

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

SOFTWARE DEFINED CUSTOMIZATION
OF NETWORK PROTOCOLS WITH LAYER 4.5

by

Daniel F. Lukaszewski

September 2022

Dissertation Supervisor: Geoffrey G. Xie

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Dissertation

 4. TITLE AND SUBTITLE
SOFTWARE DEFINED CUSTOMIZATION OF NETWORK PROTOCOLS
WITH LAYER 4.5

 5. FUNDING NUMBERS

 RCP62

 6. AUTHOR(S) Daniel F. Lukaszewski

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
Office of Naval Research, Arlington, VA 22203

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The rise of software defined networks, programmable data planes, and host level kernel
programmability gives rise to highly specialized enterprise networks. One form of network specialization is
protocol customization, which traditionally extends existing protocols with additional features, primarily for
security and performance reasons. However, the current methodologies to deploy protocol customizations
lack the agility to support rapidly changing customization needs. This dissertation designs and evaluates the
first software-defined customization architecture capable of distributing and continuously managing protocol
customizations within enterprise or datacenter networks. Our unifying architecture is capable of performing
per-process customizations, embedding per-network security controls, and aiding the traversal of customized
application flows through otherwise problematic middlebox devices. Through the design and evaluation of
the customization architecture, we further our understanding of, and provide robust support for, application
transparent protocol customizations. We conclude with the first ever demonstration of active application
flow “hot-swapping” of protocol customizations, a capability not currently supported in operational
networks.

 14. SUBJECT TERMS
software defined networks, protocol customization, agile networks 15. NUMBER OF

PAGES
 131
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

SOFTWARE DEFINED CUSTOMIZATION OF NETWORK PROTOCOLS
WITH LAYER 4.5

Daniel F. Lukaszewski
Lieutenant Commander, United States Navy

BS, University of Arizona, 2010
MS, Computer Science, Naval Postgraduate School, 2017

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Geoffrey G. Xie Mathias N. Kolsch
 Department of Department of
 Computer Science Computer Science
 Dissertation Supervisor
 Dissertation Chair Justin P. Rohrer
 Department of
 Joshua A. Kroll Computer Science
 Department of
 Computer Science Karl Wiegand
 USN (Reserves)
 Pantelimon Stanica
 Department of
 Applied Mathematics

Approved by: Gurminder Singh
 Chair, Department of Computer Science

 Joseph P. Hooper
 Vice Provost of Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The rise of software defined networks, programmable data planes, and host level

kernel programmability gives rise to highly specialized enterprise networks. One form of

network specialization is protocol customization, which traditionally extends existing

protocols with additional features, primarily for security and performance reasons.

However, the current methodologies to deploy protocol customizations lack the agility to

support rapidly changing customization needs. This dissertation designs and evaluates the

first software-defined customization architecture capable of distributing and continuously

managing protocol customizations within enterprise or datacenter networks. Our unifying

architecture is capable of performing per-process customizations, embedding per-network

security controls, and aiding the traversal of customized application flows through

otherwise problematic middlebox devices. Through the design and evaluation of the

customization architecture, we further our understanding of, and provide robust support

for, application transparent protocol customizations. We conclude with the first ever

demonstration of active application flow “hot-swapping” of protocol customizations, a

capability not currently supported in operational networks.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Thesis. 5

2 Design of the Layer 4.5 Customization Architecture 7
2.1 Network-Wide Orchestration . 8
2.2 Automation of Customization of Devices 12
2.3 Strengthening of Security . 19
2.4 Support for Middlebox Traversal 20
2.5 Limitations. 20
2.6 Summary . 22

3 Prototyping and Evaluation 23
3.1 Distribution Overhead . 24
3.2 Processing Overhead . 26
3.3 Embedding Security Requirements 33
3.4 Assisting Middlebox Traversal 34
3.5 Insights . 36
3.6 Summary . 37

4 Enabling Customization of Encrypted Flows 39
4.1 Motivation . 39
4.2 Design of Module Message Buffering 42
4.3 Evaluation . 46
4.4 Insights . 51
4.5 Summary . 51

5 Rotating Customizations in Wide Area Networks 53
5.1 Motivation . 53
5.2 Design of Module Hot-Swapping 55

vii

5.3 Evaluation . 61
5.4 Insights . 77
5.5 Summary . 78

6 Summary of Contributions 79
6.1 Reproducibility . 80
6.2 Future Work . 80

Appendix: Background and Related Works 85
A.1 Network Protocol Customizations 85
A.2 Related Work . 93
A.3 Our Previous Work . 99

List of References 101

Initial Distribution List 109

viii

List of Figures

Figure 2.1 Proposed architecture for centralized control of protocol customiza-
tion in a network. 7

Figure 2.2 Layer 4.5 Network-Wide Customization Orchestrator. 8

Figure 2.3 Layer 4.5 device architecture. 13

Figure 2.4 General Layer 4.5 tap and customization logic for application send
and receive message processing. 18

Figure 2.5 Customization module with embedded security functionality. . . 19

Figure 3.1 Measured latency of distributing a new customization module. . . 26

Figure 3.2 Layer 4.5 application flow tap and customization logic. 27

Figure 3.3 Measured overhead increase of Layer 4.5 socket taps and Layer 4.5
taps with sample customization applied to 1000 short-lived applica-
tion flows. 31

Figure 3.4 Measured overhead increase of Layer 4.5 socket taps and Layer 4.5
taps with sample customization applied to a single long-lived appli-
cation flow. 33

Figure 3.5 NCO continuous management log with challenge-response security
check. 34

Figure 3.6 Wireshark capture with Layer 4.5 inverse customization module ap-
plied. 35

Figure 4.1 Example of client TLS processing failure when customized data is
present within the TLS payload. 41

Figure 4.2 Layer 4.5 tap and customization logic with added buffering capability
for application receive message processing. 43

Figure 4.3 Layer 4.5 tapping and customization receive flow logic with buffering
capability. 44

ix

Figure 4.4 Layer 4.5 with buffering capability measured overhead of 1000 short-
lived application flows. 48

Figure 4.5 Layer 4.5 with buffering capability measured overhead of a single
long-lived application flow. 49

Figure 4.6 Layer 4.5 with buffering capability measured overhead of a single
long-lived encrypted application flow. 50

Figure 5.1 Layer 4.5 capable wide area network. 54

Figure 5.2 Updated Layer 4.5 NCO to support customization rotation. 56

Figure 5.3 General NCO customization rotation process 60

Figure 5.4 Layer 4.5 capable wide area network testbed. 62

Figure 5.5 Layer 4.5 customization immediate attachment log and correspond-
ing Wireshark packet overlay. 64

Figure 5.6 Layer 4.5 customization activation log and corresponding throughput
graph. 65

Figure 5.7 Layer 4.5 customization deprecation log and corresponding through-
put graph. 67

Figure 5.8 Single device Layer 4.5 customization rotation log and corresponding
throughput graph. 68

Figure 5.9 NCO customization rotation for two devices. 70

Figure 5.10 Multiple device Layer 4.5 customization rotation log and correspond-
ing Wireshark packet overlay. 71

Figure 5.11 DNS header with data fields. 73

Figure A.1 TCP/IP network stack with surveyed protocols. 85

Figure A.2 MPLS packet showing 32-bit MPLS header 86

Figure A.3 IPv4 and IPv6 packets showing applicable extension fields for cus-
tomization . 87

Figure A.4 Google IPv6 adoption tracker 88

x

Figure A.5 TCP packet showing Options field for customization support . . . 89

Figure A.6 UDP packet showing proposed UDP Options field for customization
support . 90

Figure A.7 TLS over TCP packet vs. TCPLS packet 91

Figure A.8 TLS over TCP packet vs. QUIC packet 92

Figure A.9 Network packet showing INT header and associated metadata in-
serted between packet header and application data by a network
device . 96

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Tables

Table 2.1 Parameters embedded per-module 9

Table 2.2 Monitoring and security intervals per-module 10

Table 2.3 Layer 4.5 module API . 15

Table 3.1 Overhead testing customization module lines of code 29

Table 4.1 Updated customization module lines of code 47

Table 5.1 Layer 4.5 DNS customization middlebox interference results . . . 74

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

AES Advanced Encryption Standard

CIB Customization Information Base

DCA Device Customization Agent

DNS Domain Name System

DPDK Data Plane Development Kit

eBPF Extended Berkeley Packet Filter

EDNS(0) Extension Mechanisms for DNS

HTTP Hypertext Transport Protocol

HTTPS Hypertext Transport Protocol Secure

INT In-Band Network Telemetry

IP Internet Protocol

L3AF Lightweight eBPF Application Framework

LAN Local Area Network

LOC Lines of Code

MITM Man-in-the-Middle

MPIP Multipath IP

MPLS Multiprotocol Label Switching

MPTCP Multipath Transmission Control Protocol

MPUDP Multipath User Datagram Protocol

NCO Network-Wide Customization Orchestrator

NFV Network Function Virtualization

NIC Network Interface Card

PID Process ID
xv

QUIC Quick User Datagram Protocol Internet Connection

RFC Request For Comments

SDN Software Defined Network

SQL Structured Query Language

TCP Transmission Control Protocol

TGID Thread Group ID

TLS Transport Layer Security

UDP User Datagram Protocol

VM Virtual Machine

VPN Virtual Private Network

VTL Virtual Transport Layer

WAN Wide Area Network

XDP eXpress Data Path

xvi

Acknowledgments

To my dissertation advisor, Professor Xie: I appreciate you believing in me and pushing me
to complete my dissertation. Through multiple meetings and paper submissions you helped
me evolve my initial idea into a full dissertation-worthy topic.

To my friend and colleague, Karl: Thank you for the recommendation and encouragement to
pursue this PhD opportunity. I have learned so much from you and appreciate you agreeing
to continue supporting me by joining my committee. I hope I have the chance to work with
you again in the future.

To my dissertation committee: Thank you for being part of my PhD journey and imparting
your wisdom on me. Each of you provided a unique perspective that challenged me to
abstract my ideas and broaden my understanding.

My fellow PhD students: It was not easy to be the only PhD student in the CS department
for my first 9 months. I greatly appreciate your assistance with preparing for exams, the
countless hours of listening to me talk about my topic, and the reviews you provided to my
conference submissions. I hope you continue to support each other and that we can work
together again in the future.

Ken and Eric: Thank you for your help in evolving my ideas and testing my code. I enjoyed
the frequent progress meetings to help each of you finish your master’s thesis and being
able to collaborate with you on conference papers.

To my wife Liz: Thank you for your continued love and support while I pursued yet another
degree. I am forever grateful to you!

To my son Dillon: It was an interesting experience getting to work in the same office as you
for over a year. We had many hours of fun playing games and getting into anime that I will
always remember.

BT : Create a 2/2 Dillon token with infect

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

Publications

The following peer-reviewed publications directly contribute to the completion of this
dissertation:

• D. Lukaszewski and G. Xie, “Towards Software Defined Layer 4.5 Customization,”
in IEEE 8th International Conference on Network Softwarization (NetSoft), 2022,
pp.330-338. DOI 10.1109/NetSoft54395.2022.9844096

• K. Pittner, D. Lukaszewski, and G. Xie, “An Empirical Study of Application-
Aware Traffic Compression for Shipboard SATCOM Links,” in IEEE Military
Communications Conference (MILCOM), 2021, pp. 213–218. DOI 10.1109/MIL-
COM52596.2021.9653123.

• E. Bergen, D. Lukaszewski, and G. Xie, "Data Exfiltration via Flow Hĳacking at the
Socket Layer," (Publication Pending) 56th Annual Hawaii International Conference
on System Sciences (HICSS-56), 2023.

• D. Lukaszewski and G. Xie, “Demo: Towards Software Defined Layer 4.5 Customiza-
tion,” in IEEE 8th International Conference on Network Softwarization (NetSoft),
2022, pp.240-242. DOI 10.1109/NetSoft54395.2022.9844104

The following peer-reviewed publications occurred during PhD research and are considered
relevant towards the dissertation topic:

• M. Sjoholmsierchio, B. Hale, D. Lukaszewski, and G. Xie, “Strengthening SDN Se-
curity: Protocol Dialecting and Downgrade Attacks,” in IEEE 7th International Con-
ference on Network Softwarization (NetSoft), 2021, pp. 321–329. DOI 10.1109/Net-
Soft51509.2021.9492614.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

Traditionally, protocol customization is about extending existing protocols with additional
features, primarily for performance and security reasons. Several network protocols provide
customization support using special header fields with yet-to-be-defined values. For exam-
ple, the Transmission Control Protocol (TCP) provides an Options field that has been used
to extend the protocol with features such as multipath capability, timestamps, and selective
acknowledgements [1]. Another example is the Internet Protocol (IP) version 6 that provides
a Next Header field to allow extending the protocol with multiple header segments and,
unlike the TCP Options field, the inclusion of additional headers are not bound to a specific
byte length [2]. Despite the built-in support for protocol customization, it can take years for
extensions to become standardized and supported by common operating system kernels [3].

It is not just the customization extensions that can take a long time to become standardized.
The introduction of new protocols can also take a significant time to be widely adopted
or become standardized. First, kernel space protocols must undergo an extensive review
process before new code can be incorporated into the operating system. Furthermore, once
the protocol has been added to the base operating system it may not be immediately adopted
by enterprise networks or utilized by applications. For example, IPv6 was introduced as
a solution to the shrinking IP address space and has a Request For Comments (RFC)
dating back to 1998, but as of July 2022 the protocol adoption was approximately 40% [4].
Second, user space protocols have more flexibility because they do not require kernel
changes, but the standardization of the protocol can still take years. For instance, Quick
User Datagram Protocol Internet Connection (QUIC) was designed to address latency-
sensitive web services and was introduced as a draft RFC in 2016, but did not become an
official RFC until 2021 [5].

Beyond the long deployment and standardization times, protocol customizations also suffer
from network interference from middlebox devices [6]–[8]. A middlebox device is any
device in-between the two communicating end-devices that processes packets beyond what

©2022 IEEE. Portions of this chapter were previously published. Reprinted with permission from D.
Lukaszewski and G. Xie, "Towards Software Defined Layer 4.5 Customization," IEEE NetSoft, June 2022.

1

is performed by a standard router to include intrusion detection/prevention systems and
firewalls [9]. These devices are generally controlled by different network providers, which
makes it difficult to avoid middlebox interference when introducing functionality to proto-
cols that does not match the RFC standard. Middlebox interference can come in different
forms, ranging from completely dropping the traffic to tampering with headers (e.g., chang-
ing unknown header fields). For instance, the use of IPv6 customizations have been known
to experience middlebox interference resulting in dropped network packets [7]. There are
two main approaches taken by protocol developers to avoid middlebox interference: i) build
in a fallback mechanism or ii) use encryption.

First, the fallback mechanism can be seen by the Multipath Transmission Control Protocol
(MPTCP) and by the QUIC protocol. MPTCP signals its use with a specified TCP Option
value during the TCP 3-way handshake. If this Option value is tampered with by a middlebox
device, then the connection falls back a normal TCP connection [10]. QUIC is a newer
user space transport protocol that runs over a standard User Datagram Protocol (UDP)
connection [5]. Middlebox interference to QUIC comes in the form of filtering or restricting
UDP traffic, which is generally less common on networks. To account for this potential
interference, QUIC provides a fallback mechanism to transition to TCP, which is less likely
to be filtered [5].

Second, protocols can use encryption to avoid middlebox interference because middle-
box devices are typically unable to decrypt and inspect/filter the packet. This encryption
approach is evidenced by QUIC and the newly proposed TCPLS protocol. First, QUIC
encrypts the majority of the application data, which prevents middlebox devices from in-
specting and tampering with protocol header values [5]. Second, the TCPLS protocol was
designed to combine the Transport Layer Security (TLS) protocol with TCP in an effort
to bypass middlebox interference to TCP customizations and to also allow expanding TCP
beyond what is capable in the standard header [11].

Despite long standardization times and middlebox interference resulting in burdens to de-
ployment, protocol customizations remain relevant in today’s networks. Recent work has
leveraged Extended Berkeley Packet Filters (eBPFs) [12] modular design and security
verification to perform protocol customizations in both user space and kernel space. The
Walmart Lightweight eBPF Application Framework (L3AF) project [13] and the proto-

2

col plugin work [14], [15] provide support for protocol customization via a distribution
channel. L3AF aims to support kernel functions as a service via a central repository and
leverages the eBPF programmability of the kernel to target the eXpress Data Path (XDP)
and traffic controller layers of the network stack. The plugin work targets application proto-
col customization leveraging instrumented protocols to allow dynamically replacing device
functionality via plugins negotiated and distributed over a control channel. Both of these
projects provide the capability to distribute customizations on the network, but neither pro-
vides for the centralized control and continuous management of deployed customizations
that would provide greater customization support to enterprise networks.

