
Realities of SBOM
© 2023 Carnegie Mellon University 1

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution© 2023 Carnegie Mellon University
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution

Realities of SBOM:

What is Under the Hood of SBOM

M A Y 1 1 , 2 0 2 3

Hasan Yasar

Technical Director and Faculty Member

Realities of SBOM
© 2023 Carnegie Mellon University 2

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and

development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an

official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED

FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see

Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form

without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to

the Software Engineering Institute at permission@sei.cmu.edu.

DM23-0478

Realities of SBOM
© 2023 Carnegie Mellon University 3

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Yesterday’s Enterprise

Source: www.wikipedia.org

http://www.wikipedia.org/

Realities of SBOM
© 2023 Carnegie Mellon University 4

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Growing Supply Chain Complexity

Realities of SBOM
© 2023 Carnegie Mellon University 5

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Software is Everywhere

“In short, software is eating the world.” -

Marc Andreesen

Source:https://informationisbeautiful.net/visualizations/million-lines-of-code/

Source: www.wjs.com

DEPARTMENT O FTRANSPO RTATIO N

Federal Aviation Administration 14 CFR Part 39

[4910-13-P]

[Docket No. FAA-2015-0936; Directorate Identifier 2015-NM-058-AD;

Amendment 39-18153; AD 2015-09-07]

RIN 2120-AA64

Airworthiness Directives; The Boeing Company Airplanes AGENCY: Federal

Aviation Administration (FAA), DOT.ACTIO N: Final rule; request for

comments.

SUMMARY: We are adopting a new airworthiness directive (AD) for all The

Boeing Company Model 787 airplanes. This AD requires a repetitivemaintenance

task for electrical power deactivation on Model 787 airplanes. This AD was

prompted by the determination that a Model 787 airplane that has been powered

continuously for 248 days can lose all alternating current (AC) electrical power

due to the generator control units (GCUs) simultaneously going into failsafe

mode. This condition is caused by a software counter internal to the GCUs

that will overflow after 248 days of continuous power. We are issuing this AD

to prevent loss of all AC electrical power, which could result in loss of control of

the airplane.

Source: www.edgardaily.org

http://www.wjs.com/
http://www.wikipedia.org/

Realities of SBOM
© 2023 Carnegie Mellon University 6

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Why does it matter?

97% of commercial code contains at least some open source codes1

81% of codebases contain an outdated version of open source2

62% of breaches originated from a compromised software component
3

4Sonatype Software Supply Chain Attack report 2020
5Mend Annual Report, Open Source Vulnerabilities 2021

1+2Synopsys OSSRA report 2022
3Verizon Data Breach Investigations Report 2022

Open Source Vulns per Year5

(2009-2020)

Software Supply Chain Attacks4

(2015-2020)

Realities of SBOM
© 2023 Carnegie Mellon University 7

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

When breached, a single exploitable software component can compromise countless services.

Use Case: Log4j – a software component embedded in Java-based products and web services.

Why does it matter? (continued)

• Exemplary ROI

• ≈10,000 person-hours with an estimated ad-hoc response

cost equal to $400K – $900K

• A breach incident could have resulted in an average

financial risk range of $141K – $5.7M5
Log4j

Realities of SBOM
© 2023 Carnegie Mellon University 8

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Targeting Software Development

Adversaries target software development (source, build, and deployment systems): SolarWinds, ASUS

Live/Shadowhammer, MEDoc/Not Petya, others.

Reflections on Trusting Trust, Ken Thompson, 1984:

“No amount of source-level verification or scrutiny will protect you from using untrusted code. In demonstrating the possibility of this

kind of attack, I picked on the C compiler. I could have picked on any program-handling program such as an assembler, a loader,

or even hardware microcode. As the level of program gets lower, these bugs will be harder and harder to detect. A well-installed

microcode bug will be almost impossible to detect.”18

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

https://www.cs.cmu.edu/~rdriley/487/papers/Thompson_1984_ReflectionsonTrustingTrust.pdf

Realities of SBOM
© 2023 Carnegie Mellon University 9

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Software supply chain for assembled software

• Expanding the scope and complexity of

acquisition and deployment

• Visibility and direct controls are limited

(only in shaded area)

Source: “Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure
Software Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis of
May 2004 GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks”

http://www.softwaretechnews.com/

Realities of SBOM
© 2023 Carnegie Mellon University 10

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

But SW Development became like a College Party

Do you know

what’s in your app?

Code we wrote

Code someone

else wrote

http://acardiac.blogspot.com/
http://acardiac.blogspot.com/

Realities of SBOM
© 2023 Carnegie Mellon University 11

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Is SBOM is all about creating with tools?

Realities of SBOM
© 2023 Carnegie Mellon University 12

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Our Goal: Secure Software!

