
AFRL-RV-PS-
TR-2022-0088

AFRL-RV-PS-
TR-2022-0088

SMALL SATELLITE POSITION, NAVIGATION,
AND TIMING INNOVATIONS
VOLUME I - CONTACT CLOCK TESTBED

Christopher Flood and Penina Axelrad

University of Colorado Boulder
Aerospace Engineering Sciences, CCAR
3775 Discovery Drive
Boulder, CO 80303

30 August 2022

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC COPY

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by AFMC/PA and is available to the general
public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2022-0088 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

 //SIGNED//

Dr. Spencer E. Olson
Program Manager/AFRL/RVB

//SIGNED//

Mark E. Roverse, Chief
AFRL Geospace Technologies Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
30-08-2022

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
4 Dec 2018 – 30 Aug 2022

4. TITLE AND SUBTITLE
Small Satellite Position, Navigation, and Timing Innovations
Vol. I – CONTACT Clock Testbed

5a. CONTRACT NUMBER
FA9453-19-1-0076

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
63401F

6. AUTHOR(S)
Christopher Flood and Penina Axelrad

5d. PROJECT NUMBER
3682

5e. TASK NUMBER
EF134353

5f. WORK UNIT NUMBER
V1NE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado Boulder
Aerospace Engineering Sciences, CCAR
3775 Discovery Drive
Boulder, CO 80303

8. PERFORMING ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory
Space Vehicles Directorate
3550 Aberdeen Avenue SE
Kirtland AFB, NM 87117-5776

AFRL/RVBYT

 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

AFRL-RV-PS-TR-2022-0088
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited (AFRL-2023-1731 dtd 12 Apr 2023).
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This final report documents the work completed by researchers and students in the Colorado Center for Astrodynamics Research (CCAR)
and Smead Aerospace Engineering Sciences at the University of Colorado Boulder, to model and develop technologies and algorithms to
advance small space platform positioning, navigation, and timing, with a primary emphasis on timing systems. The report is presented in
three volumes. Volume 1 presents the CONTACT software defined radio (SDR) based testbed for measurement and ensembling of low
size, weight, and power (SWaP) atomic clocks. Volume 2 describes the development of a CSAC flight experiment to be flown on the
MAXWELL UNP-9 CubeSat, expected to be launched in 2023. Volume 3 focuses on modeling and analysis of distributed optical time and
frequency transfer across small satellites in a large-scale low Earth orbit (LEO) constellation.

15. SUBJECT TERMS
CSAC performance, clock testbed

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Dr. Spencer E Olson

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified Unlimited 138

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

This page is intentionally left blank.

Approved for public release; distribution is unlimited.

i

TABLE OF CONTENTS

 Section Page
LIST OF FIGURES iv

LIST OF TABLES vii

1 SUMMARY . 1

2 INTRODUCTION . 2

2.1 Project Motivation . 2

2.2 Project Description . 2

3 METHODS, ASSUMPTIONS, AND PROCEDURES 4

3.1 Testbed Architecture . 4

3.2 Clocks . 5

3.3 Software Defined Radios . 10

3.3.1 Red Pitaya . 12

3.3.2 N310 . 15

3.3.3 N200 . 20

3.4 Testbed Software Models . 23

3.4.1 Clock Profiles . 23

3.4.2 Clock Steering . 24

3.4.3 Clock State Estimation . 25

3.5 Programming in GNU Radio Companion 27

3.5.1 Moving Data and Data Rates 28

3.5.2 Embedded Python Blocks 29

3.5.3 USRP Block Options . 30

3.5.4 Loops . 30

Approved for public release; distribution is unlimited.

ii

3.6 Clock Phase Measurements ... 31

3.6.1 Effect of the Local Oscillator .. 33

3.6.2 External Reference Oscillator ... 33

3.6.3 Measurement Noise ... 38

3.6.4 Clock Phase Measurement Considerations 38

3.7 OCXO Frequency Characterization ... 39

3.8 Communication Protocols for Time Synchronization 41

3.8.1 NTP ... 42

3.8.2 PTP .. 43

3.8.3 White Rabbit .. 44

3.8.4 Limitations .. 45

4 RESULTS AND DISCUSSION ... 46

4.1 Testbed Software Models .. 46

4.1.1 Clock Profiles ... 46

4.1.2 Steering Simulation .. 47

4.1.3 IEM Steering .. 49

4.2 Experimental Clock Phase Measurements ... 50

4.2.1 Effect of the Local Oscillator .. 50

4.2.2 Measurement Noise ... 52

4.2.3 Measured Clock Stability ... 54

4.3 OCXO Frequency Characterization ... 56

4.3.1 Wenzel OCXO & Power Supply ... 56

4.3.2 NEL OCXO & DAC .. 57

4.4 SDR with External Reference Oscillator ... 59

4.4.1 SDR Transmit Test .. 59

4.4.2 SDR Receive Test .. 60

4.4.3 SDR Transmit & Receive Test ... 62

Section Page

Approved for public release; distribution is unlimited.

TABLE OF CONTENTS (continued)

iii

4.5 OCXO Steering to Known Reference .. 63

4.5.1 Wenzel OCXO & Power Supply ... 63
4.5.2 NEL OCXO & DAC .. 64

4.6 Clock State Estimation .. 65

4.7 Clock Ensemble Testbed Integration .. 68

5 CONCLUSIONS ... 71

REFERENCES ... 73

APPENDIX A - Red Pitaya Data Acquisition MATLAB Code .. 76

APPENDIX B - Testbed Simulation MATLAB Code .. 78

APPENDIX C - Clock Signal Generation MATLAB Code .. 82

APPENDIX D - Clock STM Generation MATLAB Code ... 86

APPENDIX E - Allan Deviation MATLAB Code .. 87

APPENDIX F - Simulate Testbed Function MATLAB Code .. 88

APPENDIX G - Phasor Block .. 91

APPENDIX H - Phase Unwrap Block ... 93

APPENDIX I - Ensemble Kalman Filter Block .. 95

APPENDIX J - OCXO Kalman Filter Block .. 101

APPENDIX K - DAC Message Block .. 106

APPENDIX L - Power Supply Message Block .. 109

APPENDIX M - DAC Arduino Code ... 112

TABLE OF CONTENTS (continued)

Section Page

Approved for public release; distribution is unlimited.

iv

LIST OF FIGURES

 Figure Page
1 Functional Block Diagram . 4

2 Microsemi SA.45s CSAC [11] . 5

3 SRS Rubidium Frequency Standard [12] . 5

4 Wenzel Associates OCXO [13] . 6

5 NEL OCXO [14] . 6

6 Orolia Miniaturized Rb Oscillator [15] . 6

7 Assembled Interface Board . 7

8 Breakout Board Schematic . 8

9 CONTACT Breakout Board Layout . 9

10 CSAC/Breakout Board Serial Port Communication .. 10

11 10 MHz Output Comparison .. 10

12 Red Pitaya [17] .. 11

13 Ettus N200 [18] .. 11

14 Ettus N310 [19] .. 11

15 Red Pitaya [17] .. 13

16 10 MHz Sampled at 125 MHz - First 125 Samples .. 14

17 Ettus USRP N310 Front Panel .. 15

18 Ettus USRP N310 Rear Panel .. 16

19 Ettus USRP N310 Motherboard Block Diagram [19] ... 16

20 Ettus USRP N310 Transceiver Block Diagram [19] .. 17

21 Ettus USRP Tuning with Center Frequency and LO Offset 19

22 Time Series and Power Spectrum with (top) and without (bottom) LO Offset 20

Approved for public release; distribution is unlimited.

v

23 Ettus N200 [18] .. 21

24 Ettus N200 Motherboard [18] .. 22

25 Ettus N200 - BasicRX Daughterboard .. 23

26 System Response to Phase and Frequency Step Inputs ... 25

27 USRP Source Block Settings ... 30

28 USRP Source Block RF Options .. 30

29 Measurement System Block Diagram - Theory [7] .. 31

30 Measurement System Block Diagram - Implemented ... 32

31 Measurement System Implemented in GNU Radio Companion 32

32 SDR Transmit Test Configuration .. 34

33 SDR Receive Test Configuration ... 35

34 Simultaneous Transmit & Receive Test Configuration ... 37

35 N310 with Transceiver 0 Inputs (Blue) and Transceiver 1 Inputs (Red) 38

36 Benchtop Power Supply ... 40

37 Digital to Analog Converter .. 41

38 PTP Instancing Between Nodes ... 44

39 Simulated CSAC Time Series ... 47

40 ADEV of Simulated CSACs .. 47

41 Time Series of Steering OCXO to CSAC 01 - 1 hour ... 48

42 Steered OCXO Curves Minus CSAC 01 - 24 hours .. 48

43 Time Series of Steering OCXO to CSAC 01 - 24 hours ... 49

44 ADEV of Steered OCXOs, CSAC 01, and Unsteered OCXO 49

45 Time Series of Simulated CSAC, IEM, and Steered OCXO 50

46 ADEV of Simulated CSACs, IEM, and Steered OCXO ... 50

47 Measured Clock Phase with Common SDR Clock Contribution 51

48 Measured Clock Phase against a Rubidium Reference .. 51

49 Allan Deviation of CSACs and LO of Ettus N310 ... 52

Figure Page

Approved for public release; distribution is unlimited.

LIST OF FIGURES (continued)

vi

50 N310 Different Daughterboard Noise ... 53

51 N200 and N310 Same Daughterboard Noise ... 53
52 Allan Deviation of SDR Noise .. 53

53 Stability of Clocks in CONTACT Project .. 55

54 Voltage / Frequency Relationship for Wenzel OCXO and Power Supply 57

55 Voltage / Frequency Relationship for NEL OCXO and DAC 58

56 CSAC & SDR Transmit Test Configuration ADEV ... 59

57 CSAC & SDR Receive Test Configuration ADEV - No Reference 60

58 CSAC & SDR Receive Test Configuration ADEV - With CSAC Reference . 61

59 Simultaneous Transmit & Receive Test Configuration ADEV 62

60 OCXO Steering Block Diagram. ... 63

61 Steering Wenzel OCXO to Chip with Power Supply .. 64

62 Steering NEL OCXO to Spacebuff with DAC .. 65

63 GNU Radio Companion Kalman Filter .. 65

64 Measured Clock Bias with respect to Rb Reference ... 66

65 Estimated Clock Bias Output from Kalman filter .. 66

66 Difference Between Measured (solid) and Estimated (dashed) Clock Biases . 67

67 Difference of Clock Bias Differences .. 67

68 ADEV of Measured and Estimated CSACs .. 68

69 Clock Ensemble Testbed Block Diagram ... 69

70 Clock Ensemble Testbed .. 69

71 ADEV of Steered OCXOs ... 71

Figure Page

Approved for public release; distribution is unlimited.

LIST OF FIGURES (continued)

vii

LIST OF TABLES

 Table Page

1 CONTACT Team Project Participants ... viii

2 Comparison Between Hardware Platforms .. 11

3 GNU Radio Blocks .. 28

4 GNU Radio Embedded Python Blocks Developed for CONTACT 29

5 Measured CSAC ADEVs ... 55

6 Measured Clock ADEVs .. 56

Approved for public release; distribution is unlimited.

Acknowledgements

The authors gratefully acknowledge the specific contributions to the work described in Vol-

ume 1 by team members Alex Conrad, Prayag Desai, Daniel Dowd, Justin Pedersen, Rahul
Ramaprasad, and William Watkins.

We acknowledge the valuable advice provided Dr. Joanna Hinks and her colleagues at
AFRL who attended our presentations and gave helpful feedback for moving forward with
the project; and by Dr. Robert Lutwak of Microchip regarding the performance and testing
of the CSACs. Additionally, we thank Dr. Nicholas Rainville for providing project guidance;
Harrison Bourne and Steve Taylor for SDR advice and network help; Dr. Franklin Ascarrunz
of SpectraDynamics and NIST researchers - Dr. Nate Newbury, Dr. Jeff Sherman, and Dr.
Stefania Romisch for sharing their expertise, loaning us equipment, and helping conduct
early testing of our clocks.

Finally, we want to recognize the hard work of all CONTACT team members shown in
Table 1 below, who contributed since this project’s inception in Spring 2019.

Table 1. CONTACT Team Project Participants

Last Name First Name Position(s) Dates
Colpaert Cydnee MS Graduate Project Team 08/21 - 05/22
Conrad Alex PhD Student Volunteer 01/20 - 05/20
Davies Laura PhD Student Volunteer 09/21 - 12/21
Desai Prayag Independent Study 08/20 - 12/20
Dixon Caroline Undergraduate Research Assistant 08/20 - 06/21
Dixon Henry MS Thesis, MS Research Assistant 01/19 - 02/21
Dobbin Mikaela MS Graduate Project Team, Research Assistant 08/21 - 08/22
Dowd Daniel MS Graduate Project Team, Independent Study 08/19 - 12/20
Flood Christopher PhD Student Volunteer 08/19 - 08/22
Khatri Yashica MS Graduate Project Team 08/19 - 06/20
Krebs Christopher Undergraduate Research Assistant 06/21 - 05/22
LaBarge Quinn MS Graduate Project Team 08/20 - 05/21
Mezich Andrew MS Graduate Project Team 01/19 - 05/19
Morris Tyler MS Graduate Project Team 08/19 - 05/20
Nichols Alexander MS Graduate Project Team 01/19 - 05/19
Pedersen Justin Undergraduate Research Assistant 06/22 - 08/22
Ramaprasad Rahul Independent Study 08/19 - 12/19
Reynolds Zachary MS Graduate Project Team 01/19 - 05/19
Rybak Margaret PhD Student Volunteer 01/19 - 05/19
Schement Luciana MS Graduate Project Team 08/20 - 05/21
Watkins William MS Graduate Project Team 08/21 - 05/22

viii
Approved for public release; distribution is unlimited.

1 SUMMARY

This final report documents the work completed by researchers and students in the Colorado

Center for Astrodynamics Research (CCAR) and Smead Aerospace Engineering Sciences at

the University of Colorado Boulder, to model and develop technologies and algorithms to

advance small space platform positioning, navigation, and timing, with a primary emphasis

on timing systems. The report is presented in three volumes. Volume 1 presents a software

defined radio (SDR) based testbed for measurement and ensembling of low size, weight,

and power (SWaP) atomic clocks. Volume 2 describes the development of a CSAC flight

experiment to be flown on the MAXWELL UNP-9 CubeSat, expected to be launched in

2023. Volume 3 focuses on modeling and analysis of distributed optical time and frequency

transfer across small satellites in a large-scale low Earth orbit (LEO) constellation.

The Colorado Nanosat Atomic Clock Testbed (CONTACT) was a three-year graduate

project conducted at the University of Colorado Boulder (CU Boulder) to educate students

and advance small satellite timing system technology. The CONTACT team designed, as-

sembled, and operated a testbed to facilitate development of low size, weight, and power

(SWaP) approaches to small satellite timing systems. The testbed is based around an SDR

metrology architecture which enables clock measurements, clock characterization, clock en-

sembling, and steered signal generation. The testbed supports evaluation of concepts for

timing systems that include the following functionality:

1. Low noise clock phase measurements for free-running clock characterization

2. Using relative phase measurements and Kalman filtering techniques to form a
clock ensemble

3. Creating a steered realization of the ensemble time scale for on-board generation of
communication or navigation signals

This report provides an overview of the CONTACT project, the hardware, and methods

used to create a clock characterization and ensembling testbed using software defined radios.

In the following sections we combine low-noise clock phase measurement systems, estimation

algorithms, and signal steering techniques to produce an output signal with OCXO-like short

term stability and long term stability of the CSAC clock ensemble IEM.

1
Approved for public release; distribution is unlimited.

2 INTRODUCTION

2.1 Project Motivation

In August 2019, the DoD publicly released an unclassified version of its “Strategy for the De-

partment of Defense Positioning, Navigation, and Timing (PNT) Enterprise: Ensuring a U.S.

Military PNT Advantage.” Emphasizing the foundational role of GPS PNT in Joint Force

operations, the Strategy warns that “space-based PNT services provided by GPS will be tar-

geted and will not always be available in contested military operating areas...complementary

PNT capabilities must be applied.” [1]

While GPS is best known as a navigation system, one of its critical functionalities in pro-

viding global PNT capability is disseminating precise time, time intervals, and frequency.

Communications systems use both time and frequency to maintain accurate carrier frequen-

cies and data-bit phase timing. Secure networks have especially stringent timing require-

ments for the synchronization of data encryption and decryption equipment [2]. Since the

1950s, the gold standard for timekeeping has been ground-based atomic clocks; which are

generally not suitable for spaceflight or ground vehicles due to their size, weight, power re-

quirements, and environmental sensitivity [3]. Space qualified atomic clocks are used in GPS

to provide a consistent, accurate, and inexpensive external frequency source to both military

and civil users around the globe.

As a part of the “complementary PNT capabilities” aimed at mitigating the inherent vul-

nerability of DoD dependence on GPS, the Air Force Research Lab (AFRL) is interested

in developing accurate on-board timing technologies that are less reliant on frequent GPS

time corrections. This report presents work completed by the Colorado Nanosat Atomic

Clock Testbed aerospace engineering sciences graduate project team at the University of

Colorado Boulder, sponsored by the AFRL Space Vehicles Directorate. The CONTACT

project objective was to develop a testbed capable of ensembling three or more low-SWaP

atomic clocks to produce an accurate and robust time signal for small satellite applications.

Advanced PNT satellites could use this technology to achieve a highly accurate time scale

when GPS is unavailable. Satellites in GPS-denied environments with strict position accu-

racy requirements could also benefit from an improved on-board time reference to support

precise orbit determination [4].

2.2 Project Description

The continued development of accurate, robust on-board timekeeping technologies is foun-

dational to the improvement of non-GPS PNT capabilities for a multiplicity of military and

civil applications. Complementary PNT enabled by low-SWaP on-board timing systems has

2
Approved for public release; distribution is unlimited.

potential to increase the resilience of communication and navigation systems in degraded

or denied GPS environments. The limited performance inherent in low-SWaP clocks can

be mitigated by ensembling several independent devices and generating a steered output

frequency signal based on the weighted averages of the inputs. A testbed was used to eval-

uate the performance of various clock configurations and signal steering techniques [5] as

well as to measure the effects of environmental factors and clock errors. In this report we

describe the design and implementation of a clock ensemble testbed on a software defined

radio (SDR) hardware platform [6]. Results from this work could be used in the develop-

ment of low-SWaP on-board timing systems capable of meeting Precise Time and Frequency

(PT&F) requirements in the absence of GPS.

The testbed has three chip scale atomic clocks (CSAC) as clock inputs to generate a

steered output signal, via an OCXO, and a clock characterization report of the steered sig-

nal measured against a Rb frequency standard. The system is currently implemented on two

SDRs and programmed with GNU Radio Companion, an open-source software development

toolkit. The software radio makes it possible to process signals in the 10 MHz – 200 MHz

range with the goal of clock characterization and ensemble formation. SDR oscillator metrol-

ogy techniques[7] enable precise clock phase measurements while maintaining low on-board

storage requirements. The measured phase data are processed to produce Allan Deviations

(ADEVs) plots to evaluate the oscillator frequency stability.

In a clock ensemble, phase difference measurements are input to a Kalman filter to estimate

the bias and drift of each clock under test [8]. The filter implements a standard two-state

clock model and measured noise parameters from clock characterization experiments. The

estimated states are the phase and frequency for each input clock - these estimates produce a

composite clock timescale by way of a weighted-average ensembling algorithm [9]. The output

signal is measured against a rubidium frequency standard to evaluate controller performance

and the signal stability with different steering parameters.

Sections 3.1 - 3.3 below discuss the testbed architecture and the hardware used in the

project. Theory is developed in sections 3.4 - 3.5 which describes the individual testbed

components, how they were simulated in software, and an overview of GNU Radio Compan-

ion programming. Section 3.6 describes the process of making clock phase measurements.

Most theory and architecture is outlined in Section 3 with corresponding results in Section

4. All simulated data, clock phase measurements, and steering experiments results are

contained in Section 4. System integration and testing is detailed in Section 4.7. The report

conclusions are presented in Section 5 followed by references and a set of appendices including

source code for key components of testbed software.

3
Approved for public release; distribution is unlimited.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Testbed Architecture

The block diagram in Figure 1 shows the separate components of the standalone testbed

system. The full, integrated testbed is currently implemented using the Ettus N310 SDR.

The digital signal processing chain is implemented using GNU Radio which runs on a PC

connected to the SDR. The testbed accepts clock signal inputs and generates a steered

output signal along with characterization reports. Each subsystem block within the testbed

is described below.

Figure 1. Functional Block Diagram

Measurement Subsystem

The measurement subsystem accepts input signals from multiple clocks and makes phase
measurements for comparison between the selected clocks. The clocks under test are sampled
and the measurement data is passed to the filtering subsystem.

Characterization Subsystem

The characterization subsystem processes clock time series data to produce Allan Deviation
(ADEV) plots. The ADEV plots are used to determine the types of noise affecting the
stability of the clock signals over different time i ntervals. The values are sent to the filter and
ensemble subsystem to update the process noise and measurement noise covariance matrices.
The ADEVs will also be compared to the frequency stability specifications provided by the
manufacturer of the member clocks.

4
Approved for public release; distribution is unlimited.

Filtering Subsystem

The filtering s ubsystem p roduces e stimates f or t he b ias a nd d rift o f e ach m ember clock.
The filter u ses a s tandard c lock m odel a nd t he v ariance v alues f rom t he characterization
subsystem for the clock state propagation. The differenced c lock m easurements (i.e. with
respect to one of the member clocks) from the measurement subsystem are used as input to
the filter. T he fi lter pr oduces cl ock st ate es timates re lative to th e im plicit en semble mean
of the clock inputs.

A separate filter is used to estimate the frequency error between the steered output signal
and the implicit ensemble mean, generating a frequency adjustment for the steered
output signal.

Signal Generation Subsystem

The signal generation subsystem serves the role of realizing the implicit ensemble mean. This
is accomplished by steering the frequency of an external OCXO towards the IEM [10]. In
order to perform this required task, a programmable voltage sources are used to electronically
steer an OCXO based on optimal frequency corrections computed by the filtering system.

3.2 Clocks

Four different t ypes o f c locks a re u sed i n t his p roject: C SACs, O CXOs, a miniaturized
rubidium oscillator (MRO), and a rubidium frequency standard. Photos of the clocks are
shown in Figures 2-5. Three CSACs are used as the members of a small clock ensemble
and two OCXOs are separately used to realize the implicit ensemble mean. An MRO could
potentially serve as a fourth member of the clock ensemble or the IEM realization. The Rb
serves as a reference against which other clock signals are measured.