We observe that two recent trends have significantly expanded the use of protocol customiza-
tion, particularly above the transport layer. First, protocol dialecting advocates restricting
features of application protocols (such as the Hypertext Transport Protocol (HTTP)) [16],
[17] and/or intentionally varying application message formats and messaging patterns [18]
within an enterprise network to add a layer of defense against external threats. Second, users
of 5G and other emerging technologies such as edge computing should expect sustained
performance despite frequent hand-offs (even if between different edge network providers).
It is highly desirable that each time a new connection is made, systems on both ends and
associated backend data-centers should be able to agree upon and optimize the performance
of a common application specific protocol on the fly [19]–[21].

In both use cases, the customization needs are unique to individual networks and, more
importantly, operators actively employ protocol customization as a method to strengthen
security and/or enhance performance. The timescale of intervals for such active customiza-
tion is likely measured by days or even hours, and it should continue to decrease as more use
cases arise. We argue that because of its inherent management overhead and limited coordi-
nation with middlebox operation, the current ad hoc deployment of protocol customization
(i.e., through manual configuration or scripts that are highly specialized per customization)
lacks the agility to support enterprise networks and datacenters, which are large in size and
must uphold stringent security and performance requirements at all time [22]. Therefore, in
this dissertation we explore an approach based on network-wide orchestration, by leveraging
the growing adoption of Software Defined Networks (SDNs) in enterprise and data-center
networks. As we will demonstrate, introducing a Network-Wide Customization Orchestra-
tor (NCO) allows operators to deploy and continuously monitor protocol customization

3

on all devices from a single vantage point. Furthermore, the NCO can provide the much-
needed real-time coordination of middlebox traversal to address well known interference
problems [6]–[8] as well as timely mitigation of rogue devices and other types of attacks,
such as traffic hĳacking.

A straightforward method of using a SDN controller to support protocol customization is to
virtualize all devices in the network and deploy completely new Virtual Machines (VMs)
to targeted devices from the controller when a new customization requirement arises.
However, this method may introduce significant downtime during the migration of VMs.
Furthermore, traditional enterprise networks such as Department of Defense networks are
not fully virtualized and, thus, could not utilize this method of customization deployment.
Therefore, in this dissertation we explore a design that supports dynamic “hot” insertion of
software modules to devices to modify the behaviors of these devices on the fly, without
rebooting the device or restarting the targeted services. Moreover, we focus on supporting
application layer protocol customization as an initial step. Customizations at the application
layer will likely be more frequent than at lower layers for enterprise networks and datacenters
and as such, they would benefit the most from the agility that network-wide orchestration
can provide via SDN style automation and flow level control.

Modern operating systems provide a rich set of mechanisms [23]–[25] to upgrade software
of a device at virtually all layers without rebooting. Since we focus on application layer
customization, we take application transparency (i.e., requiring no changes to existing
application software) to be a primary design goal. Meeting this goal necessitates that we
tap into and modify application messages outside applications, while the messages traverse
the device’s protocol stack below the application layer. Additionally, multiple different
applications (e.g., Chrome, Firefox, wget, curl) invoke the same application protocol (i.e.,
HTTP). Recent work towards network-application integration [26]–[28] suggests a need to
differentiate application processes when performing customization. To allow customization
granularity on a per-application process level even in cases where targeted processes are
yet active, while avoiding transport protocol modification, we have chosen to tap into
application messages when they arrive at socket buffers, right before they are passed down
to the transport protocol on the sender end, and right after the transport layer finishes
processing on the receiver end. Conceptually our customization taps constitute a shim layer
between the application and transport layers, which we call “Layer 4.5”.

4

1.1 Thesis
The thesis of this dissertation is:

A software defined Layer 4.5 protocol customization architecture is feasible and can
provide continuous management capabilities, compatibility with modern encryption
protocols, and rotating customizations on active application flows.

This dissertation makes novel contributions through the iterative design and evaluation of
the Layer 4.5 customization architecture. The organization of this dissertation to realize
these contributions is as follows:

• Chapter 2 presents the design of the Layer 4.5 customization architecture to enable a
software defined approach to protocol customization within enterprise and datacenter
networks. We provide a high-level design of each component of the architecture
to include the continuous management capabilities and how to achieve application
transparent, process-level flow customization.

• Chapter 3 implements a prototype of the architecture and evaluates the overhead of
customization distribution, tapping the network stack at Layer 4.5, and customiz-
ing different types of application flows. Additionally, we prototype the security and
middlebox traversal support capabilities the architecture enables.

• Chapter 4 expands the Layer 4.5 architecture design to provide a generalized cus-
tomization capability that allows customizing applications with strict receive message
processing, such as those utilizing TLS for application encryption.

• Chapter 5 demonstrates the Layer 4.5 architecture’s ability to perform customization
synchronization between multiple devices to include rotating customizations on active
application flows. In particular, we account for customization distribution delays
present in Wide Area Networks (WANs) and design methods to support customization
synchronization. We evaluate our design using a GENI [29] testbed and finish with
a cursory evaluation of third-party middlebox interference of Layer 4.5 customized
application flows.

• Chapter 6 summarizes the significant contributions presented in this dissertation,
addresses reproducibility of results, and provides areas for future work.

5

• The appendix provides a survey of current network protocols and the customizations
applied to each protocol over the years. We then present recent protocol customization
work to include our own previous published research.

6

CHAPTER 2:
Design of the Layer 4.5 Customization Architecture

In this chapter we present the design of the Layer 4.5 customization architecture. Illustrated in
Figure 2.1, the architecture consists of a Network-Wide Customization Orchestrator (NCO)
responsible for the management and distribution of per-device customization modules via
a customization control channel and customized devices incorporating Layer 4.5 into the
TCP/IP stack. It should be noted that the NCO is a logical component that can be simply a
software process running on a designated device, such as an SDN controller.

Network-Wide
Customization
Orchestrator

Device1 Device2 Device𝑛

Application
Network Stack

Socket
Boundary

Transport

Internet

NIC

User

Kernel
Layer 4.5

Figure 2.1. Proposed architecture for centralized control of protocol cus-
tomization in a network.

We begin by discussing the NCO components necessary to provide customization distribu-
tion and subsequent continuous management. Next, we introduce the Device Customization
Agent (DCA) and associated customization modules to support customization automation
on each device. We then expand on how Layer 4.5 supports per-network additional security
and middlebox traversal requirements.

©2022 IEEE. Portions of this chapter were previously published. Reprinted with permission from D.
Lukaszewski and G. Xie, "Towards Software Defined Layer 4.5 Customization," IEEE NetSoft, June 2022.

7

2.1 Network-Wide Orchestration
Protocol customizations under the Layer 4.5 model may be temporary and rotate often,
which traditionally presents a deployment burden to network operators. To ease this burden,
we include the NCO, depicted in Figure 2.2, as a necessary component in the Layer 4.5
architecture. The NCO has a set of distribution functions, a set of continuous management
functions, and an internal Customization Information Base (CIB) to support these func-
tions. Additionally, the NCO utilizes an encrypted control channel to communicate with
customized devices, which could be established using NETCONF or OpenFlow with TLS
and experimenter type messages to provide the new functionality.

NCO
Distribution

Constuct Deploy Revoke

Continuous Management

Monitor Security Middlebox

CIB

Customized Device

Control Channel

Figure 2.2. Layer 4.5 NCO consisting of “distribution” and “continuous man-
agement” functions, a CIB for tracking deployed customization modules, and
an encrypted control channel to customized devices.

2.1.1 Distribution Functions
The NCO distribution functions provide centralized control and deconfliction of the network
customizations in use. These functions include the ability to construct, deploy, and revoke
customization modules in the network.

8

Construct function: Responsible for building the per-device customization module to
include embedding the Table 2.1 parameters and storing all values in the CIB. Each cus-
tomization module is linked to a device via the mod_id parameter. Each device uses the
mod_id when communicating with the NCO, thus a per-device unique mod_id is necessary
to correctly identify the module in use. The module’s active_ts and init_key are used by the
continuous management functions and are discussed in Subsection 2.1.2 and Section 2.3,
respectively. Finally, to provide for fine-grained application customization, each module is
built to match a tap_socket consisting of the standard connection 5-tuple parameters (i.e.,
source IP address and port number, destination IP address and port number, transport proto-
col). As the NCO cannot predict the sender socket’s source port (corresponding destination
port on the receiver) that is dynamically generated at run time, an application label (e.g.,
Chrome, dnsmasq) is used in their place. Of note, the tap_socket customization parameters
can also utilize wildcard values for unknown parameters or to generalize the customization
to match multiple flows. For instance, not all applications will perform a socket bind call,
setting the source IP address and port, prior to establishing a connection or sending traffic.
In Section 2.2 we discuss how the application label is tied to a process on a tapped socket.

Table 2.1. Parameters embedded per-module

Parameter Purpose

mod_id Per-device unique module ID

active_ts Timestamp of most recent customization performed

init_key Initial key for security functions (shared with NCO)

tap_socket 5-tuple ID of socket to tap (application label in place of
dynamically generated ports)

Deploy function: Supports the transport of constructed customization modules, in binary
format, to devices on the network. After a customization module is built, it is marked
for deployment in the CIB to the device along with a deployment time. At the specified
deployment time, the NCO delivers the customization module over the established control
channel and awaits confirmation that the module was installed and registered with Layer 4.5.
Upon confirmation, the per-module intervals from Table 2.2 are set and the CIB is updated
to reflect the module’s deployed status and window values. These established windows are
used by the continuous management functions.

9

Table 2.2. Monitoring and security intervals per-module

Parameter Purpose

state_req_window Period between state report requests

sec_check_window Period between security checks

Revoke function: Supports the removal of outdated or misbehaving customization modules
from a customized device. When a module is marked for revocation in the CIB, the NCO
issues a revoke command to the appropriate device and awaits a confirmation that the
module has been unregistered from Layer 4.5 and removed from the host. At this point,
new sockets will not be matched against the revoked module and all previously customized
active sockets on the device are no longer customized by the revoked module.

2.1.2 Continuous Management Functions
The NCO platform is set apart from other customization distribution platforms through the
continuous management functions. In this design, we focus on three event driven functions:
customization monitoring, security, and middlebox support. Algorithm 1 highlights the use
of these functions.

Monitor function: Allows for retrieving module use statistics across the network to aid
in forensics analysis. When the state_req_window expires, a monitoring event (line 2) is
triggered and a state report is requested from the device. Each state report consists of the
last active_ts recorded by the module and any other network defined statistics recorded in
the module. Within the module, the active_ts parameter is updated when a customization
is invoked by Layer 4.5 during a socket send or receive call and does not merely track that
the module is applied to an open socket. This timestamp is used by the NCO to determine
if a module is considered active on the network, which allows the NCO to correlate active
modules across the network to find any mismatches or irregularities. For instance, each
active module can be cross-checked to the device sending or receiving the customized
traffic to determine if an unauthorized customization module is in use.

10

Algorithm 1 NCO: Continuous Management Logic
1: while True do
2: Monitoring Event: //end of a state_req_window
3: Perform device state request
4: Update active_ts and other state info in CIB
5: Security Event: //end of a sec_check_window
6: Perform security check of module(s)
7: if module(s) failed check:
8: then Revoke failed module(s) on device
9: Generate alert(s)

10: Update CIB
11: Middlebox Event: //flow query from a middlebox
12: Perform CIB customization lookup
13: if CIB lookup fails:
14: then reject flow
15: Generate alert(s)
16: else Perform query processing
17: Update CIB
18: end while

Security function: Provides a mechanism for adding per-network module security require-
ments to match a given threat model. At this stage of our design, we consider an attacker who
is capable of monitoring all network traffic, but we also assume the attacker does not have
the capability to directly compromise the NCO or customized devices. We acknowledge this
model does not fit all private network requirements, but take this as an initial demonstration
of how our NCO can enhance network security.

When a customization module is deployed, the per-module sec_check_window parameter
is established and written to the CIB. At the end of each security window, a security event
(line 5) is triggered and the NCO performs the desired security check with the deployed
module. If the check fails, the default response is to immediately revoke the module and
generate an alert. Otherwise, the CIB is updated to reflect the response from the module.
We discuss a specific use case of this function further in Section 2.3.

Middlebox function: When the network middlebox is able to support Layer 4.5 and con-
ducts the middlebox processing above Layer 4.5, then the middlebox function works with the
deployment function to distribute the appropriate customization module to the middlebox to

11

allow processing the received message. If the middlebox processes packets in kernel space
below Layer 4.5, then customization modules will not be invoked by Layer 4.5 and allow
customization processing prior to middlebox processing. To address middleboxes fitting
this processing method, we expand the middlebox function responsibilities.

We do not enforce Layer 4.5 customization capability on each middlebox within the con-
trolled network. However, we do assume that each middlebox in the network can be expanded
as necessary to establish a control channel with the NCO in an effort to minimize interference
to customized flows. When a middlebox receives a customized packet that it is unable to
process locally, the middlebox requests processing assistance by sending a copy of the flow
to the NCO for customization processing, triggering a middlebox event (line 11). The NCO
first attempts to identify the customization in use by matching the values of the tap_socket
stored in the CIB. Note that once a customization module is applied to an open socket,
the unknown parameters of tap_socket have been set and are reported to the NCO via the
periodic state reports. In the event a customization module determination fails, the flow is
rejected triggering an unknown customization alert on the NCO. If the module is identified,
then the NCO performs the required customization processing and a non-customized packet
is returned to the middlebox. We discuss an alternate method of supporting local middlebox
customization processing with pre-installed customization inverse modules in Section 2.4.

2.2 Automation of Customization of Devices
Each device with Layer 4.5 capability supports the automatic installation and removal of
customization modules directed by the NCO. Figure 2.3 illustrates the device customization
architecture to include the DCA and the customization modules for application transparent
insertion into Layer 4.5.

2.2.1 Device Customization Agent
The DCA serves two main functions on the customized device. First, to support remote
customization management, the DCA provides a set of handler functions and establishes an
encrypted control channel with the NCO for invoking each function. The DCA handlers are
used to install and revoke customization modules, relay commands to module embedded
security and monitoring functions, and to report the state of all installed customizations.

12

NCO
Customized Device

DCA

Install

Revoke

Relay

Report

Socket Buffer

App1 App2 App𝑛

Transport

Control Channel sock.send()
sock.recv()

Figure 2.3. Layer 4.5 device architecture. The DCA control channel with the
NCO is used to receive and install customization modules (orange circles),
which are invoked through the socket-transport tap.

Second, the DCA is responsible for the management of all customizations installed on the
device to include the application transparent insertion of each customization in the TCP/IP
network stack at Layer 4.5.

When the DCA starts, it establishes a control channel with the NCO and sends an initial
report containing device specific data required by the NCO for device identification and cus-
tomization module construction. After initial check-in, the DCA awaits further commands
from the NCO, which invoke the appropriate handler function.

Install handler: Invoked when the NCO needs to deploy a previously constructed cus-
tomization module to the device. The handler accepts a customization module delivered
over the control channel, installs it onto the device, and registers it for Layer 4.5 customiza-
tion. At this point, all sockets matching the customization module tap_socket parameters
will be customized.

Revoke handler: Invoked when a customization module is marked for removal due to being
obsolete/replaced, failure of a security check, or mismatch with corresponding end device.
The revoke handler will unregister a customization from Layer 4.5 and delete it from the
device so that it can no longer be used. At this point, all sockets previously customized by
the revoked module will no longer be customized.

13

Relay handler: Invoked when the NCO issues a command, such as a security challenge, to a
specific module installed on the device. The relay handler is responsible for communicating
with the module to issue the command on behalf of the NCO and deliver the module’s
response to the NCO. The relay handler is further discussed in Subsection 2.2.2.

Report handler: Invoked when the NCO state_req_window expires and the NCO requests a
state report. The report handler constructs a device-level report listing all registered modules
and their use statistics, not previously reported revoked modules, and any device specific
information that may be required by the NCO.

After a customization module is installed on the device, the DCA will automatically link
application sockets to matching customization modules, which is discussed further in Sub-
section 2.2.2 and Subsection 2.2.3. More importantly, the DCA ensures that the application
is unaware that customization is taking place at Layer 4.5. For instance, consider a cus-
tomization that removes data received by the transport layer before it reaches the application.
On the receive message path of Figure 2.3, the DCA does not simply intercept the applica-
tion message from the transport layer, pass it to the customization module to modify it, and
return the result to the application because the receive message result indicates the number
of bytes removed from the transport buffer, which would not match the amount of data
inserted into the application buffer received by the application. This same scenario matches
the send path when a customization module modifies the amount of data being sent and
would result in layer 4 indicating that it sent a different number of bytes than the application
intended. These mismatches could result in unexpected application behaviour and, thus,
requires the DCA to hide these mismatches from the application to maintain transparency
when customizing at Layer 4.5.