Smarter software requires safer and more

secure design, development, and

deployment into secure infrastructures.

"OWASP Comparison 2017 vs. 2021" by Fundación OWASP is l icensed under CC BY-SA 4.0. To view a copy of this l icense, visit

https://creativecommons.org/licenses/by-sa/4.0/

Realities of SBOM
© 2023 Carnegie Mellon University 13

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

DevSecOps

• “DevOps is a set of principles and practices

which enable better communication and collaboration

between relevant stakeholders for the purpose of

specifying, developing, continuously improving,

and operating software and systems products

and services.” [1]

• “DevSecOps is a cultural and engineering practice that

breaks down barriers and opens collaboration between

development, security, and operations organizations

using automation to focus on rapid, frequent delivery

of secure infrastructure and software to production.

It encompasses intake to release of software and

manages those flows predictably, transparently,

and with minimal human intervention/effort.” [2]

[1] IEEE 2675 DevOps Standard for Building Reliable and Secure Systems Including Application Build, Package and Deployment
[2] DevSecOps Guide: Standard DevSecOps Platform Framework . U.S. General Services Administration. https://tech.gsa.gov/guides/dev_sec_ops_guide.

Realities of SBOM
© 2023 Carnegie Mellon University 14

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

DevSecOps Goal

DevSecOps-oriented enterprises

are driven by three concerns:

• Business Mission captures stakeholder needs

and channels the whole enterprise to meet those needs. It

answers the questions: Why does the enterprise exist? and For

Whom does the enterprise exist?

• Capability to Deliver Value covers the people, processes, and

technology necessary to build, deploy, and operate the

enterprise's products.

• Products are the units of value delivered by

the organization. Products utilize the capabilities delivered by the

software factory and

operational environments.

Realities of SBOM
© 2023 Carnegie Mellon University 15

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

SBOM and DevSecOps

• SBOM should be integrated into SDLC

across DevSecOps practices and process

• SBOM should ne integrated with Risk and

Vulnerability malmanagement

• SBOM will be used to response any new

security findings for libraires or code under

application stack

Realities of SBOM
© 2023 Carnegie Mellon University 16

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

SBOM across DevSecOps

DEV OPSSEC

Open Source
Library Governance

3rd party code, framework
Base OS and
container
Images,

Monitor 3rd

party
libraires,

Runtime
dependencies and
release artifacts

Build dependencies

Runtime dependencies

Cloud delivery and
deployment configuration.
Docker images

Realities of SBOM
© 2023 Carnegie Mellon University 17

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Understand How to Test, Validate,

and Recognize SBOM DevSecOps

Realities of SBOM
© 2023 Carnegie Mellon University 18

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution][DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

But How to Start?
Realities of SBOM

Realities of SBOM
© 2023 Carnegie Mellon University 19

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Common Format for SBOM

SPDX is an open standard for
communicating software bill of material
information (including components,
licenses, copyrights, and security
references). The SPDX specification is
developed by the SPDX workgroup,
which is hosted by The Linux
Foundation. The grass- roots effort
includes representatives from more
than 20 organizations— software,
systems and tool vendors, foundations
and systems integrators.

SWID tags record unique
information about an installed
software application, including its
name, edition, version, whether it is
part of a bundle and more. SWID
tags support software inventory
and asset management initiatives.
The structure of SWID tags is
specified in international standard
ISO/IEC 19770-

2:2015.

CycloneDX is a software bill of
materials (SBOM) standard, purpose-
built for software security contexts
and supply chain component
analysis. The specification is
maintained by the CycloneDX Core
working group, with origins in the
OWASP community

• All has common elements.

• A ‘multilingual’ ecosystem does not offer too many challenges

• Rather than pick a winner, develop guidance to support all formats with effective interoperability.

Realities of SBOM
© 2023 Carnegie Mellon University 20

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Start to Build a Secure pipeline for your

Development and Deployment

Realities of SBOM
© 2023 Carnegie Mellon University 21

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Then use secure pipeline for your app!

• Create and maintain software dependency for

each build

• Track ALL 3rd party, including open-source

libraries, used in i) code development, ii) build,

and iii) runtime process

Realities of SBOM
© 2023 Carnegie Mellon University 22

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Implementing core SBOM fields

Elements CycloneDX

Supplier publ i s he r

Component name

Unique Identifier bom/seria lNum ber and
compone nt/ bo m-r ef

Version v e r s i o n

Component Hash hash

Relationship (Nested assembly/subassembly

and/or dependency graphs)

SBOM Author bo m- de s c r i p t o r :
me t a da t a / ma nuf a c t ur e
/
c o nt a c t

CycloneDX uses a Package URL to uniquely identify a

version of a dependency and its place within an

ecosystem. It looks like this:

The Package URL identifies all relevant component

metadata, including ecosystem (type), group

(namespace), name, version, and key/value pair

qualifiers.

