The GraphBLAS C++ API:
C++ and Interoperability Between Libraries =

Benjamin Brock, Intel

Scott McMillan, CMU Software Engineering Institute
Aydin Buluc, Lawrence Berkeley National Laboratory
Jose E. Moreira, IBM Research

Timothy G. Mattson, Intel

DISTRIBUTION STATEMENT A] This material has been

Carnegie Mellon University
approved for public release and unlimited distribution.

Software Engineering Institute

Copyright 2023 Carnegie Mellon University, Ben Brock, Jose E. Moreira, Lawrence Berkeley National Lab and Timothy G. Mattson.

This material 1s based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal
permission. Permission 1s required for any other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM23-0476

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 2
Software Engineering Institute © 2023 Camegie Mellon University approved for public release and unlimited distribution.

‘dest’ vertex

AODODOO®®0O®
GraphBLAS C API of e Te
0] [°
g o 3
2 ole |e
. . : 5 © >
= Provides uniform API for graph algorithms ool
in the language of linear algebra
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 3

Software Eﬂgi neering Institute approved for public release and unlimited distribution.

‘dest’ vertex

AODDODOO®®0O®
GraphBLAS C API of e Te
0] o |0
3o
Sl ole| |e
= Provides uniform API for graph algorithms ool
in the language of linear algebra
= Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 4

Software Engineering Institute

approved for public release and unlimited distribution.

‘dest’ vertex

AODOO®O®0O®
GraphBLAS C API of T Te
0]] °
g o
Sl ole| |e
. : : o ©
- Provides uniform API for graph algorithms ool
in the language of linear algebra
= Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)
= Current version of C API Specification is 2.0
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 5

Software Engineering Institute

approved for public release and unlimited distribution.

‘dest’ vertex

AODOO®O®0O®
GraphBLAS C API of T Te
0]] °
g o
Sl ole| |e
. : : o ©
- Provides uniform API for graph algorithms ool
in the language of linear algebra
= Revolve around sparse matrix and vector
operations which can use arbitrary semirings instead of classical (+, *)
= Current version of C API Specification is 2.0
- C offers great portability (Python, bindings, etc.), but has some disadvantages...
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 6

Software Engineering Institute

approved for public release and unlimited distribution.

‘dest’ vertex

). YONORON s RONONG
GraphBLAS C API o Te[Te[T T
g o 3
Sl ole| |e
. : : 5 ® °
- Generics make C implementations complex of el L
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 7

Software Engineering Institute approved for public release and unlimited distribution.

‘dest’ vertex

AODDODOO®®0O®
GraphBLAS C API of e Te
0]] °
g o 3
2 ole |e
. : . 5 ® o
- Generics make C implementations complex <O
- No introspection, hints (e.g., types, storage, performance)
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 8

Software Engineering Institute approved for public release and unlimited distribution.

‘dest’ vertex

AODOO®O®0O®
GraphBLAS C API of T Te
0] o o
g o 3
2 ole |e
: . . oo *
- Generics make C implementations complex ol ol
o
- No introspection, hints (e.g., types, storage, performance)
- Interoperability is/was not high enough priority
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 9

Software Engineeri ng Institute approved for public release and unlimited distribution.

‘dest’ vertex

AODODOO®®0O®
GraphBLAS C API of T Te
@®] °
g o 3
g ole |e
: . . oo .
- Generics make C implementations complex o | |e
(6 o o0
= No introspection, hints (e.g., types, storage, performance)
- Interoperability is/was not high enough priority - John Gibert, HPEC 2022
- Too hard to mix GraphBLAS calls with calls to other libraries.
- Too hard to use GraphBLAS with user data structures and code
In existing packages.
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 10

Software Engineering Institute approved for public release and unlimited distribution.

Getting data in...

e Data is duplicated internally

o Complexity of import function
not guaranteed

/* Multiply a matrix */
GrB_Matrix multiply(my_matrix_type* a, GrB_Matrix b)

{
GrB_Index *rowptr = a->rowptr;
GrB_Index *colind = a->colind;
float *values = a->values;
GrB_Index nrows = a->nrows;
GrB_Index ncols = a->ncols;
GrB_Index nvals = a->nvals;
/* copy the data into GraphBLAS */
GrB_Matrix grb_a;
GrB_Matrix_import(&grb_a, GrB_FP32
nrows, ncols,
rowptr, colind, values,
nrows+1l, nvals, nvals,
GrB_CSR_FORMAT) ;
GrB_Matrix c;
GrB_mxm(c, NULL, NULL, semiring, grb_a, b, NULL);
return c;
}

Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been 1 1

© 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Getting data in...

e Data is duplicated internally

o Complexity of import function
not guaranteed

NOTE: this can be the costliest
step of an application.

