a->colind;
float *values = a->values;
GrB_Index nrows = a->nrows;
GrB_Index ncols = a->ncols;
GrB_Index nvals = a->nvals;
/* copy the data into GraphBLAS */
GrB_Matrix grb_a;
GrB_Matrix_import(&grb_a, GrB_FP32
nrows, ncols,
rowptr, colind, values,
nrows+1l, nvals, nvals,
GrB_CSR_FORMAT) ;
GrB_Matrix c;
GrB_mxm(c, NULL, NULL, semiring, grb_a, b, NULL);
return c;
}
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Getting data in...

e Data is duplicated internally

o Complexity of import function
not guaranteed

NOTE: this can be the costliest
step of an application.

/* Multiply a matrix */
GrB_Matrix multiply(my_matrix_type* a, GrB_Matrix b)

{
GrB_Index *rowptr = a->rowptr;
GrB_Index *colind = a->colind;
float *values = a->values;
GrB_Index nrows = a->nrows;
GrB_Index ncols = a->ncols;
GrB_Index nvals = a->nvals;
/* copy the data into GraphBLAS */
GrB_Matrix grb_a;
GrB_Matrix_import(&grb_a, GrB_FP32
nrows, ncols,
rowptr, colind, values,
nrows+1l, nvals, nvals,
GrB_CSR_FORMAT) ;
GrB_Matrix c;
GrB_mxm(c, NULL, NULL, semiring, grb_a, b, NULL);
return c;
}
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Getting data in...and out

e Data is duplicated externally

o Complexity of export function not
guaranteed

e Lack of type introspection

NOTE: these issues also addressed
by the C++ API but is not the focus
of this presentation.

/* Add all the elements in a matrix */
<?type?> sumreduce(GrB_Matrix A)
{
/* Allocate buffers for export */
GrB_Index n_rowptr, n_colind, n_vals;
GrB_Matrix_exportSize(&n_rowptr, &n_colidx,
&n_vals
GrB_CSR_FORMAT, A);

/* allocate [n_rowptr] */;
/* allocate [n_colidx] */;
/* allocate [n_vals] */;

GrB_Index *rowptr
GrB_Index *colidx
<?type?> *values

/* copy the data out */

GrB_Matrix_export(&rowptr, &colidx, &values,
&n_rowptr, &n_colidx, &n_vals,
GrB_CSR_FORMAT, A);

<?type?> val = 0O;
for (GrB_Index ix = 0; ix < n_vals; ++ix) {
val += values|[ix];

}

/* ...free memory... */

return val;

Carnegie Mellon University
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C++ API Design Goal: Lightweight Views

- We can use views to allow external data int*  row_ptr = ...;
structure to be used inside GraphBLAS int* col_ind = ...;
float* wvalues = ...;
- A view changes the API to expose the auto a_view = grb::csr_matrix_view(values,
C++ GraphBLAS matrix concept rowptr,
colind,

m, n, nnz);

auto ¢ = grb::multiply(a_view, b);
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C++ API Design Goal: Lightweight Views

- We can use views to allow external data int*  row_ptr = ...;
structure to be used inside GraphBLAS int* col_ind = ...;
float* wvalues = ...;
- A view changes the API to expose the auto a_view = grb::csr_matrix_view(values,
C++ GraphBLAS matrix concept —| rowptr,

ies! lind
: o |esj colind,
jew, no © P m, n, nnz);

\'\_azy v

auto ¢ = grb::multiply(a_view, b);

- This avoids a copy
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Background

- C++ Concepts

- Views
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Graphs as Adjacency Matrices

OOQOWE®

QL®LEOE

Goal: define concepts that
e correspond to sparse matrices.

« work “like” other C++ Standard Library containers.
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C++ Concepts

® Concepts describe an interface

® Any type that satisfies that interface
fulfills the concept

® Functions written in terms of
concepts: any type (M) that fulfills the
concept can be passed Iin

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

{

grb: :matrix_scalar_t<M> val = 0;

for (auto&& [location, v] : A)
{

}

val += v;

return val;
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C++ Concepts

® Concepts describe an interface

® Any type that satisfies that interface
fulfills the concept

® Functions written in terms of
concepts: any type (M) that fulfills the
concept can be passed Iin

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

{

grb: :matrix_scalar_t<M> val = 0;

for (auto&& [location, v] : A)
{

}

val += v;

return val;
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C++ Concepts

template <grb::MatrixRange M>

¢ Concepts describe an interface grb: :matrix_scalar_t<M> sumreduce(M&& A)