Figure 2. Microsemi SA.45s CSAC
[11]

Figure 3. SRS Rubidium Frequency
Standard [12]

5
Approved for public release; distribution is unlimited.

Figure 4. Wenzel Associates OCXO
[13]

Figure 5. NEL OCXO [14]

Figure 6. Orolia Miniaturized Rb Oscillator [15]

CSAC Interface Board

The CONTACT team designed and built a functionally similar, lower cost alternative to
the Microsemi SA.45s Chip Scale Atomic Clock (CSAC) Developer’s Kit. Key functional
requirements were a simple power interface, stable voltage, dual 10 MHz outputs supporting
50Ω loads, dual 1PPS outputs, and a socketed mount for flexibility i n C SAC t esting. The
following subsections detail the steps involved in the breakout board design and testing.

Design Requirements The design of the breakout board is primarily based on the ref-

erence schematic provided by Microsemi for their Developer’s kit [16]. All the core digital

6
Approved for public release; distribution is unlimited.

Figure 7. Assembled Interface Board

logic circuitry, the power supply and filtering c ircuitry, a nd g eneral l ayout g uidelines were
based on Microsemi’s board design, and were copied over without any major modifications.

In addition to the core logic and power circuitry from Microsemi, some additional features
were added to the design to facilitate CSAC testing. These additional features included a
mini USB connector and a USB FTDI converter to power and enable communication
with the CSAC over the same cable, an additional 10 MHz output derived from the CSAC
output, and some ESD protection circuitry in the form of an ESD protection diode to
protect the CSAC.

7
Approved for public release; distribution is unlimited.

Figure 8. Breakout Board Schematic

Hardware Design Altium designer was used to develop the schematic of the breakout
board. The design shown in Figure 8 is the final s chematic o f t he b reakout c reated after
combining essential parts of Micosemi’s reference design and the additional features added
to the board.

To power the board, there are two low dropout 3.3 volt linear voltage regulators, each
powered by +5V provided by the USB connector, which are then filtered w ith a ferrite
bead. One regulator is used to power the CSAC, and the other is used to power all other
digital logic. The FT232 USB to UART converter is used to communicate with the CSAC
over USB. This eliminates the need for a separate +5V adapter to power the board and a
separate RS232 cable connected to a USB to RS232 converter to enable communication with
the CSAC. The TVS diode connected to the data lines of the USB connector should protect
the board against accidental ESD discharges.

The layout, shown in Figure 9, was created using Altium Designer as well. To minimize
the potential for signal interference with the clock, the USB inputs and the communication
chip were placed away from the CSAC and the low-dropout regulators. The 10 MHz output
traces were designed to have 50Ω traces and source series terminations to prevent reflection
noise. The final layout was about 37% smaller than the Microsemi Developer’s kit.

8
Approved for public release; distribution is unlimited.

Figure 9. CONTACT Breakout Board Layout

Testing the Breakout Board Breakout board testing was performed in stages to prevent
damaging the CSAC during initial power-up. First, after the assembly was completed, a
simple continuity test between the pins of the CSAC and the power pads was done to detect
any shorts in the board. Once that was done, and no direct shorts were detected, the board
was powered on without the CSAC placed on the board. After powering the board for the
first t ime, v oltages w ere c hecked a t t he p ower p ins o f t he C SAC t o e nsure t hat t hey are
within operating specifications.

A function generator was used to generate reference 10 MHz and 1 PPS signals. These
signals were fed into the digital logic used to condition the CSAC outputs, and the resultant
waveform was tested with an oscilloscope. Once testing the digital logic was completed, the
TX and RX pins of the USB-FTDI converter were shorted to echo the input, hence testing
the USB to serial converter. After all the aforementioned tests were completed, the CSAC
was inserted into the socket and all the tests were repeated.

The CSAC breakout board shows up as a COM port when plugged into a USB port, and a
terminal emulator (e.g. puTTY) can be used to communicate with the board. On inserting
the CSAC and connecting to it, a help menu shows up when the key ’H’ is pressed, which is
shown in Figure 10. As the CSAC responds to a key press, we confirmed that bidirectional
communication with the CSAC is possible.

On comparing the 10 MHz output from the new breakout board (Figure 11a) and the
Microsemi Developer’s kit Figure (11b), we see that they are very similar. The breakout
board has a slightly higher peak-to-peak voltage (40mV), but that might just be an effect
of using a different power source to power the board. This slightly higher noise should not

9

Approved for public release; distribution is unlimited.

Figure 10. CSAC/Breakout Board Serial Port Communication

(a) Breakout Board 10 MHz output (b) Microsemi Board 10 MHz output

Figure 11. 10 MHz Output Comparison

affect operation, as the frequency readout from the oscilloscope was a stable 10 MHz, and
there is no noticeable noise or distortion around the zero crossings.

3.3 Software Defined Radios

Software defined radios were used to condition, digitize, and characterize 10 MHz timing
signals. Three different devices were considered in this project: Red Pitaya 125-10, Ettus
N200, and Ettus N310. The Red Pitaya is the lowest cost device, but has the least formal
support and proved challenging to program. Both Ettus SDRs were much simpler to program
with the GNU Radio software, but are more expensive than the Red Pitaya.

The Ettus N310 was selected for the clock ensemble testbed because it has four receive
ports which suits the hardware requirements of the testbed. At least three channels are

10

Approved for public release; distribution is unlimited.

required to measure and ensemble the CSACs under test, while the fourth receive channel is

used for the steered output signal. The Ettus N200 is used to evaluate the stability of the

steered signal against a rubidium frequency reference. This component is only available in

the ground testbed; it would not be part of a onboard clock ensemble. Images of the SDRs

are in Figures 12 - 14 below and a hardware comparison is shown in Table 2.

Figure 12. Red Pitaya [17]

Figure 13. Ettus N200 [18] Figure 14. Ettus N310 [19]

Table 2. Comparison Between Hardware Platforms

Parameter Red Pitaya Ettus N200 Ettus N310
RX Channels 2 0 or 2 4
TX Channels 2 0 or 2 4

Frequency Range 0-50 MHz 1 - 250 MHz 10 MHz-6 GHz
Processor ARM Cortex-A9 N/A ARM Cortex-A9

FPGA Xilinx Zynq 7010 Xilinx Spartan 3A-DSP Xilinx Zynq 7100
ADC Resolution 14 bits 14 bits 16 bits
DAC Resolution 14 bits 16 bits 14 bits

Max Sampling Rate 125 MHz 100 MHz 153.6 MHz
Customer Support No Yes Yes

Cost $500 $2,500 $15,000

11
Approved for public release; distribution is unlimited.

3.3.1 Red Pitaya

Red Pitaya devices are a family of low cost, compact, RF data acquisition and signal gen-

eration systems [17]. Each device has an ethernet port and unique IP address where users

can interact with the device through the online application. There are a suite of default

applications in the web interface - oscilloscope, spectrum analyzer, etc - that mirror the

functionality of many common laboratory instruments. Alternative ways to interface with

the device is over a network via standard commands for programmable instrumentation

(SCPI) or through custom C scripts running on the device. The SCPI commands can be

sent in MATLAB, LabVIEW, Scilab, or Python.

The Red Pitaya was purchased in the early stages of this project and was never fully

incorporated to the testbed. Looking back, it appears the Red Pitaya has potential to be a

useful component of a clock characterization system. As the Red Pitaya is a capable, low

cost, open source device, there exists an active community who have used the products for

many applications beyond the default functionality. Implementation of custom functionality

usually requires FPGA modifications, a scary prospect for non-FPGA engineers. The details

of these projects are scattered across user forums and GitHub accounts rather than in a

central, company supported location - successful implementation of the the Red Pitaya as a

clock measurement or signal generation device would require a good deal of time and research

for those not familiar with FPGA programming.

The Red Pitaya documentation can be found here: https://redpitaya.readthedocs.io/

12
Approved for public release; distribution is unlimited.

https://redpitaya.readthedocs.io/en/latest/quickStart/quickStart.html

Figure 15. Red Pitaya [17]

Three programming methods were considered for system implementation on the Red
Pitaya. Initial setup and testing was performed using the built-in SCPI server. LabVIEW
does not support FPGA programming for devices not manufactured by National Instru-

ments. For this reason, directly programming the FPGA directly was considered. The third
implementation method was to host C scripts on the Red Pitaya operating system.

SCPI Programming The Red Pitaya documentation provides a set of SCPI commands
that can be used to connect with the device in a variety of programming environments. Here
we will discuss the experience with MATLAB and LabVIEW, two pieces of software selected
due to familiarity of former team members.

The process for acquiring data in MATLAB is quite manual, requiring a series of commands
to prepare for the data acquisition and read data from the buffer. The example script used
for the test was copied from the documentation and is listed in Appendix 5. A 10 MHz
signal was generated with an Agilent 33210A Signal Generator and connected to the Red
Pitaya. In this example the decimation factor was set to 1, resulting in a sampling rate of
125 MS/s. Only one frame of buffer values i s sent with each SCPI call, which introduces a
risk of sample loss between calls.

13
Approved for public release; distribution is unlimited.

Figure 16. 10 MHz Sampled at 125 MHz - First 125 Samples

Figure 16 show 125 samples of the full 16,000 samples obtained from a single SCPI call. The
graph shows approximately 10 cycles of the input signal, which agrees with what we expect
given the input signal frequency and sample rate. Initially this method seems promising, but
is limiting due to the nature of how data are transmitted between the Red Pitaya buffers
and the MATLAB environment - there is always a risk that there will be gaps in the data
between the SCPI calls.

Another potential method of interfacing with the Red Pitaya is through LabVIEW. Lab-

VIEW is a graphical programming environment used to interface with National Instruments
(NI) hardware platforms, including data acquisition devices and software defined radios.
Initial development in LabVIEW seemed promising due to the capabilities demonstrated by
similar products in the NI family. However, the team soon realized that since the Red Pitaya
is not an NI device, the range of capabilities was much more limited. In fact, the drag and
drop GUI blocks in LabVIEW were nothing more than a convenient method to build the
same SCPI commands used in MATLAB.

Data Acquisition with C Scripts As mentioned previously, MATLAB scripts and the
LabVIEW environment are not suitable for data acquisition because the SCPI calls provide
only a single buffer of data, introducing a r isk of data loss between c alls. However, running
C scripts on the Linux Red Pitaya OS allows for a lower level of control of the hardware
through C API functions.

C scripts were developed to read input sample values stored in the ADC buffer. The ADC
buffer provided by Red Pitaya can s tore up to 16,000 s amples. In the default software, the
buffer is split into two halves with boolean indicators showing when each half is f ull. In order

14
Approved for public release; distribution is unlimited.

to ensure continuity of data acquisition, the first half of the buffer is transmitted to the PC

once it is full. While the values in the first half of the buffer are transmitting, the ADC is

storing information in the second half of the buffer. Using this method of switching between

two buffers, data continuity is ensured. Web sockets were set up on both the PC and the

Red Pitaya to stream the data. The sample values received by the PC are written to a local

file using the File Stream library in C. This file can then be read by other programs such as

MATLAB, Python, or C to perform further processing of the sample values.

3.3.2 N310

In 2020 the Ettus USRP N310 software defined radio was chosen as the hardware platform

to ensemble clocks, primarily due to the number of channels on the device. It is a networked

SDR with an AD9371 transceiver on each of two daughterboards (two Receive (RX) and

Transmit (TX) channels each), the Xilinx Zynq 7100 FPGA SoC on the motherboard, a

GPS disciplined oscillator (GPSDO), dual SFP+ port, and various other peripheral and

synchronization features. The N310 front panel contains the SMA connectors to the TX/RX

channels as well as local oscillator (LO) ports as seen in Figure 17. The rear panel contains

a variety of host computer connections including ethernet, dual SFP + network, and USB

as seen in Figure 18. There are also SMA inputs for a GPS antenna, a reference clock signal,

PPS input trigger, and PPS output (trig out).

The sample rates are driven by the master clock which can be set to either 122.88 MHz,

125 MHz, or 153.6 MHz. Samples sent to the host computer through GNU Radio can be

decimated by the FPGA to reduce the data rate. The decimation rates can only be set to

an integer of the master clock frequency with a maximum decimation value of 1024.

Figure 17. Ettus USRP N310 Front Panel

15
Approved for public release; distribution is unlimited.

Figure 18. Ettus USRP N310 Rear Panel

Motherboard The N310 motherboard, as shown in Figure 19, contains the FPGA for
digital signal processing as well as the connection interfaces used by the host computer to
communicate with the N310. A clocking circuit is used to select a single oscillator input for
all other clocks in the system. By default, the clocking circuit is driven by an internal 25
MHz oscillator. Other options include the 20 MHz GPS disciplined oscillator and an external
reference clock. The 20 MHz GPS disciplined oscillator input can be used even without a
GPS signal if desired - in this configuration the oscillator is an unsteered TCXO.

Figure 19. Ettus USRP N310 Motherboard Block Diagram [19]

16
Approved for public release; distribution is unlimited.

Transceiver processing chain Each daughterboard supports two TX/RX ports and two

RX2 ports. The block diagram for a single daughterboard is shown in Figure 20. Only one

receive input between TX/RX and RX2 on a given RF port can be used at any given time for

a total of four RX and TX ports, but all four RX and TX ports can be used simultaneously.

Since the N310 contains the AD9371 transceiver, which only supports frequencies above

300 MHz, additional LO and mixer stages are needed to shift input signals below 300 MHz

into the AD9371 transceiver range. All of the clock signals in our lab output at 10 MHz,

meaning that these additional mixer stages will impact the processing . For received signals,

the low band upconverter uses an IF of 2.4418 GHz, and for transmitted signals, the low

band downconverter uses an IF of 1.95 GHz.

The motherboard contains the clock generation circuit that is connected to both the

AD9371 transceiver and the upconverter/downconverter mixer stages. For the AD9371

transceiver, the reference clock signal is used to derive the local oscillators to mix the re-

ceived signal down or generate the carrier for the transmitted signal. It should be noted that

separate LO’s are generated for the RX and TX signals, but both RX paths share the same

LO and the same is true for both TX paths, so two received/transmitted signals cannot be

tuned independently.

Figure 20. Ettus USRP N310 Transceiver Block Diagram [19]

Tuning The N310 is designed to shift received signals down to or near baseband, using
both analog and digital signal processing methods. This shifting of frequencies reduces
the required sampling rates and computational overhead in GNU Radio, but introduces
a significant a mount o f a nalog s ignal p rocessing (filtering, up conversion, downconversion)
before analog to digital conversion (ADC) for received signals, and after digital to analog

17
Approved for public release; distribution is unlimited.

conversion (DAC) for transmitted signals.

The host computer communicates with the N310 through the USRP Hardware Driver

(UHD). This allows the user to send tune requests through GNU Radio to bring a received

signal to baseband. A tune request allows the user to specify the expected frequency of

received signal. From this, the N310 sets the analog filters and LO’s. There are multiple

ways of commanding the N310 to tune the hardware. The simplest is to specify a center

frequency, and the N310 will shift the received signal to baseband by mixing down the

received signal by the center frequency. Another way is to use a UHD Tune Request. This

allows for specifying the center frequency, which still controls the final baseband signal, but

also allows for specifying an offset to the physical LO relative to the center frequency. In both

cases above, the N310 final tuning is done through two parameters, the RF/LO frequency

and a DSP frequency.

Terminology:

• Center frequency: the input frequency that is to be brought to baseband

• RF/LO frequency: the frequency of the physical LO used to mix down the received

analog signal

• LO offset: a specified offset to the RF/LO frequency

• DSP frequency: the frequency shift that is done digitally after sampling

When commanded to perform a UHD tune request, the N310 sets the RF/LO to the user

specified center frequency plus the LO offset. Figure 21 provides an overview of the tune

request. The received signal is first mixed down by the RF/LO frequency. This signal is

then digitally sampled, and the DSP frequency is used to shift the signal by the LO offset to

bring it fully to baseband. The reason for using an LO offset is to shift the DC component

of the LO out of the sample bandwidth. Using the tune request allows more control over the

tuning process. The resulting samples for an incoming 10 MHz signal and a specified center

frequency of 9,999,990 Hz with and without an LO offset can be seen in Figure 22. Using a

center frequency of 9,999,990 Hz should result in a baseband 10 Hz signal. The N310 tuning

result using these parameters is much cleaner with the LO offset and for that reason, this is

the recommended tuning method.

18
Approved for public release; distribution is unlimited.

Figure 21. Ettus USRP Tuning with Center Frequency and LO Offset

19
Approved for public release; distribution is unlimited.

Figure 22. Time Series and Power Spectrum with (top) and without (bottom)
LO Offset

3.3.3 N200

The Ettus USRP N200 is a two channel, networked software defined r adio. The daugther-

boards in this device are interchangeable with the capability of being either a transmit or a
receive device. The SDR has two RF signal input ports, an external reference input, a PPS
input, and ethernet port.

20
Approved for public release; distribution is unlimited.

Figure 23. Ettus N200 [18]

The N200 motherboard is shown in Figure 24 which contains the FPGA, the standardized
connection for the daughterboards, and the ethernet interface used by the host computer
to communicate with the N310. A clocking circuit drives all the clocks on the connected
daughterboard as well as the ADC and DAC. By default, the clocking circuit is driven by
an internal TCXO oscillator. Other options include connecting an external reference clock
or adding a separate GPSDO hardware component.

21
Approved for public release; distribution is unlimited.

Figure 24. Ettus N200 Motherboard [18]

The N200 documentation can be found here: https://www.ettus.com/n200/.

BasicRX Daughterboard The N200 is different from the N310 in that the functionality

of the device depends on the interchangeable daughterboard inside of it. The daughterboard

that we used in this project is the BasicRX board which turns the N200 into a receive device

with a frequency input range of 1 - 250 MHz.

22
Approved for public release; distribution is unlimited.

https://www.ettus.com/all-products/un200-kit/

Figure 25. Ettus N200 - BasicRX Daughterboard

The BasicRX documentation can be found here: https://www.ettus.com/basicrx/.

Tuning There is no local oscillator on either the BasicRX or BasicTX boards, meaning

that all tuning is handled by the FPGA in the form of digital downconversion. Aliasing is

not a concern as the frequency of the clock signals are small with respect to the sampling

rates of the DAC and ADC. The error of the local motherboard clock still contributes to the

sampled signal as the local oscillator is clocking the FPGA.

3.4 Testbed Software Models

Early in the project a strong emphasis was placed on the development of code to simulate

various aspects of the testbed. Writing capabilities in software enabled the team to gain an

understanding of the concepts prior to hardware acquisition and enabled rapid prototyping

capabilities. The following sections describe the code used to simulate clock profiles, clock

steering, and the formation of a clock ensemble. All functions and scripts are included in

the appendicies for reference.

3.4.1 Clock Profiles

Clock profiles are the phase and frequency time series for a simulated oscillator. We use

a simple two state dynamic clock model, with oscillator specific stability parameters deter-

mining the process noise covariance matrix. The discrete time model used in the project is

shown in the equations below[20].

23
Approved for public release; distribution is unlimited.

https://www.ettus.com/all-products/basicrx/

xk+1 = ϕ(τ)xk + wk (1)

Where the state transition matrix is defined by:

ϕ(τ) =

[
1 τ

0 1

]
(2)

And process noise vector:

wk ∼ N (0, Q(τ)) (3)

The process noise is assumed to be Gaussian and zero mean with covariance Q(τ) described

by white and random walk frequency noise parameters, q1 and q2. These noise parameters

are specific to each clock; realizations of this noise are represented by the noise vector -

Equation 3 - and are incorporated into the propagation according to Equation 1. Simulated

clock profiles are shown in Section 4.1.1.

Q(τ) =

[
q1τ + q2τ3

3
q2τ2

2
q2τ2

2
q2τ

]
(4)

3.4.2 Clock Steering

The repeated adjustment of oscillator frequency is known as clock steering. Clock steering

techniques are often used in the realization of timescales in order to take advantage of the best

clock stability across different averaging intervals. When steering in simulation, the phase

and frequency offset between the OCXO and the target state is known perfectly. The offset

is treated as a perturbation from which a frequency adjustment is computed and applied.

The OCXO frequency is controlled by changing the applied voltage on a frequency adjust-

ment pin. We want to minimize the state error - the phase and frequency difference between

the OCXO and the CSAC - by tuning the clock frequency. The discrete-time oscillator

dynamics are presented in Equation 5.

x(k + 1) = Ax(k) + Bu(k), u(k) = −Kx(k), x(k + 1) = (A−BK)x(k) (5)

The eigenvalues of the matrix A, where A = Φ(τ) from Equation 2, do not produce a

desirable system response to perturbations. Through the use of a control input, B, and gain

matrix, K, the eigenvalues can be chosen such that the perturbations are driven to zero over

time. The gain matrix computation is based on the pole placement method [21] where the

24
Approved for public release; distribution is unlimited.

characteristic equation of A−BK is used to solve for K matrix values that yield the desired

poles.

Examples of a generic clock system response to phase and frequency step inputs are shown

in Figure 26. Smaller eigenvalues will result in faster settling times.

Figure 26. System Response to Phase and Frequency Step Inputs

Clock steering simulations are presented in Section 4.1.2.

3.4.3 Clock State Estimation

The phase and frequency of one clock can only be measured relative to another reference. In

our laboratory, rather than measuring a clock directly against a highly stable reference, the

phase of the clock under test and the phase of a reference are measured with respect to a

less stable clock, as detailed in [7] and Section 3.6.1. The difference in phase measurements

removes the effect of the local oscillator and serves as the basis for characterizing the clock

under test. In a small system like the CONTACT testbed, we employ this approach, where

the sampling clock of the SDR serves as the common clock source, and differences between

two of the clocks under test, or a lab reference are used to characterize. The clock ensemble

uses relative phase measurements between clocks of similar stability as input to a Kalman

filter. The filter uses these phase difference measurements to estimate the member clock

states following Brown [9] and also as outlined in [8].

25
Approved for public release; distribution is unlimited.

Clock Model The clock model and state transition matrix for the Kalman filter is shown

below. There are three clocks each with two states - phase and frequency - represented by b

and f , respectively.

xk =



b1,k
f1,k
b2,k
f2,k
b3,k
f3,k


, ϕ(τ) =



1 τ 0 0 0 0

0 1 0 0 0 0

0 0 1 τ 0 0

0 0 0 1 0 0

0 0 0 0 1 τ

0 0 0 0 0 1


(6)

Measurement Model The inputs to the system are phase difference measurements be-

tween the ensemble member clocks. The phase difference measurements are used to estimate

the phase and frequency of each of the member clocks.

zk = Hxk + vk (7)

H =

[
−1 0 1 0 0 0

−1 0 0 0 1 0

]
(8)

A system composed of N clocks and N − 1 relative clock measurements will always be

unobservable when estimating N clock states, since an error common to all of the clocks will

not manifest in the relative measurements [9]. An assessment of the observability matrix

will show that the system is unobservable for 3 clock states.

rank(O) = rank

(


H

Hϕ

Hϕ2

...

