
1
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[Distribution Statement A] Approved for public
release and unlimited distribution.

FY21 LSI Project
“Title”
Detection of Malicious Code

This is a two-year SEI-funded
project, ending in Oct 2024.

Will Klieber

April 2023

2
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the

Department of Defense under Contract No. FA8702-15-D-0002

with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and

development center.

The view, opinions, and/or findings contained in this material are

those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by

other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY

AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS

FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been

approved for public release and unlimited distribution. Please

see Copyright notice for non-US Government use and

distribution.

This material may be reproduced in its entirety, without

modification, and freely distributed in written or electronic form

without requesting formal permission. Permission is required for

any other use. Requests for permission should be directed to the

Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

DM23-0445

3
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Outline

• Problem

• Our solution, at a high level

• Motivation for the new technique that we are developing

• Details of the core information our tool will provide to analysts

• Potential next steps to make the tool more useful

- We want your input on what would be most valuable to you.

- We want our tool to be able to easily integrate with your existing workflows.

4
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Problem

• DoD uses much software produced by various supply chains.

• These supply chains can be compromised by an adversary:

- Network intrusion

- Insider threat

• Failing to detect malicious code can be very costly.

• Detection is currently impractical.

• Specifically, we aim to detect two types of malicious code:

- Exfiltration of potentially sensitive information (e.g., keyloggers)

- Timebombs / logic bombs, Remote-Access Trojans, etc:
Calling a potentially sensitive system API call (e.g., writing to a file, starting a new process, etc.)

in response to a potentially questionable trigger (e.g., on a specific date, in response to incoming
network packets, etc.)

5
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Our solution

• We will use information flow techniques, as well as other static analysis.

- We are building on Phasar, an LLVM-based static-analysis framework:
https://github.com/secure-software-engineering/phasar

• Scope restriction: We will flag code as potentially malicious, but further human analysis

is required to determine whether the code is actually malicious.

- Whether behavior is malicious depends on the what the program is supposed to do.

- Vulnerabilities (e.g., SQL injection) that arise from violation of secure-coding rules are outside

the main focus of this project.

6
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Information Flow Analysis

• Taint analysis using the Interprocedural, Finite,

Distributive Subset (IFDS) algorithm

- has successful track record, e.g., finding

malicious flows of information in Android apps.

- Sources: designated system API calls that
return potentially sensitive information.

- Sinks: designated system API calls that can be
used to exfiltrate information to an attacker.

• Limitation: conflates together all flow paths from a
given source to a given sink.

• So, a malicious flow path can be ‘hidden’ by a

benign flow path.

• Our idea: Flows that depend on different

conditionals in the code should be kept separate.

Source

Sink

Benign

Flow 1

Benign

Flow 2

Malicious

Flow

7
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Motivating example E1 (pseudocode)

1. function Flow_1() {

2. cmd = read_from_keyboard();

3. if (is_upload_cmd(cmd)) {

4. name = get_file_name(cmd);

5. x = read_from_file(name);

6. send_to_network(x);

7. }

8. }

9.

10. function Flow_2() {

11. data = read_from_network();

12. if (is_special_cmd(data)) {

13. x = read_from_file("secrets.txt");

14. send_to_network(x);

15. }

16. }

File

System

Network

Flow 1 Flow 2

8
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Motivating example (continued)

• In example E1 (on the previous slide):

- Flow 1 happens if the true branch of one conditional is taken, and

- Flow 2 happens if the true branch of another conditional is taken.

• Standard taint analysis conflates these two flows together.

• Our idea: Separate the flows by which branches of which conditionals

need to be taken for the flow to happen.

9
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Diagram of our tool, with its input and output

Initial tool

capability

for May release

Note: Analysis is done

at the level of LLVM IR

Tool output: Sensitive source-to-sink

flows and sensitive operations,
separated by conditionals.

Specifically: a set of tuples of the form

(source, sink, conditional_edge).

Human

adjudication

Source Code (C or C++,

buildable by Clang)
or LLVM IR

Build Command

List of sensitive sources,

sensitive sinks, and
sensitive operations

Capabilities to be added
in later releases of tool:

Generation of flow paths,
filtering, UI, etc.

Binaries: We might be able to

work with binaries in FY24 by

lifting them to LLVM IR using

the lifter that Jeff Gennari is

developing.

10
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Output of initial tool
• The output of our initial tool will be a list of unique (source, sink, conditional_edge) tuples.

- The conditional_edge field specifies an outgoing edge (in the control-flow graph) of a conditional jump.