{
® Any type that satisfies that interface grb::matrix_scalar_t<M>|val = @;
fulfills the concept for (auto&& [location, v] : A)
{
® Functions written in terms of val += v;
concepts: any type that fulfills the }
concept can be passed in return val;
}
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_ __ _ AOOOOO®®06®
GraphBLAS MatrixRange Specification o[ [e] |e
. . @ . o
- Type introspection: o °
- grb::matrix_scalar_t<M> type of elements ole °
- grb::matrix_index_t<M> type of indices @ ~
- shape() - extents of the dimensions as index tuple, e.g., {7, 7} © e
6 ® o0
- size() - number of stored elements, e.g., 12
- find({row, col}) - access an existing value
- Forward Range: specifies unordered iteration over the stored values
(illustrated on next slide)
Aside: mutating functions like insert() or erase() are part of a refinement of MatrixRange called MutableMatrixRange.
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Software Engineering Institute approved for public release and unlimited distribution.



_ AOO@Oe o6 ®
GraphBLAS MatrixRange Example o[ [e] |e
@ ® .
lteration commonly written as a range-based for loop: ®) ®
Qe o
@ ®
template <grb::MatrixRange M> ® &
void output_entries(M&& A) { @ ® ole
for (auto&& [location, value] : A) |{
auto&& [i, j| = location;
cout << i << ", " << j << " " << value << endl; Possible output:
}
} 0, 1: e
0, 3: o
1, 4: o
6, 3: o
6, 4: o
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AOOOOO®®O O
GraphBLAS MatrixRange Example o[ [e] |e
@ o .
Iteration over the stored elements (the long form). @ ®
Q| o
@ ®
template <grb::MatrixRange M> ® &
void output_entries(M&& A) { @ o ol @
for (auto iter = A.begin();
iter = A.end();
++iter) { Possible output:
auto&& [location, value]| = *iter;
auto&& [i, j| = location; 0, 1: o
cout << 1 << ", " << j << ": " << value << endl; 0, 3: e
} 1, 4: o
}
6, 3: o
6, 4: o
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Generic Algorithms using the MatrixRange Concept

Matrix reduction: Sparse times dense matrix multiply:
template <grb::MatrixRange M> template <grb::MatrixRange M,
grb: :matrix_scalar_t<M> sumreduce(M&& A) class T>
{ void spmm(M&& A, size_t N,
grb: :matrix_scalar_t<M> sum = 0O; std::vector<T> const &B, // dense
for (auto&& [location, v] : A) { std: :vector<t> &C) { // dense, cleared
sum += V; for (auto&& [location, a_ik] : A) {
} auto&& [i, k] : location;
} for (size_ t j = 0; j < N; ++j) {

c[i*N + j] += a_ik * B[k*N + j];

Carnegie Mellon University
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Views

® They provide a lazily evaluated view
(or interface) to some data

e \We can apply transformations (lazily)
without copying

e C++ ranges library defines a collection
of views, such as transform, filter, etc.

e GraphBLAS defines a collection of
views, such as transpose and
complement

grb: :matrix<float> A = ...;

// Create lazily evaluated view of AT
auto A_t = grb::views::transpose(A);

auto C = grb::multiply(A, A_t);

Carnegie Mellon University
Software Engineering Institute
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Views

® They provide a lazily evaluated view
(or interface) to some data

e \We can apply transformations (lazily)
without copying

e C++ ranges library defines a collection
of views, such as transform, filter, etc.

e GraphBLAS defines a collection of
views, such as transpose and
complement

grb: :matrix<float> A = ...;

// Create lazily evaluated view of AT
auto A_t = grb::views::transpose(A);

auto C = grb::multiply(A, A_t);

Views are also defined to transform external data to
conform to GraphBLAS concepts like MatrixRange.

Carnegie Mellon University

Software Engineering Institute
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Adapting External
Graph Data Structures

- NWGraph edge lists
- NWGraph adjacency lists
- CSR C-arrays

Carnegie Mellon University DISTRIBUTION STATEMENT A] This material has been
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NWGraph

e Alibrary of generic algorithms and data structures for graph computation
o Uses C++20 and modern C++ techniques

e Supports shared memory parallelism

e Strongly influencing the C++ Graph Library Standard proposal (P1709)

o NWGraph concepts describe different patterns for iterating through a graph
o edge list graph (e.g., COO data structures)
o adjacency list graph (e.g., CSR/CSC data structures)