/* Multiply a matrix */
GrB_Matrix multiply(my_matrix_type* a, GrB_Matrix b)

{
GrB_Index *rowptr = a->rowptr;
GrB_Index *colind = a->colind;
float *values = a->values;
GrB_Index nrows = a->nrows;
GrB_Index ncols = a->ncols;
GrB_Index nvals = a->nvals;
/* copy the data into GraphBLAS */
GrB_Matrix grb_a;
GrB_Matrix_import(&grb_a, GrB_FP32
nrows, ncols,
rowptr, colind, values,
nrows+1l, nvals, nvals,
GrB_CSR_FORMAT) ;
GrB_Matrix c;
GrB_mxm(c, NULL, NULL, semiring, grb_a, b, NULL);
return c;
}

Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been 12

© 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Getting data in...and out

e Data is duplicated externally

o Complexity of export function not
guaranteed

e Lack of type introspection

NOTE: these issues also addressed
by the C++ API but is not the focus
of this presentation.

/* Add all the elements in a matrix */
<?type?> sumreduce(GrB_Matrix A)
{
/* Allocate buffers for export */
GrB_Index n_rowptr, n_colind, n_vals;
GrB_Matrix_exportSize(&n_rowptr, &n_colidx,
&n_vals
GrB_CSR_FORMAT, A);

/* allocate [n_rowptr] */;
/* allocate [n_colidx] */;
/* allocate [n_vals] */;

GrB_Index *rowptr
GrB_Index *colidx
<?type?> *values

/* copy the data out */

GrB_Matrix_export(&rowptr, &colidx, &values,
&n_rowptr, &n_colidx, &n_vals,
GrB_CSR_FORMAT, A);

<?type?> val = 0O;
for (GrB_Index ix = 0; ix < n_vals; ++ix) {
val += values|[ix];

}

/* ...free memory... */

return val;

Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been 1 3

© 2023 Carnegie Mellon University approved for public release and unlimited distribution.

C++ API Design Goal: Lightweight Views

- We can use views to allow external data int* row_ptr = ...;
structure to be used inside GraphBLAS int* col_ind = ...;
float* wvalues = ...;
- A view changes the API to expose the auto a_view = grb::csr_matrix_view(values,
C++ GraphBLAS matrix concept rowptr,
colind,

m, n, nnz);

auto ¢ = grb::multiply(a_view, b);

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 14
Software Engineering Institute © 2023 Camegie Mellon University approved for public release and unlimited distribution.

C++ API Design Goal: Lightweight Views

- We can use views to allow external data int* row_ptr = ...;
structure to be used inside GraphBLAS int* col_ind = ...;
float* wvalues = ...;
- A view changes the API to expose the auto a_view = grb::csr_matrix_view(values,
C++ GraphBLAS matrix concept —| rowptr,

ies! lind
: o |esj colind,
jew, no © P m, n, nnz);

\'_azy v

auto ¢ = grb::multiply(a_view, b);

- This avoids a copy

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 15
Software Engineering Institute © 2023 Camegie Mellon University approved for public release and unlimited distribution.

Background

- C++ Concepts

- Views

Carnegie Mellon University DISTRIBUTION STATEMENT A] This material has been
Software Engineering Institute approved for public release and unlimited distribution.

Graphs as Adjacency Matrices

OOQOWE®

QL®LEOE

Goal: define concepts that
e correspond to sparse matrices.

« work “like” other C++ Standard Library containers.

Carnegie Mellon University

Software Engineering Institute

© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

17

C++ Concepts

® Concepts describe an interface

® Any type that satisfies that interface
fulfills the concept

® Functions written in terms of
concepts: any type (M) that fulfills the
concept can be passed Iin

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

{

grb: :matrix_scalar_t<M> val = 0;

for (auto&& [location, v] : A)
{

}

val += v;

return val;

Carnegie Mellon University

Software Engineering Institute

© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been 1 8
approved for public release and unlimited distribution.

C++ Concepts

® Concepts describe an interface

® Any type that satisfies that interface
fulfills the concept

® Functions written in terms of
concepts: any type (M) that fulfills the
concept can be passed Iin

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

{

grb: :matrix_scalar_t<M> val = 0;

for (auto&& [location, v] : A)
{

}

val += v;

return val;

Carnegie Mellon University
Software Engineering Institute

© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been 1 9
approved for public release and unlimited distribution.