Hϕm−1


)

= 4 ∀ m ≥ 2 (9)

Since there are 6 elements of the system state vector, the covariance matrix of the state

estimate in the filter will continue to grow without bound. The covariance reduction method

detailed in [9] separates the observable and unobservable components of P and uses the

observable component to prevent unbounded uncertainty growth.

26
Approved for public release; distribution is unlimited.

H∗ =



1 0

0 1

1 0

0 1

1 0

0 1


(10)

Pr = P −H∗(H∗TP−1H∗)−1H∗T (11)

IEM Realization A steerable OCXO serves as the basis of the IEM realization. The

clock state estimates and the phase of the OCXO are used to compute the phase offset of

the OCXO with respect to the IEM. Following the theory in [8], the clock estimates (x̂i(tk))

and measurements (zk(tk)) can be written as follows:

x̂i(tk) = xi(tk) − x0(tk) − ei(tk) (12)

zN(tk) = xN+1(tk) − x1(tk) + v(tk) (13)

The phase estimate of the first clock is added to the phase difference between the OCXO

and the first clock. The output of this operation is the offset of the OCXO with respect

to the IEM, along with measurement and estimation error. This phase value is input to a

filter to estimate phase and frequency. The estimated phase and frequency are then used to

compute a frequency adjustment command for the OCXO.

x̂1(tk) + z3(tk) = x4(tk) − x0(tk) − e1(tk) + v(tk) (14)

3.5 Programming in GNU Radio Companion

GNU Radio Companion (GRC) is an open source programming environment designed to

provide users with methods to simulate or interface with software radios [22]. The graphical

user interface is drag-and-drop with built in blocks performing a variety of signal processing

functions. Data are represented as signal streams passing between various blocks that operate

on the data. In GNU Radio Companion the USRP devices can be data sources (receivers)

or data sinks (transmitters). Once the clock signals are inside the GRC program, the data

streams are operated on by custom signal processing chains using both the built in signal

processing blocks as well as custom blocks. Some of the built-in blocks are listed in Table 3.

27
Approved for public release; distribution is unlimited.

Table 3. GNU Radio Blocks

Block Type Description
UHD: USRP Source/Sink Enables the user to receive/transmit signals

from/using the SDR (includes the UHD tune request)
File Source/Sink Read or write data streams from/to a binary file to

enable pre/post-processing
Complex to Arg/ Convert between I & Q data and signal phase
Arg to Complex
Add/Subtract/ Perform standard element-wise operations on a stream
Multiply/Divide input data
Rational Resampler Resample a signal through interpolation/decimation

of an input data stream
Signal Source Generates a digital signal during program execution
QT GUI Sink Displays the frequency spectrum and time-domain of

signals during program execution

3.5.1 Moving Data and Data Rates

Each GNU radio program we have developed starts with a digitized, complex signal stream
for each clock input to the SDR. Keeping track of the sampling rate at the different stages
in the program is important; the block functionality often depends on the sample rate
and a rate mismatch can cause errors in how the data are processed. We use variables for
the sample rate and decimation blocks to monitor the true sample rate at various points in
the program.

The sampling rate at most points in the GNU Radio program is slow enough that it is not
causing processing choke points and fast enough that there are not buffer fi lling is sues, as
described next. In this nominal scenario the data rate from a block output is equal to the
input data rate. The relevant edge case where this breaks down is at low sample rates.

Very low frequency processes can be tricky to implement due to the way GNU Radio
moves data around. The dynamic GNU Radio scheduler attempts to optimize the program
performance by breaking the streams of data into large chunks. The overhead associated with
moving data is significant. The program runs more efficiently (i. e. with higher throughput)
when each block in the flowgraph o perates o n l arge c hunks o f d ata a t a t ime, minimizing
data movement. So, GNU Radio sets up the program such that each block includes an input
buffer that fills up with the chunks of data prior to program execution.

However, this method of data handling presents a challenge for real-time systems[23] with
components that are low frequency - such as a < 1 Hz. A block will only operate on the
input data once the input buffer i s filled - as a result, a block may be waiting for the input

28

Approved for public release; distribution is unlimited.

buffer t o fi ll up and wi ll no t process da ta at th e de sired ra te. Th e mi nimum bu ffer siz e in
GNU Radio is 8 samples. If the input rate to a block is 1 sample per second, the block will
operate on all samples every 8 seconds rather than match the output rate to the input rate.
In order to realize an output data rate of 1 sample per second, the input data rate should be
set higher and decimation should be handled in the Python code to allow time for the buffer
to fill. In this method the buffer fills faster than the desired output rate and the output rate
is controlled programatically.

3.5.2 Embedded Python Blocks

Embedded Python blocks allow users to develop functionality not provided by built in signal
processing blocks. When an embedded block is added to the GNU Radio program a boiler-

plate Python script is generated that will operate on the input data stream. This underlying
Python script can be significantly edited to achieve the required functionality.

Inside the Python code there is an initialization function and a work function. The initial-

ization function controls the number of inputs and outputs of the block, the corresponding
data types, and any default parameters that should be passed into the block through the
GUI or constants that should be initialized. The work function operates on the input data
streams and assigns the processed data to the output ports of the block. The example pro-

vided by GRC is a simple scaling operation - however, reasonably complex functionality can
be implemented in this code such as phase unwrapping, phasor subtraction, Kalman filters,
and communication between the instruments in our laboratory. The Python functions we
have developed are attached in the Appendix. A list of the custom python blocks that the
team has developed is shown in Table 4 below.

Table 4. GNU Radio Embedded Python Blocks Developed for CONTACT

Block Type Description
Phasor Block Remove a nominal 73 Hz signal from the I and Q data
Phase Unwrap Block Adjust signal phase by N ∗ 2π
Clock Estimate KF Estimate phase and frequency of N clocks from

N − 1 relative phase measurements
OCXO KF Estimate phase and frequency of OCXO offset from IEM

from OCXO phase measurements
Power Supply Message Convert a frequency adjustment to a voltage and send

command to power supply

29
Approved for public release; distribution is unlimited.

3.5.3 USRP Block Options

Figure 27 shows the general options for setting up the USRP source block in GNU Ra-

dio. The device arguments field can be used to set a variety of other options available

to the N310, such as tracking calibrations built into the AD9371 transceiver, master clock

rate, and others. For a full list of device arguments please see the documentation here:

https://files.ettus.com/device-args/.

The tuning parameters are assigned in the RF options tab of the USRP Source block,

shown in Figure 28. The center frequency of each RF channel is filled with a UHD tune

request command, specifying the center frequency and LO offset values of the tuning chain.

The tuning process is described in detail in Section 3.3.2.

Figure 27. USRP Source Block Set-
tings

Figure 28. USRP Source Block RF
Options

3.5.4 Loops

Despite many RF and signal processing applications requiring them, GNU Radio does not

explicitly support loops. An error will be thrown if a loop is created when the output of a

block is connected to the input of another block. The reason for this is related to how data

streams are moved in the program - detailed in Section 3.5.1 - and described further here:

https://wiki.gnuradio.org/.

A loop could be created in GNU Radio by connecting the output of frequency adjustment

code to a signal source block or USRP signal sink, both methods of signal steering where

30
Approved for public release; distribution is unlimited.

https://files.ettus.com/manual/page_usrp_n3xx.html#n3xx_usage_device_args
https://wiki.gnuradio.org/index.php/FAQ#Why_can't_we_do_loops?

the signal source originates in GNU Radio. Theoretically, this setup would satisfy the re-

quirements of the testbed - a frequency adjustment is continuously computed based on the

input clock signals and the frequency is adjusted accordingly. However, this program would

not run due to the reasons mentioned above.

There are a few ways to circumvent the loop limitations - they can be constructed via an

asynchronous message passing interface or an embedded Python block. The asynchronous

blocks are built into GNU Radio but provide no guarantee on execution timeliness, as per the

name. Embedded Python blocks are the best option for implementing loop structures within

GNU Radio. As a block of data is passed to the function, a loop can be written to iterate over

and operate on the incoming data. In terms of closing the frequency steering loop, the signal

source is kept external to GNU Radio and is controlled via Python commands. Different

Python packages are used to control the voltage of a power supply or DAC connected to an

OCXO, closing the loop by sending commands from GNU Radio to the respective device.

3.6 Clock Phase Measurements

The software defined radios and GNU Radio environment together enable us to make phase

measurements of the clocks. Measurement campaigns which store the time series of the clock

phase allow us to compute the frequency stability of the oscillators under test.

A journal paper from NIST [7] provides the theory upon which the measurement system

is based. Both the theory and our implementation make phase measurements by recording

phase information of a low frequency (f << 10 MHz) beat signal. The processing diagram

shown in Figure 29 differs slightly from our implementation in Figure 30 - the beat frequency

of the signal is removed prior to computing the argument of the complex signal.

Figure 29. Measurement System Block Diagram - Theory [7]

In the figure a bove, z (tk) r epresents t he c omplex s ignal d ata t hat i s p assed i nto t he ar-

gument function. The wrapped phase is then unwrapped, the ideal linear phase growth is
removed, and the remaining data is used to calculate the time offset based on the measured
phase difference. T he m easurement s ystem i mplements t he a bove l ogic v ia c ustom python
blocks in GNU Radio Companion.

31

Approved for public release; distribution is unlimited.

Figure 30. Measurement System Block Diagram - Implemented

Two clocks shown on the left side of Figure 30 produce analog 10 MHz signals. After the
SDR performs the signal conditioning, downconversion, and sampling, the stream of samples
sent to the host PC is near baseband, offset b y 7 3 H z, a nd s ampled a t 1 20 k Hz. During
the frequency mixing process the clock onboard the Ettus N310 contributes a common error
that is present in both signals. The argument of the complex signal is computed and results
in a phase from [−π, π]. This wrapped phase is unwrapped, producing phase information
dominated by the local clock stability of the SDR oscillator. The primary trend in the
measured phase deviation for each clock over time will be due to the clock onboard the
SDR, as shown by the results in Figure 47.

We found that it is important to remove a 73 Hz signal from the beat frequency prior
to computing the argument and unwrapping the data. The unwrapped phase for each 73
Hz beat signal, while not a particularly high frequency, will grow without bound at the rate
ϕ = 2πfbeatt. The unwrapped phase of both signals are subtracted from each other, providing
a phase difference between the test and reference c locks. The problem with this approach is
that the magnitude of the frequency error in the test clock is much smaller than the beat
signal frequency. As the unwrapped phases grow without bound, there is a loss in decimal
precision of the numerical phase difference due to l imits in the finite number of bits used to
represent the unwrapped phase values. Any loss in decimal precision will degrade accuracy
with which the test clock phase can be measured, since the clock errors of interest are very
small and change quite slowly.

Figure 31. Measurement System Implemented in GNU Radio Companion

32
Approved for public release; distribution is unlimited.

Figure 31 shows the GNU Radio block diagram used to make phase measurements of one

clock with respect to another. The two custom blocks in this flowgraph are the Phasor Block,

which removes the 73 Hz signal, and the Phase Unwrap Block, which unwraps the signal

phase. The code for the Phasor Block is in Appendix 5 and the code for the Phase Unwrap

Block is in Appendix 5.

3.6.1 Effect of the Local Oscillator

Any signals that are measured using an SDR will initially be measured against the local

clock on the device. The internal clock of the measurement system has relatively poor

stability compared to atomic clocks and will impact the measured phase behavior of any

input signals. This approach is quite similar to clock characterization systems at NIST

where a multi channel measurement system (MCMS) is used to compare up to 16 oscillators

on one device[24]. The local oscillator of the MCMS has worse stability than the input

signals, but comparing two signals on the MCMS will cause the local oscillator effect to drop

out. In our setup we have four input clock signals: a rubidium frequency standard and three

CSACs. The clock phases were computed using the process shown in Figure 30. Effects of

the local oscillator on the input measurements are shown in Section 4.2.1.

3.6.2 External Reference Oscillator

Each SDR has an external reference input where a timing signal can be supplied to func-

tionally replace the local oscillator. The ability of the N200, USRP2, and N310 to lock to

an external reference was evaluated in three different configurations: transmit mode, receive

mode, and simultaneous transmit and receive mode. The overlapping Allan deviation was

used to characterize signal locking in the SDR. A reference lock is verified by examining the

frequency stability of the measured SDR signal with and without an external clock input.

If the stability of the SDR signal matches the stability of the reference clock then we say

a successful lock has been achieved. Each test was conducted for 45 minutes. GNU Radio

Companion was used to interface with the SDRs and store complex signal measurements for

post-processing in MATLAB. All external reference oscillator test results are presented in

Section 4.4.

Each test used the stored signals from GNU Radio Companion and converted them from

IQ data to phase measurements. Equation 15 shows the phase measurement model, which

consists of the beat frequency fb and phase variation ∆ϕ due to oscillator noise properties.

ϕ = 2πtfb + ∆ϕ (15)

33
Approved for public release; distribution is unlimited.

The phase contribution due to the beat frequency is subtracted from the measured phase

to isolate the phase variations, ∆ϕ. The ∆ϕ term contains the aggregate contributions due

to frequency instability in the test oscillator and noise from signal processing.

SDR Transmit Test The first test configuration analyzes the transmitted signal stability

from an SDR locked to an external reference. A separate Ettus device receives the transmit-

ted signal from the test SDR, A(t), and the rubidium frequency reference (Rb), B(t). The

test configuration is shown in Figure 32.

Figure 32. SDR Transmit Test Configuration

Both input signals are initially measured with respect to the local oscillator on the receive
SDR, ∆ϕRx. The measured phase variations, ∆ϕA and ∆ϕB, will contain a significant phase
contribution due to frequency instabilities in the SDR local oscillator (LO). This error is
common to the received signals, and the difference o f t he p hase v ariations r emoves the
common error, ∆ϕRx, as shown in Equation 16 and 17. The phase difference y ields the
frequency stability of the SDR transmitted signal as measured against the Rb.

∆ϕA = ∆ϕTx − ∆ϕRx, ∆ϕB = ∆ϕRb − ∆ϕRx (16)

∆ϕA − ∆ϕB = ∆ϕTx − ∆ϕRb (17)

With no external reference supplied to the transmitting device, the ∆ϕTx term represents

SDR LO instability. When a CSAC external reference is connected to the SDR the device

34
Approved for public release; distribution is unlimited.

realizes the new clock and the ∆ϕTx term now represents the stability of the CSAC, ∆ϕCSAC ,

and a noise contribution from the phase-locked loop (PLL), ∆ϕPLL, as shown in Equation

18.

∆ϕA − ∆ϕB = (∆ϕCSAC + ∆ϕPLL) − ∆ϕRb (18)

The oscillators on all SDRs have relatively poor stability; therefore ∆ϕTx will be the

dominate trend in measured phase and the measured signal should represent LO stability.

When a CSAC is used as an external reference clock ∆ϕTx is significantly reduced and

∆ϕCSAC is the largest contributor to instability. This will result in the transmitted signal

from the SDR exhibiting CSAC like stability, as seen in the ADEV results in Section 4.4.1.

SDR Receive Test The second test configuration verifies SDRs’ ability to lock to an

external reference when operating as a receiver. For this configuration a single SDR is setup

to receive two clock signals, one from the rubidium frequency reference and the other from

the CSAC. The same CSAC will provide a reference clock to the SDR. Figure 33 illustrates

this configuration.

Figure 33. SDR Receive Test Configuration

Both received signals will be measured against the LO of the SDR under test. Each signal
was examined independently to investigate the effect o f t he L O o n t he f requency stability,
with and without the CSAC as a reference clock. The phase variations for each receive
channel, ∆ϕA and ∆ϕB, include the contribution of each source clock and the SDR, as
shown in Equations 19 and 20.

35
Approved for public release; distribution is unlimited.

∆ϕA = ∆ϕCSAC − ∆ϕRx (19)

∆ϕB = ∆ϕRb − ∆ϕRx (20)

Without a reference clock the frequency instability will be predominately from the LO

of the SDR, ∆ϕRx. Both received signals result in overlapping Allan deviation curves that

match the stability of the SDR LO. With the CSAC connected as an external reference clock

the ∆ϕRx term now represents the frequency variation in the CSAC, ∆ϕCSAC , and the SDR

PLL, ∆ϕPLL. This eliminates the CSAC frequency instability contributions to the A receive

chain with only the PLL noise component remaining, as shown in Equation 21.

∆ϕA = ∆ϕCSAC − (∆ϕCSAC + ∆ϕPLL) = −∆ϕPLL (21)

The B receive is now the Rb signal measured against the SDR LO realization of the CSAC.

As shown in Equation 21, the contributors to the frequency variation will be the Rb, CSAC,

and PLL. In this case the ∆ϕCSAC term becomes the primary contributor to instability in

the received signal and the resultant ADEV curve exhibits CSAC-like stability. These results

are presented in Section 4.4.2.

∆ϕB = ∆ϕRb − (∆ϕCSAC + ∆ϕPLL) (22)

SDR Transceiver Test The last test configuration involves operating the USRP2 and

N200 as both receivers and transmitters simultaneously, as shown in Figure 34. These devices

use interchangeable daughterboards and had previously only been operated in a transmit or

receive mode. In this test both a receive and transmit board were installed in the devices

with one RF cable connected to each board, making the SDRs transceivers. This test has a

twofold objective: to determine if the USRP2 and N200 can operate as a transceiver and to

ascertain how well the devices can lock to an external reference clock while in a transceiver

mode. A CSAC is the USRP2 external reference clock and the rubidium is an external

reference clock to the N200. For comparison the test was also conducted with no reference

clocks provided to either SDR.

36
Approved for public release; distribution is unlimited.

Figure 34. Simultaneous Transmit & Receive Test Configuration

The USRP2 will receive a signal that includes the frequency variations from the N200,
∆ϕN200, and will be measured against the USRP2 LO, ∆ϕUSRP 2. Received signals from each
SDR will express frequency variation similar to the LO with the largest instability. This
stability limiting oscillator will depend on the local oscillator on each SDR, as shown in
Equations 23 and 24.

∆ϕA = ∆ϕN200 − ∆ϕUSRP2 (23)

∆ϕB = ∆ϕUSRP2 − ∆ϕN200 (24)

With the addition of reference clocks the received signals will include the frequency varia-

tion from the PLLs and both reference clocks. The received signals in the USRP2 and N200

will now be limited by the reference clock with the poorest stability, in this case the CSAC.

Equation 25 and 26 show the measured phase variation from each SDR. The ∆ϕCSAC will

be the dominant term, resulting in the received signals exhibiting CSAC like stability. The

corresponding ADEV curves shown in Section 4.4.3 support this theory.

∆ϕA = (∆ϕRb + ∆ϕPLL−N200) − (∆ϕCSAC + ∆ϕPLL−USRP2) (25)

∆ϕB = (∆ϕCSAC + ∆ϕPLL−USRP2) − (∆ϕRb + ∆ϕPLL−N200) (26)

37
Approved for public release; distribution is unlimited.

3.6.3 Measurement Noise

Whether characterizing one clock with respect to another or making relative phase measure-

ments for use in a Kalman filter, SDR phase measurements are usually made by subtracting

phase values. The SDR noise contribution to these measurements is computed using phase

measurements of a common clock signal. There are two transceivers in the N310 - shown in

Figure 35 - which each have separate noise cancellation properties. All of the RX inputs of

the N310 and N200 will be occupied for the fully integrated clock ensemble tests; as such, it

is important to characterize the noise contribution from each device to the measurements.

With two transceivers on the N310, there are three unique measurement systems of interest:

the N200, the same transceiver of the N310, and the different transceivers of the N310. The

same clock signal was sent into each of these measurement systems, the phase was computed,

and then differenced. The resulting data represent the combined measurement noise of the

system under test, shown in Figure 51. The ADEV values are computed on this data to show

the magnitude of the measurement noise as compared to the clock stabilities of interest. If

the measurement noise contribution is larger than the clock ADEV values, data gathered

from the system will obscure the true stability of the clocks at certain averaging intervals.

Results for the measurement noise tests are in Section 4.2.2.

Figure 35. N310 with Transceiver 0 Inputs (Blue) and Transceiver 1 Inputs
(Red)

3.6.4 Clock Phase Measurement Considerations

One feature to note when using an SDR for clock characterization is the low input power limit
for both SDRs, -15dBm. Therefore, when connecting the clock signals directly to the SDR
they must be attenuated to levels below the maximum allowable input power. In addition,
the Ettus N310 is designed to support signals ranging in frequency from 10 MHz to 6 GHz.
The ensemble member clocks generate signals at 10 MHz. Using oscillators that are at the
low end of the N310’s RF capabilities requires an additional upconversion stage within the
SDR that contributes noise to the clock measurements. This upconversion is driven by the
AD9371 transceivers, which support frequencies above 300 MHz. The N310 upconverts the
10 MHz clock signals into the operational range of the transceivers and then downconverts
the signal prior to being sampled by the ADC. The daughterboards in both the N200 and

38

Approved for public release; distribution is unlimited.

USRP2 directly digitize the input signals, so the effect of the analog pre-processing is
not relevant.

The low frequency signals from the analog RF processing are digitized by the ADC, sent
to the PC, and finally through t he G NU R adio s ignal p rocessing c hain. I t i s important to
note that the frequency shifted signals significantly r educe t he d ata s torage requirements
associated with the digital signal processing by decreasing the required sampling rate for the
input signals. The downconversion process is commanded by a UHD tune request in GNU
Radio, where the user specifies a center f requency (in Hz) and a local oscillator (LO) offset
(in Hz). The center frequency represents the difference b etween t he i nput c lock frequency
(i.e. 10 MHz) and the desired near-baseband frequency. For example, a center frequency of
9,999,927 Hz is used to mix a 10 MHz clock input down to 73 Hz. Shifting the input signal
down by the center frequency is achieved in two stages. First, the input signal is mixed with
the LO, which is offset f rom t he c enter f requency b y t he u ser-specified fr equency. Again,
the analog mixing process does not fully shift the input signal to the desired near-baseband
frequency. Assuming the same 10 MHz clock signal, a 9,999,927 Hz center frequency, and
an LO offset o f 2 50 k Hz, t he a nalog m ixer w ill s hift t he i nput s ignal d own t o 2 50,073 Hz
(i.e. 73 Hz + 250 kHz). The digital down-converter then shifts the signal by the LO
offset frequency, producing a signal at the desired near-baseband f requency. In the previous
example, the digital down-converter shifts the output of the analog mixer by 250 kHz to
produce the desired 73 Hz signal.