Repository: hitps://github.com/pnnl/NWGraph
Paper: Lumsdaine, Andrew, et al. "NWGraph: A Library of Generic Graph Algorithms and Data Structures in C++ 20." In 36th
European Conference on Object-Oriented Programming (ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2022.
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Edge Lists (like COO format)

template <class index_type,

class scalar_

auto sumreduce(size_t

type>
num_edges,

index_type *row_ind,

index_type *col_ind,
scalar_type *values)

{

scalar_type sum = 0; I I

for (auto e = @; e < num_edges; ++e) { rOW_ind (1) O OI 1 |1 6 ‘6‘ 6
/*index_type i = row_ind[e]; */ I |
/*index_type j = col_ind[e]; */ I i

sum += values[e]; COl_ind (J) 1 3| 46 2 ‘e‘ 4
} I '
return sum; i I

} values (v) |o | o @ |l® e oo
| |

Carnegie Mellon UniverSity [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 29
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NWGraph Edge List

- NWGraph's edge_list graph requires ,
dimension I_'t r Fon throuah template <nw::graph::edge _list graph G>
?ne ' e” Sional iterati ug auto sumreduce(G&& g) {
container” of edges (3-tuples). float sum = O;

- Minimum requirement: forward iteration

for (auto&& [i, j, v] : g)|{
sum += V;

- The value type of a data element is a triplet: )

{src, dst, value}
return sum;

- Remember: Any data structure that supplies }
the correct interface satisfies the concept.

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 30
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Adapting NWGraph's Edge List Graph

e [Edge lists are already flattened (1-dimensional iteration) data structures.
e Adapting with a GraphBLAS view only requires restructuring of the data elements:

11, 3, v > {{1, 3}, v}

e The forward range portion of the view is implemented using pipe (
C++ ranges library’s range adaptors:

“l”

) syntax from

template <nw::graph::edge list graph G>
auto transform_range(G&& graph) {
return graph
| std::views::transform(
[ ] (auto&& edge _entry) {
auto&& [i, j, v] = edge_entry;
return grb::matrix_ref(grb::index(i,j), v);

})s

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been
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Adjacency Lists (CSR-like format)

row ptr —>»
(outer)

1,0

3,0

4,0

6,0

5,0

O,

2,0

5,0

2,0

2,0

©..

4,0

0

out edge ptr

(inner)
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NWGraph Adjacency List

- The adjacency list graph concept

defines support for hierarchical iteration:  template <nw::graph::adjacency_list_graph G>
auto sumreduce(G&& g) {

float sum = 0O;

// index i = 0;

“...a random-access range of forward ranges.”

- The_“outer” iterator_steps throug_h for (autod& out_edges : g) {
vertices (row of adjacency matrix). for (auto2& [j, v] : out edges) {
- Value type is a “forward range of out sum += V;
edges” }
- Vertex id (i) is implicit } /] ++1;

- The “inner” iterator steps through out return sum;

edges of the corresponding vertex }
(elements of the row)

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 33
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Example: Adapting NWGraph’s Adjacency List Graph

. template <nw::graph::adjacency_list graph G>
° The forward range portlon auto transform_range(G&& graph) {

of the view adaptor is e
shown to the nght | enumerate() // (8, row[@]), (1, row[1]), ...
| std::views::transform(
e Adapting them requires: [1(autog& row_entry) {
auto&& [i, row] = row_entry;
1. Adding the implicit row id return row

_ | std::views::transform(
2. Traversing both ranges S [i](auto’& entry) {

auto&& [j, v] = entry;
—y return grb::matrix_ref(

3. Restructuring of the data

elements. grb:index_type(i, j), v);
: })s
4. Flattening of the nested — 1)
iteration. ‘€>| std::views::join; // flattens here (joins all rows)
}
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 34

Software Engineering Institute approved for public release and unlimited distribution.



Adjacency Matrices as
Compressed Sparse Row (CSR)

A @@@9@@@ (1) OOOBOWEO

row_ptr ‘0 2

AN\

o col_ind (j7) [1(3/|4 2@ 4

values (v) ‘AN BN AN BN R AN BN AN B NECEN

@@@C,@@@@
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Adjacency Matrices as
Compressed Sparse Row (CSR)

A@@@Q@@@

,/,
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T
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col_ind (3)

values (v) ‘AN BN AN BN R AN BN AN B NECEN

@@@@@@@
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Evaluation
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Experimental Setup

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

e Two common GraphBLAS operations: {
. . grb: :matrix_scalar_t<M> sum = 0;
o Matrix reductlon.(to scalar) | for (auto8& [location, v : A) {
o SPMM: sparse times dense matrix sum += v;
o Assumptions: }
= Numeric data type (float) }
= Arithmetic Semiring
® Platform template <grb::MatrixRange M,

o Dual Intel® Xeon® Platinum 8480+, 2GHz y class T>
o B12GB RAM void spmm(M&& A, size_t N,