C++ Concepts

template <grb::MatrixRange M>

¢ Concepts describe an interface grb: :matrix_scalar_t<M> sumreduce(M&& A)

{
® Any type that satisfies that interface grb::matrix_scalar_t<M>|val = @;
fulfills the concept for (auto&& [location, v] : A)
{
® Functions written in terms of val += v;
concepts: any type that fulfills the }
concept can be passed in return val;
}
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 20

Software Engineering Institute approved for public release and unlimited distribution.

_ __ _ AOOOOO®®06®
GraphBLAS MatrixRange Specification o[[e] |e
. . @ . o
- Type introspection: o °
- grb::matrix_scalar_t<M> type of elements ole °
- grb::matrix_index_t<M> type of indices @ ~
- shape() - extents of the dimensions as index tuple, e.g., {7, 7} © e
6 ® o0
- size() - number of stored elements, e.g., 12
- find({row, col}) - access an existing value
- Forward Range: specifies unordered iteration over the stored values
(illustrated on next slide)
Aside: mutating functions like insert() or erase() are part of a refinement of MatrixRange called MutableMatrixRange.
Carnegie Mellon University © 2023 Carnegie Mellon University DISTRIBUTION STATEMENT A] This material has been 21

Software Engineering Institute approved for public release and unlimited distribution.

_ AOO@Oe o6 ®
GraphBLAS MatrixRange Example o[[e] |e
@ ® .
lteration commonly written as a range-based for loop: ®) ®
Qe o
@ ®
template <grb::MatrixRange M> ® &
void output_entries(M&& A) { @ ® ole
for (auto&& [location, value] : A) |{
auto&& [i, j| = location;
cout << i << ", " << j << " " << value << endl; Possible output:
}
} 0, 1: e
0, 3: o
1, 4: o
6, 3: o
6, 4: o
A | © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 22

Software Eﬂgi neering Institute approved for public release and unlimited distribution.

AOOOOO®®O O
GraphBLAS MatrixRange Example o[[e] |e
@ o .
Iteration over the stored elements (the long form). @ ®
Q| o
@ ®
template <grb::MatrixRange M> ® &
void output_entries(M&& A) { @ o ol @
for (auto iter = A.begin();
iter = A.end();
++iter) { Possible output:
auto&& [location, value]| = *iter;
auto&& [i, j| = location; 0, 1: o
cout << 1 << ", " << j << ": " << value << endl; 0, 3: e
} 1, 4: o
}
6, 3: o
6, 4: o
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 23

Software Eﬂgi neering Institute approved for public release and unlimited distribution.

Generic Algorithms using the MatrixRange Concept

Matrix reduction: Sparse times dense matrix multiply:
template <grb::MatrixRange M> template <grb::MatrixRange M,
grb: :matrix_scalar_t<M> sumreduce(M&& A) class T>
{ void spmm(M&& A, size_t N,
grb: :matrix_scalar_t<M> sum = 0O; std::vector<T> const &B, // dense
for (auto&& [location, v] : A) { std: :vector<t> &C) { // dense, cleared
sum += V; for (auto&& [location, a_ik] : A) {
} auto&& [i, k] : location;
} for (size_ t j = 0; j < N; ++j) {

c[i*N + j] += a_ik * B[k*N + j];

Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been
Software Engineering Institute

© 2023 Carnegie Mellon University approved for public release and unlimited distribution.

24

Views

® They provide a lazily evaluated view
(or interface) to some data

e \We can apply transformations (lazily)
without copying

e C++ ranges library defines a collection
of views, such as transform, filter, etc.

e GraphBLAS defines a collection of
views, such as transpose and
complement

grb: :matrix<float> A = ...;

// Create lazily evaluated view of AT
auto A_t = grb::views::transpose(A);

auto C = grb::multiply(A, A_t);

Carnegie Mellon University
Software Engineering Institute

© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been 25
approved for public release and unlimited distribution.

Views

® They provide a lazily evaluated view
(or interface) to some data

e \We can apply transformations (lazily)
without copying

e C++ ranges library defines a collection
of views, such as transform, filter, etc.

e GraphBLAS defines a collection of
views, such as transpose and
complement

grb: :matrix<float> A = ...;

// Create lazily evaluated view of AT
auto A_t = grb::views::transpose(A);

auto C = grb::multiply(A, A_t);

Views are also defined to transform external data to
conform to GraphBLAS concepts like MatrixRange.