2.2.2 Customization Modules
Layer 4.5 customization modules are the basic building blocks for realizing per-process
protocol customization requirements. Layer 4.5 customization modules are attached to a
socket based on the modules tap_socket parameters. Thus, each module includes the socket
flow matching parameters of Table 2.1 and standard functions to separate the processing
of ingress and egress messages at the sender and receiver, respectively. When Layer 4.5
identifies a new socket, a customization lookup process occurs. During this lookup process,

14

the tap_socket application label is used to match the customization to the process owning
the socket and assign values to any wildcard tap_socket parameters. The updated tap_socket
parameters can then be reported to the NCO to aid the middlebox support function. Note
that Layer 4.5 only allows for a single customization module to be applied to a matching
socket. This design choice enables a more predictable customization behaviour at the cost
of necessary deconfliction and management of deployed customizations, which occurs on
the NCO.

Table 2.3 presents the Layer 4.5 module API to conduct the required customization ac-
tions. Development of the cust_send and cust_recv functions are the responsibility of the
customization developer, while the state_report and sec_respond functions are defined for
each network and applied to all customization modules within the network. As seen in
Figure 2.3, the cust_send and cust_recv functions are invoked to perform the necessary cus-
tomization by the Layer 4.5 tap when a corresponding socket system call is conducted. The
state_report function is responsible for reporting module parameters required by the NCOs
monitoring function, such as the last active timestamp. Lastly, the sec_respond function is
used to perform the NCO directed security check using the embedded init_key.

Table 2.3. Layer 4.5 module API

Function Purpose

cust_send() modify outbound message

cust_recv() modify inbound message

state_report() report monitoring statistics

sec_respond() reply to security check

Customization module developers may desire the ability to establish a control channel
between two customization modules. For instance, the plugin work [15] used such a channel
to negotiate plugin use across two devices. We view control channels at Layer 4.5 to be
problematic from a security and overhead point of view. Furthermore, the NCO is utilized to
manage deployed customization modules, which nullifies the need for the control channel.
Therefore, Modules are not permitted to establish sockets and perform socket send and
receive calls. Instead, modules are only permitted to modify the contents of application

15

messages when the application conducts a socket send and/or receive call. This restriction
is placed on the modules to not only prevent forming module control channels but also
prevents increased delays to application traffic. Additionally, the restrictions act as a security
measure to limit the modules from completely hĳacking a socket. Module restrictions are
either enforced by the NCO during module construction or through manual review of each
customization module.

We now expand on how the module defines the tap_socket parameters to match the desired
application socket flows. To enable fine-grained application matching, we include both the
application name of the current Process ID (PID) and the name associated with the Thread
Group ID (TGID). For example, during initial experimentation, we experienced the dig
application has a PID task name of isc-worker-0000 and a TGID name of dig. Thus,
a customization module could target any application using the isc-worker-0000 PID,
which includes dig, or the module could specify attaching to only dig by using the TGID.

The tap_socket parameters are determined from the point of view of an outgoing message
on the corresponding device to enable differentiating flows that are destined for the local
host. Consider the following two flow matching examples:

1. Client: 1.1.1.1 Chrome 2.2.2.2 80 TCP

Server: 2.2.2.2 80 1.1.1.1 ** TCP

2. Client: ** dig 3.3.3.3 53 UDP

Server: 3.3.3.3 53 ** ** UDP

The first example corresponds to a Chrome client connecting to a web server using TCP.
The second example applies to a client using dig to send a request to a Domain Name
System (DNS) server using UDP. In these examples, the client’s port number is not known by
the NCO since it is dynamically allocated by the host when the socket is created. Therefore,
the NCO specifies the applications name for client modules to be used to enable matching
the socket. For server modules, the destination port will be unknown for the same reasons
and can be set as a wildcard value. The server’s application name can also be specified for
server modules, but application servers will generally bind to specific IP addresses and port
numbers, which allows matching the socket without needing the application name.

16

Lastly, there are two main types of customization modules:

1. Interactive: May modify the contents of the message buffer. This is the most common
type of customization module.

2. Monitoring: Observe the message buffer contents, but do not modify them. These
modules are useful for gathering statistical information that could be shared with the
DCA/NCO.

This dissertation focuses on the use of interactive modules and the complexities that arise
when deploying and monitoring their use within the network. Monitoring modules are
similar to current methods, such as those used by Wireshark, but could provide a different
perspective via a unique monitoring location. We leave the analysis of Layer 4.5 monitoring
modules and their use cases to future work.

2.2.3 General Layer 4.5 Tap and Customization Logic
Now that we have discussed the Layer 4.5 device architecture to include the DCA and
customization modules, we can provide a general model for tapping and customizing ap-
plication flows. Conducting application customization with a process-level granularity may
lead to excessive processing overhead. To address this overhead concern, Layer 4.5 is
designed to adhere to application behaviour as strictly as possible and only perform cus-
tomization processing after an application performs a socket send or receive message call.
Additionally, we will leverage the application buffer for customization processing whenever
possible to avoid unnecessary allocation of additional customization buffers. This means
that the customization modules are supplied with the application’s message buffer when
performing the desired customization operation. Figure 2.4 illustrates the general model for
tapping and customizing application send and receive messages. Note that the logic differs
for the send and receive message paths because the tap_socket information available at the
socket-transport tap and the end destination will differ.

The application send path processing (left) is triggered when the application makes a send
message call delivering data to the application socket where it is intercepted by the Layer
4.5 socket tap. If the socket has not been processed before, then a customization socket is
created. The customization socket creation includes the necessary customization module
lookup and attachment if a matching module is found. The customization socket is then

17

App Send Msg

sock.send() Tap

New
socket?

Create
Cust

Socket

Cust
Match

Customize
Flow?

cust_send()

sock.send() Return Layer 4
Transmit

Return to App

Yes

No

Yes

No

App Recv Msg

sock.recv() Tap Layer 4
Receive

New
socket?

Create
Cust

Socket

Cust
Match

Customize
Flow?

cust_recv()

sock.recv() Return

Return to App

Yes

No

Yes

No

Figure 2.4. General Layer 4.5 tap and customization logic for application
send (left) and receive (right) message processing.

checked to determine if the application flow is being customized and if it is, then the flow
is diverted to the cust_send function for customization processing prior to being delivered
to the transport layer.

The application receive path processing (right) is triggered when the application makes a
receive message call. The Layer 4.5 socket tap intercepts the application receive message
call and performs the transport receive message call before the customization lookup process
to ensure all socket parameters are available for customization matching. Since we allow
customizing all applications, we must account for those applications that do not bind to a
particular socket and, therefore, will not have all socket parameters set prior to receiving the
message. The Layer 4.5 tap leverages the previously allocated application socket message
buffer to hold the potentially customized message to minimize additional overhead for
non-customized flows since these flows will have the data immediately returned to the
application. For customized flows, the data will be redirected to the cust_recv function for
customization processing prior to being delivered to the application.

18

2.3 Strengthening of Security
Customization module security functions are defined based on per-network requirements.
For instance, a network could enforce that each customization module is digitally signed
by the NCO and that verification is performed during the module loading process [30].
Each module deployed in the network is embedded with a function for invoking the desired
module security check, as seen in Figure 2.5, and an init_key that can be adapted using
ratcheting [31] techniques or key derivation functions [32] similar to what is done in previous
protocol dialect work [18].

NCO

D

C

A

sec_respond()

state_report()

cust.send()

cust.recv()

mod_id

init_key

active_ts read

Request Response

Request

Response

sock.send()

sock.recv()

Figure 2.5. Customization module with embedded security functionality.

One particular security function to check the validity of deployed modules would be to utilize
a challenge-response authentication protocol [33] between the NCO and each module. To
conduct this challenge, the NCO retrieves the current key for the module from the CIB to
encrypt a randomly generated challenge message. Using the established encrypted control
channel, the NCO sends the challenge message to the module via the DCA relay function.
Note that the DCA does not have the capability to decrypt the challenge as the init_key and
any subsequently generated keys are only present on the customization module and NCO.
When the module sec_respond function is called by the DCA, the module will decrypt the
message, append a module specific response, and then encrypt the message prior to relaying
back to the NCO. The NCO can then verify the response and either revoke the module
due to a failed response or update the CIB accordingly. This security function use case is
prototyped in Section 3.3.

19

2.4 Support for Middlebox Traversal
To provide on-device middlebox customization processing, the NCO can install device
specific inverse customization modules as part of the customization module deployment
process. A customization inverse module is responsible for transforming a customized mes-
sage so the middlebox can perform normal message processing. This inverse customization
logic differs from the cust_recv module function by not requiring all logic necessary to
interpret the customized portion of the message. As an example, consider a customization
module that inserts a new field at the beginning of each application message header, which
results in incorrect processing by a middlebox performing deep packet inspection. An in-
verse customization module would only be responsible for removing this extra field prior
to application header processing and may not necessarily incorporate the logic to correctly
interpret the field.

Each network middlebox may require a different type of inverse customization module.
If the middlebox is Layer 4.5 customizable and performs the required processing above
Layer 4.5, such as an application proxy, then the inverse customization can be the normal
customization module with the necessary cust_recv function. Since we do not require each
middlebox in the network to be Layer 4.5 customizable, the NCO supports delivery of
middlebox specific inverse customization modules that can be added to the middlebox rule
set or plug into the middlebox processing pipeline. Section 3.4 contains a demonstration of
a middlebox inverse function used during deep packet inspection.

2.5 Limitations
The first limitation we discuss is that all customization actions are event driven by a socket
send or receive call, which means customizations will not be triggered by actions at or
below the transport layer (i.e., layer 4), such as receipt of TCP acknowledgements. This
limitation is relevant in situations where one device receives a customized message, but
the application does not send a message in response, which does not allow the Layer 4.5
customization module to respond either. For example, consider a HTTP connection that
is being customized such that the web server customizes the response to GET request by
altering the contents of the file requested. The client does not typically respond to the
web server during the request outside of sending TCP acknowledgement messages and,

20

thus, the client side customization would not be able to reliably respond to the web server
customization module. If these triggers are necessary, then a lower layer solution should be
used, perhaps in conjunction with a Layer 4.5 customization module.

Limiting module activity to match application socket calls also means that Layer 4.5 cus-
tomizations need to be designed to fit the unique message processing logic of tapped
applications, which can be different for sending and receiving data. For instance, one ap-
plication could send one IP packet length of data at a time to the socket, while a different
application sends a 65 KB buffer to the socket and relies on the lower layers to segment the
buffer into chunks that will fit into IP packets. Additionally, when receiving data from layer
4 the application may not always use a constant size receive buffer. At first, the application
may expect large amounts of data and pass a correspondingly large buffer to layer 4, but
as the amount of expected data decreases, the application buffer may decrease as well. For
example, a client requesting a file from a web server expects data corresponding to the
file size. As the client gets closer to the expected size, the receive message buffer may be
reduced to only request the expected remaining bytes.

The second limitation is that unexpected application behaviour influences the customization
module development complexity. During our initial prototyping and testing, we experienced
that the receiving end of some applications perform multiple requests to retrieve a single
application message by initially requesting the first few bytes of the incoming message
prior to requesting the remaining message body. For instance, when dnsmasq uses TCP
for a DNS request, the application first requests one byte of data from layer 4 to determine
the byte length of the accompanying DNS request. Customization module developers will
need to account for this type of behaviour to ensure an efficient design is chosen for the
customization and the operation of the corresponding application remains intact.

Third, Layer 4.5 only allows for a single customization module to be applied to a matching
socket, which enables predictable customization at the cost of necessary deconfliction and
management of deployed customizations by the NCO. This also means a customization
chain can not be formed on end devices and must be constructed as a singular module on
the NCO. If chains could be formed on end devices, then we would need to guarantee each
device forms the exact same chain to properly process customizations in the reverse order
on the receiving device, which would increase complexity of Layer 4.5 and inhibit adoption.

21

Finally, application layer encryption will limit the types of protocol customizations to some
degree. For instance, when application data is encrypted prior to reaching the socket, then
any module aiming to modify application data will not have proper access. A module could
still insert data into the messages for removal by a middlebox or at the end device prior to
decryption, but this assumes that decryption will be performed on the receiving device in
user-space after the cust_recv function removes any extra customized data.

2.6 Summary
In this chapter, we designed a Layer 4.5 customization architecture to perform application
transparent, fine-grained, process-level flow customization. The architecture consists of
the Network-Wide Customization Orchestrator (NCO) to coordinate the deployment and
continuous management of each customization, the Device Customization Agent (DCA)
to automate the installation of customization modules, and the individual customization
modules designed with the ability to target specific application flows. In Chapter 3 we build
and evaluate an initial prototype of this architecture.

22

CHAPTER 3:
Prototyping and Evaluation

In this chapter our goal is to implement a prototype of the Layer 4.5 customization architec-
ture presented in Chapter 2 to test customization distribution overhead and the processing
overhead associated with Layer 4.5 insertion into the network stack. We begin with an
implementation of the NCO and DCA control channel and an overhead evaluation of dis-
tributing a customization module over the network to a variable number of devices. Next, we
implement and evaluate the overhead of the Layer 4.5 DCA for tapping application socket
calls and attaching customization modules to the application sockets.1 Note, this prototype
simplifies the process of attaching a customization module to apply only to new sockets,
which may require application restart after a matching module is registered. We finish with a
prototype challenge-response NCO security function implementation and an example NCO
assisted middlebox traversal.

The experiments in this chapter were performed on a testbed consisting of two Ubuntu 5.13
VirtualBox VMs running on an 8-Core Intel Core i9 MacBook Pro with 64 GB of RAM. To
minimize differences between VMs and ensure reproducibility of experiments, we utilized
Vagrant [35] and a base VM image configured to support Layer 4.5 installation. Vagrant
was configured to allocate each VM 2 CPUs, 8 GB RAM, and a paravirtualized network
adapter. The VMs were connected using an internal network configuration with a 1000 Mbps
capacity to mimic the speeds that can be expected within internal network communications.
Additionally, we did not include any traffic loss on the link or produce additional background
network traffic, wh ich al lowed te sting th e overhead wi thout th e in terference of network
congestion. The prototype implementation and testing scripts are made available open-
source on GitHub (https://github.com/danluke2/software_defined_customization).

©2022 IEEE. Portions of this chapter were previously published by IEEE. Reprinted with permission
from D. Lukaszewski and G. Xie, "Towards Software Defined Layer 4.5 Customization" and "Demo:
Towards Software Defined Layer 4.5 Customization," IEEE NetSoft, June 2022.

1Distribution and overhead results differ from [34] due to code improvements.

23

https://github.com/danluke2/software_defined_customization

3.1 Distribution Overhead
Network customization controlled by a central service is limited to how quickly customiza-
tion modules can be deployed in the network. Therefore, we begin by evaluating the network
deployment of a new customization module using the control channel established by the
Layer 4.5 NCO and a user-space DCA component. Note, to simplify the prototype we did
not enforce control channel encryption. The NCO was written in 1400 python Lines of
Code (LOC)2 and the user-space DCA component was written in 350 python LOC. The
NCO per-device deployment process is outlined in Algorithm 2.

Algorithm 2 NCO: Per-Host Deployment Logic
1: while True do
2: Query CIB for customization modules marked for deployment
3: for Module in deploy list do
4: Deploy module binary to host
5: if Success then
6: Remove module from required deploy table
7: Insert module in deployed table
8: else
9: Remove module from required deploy table

10: Insert module in deployment error table
11: end if
12: end for
13: Sleep interval
14: end while

After a customization module is built for a specific device as part of the construction
function, the module is marked for deployment to the device either immediately or at a
specific time in the future. When the module is marked for deployment, the module binary
is distributed to the device using the control channel and a success or failure notification is
returned. This notification is used to update the CIB accordingly. If a failure occurs, the NCO
removes the module from the deployment required table and reports the error condition by
putting the module into a separate module error table. If the deployment is successful, the
CIB is updated to reflect the module’s deployment and the module is removed from the
deployment required table.

2All reported line of code values are approximated

24

To test the NCO distribution overhead we established the CIB as a Structured Query
Language (SQL) database, developed a sample customization module, and established
the control channel between each device DCA and the NCO. Note that the goal of this
experiment is not the customization module itself, but the capability of the NCO to deliver
a new customization module and update the CIB to reflect the deployment. Thus, prior to
distribution testing, the customization module was constructed for each device and stored in
the CIB for subsequent deployment. For reference, in our testbed the customization module
construction time was approximately one second per module.