3.7 OCXO Frequency Characterization

An OCXO is often used to realize timescales due to the high quality short term stability of
the oscillator [24]. The IEM of our clock ensemble is realized by applying small frequency
adjustments to an OCXO, a process hereafter referred to as clock steering. Each OCXO
has an electrical tuning input which changes the frequency of the oscillator as a function of
applied voltage. The frequency response of each OCXO to a predefined voltage profile was
measured experimentally to determine the slope of the voltage / frequency response curve.
This curve is used in the steering model to compute voltage adjustments based on measured
phase differences between the OCXO and the target state.

Adjusting the OCXO Frequency

The OCXO tuning voltages must be applied to the tuning pin without human interaction
in order to implement a closed-loop system. Two options for voltage adjustments were
considered: a programmable benchtop power supply and a digital to analog converter (DAC).

39

Approved for public release; distribution is unlimited.

Benchtop Power Supply The CONTACT team purchased a GW Instek GPP4323 power

supply for this purpose, as the GPP series of power supplies supports multiple I/O ports

and uses a standardized command syntax for remote control. Custom python scripts were

developed to programmatically control the bench-top power supply. The pyvisa python

library was used as it was designed for interfacing with and controlling lab instruments

using SCPI command syntax. This python script accomplishes three main functions: turns

on the power supply and waits for the OCXO to warm up; once the OCXO is warmed up, it

steps through a user-defined voltage range at the chosen step size; it then sets all outputs to

0 before shutting off the output channels. The user can then shut off GNU Radio Companion

which ends the data logging. While the script is running the measured supply voltage, tuning

voltage, and timestamps are written to a csv file.

Figure 36. Benchtop Power Supply

18 bit DAC A low noise 18 bit DAC was acquired as an alternative to the bench-top power
supply for frequency adjustment voltage commands. A development board from Analog
Devices known as a ”Linduino” allows users to interface with the DAC as if it were an
Arduino device, enabling quick script development. Scripts were written in this Arduino
environment to sweep across voltages with a user defined range and step size.

40
Approved for public release; distribution is unlimited.

Figure 37. Digital to Analog Converter
https://www.overleaf.com/project/62a7822b46ccc367285809ac

3.8 Communication Protocols for Time Synchronization

Applications such as financial transactions, emergency services, and control systems require
the communication of accurate timing. Network protocols provide the communication struc-

ture for time synchronization between machines by disseminating a reference clock through
a hierarchy of network levels, or Stratum. The top of the hierarchy is referred to as Stratum
0 and consists of the reference clock or time scale, usually a device that can realize UTC.
Each subsequent Stratum will synchronize clocks to the previous Stratum until Stratum 16
is reached, at which point the device is considered un-synchronized. A jump in a Stratum
will result in a corresponding decrease in the communicated time precision, however more
robust protocols are designed to mitigate this loss.

In theory, any set of devices that transfer data with modern communication protocols
should be able to also implement network-based time synchronization. Proposed clusters
and constellations of spacecraft have planned inter-satellite communication capabilities, sug-

gesting the potential for time transfer via network protocols. The following protocols were
considered to examine if communication protocols for time synchronization is viable for
modeling multi-platform time transfer, as in a satellite cluster or constellation: network
time protocol (NTP), precision time protocol (PTP), and White Rabbit (WR). Each version
improves time synchronization precision by approximately three orders of magnitude, with
WR operating at nanosecond precision.

Communication protocols were determined to have limited immediate applicability to our
laboratory environment. The general method of clock synchronization is in a hierarchical

41

Approved for public release; distribution is unlimited.

architecture which does not accurately represent a mesh communication topology of multi-

ple identical clocks transferring timing information to each other. The only protocol that

provides synchronization at relevant PNT levels is White Rabbit; however, this requires sig-

nificant hardware upgrades in our lab environment to utilize and has limited commercial

availability. We include a summary of our study here for future reference.

3.8.1 NTP

Due to the advent of the Internet, billions of devices are interconnected and communicating

data. Accurate time synchronization across machines ensures this system operates properly.

Professor David L. Mills from the University of Delaware addressed this problem with the

creation NTP. This protocol is ubiquitous and exists as a pre-installed daemon on almost all

computer systems. NTP was designed to provide synchronization using a messaging system

between a client and a server [25]. By default, a computer will synchronize its time with a

NTP server, which is stratum 1 or 2 clock. The synchronization process is initiated by the

client sending a sync request message to the server. A request is time stamped using the

client clock and is labeled as t0. Once the sync request message is received by the server

a return message is sent to the client. A server time stamp is generated for the received

message and the outbound message, t1 and t2 respectively, and communicated back to the

client. The client timestamps the server reply with respect to its local clock, t3. Simply

stated, the client asks the server what time it is and the client adjusts its clock to match

the reply. However, due to variable distances and processing delays in the synchronization

process, the reply is limited in accuracy. The four time stamps, t0, t1, t2 and t3, are used

to determine the time offset and request message delay to compensate for this uncertainty.

Equations 27 and 28 below are used to calculate the time offset α and round-trip delay β.

α =
(t1 − t0) + (t2 − t3)

2
(27)

β = (t1 − t0) + (t2 − t3) (28)

The client clock is slewed over time to match the server clock using the offset and round-trip

delay. Additional NTP requests will be generated to fine tune the server time to millisecond

synchronization. Frequency drift for clocks at a lower Stratum will require continual NTP

requests to retain clock accuracy. Depending on what type of network is used the accuracy

can be improved. Time transfer accuracy in a network is sensitive to packet delay variation

(PDV). Packets can be transmitted from host to host on unpredictable network paths and

subjected to varying processing delays. The less nodes between a client and host for time

transfer the less PDV will impact the accuracy of time synchronization. Short distance

42
Approved for public release; distribution is unlimited.

requests to stratum 0 time sources can yield sub millisecond time accuracy; however, NTP is

primarily designed for long distance internet time transfer and is therefore relegated to time

accuracy in the tens of milliseconds. Although millisecond time synchronization is acceptable

for computer networks, a navigation system with this level of timing accuracy would result

in range errors on the order of 300 kilometers, rendering it ineffective.

3.8.2 PTP

IEEE 1588 PTP uses an enhanced messaging system and specialized hardware to meet

the demanding timing needs of industrial applications, such as power management [26].

Contrary to NTP, a PTP synchronization is initiated on the server side. The messaging

system generates a server time-stamped synchronization message, t0, that is communicated

to the client. An additional follow up server time-stamped message is generated by the server

and sent to the client a few seconds later, t1. The client clock will adjust its initial time, tci,

to an intermediary time, tcm, that closely resembles the server time using t0 and t1, as show

in Equation 29.

tcm = tci + (t1 − t0) (29)

The new client intermediary time does not account for delay in the network. A client-

side time-stamped delay request message is generated and sent to the server, t2. After the

server receives the message a server-side time-stamped delay response message is generated

and sent to the client, t3. The difference between the time stamps is calculated, divided by

two, and then added to the intermediary server time. This will yield the final server-client

synchronized time, tcf , as show in Equation 30.

tcf = tcm +
t3 − t2

2
(30)

PTP synchronization involves twice as many messages as NTP to better account for sys-

tem delays and enables better accuracy in the transferred time. An additional reason for

improved time precision of PTP is a result of boundary clocks. NTP does not account for

systematic delays in a dynamic network with multiple nodes and varying link distances. PTP

measures these systematic delays by using boundary clocks at each node to preserve the syn-

chronization signal. In a IEEE 1588 network each node or switch contains a boundary clock

that operates a PTP synchronization instance. This synchronization instance allows the

boundary clock to calibrate itself by recovering and regenerating timing from the previous

clock, thus significantly reducing delay propagation through a network. Figure 38 illustrates

the difference in NTP and PTP time transfer, with a PTP instance occurring between each

43
Approved for public release; distribution is unlimited.

switch.

Figure 38. PTP Instancing Between Nodes

Another component of PTP that improves synchronization accuracy is hardware time
stamping. Instead of time stamping the message at the software level like NTP, PTP works
by injecting the time stamp at the physical layer [27]. IEEE 1588 standardized hardware uses
a Time Stamping Unit (TSU) located between the Ethernet MAC and Ethernet Phy that
marks the exact time a synchronization message is sent. This hardware-assisted time stamp-

ing reduces the operating system processing latency in the message exchange, thus decreasing
PDV in the synchronization process. Microsecond time synchronization is achievable in PTP
but requires the exclusive use of IEEE 1588 hardware. All switches, nodes, and machines
in the network are required to be PTP certified t o o perate b oundary c locks a nd hardware
time stamping. IEEE 1588 PTP can provide time synchronization accuracy three orders of
magnitude greater than NTP, however in a navigation system this still yields unacceptable
levels of range error.

3.8.3 White Rabbit

The European Organization for Nuclear Research (CERN) operates the worlds largest par-

ticle collider, the Large Hadron Collider (LHC), consisting of a underground tunnel 27 kilo-

meters in circumference. Linear accelerator injectors and particle detectors spaced hundreds
of meters apart in the LHC require nanosecond accurate timing. Previously, CERN relied on
distinctive clock synchronization systems for different s ystems. M anaging multiple unique
timing systems was resource intensive, prone to error, and difficult to sc ale. White Rabbit
was designed to address these issue by providing reliable, nanosecond clock synchronization
and picosecond stability over CERNs long distances via flexible, E thernet b ased hardware
[28]. Time transfer laboratories such as NIST, the National Institute for Standards and
Technologies, investigated utilizing WR to replace their campus-wide Coordinated Univer-

sal Time (UTC) distribution system. Their report concluded that WR meets the accuracy

44
Approved for public release; distribution is unlimited.

and stability requirements for providing UTC(NIST) to systems across NIST campus that
contribute to their UTC realization [29].

Similar to PTP, timing is disseminated via a hierarchical architecture with synchronization
initiated by servers to clients. The following improvements are employed by WR to achieve
nanosecond accurate timing: enhanced server-client messaging with frequency transfer over
the physical layer and time stamping via phase measurements. The WR messaging system
is comprised of the WR link initialization and the standard PTP synchronization message
exchange. Syntonization of the client clock to server clock is achieved during the link setup
using synchronous Ethernet (SyncE), a communications standard that allows for clock signals
to be transferred over the physical layer. The initial WR synchronization process then uses
PTP to measure a coarse round-trip delay between the client and server. Round-trip delay
precision is then improved using Digital Dual Mixer Time Difference (DDMTD). The clock
signal received by the client is transmitted back to the server and fed into DDMTD along with
the original clock signal to calculate the phase difference. With the phase difference known,
PTP timestamp precision is extended and the round-trip delay can be re-calculated. Next,
the link asymmetry, precise one-way delay, and server-to-client clock offsets a re calculated
to fix a ny o ffset in th e cl ient. Fi nally, a fe edback lo op co ntinually me asures th e server-to-

client offset t o c ompensate f or a ny d elay c hanges. W R c an o nly a chieve sub-nanosecond
synchronization using gigabit optical links, but can operate in any Ethernet based network
that uses SyncE. A core element of the network is the WR switch, which contains specialized
hardware and software to perform the messaging, clock signal transmission and receive, and
calculate offsets for compensation [30]. If a non-WR switch is connected to the network then
the link will be recognized as a connection to a standard router and the WR synchronization
process will fail. These features of WR allow for nanosecond time synchronization,
which is equivalent to 30 centimeters of range error. Time synchronization at this level
makes WR a potential candidate for time transfer protocols between satellites providing
navigation services.

3.8.4 Limitations

Network based clock synchronization protocols are designed to distribute timing from a
single, highly stable clock treated as the reference. The hierarchical relationship between
synchronizing/syntonizing oscillators with a single truth clock is not an accurate represen-

tation of the inter-satellite architecture we are developing in the lab. For a satellite cluster,
several clocks with near-identical stability will be transferring timing signals to each other. In
this scenario there is no absolute reference clock as implied by network based time protocols.
There may be other applications where this type of hierarchical time transfer system can be
used. An example would be a constellation with one platform operating with a substantially

45

Approved for public release; distribution is unlimited.

better clock acting as a reference clock to other platforms in the system. Another limitation

to network protocols is their inflexibility to alterations in design. If the hierarchical time

distribution mechanism could be adjusted to better model a mesh topology, then it may be

applicable in multi-platform time-transfer with similar clocks. However, due to the network

based clock synchronization protocols being built on time transfer for computer networks,

which are inherently hierarchical, the ability to re-work the protocol is limited. Further

research would be required into mutual synchronization methods such as those employed by

telecommunications systems. Such systems utilize components of the network based time

protocols, like SyncE, to synchronize clocks in non-hierarchical network. This technology has

the possibility to be used in a lab environment to model multi-platform time synchronization

but requires further investigation. White Rabbit is best suited for precise, multi-platform

time transfer due to its nanosecond time-transfer precision, but the protocol is still maturing

and has limited presence in the commercial market. Expensive upgrades, such as the addi-

tion of WR switches and optical Ethernet cables, to the COMPASS lab would be required.

Due to these limitations we determined that software defined radios with radio frequency

signals was a better solution for modeling multi-platform time transfer.

4 RESULTS AND DISCUSSION

4.1 Testbed Software Models

4.1.1 Clock Profiles

The simulated behavior of three CSACs initialized with 0 phase and frequency error is shown

in Figure 39. After this 24 hour simulation all of the clocks are within ±3 µs of true time.

The corresponding Allan deviation curves are shown in Figure 40, along with the CSAC

stability specifications. In initial simulations, the CSAC profiles were generated using the

exact specifications from the manufacturer. Once the clock characterization system was

operational, multiple tests were performed to assess the true stability parameters for each

clock. Each of the curves is designed to be slightly more stable than the specification,

reflecting the measured stability of the CSACs in our timing lab. The measured stability

specifications should be used in the clock model code such that the simulated system behavior

closely represents the truth.

46
Approved for public release; distribution is unlimited.

Figure 39. Simulated CSAC Time
Series

ADEV of SimulatedFigure 40.
CSACs

4.1.2 Steering Simulation

The two design parameters that affect the steered system response are the control rate for

frequency adjustments and the stiffness of the response to the perturbations. In simulation,

there are not constraints on the control rate; however, limitations in the hardware will affect

both the minimum control rate and the quantization of the applied voltage on the frequency

control pin. The optimal control rate will depend on latency of the feedback in the power

system, the settling time of the voltage source, and the stability of the OCXO with respect

to the target oscillator. The stiffness of the response will determine the gain parameters used

to compute the voltage adjustment. The system performance was first modeled in simulation

to predict the effect of varying control rates and gain values on the steered signal response.

Figures 41 and 43 show the result of five OCXO steering simulations with control rates

of one second and various gain matrices. The red curve in both figures is CSAC 01 - the

target state - and the other curves are the time series of the steered OCXO. The black curve

in Figure 41 corresponds to the gain matrix that produces closed loop eigenvalues Λ ≈ 1,

an underdamped response. The difference between the steered OCXOs and the target state

are shown in Figure 42. All of the steered signals are zero mean with various oscillation

magnitudes about zero.

47
Approved for public release; distribution is unlimited.

Figure 41. Time Series of Steering
OCXO to CSAC 01 - 1 hour

Figure 42. Steered OCXO Curves
Minus CSAC 01 - 24 hours

The best response is challenging to select from the time series. The Allan deviation is a

clearer metric to use when comparing the effects of different control parameters. The ADEV

curves for each of the control simulations is shown in Figure 44. As the eigenvalues of the

system response become stiffer, the ADEV of the steered response retains less of the short

term stability of the OCXO but reaches the target state faster. With less stiff eigenvalues

the short term stability of the OCXO is preserved, but oscillates about the target state

at longer averaging intervals. The best system response corresponds to some intermediate

value between these two extremes. Once a desirable simulated response is created, the control

parameters can be incorporated into the hardware for additional testing.

48
Approved for public release; distribution is unlimited.

Figure 43. Time Series of Steering
OCXO to CSAC 01 - 24 hours

Figure 44. ADEV of Steered
OCXOs, CSAC 01, and Unsteered
OCXO

4.1.3 IEM Steering

The phase and frequency estimates of the OCXO are used to compute a control command

that will adjust the OCXO frequency. The computation of the control command is based

on the pole placement method [21]. Two of the parameters that a control designer can use

when designing the response of a system are: 1) the eigenvalues of the state dynamics and

2) the control rate. The simulation was modeled after the clock ensemble testbed, using

three CSACs as the ensemble member clocks and an OCXO as the steered signal source.

The stability characteristics of the clocks were chosen based on the measured process noise

parameters from previous clock characterization experiments. As shown in Figure 46 the

simulated OCXO is more stable than the simulated CSACs up until 10 seconds. These

particular stability parameters for the basis of a steered signal are desirable since with the

designed control response the steered signal will have the short term stability of the OCXO

and the long term stability of the IEM.

The simulated steered signal response below has a control update interval of 1 second and

a quantized frequency step size based on the specified precision of the DAC. Slower control

update rates resulted in system responses that did not approach the IEM in a reasonable

time, if at all. Faster control update rates were not realizable due to the hardware limitations

of the testbed, and thus were not simulated.

Figure 45 shows the time series behavior of each simulated CSAC, the IEM, and the steered

49
Approved for public release; distribution is unlimited.

OCXO. The steered OCXO matches the IEM quite closely over the duration of the test.

The Allan deviation of each curve is shown in Figure 46. At short averaging intervals, the

steered OCXO has similar stability behavior as the unsteered OCXO. Over longer averaging

intervals, as the clock is steered, the ADEV of the steered OCXO approaches the IEM.

Figure 45. Time Series of Simulated
CSAC, IEM, and Steered OCXO

Figure 46. ADEV of Simulated
CSACs, IEM, and Steered OCXO

4.2 Experimental Clock Phase Measurements

4.2.1 Effect of the Local Oscillator

All four clock signals have a common trend that represents the behavior of the local SDR

clock. If Allan deviation values were computed on these phase curves, the resulting stability

values would not match the Rb or the CSACs, but rather that of the local SDR clock. The

most stable clock in Figure 47, the Rb, is subtracted from all other CSACs and the results

are shown in Figure 48. The difference of clock signals causes the local clock contribution to

drop out and shows the frequency drift of each CSAC with respect to the Rb oscillator.

50
Approved for public release; distribution is unlimited.

Figure 47. Measured Clock Phase
with Common SDR Clock Contribu-
tion

Figure 48. Measured Clock Phase
against a Rubidium Reference

The Allan deviations of all curves in Figure 48 are shown in Figure 49. Despite having

the largest slope in Figure 48, the CSAC Chip is seen to be the most stable and has the

smallest ADEV of the three clocks. Spacebuff and Ralphie have similar frequency stability

characteristics. Also shown on this graph is the frequency stability of the local oscillator on

the N310 - the result of computing the ADEV of one time series curve in Figure 47. The

black curve shows that the common effect of the SDR clock would obfuscate the true behavior

of the CSACs at intervals greater than 10 seconds; differencing the clock measurements in

Figure 47 causes the SDR clock contribution to drop out, as previously discussed.

51
Approved for public release; distribution is unlimited.

Figure 49. Allan Deviation of CSACs and LO of Ettus N310

4.2.2 Measurement Noise

The results from the measurement noise characterization tests are shown in Figure 52. The
measurement configuration with the largest amount of noise i s the cross transceiver config-

uration on the N310. Measurements on the same transceiver of the N310 have the smallest
noise. Measurements made on the N200 are in the middle of these two values. At intervals
longer than 10 seconds, there is no risk of any measurement configuration c oncealing the
clock behavior. The only configuration t hat m ay o bscure t he c lock b ehavior i s t he cross
transceiver configuration at short t ime intervals.

52
Approved for public release; distribution is unlimited.

Figure 50. N310 Different Daugh-
terboard Noise

Figure 51. N200 and N310 Same
Daughterboard Noise

Figure 52. Allan Deviation of SDR Noise

53
Approved for public release; distribution is unlimited.

4.2.3 Measured Clock Stability

Three categories of clocks are used in this project: CSACs, OCXOs, and a rubidium fre-

quency standard. Three Microsemi SA.45s CSACs are used as the members of a small clock
ensemble; two OCXOs are evaluated as potential candidates for the realization of the IEM -
a Wenzel Associates 501-04609 and NEL Frequency Controls, Inc. 0-CMR-058IS-N-S-L; and
a rubidium frequency standard, Stanford Research Systems FS-725, is used as a reference
oscillator. The measured ADEV values and the specifications for the CSACs, OCXOs, and
rubidium frequency standard are shown together in Figure 53. The data for the Rb clock
is from a characterization campaign at NIST in 2019 where it was measured against a
hydrogen maser. All other clocks on this figure are evaluated using the methods described
in Section 3.6.

The stability values shown in Figure 53 are computed with respect to the Rb on the
same transceiver of the N310 to use the system with the smallest noise contribution. The
noise contribution is much smaller than the noise in the clocks for all measurement intervals,
indicating that this measurement configuration d oes n ot o bscure t he c lock b ehavior. The
stability of the three CSACs is larger than the Rb at all measurement intervals, meaning the
CSAC clock measurements against the Rb truly represent CSAC behavior. Interestingly, the
measured short term (τ < 4s) stability of both OCXOs is limited by the short term instability
of the Rb. The true behavior of the OCXOs in the short term cannot be measured using
our existing setup, but we assume the actual stability is better than what is shown.

The manufacturer stability specification for each clock, when available, is shown on Figure
53. All three CSACs are performing within the specification with Chip b eing s lightly more
stable than Spacebuff and R alphie. The short term behavior of both OCXOs is obscured due
to the short term limitations in the rubidium frequency standard. For averaging intervals
longer than approximately 5 seconds, the free-running OCXOs both rapidly degrade and
eventually become worse than the CSACs.

54

Approved for public release; distribution is unlimited.

Figure 53. Stability of Clocks in CONTACT Project

Table 5. Measured CSAC ADEVs

Tau CSAC: Chip CSAC: Ralphie CSAC: Spacebuff
1 9 · 10−11 1 · 10−10 2 · 10−10

10 2 · 10−11 5 · 10−11 6 · 10−11

100 9 · 10−12 2 · 10−11 2 · 10−11

1000 2.5 · 10−12 7 · 10−12 9 · 10−12

55
Approved for public release; distribution is unlimited.

Table 6. Measured Clock ADEVs

Tau MRO Rb Wenzel OCXO NEL OCXO
1 4 · 10−11 2 · 10−11 2 · 10−11 2 · 10−11

10 1 · 10−11 4 · 10−12 1 · 10−11 1 · 10−11

100 6 · 10−12 7 · 10−13 2.5 · 10−11 1.5 · 10−11

1000 1 · 10−11 2 · 10−13 1.5 · 10−10 1 · 10−10

4.3 OCXO Frequency Characterization

The OCXO response to various voltage profiles was measured to compute an expected re-

sponse for the steering model. Voltage profiles were generated with both the power supply

and the DAC at step sizes ranging from 19 microvolts to 1 volt. The curve slopes are used

in software models to compute a voltage adjustment in both the steering tests and later in

the clock ensemble. The results for these tests are presented in Section 4.3.