Carnegie Mellon University

Software Engineering Institute

© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been 26
approved for public release and unlimited distribution.

Adapting External
Graph Data Structures

- NWGraph edge lists
- NWGraph adjacency lists
- CSR C-arrays

Carnegie Mellon University DISTRIBUTION STATEMENT A] This material has been
Software Engineering Institute approved for public release and unlimited distribution.

NWGraph

e Alibrary of generic algorithms and data structures for graph computation
o Uses C++20 and modern C++ techniques

e Supports shared memory parallelism

e Strongly influencing the C++ Graph Library Standard proposal (P1709)

o NWGraph concepts describe different patterns for iterating through a graph
o edge list graph (e.g., COO data structures)
o adjacency list graph (e.g., CSR/CSC data structures)

Repository: hitps://github.com/pnnl/NWGraph
Paper: Lumsdaine, Andrew, et al. "NWGraph: A Library of Generic Graph Algorithms and Data Structures in C++ 20." In 36th
European Conference on Object-Oriented Programming (ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum fur Informatik, 2022.

Carnegie Mellon University © 900 o Vel - DISTRIBUTION STATEMENT A] This material has been 28
Software Engineering Institute 023 Carnegie Mellon University approved for public release and unlimited distribution.

Edge Lists (like COO format)

template <class index_type,

class scalar_

auto sumreduce(size_t

type>
num_edges,

index_type *row_ind,

index_type *col_ind,
scalar_type *values)

{

scalar_type sum = 0; I I

for (auto e = @; e < num_edges; ++e) { rOW_ind (1) O OI 1 |1 6 ‘6‘ 6
/*index_type i = row_ind[e]; */ I |
/*index_type j = col_ind[e]; */ I i

sum += values[e]; COl_ind (J) 1 3| 46 2 ‘e‘ 4
} I '
return sum; i I

} values (v) |o | o @ |l® e oo
| |

Carnegie Mellon UniverSity [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. 29

Software Engineering Institute

NWGraph Edge List

- NWGraph's edge_list graph requires ,
dimension I_'t r Fon throuah template <nw::graph::edge _list graph G>
?ne ' e” Sional iterati ug auto sumreduce(G&& g) {
container” of edges (3-tuples). float sum = O;

- Minimum requirement: forward iteration

for (auto&& [i, j, v] : g)|{
sum += V;

- The value type of a data element is a triplet:)

{src, dst, value}
return sum;

- Remember: Any data structure that supplies }
the correct interface satisfies the concept.

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 30
Software Engineering Institute © 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Adapting NWGraph's Edge List Graph

e [Edge lists are already flattened (1-dimensional iteration) data structures.
e Adapting with a GraphBLAS view only requires restructuring of the data elements:

11, 3, v > {{1, 3}, v}

e The forward range portion of the view is implemented using pipe (
C++ ranges library’s range adaptors:

“l”

) syntax from

template <nw::graph::edge list graph G>
auto transform_range(G&& graph) {
return graph
| std::views::transform(
[] (auto&& edge _entry) {
auto&& [i, j, v] = edge_entry;
return grb::matrix_ref(grb::index(i,j), v);

})s

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been
P Pevaocone Dot oo act . © 2023 Carnegie Mellon University
Software Engineering Institute

approved for public release and unlimited distribution.

31

A@@@Q@@@

QL®LEOE

Adjacency Lists (CSR-like format)

row ptr —>»
(outer)

1,0

3,0

4,0

6,0

5,0

O,

2,0

5,0

2,0

2,0

©..

4,0

0

out edge ptr

(inner)

Carnegie Mellon Univers
Software Engineering Institute

ity

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

32

NWGraph Adjacency List

- The adjacency list graph concept

defines support for hierarchical iteration: template <nw::graph::adjacency_list_graph G>
auto sumreduce(G&& g) {

float sum = 0O;

// index i = 0;

“...a random-access range of forward ranges.”