To understand the distribution limitations of the NCO, we vary the number of devices on
the network for each test. Furthermore, we simplify the experiment by emulating multiple
devices using a new socket on the client to represent a new device. The client is configured
to spawn a new process for each device in the test, create a socket connection with the NCO
(i.e., control channel), and then send a unique identifier to appear as a new device from the
perspective of the NCO. Since we emulate multiple devices on a single machine and each
of these emulated devices runs on the same Layer 4.5 implementation, we do not include
the module registration process with Layer 4.5 as part of the deployment test. Instead, we
simulate the registration of the module and report a successful installation to the NCO.

Figure 3.1 shows the deployment time results of 15 rounds of distributing a single 600 KB
customization module to each device. As expected, the deployment time necessary in-
creases as the number of devices on the network increases. Furthermore, the increase is
approximately linear to the number of devices. Since the module being delivered is very
small compared to the bandwidth available, the majority of deployment time is contributed
by the CIB database queries to identify modules marked for deployment (line 2) and the
updates necessary to reflect such deployment (lines 6-10). Note that some overhead can be
contributed to emulating each device as a separate process and socket on a single machine,
but we minimize this overhead by using multiprocessing and allotting the VM multiple
processors and sufficient RAM.

To address network scalability, we envision that NCO use can mimic that of SDN networks
with multiple SDN controllers that support multiple switches. Thus, operators should utilize
multiple NCO instances as supported by SDN platforms such as ONOS [36]. The adaptation
of the NCO to a SDN application running on an ONOS controller is left as future work.

25

Figure 3.1. Measured latency of distributing a new module to 10, 50, 100,
175, and 250 devices, respectively. Green values show mean deployment time.

3.2 Processing Overhead
In this section we begin by describing the Layer 4.5 tapping and customization logic to
realize application transparent customization. We then discuss the customization modules
used for testing the processing overhead of tapping application sockets and subsequently
customizing them. Finally, we discuss the overhead measurement results.

3.2.1 Layer 4.5 Prototype
Before we evaluate the processing overhead of Layer 4.5, we first discuss how the Layer 4.5
prototype performs the application transparent socket taps and customization redirection
from Subsection 2.2.3. Figure 3.2 illustrates the Layer 4.5 prototype send and receive
message processing logic.

The socket taps of Figure 3.2 are accomplished without kernel code modification in two
steps. First, Layer 4.5 creates backups of the global function pointers to TCP/UDP send
and receive calls, such as tcp_prot.sendmsg and tcp_prot.recvmsg. Next, Layer 4.5
replaces the global pointer with a pointer to a new function with necessary logic to determine
if the socket requires customization. If customization is required, Layer 4.5 will hand
application flows off to the matching customization modules for intermediate processing

26

Layer 4.5

Cust
Modules

Application

Socket Buffer

Layer 4 TapNew?
Create

Cust Socket

Cust Module
Lookup Cust?

Transport

sock.send()

Yes

No

layer_4.send()

Yes

No

(a) Layer 4.5 send flow logic

Layer 4.5

Cust
Modules

Application

Socket Buffer

Layer 4 TapNew?

Create
Cust Socket

Cust Module
Lookup

Cust?

Transport

sock.recv()

layer_4.recv()

Yes

No

Yes

No

(b) Layer 4.5 receive flow logic

Figure 3.2. Layer 4.5 application flow tap and customization logic. The blue
section represents the new Layer 4.5 logic introduced to the network stack.

before resuming TCP/UDP calls through the backup pointers. If the socket is not customized,
Layer 4.5 will use the backup pointers to resume the desired application call. Next, we
provide additional details specific to the Layer 4.5 send and receive path processing and
optimizations for TCP flows.

Send Processing:

Figure 3.2a illustrates the customization process when an application transmits data. The
customization flow starts when the socket tap intercepts the transport layer send message
call (e.g., udp_prot.sendmsg). The first decision the Layer 4.5 tap must make is whether
the current socket is new or if it was previously processed. This decision is based on a
combination of the socket’s internal pointer value and the PID owning the socket. Using
these values instead of the tap_socket parameters allows differentiating sockets that may be
re-using the same IP/port values.

27

When a new socket is identified, a corresponding customization socket is created and stored
for the life of the socket. Each customization socket undergoes a customization module
lookup process to attempt matching the socket parameters with a registered customization
module (dotted lines). During this lookup process, the tap_socket application label is used
to match the customization to the application owning the socket and assign values to any
wildcard tap_socket parameters. If a registered module matches the socket, the module’s
cust_send function pointer is stored in the customization socket for future use. After the
lookup process finishes and the customization socket is finalized, the socket tap delivers
the application’s message buffer to the cust_send function or to the transport layer if no
customization is necessary.

Receive Processing:

Figure 3.2b illustrates the customization process when an application receives data. The
customization flow starts after the socket tap intercepts the transport layer receive message
call. Prior to any customization, the socket tap first performs the receive message call
on behalf of the application to fill the application’s message buffer with the potentially
customized message and assign any missing socket parameters (e.g., from a UDP socket).
After receiving the message, the socket tap can determine if a new socket is being processed.
Similar to the send process, a new customization socket is created initiating a lookup process
to identify a customization module matching the receive parameters and the associated
cust_recv function. After the lookup process finishes, the socket tap either delivers the
message to the cust_recv function or to the application if no customization is necessary. If
the message is customized, then the customization module copies the data in the application’s
message buffer, processes the customization as necessary, and then overwrites the data in
the application buffer prior to returning to the application.

Note that if the send and receive path are both customized for a given application, then only
one new customization socket is created. When either the first send or receive message call
is performed, the customization lookup process will identify if the customization module
applies to both the send and receive path. If this is the case, then the module is attached
with the customization cust_send and cust_recv function pointers and the next send or
receive message call will not identify the socket as a new socket for customization lookup
processing.

28

TCP Optimization:

TCP application flow customization processing can be optimized during the new socket
processing stage. TCP connections always begin with a connect function call by the
client or an accept function call by the server, which handles the TCP 3-way handshake
phase of the connection. Thus, by tapping the TCP connect and accept function calls (i.e.,
(tcp_prot.connect and tcp_prot.accept) in addition to the send and receive function
calls, we can create the customization socket during the 3-way handshake instead of during
the first send/receive message call. This results in a slightly longer handshake instead of
causing a delay when the application is ready to send or receive data. Since UDP connec-
tions do not typically perform connect calls, we still rely on tapping the send and receive
message calls to create customization sockets if required.

3.2.2 Customization Modules used for Overhead Tests
To understand the overhead of application customizations, we developed two tagging cus-
tomization modules that target different types of application flows and perform relatively
expensive in-kernel memory copy operations, which are likely to cause the most overhead.
Each module will insert 32-byte tags into messages of a targeted application flow at set byte
positions (e.g., every 1000 bytes). The tag insertion not only increases the amount of data
to be transferred, but it also involves a minimum of two memory copy operations, which
are likely required by most customization modules modifying the message contents. An
overview of the customization modules is provided in Table 3.1.

Table 3.1. Overhead testing customization module lines of code

Client Module Server Module

Flow Type cust_send cust_recv Total cust_send cust_recv Total

Short-lived 15 2 90 2 20 95

Long-lived 2 80 155 60 2 135

Recall from Subsection 2.2.2 that customization module developers are primarily respon-
sible for the cust_send and cust_recv function logic. Beyond these functions, the modules
are standardized to include the necessary flow matching parameters and functions to regis-

29

ter/unregister with the Layer 4.5 DCA. Thus, in this section we will focus on the cust_send
and cust_recv logic necessary to perform the desired customization.

The first tagging module targets short-lived flows that send only one IP packet worth of data
for each transmission. This customization module will insert the customization tag at the
front of each application message under the assumption that the receiver will process the
message prior to sending additional messages. Additionally, inserting the tag at the front of
each message also changes how the message will be processed by non-customized sockets
since the message headers will come after the customization tag. Thus, if the message is
processed by a non-customized device, such as a middlebox, or if the customization module
is not loaded properly by the receiving device, the message will not conform to the protocol
standard and will cause processing errors. This module is relatively simple and can be
attached to sockets that exhibit this type of behaviour, such as UDP sockets performing
DNS requests.

The second tagging module targets long-lived flows that transfer large amounts of data and
inserts a tag every 1000 bytes of transmitted application data. The long-lived customization
module is more complex than the short-lived module because it must work with larger send
and receive message buffers (i.e., buffers with more than a single packet worth of data).
Since large amounts of data (e.g., 64 KB) can be sent from the application to the socket,
the customization module must split the data multiple times to insert the tags. Additionally,
the receiver will process messages of varying sizes dependent on the network conditions.
For instance, the application may perform a receive message call when only a small portion
of the transmitted data has been received and processed by the transport layer. Since the
amount of data being processed can vary, the module must maintain a byte tracker to
correctly remove the customization tag every 1000 bytes processed.

3.2.3 Prototype Evaluation
To evaluate the processing overhead of adding Layer 4.5 to the network stack, we conduct
a series of experiments using the customization modules of Table 3.1 along with common
network protocols. We begin with an evaluation using 1000 short-lived DNS over UDP
application flows and then evaluate a single long-lived HTTP over TCP application flow.

30

DNS over UDP
The first flows we target are DNS requests made using the dig application to a local
Layer 4.5 customized DNS server using the dnsmasq application. The DNS server was
configured without a cache buffer to force an internal lookup that was simplified to respond
to all requests with the same IP address in an effort to eliminate the unpredictable overhead
of internet based DNS queries with a remote server. For this use case, we used the short-
lived flow customization module to customize all dig generated DNS request to the local
DNS server and apply a 32-byte tag to the beginning of each request. Recall that inserting
the tag at the front of the request will force tag removal by the dnsmasq customization
module before a legitimate request can be processed. To ensure we could measure the
processing overhead experienced, we decided to conduct batch DNS requests consisting of
1000 different requests to the server, repeated over 15 trials. Figure 3.3 illustrates the Linux
baseline performance, the overhead of Layer 4.5 socket taps, and finally the overhead of
Layer 4.5 taps with the customization applied.

Figure 3.3. Measured overhead increase of Layer 4.5 socket taps and Layer
4.5 taps with sample customization applied to 1000 short-lived application
flows.

From the resulting boxplots, we observed negligible Layer 4.5 tapping mean overhead. The
minimal overhead was a result of each request being conducted using a new socket, which
requires the creation of a customization socket and the subsequent module lookup process.

31

When each of the 1000 DNS messages are tagged, we see about 1.5% mean increase over
the baseline or about 0.09 additional seconds to complete the requests. This additional
overhead is a result of the 1000 tag insert (client) and 1000 tag delete (server) events and
indicates the customization process did not add significant overhead on top of the tapping
overhead.

HTTP over TCP
The next flow we target is a bulk file transfer, represented by a 3 GB Ubuntu image, using
HTTP over TCP. When the Layer 4.5 customized python server accepts an incoming
connection, the customization lookup process identifies the socket corresponding to the
registered long-lived customization module. The assigned customization module is designed
to track the bytes sent from the server application over TCP, inserting a 32-byte tag every
1000 bytes in a best-effort strategy to ensure at least one tag is present in each packet sent
to the Layer 4.5 client. The corresponding client, using the curl application, is assigned a
complementary reversal customization during the TCP connect phase and will remove the
32-byte tags prior to delivery to the application. Figure 3.4 illustrates the Linux baseline
performance, the overhead of Layer 4.5 socket taps, and finally the overhead of Layer 4.5
taps with the customization applied. Each experiment was repeated 15 times and the file
hash was verified to be the same on the client and server after each transfer completed.

From the boxplot, we see that the Layer 4.5 socket tap resulted in approximately 0.04%
mean overhead. This negligible overhead primarily comes from the customization lookup
process applied during each TCP send and receive call by the client and server and is less
than that experienced by the DNS experiment because the customization socket creation
process was only performed once. When the aggressive tagging customization is applied to
the socket, the 3 GB of data are tagged every 1000 bytes, which results in approximately
3 million tag insert (server), 3 million tag delete (client) events, and an additional 96 MB
of data processed. Each of these tag events resulted in at least two in-kernel memory copy
operations, but only a modest 3% mean or 0.8 second increase to the file transfer time.

32

Figure 3.4. Measured overhead increase of Layer 4.5 socket taps and Layer
4.5 taps with sample customization applied to a single long-lived application
flow.

3.3 Embedding Security Requirements
To test the NCOs ability to embed network security functionality into customization mod-
ules, we implemented the challenge-response customization module functionality (80 LOC)
described in Section 2.3 under the threat assumption that each device is secure and the
NCO/DCA control channel is protected with TLS. Our prototype implementation starts
with the NCO generating a 256-bit module specific key, writing the key into the customiza-
tion module, compiling the module to binary during the construction phase, and then storing
the module and key in the CIB. After the customization module is deployed to the device and
the DCA first reports that the customization module is registered, the sec_check_window
starts in an expired status resulting in a module security check requirement.

When the NCO challenges a module, the module’s key is retrieved from the CIB and used to
encrypt a randomly generated 8-byte challenge using Advanced Encryption Standard (AES)
encryption. This challenge and corresponding nonce is transmitted to the DCA, which in-
vokes the relay handler to call the modules sec_respond function with the NCOs challenge
as an argument. The module then uses the NCO embedded key to decrypt the challenge,
append the NCO embedded mod_id to the end of the message, and then encrypt the mes-
sage using a new nonce. The encrypted response message and corresponding nonce is then

33

relayed back to the NCO for verification. The NCO decrypts the message and if a failure
is detected, the DCA revoke handler is invoked to remove the module. To validate the im-
plementation, we configured the NCO with a five second sec_check_window and observed
20 rounds of challenges, recorded each challenge on the NCO and device via customiza-
tion module trace logging, and reviewed the logs to ensure proper encryption/decryption
was performed. Figure 3.5 provides the NCOs continuous management log results from a
successful challenge-response check.

Figure 3.5. NCO continuous management log with challenge-response secu-
rity check.

3.4 Assisting Middlebox Traversal
Consider a scenario in which a Layer 4.5 capable host is exhibiting unusual network
behaviour, particularly through DNS queries. To investigate if non-standard applications are
conducting DNS queries, the NCO operator deploys a new customization module to apply
an application identification tag3 to each DNS query conducted using the dig application,
which is not normal client behaviour. This tag is inserted to the front of the corresponding
DNS query, which is known to result in processing errors at the network deep packet
inspection middlebox. To address this issue, the NCO operator also deploys a customization
inverse module to the middlebox to identify the presence of the application identification
tag during packet inspection and generate an alert.

To visualize the use of this pre-installed customization inverse module on a middlebox
conducting deep packet inspection, we developed a Wireshark dissector (40 LOC) to inter-
pret the application identification tag and display it appropriately. Inverse modules follow a

3This tag can be encrypted in a way similar to the challenge-response process, or utilizing other mechanisms
to mitigate forgeries.

34

slightly different construction and deployment process on the NCO. After the inverse mod-
ule is constructed, an entry in the CIB is generated to include what type of middlebox the
inverse module applies to and what corresponding customization module it matches. First,
we tie the inverse module to a middlebox type, such as Wireshark, to allow a single module
to apply to multiple middleboxes that have the same processing logic. Next, we link the
DNS client customization module deployment with Wireshark inverse module deployment
by inserting the customization and inverse modules in the CIB inverse module table. Now,
when the NCO distributes the DNS customization module to the client, the corresponding
inverse module (i.e., dissector script) is also distributed to the middlebox. To accomplish
the installation of the inverse module, we expanded the user-space component of the DCA
to install the inverse module in the plugin directory of Wireshark.

Figure 3.6 shows the identification of a DNS request using dig among multiple “standard”
DNS requests. When dig was used, the inverse module identified the customization, filled
in the Application ID column to alert the operator, and then allowed DNS processing for
the remainder of the packet. When a “standard” request or a reply is processed, the packet
format does not match the customization parameters, which results in bypassing the inverse
module and performing normal DNS processing.

Figure 3.6. Wireshark capture with Layer 4.5 inverse customization module
(i.e., dissector) applied to identify the presence of an application identifica-
tion tag in DNS request packet contents.

35

3.5 Insights
During our prototype implementation of Layer 4.5 we experienced several challenges. In this
section we will highlight the insights we gained while implementing application-transparent
protocol customization.

• PID Tracking: The PID that created the socket processed by Layer 4.5, was not
always the same PID that closed the socket. The result of this behaviour was that we
would continue to track sockets that were no longer being used, which contributed
to the larger processing overhead reported in [34]. This was primarily seen when
conducting DNS requests when the new socket sending the current request would
first close the previous request socket.

We addressed this problem by first attempting to match the PID closing the socket
to the stored customization socket hash table entries using the stored hash key. If the
search did not return a matching socket, then we searched the entire hash table for
a matching socket pointer value instead of the PID/socket pointer hash key. Future
work could investigate different hash keys that allow for more efficient customization
socket tracking.