4.3.1 Wenzel OCXO & Power Supply

The specification sheet for the Wenzel OCXO provides a fractional frequency response range

of ±2·10−7 for applied voltages ±5V . The specification sheet states a negative slope, meaning

+5V applied to the tuning pin of the OCXO would theoretically result in a FFO of −2 ·10−7.

By dividing this result by 5V, we obtain an expected slope of −4 · 10−8 per volt.

Various tests were run on the Wenzel OCXO using different voltage step sizes: 1V, 100mV,

10 mV, and 1mV. This was done to ensure that the electrical tuning worked and then to

determine if the OCXO had a minimum voltage step size. Results for the 100mV step size

test are shown in Figure 54 below - the frequency response slope is negative and has a

measured slope of −5.17 · 10−8, slightly different than the specification.

56
Approved for public release; distribution is unlimited.

Figure 54. Voltage / Frequency Relationship for Wenzel OCXO and Power Sup-
ply

4.3.2 NEL OCXO & DAC

The frequency response of the NEL OCXO was characterized with the 18 bit DAC. The
smallest voltage range for the DAC is ±2.5V which yields a voltage resolution of 19 micro-

volts. A voltage profile f rom - 2.5 t o 2 .5V a t a 0 .5V s tep s ize w as g enerated a nd h eld at
each level for 5 minutes - the leading and trailing 30 seconds were ignored to eliminate the
transient effects of changing voltage l evels. The time series of the clock offset is shown on the
left side of Figure 55 and is made up of 11 different l ines, each corresponding to a different
voltage level. As the voltage increases the frequency increases, creating a symmetric fan
that is approximately centered on 0V. The corresponding fractional frequency offset for each
voltage level is computed and shown in matching colored dots. The slope of the voltage /
frequency curve is 2.19 · 10−7.

57
Approved for public release; distribution is unlimited.

Figure 55. Voltage / Frequency Relationship for NEL OCXO and DAC

58
Approved for public release; distribution is unlimited.

4.4 SDR with External Reference Oscillator

4.4.1 SDR Transmit Test

Figure 56. CSAC & SDR Transmit Test Configuration ADEV

Figure 56 shows the ADEV results from the SDR in the transmit test configuration. The
solid lines indicate the frequency stability of the measured signal from the SDR that was
being tested without an external reference clock. In all three cases the average stability
is worse than the stability defined by t he C SAC d ata s heet s pecifications. Th e N3 10 does
exhibit slightly better stability at low averaging times compared to the CSAC specifications,
but resolves to poor stability after the averaging time exceeds 10 seconds. Both the N200 and
USRP2 display relatively poor stability and average about 2 magnitudes of order worse than
the CSAC specifications. The dashed lines represent the stability of the measured signal from
the SDR that was being tested with an external CSAC reference clock. All three dashed
lines lie just under the CSAC specification m arkings, i ndicating t hat t hey a re exhibiting
CSAC like behavior. Due to the transmitted signals from the SDR under test exhibiting
CSAC stability it can be concluded that the SDRs are successfully locking to an external

59
Approved for public release; distribution is unlimited.

reference clock. The N310 displaying short term improved stability compared to the CSAC

is indicative of the N310 operating with a relatively good onboard clock. However, this clock

is unable to retain the stability that the CSACs can operate with for longer averaging times.

4.4.2 SDR Receive Test

Figure 57. CSAC & SDR Receive Test Configuration ADEV - No Reference

The results for the CSAC and SDR receive test configuration examine the s tability of each
received signal on the SDR with or without an external reference clock. The solid lines on
each plot represent the received CSAC signal and the dashed lines represent the received Rb
signal. With no external reference clock the receive signals are limited by the stability of
the local oscillator in the SDR. The CSAC and Rb stability curves overlap as they are both
limited by the instability of the LO in the N200 and USRP2, as shown in Figure 57. In the
N310s case, the LO is characterized by the Rb measurement and found to have short term
stability that exceeds the CSAC specifications. This relatively good, short term stability of
the LO allows the stability of the CSAC signal to be temporarily exposed. Eventually, as
the averaging time increases, the CSAC and Rb curves converge and both are limited by the
instability from the N310 LO.

60
Approved for public release; distribution is unlimited.

Figure 58. CSAC & SDR Receive Test Configuration ADEV - With CSAC
Reference

With the CSAC added as a reference clock to the SDR both signals are now measured
against the SDR LO tuned to the CSAC. The received CSAC signal is now being measured
against itself resulting in the CSAC frequency variation being eliminated. This is visible
in the three solid lines. Both the N310 and N200 CSAC phase measurements show linear
ADEV curves with a slope of -1. This slope is representative of white noise in the receive
channel chain. All three dashed lines exhibit CSAC like stability. This confirms the receied
Rb signal is being limited by the stability of the SDR as it locks to the CSAC. There were two
anomalies in the results, the first being the wavy feature of the USRP2 noise measurements
and the second being the high noise level of the N310. The wavy feature of the USRP2 noise
curve is thought to be sourced from signal interference in the receive chain. The high noise
level shown by the N310 is possibly sourced from the on-board GPS disciplined oscillator
(GPSDO). Ettus documentation on the N310 states that the GPSDO should be powered
down to reduce phase noise. Despite the anomalies, the results confirm that all three
lab Ettus SDRs are capable of locking to an external reference clock while operating as a
receiver only.

61

Approved for public release; distribution is unlimited.

4.4.3 SDR Transmit & Receive Test

Figure 59. Simultaneous Transmit & Receive Test Configuration ADEV

The final test configuration involved the N200 and USRP2 simultaneously transmitting and
receiving signals to each other. Figure 59 displays the results, with the solid lines indicating
the SDRs tested without an external reference clock and the dashed lines with. Without
an external reference clock the N200 and USRP2 are relegated to measuring signals with
stability limited by their own local oscillators. Thus, the resulting stability measurements
show very poor stability. This stability is similar to what was seen in the received signals for
the N200 and USRP2 in Figure 57. With the USRP2 locked to a CSAC and the N200 locked
to the FS725 the measured signals from each SDR match CSAC stability. The results
prove that the USRP2 and N200 are capable of transmitting and receiving signal
simultaneously, and both devices can successfully lock to an external reference clock while
in a transceiver mode.

62

Approved for public release; distribution is unlimited.

4.5 OCXO Steering to Known Reference

The closed loop steering functionality was initially demonstrated by steering an OCXO to a

CSAC. The block diagram of the configuration used to steer the OCXO to a single CSAC is

shown in Figure 60.

Figure 60. OCXO Steering Block Diagram

In this block diagram, the CSAC, OCXO, and Rubidium clocks are all connected to the
Ettus N310. Each input signal to the N310 and N200 goes through the phase measurement
processing chain as described in Section 3.6. The CSAC and OCXO are connected to the
RF1 and RF2 ports on the N310 - the phase difference b etween these two oscillators i s the
error signal that we want to drive to zero. The second output of the CSAC and the Rubidium
clock are connected to the remaining N310 ports to measure the true behavior of the CSAC.
Finally, the OCXO and the rubidium were connected to the RF1 and RF2 ports on the N200
in order to measure the OCXO performance.

4.5.1 Wenzel OCXO & Power Supply

The custom power supply message block shown was used to steer the Wenzel OCXO. This
block uses the pyvisa library and the measured frequency response of the OCXO to contin-

uously adjust the output voltage on the GPP4323 power supply; this channel is connected
to the electrical tuning pin on the OCXO, producing the requested change in frequency.

The results from the steering test with the Wenzel OCXO and power supply are shown
in Figure 61. Both Chip and the OCXO are measured against the rubidium frequency
reference. The effect o f s ignal s teering i s c lear a s t he s teered O CXO a pproaches C hip at
longer averaging intervals. For short averaging intervals there is a small region where the

63
Approved for public release; distribution is unlimited.

OCXO is better than Chip, followed by a transient region where the OCXO is turning

away from it’s free running stability towards Chip. The behavior in this transient region

is undesirable as the stability overshoots Chip by a significant amount. The source of this

”servo bump” is primarily due to the imperfections in the voltage source. If the power supply

had infinite precision, instantaneous voltage change, and zero settling noise, the bump size

would be greatly reduced.

Figure 61. Steering Wenzel OCXO to Chip with Power Supply

4.5.2 NEL OCXO & DAC

Another steering test was conducted with the NEL OCXO and DAC. An Arduino script
provided by Linear Technologies was modified t o enable c ontinuous, programmatic voltage
changes in the DAC output. The results from the steering test are shown in Figure 62.

The control rate for this test was 8 Hz as opposed to 0.5 Hz in the previous experiment.
Smaller gain values were used along with the faster steering rate; as a result, the steered
signal in Figure 62 follows the unsteered behavior of the OCXO for longer and has a smaller
servo bump.

64
Approved for public release; distribution is unlimited.

Figure 62. Steering NEL OCXO to Spacebuff with DAC

4.6 Clock State Estimation

The Kalman filter described in Section 3.4.3 was ported to Python and adapted for processing
streams of data in real time. The block diagram of the Kalman filter is shown in Figure 63.
The relative CSAC measurement inputs are shown on the left and are converted to units of
time prior to entering the Kalman filter b lock. The six outputs are the phase and frequency
estimates of each of the three CSACs. The code for the Kalman Filter Block is provided in
Appendix 5.

Figure 63. GNU Radio Companion Kalman Filter

65
Approved for public release; distribution is unlimited.

An experiment was conducted with three CSACs and a rubidium frequency reference

connected to the Ettus N310. Relative phase measurements were made between the CSACs

and were filtered to produce estimates of the phase and frequency of each input clock. The

Rb oscillator was used to measure the behavior of each CSAC independent of the filtering

system; these measured results are compared to the estimated CSAC behavior to assess the

filter performance.

Figure 64 show the time series of each CSAC as measured against the Rb and Figure 65

shows the time series of the CSAC phase estimates from the Kalman filter. The two plots do

not match exactly, but the relative ordering of the three CSAC curves is the same in both

plots. Additionally, the difference between each CSAC curve in the measured and estimated

case seems approximately the same. This result makes sense, as the filter is using relative

clock phase measurements to estimate the absolute clock states, which is an unobservable

system. The absolute orientation of the estimated oscillator states cannot be known in the

absence of another more stable reference.

Figure 64. Measured Clock Bias
with respect to Rb Reference

Figure 65. Estimated Clock Bias
Output from Kalman filter

The difference between all curves in Figure 64 provides a time series of the relative behavior

between the CSACs, which is a proper superset of the clock measurements input to the

Kalman filter. Figure 66 shows the result of this difference operation with the measured

values in solid, colored lines and the estimated values in black dashed lines. The agreement

is quite close - these curves were again differenced to see how closely they match, shown in

Figure 67. The result of this seems to be white Gaussian noise with sigma values close to the

known measurement noise contribution from the SDR. In this test Spacebuff and Ralphie

were on the same daughterboard and Chip was on a separate daughterboard - this is reflected

66
Approved for public release; distribution is unlimited.

in Figure 67 where the same daughterboard measurements have a much smaller distribution

than the two other cross daughterboard measurements.

Figure 66. Difference Between
Measured (solid) and Estimated
(dashed) Clock Biases

Figure 67. Difference of Clock Bias
Differences

The Allan Deviation is computed on both the measured CSAC values in Figure 64 and the

estimated CSAC values in Figure 65. The ADEV curves for the estimated clock states are

similar to the measured values, perhaps a bit optimistic. The ADEVs for the estimated Chip

values are significantly smaller than the measured value - this may be due to the presence

of Chip in both measurements.

67
Approved for public release; distribution is unlimited.

Figure 68. ADEV of Measured and Estimated CSACs

4.7 Clock Ensemble Testbed Integration

The individual components of the testbed described in the previous sections are combined
to yield the fully integrated, closed loop clock ensemble testbed. A block diagram for the
testbed is shown in Figure 69. The members of the clock ensemble are three CSACs and the
OCXO is used as the realization of the IEM. The Ettus N310 is used to make clock phase
measurements, a separate computer is used to run the custom signal processing, and a N200
is used to truth the OCXO signal with respect to a rubidium reference. The hardware setup
in the timing laboratory is shown in Figure 70.

68
Approved for public release; distribution is unlimited.

Figure 69. Clock Ensemble Testbed Block Diagram

Figure 70. Clock Ensemble Testbed

69
Approved for public release; distribution is unlimited.

Integrated Testbed Results

Multiple tests were run with different OCXOs, various methods of voltage adjustements, and

varying control rates to assess the optimal combination. The time series of the OCXO phase

was measured against the Rb on the N200 and the Allan deviation was computed to assess

the signal stability. The best results for each OCXO and the stability of the other clocks are

shown in Figure 71.

The effect of OCXO steering is clear at averaging intervals longer than 100 seconds as

the signal stability is much smaller than the corresponding free-running curve. The steered

Wenzel OCXO (green) is the result of using the benchtop power supply for the closed loop

control. In this configuration the programmable voltage resolution was 1mV and the mini-

mum control rate was 2 seconds due to processing latency and noisiness in the power supply.

As a result, the short term behavior of this steered signal is not great - for short averaging

intervals (τ < 4s) the steered signal retains some of the unsteered behavior. However, the

continuous application of a frequency adjustement through the power supply results in a

servo bump that overshoots the stability of all the CSACs. Over time the Wenzel OCXO

approaches the IEM, but the transient behavior at 4s < τ < 100s is poor.

The steered NEL OCXO (blue) has better free-running short term stability values than

the Wenzel OCXO and uses the DAC for programmatic frequency adjustment. The voltage

resolution of the DAC is 19 microvolts, a resolution improvement of two orders of magnitude

over the power supply. Additionally, the latency of the system and settling time of the DAC

is small enough that a 1 second control rate can be used. These improvements result in

an improved steered signal behavior as seen in Figure 71. The steered NEL OCXO curve

more closely follows the free-running NEL OCXO behavior and the effect of steering with

the DAC yields a much smaller servo bump than with the power supply. At longer intervals

the stability of the steered signal approaches the IEM.

Both OCXOs are steered towards the IEM of the clock ensemble - thus the long term

stability of both steered curves should have a better stability than any of the individual

member clocks. As seen in Figure 71, the steered clocks have a better stability than the two

nominally performing clocks, but almost the same stability as the best CSAC. This effect

agrees with what was shown in simulation: in the case of a small clock ensemble where one

member clock is significantly better performing than the others, the IEM of the ensemble

will have approximately the same frequency stability as the best clock.

The difference between the stability of the two steered OCXOs in the long term is insignif-

icant. If a certain mission application only requires long term stability, then the methods are

approximately equal. However, if short term signal stability is important, then the method

using a stable OCXO and high resolution DAC is clearly superior.

70
Approved for public release; distribution is unlimited.

Figure 71. ADEV of Steered OCXOs

5 CONCLUSIONS

In this work we demonstrated the ability to characterize clocks using SDR metrology tech-

niques, to programatically steer an OCXO, and form a small clock ensemble with the steered
OCXO as the realization of the IEM. Our ability to accurately characterize clocks using SDRs
depends on the stability of the oscillators under test, the stability of the reference clock, and
the noise contribution of the measurement system. Here we showed that our best measure-

ment system contributes noise on the picosecond scale at one second, which is much smaller
than the short term stability of all our clocks. While the CSACs can readily be measured
against the Rb with any of the measurement systems, our ability to measure the behavior of
both OCXOs at short averaging intervals is limited by the stability of the rubidium frequency
reference. In order to properly observe the behavior of the OCXOs we would need to procure
a more stable reference oscillator or use alternative methods of clock characterization.

71
Approved for public release; distribution is unlimited.

The noise contribution from the measurement system had a negligible effect on our ability
to characterize oscillators, as it is smaller than the 1 second stability of all our clocks. If we
were to use clocks with better stability or characterize multiple clocks simultaneously, the
short term measurement noise would need to be considered.

The steering analysis showed the effect of the short term OCXO stability and the voltage
source on the quality of the steered signal response. An OCXO with improved short term
stability with respect to the target clock state will result in a better steered signal as the
clock can be gently steered to rely on the improved free-running stability of the clock over
the short averaging intervals. The source of the applied voltage will determine the smallest
possible frequency adjustment and the smallest control rate. A smaller voltage resolution will
result in a larger range of steering possibilities for a given voltage range. The settling time
of the voltage source and the general latency of the OCXO steering system will determine
the smallest control rate, with smaller control rates yielding better results. In our analysis
we found that the NEL OCXO and DAC, posessing both of the aforementioned qualities,
resulted in a more stable steered signal output than the Wenzel OCXO and benchtop power
supply system.

In the case of this small clock ensemble where one oscillator is significantly m ore stable
than the others, the IEM closely approximates the behavior of that oscillator. For the
purpose of generating a clock signal better than the ensemble members, in this scenario it
seems logical to just steer the OCXO to the best clock and not bother with ensembling.
However, this ignores the resiliency benefits o f u sing m ultiple c locks. W ith o nly a single
clock there is a single point of failure in the timing system where errors in the CSAC will
manifest in the steered output signal; when using multiple clocks, the effect of an error
in any single clock on the steered output signal can potentially be mitigated by using a
clock ensemble.

Future work will focus on the stability of the steered output signal in the presence
of phase and frequency errors in the member clocks. The effect of clock errors on the
steered OCXO signal both with and without detection / mitigation systems are of interest.
Initial analysis will be conducted using CSAC phase measurements and artificially adding
errors. The perturbed data sets will then be processed in simulation to understand the
expected system response both with and without fault detection and mitigation systems.
Additionally, we plan on expanding the clock ensemble using additional CSACS and SDRs.
The expansion should yield a steered OCXO signal with noticeably improved stability for
long averaging intervals.

72

Approved for public release; distribution is unlimited.

REFERENCES

[1] “Strategy for the Department of Defense Positioning, Navigation, and Timing (PNT)
Enterprise,” Tech. Rep., 2019.

[2] P. H. Dana and B. Penrod, “The Role of GPS in Precise Time and Frequency Dissem-

ination,” GPS World, pp. 38–43, 1990.

[3] L. Mohon, Deep Space Atomic Clock (DSAC) Overview, Jul. 2020, [Online], available:
https://www.nasa.gov/mission_pages/tdm/clock/overview.html.

[4] M. M. Rybak, P. Axelrad, J. Seubert, and T. Ely, “Chip Scale Atomic Clock–Driven
One-Way Radiometric Tracking for Low-Earth-Orbit CubeSat Navigation,” Journal of
Spacecraft and Rockets, vol. 58, no. 1, pp. 1–10, 2020, doi: 10.2514/1.A34684.

[5] C. Flood, M. Q. LaBarge, L. Schement, H. Dixon, and P. Axelrad, “A Testbed for
Low-SWaP Atomic Clock Ensemble Development,” Proceedings of the 52nd
Annual Precise Time and Time Interval Systems and Applications Meeting, pp. 287–

300, Jan. 2021, doi: 10.33012/2021.17790.

[6] C. Flood, W. Watkins, and P. Axelrad, “Signal Generation in a Low-SWaP Atomic
Clock Ensemble,” Proceedings of the 53nd Annual Precise Time and Time
Interval Systems and Applications Meeting, pp. 45–57, Jan. 2022, doi:
10.33012/2022.18272.

[7] J. Sherman and R. Jordens, “Oscillator metrology with software defined radio,” Review
of Scientific Instruments, vol. 87, no. 054711, pp. 1–11, 2016.

[8] Marion Gödel and Johann Furthner, “Robust Ensemble Time Onboard a Satellite,”
Proceedings of the 48th Annual Precise Time and Time Interval Systems and
Applica-tions Meeting, pp. 26–43, Jan. 2017, doi: 10.33012/2017.15007.

[9] K. R. Brown, “The Theory of the GPS Composite Clock,” Proceedings of the 4th
International Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GPS 1991), pp. 223–241, Sep. 1991.

[10] M. Gödel, T. D. Schmidt, and J. Furthner, “Comparison between simulation and hard-

ware realization for different clock steering techniques,” Metrologia, vol. 56, no. 3,

p. 035 001, May 2019, doi: 10.1088/1681-7575/ab144d. [Online], available:
https: //doi.org/10.1088/1681-7575/ab144d .

Approved for public release; distribution is unlimited.

73

https://www.nasa.gov/mission_pages/tdm/clock/overview.html
https://doi.org/10.2514/1.A34684
https://doi.org/10.33012/2021.17790
https://doi.org/10.33012/2022.18272
https://doi.org/10.33012/2017.15007
https://doi.org/10.1088/1681-7575/ab144d
https://doi.org/10.1088/1681-7575/ab144d
https://doi.org/10.1088/1681-7575/ab144d

[11] SA.45s CSAC and RoHS CSAC Options 001 and 003, 090-02984-001(003),

900-00744-000 Rev E, Microsemi, Mar. 2019.

[12] FS725 — Benchtop rubidium frequency standard, FS725, Stanford Research Systems,

Jul. 2022.

[13] Premium 10 MHz-SC Streamline Crystal Oscillator, 501-04609, Wenzel Associates, Jul.

2022.

[14] Precision ultra low phase noise multi frequency ocxo reference module, 1326A,

NEL Frequency Controls, Inc.

[15] Miniature, ultra-portable high precision performance atomic frequency source,
mRO-50, Orolia.

[16] Chip-Scale Atomic Clock (CSAC) SA.45s User’s Guide, DS50003041A, Microsemi,

2020.

[17] “Red pitaya,” [Online], available: https://redpitaya.com/.

[18] N200/n210, N200, https://kb.ettus.com/N200/N210, Ettus Research, Dec. 2020.

[19] N300/n310, N310, https://kb.ettus.com/N300/N310, Ettus Research, Dec. 2020.

[20] C. Zucca and P. Tavella, “The clock model and its relationship with the allan and

related variances,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 52, no. 2, pp. 289–296, 2005, doi: 10.1109/
TUFFC.2005.1406554.

[21] W. L. Brogan, “Modern control theory,” in Prentice-Hall, 1991, pp. 448–457.

[22] Gnu radio wiki, https://wiki.gnuradio.org/index.php/MainP age, GNU Radio, Jun.

2022.

[23] B. Bloessl, M. Müller, and M. Hollick, “Benchmarking and profiling the gnuradio sched-

uler,” Proceedings of the GNU Radio Conference, vol. 4, no. 1, 2019, [Online], available:

https://pubs.gnuradio.org/index.php/grcon/article/view/64.

[24] J. Sherman et al., A resilient architecture for the realization and distribution of
coor-dinated universal time to critical infrastructure systems in the united states:
Method-ologies and recommendations from the national institute of standards and
technology (nist), en, 2021-11-03 04:11:00 2021, doi: https://doi.org/10.6028/
NIST.TN.2187,[Online], available: https://tsapps.nist.gov/publication/
get_pdf.cfm?pub_ id=933488.