• It is represented as a pair of (cond_jump, jump_target), where cond_jump and jump_target identify a

source-code location in the form of a tuple of (filename, line number, column number).

- At the user’s choice, the fields source and sink may simply hold the names

of system API functions, or they may also include the source-code location.

• Example output for E1 (reproduced at the right):
[
{“src”: “read_from_file”,
“sink”: “send_to_network”,
“cond_edge”: [{“file”:“E1.c”, “line”:3, “col”:3},

{“file”:“E1.c”, “line”:4, “col”:5}]},

{“src”: “read_from_file”,
“sink”: “send_to_network”,
“cond_edge”: [{“file”:“E1.c”, “line”:12, “col”:3},

{“file”:“E1.c”, “line”:13, “col”:5}]},
...

]

1. function Flow_1() {

2. cmd = read_from_keyboard();

3. if (is_upload_cmd(cmd)) {

4. name = get_file_name(cmd);

5. x = read_from_file(name);

6. send_to_network(x);

7. }

8. }

9.

10. function Flow_2() {

11. data = read_from_network();

12. if (is_special_cmd(data)) {

13. x = read_from_file("…");

14. send_to_network(x);

15. }

16. }

11
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Output of initial tool (continued)

• If a source-to-sink flow happens unconditionally, a dummy value NULL is used in the

conditional_edge field.

• If a flow involves multiple conditionals, then the output includes a tuple for each

conditional.

- So, an upper bound on the number of entries in the output list is:
num_sources * num_sinks * (num_cond_edges+ 1).

• For sensitive operations without a source-to-sink flow:

- The source field is NULL, and

- the sink field is the sensitive API function.

• In addition to the set of (source, sink, conditional_edge) tuples,

we plan to provide a flow path (described on next slide) for each tuple.

12
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Flow paths

• A flow path describes a flow of information in a single run of

the program.

• Example: The arrows in the diagram at the right illustrate a
flow path from read_source to write_sink.

- Symbolically, we write this flow path as:

[(C2, x, read_source),
(C3, x, x),
(C4, y, x),
(C8, write_sink, y)]

• In general, we represent a flow path as a sequence of
(command, new, old) tuples such that:

1. The old field of each tuple is the same as the new field of the

previous tuple.

2. There is a direct flow from old to new during command. (This

includes the case where old is untouched and old = new.)

3. The sequence of commands is a trace (i.e., the sequence of

instructions executed in a run of the program) or part of a trace.

C1. void main() {

C2. int x = read_source();

C3. if (cond) {

C4. y = x ;

C5. } else {

C6. y = 0;

C7. }

C8. write_sink (y);

C9. }

13
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Generation of flow paths

• We plan to provide one flow path for each (source, sink, conditional_edge) tuple.

• Also, we plan to provide functionality for querying for additional flow paths.

• Query conditions might include:

- Source and sink

- Which conditionals must be involved in the flow

- Which conditionals must not be involved in the flow

- Which abstract memory locations must (or must not) be involved in the flow

14
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

User interface / API for tool

• The raw output of the initial tool probably won’t be convenient to use as-is.

• We can add UI / API functionality to make the tool more convenient to work with.

• Example functionality:

- Marking a conditional as non-suspicious and filtering it out.

- Marking a source/sink callsite as non-suspicious and filtering it out.

- Displaying the relevant parts of the source code when investigating a flow.

- Integration with an existing code editor / IDE / etc.

15
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Additional static-analysis functionality

• Identifying and highlighting/prioritizing suspicious features of conditionals

(e.g., features indicatives of timebombs)

• Separating flows that depend on conditional control flow other than conditional br:

- switch, indirectbr, function pointers (easy to implement)

- C++ exception handling, setjmp/longjmp (harder to implement)

• Separating flows by pointer-aliasing conditions they depend on, e.g.:

int x=0; int* p1 = &x;

int y=0; int* p2 = &y;

if (cond) {p2 = p1;}

*p1 = read_source();

write_sink(*p2);

16
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Questions (1) – integration and measurement of our tool

• I want to ensure that the tool being developed can usefully fit into your workflows.

• I was thinking it might be helpful for me to make an in-person visit to learn more about

your existing workflows and tools. What do you think of a visit?

- Perhaps a “ride along” where I see your current practices and tools?

- Do you use any kind of taint flow analysis today? If so, how do you use them?

- Anything else you can tell us about your current workflow, to help ease integrating our tool?

• What can we measure w.r.t. your current baseline and how our tool improves on it?