• Wildcard Parameters: Customization module wildcard values are useful to allow
matching parameters that have not yet been assigned to the socket. Additionally,
wildcards allow matching multiple sockets. However, some customization modules
may want to match multiple sockets but also process each socket differently based
on the actual socket parameters. Therefore, we designed the Layer 4.5 socket tap
to pass the current socket parameters to the customization module cust_send or
cust_recv function, which allows the customization modules to identify what values
the wildcards were matched against prior to performing customization actions.

• Application Matching: Attaching a customization module to a specific application
may require using the name attached to the PID and/or the TGID. This may require
additional work for customization developers to determine how to best attach to the
targeted application. In Chapter 5 we expand the Layer 4.5 architecture to support test-
ing customization modules, which should assist developers with correctly matching
the application name.

36

• Packet Tags: It can be difficult for a customization module to apply a customization
such that it will be present in each transmitted packet. This is because Layer 4.5 is
above the transport and IP layers and applications may send large buffers to the socket
that will be segmented into packets at the lower layers. Future work could include
adjusting the Layer 4.5 send logic to allow the customization module to specify send
message increments instead of transferring the entire buffer to the transport layer in a
single send message call.

• TCP Optimization: The TCP socket that is accepting an incoming connection may
not be the same socket that will be used to send and receive traffic. Therefore, the TCP
accept function tap does not perform the customization lookup process until after the
accept function call finishes and returns the potentially new socket pointer value.
Additionally, if this socket is then used under a different PID, then the customization
lookup will be repeated on the first TCP send or receive function call.

• Misconfigurations: Some applications may be performing a lot of socket calls,
possibly due to misconfigurations. Since we tap multiple socket calls, this could
result in unnecessary Layer 4.5 processing. For instance, we noticed in our Ubuntu
Virtualbox machines that the vminfo process would constantly perform socket close
calls without corresponding open calls. To determine if this behaviour is occurring,
we utilized multiple DEBUG levels for logging to the Layer 4.5 customization log.

• Middlebox Support: Different middlebox devices process customized flows at differ-
ent layers of the TCP/IP network stack, which means Layer 4.5 must support multiple
methods to perform inverse customizations. For example, we demonstrated an inverse
customization module applied to Wireshark, which receives a copy of the packet from
layer 3. Therefore, it was not possible to process the customized flow at Layer 4.5
before Wireshark received the flow.

3.6 Summary
In this chapter, we developed a NCO, DCA, and Layer 4.5 prototype along with two different
customization modules. Using the customization modules we evaluated the overhead of
distributing and customizing application flows. The overhead of distributing customization
modules over the network was primarily caused by the multiple queries and updates to

37

the CIB. The processing overhead experienced when customizing application flows was
the result of the customization lookup process and the required in-kernel memory copy
operations when adding or removing data as part of the customization process. Lastly,
we prototyped a challenge/response security check compiled into the module during the
NCO construction phase and demonstrated middlebox traversal of customized traffic using
a customization inverse module.

38

CHAPTER 4:
Enabling Customization of Encrypted Flows

In this chapter our goal is to apply Layer 4.5 customization to encrypted application flows.
We begin by providing a customization use case for encrypted flows followed by a motivating
scenario and explanation of encrypted flow processing errors experienced with the initial
Layer 4.5 prototype of Chapter 3. Then we design new Layer 4.5 customization logic that
allows customization modules to request more data than the application and, as a result,
buffer messages. This new customization logic is evaluated using the same experiments
and testbed from Subsection 3.2.3 to not only determine the overhead experienced when
customizing different types of traffic, but also to ensure proper operation with TLS flows.

4.1 Motivation
The Layer 4.5 evaluation of Chapter 3 focused on the customization of unencrypted appli-
cation protocols, but many protocols are using encryption to not only add security to the
protocol but also to avoid middlebox interference. Note that if Layer 4.5 is used to customize
encrypted traffic we must keep in mind that all customizations are applied while the data is
in an encrypted state. However, protocol customization does not always need to have access
to the plain text application data to be useful.

In this section we first highlight a use case for customizing encrypted traffic flows to aid in
network performance and security requirements. Then we finish with an operational scenario
customizing encrypted traffic and the resulting customization processing complications,
further motivating the need to expand the Layer 4.5 customization capabilities.

4.1.1 Use Case: Traffic Classification
Network traffic classification is a focused subset of the more general network traffic analysis
that aims to classify traffic based on the application or type of application generating the
traffic [37]. Using traffic classification, a network can prioritize targeted traffic flows to meet
quality of service obligations. One method of traffic classification to aid quality of service
network routing is to utilize the 6-bit IP differentiated services field codepoint (DSCP)

39

header value that replaced the original type of service field [38]. However, this field may be
unreliable due to the potential for middlebox interference [39], and the 6-bit header space
for this field limits its use for fine-grained application specific tags on a per-network basis.
From a security perspective, traffic classification can be used to aid network forensics and
help identify malicious traffic.

To automate network traffic classification, machine learning techniques are growing in
popularity [37]. Supervised machine learning models require labeled data to help train and
validate the models. Creating this labeled data can be challenging because each network
may have unique traffic patterns due to the personnel generating traffic and possibly using
different applications. We believe that the Layer 4.5 customization architecture can be used
to facilitate gathering labeled traffic classification data for both encrypted and unencrypted
traffic flows. We begin by describing the customization module to perform the network
traffic classification and embed the classification information into the network traffic for
collection.

The customization module can follow the same logic used for adding the application tag
to DNS traffic in Section 3.4, but the module socket matching parameters are broadened to
match multiple sockets. For traffic classification, we can extend the module to include both
the PID and TGID of the application generating the traffic as well as a classification label for
the type of traffic (e.g., web, chat, video). Note that not all packets will have a customization
tag applied unless specifically designed to do so. When TCP is utilized, we suggest instead
to tag only the first packet in the flow. This will simplify customization processing and not
waste network bit space with unnecessary tags.

With the use of broader socket matching parameters it is likely that some tagged traffic
will be destined for end hosts outside the controlled network. For this reason, an inverse
module could be developed for the network router. For instance, we could develop a XDP
program to inspect and remove the traffic classification tag from the packet prior to routing
outside the network. Alternatively, the network middlebox collecting the traffic may be able
to remove the classification tags during the collection process.

We leave the development of the described customization and inverse modules to future
work. The use of these modules should be tested with previous machine learning models

40

for performing network traffic classification of both encrypted and unencrypted traffic to
determine if the models can be improved. Additionally, it would be useful to determine how
often labeled data should be collected for the network and used to validate or update the
models to maintain the desired accuracy thresholds.

4.1.2 Customization Complications
Consider a scenario where a network operator deploys a customization to insert an appli-
cation tag to all internal network traffic in an effort to create labeled data for the network
traffic classification machine learning model. After deploying the customization, the op-
erator receives multiple complaints that some applications are no longer working. After
some investigation, the operator determines that some applications, in particular encrypted
applications, are unable to process incoming customized traffic and will terminate the con-
nection after the error occurs. To understand why this error is occurring on encrypted flows,
consider the example TLS flow of Figure 4.1 illustrating the use of the long-lived customiza-
tion module from Subsection 3.2.2 applied to the server’s TLS payload and the subsequent
client TLS decryption error. For reference, the long-lived customization module will add a
32-byte tag for every 1000 bytes of transmitted data.

TLS Server
(python)

Server Tagging
Module

TCP Recv Buffer

Client Tagging
Module

TLS Client
(curl)

(1)
1500 bytes

(2)
1500 + 32 bytes

(3)
5 bytes

(request)

(4)

(5)
(6)

1495 bytes
(request)

(7)
1495 bytes

(8)
1495 - 32 bytes

Figure 4.1. Example of client TLS processing failure when customized data
is present within the TLS payload. Flow order indicated by numbers in ().

In the example TLS flow, the customized server sends a 1500-byte application payload
to the TLS client (1). Since the TLS application socket is being customized, Layer 4.5
intercepts the message and passes it to the attached customization module, which inserts a

41

32-byte tag because the payload is over 1000 bytes. Layer 4.5 then delivers the customized
message to the transport layer and the message is transmitted to the client (2). When the
customized client receives the 1532 bytes, the curl application first requests 5 bytes to
determine the associated TLS encrypted payload length (3). Layer 4.5 will intercept the
5-byte message from the transport layer (4) and pass to the client customization module.
Since the customization tag is not present in the first 5 bytes, the client customization module
updates the position tracker and passes the bytes to the application (5). The curl application
then requests the 1495 encrypted bytes from the transport layer (6), which will leave 32
bytes of encrypted data in the transport buffer. Before the requested bytes are returned to the
curl application, the customization module removes the customized bytes, which results
in 1463 bytes being delivered to the application (8). At this point the application did not
receive all the expected bytes, and it does not request the additional missing bytes. Instead,
curl attempts to decrypt the 1463 bytes and a decryption error is triggered, resulting in the
TLS connection being terminated. This same behaviour was experienced in a parallel effort
to evaluate network detection of data exfiltration that leveraged Layer 4.5 as the insertion
point [40].

4.2 Design of Module Message Buffering
In this section update the design of the Layer 4.5 customization logic from Subsection 2.2.3
to overcome the customization errors experienced when processing customized encrypted
flows. We then implement the new design into the Layer 4.5 prototype and describe in detail
how the prototype achieves the design specifications.

4.2.1 Updated Layer 4.5 Tap and Customization Logic
First, note that the errors experienced when processing customized encrypted flows were
only caused by receive side processing, which means we do not need to alter send side logic
and, thus, we will focus on the receive message tapping and customization logic. Figure 4.2
illustrates the updated Layer 4.5 tapping and customization logic with buffering capability
for processing customized application flows.

The application receive path processing is still triggered when the application makes a
receive message call but now there may either be data buffered by the customization module

42

App Recv Msg

sock.recv() Tap Layer 4
Receive

New
socket?

Create
Cust

Socket

Cust
Match

Customize
Flow?

Layer 4 Receive
(cust buffer)

cust_recv()Layer 4 Receive
(app buffer)

sock.recv() Return

Return to App

Yes

No

Yes

No

Peek

Figure 4.2. Layer 4.5 tap and customization logic with added buffering ca-
pability for application receive message processing.

and/or data present in the transport buffer. The Layer 4.5 socket tap intercepts the application
receive message call and performs a peek operation to check the transport buffer and fill in
any missing socket parameters for the customization lookup process. First, if the application
flow is customized, then the receive message call is performed using a new customization
buffer that can be larger than the application’s allocated buffer to allow retrieving additional
data necessary for proper customization processing. Since the customization buffer may be
larger than the application’s buffer, this also requires the customization module to buffer the
additional data until the application is ready to process it. Second, if the application flow
is not customized, then we use the application’s buffer during the receive message call to
prevent unnecessary memory copy operations.

43

4.2.2 Updated Layer 4.5 Prototype
Following the updated design for Layer 4.5 tapping and customization, Figure 4.3 illustrates
the prototype customization processing logic when an application receives data.

Layer 4.5

Cust
Modules Module

Application

Socket Buffer

Layer 4 TapNew?

Create
Cust Socket

Cust Module
Lookup

Cust? Cust Buffer

Transport

sock.recv()

layer_4.recv()

Yes

No

Yes

NoPeek

Figure 4.3. Layer 4.5 tapping and customization receive flow logic with
buffering capability. The blue section represents the new Layer 4.5 logic
introduced to the network stack. The red arrows indicate the path taken
when no customization modules apply to the socket.

The customization flow starts after the socket tap intercepts the transport layer receive call.
At this point, there are two main socket state possibilities to consider (i) a new socket and
(ii) a customizable socket.

New Socket:

First, when a new socket arrives we can’t guarantee that the socket 5-tuple parameters have
been assigned because we support TCP and UDP sockets and applications are not forced to
bind IP addresses or port numbers to the sockets. For this reason, we perform a preliminary
layer 4 receive message call using the MSG_PEEK flag and a zero-length buffer. This step
accomplishes filling in any missing socket parameters, but does not remove data from the

44

layer 4 buffer or waste processing time by copying data into the application’s buffer. This
operation also ensures data is available at layer 4 before proceeding to the customization
logic. At this point, we can reliably conduct the same customization socket creation and
module lookup process that was previously utilized (Subsection 3.2.1). The newly processed
socket will be treated as a customizable socket for all future socket send and receive message
calls.

After the new socket process finishes, the socket tap determines if the customizable socket
has a matching customization module. If no customization module matches the socket,
then the socket is placed in a non-customized state, the layer 4 receive message call is
performed using the supplied application buffer, and the buffer is returned to the socket
layer. If the socket has a matching customization module, then it is set for customization
and we perform the layer 4 receive message call using the customization receive buffer
instead of the application buffer. This new buffer, which may be larger than the application
buffer, is then sent to the customization module for processing. The customization module is
responsible for determining how many bytes will be transferred to the application message
buffer prior to delivery to the application and must buffer any remaining bytes until a future
application receive call is performed.

Customizable Socket:

When a customizable socket arrives, we need to determine if the socket has a customization
module attached to it as quickly as possible because the module may have data buffered for
the application. To determine the customization status, we attempt an early customization
socket lookup, even though we can’t guarantee all socket parameters have been assigned. If
the customization socket lookup fails, then it is likely that the socket parameters have not
been assigned. Therefore, we must perform a receive message call with the MSG_PEEK
flag to fill in the missing parameters before we proceed with processing the customizable
socket.

After the customization socket lookup succeeds, then we need to determine if the socket has
a customization module attached or if it is a non-customized socket. If it is a non-customized
socket, then we simply conduct the transport receive message call using the application’s
buffer. Otherwise, we are processing a customized socket and we need to determine if the

45

customization module has buffered data ready for the application by using the customized
socket structure parameter for buffered data. If the customized socket structure indicates the
module has buffered enough data to deliver to the application, then we skip the transport
receive message call and instead serve data from the customization module. Skipping
the receive message call to layer 4 prevents application delays which may result if the
transport layer does not have any data ready for the application, but the application is in a
blocking state waiting for more data. Since the customization module already processed the
data the application desires, we can avoid potential delays and serve the request from the
customization module. If the customization module does not have enough data to fill the
application’s buffer, then we proceed with the receive message call using the customization
receive buffer.

4.3 Evaluation
In this section we evaluate the updated processing overhead now that we have introduced
buffering capability into Layer 4.5. Since the updated customization logic utilizes a cus-
tomization buffer that must be allocated, we expect the processing overhead to meet or
exceed that of Subsection 3.2.3. We begin by describing the updated customization mod-
ules developed to account for the new buffering capability and finish with the processing
overhead measurement results.

4.3.1 Revised Customization Modules for Overhead Testing
The new Layer 4.5 logic requires customization modules to buffer data when the cus-
tomization receive buffer contains more data than the application requested, even if the
customization module does not require buffering to properly customize the targeted appli-
cation flow. For this reason, we updated the testing modules described in Subsection 3.2.2.
Table 4.1 provides an overview of the updated testing modules.

The first tagging module targets short-lived flows that send only one IP packet worth of data
for each transmission. This module is relatively simple and does not benefit from the new
buffering capability. Thus, the updated version was simplified to not buffer any data, but
this still increased the server module’s cust_recv function LOC, since additional checks are
required to handle various receive message values and avoid corrupting buffer memory.

46

Table 4.1. Updated customization module lines of code

Client Module Server Module

Flow Type cust_send cust_recv Total cust_send cust_recv Total

Short-lived 15 2 90 2 40 115

Long-lived 2 90 170 60 2 140

The second tagging module targets long-lived flows that transfer large amounts of data. The
long-lived customization module may benefit from the new buffering capability because the
module can now process data in larger chunks. This is particularly useful towards the end of
the long-lived flow where the receiver is expecting a known amount of data to be transferred
(e.g., the remaining bytes of a requested file). When using the non-buffering logic, if the
application requested the specific amount of final bytes expected, but these bytes contained
at least one customization tag, the application will be forced to conduct an extra receive
message call to retrieve the remaining final bytes. With the new buffering capability the
customization receive buffer can retrieve all remaining bytes, remove any customization
tags, and then return all requested bytes to the application. Unlike the previous short-lived
module, the updated version uses buffering by requesting a customization receive buffer
larger than the application buffer, which resulted in an increase to the client module’s
cust_recv function LOC.

4.3.2 Prototype Evaluation
We begin by repeating the DNS experiment using the updated short-lived customization
module with a client side dig application and server side dnsmasq application. Again,
to ensure we could measure the overhead experienced, we decided to conduct batch DNS
requests consisting of 1000 different requests to the server, repeated over 15 trials. Figure 4.4
illustrates the overhead of Layer 4.5 socket taps and the overhead of Layer 4.5 taps with the
customization applied.