[25] D. L. Mills, “Internet Time Synchronization: the Network Time Protocol,” Network
Time Synchronization, pp. 10–11, Oct. 1998.

[26] S. T. Watt, S. Achanta, H. Abubakari, and E. Sagen, “Understanding and Applying

Precision Time Protocol,” 4th Annual Clemson University Power Systems Conference,
March 2015, pp. 1–7, Dec. 2015.

74
Approved for public release; distribution is unlimited.

https://redpitaya.com/
https://doi.org/10.1109/TUFFC.2005.1406554
https://pubs.gnuradio.org/index.php/grcon/article/view/64
https://doi.org/https://doi.org/10.6028/NIST.TN.2187
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933488
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933488

[27] IEEE 1588 Precise Time Protocol: The New Standard in Time Synchronization,

MSCC-0104-WP-01007-1.00-1117, Microsemi, Mar. 2017.

[28] T. W lostowski, “Precise time and frequency transfer in a White Rabbit network,”

Tech. Rep., May 2011.

[29] J. Savory, J. Sherman, and S. Romisch, “White Rabbit-Based Time Distribution at

NIST,” Tech. Rep., 2018.

[30] J. Serrano et al., “The White Rabbit Project,” Tech. Rep., 2009.

75
Approved for public release; distribution is unlimited.

APPENDIX A - Red Pitaya Data Acquisition MATLAB

Code

%% Define Red Pitaya as TCP/IP object

clear all

close all

clc

IP = '192.168.178.111'; % Input IP of your Red Pitaya...

port = 5000;

RP = tcpclient(IP, port); % Define Red Pitaya as TCP/IP object (connection to remote server)

% RP.InputBufferSize = 16384*32; % Buffer sizes are calculated automatically with the new syntax

%% Open connection with your Red Pitaya

RP.ByteOrder = "big-endian";

configureTerminator(RP, 'CR/LF');

flush(RP, "input");

flush(RP, "output");

% Set decimation vale (sampling rate) in respect to you

% acquired signal frequency

writeline(RP,'ACQ:RST');

writeline(RP,'ACQ:DEC 1');

writeline(RP,'ACQ:TRIG:LEV 0');

% there is an option to select coupling when using SIGNALlab 250-12

% writeline(RP,'ACQ:SOUR1:COUP AC'); % enables AC coupling on channel 1

% by default LOW level gain is selected

% writeline(RP,'ACQ:SOUR1:GAIN LV'); % user can switch gain using this command

% Set trigger delay to 0 samples

% 0 samples delay set trigger to the center of the buffer

% Signal on your graph will have trigger in the center (symmetrical)

% Samples from left to the center are samples before trigger

% Samples from center to the right are samples after trigger

writeline(RP,'ACQ:TRIG:DLY 0');

%% Start & Trigg

% Trigger source setting must be after ACQ:START

76
Approved for public release; distribution is unlimited.

% Set trigger to source 1 positive edge

writeline(RP,'ACQ:START');

% After acquisition is started some time delay is needed in order to acquire fresh samples in the buffer

% Here we have used time delay of one second, but you can calculate the exact value by taking into account buffer

% length and sampling rate

writeline(RP,'ACQ:TRIG CH1 PE');

% Wait for trigger

% Until trigger is true wait with acquiring

% Be aware of the while loop if trigger is not achieved

% Ctrl+C will stop code executing in MATLAB

while 1

trig rsp = writeread(RP,'ACQ:TRIG:STAT?')

if strcmp('TD', trig rsp(1:2)) % Read only TD

break

end

end

% Read data from buffer

signal str = writeread(RP,'ACQ:SOUR1:DATA?');

signal str 2 = writeread(RP,'ACQ:SOUR2:DATA?');

% Convert values to numbers.

% First character in the string is {
% and the last 3 are 2 empty spaces and a } .

signal num = str2num(signal str (1, 2:length(signal str)-3));

signal num 2 = str2num(signal str 2(1, 2:length(signal str 2)-3));

plot(signal num)

hold on

plot(signal num 2,'r')

grid on

ylabel('Voltage / V')

xlabel('samples')

clear RP;

77
Approved for public release; distribution is unlimited.

APPENDIX B - Testbed Simulation MATLAB Code

%{
Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Margaret Rybak, Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

%}

%% Generate Clock Signals

msrmtNoiseScenarios = (1E-12);

%Set-Up timing Vectors

dT = 1;

maxTime = 10000;

duration = maxTime*3;

timeVect = 0:dT:duration;

numSteps = length(timeVect);

run('Generate Clock Signals.m');

%% Plot True Clocks

figure;

hold on;

set(gcf, 'color', 'w');

plot(timeVect ./ 86400, trueClock(1, :), 'r');

plot(timeVect ./ 86400, trueClock(3, :), 'm');

plot(timeVect ./ 86400, trueClock(5, :), 'b');

plot(timeVect ./ 86400, trueClock(7, :), 'g');

xlabel('Time (Days)', 'FontSize', 20);

ylabel('Clock Bias (s)', 'FontSize', 20);

grid on;

set(gca, 'FontSize', 20);

%% Calculate Allan Deviations

maxTau = maxTime;

minTau = dT;

numADEV Points = 1000;

trueClockOAD = NaN(4, numADEV Points);

[trueClockOAD(1,:), Tau] = OAD maxminTau(trueClock(1, :),numADEV Points,minTau, maxTau);

[trueClockOAD(2,:), ~] = OAD maxminTau(trueClock(3, :),numADEV Points,minTau, maxTau);

[trueClockOAD(3,:), ~] = OAD maxminTau(trueClock(5, :),numADEV Points,minTau, maxTau);

[trueClockOAD(4,:), ~] = OAD maxminTau(trueClock(7, :),numADEV Points,minTau, maxTau);

78
Approved for public release; distribution is unlimited.

%% ADEV plots

figure;

set(gcf, 'color', 'w');

hold on;

%these are the signals we want on every graph

csac1 = loglog(Tau, trueClockOAD(1,:), 'r', 'LineWidth', 2.5);

csac2 = loglog(Tau, trueClockOAD(3,:), 'm', 'LineWidth', 2.5);

csac3 = loglog(Tau, trueClockOAD(2,:), 'b', 'LineWidth', 2.5);

ocxo = loglog(Tau, trueClockOAD(4,:), 'g', 'LineWidth', 2.5);

set(gca, 'YScale', 'log', 'FontSize', 20);

set(gca, 'XScale', 'log', 'FontSize', 20);

legend([csac1, csac2, csac3, ocxo], {'CSAC 1', 'CSAC 2', 'CSAC 3', 'OCXO'}, 'FontSize', 16);

xlabel('Tau (s)', 'FontSize', 20)

ylabel('ADEV', 'FontSize', 20)

grid on

%% Combinations

%timeArray contains values for the control frequency

%timeArray = [1; 5; 10; 20; 50; 100];

timeArray = [1];

%generate the pole placement gain array

allEigenvalues = [.95, .949; .9, .901; .85, .849; .8, .801; .75, .749; .7, .701; .65, .649; .6, .601; .55, .549; .5, .501; .45, .449; .4, .401; .35, .349; .3, .301; .25, .249; .2, .201; .15, .149; .1, .101; .05, .049];

%desiredEigenvalues = desiredEigenvalues(1:10, :);

%desiredEigenvalues = [.05, .049];

desiredEigenvalues = allEigenvalues([1, 19], :);

%A is the dynamics for the clocks, B is the control matrix

A = [1, dT; 0, 1];

B = [0; 1];

Garray = zeros(size(desiredEigenvalues, 1), 2);

for i = 1:size(desiredEigenvalues, 1)

curEigenvals = desiredEigenvalues(i, :)';

tempG = place(A, B, curEigenvals);

Garray(i, :) = tempG;

end

%this will generate the combinations of control frequencies and gain values

gInds = 1:1:size(Garray, 1);

[m,n] = ndgrid(timeArray,gInds);

Z = [m(:),n(:)];

%preallocate information we want to store

79
Approved for public release; distribution is unlimited.

secondKFOADHist = zeros(length(Z), numADEV Points);

clockFourOADHist = zeros(length(Z), numADEV Points);

iemOADHist = zeros(length(Z), numADEV Points);

%iterate through all of the time and gain combinations

for i = 1:size(Z, 1)

%get the current values of time and G

controlInputCadence = Z(i, 1);

curGInd = Z(i, 2);

curGValues = Garray(curGInd, :);

%call the sim function

[truthClockHistory,secondKFEstimates, curIEM] = SimulateClockTestbed(numClocks,numClkSt,numSteps,...

msrmtNoise,controlInputCadence,curGValues,STM,sqrtQ,Q,trueClock);

%compute ADEV

[secondKFOAD, Tau] = OAD maxminTau(secondKFEstimates(1, :),numADEV Points,minTau, maxTau);

[clockFourOAD, ~] = OAD maxminTau(truthClockHistory(7, :),numADEV Points,minTau, maxTau);

[curIEMOAD, ~] = OAD maxminTau(curIEM(1, :),numADEV Points,minTau, maxTau);

secondKFOADHist(i, :) = secondKFOAD;

clockFourOADHist(i, :) = clockFourOAD;

iemOADHist(i, :) = curIEMOAD;

end

%%Plot OAD: Round 1

for i = 1:length(timeArray)

curTime = timeArray(i);

figure;

set(gcf, 'color', 'w');

hold on;

%these are the signals we want on every graph

trueCSAC1 = loglog(Tau, trueClockOAD(1,:), 'r', 'LineWidth', 2.5);

trueCSAC2 = loglog(Tau, trueClockOAD(2,:), 'm', 'LineWidth', 2.5);

trueCSAC3 = loglog(Tau, trueClockOAD(3,:), 'b', 'LineWidth', 2.5);

ocxo = loglog(Tau, trueClockOAD(4,:), 'g', 'LineWidth', 2.5);

iem = loglog(Tau, iemOADHist(i,:), 'k', 'LineWidth', 2.5);

loglog(1, CSAC Tau 1, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0])

loglog(10, CSAC Tau 10, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0])

loglog(100, CSAC Tau 100, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0])

loglog(1000, CSAC Tau 1000, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0])

loglog(10000, CSAC Tau 10000, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0])

csacSpec = loglog(100000, CSAC Tau 100000, 'o', 'Color',[255/255,165/255,0], 'MarkerFaceColor', [255/255,165/255,0]);

set(gca, 'YScale', 'log', 'FontSize', 16);

set(gca, 'XScale', 'log', 'FontSize', 16);

%find array inds corresponding to current control input cadence

80
Approved for public release; distribution is unlimited.

relevantArrayInds = find(Z(:, 1) == curTime);

for j = 1:length(relevantArrayInds)

curComboInd = relevantArrayInds(j);

loglog(Tau, clockFourOADHist(curComboInd,:), 'LineWidth', 2.5);

end

legend([trueCSAC1, trueCSAC2, trueCSAC3, ocxo, iem, csacSpec], {'CSAC1', 'CSAC2', 'CSAC3', 'Steered Signal', 'IEM', 'CSAC Spec'}, 'FontSize', 20);

title(['OADEV for Simulated Clocks: t {control} = ' num2str(curTime) ' second'], 'FontSize', 20)

xlabel('Tau (s)', 'FontSize', 16)

ylabel('ADEV', 'FontSize', 16)

grid on

set(gca, 'FontSize', 20);

end

81
Approved for public release; distribution is unlimited.

APPENDIX C - Clock Signal Generation MATLAB Code

%{
Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Margaret Rybak, Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

%}

%This is where true clocks are simulated

msrmtNoise = msrmtNoiseScenarios(1);

savePlots = true;

%CSAC ADEV values from Microsemi

CSAC Tau 1 = 3E-10;

CSAC Tau 10 = 1E-10;

CSAC Tau 100 = 3E-11;

CSAC Tau 1000 = 1E-11;

CSAC Tau 10000 = 3E-12;

CSAC Tau 100000 = 1E-11;

%Define CSAC sigma white noise and random walk parameters based on the ADEV

%IEEE Std. 647-2006 IEEE Standard Specification Format Guide and Test

%Procedure for Single-Axis Laser Gyros

y = log10(CSAC Tau 10000);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = CSAC Tau 1; sigrwf = K;

var WHFreq CSAC = sigwhfˆ2; var RWFreq CSAC = sigrwfˆ2;

%Parameters for OCXO

y = log10(1e-9);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 1e-11; sigrwf = K;

var WHFreq ocxo = sigwhfˆ2; var RWFreq ocxo = sigrwfˆ2;

%Parameters for N200 with ext ref

y = log10(6e-11);

82
Approved for public release; distribution is unlimited.

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 5.7e-9; sigrwf = K;

var WHFreq N200 = sigwhfˆ2; var RWFreq N200 = sigrwfˆ2;

%Parameters for DARPA ACES

y = log10(3e-15);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 3e-13; sigrwf = K;

var WHFreq ACES = sigwhfˆ2; var RWFreq ACES = sigrwfˆ2;

%Parameters for RAFS

y = log10(1e-14);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 1e-12; sigrwf = K;

var WHFreq RAFS = sigwhfˆ2; var RWFreq RAFS = sigrwfˆ2;

%Parameters for ORAFS

y = log10(1e-15);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 3e-13; sigrwf = K;

var WHFreq ORAFS = sigwhfˆ2; var RWFreq ORAFS = sigrwfˆ2;

%Parameters for H Maser

y = log10(1e-15);

x = log10(10000);

m = .5;

b =y-m*x;

logK = m*log10(sqrt(3)) + b;

K = 10ˆlogK;

sigwhf = 6e-14; sigrwf = K;

var WHFreq Maser = sigwhfˆ2; var RWFreq Maser = sigrwfˆ2;

83
Approved for public release; distribution is unlimited.

%Number of clocks and number of clock states to use

numClocks = 4;

numClkSt = 2;

%Stack the variance parameters (using repmat since all clocks are

%CSAC in this case), can add more clock states for clock

%signatures that have them, only using 2-state for CSAC (vars(nc,3) = 0)

%currently only coded to accept a 3rd clock state (see loop below)

vars = repmat([var WHFreq CSAC, var RWFreq CSAC, 0], numClocks, 1);

vars(4, :) = [var WHFreq ocxo, var RWFreq ocxo, 0];

%The clocks signals will be stacked in groups of 2 (phase & frequency)

%to select these I create the phase index for each clock - I'm sure there

%is a better way to do this

index = (1:numClocks)*numClkSt -(numClkSt -1);

%Loop through and make a stacked matrix for each clocks STM & Covariance

%Matrix (useful if using clocks with different properties), currently only

%coded up to accept a third clock state, would have to add other as

%necessary Zucca, C., and P. Tavella, The Clock Model and Its Relationship

%with Allan and Related Variances

for nc = 1:numClocks

run('STM Covariance Matrices.m');

end

%Pull only the indexes for the 2-state scenario for CSAC

sqrtQ = sqrtQ(1:numClkSt*numClocks,1:numClkSt*numClocks);

STM = STM(1:numClkSt*numClocks,1:numClkSt*numClocks);

Cov = Cov(1:numClkSt*numClocks,1:numClkSt*numClocks);

Q = Q(1:numClkSt*numClocks,1:numClkSt*numClocks);

%% Create Clock Signatures

trueClock = zeros(numClocks*numClkSt, numSteps);

%Either load the saved or generate a new random vector

randVect = randn(numClocks*numClkSt,numSteps);

%Propagate the clock states

for ct = 2:numSteps

trueClock(:,ct) = STM*trueClock(:,ct-1) + sqrtQ*randVect(:, ct-1);

end

%% CLOCK MEASUREMENTS

%Create the clock differenced measurements, uses the first clock as

84
Approved for public release; distribution is unlimited.

%the reference

diffClocks = NaN(numClocks-1, numSteps);

noiseyDiffClocks = NaN(numClocks-1, numSteps);

for nc = 2:numClocks

diffClocks(nc-1,:) = trueClock(index(nc),:) - trueClock(1,:);

noiseyDiffClocks(nc-1,:) = trueClock(index(nc),:) - trueClock(1,:) + msrmtNoise*randn(1,numSteps);

end

85
Approved for public release; distribution is unlimited.

APPENDIX D - Clock STM Generation MATLAB Code

%{
Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Margaret Rybak, Penina Axelrad

Last Edited: 28 June 2022

%}

%Loop through and make a stacked matrix for each clocks STM &

%Covariance Matrix (useful if using clocks with different

%properties), currently only coded up to accept a third clock

%state, would have to add other as necessary

%Zucca, C., and P. Tavella, The Clock Model and Its Relationship with Allan and Related Variances

vars123 = [vars(nc,1), vars(nc,2), vars(nc,3)];

STMi = [1, dT, (dTˆ2)/2; 0, 1, dT; 0, 0, 1];

q11 = vars(nc,1)*dT + (vars(nc,2)*(dTˆ3))/3 + (vars(nc,3)*(dTˆ5))/20;

q21 = (vars(nc,2)*(dTˆ2))/2 + (vars(nc,3)*(dTˆ4))/8;

q31 = (vars(nc,3)*(dTˆ3))/6;

q12 = q21;

q22 = vars(nc,2)*dT + (vars(nc,3)*(dTˆ3))/3;

q32 = (vars(nc,3)*(dTˆ2))/2;

q13 = q31;

q23 = q32;

q33 = vars(nc,3)*dT;

Qi = [q11 q12 q13; q21 q22, q23; q31 q32, q33];

Q(index(nc):index(nc)+(numClkSt-1), index(nc):index(nc)+(numClkSt-1)) = Qi(1:numClkSt,1:numClkSt);

STM(index(nc):index(nc)+(numClkSt-1), index(nc):index(nc)+(numClkSt-1)) = STMi(1:numClkSt,1:numClkSt);

Cov(index(nc):index(nc)+(numClkSt-1), index(nc):index(nc)+(numClkSt-1)) = diag(vars123(1:numClkSt));

%Singular value decomposition to convert covariance matrix to

%generate the correlated clock signature in the following loop

[U,S,Vh] = svd(Qi(1:numClkSt,1:numClkSt));

sqrtQ(index(nc):index(nc)+(numClkSt-1), index(nc):index(nc)+(numClkSt-1)) = U*sqrt(S)*Vh;

86
Approved for public release; distribution is unlimited.

APPENDIX E - Allan Deviation MATLAB Code

%{
Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Margaret Rybak, Penina Axelrad

Last Edited: 28 June 2022

%}

%NIST Handbook of Freq Stability Analysis, Riley (2008)

%5.2.4: Overlapping Allan Deviation (PG 16, EQ 11)

function [OAD, Tau] = OAD maxminTau(signal,numPoints, minTau, maxTau)

%N is the number of data points in the input clock signal, this should be more

%than the maxTau (at least 4X) to prevent squirrely results at end of plot

N = length(signal);

%The averaging factor is multiplied by the minTau (from 1 to

%MaxTau/MinTau), this is equivalent to making a Tau Vector from MinTau to

%MaxTau spaced by MinTau

% maxAvgFactor = maxTau/minTau;

%Preallocate OAD and Tau Vectors

Tau = minTau:minTau:maxTau;

Tau = Tau(round(logspace(log10(1),log10(length(Tau)),numPoints)));

numTaus = length(Tau);

OAD = zeros(numTaus,1);

EB = zeros(numTaus,1);

%Run Loop through Averaging Factors from 1 to MaxAvgFactor

for nT = 1:numTaus

%Define Tau as AveragingFactor (af) x MinTau

m = Tau(nT)/minTau;

%Preallocate Summation Loop as Number of Data Points - 2*AvgFactor

%(Ensures window does not run out of data)

xn = zeros(N-2*m,1);

for ii = 1:N-2*m

xn(ii) = (signal(ii+2*m) - 2*signal(ii+m) + signal(ii))ˆ2

;

end

AD = sqrt((1/(2*(Tau(nT)ˆ2)*(N-2*m)))*sum(xn,'omitnan'));

OAD(nT) = AD;

end

end

87
Approved for public release; distribution is unlimited.

APPENDIX F - Simulate Testbed Function MATLAB

Code

%{
Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Margaret Rybak, Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

%}

function [truthClockHistory,secondKFEstimates, IEM] = SimulateClockTestbed(numClocks,numClkSt,numSteps,msrmtNoise,controlInputCadence,G,STM,sqrtQ,Q,trueClock)

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

%Preallocate Matricies

numFiltStates = (numClocks-1)*numClkSt;

clockStateEstimates = nan(numFiltStates,numSteps);

secondKFEstimates = nan(2, numSteps);

truthClockHistory = nan(8,numSteps);

%Set the initial estimate at zeros

xhat = zeros(6, 1);

xhat2 = zeros(2, 1);

secondKFEstimates(:, 1) = xhat2;

%Size the intial covariance (I used the measurement noise in this case)

P0 = diag(repmat([msrmtNoiseˆ2, (msrmtNoiseˆ2)/100], 1,numClocks-1));

%Create the R matrix based on measurement noise

R = diag((msrmtNoiseˆ2)*ones(numClocks-2,1));

%Generate H matrix & initialize the implicit ensemble mean vector

%based on Brown 1991 "The Theory of the GPS Composite Clock"

%H = zeros(numClocks-1,numFiltStates);

%H(:,1) = -1*ones(numClocks-1,1);

H = [-1, 0, 1, 0, 0, 0;

-1, 0, 0, 0, 1, 0];

%set up the implicit ensemble mean

IEM = nan(numClkSt,numSteps);

IEM(:, 1) = zeros(2, 1);

%initialize

88
Approved for public release; distribution is unlimited.

prevClockStates = zeros(numClocks*numClkSt, 1);

truthClockHistory(:, 1) = prevClockStates;

firstH = [-1, 0, 1, 0, 0, 0, 0, 0;

-1, 0, 0, 0, 1, 0, 0, 0];

%secondH = [-1, 0, 0, 0, 0, 0, 1, 0];

%dT = 1;

B = [0; 0; 0; 0; 0; 0; 0; 1];

controlInput = -G * xhat2;

I = eye(numFiltStates);

for kf = 1:numSteps-1

%Clock State Evolution

randomNums = randn(numClocks*numClkSt,1);

truthClockStates = (STM*prevClockStates) + (B*controlInput) + (sqrtQ*randomNums);

prevClockStates = truthClockStates;

truthClockHistory(:, kf+1) = prevClockStates;

%Make Measurements

y = firstH*truthClockStates + msrmtNoise*randn(2,1);

%First Kalman Filter

%Propagate State Using Diff Eqns

xbar = STM(1:6, 1:6)*xhat;

%Calculate STM with Current State for Covariance Time Propagation

Pbar = STM(1:6, 1:6)*P0(1:6, 1:6)*STM(1:6, 1:6)' + Q(1:6, 1:6); %STM*Cov*STM';

%Measurement Update

K = Pbar*H'*inv(H*Pbar*H' + R(1:2, 1:2));

P0 = (I - K*H)*Pbar*(I-K*H)'+K*R*K';

xhat = xbar + K*(y - H*xbar);

%Brown covariance reduction

Hstar = repmat(eye(2),numClocks-1,1);

P0 = P0 - Hstar*inv(Hstar'*inv(P0)*Hstar)*Hstar';

%store the estimate of the clock states

clockStateEstimates(:,kf) = xhat;

%Create the Implicit Ensemble Mean - can do this since it's all sim

Omega = trueClock(1:6,kf+1) - xhat;

W IE = (Hstar'*(P0\Hstar))\Hstar'/(P0);
IEM(:,kf+1) = W IE*Omega;

89
Approved for public release; distribution is unlimited.

%compute the difference between the OCXO state and the IEM

clockDiff = truthClockStates(7:8) - IEM(:, kf+1);

%compute control input for clock we are steering

%only apply control input every XX seconds

if mod(kf, controlInputCadence) == 0

%controlInput = -G * xhat2;

controlInput = -G * clockDiff;

else

controlInput = 0;

end

end

end

90
Approved for public release; distribution is unlimited.

APPENDIX G - Phasor Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds

to get ports and parameters of your block. The arguments to init will

be the parameters. All of them are required to have default values!