- E.g.: false-positive rate, false-negative rate, and/or amount of manual effort.

- What metrics are most important to you when evaluating our tool?

- In terms of these metrics, where do we need to be for the tool to be useful to you in practice?

- From our last meeting: something like “get us from 100,000 LoC down to 400 LoC to review,

even if 90% of remaining alerts are false positives”

17
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Questions (2)

1. How would you imagine using the flow information provided by the tool?

• Set of (source, sink, conditional_edge) tuples

• Flow paths

2. What features of flow paths might you want to prescribe in the query and want

identified in the output?

3. Currently, we plan to treat system calls (and direct I/O) as sources. We can also

provide functionality for treating some of the program’s internal data as sensitive –

would that be a high-priority capability?

4. What potential capabilities / features are most important to you?

18
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Questions (3)

1. What we need to get our tool accepted into your environment? (E.g., SBOM, etc.)

• We plan to distribute a self-contained Linux Docker image – does this work for you?

2. What size of codebases are you usually looking at?

3. Set up regular monthly meetings?

4. Is handling implicit flows a high priority? (See next slide)

19
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Implicit flows

We say there’s an implicit flow from a source to a sink iff: data written to the sink depends on

which branch of a conditional jump is taken, which in turn depends on data from the source.

Implicit flow:

x = read_bit_from_source();

if (x) {y=1;} else {y=0;}

write_bit_to_sink(y);

Implicit flows are evident only when examining multiple traces, in contrast to explicit flows,

which can be shown on a single trace.

We currently don’t plan to consider implicit flows in this project.

• Techniques for implicit flows generally introduce an excessive amount of false alarms.

• However, there are heuristics that we can try to identify laundering of data thru an implicit flow.

Explicit flow:

x = read_bit_from_source();

if (rand_bool()) {y=x;} else {y=0;}

write_bit_to_sink(y);

20
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Backup slides

21
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Two ways that an explicit flow can depend on a conditional

Way 1: The tainted data is written to a

memory location (or sink) inside a branch:

void main() {
int x = read_source();
if (condition) {
y = x; // true branch

} else {
y = 0; // false branch

}
write_sink(y);

}

Way 2: The tainted data is overwritten with

untainted data inside one branch but not the other:

void main() {
int x = read_source();
if (condition) {
// empty true branch

} else {
x = 0; // false branch

}
write_sink(x);

}

22
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Memory abstraction

• In order to run the analysis in a reasonable amount of time, we must abstract the

memory so that there are a relatively small number of abstract memory locations.

• Each abstract memory location conflates together multiple concrete memory locations.

• For example, usually a single abstract memory location is usually used to represent all

the elements in an array.

• With allocation site abstraction, all memory allocations at a single allocation site (e.g., a

malloc callsite in the codebase) are conflated together.

• The IFDS taint analysis is orthogonal to the type of memory abstraction used.

23
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Separating the flows – unstructured LLVM IR

• Earlier, we used the terminology “inside a conditional branch”. This works for structured “if”

statements, but LLVM IR can also have loops and unstructured GOTOs.

• Recall: We say a conditional edge is an outgoing edge (in the control-flow graph) of a

conditional jump.

• For each conditional edge, we define one or more merge edges. A merge edge is, roughly,

where the branch ends, coming back together with the other branch. (More on next slide)

• We say that a conditional path is a path in the control-flow graph that:

1. starts with a conditional edge e,

2. ends with a merge edge of e, and

3. doesn’t repeat any edges.

• For unstructured code, “inside a conditional branch” becomes “inside a conditional path”

24
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Merge edges

• Consider a conditional edge (J → T).

- J is a conditional-jump instruction.

- T is an instruction that J can jump to.

• An edge (X → Y) is a merge edge for (J → T) iff:

1. Y postdominates J or (pre-)dominates J, and

2. X is reachable from J without passing thru another

merge edge.

• In the example at the right:

- (T1 → M) is a merge edge for (J → T1).

- (T2 → M) is a merge edge for (J → T2).

- (T2 → J) is a merge edge for (J → T2).

J

T1 T2

M

…

…

https://en.wikipedia.org/wiki/Dominator_(graph_theory)#Postdominance

25
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example 1 of merge edges (structured if/else)

x = read_file(...);
if (cond) {

y = x;
} else {

y = 0;
}
write_to_net(y, ...);

• The merge edge for conditional edge (C2 → C3) is (C3 → C7).

• The merge edge for conditional edge (C2 → C5) is (C5 → C7).