_ _ std::vector<T> const &, // dense
o GCC12.2.0, -03, -march=sapphirerapids std: :vector<T> &C) { // dense/cleared
o Single thread

for (auto&& [location, a_ik] : A) {
auto&& [i, k] : location;
for (size_t j = 0; j < N; ++j) {
e GOAL: Measure the overhead of using c[i*N + 3] += a_ik * B[K*N + jI;

views relative to “native” code }

Carnegie Mellon University
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Experimental Setup: Input matrices

® Sparse matrices used in the evaluation:
o Shape: mxm
o All very sparse (98.5% - 99.999% sparse).

® Dense matrices:
o Shape: mx 32
o Contiguous array of elements

Sparse Matrix | Kind m =k | NNZ CSR Size | COO Size
com-Orkut NMF 3.1M 234M 2.8 GB 5.6 GB
I[door Structural | 952K 46.5M | 565 MB 1.1 GB
Mouse Gene Biology 45.1K 29M 348 MB 695 MB
nlpkkt160 NLP 8.3M 230M 2.8 GB 5.5 GB
kim2 2D Mesh | 457K [1.3M | 140 MB 272 MB

Carnegie Mellon University
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Experimental Setup: Data structures

® “GraphBLAS Native CSR”

o Reference Library’s (RGRI) implementation of
grb::matrix

o  Three contiguous arrays

o Using the generic MatrixRange interface elements only
(i.e., not tuned for CSR)

® “CSR (View)’
o  Three C-style arrays
o Adapted to MatrixRange with a view

® NWGraph’s edge_list and adjacency_ 1list

data structures
o  “(Direct)’ — native performance using NWGraph library
directly
o  “(View)” — NWGraph data structure through a
MatrixRange view adaptor

// Run “CSR (View)” experiment
uint32.t m= ..., n= ...;
size_t nnz = ...;

size_ t *row_ptr
uint32_t *col_ind ce
float *values ceo

.
LI }

auto a_view = grb::csr_matrix_view(values,
row_ptr,
col_ind,
{m, n}, nnz);

grb: :spmm(a_view, b, c);
auto d = grb::sumreduce(a_view);

Carnegie Mellon University
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Experimental Results: SPMM

o Little to no overhead in adapting other data structures to MatrixRange
e The amount of computational work hides the overheads

Sparse Times Dense (SpMM) Runtime

5.0
4.6L02 8004545 @ GraphBLAS Native CSR
4.0 =eeE CSR (View)
Ml NWGraph Edge List (View)

L) R NWGraph Edge List (Direct)
g 3.0 B NWGraph Adjacency List (View)
S BEE NWGraph Adjacency List (Direct)
C 2.01
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Experimental Results: Matrix reduction (sumreduce)

e Less computational intensity shows overhead of flattening hierarchical data structures

o Upto 15% overhead (when adapting NWGraph Adjacency List)

Summing All Elements in Sparse Matrix
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Conclusions

e Defined concepts and implemented views (adaptors) for many different data
structures
e The approach works with acceptable amounts of overhead (5 — 15%)
o Detailed analysis of the assembly code generated gives insight to possible
Improvements.
e Caveat: results are specific to these datasets and workloads.

o Some applications may benefit from copying the data in or out
o C++ API specification will still include import and export of data
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Future Work

e Avoiding explicit constructor calls for views
o Adding another CPO would allow for automatic discovery of supported views
o C++ ranges library has automatic view support through a grb: :views::all
o Find some of this work in the RGRI repository

e Multi-dimensional iteration (discussed in last year's GrAPL paper)
o Row views and nested iterators (like in NWGraph)
o Avoids flattening (hampers compiler optimization)

o Deferred to a later release of the C++ API| Specification
= What should be supported?
= What will be offered in future releases of the C++ Standard Library

o Concepts for ordered iteration
e Views for mutating data (i.e., for MutableMatrixRange)
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Request for Comments

e First draft of the GraphBLAS C++ API Specification nearing completion
o Depends on (but does not include) the mathematical specification of each
operation
o Plans underway to extract a math specification from the C API for both APls

® Interested parties may review and comment on the C++ Specification
o Repository: https://qgithub.com/GraphBLAS/graphblas-api-cpp
o Use github Issues provide feedback and request changes/additions

e Reference Implementation is underway (where these experiments were performed):
o Repository: https://qgithub.com/GraphBLAS/rgri
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