"""

import numpy as np

from gnuradio import gr

import time

import math

class blk(gr.sync block): # other base classes are basic block, decim block, interp block

"""Embedded Python Block example - a simple multiply const"""

def init (self, sampleRate=4000.0, beatFreq=73.0): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

name='Phasor Block', # will show up in GRC

in sig=[np.float32,np.float32],

out sig=[np.float32, np.float32]

)

if an attribute with the same name as a parameter is found,

a callback is registered (properties work, too).

self.beatFreq = beatFreq

self.sampRate = sampleRate

self.timeStep = 1 / sampleRate

self.counter = 0

self.two pi = 2.0 * math.pi

def work(self, input items, output items):

#iterate over the length of the input

for i in range(0, len(input items[0])):

measCosVal = input items[0][i]

91
Approved for public release; distribution is unlimited.

measSinVal = input items[1][i]

#increment the running counter

self.counter = self.counter + 1

#compute nstar

nStar = self.counter % self.sampRate

#compute phase growth

phaseGrowth = self.two pi * self.beatFreq * nStar * self.timeStep

#compute cosine and sine based on phase growth

computedCosVal = math.cos(phaseGrowth)

computedSinVal = math.sin(phaseGrowth)

realVal = (measCosVal*computedCosVal) + (measSinVal*computedSinVal)

imagVal = (measSinVal*computedCosVal) - (measCosVal*computedSinVal)

#populate the first output with the first input

output items[0][i] = realVal

output items[1][i] = imagVal

return len(output items[0])

92
Approved for public release; distribution is unlimited.

APPENDIX H - Phase Unwrap Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds

to get ports and parameters of your block. The arguments to init will

be the parameters. All of them are required to have default values!

"""

import numpy as np

from gnuradio import gr

import math

class blk(gr.sync block): # other base classes are basic block, decim block, interp block

"""Embedded Python Block example - a simple multiply const"""

def init (self): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

name='Phase Unwrap Block', # will show up in GRC

in sig=[np.float32],

out sig=[np.float32]

)

if an attribute with the same name as a parameter is found,

a callback is registered (properties work, too).

self.two pi = 2.0 * math.pi

self.wrapCounter = 0.0

self.prevValue = 0.0

self.firstCallBool = 1

def work(self, input items, output items):

if self.firstCallBool:

self.prevValue = input items[0][0]

self.firstCallBool = 0

for i in range(0, len(input items[0])):

#compute the difference between the current value and the previous value

curPhaseVal = input items[0][i]

93
Approved for public release; distribution is unlimited.

phaseDelta = curPhaseVal - self.prevValue

if phaseDelta > math.pi:

#shift the next values down accordingly

numSteps = round(phaseDelta / self.two pi)

unwrappedPhase = curPhaseVal - (numSteps * self.two pi)

elif phaseDelta < (-1 * math.pi):

#shift the next values up accordingly

numSteps = round(phaseDelta / self.two pi)

unwrappedPhase = curPhaseVal + (numSteps * self.two pi)

else:

#no unwrapping needed

unwrappedPhase = curPhaseVal

self.prevValue = unwrappedPhase

#populate the output with the unwrapped phase

output items[0][i] = unwrappedPhase

return len(output items[0])

94
Approved for public release; distribution is unlimited.

APPENDIX I - Ensemble Kalman Filter Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Kalman Filter Block:

This block is for use within GNU Radio Companion. This filter follows Godel's outline of

the Kalman Filter. It can take up to N clocks as input and either the 2 or 3 state clock

model.

"""

import numpy as np

import numpy.matlib

import math

from gnuradio import gr

"""Initialize the filter with the following variables"""

dT = .125

numclocks = 3 #number of clocks we're estimating

numclockstates = 2 #number of clock states (2 or 3)

totalStates = numclocks*numclockstates #for intializing the matrices/loops

numInputs = 2 #how many measurements are being input into the system

#Allan Deviation from CSAC documentation

SB Tau 1 = 2E-10

SB Tau 100000 = 1E-11

Ralphie Tau 1 = 2E-10

Ralphie Tau 100000 = 1E-11

Chip Tau 1 = 9E-11

Chip Tau 100000 = 3E-12

#This code below is from pulled from Margaret's CSAC simulation code - I still don't fully understand it but it has to do with power laws and linear models for different types of noise?

#x and m are constant

x = math.log10(10000)

m = .5

#these values change - start with SB

ySB = math.log10(SB Tau 100000)

95
Approved for public release; distribution is unlimited.

bSB = ySB - m*x

logK SB = m*math.log10(math.sqrt(3)) + bSB

K SB = 10**logK SB

sigwhf SB = SB Tau 1

sigrwf SB = K SB

q1 SB = sigwhf SB**2

q2 SB = sigrwf SB**2

#can just copy for now since Ralphie and SB behavior is near identical

q1 Ralphie = q1 SB

q2 Ralphie = q2 SB

#populate chip parameters

yChip = math.log10(Chip Tau 100000)

bChip = yChip - m*x

logK Chip = m*math.log10(math.sqrt(3)) + bChip

K Chip = 10**logK Chip

sigwhf Chip = Chip Tau 1

sigrwf Chip = K Chip

q1 Chip = sigwhf Chip**2

q2 Chip = sigrwf Chip**2

#Q is the process noise matrix for the clocks

Q = np.zeros([totalStates,totalStates])

Q[0][0] = q1 SB*dT+(q2 SB*(dT**3))/3

Q[0][1] = (q2 SB*(dT**2))/2

Q[1][0] = (q2 SB*(dT**2))/2

Q[1][1] = q2 SB*dT

Q[2][2] = q1 Ralphie*dT+(q2 Ralphie*(dT**3))/3

Q[2][3] = (q2 Ralphie*(dT**2))/2

Q[3][2] = (q2 Ralphie*(dT**2))/2

Q[3][3] = q2 Ralphie*dT

Q[4][4] = q1 Chip*dT+(q2 Chip*(dT**3))/3

Q[4][5] = (q2 Chip*(dT**2))/2

Q[5][4] = (q2 Chip*(dT**2))/2

Q[5][5] = q2 Chip*dT

#measurement matrix, our measurement is the difference between clock phase offsets

H = [[1,0,0,0,-1,0],[0,0,1,0,-1,0]]

#transpose of H for use within the filter

transH = np.transpose(H)

#identity matrix for use within the filter

ident = np.identity(totalStates)

96
Approved for public release; distribution is unlimited.

#R is measurement noise in time units

R = 10**-20

Hs = np.matlib.repmat(np.identity(numclockstates),numclocks,1)

transHs = np.transpose(Hs)

initCovUncertainty = 10**-15

P = initCovUncertainty*np.identity(totalStates) #initialize error covariance matrix

pPrev = P

"""Loop through to created a stacked state transition matrix following Godel's model"""

STM = np.zeros([totalStates,totalStates])

xPrevHatMinus = np.zeros([totalStates, 1]);

for x in range(0,numclocks):

#this is the code for the two state clock model

STM[x*numclockstates][x*numclockstates] = 1.0

STM[x*numclockstates][x*numclockstates+1] = dT

STM[x*numclockstates+1][x*numclockstates] = 0

STM[x*numclockstates+1][x*numclockstates+1] = 1.0

#this is logic for the three state clock model

if numclockstates==3.0:

STM[x*numclockstates][x*numclockstates+2] = 0.5*dT*dT

STM[x*numclockstates+1][x*numclockstates+2] = dT

STM[x*numclockstates+2][x*numclockstates] = 0

STM[x*numclockstates+2][x*numclockstates+1] = 0

STM[x*numclockstates+2][x*numclockstates+2] = 1.0

transSTM = np.transpose(STM)

K = np.zeros([totalStates,1]) #intialize Kalman gain

transK = np.transpose(K) #transpose of Kalman gain for use within the filter

class blk(gr.sync block):

def init (self): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

will show up in GRC

name='Kalman Filter',

#adding np.float32 more times changes the number of inputs

97
Approved for public release; distribution is unlimited.

in sig=[np.float32,np.float32],

#adding np.float32 more times changes the number of outputs

out sig=[np.float32,np.float32,np.float32,np.float32,np.float32,np.float32]

)

self.counter = 0

self.seconds = 2

self.messagerate = 8*self.seconds # want to send one message every X seconds

def work(self, input items, output items):

global xNextHatMinus

global xPrevHatMinus

global xNextHatPlus

global pPrev

global pPredict

global pNext

global STM

global transSTM

global K

global transK

if len(input items[0]) == 1:

remainder = self.counter % self.messagerate

outputxhat = np.zeros((totalStates,1)) #to store xhat output for export out of block

z = np.zeros((numInputs, 1)) #create the measurement matrix for use within the loop

for x in range (0,numInputs):

z[x][0] = input items[x][0] #add the input items into the measurement matrix

"""Process all measurements following Godel's model"""

#state prediction: STM * xk

xNextHatMinus = np.matmul(STM, xPrevHatMinus)

#cov prediction: STM * P * STM' + Q

pPredict = np.matmul(np.matmul(STM,pPrev),transSTM)+Q

#Kalman Gain: K = P * H' * inv(H*P*H' + R)

newMatCSACs = (np.linalg.inv(np.matmul(np.matmul(H,pPredict),transH)+R))

K = np.matmul(np.matmul(pPredict,transH),newMatCSACs)

transK = np.transpose(K)

#state measurement update: xk+1 = xk + K*(y - H*xk)

98
Approved for public release; distribution is unlimited.

xNextHatPlus = xNextHatMinus + np.matmul(K, (z - np.matmul(H, xNextHatMinus)))

#cov measurement update: (I - K*H)*P*(I - K*H)' + K*R*K'

pMsmt = np.matmul(np.matmul((ident-np.matmul(K,H)),pPredict),(np.transpose(ident-np.matmul(K,H))))+(np.matmul((K*R),transK))

#this is a covariance reduction method used in the Godel paper, not normally used in the KF

#P = P - Hs * inv(Hs' * inv(P) * Hs) * Hs'

invPMsmt = np.linalg.inv(pMsmt)

parenthQuant = np.matmul(np.matmul(transHs, invPMsmt), Hs)

invParenthQuant = np.linalg.inv(parenthQuant)

pMsmtReduced = pMsmt - (np.matmul(np.matmul(Hs,invParenthQuant), transHs))

#update the previous state and covariance

xPrevHatMinus = xNextHatPlus

pPrev = pMsmtReduced

self.counter = self.counter + 1

for y in range (0,totalStates):

output items[y][0] = xNextHatPlus[y][0]

elif len(input items[0]) > 1:

numSteps = len(input items[0])

#our output will be an array with all of the

outputxhat = np.zeros((totalStates, numSteps))

for i in range (0,numSteps):

#initalize the measurement array

z = np.zeros((numInputs, 1))

#populate the current measurement vector with the appropriate indices from the input

for x in range (0,numInputs):

z[x][0] = input items[x][i]

if i == 0:

print("cur msmt: {}".format(z[x][i]))

"""Process all measurements following Godel's model"""

#state prediction: STM * xk

xNextHatMinus = np.matmul(STM, xPrevHatMinus)

#cov prediction: STM * P * STM' + Q

pPredict = np.matmul(np.matmul(STM,pPrev),transSTM)+Q

#Kalman Gain

#K = P * H' * inv(H*P*H' + R)

99
Approved for public release; distribution is unlimited.

K = np.matmul(np.matmul(pPredict,transH),(np.linalg.inv(np.matmul(np.matmul(H,pPredict),transH)+R)))

transK = np.transpose(K)

#state measurement update: xk+1 = xk + K*(y - H*xk)

xNextHatPlus = xNextHatMinus + np.matmul(K, (z - np.matmul(H, xNextHatMinus)))

#cov measurement update: (I - K*H)*P*(I - K*H)' + K*R*K'

pMsmt = np.matmul(np.matmul((ident-np.matmul(K,H)),pPredict),(np.transpose(ident-np.matmul(K,H))))+(np.matmul((K*R),transK))

#this is a covariance reduction method used in the Godel paper, not normally used in the KF

#P = P - Hs * inv(Hs' * inv(P) * Hs) * Hs'

pMsmtReduced = pMsmt - np.matmul(Hs,np.matmul(np.linalg.inv(np.matmul(transHs,np.matmul(np.linalg.inv(P),Hs))),transHs))

#update the previous state and covariance

xPrevHatMinus = xNextHatPlus

pPrev = pMsmtReduced

for y in range (0,totalStates):

output items[y][i] = xNextHatPlus[y][0]

print(output items[y][i])

else:

print("did not go through any logic")

output items[y][i] = xNextHatPlus[y][0]

return len(output items[0])

100
Approved for public release; distribution is unlimited.

APPENDIX J - OCXO Kalman Filter Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Kalman Filter Block:

This block is for use within GNU Radio Companion. This filter follows Godel's outline of

the Kalman Filter. It can take up to N clocks as input and either the 2 or 3 state clock

model.

"""

import numpy as np

import numpy.matlib

import math

from gnuradio import gr

"""Initialize the filter with the following variables"""

dT = .125 #time step for data

numclocks = 1 #number of clocks we're estimating

numclockstates = 2 #number of clock states (2 or 3)

totalStates = numclocks*numclockstates #for intializing the matrices/loops

numInputs = 1 #how many measurements are being input into the system

ocxo tau 1 = 2E-12

ocxo tau 10000 = 1E-10

#This code below is from pulled from Margaret's CSAC simulation code - I still don't fully understand it but it has to do with power laws and linear models for different types of noise?

y = math.log10(ocxo tau 10000)

x = math.log10(10000)

m = .5

b = y-m*x

logK = m*math.log10(math.sqrt(3)) + b

K = 10**logK

sigwhf = ocxo tau 1

sigrwf = K

q1 = sigwhf**2

q2 = sigrwf**2

#Q is the process noise matrix for the clocks

Q = np.zeros([totalStates,totalStates])

#This loop is populating the large process noise matrix with the CSAC process noise parameters

101
Approved for public release; distribution is unlimited.

for x in range(0,numclocks):

#First row

Q[x*numclockstates][x*numclockstates] = q1*dT+(q2*(dT**3))/3

Q[x*numclockstates][x*numclockstates+1] = (q2*(dT**2))/2

#Second row

Q[x*numclockstates+1][x*numclockstates] = (q2*(dT**2))/2

Q[x*numclockstates+1][x*numclockstates+1] = q2*dT

#measurement matrix, our measurement is the ocxo phase

H = [[1,0]]

#transpose of H for use within the filter

transH = np.transpose(H)

#identity matrix for use within the filter

ident = np.identity(totalStates)

#R is measurement noise in time units

R = 10**-24

Hs = np.matlib.repmat(np.identity(numclockstates),numclocks,1)

transHs = np.transpose(Hs)

P = R*np.identity(totalStates) #initialize error covariance matrix

pPrev = P

"""Loop through to created a stacked state transition matrix following Godel's model"""

STM = np.zeros([totalStates,totalStates])

xPrevHatMinus = np.zeros([totalStates, 1]);

for x in range(0,numclocks):

#this is the code for the two state clock model

STM[x*numclockstates][x*numclockstates] = 1.0

STM[x*numclockstates][x*numclockstates+1] = dT

STM[x*numclockstates+1][x*numclockstates] = 0

STM[x*numclockstates+1][x*numclockstates+1] = 1.0

#this is logic for the three state clock model

if numclockstates==3.0:

STM[x*numclockstates][x*numclockstates+2] = 0.5*dT*dT

STM[x*numclockstates+1][x*numclockstates+2] = dT

STM[x*numclockstates+2][x*numclockstates] = 0

STM[x*numclockstates+2][x*numclockstates+1] = 0

STM[x*numclockstates+2][x*numclockstates+2] = 1.0

102
Approved for public release; distribution is unlimited.

transSTM = np.transpose(STM)

K = np.zeros([totalStates,1]) #intialize Kalman gain

transK = np.transpose(K) #transpose of Kalman gain for use within the filter

class blk(gr.sync block):

def init (self): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

will show up in GRC

name='OCXO Kalman Filter',

#adding np.float32 more times changes the number of inputs

in sig=[np.float32],

#adding np.float32 more times changes the number of outputs

out sig=[np.float32,np.float32]

)

self.counter = 0

self.seconds = 2

self.messagerate = 8*self.seconds # want to send one message every X seconds

def work(self, input items, output items):

global xNextHatMinus

global xPrevHatMinus

global xNextHatPlus

global pPrev

global pPredict

global pNext

global STM

global transSTM

global K

global transK

if len(input items[0]) == 1:

remainder = self.counter % self.messagerate

outputxhat = np.zeros((totalStates,1)) #to store xhat output for export out of block

z = np.zeros((numInputs, 1)) #create the measurement matrix for use within the loop

for x in range (0,numInputs):

z[x][0] = input items[x][0] #add the input items into the measurement matrix

103
Approved for public release; distribution is unlimited.

"""Process all measurements following Godel's model"""

#state prediction: STM * xk

xNextHatMinus = np.matmul(STM, xPrevHatMinus)

#cov prediction: STM * P * STM' + Q

pPredict = np.matmul(np.matmul(STM,pPrev),transSTM)+Q

#Kalman Gain

#K = P * H' * inv(H*P*H' + R)

newMatOCXO = (np.linalg.inv(np.matmul(np.matmul(H,pPredict),transH)+R))

K = np.matmul(np.matmul(pPredict,transH),newMatOCXO)

transK = np.transpose(K)

#state measurement update: xk+1 = xk + K*(y - H*xk)

xNextHatPlus = xNextHatMinus + np.matmul(K, (z - np.matmul(H, xNextHatMinus)))

#cov measurement update: (I - K*H)*P*(I - K*H)' + K*R*K'

pMsmt = np.matmul(np.matmul((ident-np.matmul(K,H)),pPredict),(np.transpose(ident-np.matmul(K,H))))+(np.matmul((K*R),transK))

#update the previous state and covariance

xPrevHatMinus = xNextHatPlus

pPrev = pMsmt

self.counter = self.counter + 1

for y in range (0,totalStates):

output items[y][0] = xNextHatPlus[y][0]

elif len(input items[0]) > 1:

print("In the multiple input section.")

numSteps = len(input items[0])

#our output will be an array

outputxhat = np.zeros((totalStates, numSteps))

print("looping through all measurements")

for i in range (0,numSteps):

#initalize the measurement array

z = np.zeros((numInputs, 1))

#populate the current measurement vector with the appropriate indices from the input

for x in range (0,numInputs):

z[x][0] = input items[x][i]

if i == 0:

print("cur msmt: {}".format(z[x][i]))

#state prediction: STM * xk

xNextHatMinus = np.matmul(STM, xPrevHatMinus)

104
Approved for public release; distribution is unlimited.

#cov prediction: STM * P * STM' + Q

pPredict = np.matmul(np.matmul(STM,pPrev),transSTM)+Q

#Kalman Gain

#K = P * H' * inv(H*P*H' + R)

K = np.matmul(np.matmul(pPredict,transH),(np.linalg.inv(np.matmul(np.matmul(H,pPredict),transH)+R)))

transK = np.transpose(K)

#state measurement update: xk+1 = xk + K*(y - H*xk)

xNextHatPlus = xNextHatMinus + np.matmul(K, (z - np.matmul(H, xNextHatMinus)))

#cov measurement update: (I - K*H)*P*(I - K*H)' + K*R*K'

pMsmt = np.matmul(np.matmul((ident-np.matmul(K,H)),pPredict),(np.transpose(ident-np.matmul(K,H))))+(np.matmul((K*R),transK))

#update the previous state and covariance

xPrevHatMinus = xNextHatPlus

pPrev = pMsmt

for y in range (0,totalStates):

output items[y][i] = xNextHatPlus[y][0]

print(output items[y][i])

else:

print("did not go through any logic")

output items[y][i] = xNextHatPlus[y][0]

#print('returning data')

#print(len(output items[0]))

return len(output items[0])

105
Approved for public release; distribution is unlimited.

APPENDIX K - DAC Message Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds

to get ports and parameters of your block. The arguments to init will

be the parameters. All of them are required to have default values!

"""

import numpy as np

import pyvisa

import time

from gnuradio import gr

import serial

#set up initial communication with the device

ser = serial.Serial('/dev/ttyUSB0', 115200, timeout=1)

ser.write(b'-0.144\n')

class blk(gr.sync block): # other base classes are basic block, decim block, interp block

"""Embedded Python Block example - a simple multiply const"""

def init (self, example param=1.0): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

name='DAC Message Block', # will show up in GRC

in sig=[np.float32],

out sig=[np.float32]

)

if an attribute with the same name as a parameter is found,

a callback is registered (properties work, too).

self.example param = example param

self.counter = 0

self.seconds = 1

self.messagerate = 8*self.seconds # want to send one message every X seconds

self.vmin = -2.5

self.vmax = 2.5

106
Approved for public release; distribution is unlimited.

#minimum voltage step size based on a 5V range and 18 bit DAC

self.vstep = 0.000019

#slope of the frequency response from the OCXO

self.efcSlope = -2.18E-7 #frequency change per volt

self.prevVoltage = -0.144

def work(self, input items, output items):

#iterate over the length of the input

for i in range(0, len(input items[0])):

#this remainder variable is how we send a message every second with an input rate of 8 samples per second

remainder = self.counter % self.messagerate

if remainder == 0:

#send a command to the DAC

print("sending command to DAC...")