- The_“outer” iterator_steps throug_h for (autod& out_edges : g) {
vertices (row of adjacency matrix). for (auto2& [j, v] : out edges) {
- Value type is a “forward range of out sum += V;
edges” }
- Vertex id (i) is implicit } /] ++1;

- The “inner” iterator steps through out return sum;

edges of the corresponding vertex }
(elements of the row)

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 33
Software Engineering Institute © 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Example: Adapting NWGraph’s Adjacency List Graph

. template <nw::graph::adjacency_list graph G>
° The forward range portlon auto transform_range(G&& graph) {

of the view adaptor is e
shown to the nght | enumerate() // (8, row[@]), (1, row[1]), ...
| std::views::transform(
e Adapting them requires: [1(autog& row_entry) {
auto&& [i, row] = row_entry;
1. Adding the implicit row id return row

_ | std::views::transform(
2. Traversing both ranges S [i](auto’& entry) {

auto&& [j, v] = entry;
—y return grb::matrix_ref(

3. Restructuring of the data

elements. grb:index_type(i, j), v);
: })s
4. Flattening of the nested — 1)
iteration. ‘€>| std::views::join; // flattens here (joins all rows)
}
Carnegie Mellon University © 2023 Camegie Mellon University DISTRIBUTION STATEMENT A] This material has been 34

Software Engineering Institute approved for public release and unlimited distribution.

Adjacency Matrices as
Compressed Sparse Row (CSR)

A @@@9@@@ (1) OOOBOWEO

row_ptr ‘0 2

AN\

o col_ind (j7) [1(3/|4 2@ 4

values (v) ‘AN BN AN BN R AN BN AN B NECEN

@@@C,@@@@

Carnegie Mellon University

. , 4 [DISTRIBUTION STATEMENT A] Th is material has been approved for publ ic rel d unlimited distribution.
Software Engmeermg Instifute ~[OISTRIBUTION STATEMENTA This materilhas been approved for public elease and unlimited stributon 35

Adjacency Matrices as
Compressed Sparse Row (CSR)

A@@@Q@@@

,/,
Y PN
(Leftez

T
o

col_ind (3)

values (v) ‘AN BN AN BN R AN BN AN B NECEN

@@@@@@@

Carnegie Mellon University

. , 4 [DISTRIBUTION STATEMENT A] Th is material has been approved for publ ic rel d unlimited distribution.
Software Engmeermg Instifute ~[OISTRIBUTION STATEMENTA This materilhas been approved for public elease and unlimited stributon 36

Evaluation

Carnegie Mellon University DISTRIBUTION STATEMENT A] This material has been
Software Engineering Institute approved for public release and unlimited distribution.

Experimental Setup

template <grb::MatrixRange M>
grb: :matrix_scalar_t<M> sumreduce(M&& A)

e Two common GraphBLAS operations: {
. . grb: :matrix_scalar_t<M> sum = 0;
o Matrix reductlon.(to scalar) | for (auto8& [location, v : A) {
o SPMM: sparse times dense matrix sum += v;
o Assumptions: }
= Numeric data type (float) }
= Arithmetic Semiring
® Platform template <grb::MatrixRange M,

o Dual Intel® Xeon® Platinum 8480+, 2GHz y class T>
o B12GB RAM void spmm(M&& A, size_t N,

_ _ std::vector<T> const &, // dense
o GCC12.2.0, -03, -march=sapphirerapids std: :vector<T> &C) { // dense/cleared
o Single thread

for (auto&& [location, a_ik] : A) {
auto&& [i, k] : location;
for (size_t j = 0; j < N; ++j) {
e GOAL: Measure the overhead of using c[i*N + 3] += a_ik * B[K*N + jI;

views relative to “native” code }

Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been 38
Software Engineering Institute

© 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Experimental Setup: Input matrices

® Sparse matrices used in the evaluation:
o Shape: mxm
o All very sparse (98.5% - 99.999% sparse).

® Dense matrices:
o Shape: mx 32
o Contiguous array of elements

Sparse Matrix | Kind m =k | NNZ CSR Size | COO Size
com-Orkut NMF 3.1M 234M 2.8 GB 5.6 GB
I[door Structural | 952K 46.5M | 565 MB 1.1 GB
Mouse Gene Biology 45.1K 29M 348 MB 695 MB
nlpkkt160 NLP 8.3M 230M 2.8 GB 5.5 GB
kim2 2D Mesh | 457K [1.3M | 140 MB 272 MB

Carnegie Mellon University

‘ : : ©2023C ie Mellon Universit
Software Engineering Institute armegie Weton nversiy

DISTRIBUTION STATEMENT A] This material has been
approved for public release and unlimited distribution.