Realities of SBOM
© 2023 Carnegie Mellon University 23

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Operations – How Does It All Fit

SBOM Policy (Design/Source)

Policy Compliance

(Artifactory)
Continuous Integration

(GitLab)

SRA

(OWASP Dependency Track)

Policy to

acquire/enforce

(Vendor SBOM)

Continuous Deployment

(Artifactory)

 VG to create and maintain
policies that identify security
violations based on matching
conditions of CVE
severity.<New>

 Artifactory scans finished
component artifacts and
generates SBOM containing
CVE details.

 VG to measure policy
violations across the portfolio,
and against individual projects
and components for
SecureUP reporting. <New>

 Components failed from
security policy scans are
reported back to GitLab for
remediation.

 Build pipelines in GitLab submit
finished artifacts to artifactory
for deployment phase activities.

 Developers will have visibility to
component composition and
vulnerabilities through GitLab

 Establish Policy to
mandates, software
delivered to the
enterprise from a
supplier to include a
contractual software bill
of materials in common
format

 Ask requestor to develop
first set of SBOM files

 Perform impact analysis
of supply chain software
libraries.

 perform impact analysis
on vendor SBOM using
OWASP dependency
track

 Use analysis output as an
additional input to
overall risk assessment
quantification.

 Components that pass
security and compliance
policies check make to
deployment.<New>

 Artifactory enforces
security violation policy
rules be blocking
components getting into
continuous deployment
stage.

1 2

1 2 3

CI/CD Policy Compliance (Build, Analyze,

Deploy)

Realities of SBOM
© 2023 Carnegie Mellon University 24

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Integrate and automate SBOM

Software Composition
Analysis Capabilities

Operations

Test

Developer
“Desktops”

Build choreography

Source Code
Repos

(Public & Private)

Package Repos
(Public & Private)

Vulnerability
Information

Ecosystem of Software Development,
Integration, and Management Tools

Licensing
Information

• Develop and implement artifact catalog

• Document automation scripts for dependencies

• Integrate SBOM files /scripts into build files

• Enable automated artifact pull/push one each

build

• Develop automated scripts including artifacts and

environment configuration

• Develop and update scripts to release any

dependencies along with new version of the app

• Enable base containers/internal repository

• Continuously monitor and analyze dependencies

• Security vetting process for each approved

libraires

• Monitor for each newly CVEs

Realities of SBOM
© 2023 Carnegie Mellon University 25

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution][DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

SBOM in action
Realities of SBOM

Realities of SBOM
© 2023 Carnegie Mellon University 26

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

What is the project

• Rust code base that contains a chain vulnerability

• Determine issues from supply chain dependencies

• Verify the process for building the project

• Execute checks of the code being written

• Execute checks of the external libraries

Realities of SBOM
© 2023 Carnegie Mellon University 27

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Pipeline

• Static code analysis

• Build the code

• Package up support library

• Generate an SBOM(Software Bill Of Materials)

• Upload build artifacts

• Scan SBOM

• Verify the build commands

Realities of SBOM
© 2023 Carnegie Mellon University 28

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Demo Time

Let us see exemplary project to for SBOM lifecycle

Realities of SBOM
© 2023 Carnegie Mellon University 29

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution][DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Pipeline Stages
Realities of SBOM

Realities of SBOM
© 2023 Carnegie Mellon University 30

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Lint, Build, and Package Stages

• Cargo Clippy

• Static code analysis

• Lint checks

• Cargo Build

• Builds the crate

• Builds the binary

• Fails only if code errors

• Cargo Publish

• Push the crate to

Artifactory

Realities of SBOM
© 2023 Carnegie Mellon University 31

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

SBOM and Verify Stages

• Software Bill Of

Materials

• CycloneDX

• XML

• Artifactory

• Push binary

• Add build meta-

data

• bomber_scan

• Kungfu-Bomber

- Vulnerability Scan

SBOM

- Check dependent

crates

• verify

• In-toto-verify the

build steps

Realities of SBOM
© 2023 Carnegie Mellon University 32

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

lint_check

$ in-toto-run -s -n lint_check -k ./.secure_files/gitlab -v -- cargo clippy

…

Checking supplychain-sandbox-wrap v0.1.9 (/var/lib/runner/builds/sei/supplychain-sandbox/supplychain-sandbox-wrap)

warning: variable does not need to be mutable

--> supplychain-sandbox-wrap/src/supplychain_sandbox_wrap.rs:17:9

|

17 | let mut v = vec![1, 2, 3];

| ----^

| |

| help: remove this `mut`

|

= note: `#[warn(unused_mut)]` on by default

arning: `supplychain-sandbox-wrap` (lib) generated 1 warning

Checking supplychain-sandbox v0.1.1 (/var/lib/runner/builds/sei/supplychain-sandbox)

Finished dev [unoptimized + debuginfo] target(s) in 23.17s

Realities of SBOM
© 2023 Carnegie Mellon University 33

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

bom.xml

<bom …>

...