#convert the returned string to a float

vFloat = self.prevVoltage

#translate the command(the input) to a voltage adjustment

steeringCommand = input items[0][i]

voltageAdjustment = steeringCommand / self.efcSlope

#round the voltage adjustment to the nearest multiple of the step size

quantizedVoltage = round(voltageAdjustment / self.vstep, 0) * self.vstep

newVoltage = vFloat + quantizedVoltage

newVoltage = round(newVoltage, 6)

#make sure we are within the voltage min / max of the ocxo

if newVoltage > self.vmax:

newVoltage = self.vmax

if newVoltage < self.vmin:

newVoltage = self.vmin

print("New voltage request is:")

print(newVoltage)

#create the voltage string

voltString = str(newVoltage) + '\n'
#send it to the DAC

ser.write(voltString.encode('utf-8'))

#reset the counter

self.counter = 0

self.prevVoltage = newVoltage

107
Approved for public release; distribution is unlimited.

self.counter = self.counter + 1

#output doesn't matter here

output items[0][:] = input items[0] * self.example param

return len(output items[0])

108
Approved for public release; distribution is unlimited.

APPENDIX L - Power Supply Message Block

"""

Code developed by the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado Boulder

Authors: Christopher Flood, Penina Axelrad

Last Edited: 28 June 2022

Embedded Python Blocks:

Each time this file is saved, GRC will instantiate the first class it finds

to get ports and parameters of your block. The arguments to init will

be the parameters. All of them are required to have default values!

"""

import numpy as np

import pyvisa

import time

from gnuradio import gr

#initialization code to communicate with the power supply

rm = pyvisa.ResourceManager()

myInst = rm.open resource('ASRL/dev/ttyS0::INSTR')

myInst.timeout = 10000

print(myInst.query('*IDN?'))

print('Channel 1 voltage is: ' + myInst.query('VOUT1?'))

print('Channel 2 voltage is: ' + myInst.query('VOUT2?'))

class blk(gr.sync block): # other base classes are basic block, decim block, interp block

"""Embedded Python Block example - a simple multiply const"""

def init (self, example param=1.0): # only default arguments here

"""arguments to this function show up as parameters in GRC"""

gr.sync block. init (

self,

name='Power Supply Message Block', # will show up in GRC

in sig=[np.float32],

out sig=[np.float32]

)

if an attribute with the same name as a parameter is found,

a callback is registered (properties work, too).

self.example param = example param

self.counter = 0

self.seconds = 1

109
Approved for public release; distribution is unlimited.

self.messagerate = 8*self.seconds # want to send one message every X seconds

self.vmin = 0.0

self.vmax = 5.0

self.vstep = .001

self.efcSlope = -5E-8 #frequency change per volt

def work(self, input items, output items):

#iterate over the length of the input

for i in range(0, len(input items[0])):

remainder = self.counter % self.messagerate

if remainder == 0:

#send a command to the power supply

curV = myInst.query('VSET2?')

print('Channel 2 voltage is set to: ' + curV)

#convert the returned string to a float

rmNewLine = curV.rstrip()

rmV = rmNewLine.rstrip('V')

vFloat = float(rmV)

#translate the command(the input) to a voltage adjustment

steeringCommand = input items[0][i]

voltageAdjustment = steeringCommand / self.efcSlope

newVoltage = round(vFloat + voltageAdjustment, 3)

#make sure we are above the voltage min / max of the ocxo

if newVoltage > self.vmax:

newVoltage = self.vmax

if newVoltage < self.vmin:

newVoltage = self.vmin

print("New voltage request is:")

print(newVoltage)

voltString = ':SOURce2:VOLTage ' + str(newVoltage)

print(voltString)

myInst.write(voltString)

#reset the counter

self.counter = 0

self.counter = self.counter + 1

110
Approved for public release; distribution is unlimited.

output items[0][:] = input items[0] * self.example param

return len(output items[0])

111
Approved for public release; distribution is unlimited.

APPENDIX M - DAC Arduino Code

/*!

Linear Technology DC1684AA Demonstration Board.

LTC2758: Dual Serial 18-Bit SoftSpan IOUT DAC

@verbatim

NOTES

Setup:

Set the terminal baud rate to 115200 and select the newline terminator.

An external +/- 15V power supply is required to power the circuit.

Explanation of Commands:

1- Select DAC

Select between DAC A, DAC B, or both.

2- Change Span of Selected DAC

| Command | Range Selected |
C3 C2 C1 C0	
1 0 0 0	0V - 5V
1 0 0 1	0V - 10V
1 0 1 0	-5V - +5V
1 0 1 1	-10V - +10V
1 1 0 0	-2.5V - +2.5V
1 1 0 1	-2.5V - +7V

3- Voltage Output

Displays the calculated voltage depending on the code input from user and

voltage range selected.

4- Square wave output

Generates a square wave on the output pin. This function helps to measure

settling time and glitch impulse.

USER INPUT DATA FORMAT:

decimal : 1024

hex : 0x400

octal : 02000 (leading 0 "zero")

binary : B10000000000

float : 1024.0

@endverbatim

112
Approved for public release; distribution is unlimited.

http://www.linear.com/product/LTC2758

http://www.linear.com/product/LTC2758#demoboards

Copyright 2018(c) Analog Devices, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the

distribution.

- Neither the name of Analog Devices, Inc. nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

- The use of this software may or may not infringe the patent rights

of one or more patent holders. This license does not release you

from the requirement that you obtain separate licenses from these

patent holders to use this software.

- Use of the software either in source or binary form, must be run

on or directly connected to an Analog Devices Inc. component.

THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*! @file

@ingroup LTC2758

*/

// Headerfiles

#include "LT SPI.h"

#include "UserInterface.h"

#include "LT I2C.h"

113
Approved for public release; distribution is unlimited.

#include "QuikEval EEPROM.h"

#include "Linduino.h"

#include <SPI.h>

#include <Stream.h>

#include "LTC2758.h"

// Global variables

static uint8 t demo board connected; //!< Set to 1 if the board is connected

float DACA RANGE LOW = 0;

float DACA RANGE HIGH = 5;

float DACB RANGE LOW = 0;

float DACB RANGE HIGH = 5;

float startVoltage = 0.0f;

// float startVoltage = -2.5f;

float stepSize = 0.5f;

float stepSize1mv = 0.009994f;

float currentVoltage;

uint32 t data;

uint8 t DAC SELECTED = ADDRESS DACA;

// Function Declarations

void print title();

void print prompt();

uint8 t menu1 select dac();

void menu2 change range();

uint8 t menu3 voltage output();

uint8 t menu4 square wave output();

//! Initialize Linduino

void setup()

{
char product name[] = "LTC2758"; // Product Name stored in QuikEval EEPROM

char board name[] = "DC1684"; // Demo Board Name stored in QuikEval EEPROM

quikeval SPI init(); // Configure the spi port for 4MHz SCK

quikeval SPI connect(); // Connect SPI to main data port

quikeval I2C init(); // Configure the EEPROM I2C port for 100kHz

Serial.begin(115200); // Initialize the serial port to the PC

print title();

114
Approved for public release; distribution is unlimited.

Serial.print("Initial voltage: ");

Serial.print(startVoltage);

Serial.print("V, Voltage Step Size: ");

Serial.print(stepSize);

Serial.print("V");

// assign the starting voltage as the current voltage

currentVoltage = startVoltage;

demo board connected = discover DC1684AB(product name, board name);

if (demo board connected)

{
print prompt();

}
LTC2758 write(LTC2758 CS, LTC2758 WRITE SPAN DAC, ADDRESS DAC ALL, 0); // initialising all channels to 0V - 5V range

// LTC2758 write(LTC2758 CS, LTC2758 WRITE SPAN DAC, ADDRESS DAC ALL, 4); // initialising all channels to -2.5V to 2.5V range

LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, ADDRESS DAC ALL, 0); // initialising all channels to 0V

// initally change range to something

uint32 t span;

Serial.println("\n | Choice | Range |");
Serial.println("|--------|---------------|");
Serial.println(" | 4 | -2.5 - +2.5 V |");

span = (uint32 t)(4 << 2);

// change DACA and B

DACA RANGE LOW = -2.5;

DACA RANGE HIGH = 2.5;

DACB RANGE LOW = -2.5;

DACB RANGE HIGH = 2.5;

LTC2758 write(LTC2758 CS, LTC2758 WRITE SPAN DAC, ADDRESS DAC ALL, span);

}

//! Read the ID string from the EEPROM and determine if the correct board is connected.

//! Returns 1 if successful, 0 if not successful

uint8 t discover DC1684AB(char *product name, char *board name)

{
Serial.print(F("\nChecking EEPROM contents..."));

read quikeval id string(&ui buffer[0]);

ui buffer[48] = 0;

// Serial.println(ui buffer);

115
Approved for public release; distribution is unlimited.

if (!strcmp(demo board.product name, product name) && !strcmp(demo board.name, board name))

{
Serial.print("\nDemo Board Name: ");

Serial.println(demo board.name);

Serial.print("Product Name: ");

Serial.println(demo board.product name);

if (demo board.option)

{
Serial.print("Demo Board Option: ");

Serial.println(demo board.option);

}
Serial.println(F("Demo board connected..."));

Serial.println(F("\n\n\t\t\t\tPress Enter to Continue..."));

// is this the source of the enter request?

//read int();

return 1;

}
else

{
Serial.print("Demo board ");

Serial.print(board name);

Serial.print(" not found, \nfound ");

Serial.print(demo board.name);

Serial.println(" instead. \nConnect the correct demo board, then press the reset button.");

return 0;

}
}

//! Repeats Linduino loop

void loop()

{

// this is the loop that we load onto the DAC during any steering

float voltage;

if (Serial.available()) // Check for user input

{
Serial.print("\nEnter voltage: ");

while (!Serial.available());

voltage = read float();

Serial.print(voltage);

Serial.println(" V");

data = LTC2758 voltage to code(voltage, DACA RANGE LOW, DACA RANGE HIGH);

LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, data);

Serial.print("\nDACA Output voltage = ");

116
Approved for public release; distribution is unlimited.

Serial.print(voltage);

Serial.println(" V");

Serial.print("\nDAC CODE: 0x");

Serial.println(data, HEX);

}

// This loop is the default loop provided with this code.

/*
int16 t user command;

if (Serial.available()) // Check for user input

{
user command = read int(); // Read the user command

Serial.println(user command);

Serial.flush();

switch (user command)

{
case 1:

menu1 select dac();

break;

case 2:

menu2 change range();

break;

case 3:

menu3 voltage output();

break;

case 4:

menu4 square wave output();

break;

default:

Serial.println(F("Incorrect Option"));

break;

}
Serial.println(F("\n**"));
print prompt();

}
*/

}

//! Prints the title block when program first starts.

void print title()

{
Serial.println();

Serial.println(F("***"));

117
Approved for public release; distribution is unlimited.

Serial.println(F("* DC1684A-A Demonstration Program

*"));

Serial.println(F("*

*"));

Serial.println(F("* This program demonstrates how to send data to the LTC2758

*"));

Serial.println(F("* Dual Serial 18-bit Soft Span DAC

*"));

Serial.println(F("*

*"));

Serial.println(F("* Set the baud rate to 115200 and select the newline terminator.*"));

Serial.println(F("*

*"));

Serial.println(F("***\n"));
}

//! Prints main menu.

void print prompt()

{
Serial.println(F("\nCommand Summary:"));

Serial.println(F("\n 1. Select DAC"));

Serial.println(F(" 2. Change Span of selected DAC"));

Serial.println(F(" 3. Voltage Output"));

Serial.println(F(" 4. Square wave output"));

Serial.println(F("\nPresent Values:\n"));
Serial.print(F(" DAC A Range: "));

Serial.print(DACA RANGE LOW);

Serial.print(F(" V to "));

Serial.print(DACA RANGE HIGH);

Serial.println(F(" V"));

Serial.print(F(" DAC B Range: "));

Serial.print(DACB RANGE LOW);

Serial.print(F(" V to "));

Serial.print(DACB RANGE HIGH);

Serial.println(F(" V"));

Serial.print(F("\n Selected DAC: "));

switch (DAC SELECTED)

{
case ADDRESS DACA:

Serial.println(F("DAC A"));

break;

case ADDRESS DACB:

Serial.println(F("DAC B"));

break;

118
Approved for public release; distribution is unlimited.

case ADDRESS DAC ALL:

Serial.println(F("ALL DACs"));

break;

}

Serial.print(F("\n\nEnter a command: "));

Serial.flush();

}

//! Function to select DAC and set DAC address

uint8 t menu1 select dac()

{
uint8 t choice;

Serial.println(F("\n1. DAC A"));

Serial.println(F("2. DAC B"));

Serial.println(F("3. All DACs"));

Serial.print(F("\nEnter a choice: "));

choice = read int(); // Read the user command

switch (choice)

{
case 1:

DAC SELECTED = ADDRESS DACA;

Serial.println("DAC A");

break;

case 2:

DAC SELECTED = ADDRESS DACB;

Serial.println("DAC B");

break;

default:

DAC SELECTED = ADDRESS DAC ALL;

Serial.println("ALL DACs");

break;

}
Serial.flush();

}

//! Function to choose the range of voltages to be used

void menu2 change range()

{

uint8 t choice;

uint32 t span;

Serial.println("\n | Choice | Range |");
Serial.println("|--------|---------------|");
Serial.println(" | 0 | 0 - 5 V |");
Serial.println(" | 1 | 0 - 10 V |");

119
Approved for public release; distribution is unlimited.

Serial.println(" | 2 | -5 - +5 V |");
Serial.println(" | 3 | -10 - +10 V |");
Serial.println(" | 4 | -2.5 - +2.5 V |");
Serial.println(" | 5 | -2.5 - +7.5 V |");

Serial.print("\nEnter your choice: ");

choice = read int();

Serial.println(choice);

span = (uint32 t)(choice << 2);

if (DAC SELECTED == ADDRESS DACA | | DAC SELECTED == ADDRESS DAC ALL)

{
switch (choice)

{
case 0:

DACA RANGE LOW = 0;

DACA RANGE HIGH = 5;

break;

case 1:

DACA RANGE LOW = 0;

DACA RANGE HIGH = 10;

break;

case 2:

DACA RANGE LOW = -5;

DACA RANGE HIGH = 5;

break;

case 3:

DACA RANGE LOW = -10;

DACA RANGE HIGH = 10;

break;

case 4:

DACA RANGE LOW = -2.5;

DACA RANGE HIGH = 2.5;

break;

case 5:

DACA RANGE LOW = -2.5;

DACA RANGE HIGH = 7.5;

break;

default:

Serial.println("\nWrong choice!");

}
Serial.print(F("Span Changed!"));

120
Approved for public release; distribution is unlimited.

}
if (DAC SELECTED == ADDRESS DACB | | DAC SELECTED == ADDRESS DAC ALL)

{
switch (choice)

{
case 0:

DACB RANGE LOW = 0;

DACB RANGE HIGH = 5;

break;

case 1:

DACB RANGE LOW = 0;

DACB RANGE HIGH = 10;

break;

case 2:

DACB RANGE LOW = -5;

DACB RANGE HIGH = 5;

break;

case 3:

DACB RANGE LOW = -10;

DACB RANGE HIGH = 10;

break;

case 4:

DACB RANGE LOW = -2.5;

DACB RANGE HIGH = 2.5;

break;

case 5:

DACB RANGE LOW = -2.5;

DACB RANGE HIGH = 7.5;

break;

default:

Serial.println("\nWrong choice!");

}
Serial.print(F("Span Changed!"));

}
LTC2758 write(LTC2758 CS, LTC2758 WRITE SPAN DAC, DAC SELECTED, span);

}

//! Function to enter a digital value and get the analog output

uint8 t menu3 voltage output()

{
uint8 t choice;

121
Approved for public release; distribution is unlimited.

uint32 t data;

float voltage;

Serial.println(F("\n1. Enter Voltage"));

Serial.println(F("2. Enter Code"));

Serial.print(F("\nEnter a choice: "));

choice = read int(); // Read the user command

Serial.print(choice);

if (choice == 2)

{
Serial.print("\nEnter the 18-bit data as decimal or hex: ");

data = read int();

Serial.print("0x");

Serial.println(data, HEX);

if (DAC SELECTED == ADDRESS DACA | | DAC SELECTED == ADDRESS DAC ALL)

{
voltage = LTC2758 code to voltage(data, DACA RANGE LOW, DACA RANGE HIGH);

Serial.print("\nDACA Output voltage = ");

Serial.print(voltage);

Serial.println(" V");

}

if (DAC SELECTED == ADDRESS DACB | | DAC SELECTED == ADDRESS DAC ALL)

{
voltage = LTC2758 code to voltage(data, DACB RANGE LOW, DACB RANGE HIGH);

Serial.print("\nDACB Output voltage = ");

Serial.print(voltage);

Serial.println(" V");

}
LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, data);

}
else if (choice == 1)

{
Serial.print("\nEnter voltage: ");

while (!Serial.available());

voltage = read float();

Serial.print(voltage);

Serial.println(" V");

if (DAC SELECTED == ADDRESS DACA | | DAC SELECTED == ADDRESS DAC ALL)

{
data = LTC2758 voltage to code(voltage, DACA RANGE LOW, DACA RANGE HIGH);

LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, data);

Serial.print("\nDACA Output voltage = ");

Serial.print(voltage);

122
Approved for public release; distribution is unlimited.

Serial.println(" V");

Serial.print("\nDAC CODE: 0x");

Serial.println(data, HEX);

}

if (DAC SELECTED == ADDRESS DACB | | DAC SELECTED == ADDRESS DAC ALL)

{
data = LTC2758 voltage to code(voltage, DACB RANGE LOW, DACB RANGE HIGH);

LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, data);

Serial.println(DACB RANGE HIGH);

Serial.print("\nDACB Output voltage = ");

Serial.print(voltage);

Serial.println(" V");

Serial.print("\nDAC CODE: 0x");

Serial.println(data, HEX);

}
}
return 0;

}

//! Function to generate a square wave of desired frequency and voltage ranges

uint8 t menu4 square wave output()

{
uint16 t freq;

float time;

float voltage high, voltage low;

uint32 t code high, code low;

uint8 t receive enter; // To receive enter key pressed

Serial.print("\nEnter voltage high: ");

while (!Serial.available());

voltage high = read float();

Serial.print(voltage high);

Serial.println(" V");

Serial.print("\nEnter voltage low: ");

while (!Serial.available());

voltage low = read float();

Serial.print(voltage low);

Serial.println(" V");

Serial.print("\nEnter the required frequency in Hz: ");

freq = read int();

Serial.print(freq);

Serial.println(" Hz");

time = (float)1000/freq;

123
Approved for public release; distribution is unlimited.

Serial.print("\nT = ");

Serial.print(time);

Serial.println(" ms");

//! Converting voltage into data

if (DAC SELECTED == ADDRESS DACA | | DAC SELECTED == ADDRESS DAC ALL)

{
code high = LTC2758 voltage to code(voltage high, DACA RANGE LOW, DACA RANGE HIGH);

code low = LTC2758 voltage to code(voltage low, DACA RANGE LOW, DACA RANGE HIGH);

}
if (DAC SELECTED == ADDRESS DACB | | DAC SELECTED == ADDRESS DAC ALL)

{
code high = LTC2758 voltage to code(voltage high, DACB RANGE LOW, DACB RANGE HIGH);

code low = LTC2758 voltage to code(voltage low, DACB RANGE LOW, DACB RANGE HIGH);

}

while (!Serial.available()) //! Generate square wave until a key is pressed

{
LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, code high);

delayMicroseconds(time * 500);

LTC2758 write(LTC2758 CS, LTC2758 WRITE CODE UPDATE DAC, DAC SELECTED, code low);

delayMicroseconds(time * 500);

}
receive enter = read int();

return 0;

}

124

Approved for public release; distribution is unlimited.

DISTRIBUTION LIST

1 cy

1 cy

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

AFRL/RVIL
Kirtland AFB, NM 87117-5776

Official Record Copy
AFRL/RVB/Dr. Spencer E. Olson 1 cy

Approved for public release; distribution is unlimited.
125

This page is intentionally left blank.

Approved for public release; distribution is unlimited.

126

	List of Figures
	List of Tables
	SUMMARY
	INTRODUCTION
	Project Motivation
	Project Description

	METHODS, ASSUMPTIONS, AND PROCEDURES
	Testbed Architecture
	Clocks
	Software Defined Radios
	Red Pitaya
	N310
	N200

	Testbed Software Models
	Clock Profiles
	Clock Steering
	Clock State Estimation

	Programming in GNU Radio Companion
	Moving Data and Data Rates
	Embedded Python Blocks
	USRP Block Options
	Loops

	Clock Phase Measurements
	Effect of the Local Oscillator
	External Reference Oscillator
	Measurement Noise
	Clock Phase Measurement Considerations

	OCXO Frequency Characterization
	Communication Protocols for Time Synchronization
	NTP
	PTP
	White Rabbit
	Limitations

	RESULTS AND DISCUSSION
	Testbed Software Models
	Clock Profiles
	Steering Simulation
	IEM Steering

	Experimental Clock Phase Measurements
	Effect of the Local Oscillator
	Measurement Noise
	Measured Clock Stability

	OCXO Frequency Characterization
	Wenzel OCXO & Power Supply
	NEL OCXO & DAC

	SDR with External Reference Oscillator
	SDR Transmit Test
	SDR Receive Test
	SDR Transmit & Receive Test

	OCXO Steering to Known Reference
	Wenzel OCXO & Power Supply
	NEL OCXO & DAC

	Clock State Estimation
	Clock Ensemble Testbed Integration

	CONCLUSIONS
	REFERENCES
	APPENDIX A - Red Pitaya Data Acquisition MATLAB Code
	APPENDIX B - Testbed Simulation MATLAB Code
	APPENDIX C - Clock Signal Generation MATLAB Code
	APPENDIX D - Clock STM Generation MATLAB Code
	APPENDIX E - Allan Deviation MATLAB Code
	APPENDIX F - Simulate Testbed Function MATLAB Code
	APPENDIX G - Phasor Block
	APPENDIX H - Phase Unwrap Block
	APPENDIX I - Ensemble Kalman Filter Block
	APPENDIX J - OCXO Kalman Filter Block
	APPENDIX K - DAC Message Block
	APPENDIX L - Power Supply Message Block
	APPENDIX M - DAC Arduino Code
	Cover-Unlimited Vol I.pdf
	Brandon Schmandt and Fuijia Wang
	Department of Earth and Planetary Science
	MSC03 2040
	1 University of New Mexico
	Albuquerque, NM 87131
	Final Report
	AIR FORCE RESEARCH LABORATORY
	Space Vehicles Directorate
	3550 Aberdeen Ave SE
	AIR FORCE MATERIEL COMMAND
	KIRTLAND AIR FORCE BASE, NM 87117-5776