From the resulting boxplots, we observed a more significant Layer 4.5 tapping mean over-
head that can be attributed to the two receive message and customization lookup calls
performed by the dig client. Recall from Section 4.2, we chose to attempt a customization

47

Figure 4.4. Layer 4.5 with buffering capability measured overhead of 1000
short-lived application flows.

lookup prior to the first receive message call to allow early detection of customization since
we may be able to serve the requested bytes from the customization module instead of the
transport layer. Since we are dealing with UDP sockets in this experiment, each client DNS
request is a new socket and the early customization lookup will fail. While this receive
message call did not previously add significant overhead, performing this request twice in
the receive message path increases the chance of delays caused by the use of process locks
that prevent multiple sockets from accessing the customization hash table at the same time.

When each DNS message is tagged, we see a less significant mean increase compared
to Subsection 3.2.3. This minimal increase to the overhead indicates that allocating the
additional receive buffer did not result in unacceptable delays. It should be noted that under
this customization experiment, dnsmasqmaintained the same socket for all receive requests
and, thus, only allocated the new receive buffer a single time. If we instead customized the
dig client receive path, this would have resulted in 1000 receive buffer allocation and free
operations, which would likely increase the batch customization overhead.

48

HTTP over TCP
The next experiment we repeat is the bulk file transfer using the updated long-lived cus-
tomization module. To determine the customization receive buffer size that should be
assigned to the customization module, we reviewed the curl client behaviour from the
initial experiments. The client side curl application was observed to request a maximum of
102400 bytes when conducting a receive message call. Thus, to allow processing more data
than previously allowed, the customization module was configured with a customization
receive buffer of size 102400 + 3200 bytes. We chose to add 3200 bytes above the maximum
buffer since there would be at least 100 32-byte customization tags present if the requested
buffer was completely filled. Therefore, we could safely transfer the 3200 additional bytes
from layer 4, remove all customization bytes, and then return all remaining bytes to the
application without having to buffer data for a future receive call. Figure 3.4 illustrates the
model comparison of the overhead of Layer 4.5 socket taps and the overhead of Layer 4.5
taps with the customization applied.

Figure 4.5. Layer 4.5 with buffering capability measured overhead of a single
long-lived application flow.

From the boxplot, we see that the overhead experienced after adding the buffering capability
did not differ from the initial results. Contrary to the batch experiment, the long-lived
application flows benefit from the early customization lookup process and are not subjected

49

to a second lookup. There was also no significant difference in the amount of data processed
during each receive message call since the curl application provides a large receive buffer
and providing a larger buffer does not result in processing significantly more data each call.

HTTPS over TCP
The last flow we target is an encrypted bulk file transfer. The main goal of this experiment
is to determine if the new buffering capability enables transparently customizing encrypted
flows and if there is a significant processing overhead impact of protocol customization to
encrypted traffic flows. We utilize the same 3 GB Ubuntu image from the bulk file transfer
experiment, but instead use a Hypertext Transport Protocol Secure (HTTPS) over TCP
connection. The client still utilizes the curl application, but the server module is now
attached to a python web server application configured to use TLS.

Figure 4.6. Layer 4.5 with buffering capability measured overhead of a single
long-lived encrypted application flow.

From the boxplot, we see similar results to that of the unencrypted file transfer. The increased
mean file transfer time can be attributed to the overhead of the TLS connection. The key
takeaway from this experiment is the ability to customize both encrypted and unencrypted
long-lived flows without resulting in unacceptable overhead.

50

4.4 Insights
The design and evaluation of the buffering capability for Layer 4.5 exposed some new
customization challenges. In this section we will highlight the new insights we gained.

• TLS Dialect: If a middlebox device is being used to decrypt/encrypt TLS traffic
between two devices, we may be able to detect the behaviour using a customization
module. We know that the first Layer 4.5 design could not process customized TLS
traffic, which means that if we sent a customized TLS message and a middlebox tried
to process it without using special processing, then it is likely that the connection
would be terminated. We explore this further in Section 6.2.

• Multiprocessing: Applications that utilize multithreading and/or multiprocessing
may further complicate customization module design. If the customization module is
required to maintain a state variable, much like the file-transfer tagging module used
in Section 4.3, and multiple processes are using the module at the same time, then we
must use mechanisms to synchronize customization processing such as spinlocks.

• Socket Blocking: Application sockets may set a NO_BLOCK flag, which allows the
socket to wait until layer 4 has data to transfer into the socket buffer. The first buffering
implementation did not properly account for this and attempted a socket receive call
while holding a spinlock, which resulted in locking up the kernel. Additionally, if
the customization module has already buffered all remaining data from the transport
layer, an application call with the NO_BLOCK flag set may never return. Therefore,
we redesigned the prototype to avoid scenarios that could result in unnecessarily
holding locks.

4.5 Summary
In this chapter, we designed a new customization module buffering capability into Layer 4.5
to expand protocol customization capabilities to both encrypted and unencrypted flows. The
update to Layer 4.5 was designed to work with all applications, but was targeted towards
applications that perform strict receive message processing, such as those using TLS to
encrypt messages. Note that we highlighted TLS applications in this chapter because of their
common use, but the updated design also expands customization capabilities to applications

51

that follow similar strict receive message processing, such as dnsmasq when using TCP.
The updated processing overhead experienced was comparable to that of the initial design
for long-lived application flows, but the short-lived flows experienced a 2% increase in
overhead for Layer 4.5 tapped connections. Additionally, the buffering capability required
more complex customization modules to perform the same customizations possible without
buffering.

52

CHAPTER 5:
Rotating Customizations in Wide Area Networks

Wide area networks present communication delay and synchronization challenges to net-
work customization. First, geographically distant end hosts can have different communi-
cation delays (i.e., latencies) or network capacities (i.e., bandwidth), which results in the
challenge of synchronizing deployed customization modules. The primary goal of this
chapter is to evaluate Layer 4.5 customization use in a WAN to include methods for cus-
tomization synchronization and “hot-swapping” customizations on an active socket without
service interruption.

Second, Layer 4.5 customizations may be subjected to third-party middlebox interference as
customized messages traverse the public internet infrastructure. However, we hypothesize
that Layer 4.5 traffic will be unaffected by third-party middleboxes since they should not
inspect packet data above the transport layer (i.e., layer 4). Therefore, the secondary goal
of this chapter is to conduct a brief evaluation of third-party middlebox interference of
customized DNS and HTTP application flows.

5.1 Motivation
Consider the WAN in Figure 5.1 with two Layer 4.5 capable networks spread over geo-
graphically distant locations. In this network, communications between the NCO and the
internal servers is much faster than communications with the external hosts. As a result,
the NCO can deploy customization modules to the internal network services much faster
than to the external end hosts. Using this WAN as a reference, we now consider several
operational scenarios likely to occur in a real-world network that is actively customizing
application flows.

Immediate Customization Attachment

A network event occurs and triggers the automatic deployment of customization modules,
one of which is to the DNS server deemed as a critical network service. Recall from
Chapter 3 that our Layer 4.5 simplified customization attachment to apply only to new

53

Main

NCO

Web DNSOVS𝐻𝑄

Branch

OVS𝐵

H1 H2

WAN Connection

Figure 5.1. Layer 4.5 capable wide area network consisting of a main branch
hosting network services and a remote host branch.

sockets. However, in this scenario it is not desirable to restart the DNS server because
this may result in unacceptable network disruptions. Therefore, the Layer 4.5 DCA should
support installing a customization module on the device and immediately allow matching
the module to all sockets, not just new sockets.

Testing Customizations

A network operator would like to test a customization module without actually customizing
the application flow. For instance, the operator may want to test that the module attaches to
the correct sockets or test only one of the end devices to be customized. In Subsection 2.2.2,
these types of modules would be considered as “monitoring” modules, but this classification
does not fit the intended purpose of the customization modules being tested. Thus, we expand
the Layer 4.5 design to enable deploying a customization module in a deactivated state and
then activating it remotely from the NCO.

Customization Replacement for Future Sockets

A customization module has been deployed by the NCO and is actively being used on H1

when communicating with the web server. After some time, the network operator wishes
to deploy a new customization module to H1 and the web server with the same matching
parameters as the current modules, but the current modules should not be removed from
any active flows to avoid service interruptions. Instead, the new modules should be applied
to all future connections while the previously deployed modules remain attached to any
current sockets, but the previous modules should also no longer be considered available for

54

future sockets. The current design of Layer 4.5 does not support this capability because the
only way to remove a module is through the revoke functionality of the NCO and DCA.
Additionally, Layer 4.5 does not permit multiple customization modules to be deployed
with the same matching parameters since this would result in unpredictable customization
attachment. Therefore, we will expand Layer 4.5 to enable the graceful replacement of
customization modules.

Customization Replacement on Active Flows

A network operator wishes to deploy a new set of customization modules to H1 and the web
server, but now the operator intends to have the new modules replace the existing modules
even if they have already attached to an active socket. This scenario is more complicated than
the deprecation scenario because we must be concerned with customization synchronization
issues between the two end devices. For instance, if H1 changes to the new customization
module before the web server, then this is likely to cause web server customization processing
errors. Therefore, we leverage features from the previous scenarios along with additional
new features to develop the capability to perform active flow customization.

5.2 Design of Module Hot-Swapping
In this section we will gradually expand the Layer 4.5 architecture capabilities by adding
new features that will enable the NCO to replace the customization module attached to an
active flow with a new customization module, without cycling the application. Figure 5.2
depicts the updated NCO distribution and continuous management functions to support
such customization efforts.

5.2.1 Attaching to Active Flows
The Layer 4.5 customization architecture design from Chapter 2 did not explicitly dictate
how newly installed customization modules should be applied. For the initial prototype,
we simplified the process of customization attachment by only applying customization
modules to new sockets. Thus, we need to expand the Layer 4.5 design to explicitly allow
for the immediate attachment of customization modules if so desired. To accomplish this,
we first update the NCO deploy function to include the ability to specify if the customization
module being deployed should be applied to all sockets or just to new sockets. We allow this

55

NCO
Distribution

Constuct Deploy Revoke

Continuous Management

Monitor Security Middlebox

Deprecate Activate Priority

CIB

Figure 5.2. Layer 4.5 NCO consisting of updated “distribution” and “con-
tinuous management” functions to support customization module rotation.
Updated or new functions represented with a dashed blue border.

distinction because there are still scenarios where the new module should only apply to new
sockets and not affect existing sockets. Next, we update the DCA install handler to accept
this new indicator and act accordingly when installing and registering the customization
module.

5.2.2 Activating Customization Modules
The initial Layer 4.5 design did not consider the deployment of customization modules in
an inactive state. However, it may be desirable to deploy such a module for the purpose
of testing a customization prior to full deployment. Additionally, it may also be desirable
to simply deactivate a module on an end device in lieu of revoking the module. Thus,
to support the remote activation or deactivation of a deployed customization module, we
expand the design of the Layer 4.5 NCO, DCA, and customization modules. Algorithm 3
provides the NCOs updated management logic to allow activating/deactivating a deployed
customization module.

The NCO is updated to include a continuous management activate function that can be used
to both activate and deactivate a deployed module. Additionally, the NCO monitor function
is also updated to process activated flows separately from non-activated flows. This separate

56

Algorithm 3 NCO: Activate Management Logic
1: while True do
2: Activate Event: //module marked for activation or deactivation
3: Invoke DCA activate handler for specified module
4: Update module activation status in CIB
5: Monitor Event: //end of a state_req_window
6: Perform device state request
7: if Module not activated then
8: Update testing and state info in CIB
9: else

10: Update active_ts and other state info in CIB
11: end if
12: end while

processing allows for non-activated modules to provide different state information that is
more helpful for testing purposes and not relevant for modules that have been activated.

The DCA is also updated with an activate handler to allow toggling a customization module’s
activated state. The customization module’s activated state is then used within the module
when a cust_send or cust_recv call is performed by a customized flow. At the start of each
of these functions, we now include a standardized activation check. If the module is not
activated, the customization logic in the function is not performed. Otherwise, the module
is in an activated state and the normal customization processing occurs.

5.2.3 Deprecating Customization Modules
Before we tackle customization rotation on an active flow, we first develop the ability
to deprecate a deployed module, which will effectively remove the module from the list
of available modules for future socket attachment. Deprecating a module does not affect
active sockets with the deprecated module attached and is meant to allow a graceful tran-
sition to a new module without interfering with the previous customization modules in
use. Algorithm 4 provides the general NCOs algorithm for deprecating and monitoring a
customization module.

First, we update the NCOs continuous management functions and the DCAs handlers to
include a new deprecate function/handler. When a module is marked for deprecation by

57

Algorithm 4 NCO: Deprecation Management Logic
1: while True do
2: Deprecate Event: //module marked for deprecation
3: Invoke DCA deprecate handler for specified module
4: Update module deprecate status in CIB
5: Monitor Event: //end of a state_req_window
6: Perform device state request
7: if Deprecated module not active then
8: Revoke deprecated module
9: Update CIB

10: end if
11: Update active_ts and other state info in CIB
12: end while

the network operator, the deprecate function will utilize the NCO/DCA control channel to
coordinate the deprecation of the specified module on the customized device. Once the DCA
reports the modules deprecated status, the deprecate function updates the CIB to reflect the
new status and allow the monitor function to track the module until ready for automatic
revocation.

Since we must continue to monitor the deprecated module, we also update the continuous
management monitor function to track deprecated modules that are deployed and active, but
now in a deprecated state. To support the automatic revocation of deprecated modules that
are no longer being used, the monitor function must now also track deprecated modules and
the sockets they are attached to until the module is no longer actively attached to any sockets
on the customized device. Once the deprecated module is no longer actively being used,
the monitor function will invoke the distribution revoke function to completely remove the
deprecated module from the customized device.

5.2.4 Attaching Multiple Customization Modules
At this point, the Layer 4.5 customization architecture has been expanded to support dep-
recating, activating, and immediately attaching customization modules. There is one final
feature required to support rotating from an active customization module to a new cus-
tomization module on the same active socket.

58

The initial design allowed for a single customization module to be attached to a socket at
a time. This design choice ensured each end device had the same customization module
attached, and that multiple modules would not be customizing the same flow, possibly in
different orders. We now relax this condition, but only slightly, to support transitioning
from one customization module to the next. In this new design, we now allow an array of
customization modules to be attached to a single socket, but we only allow one customization
module to actively customize the socket. This design decision leads to two sub-requirements:

1. Customization modules need a priority assignment to determine their position in the
attached list.

2. Customization modules need a mechanism to determine if they should process the
flow or skip processing and allow the next module to customize the flow.

First, to implement customization module priority, we update the NCO construct function
to include setting the module priority at build time, much like the function already does
for setting the mod_id. Next, we update the NCO continuous management functions to
include a priority function to update a module’s priority level after deployment. After we
update the NCO to support setting a module’s priority, we then update the DCA to include
a priority handler. This handler is called by the NCO and is responsible for interfacing with
the customization module to change the priority level.

Second, the Layer 4.5 customization logic is updated to allow a customization list to
be attached to an active socket. This customization list is sorted by priority level before
attaching to the socket and if a customization module priority is updated, then the list is
re-sorted to reflect the update. The attached customization list can hold an arbitrary amount
of customization modules, but only one customization module is allowed to customize the
socket. After the first customization module in the list customizes the socket, no other
customization modules in the list will be applied. Therefore, adjusting the customization
priority is the primary method for determining which customization module will be applied
to the socket first.

Finally, to allow module rotation on an active socket, we need to allow multiple modules
to attempt customization during a synchronization time window. To accomplish this, we
require customization modules to use an identifying feature during customization such as a

59

customization tag or ID. When the higher priority customization module attempts to process
the flow, if this feature is not detected, then the module must skip customization processing
and signal that the next module in the list should be applied to the socket instead. Note that
if a customization module does not have an identifying feature, then it can not support this
rotating scheme.

NCO Customization Rotation Process

The NCO must orchestrate the rotation of customization modules to ensure a successful
transition from one module to the next without service interruption. Using the new features
added to the NCO, DCA, and customization modules, we now define one possible process
(Figure 5.3) to rotate customizations on an active socket without destroying the connection.