• The conditional paths are:

- C2 → C3 → C7

- C2 → C5 → C7

• Add to the output list: (read_file, write_to_net, (C2 → C3))

C1:
C2:
C3:

C5:

C7:

conditional edge (C2 → C3)

merge edge (C3 → C7)

26
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example 2 of merge edges (GOTO version of example 1)

x = read_file(...);
if (cond) {goto C3;} else {goto C5;}
y = x;
goto C6;
y = 0;
write_to_net(y, ...);

• The merge edge for conditional edge (C2 → C3) is (C4 → C6).

• The merge edge for conditional edge (C2 → C5) is (C5 → C6).

• The conditional paths are:

- C2 → C3 → C4 → C6

- C2 → C5 → C6

• Add to the output list: (read_file, write_to_net, (C2 → C3))

C1:
C2:
C3:
C4:
C5:
C6:

27
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example 3 of merge edges (empty “else” branch)

x = read_file(...); y = 0;
if (cond) {goto C3;} else {goto C5;}
y = x;
goto C5;
write_to_net(y, ...);

• The merge edge for conditional edge (C2 → C3) is (C4 → C5).

• The conditional edge (C2 → C5) is identical to its merge edge.

• The conditional paths are:

- C2 → C3 → C4 → C5

- C2 → C5

• Add to the output list: (read_file, write_to_net, (C2 → C3))

C1:
C2:
C3:
C4:
C5:

28
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example 4 of merge edges (unstructured loop)

y = 0;
if (cond) {goto C3;} else {goto C5;}
y = read_file(...);
goto C2;
write_to_net(y, ...);

• The merge edge for conditional edge (C2 → C3) is (C4 → C2).

• The conditional edge (C2 → C5) is identical to its merge edge.

• The conditional paths are:

- C2 → C3 → C4 → C2

- C2 → C5

• Add to the output list: (read_file, write_to_net, (C2 → C3))

C1:
C2:
C3:
C4:
C5:

29
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Example 5 of merge edges (structured loop)

y = 0;
while (cond) {

y = read_file(...);
}
write_to_net(y, ...);

C1:
C2:
C3:

C5:

• The merge edge for conditional edge (C2 → C3) is (C3 → C2).

• The conditional edge (C2 → C5) is identical to its merge edge.

• The conditional paths are:

- C2 → C3 → C2

- C2 → C5

• Add to the output list: (read_file, write_to_net, (C2 → C3))

30
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Definition of “directly depends”

Let L1 and L2 be memory locations, and let C be an IR instruction.

The value held in L2 immediately after executing C directly depends on

the value held in L1 immediately before executing C iff one of the following holds true:

1. L2 = L1 and L1 isn’t written to by C

2. C computes an operation (e.g., an arithmetic or bitwise operation) using the value in

L1 and stores the results in L2

3. C takes the value in L1 and writes it to L2

• If C is a call instruction, then C is considered to take the actual arguments at the callsite

and write them to the memory locations of the formal parameters of the callee.

• If C is a return instruction, and the calling function (which is being returned to) assigns

the return value to a variable x, then the return instruction is considered to write the

return value to the memory location of x.

31
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Demo of Phasar on toy example

$ docker run --rm -v $PWD:/data phasar -m /data/mal-client.ll
-D ifds-taint --analysis-config /data/file-to-net.config.json
--call-graph-analysis=cha

PhASAR v1222
A LLVM-based static analysis framework

----- Found the following leaks -----
At instruction

IR : %call1 = call i64 @write(i32 noundef %sockfd, i8* noundef %s,
i64 noundef %call) #16, !dbg !376, !psr.id !377 | ID: 111

Leak(s):
IR : i8* %s | ID: send_to_network.1

32
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Phasar example: file-to-net.config.json
(list of sources and sinks)

{ "name": "taint-config-test",
"version": 1.0,
"functions": [
{ "name": "fread",
"params": {
"source": [0]

}
},
{ "name": "write",
"params": {
"sink": [1]

}
}

]
}

33
CMU SEI FY23 Line Proj ect
© 2022 Carnegie Mellon University

[Distribution Statement A] Approved for public
release and unlimited distribution.

Parameterized sinks

• In the mal-client.c example, the system API function write is listed as a sink.

• However, this function can write to both network sockets and to regular files, depending

on its first argument (the file descriptor).

• To distinguish between sending data to the network and writing data to a local file, we

will do an auxiliary information-flow analysis to trace the origin of the file descriptor

used in the call to write.