39

Experimental Setup: Data structures

® “GraphBLAS Native CSR”

o Reference Library’s (RGRI) implementation of
grb::matrix

o Three contiguous arrays

o Using the generic MatrixRange interface elements only
(i.e., not tuned for CSR)

® “CSR (View)’
o Three C-style arrays
o Adapted to MatrixRange with a view

® NWGraph’s edge_list and adjacency_ 1list

data structures
o “(Direct)’ — native performance using NWGraph library
directly
o “(View)” — NWGraph data structure through a
MatrixRange view adaptor

// Run “CSR (View)” experiment
uint32.t m= ..., n= ...;
size_t nnz = ...;

size_ t *row_ptr
uint32_t *col_ind ce
float *values ceo

.
LI }

auto a_view = grb::csr_matrix_view(values,
row_ptr,
col_ind,
{m, n}, nnz);

grb: :spmm(a_view, b, c);
auto d = grb::sumreduce(a_view);

Carnegie Mellon University

o P Ehsoiis ot g : © 2023 Carnegie Mellon University
Software Engineering Institute

DISTRIBUTION STATEMENT A] This material has been 40
approved for public release and unlimited distribution.

Experimental Results: SPMM

o Little to no overhead in adapting other data structures to MatrixRange
e The amount of computational work hides the overheads

Sparse Times Dense (SpMM) Runtime

5.0
4.6L02 8004545 @ GraphBLAS Native CSR
4.0 =eeE CSR (View)
Ml NWGraph Edge List (View)

L) R NWGraph Edge List (Direct)
g 3.0 B NWGraph Adjacency List (View)
S BEE NWGraph Adjacency List (Direct)
C 2.01
=
o

1.0 0.70.70.70.70.79.7

0.20.20.20.20.20.2 0.20.20.20.20.20.2
0.0’ Mms)SmsJJ!:\s'les 35ms 32ms
com-Orkut ldoor Mouse Gene nipkkt160 kim?2
Carnegie Mellon University , o DISTRIBUTION STATEMENT A] This material has been
© 2023 Carnegie Mellon University 41

Software Engineeri ng Institute approved for public release and unlimited distribution.

Experimental Results: Matrix reduction (sumreduce)

e Less computational intensity shows overhead of flattening hierarchical data structures

o Upto 15% overhead (when adapting NWGraph Adjacency List)

Summing All Elements in Sparse Matrix

175- 172171

150 mmm GraphBLAS Native CSR
gy B CSR View
E 125 B NWGraph Edge List (View)
@ 100 B NWGraph Edge List (Raw)
= W NWGraph Adjacency List (View)
€ 75 mmm NWGraph Adjacency List (Raw)
)
o 501

29 30 76 26 28 26
23 | 16 16 16 16 16 16
0- :
com-Orkut ldoor Mouse Gene nipkkt160 kim?2
Carnegie Mellon University , N DISTRIBUTION STATEMENT A] This material has been
© 2023 Carnegie Mellon University 42

Software Engineering Institute

approved for public release and unlimited distribution.

Conclusions

e Defined concepts and implemented views (adaptors) for many different data
structures
e The approach works with acceptable amounts of overhead (5 — 15%)
o Detailed analysis of the assembly code generated gives insight to possible
Improvements.
e Caveat: results are specific to these datasets and workloads.

o Some applications may benefit from copying the data in or out
o C++ API specification will still include import and export of data

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 43
Software Engineering Institute © 2023 Camegie Mellon University approved for public release and unlimited distribution.

Future Work

e Avoiding explicit constructor calls for views
o Adding another CPO would allow for automatic discovery of supported views
o C++ ranges library has automatic view support through a grb: :views::all
o Find some of this work in the RGRI repository

e Multi-dimensional iteration (discussed in last year's GrAPL paper)
o Row views and nested iterators (like in NWGraph)
o Avoids flattening (hampers compiler optimization)

o Deferred to a later release of the C++ API| Specification
= What should be supported?
= What will be offered in future releases of the C++ Standard Library

o Concepts for ordered iteration
e Views for mutating data (i.e., for MutableMatrixRange)

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 44
Software Engineering Institute © 2023 Carnegie Mellon University approved for public release and unlimited distribution.

Request for Comments

e First draft of the GraphBLAS C++ API Specification nearing completion
o Depends on (but does not include) the mathematical specification of each
operation
o Plans underway to extract a math specification from the C API for both APls

® Interested parties may review and comment on the C++ Specification
o Repository: https://qgithub.com/GraphBLAS/graphblas-api-cpp
o Use github Issues provide feedback and request changes/additions

e Reference Implementation is underway (where these experiments were performed):
o Repository: https://qgithub.com/GraphBLAS/rgri

Carnegie Mellon University , - DISTRIBUTION STATEMENT A] This material has been 45
Software Engineering Institute © 2023 Carnegie Mellon University approved for public release and unlimited distribution.