NCO DCA
Construct Module 𝑀2

Attach/Register

Pri: 𝑀1

Sec: 𝑀2

Deploy(𝑀2, Attach)

Update CIB
Report

Update 𝑀2 Priority Cust Reorder

Pri: 𝑀2

Sec: 𝑀1

Priority(𝑀2, High)

Update CIB
Report

Remove 𝑀1

Cust Remove

Deprecate(𝑀1)

Update CIB
Report

𝑀
1,
𝑀

2
Su

pp
or

t

Figure 5.3. General NCO customization rotation process

We make the following assumptions in the customization rotation process:

1. The customization module to be replaced (𝑀1) was previously deployed to each device
2. 𝑀1 has a high priority level and is in an activated, non-deprecated state
3. The replacement customization module (𝑀2) has a lower priority
4. 𝑀2 is deployed in an activated state

60

The process of Figure 5.3 can apply to a single customized device or to multiple customized
devices. However, when rotating customizations on multiple devices, the steps must be
performed in parallel for each customized device. For example, deploying 𝑀2 should be
accomplished for each device prior to updating 𝑀2’s priority on each device. Additionally,
we prioritize customization clients over servers when choosing the device order to perform
the rotation steps. For clarity, we define device roles using the following definitions:

1. Customization Client: The end device receiving customized traffic
2. Customization Server: The end device sending customized traffic

We now describe the customization rotation process in more detail. First, we deploy 𝑀2 to
the client and server with a lower priority setting than 𝑀1 and the immediate attachment
flag set. Now the client supports processing flows using both customization modules, but
the server is only sending customizing flows using 𝑀1 because it has a higher priority level.
After the CIB has been updated to reflect the deployment of 𝑀2, we update the client’s 𝑀2

customization priority to cause customization module re-ordering. Now the server should
still be using 𝑀1 to customize flows sent to the client, but the client will attempt to process
the customized flow using 𝑀2 because it now has a higher priority on the client. However,
𝑀2 will fail to identify the correct customization feature, which results in the transition to
𝑀1 to process the flow. After the CIB is updated to reflect the client’s 𝑀2 priority change, we
update the server’s 𝑀2 customization priority to cause customization module re-ordering.
Now the client and server are both using 𝑀2 as the primary customization module, which
means it is safe to deprecate or revoke 𝑀1 from each device without causing customization
processing errors.

5.3 Evaluation
We begin by evaluating the features developed to achieve our primary goal of customization
synchronization and active flow customization rotation. The features developed in this
chapter were evaluated in a WAN testbed, Figure 5.4, leveraging the GENI [29] network.
The WAN testbed presented uncontrollable delays between the NCO and each DCA, which
allowed testing module rotation and the necessary new features to support it in a more
real-world operational network environment.

61

GENI Site 1 (East Coast)

NCO

10.10.0.5

Web

10.10.0.4

DNS

10.10.0.3

OVS𝑒𝑎𝑠𝑡

GENI Site 2 (West Coast)

OVS𝑤𝑒𝑠𝑡

H1

10.10.0.1

H2

10.10.0.2

2900 miles

Figure 5.4. Layer 4.5 capable wide area network testbed.

We used the GENI networking environment to set up two Local Area Networks (LANs) at
two different universities. The East Coast LAN was established at Old Dominion University
with the other located approximately 2900 miles away at the University of Washington.
Each LAN was connected using a "stitched" connection, which provided a layer 2 tunnel
between each switch. The tunnel allowed testing customization deployment and use without
interference from third-party middlebox devices. Note that prior to starting each experiment,
all hosts and servers in the WAN except for the NCO were configured with Layer 4.5
capability. Additionally, each NCO/DCA control channel was established with each device
DCA awaiting commands from the NCO.

To evaluate the success or failure of each feature, we utilized the Layer 4.5 customization
logs and packet captures of all customized traffic. The Layer 4.5 customization logs allowed
us to verify deployed customization modules were attached to the appropriate applications,
the modules were in the correct state, and that no unexpected errors were occurring. The
packet captures of the customized application flows were used for one of two purposes.
First, we verified the customized flows matched to the events logged within the Layer 4.5
customization logs. Second, we measured the throughput of the customized flows to show
the customization module was actively customizing the flows.

After evaluating the new features, we created a new testbed consisting of one local Layer
4.5 client and 12 different Layer 4.5 GENI nodes hosting public-accessible network ser-
vices. Using this new testbed, we focused on our secondary goal of evaluating third-party
middlebox interference of Layer 4.5 customized flows.

62

5.3.1 Immediate Attach Testing:
In order to test the ability to attach a customization module to an active socket, we developed
a new customization module to match the DNS server’s socket parameters. We chose to
customize the DNS server because the dnsmasq application uses a single socket to process
incoming DNS requests and the socket is allocated when the application starts. The new
customization module was configured to customize the receive message path and would
inspect each incoming DNS request for the presence of a customization signature at the
front of the request. If the customization signature was not present, then the customization
module signaled to the DCA that the message should be dropped and alert the application
of a message processing error without causing an application error. Figure 5.5 provides the
Layer 4.5 customization log4 from the experiment with a corresponding Wireshark capture
overlay added to the log.

We began the experiment by starting the dnsmasq application on the DNS server
(PID=5898) without a customization applied. We then configured H1 to repeatedly per-
form DNS requests using the dig application to the server at five second intervals with
a maximum attempts setting of two and a five-second timeout value. Each DNS request
followed the format: www.test_{batch number}{request number}.com to allow cor-
relating requests to the Layer 4.5 customization log. Next, we added the DNS server’s
customization module to the NCO construction and deployment queue. After the DNS
server module was installed (1) and loaded onto the dnsmasq socket (2), we waited ap-
proximately 30 seconds to allow several DNS requests to be received and dropped by the
customization module (3)-(6). We then configured the NCO to revoke the customization
module from the DNS server, which resulted in the customization module being unloaded
(7). At this point new DNS requests were permitted to reach the dnsmasq application again
and processed accordingly.

Based on the Layer 4.5 logs and corresponding packet capture, we conclude that this
experiment has successfully demonstrated the ability to immediately attach a customization
module to an active socket.

4Layer 4.5 customization logs have been edited to remove unnecessary information and improve readability.

63

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5.5. Layer 4.5 customization immediate attachment log and corre-
sponding Wireshark overlay.

5.3.2 Activate Testing:
To evaluate the new customization module activation feature, we first deployed a deactivated
customization module to the web server. We utilized a new customization that performed
rate-limiting on a per-message basis by adding a 100-msec delay to each send message call.
This customization module was designed to cause a noticeable packet transmission pattern
and significant drop in performance when transferring a large file between the web server and

64

host. Instead of the previously used 3 GB Ubuntu image, we transferred the Layer 4.5 kernel
module file, which is approximately 3.7 MB. Transferring the smaller file with the new
customization module allowed for a faster file transfer while still testing the customization
module activation. We collected Layer 4.5 customization logs and traffic on the web server
throughout the experiment and compared deactivated and activated customization module
file transfers in Figure 5.6.

(1)

(2)

(3)

(4)

(2)

(4)

Figure 5.6. Layer 4.5 customization activation log and corresponding
throughput graph. Throughput measurements for each flow are time-shifted
to start at time zero.

We began the experiment by deploying the 100-msec rate-limiting customization module to
the web server. The Layer 4.5 log shows the customization module was registered to match
the python web server parameters and that the module was in a deactivated state on the
web server (1). Next, we performed a file transfer (2) and verified the customization module
was attached to the socket, but also that it was not actively customizing the flow. After the

65

file transfer completed, the NCO issued a command to the web server’s DCA to activate the
customization module (3). Last, we performed the file transfer again (4) and, as expected,
the 100-msec send message delay created a clear pattern in the throughput measurement.

Based on the Layer 4.5 logs and throughput graph, we conclude that this experiment has
successfully demonstrated the ability to attach a customization module in a deactivated state
and then activate the customization module when ready to apply the customization.

5.3.3 Deprecate Testing:
When we deprecate a customization module it must remain attached to any active sockets
that it was previously customizing, but any new sockets undergoing the customization
lookup process should not be matched against the deprecated module. Therefore, to test
customization module deprecation we performed a file transfer from H1 using the rate-
limiting module with a longer delay of 1000-msec, and after the file transfer began, we
configured the NCO to deprecate the module. We continued to monitor the throughput after
module deprecation because if the customization module was removed from the socket, then
the throughput would drastically improve. Additionally, after the customization module wass
deprecated, we configured H2 to also perform a file transfer to verify that the deprecated
customization module was not attached to the new flow. Figure 5.7 shows the web server’s
Layer 4.5 customization log and the throughput of each flow.

First, we can clearly see that the throughput of H1 maintained the same pattern throughout
the entire download. This throughput pattern was the result of the customization module
inserting a 1000-msec send message delay for each application send message call performed.
Even after the customization module was deprecated (3) approximately 30 seconds into the
connection, the customization remained active for the remainder of the file transfer. Second,
since we were running a simple python server without multiprocessing, the H2 file transfer
was delayed until the H1 transfer finishes. When the H2 application socket was created on
the web server (4), we observed that the connection was not customized with the 1000-msec
customization module even though it was still loaded on the web server.

Based on the Layer 4.5 logs and throughput graph, we conclude that this experiment has
successfully demonstrated the ability to deprecate a customization module without affecting
current flows or applying the customization module to future application flows.

66

(1)

(2)

(3)

(4)

(2) (3) (4)

Figure 5.7. Layer 4.5 customization deprecation log and corresponding
throughput graph.

5.3.4 Rotation Testing:
To test customization rotation on active sockets we conducted two different experiments
using the process from Figure 5.3. First, we rotated a customization module applied to a
single device. The goal of this first test was to validate customization rotation when we do
not have to account for customization synchronization between a pair of devices. Second,
we performed customization rotation using a pair of devices, which means each device
must have been capable of using the same customization module to prevent processing
errors. After completing the successful rotation of customization modules while maintaining
customization synchronization we completed our evaluation towards the primary goal of
this chapter.

67

Single Device Customization Rotation
In our first experiment, we customized the web server using the same rate-limiting 100-
msec and 1000-msec customization modules from the previous experiments. We followed
the process from Figure 5.3 with the 1000-msec customization module as 𝑀1 and the
100-msec module as 𝑀2. The Layer 4.5 customization log and corresponding throughput
measurement for the experiment are shown in Figure 5.8.

(1)

(2)

(3)

(4)

(5)

(2) (3,4) (5)

Figure 5.8. Single device Layer 4.5 customization rotation log and corre-
sponding throughput graph.

We began by deploying the 1000-msec customization module with a priority value of 10
to the web server. After the customization module was registered on the web server (1), we
initiated a file transfer from H1 (2). When the file transfer was initiated, we observed in the

68

customization log that the module was attached to the python TCP socket (2), which can
also be seen in the throughput measurement by the delayed start. While the file transfer was
in progress, we deployed the faster 100-msec customization module with a lower priority
level of 20 and the immediate attachment flag set to ensure the module was attached to the
active python flow. At (3) and (4), the 100-msec customization module was registered on
the device and attached to the same python socket, but as expected there was not a change
in the throughput because the 100-msec customization module had a lower priority value.
Last, at (5) the 100-msec customization module’s priority was adjusted to a higher value
than the 1000-msec module, which resulted in customization module re-ordering and the
throughput of the file transfer to significantly improve.

This experiment confirms that we are able to rotate from one customization to the next on a
single device. However, we expect that rotating customizations on a single device will be far
less common than the need to rotate and synchronize customizations on multiple devices.

Multiple Device Customization Rotation
In our second experiment, we adapted the rotation process in Figure 5.9 to account for two
DCAs: (i) the DNS server and (ii) H1. For the purposes of rotation priority, the DNS server
was defined as the customization client and H1 was defined as the customization server.

Before we started the experiment, we needed two different customization modules with
distinct identifying features to deploy to both the DNS server and to H1. First, we used the
same DNS tagging module from Subsection 3.2.3 as 𝑀1 that would insert an application
tag to the front of each DNS request. Second, we developed a new DNS customization
module as 𝑀2 that compressed the DNS request by removing “unnecessary” bits, much
like what was done in [41]. Using these two drastically different customization modules,
each module would be able to easily determine if the message being processed matches the
expected customization. If customization processing did not match, then the customization
module would signal Layer 4.5 to try the next customization module in the attached list.
Figure 5.10 illustrates the results of the experiment using the Layer 4.5 customization log
with embedded corresponding Wireshark packet capture.

69

NCO 𝐻1 DCADNS DCA

Attach/Register

Pri: 𝑀1 = tag

Sec: 𝑀2 = compress

Deploy(𝑀2, Attach)
Attach/Register

Pri: 𝑀1

Sec: 𝑀2

Deploy(𝑀2, Attach)

ReportReport

Cust Reorder

Pri: 𝑀2

Sec: 𝑀1

Priority(𝑀2, High)

Report

Cust Reorder

Pri: 𝑀2

Sec: 𝑀1

Priority(𝑀2, High)

Report

Cust Deprecate

Deprecate(𝑀1)

Report

Cust Deprecate
Deprecate(𝑀1)

Report

Figure 5.9. NCO customization rotation for two devices.

We began the experiment by starting the dnsmasq application (PID=6072) on the DNS
server without any customization modules applied. We then deployed the tagging cus-
tomization module with a priority level of 10 to the DNS server and to H1. After the
customization module was registered on the DNS server (1), we configured H1 to repeat-
edly perform DNS requests to the server at five second intervals. Again, each DNS request
followed the format: www.test_{batch number}{request number}.com to allow cor-
relating requests to the Layer 4.5 customization log.

When H1 initiated the first DNS request, we observed in the server’s log that the module was
attached to the dnsmasq socket (2). The embedded Wireshark capture (3) shows the front
customization application tag for test_11 was processed by the server properly using the
tagging customization module. Next, we deployed the DNS request compression module
with a lower priority level of 20 to the DNS server and H1. After the new customization
module was registered (4), H1 and the server were still using the front tagging module
because the compression module was attached with a lower priority level.

70

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 5.10. Multiple device Layer 4.5 customization rotation log and cor-
responding Wireshark packet overlay. A customization inverse module to
interpret customized flows was utilized with Wireshark.

Next, we initiated the customization rotation from the NCO by changing the priority of
the DNS server’s tagging customization to 30, which was lower than the compression
module. Then at (5), the priority of the tagging module on the server was changed to
cause the compression module to be the primary customization module. On the DNS
server, the next 11 incoming DNS requests continued to use the tagging customization

71

(6), but the compression module identified the customization mismatch and signaled for
the next customization module to be applied (7). We completed the customization rotation
from the NCO by changing the priority of H1’s tagging customization to a lower value,
which resulted in both devices using the same primary customization module and no more
customization errors generated in the server’s log as evidenced by request test_212 being
processed correctly by the DNS server.

Based on the Layer 4.5 logs and corresponding packet capture, we conclude that this
experiment has successfully demonstrated the ability to rotate from one customization to
another on a pair of end devices, while maintaining customization synchronization on active
sockets.

5.3.5 Third-Party Middlebox Interference
Layer 4.5 customizations may not always traverse network tunnels or remain within the
controlled network, which puts the customization at risk of third-party middlebox inter-
ference. However, we hypothesize that Layer 4.5 customized flows will not be affected by
third-party middlebox interference because middlebox devices in the open internet primar-
ily process data at or below layer 4. Therefore, to test how the open internet could interfere
with Layer 4.5 customized application flows, we built a new experimental testbed utilizing
GENI resources from various locations within the United States.

The new testbed utilized a local client Layer 4.5 VM located in Monterey, CA and 12 Layer
4.5 servers with publicly routable IP addresses within the GENI network. Using the new
testbed, we conducted customized DNS requests and customized HTTP over TCP file trans-
fers. Note that we did not perform testing over encrypted flows since middlebox interference
is unlikely as deep packet inspection tools are unable to decrypt application data unless they
are configured to have the TLS session keys. We varied the customizations utilizing different
customization schemes in an effort to identify if certain schemes experienced interference
while others were permitted. Finally, we determined that a customization was not subjected
to middlebox interference if the customized messages arrived at the end-point device and
customization processing was successful.

72

DNS Batch
There are multiple customizations possible for DNS requests. For reference, Figure 5.11
provides the structure of a DNS request. To increase the likelihood for middlebox inter-
ference, we targeted several places for customization including the DNS header, queries
section holding the domain name being requested, and the end of the request.

Additional Records
Answers
Queries


DNS

Data

Additional Records Count
Namespace Count

Answer Count
Query Count

Various Header Flags
Request ID

DNS

Header


Figure 5.11. DNS header with data fields.

The following customization schemes were used:

1. Base: No customization is applied

2. Front: 32-byte tag is inserted before the request ID of each DNS request

3. Middle: 32-byte tag is inserted between the DNS header and the DNS data sections

4. End: 32-byte tag is added to the end of each DNS request after the additional records

5. Compress: The DNS request is modified to only include the request ID and the fully
qualified domain name from the queries field, similar to the method from [41]

We started with a baseline test without any customization applied to first determine if the
DNS server within the GENI network could receive DNS requests at all. We then proceeded
with each customization scheme to determine if each could reach the DNS server, even
if previous tests failed to reach the server due to interference. Table 5.1 lists the location

73

of each GENI node hosting a Layer 4.5 DNS server and the results of testing the server
against each customization scheme. Each experiment was repeated 5 times and consisted of
5 different DNS requests.