<component type="library" bom-ref="pkg:cargo/regex@1.5.4">

<name>regex</name>

<version>1.5.4</version>

<description>…</description>

<scope>required</scope>

...

<purl>pkg:cargo/regex@1.5.4</purl>

<externalReferences>

...</externalReferences>

</component>

...

</bom>

Realities of SBOM
© 2023 Carnegie Mellon University 34

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Bomber scanning

$ bomber scan bom.xml
██▄▄▀▄ █▄▄███▄██▀█▀▄

█▄█ ▀▄▀█▀ ██▄██▄▄█▀▄

DKFM - DevOps Kung Fu Mafia
https://github.com/devops-kung-fu/bomber
Version: 0.4.4
■ Ecosystems detected: cargo
■ Scanning 5 packages for vulnerabilities...
■ Vulnerability Provider: OSV Vulnerability Database (https://osv.dev)
■ Files Scanned
bom.xml (sha256:dadcdb030f572f30441136ea1088242a33d7bf213ff74b9265e83c587d05485f)
■ Licenses Found: Unlicense OR MIT, MIT OR Apache-2.0
│TYPE│NAME│VERSION │ SEVERITY │ VULNERABILITY │ EPSS % │
│cargo│ regex │ 1.5.4 │ UNSPECIFIED │CVE-2022-24713 │ 52% │

│ │ │ 1.5.4 │ HIGH │CVE-2022-24713 │ 52% │

https://github.com/devops-kung-fu/bomber
https://osv.dev/

Realities of SBOM
© 2023 Carnegie Mellon University 35

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution][DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

What is next?
Realities of SBOM

Realities of SBOM
© 2023 Carnegie Mellon University 36

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

?

?

?
?

How do we solve it?
Software Bill of Materials (SBOM) needs to be considered mandatory for any effective DevSecOps or AppSec effort.

Document the “ingredients” within each software
package

• Expediates detection of vulnerable components downstream.

• Avoids heavy costs incurred due to security breaches, a bad

reputation, and regulatory penalties.

• Map all Apps to codebases

 Decide: project team be established to review and update data
quality management

• Enforce CI/CD policy compliance

 Decide: by default, formally require teams follow end-to-end for
build and deploy using CI/CD pipeline that supports integration of
SBOM generation, or they file an exception.

Do I always want to know what’s in my
food before eating it?

Realities of SBOM
© 2023 Carnegie Mellon University 37

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Takeaway!

Design Source Build Analyze Deploy

SBOM

 Develop and share Open source software usage policy
 Bring the SBOM into development early:
 As early as planning stage like creating security stories.
 Evaluate a product’s threat resistance
 Create a centralized private repositories of vetted 3rd party

components for all developers
 Apply policy and management through DevOps pipeline
 Continuous training and monitoring developers activities
 Automate and monitor dependencies management
 Track build and deploy decencies list
 Apply discovered(new) vulnerabilities and deployment

process
 Establish good product distribution practices
 Supplier security commitment evidence
 Automate your SBOM tools as much as possible.
 Integrate. Integrate. INTEGRATE!

Runtime

Realities of SBOM
© 2023 Carnegie Mellon University 38

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

DevSecOps: https://www.sei.cmu.edu/go/devops

DevOps Blog: https://insights.sei.cmu.edu/devops

Webinar Series: https://www.sei.cmu.edu/publications/webinars/

Podcast Series: https://www.sei.cmu.edu/publications/podcasts/

For More Information

https://www.sei.cmu.edu/go/devops
https://insights.sei.cmu.edu/devops
https://www.sei.cmu.edu/publications/webinars/index.cfm
https://www.sei.cmu.edu/publications/podcasts/index.cfm

Realities of SBOM
© 2023 Carnegie Mellon University 39

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Realities of SBOM
© 2023 Carnegie Mellon University 40

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Question and answer time

What does this mean to you?

How can we put these ideas into action?

Realities of SBOM
© 2023 Carnegie Mellon University 41

[DISTRIBUTION STATEMENT A] This material has been approv ed f or public release and unlimited distribution

Contact Information

Hasan Yasar

Technical Director, Adjunct Faculty Member

Continuous Deployment of Capability,

Software Engineering Institute | Carnegie Mellon University

hyasar@cmu.edu

mailto:hyasar@cmu.edu