Table 5.1. Layer 4.5 DNS customization middlebox interference results

InstaGENI Node Base Front Middle End Compress

Clemson PASS FAIL FAIL PASS FAIL

Colorado PASS PASS PASS PASS PASS

Cornell PASS PASS PASS PASS PASS

Illinois PASS PASS PASS PASS PASS

Missouri PASS PASS PASS PASS PASS

Northwestern PASS PASS PASS PASS PASS

NYU PASS PASS PASS PASS PASS

Ohio State Univ. PASS PASS PASS PASS PASS

Univ. of Hawaii FAIL FAIL FAIL FAIL FAIL

Univ. of Texas PASS PASS PASS PASS PASS

Univ. of Washington PASS PASS PASS PASS PASS

Virginia Tech PASS PASS PASS PASS PASS

As seen in Table 5.1, the University of Hawaii node was the only node that blocked all
DNS traffic when using UDP and port 53. To determine if the failed requests were due to
third-party middlebox interference we conducted several additional configurations and tests.
First, we changed dnsmasq to use port 5353 instead of port 53 and repeated each test. Using
the non-standard port, we were able to test each customization scheme without experiencing
interference. Second, we switched the transport protocol for DNS from UDP to TCP. Using
TCP, we confirmed that the Hawaii node would respond to base DNS requests without
filtering. Third, we logged into the Hawaii node and conducted a base DNS request to the
Clemson node. Again, this request was filtered when using UDP, but not when using TCP.
Last, we utilized the iperf3 utility to test port 53 communications using TCP and UDP.
As expected, we were able to communicate on port 53 using TCP but using UDP resulted in
no traffic being permitted. These results indicate that the middlebox interference was most
likely at the university’s gateway router filtering all UDP traffic on port 53.

74

The interference experienced by the Clemson node differs from that of the Hawaii node. The
Hawaii node filtered all UDP traffic on port 53. However, the Clemson node only filtered
malformed DNS traffic as seen by the failed customizations. Again, we used the iperf3
tool to test UDP communications on port 53 and found that the UDP traffic was filtered.
These experiments indicate the presence of a deep packet inspection middlebox (e.g., a
network firewall) filtering malformed DNS traffic.

Furthermore, the Clemson node was the only node to allow the base DNS request but also
block DNS customization attempts, with the exception being the end DNS customization
module. Since the end module places the customization tag after the Additional Records
section of the DNS request, the tag is interpreted as part of that section. The Additional
Records section can hold Extension Mechanisms for DNS (EDNS(0)) messages, which
can have a variety of values and may not be recognized by the DNS server [42]. The tag
did not trigger the previously experienced middlebox interference because DNS servers
are typically configured to bypass unknown portions of EDNS(0) messages to allow for
backward-compatibility.

Based on the results of DNS testing we do not suspect the middlebox interference experi-
enced was from third-party middlebox devices on the open internet. Instead, we believe the
interference to be from devices internal to the GENI network. In a WAN environment, these
devices would be under the control of the same enterprise network and would therefore be
supported by the Layer 4.5 architecture.

DNS End-Customization Expansion
The end customization scheme, due to its unique interpretation, does not require the server
to have a corresponding Layer 4.5 module. This behaviour made us curious as to how long
the tag could be before a non-customized server would no longer process the request. To
test this maximum size, we altered the end customization module to repeatedly insert the
customization tag based on a parameter set when the module is loaded. This parameter was
gradually increased until the DNS server no longer responded to the request. Since each of
the GENI nodes tested in Table 5.1 used the dnsmasq application, we assumed each node
would have the same limit. All nodes that accepted the end customization, except for the
Clemson node, had a limit of 4096 DNS payload bytes. The reason for this maximum size is

75

the result of a flag set by the transport layer when the application does not provide a buffer
large enough to hold all data present in the transport buffer. If a DNS request is received
with a larger size than allocated in the application buffer, the “truncated” message flag is set
and the request is discarded by dnsmasq. Interestingly, the Clemson node had a maximum
size of 1514 DNS payload bytes, which is not a power of 2 as would be expected.

We then tested the end customization against the Google public primary (8.8.8.8) and
secondary (8.8.4.4) DNS servers to ensure this was not a property of dnsmasq and our
experimental setup. We did not want to present a perceived attack against public DNS
servers, so we tested the end customization against the Google servers until we determined
the maximum tag size and did not repeat the experimentation beyond this point. The primary
and secondary Google DNS servers each accepted customized queries with a maximum
DNS payload of 512 bytes, responding with the same address information as if the request
was not customized. This payload size complies with the maximum DNS over UDP size
when not using the EDNS(0) extension [42].

HTTP over TCP File Transfer
After a successful DNS request, a web request is typically conducted. For this reason, we
also experimented with customized HTTP requests going to the same GENI nodes used in
the previous middlebox DNS experiment. Additionally, since file transfers are much longer
than DNS requests we utilized different customization schemes that targeted the entire file
transfer process. The following customization schemes were used:

1. Base: No customization is applied

2. 100x: 32-byte tag is applied every 3200 bytes

3. 10x: 32-byte tag is applied every 320 bytes

4. 1x: 32-byte tag is applied every 32 bytes, a one-to-one ratio

5. 0.5x: 32-byte tag is applied every 16 bytes, which results in twice as many tag bytes
being transferred than file bytes

We chose these byte tagging positions to ensure variability of tag placement within the
HTTP payloads, but we also wanted to make sure that some tags would be included in
HTTP headers, which would be most likely to cause middlebox interference. Since we were

76

not evaluating the processing overhead, we used the same 3.7 MB binary file (i.e., the Layer
4.5 kernel module) from Subsection 5.3.2 to allow reasonable file transfer times, but still
result in a large amount of customization tags per transfer. Each experiment was repeated 5
times and the tag placement was confirmed by capturing the file download with tcpdump
on the local client and parsing the capture for customization tags.

The results of each test are omitted since we did not experience any middlebox interference
when customizing HTTP, even when customization tags were inserted into the HTTP header.
From the file transfer packet captures, we determined that each customization scheme
inserted at least one customization tag into a HTTP header, with the 0.5x scheme inserting
multiple tags in each header and causing the file transfer to grow to be approximately 11 MB.

5.4 Insights
The design and evaluation of the new features for Layer 4.5 to support customization module
rotation introduced some new customization challenges. In this section we will highlight
the new insights we gained.

• Rotation Order: The device order for customization rotation should not be changed
without careful consideration. We chose to prioritize customization clients over
servers to support the case when the customization module being deployed will also
match non-customized active socket flows. By deploying the module to the client first,
the customization module can attempt to process the non-customized message and
fail to identify the customization signature. This failure results in the customization
module signaling Layer 4.5 to try the next module, but no other module is attached
so the non-customized message is returned to the application as desired.

• TCP Retransmits: If customized TCP traffic is being sent over a link with a high loss
rate, then it is likely that TCP retransmits are common. These retransmitted messages
were previously customized by the Layer 4.5 module that was attached at the time of
sending the original message. If we try to rotate a customization while retransmits
are occurring without supporting both customization modules, then we could end up
with the customization client using the new customization module to process traffic
that was sent with the old customization module.

77

• Out of Order Delivery: When customizing UDP traffic, we must keep in mind that
packet ordering is not guaranteed. Therefore, we need to support multiple customiza-
tion modules for a set period of time during customization rotation in case an older
message arrives after a message using the new customization module.

• Parameter Matching: Attaching a customization module in a deactivated state can
be useful for determining the PID and/or TGID socket matching parameters for a
particular application. Using a deactivated module, the customization developer can
test the socket matching parameters without adversely affecting the application.

• Socket Flags: During the third-party middlebox testing using the DNS end customiza-
tion, we identified that UDP applications may drop messages when the transport layer
sets the socket “truncation” (i.e., TRUNC) flag. To avoid this flag being set, we can uti-
lize the buffering capability from Chapter 4 to retrieve all the data from the transport
layer.

5.5 Summary
In this chapter we introduced several new capabilities to the Layer 4.5 customization archi-
tecture design and prototype implementation. The new features to the NCO functions and
DCA handlers provided support for customization module immediate attachment, activation,
deprecation, and priority changes. These new features were all added to the customization
architecture to support transitioning from a previously deployed customization module to
a new customization module, both for an active socket and for future sockets. We finished
with a cursory evaluation of third-party middlebox interference of Layer 4.5 customized
flows. In our evaluation, we experienced minimal interference for customized DNS flows
and zero interference of customized HTTP flows. We attribute the DNS interference to a
device performing deep packet inspection that would have been within the controlled part
of the server network and supported by the NCO.

78

CHAPTER 6:
Summary of Contributions

This dissertation aimed to provide enterprise and datacenter networks with a software
defined protocol customization capability through the use of a Layer 4.5 customization
architecture. The key contributions of this dissertation are as follows:

1. First software defined customization architecture capable of per-process proto-
col customization, per-network security controls, and aiding middlebox traversal
of customized application flows: We develop and evaluate the first architecture to
perform software defined network-wide orchestration of protocol customizations. The
architecture not only automates deployment of customization modules to devices but
also provides a platform for continuous management features such as liveliness moni-
toring, per-network security controls, and aid for middlebox traversal. Additionally, we
conceptualize Layer 4.5 customization modules to perform application-transparent,
fine-grained, process-level flow customization.

2. Improved understanding and flexible support for application transparent cus-
tomization: Performing application transparent customizations at the socket layer has
not been studied significantly and presents implementation challenges. We discovered
some applications process incoming traffic following expected patterns and deviations
result in processing errors, which was especially evidenced by encrypted application
flows using TLS. Thus, we expand the proposed customization architecture and pro-
vide a generalized customization capability that enables customizing both encrypted
and unencrypted application flows without causing application processing errors.

3. Using the new capabilities of our architecture, we are the first to demonstrate
the previously unsupported capability for active flow customization rotation:
Real-world networks must account for communication delays and the resulting cus-
tomization synchronization issues. Furthermore, networks may expect to periodically

©2022 IEEE. Portions of this chapter were previously published. Reprinted with permission from D.
Lukaszewski and G. Xie, "Towards Software Defined Layer 4.5 Customization," IEEE NetSoft, June 2022.

79

rotate customizations in use on both active and future application flows without caus-
ing network interruptions. Using our customization architecture, we demonstrate the
previously unsupported capability for customization synchronization/rotation in a
WAN setting.

6.1 Reproducibility
All code used in this dissertation to develop the Layer 4.5 customization architecture
prototype and extensions is made available open-source on GitHub (https://github.com/
danluke2/software_defined_customization). The repository is broken up into three branches
that match a specific chapter’s prototype and experiments, all tagged with version 1.0.0:

• Chapter 3: Main branch
• Chapter 4: Buffering branch
• Chapter 5: Rotating branch

Additionally, to maximize reproducibility of experiments and enable future work extensions,
we provide a pre-configured Vagrant [35] hosted VM, the associated Vagrant file using
VirtualBox as the hypervisor, VM configuration script, and the necessary bash scripts for
each experiment performed. For experiments using the GENI infrastructure, we also provide
the topology specification files.

6.2 Future Work
In this section we highlight some areas for future work that focus on the expansion of the
Layer 4.5 customization architecture as a whole. We finish with one detailed area of future
work to dialect the TLS protocol to combat Man-in-the-Middle (MITM) attacks.

6.2.1 Prototype Extensions
There is some work that can be accomplished focusing on the prototype implementation us-
ing different technologies, such as eBPF. It is unclear if the eBPF Linux implementation can
be utilized to implement the Layer 4.5 architecture without the need to introduce new eBPF
helper functions into the Linux kernel. Therefore, an implementation in eBPF to pinpoint
Layer 4.5 design restrictions and challenges would be a useful endeavor. Additionally, there

80

https://github.com/danluke2/software_defined_customization
https://github.com/danluke2/software_defined_customization

is some work that expands the prototype evaluations to include different network topologies
and a variety of middlebox devices.

6.2.2 Supporting Lower Layer Customization
One approach to extend our architecture to support customization at the transport layer or
lower would be to incorporate Layer 4.5 module API into eBPF programs performing lower
layer customizations. This would allow the NCO to track these customizations, enhance
their security, and coordinate their traversal at network middleboxes.

In addition, one could develop Layer 4.5 customization modules to monitor and inform
performance of lower layer customization. For example, such modules could track applica-
tion throughput for socket connections that are known to have lower layer customizations
applied. If negative performance impacts are detected, the Layer 4.5 customization could
disable the lower layer customization by setting certain socket options or alerting the DCA
to take action.

6.2.3 Raising the NCO Abstraction
We believe the NCO not only can run as a control application on a SDN controller, but
also could serve as a baseline itself for other control applications by exposing a high level
standard API to developers to enhance the monitoring, security, and middlebox traversal
capabilities. This flexibility is important because enterprise and data center networks tend
to have unique, network specific security and performance requirements.

6.2.4 Layer 4.5 Security Analysis
Beyond increasing the programmability of the NCO, it is also worth conducting a security
analysis of the NCO since it may introduce new security threats/challenges beyond what
is faced by a SDN controller. For instance, the use of customization modules may present
a new target for denial of service attacks, particularly during the rotation of modules. The
threat model used in this dissertation, Subsection 2.1.2, should be expanded to motivate
additional security functionality both within the NCO and in the customization modules it
deploys.

81

6.2.5 Expanding Middlebox Support
The NCO has the potential to aid middleboxes in the understanding of incoming traffic,
to include the possible detection of malicious traffic. There are previous efforts to clas-
sify network traffic using machine learning techniques [43] or by tagging traffic flows in
the network [44]. Layer 4.5 customization modules have the ability, as demonstrated in
Section 3.4, to add application specific information to messages without application knowl-
edge, which can be used to supplement machine learning and flow identification techniques.
This additional information could be interpreted by middleboxes, such as intrusion detec-
tion/prevention systems, to potentially identify malicious behaviour, such as control channel
establishment with outside devices.

6.2.6 Intent Based Networking
Layer 4.5 customization modules could be classified by intent and deployed by the NCO.
For instance, a network operator could request the network to support the collection of data
from each host. This intent could be matched to a subset of pre-built customization modules,
which are then automatically deployed on the network to support the network monitoring
goal. Alternatively, the operator could increase the threat level to the network, which would
trigger the deployment of customization modules built to match the specific security level.
For instance, in the Department of Defense, the changing of cyber protection conditions
(CPCON) could be the intent that triggers the deployment of customization modules [45].

6.2.7 Moving Target Networks
Network surveillance may be the first step performed by an attacker prior to launching
an attack. Part of the surveillance could be the collection of network traffic to learn what
applications are being used and how the network is configured. Similar to the concept of
frequency hopping to reduce the likelihood for traffic interception, customization rotation
can be used to change network behaviour frequently, essentially making the network a
moving target from an attackers point of view. Rotating customizations in the network
frequently could result in degraded network surveillance capabilities as automated tools for
analyzing traffic may not be able to properly parse customized traffic. Future research to
determine optimal customization rotation rates, schemes, and effectiveness remains to be
conducted.

82

6.2.8 TLS Flow Protection
From Section 4.1, we know that if TLS flows are customized and the updated buffering
capability is not used, that any customizations modifying the payload data will result
in TLS processing errors. We believe this behaviour can be leveraged to dialect TLS to
provide protection against attackers that are not capable of processing the specialized TLS
flows. Specifically, we will target attackers attempting MITM attacks between an enterprise
network controlled client and server.

TLS MITM:

There are several types of MITM attacks, with each one working differently [46]. For this
reason we will focus on a simplified MITM scenario where the attacker has leveraged a
vulnerability and successfully positioned themselves between the TLS client and server
without being detected. At this point, the attacker is either an active participant in the
connection or is passively collecting the encrypted traffic. In the active case, the attacker
will intercept and decrypt the received traffic, perform some action with the plain text,
and then encrypt the message again before delivery. If the attacker is passively collecting
encrypted traffic, then the attacker needs another stage of the attack to simplify the decryption
of the collected traffic. In either scenario, we propose that a Layer 4.5 customization can be
used to add a dialect to TLS to potentially inhibit the attacker’s success.

TLS Dialect:

Using lessons learned from our previous work of dialecting OpenFlow to protect the TLS
handshake [18], we design a TLS dialect using Layer 4.5 customization modules to target
TLS MITM attacks. First, the Layer 4.5 customization modules are built for the client and
server with matching socket parameters to target to all sockets using port 443, which is the
standard port for TLS traffic. The customization logic is broken up into two phases (i) the
handshake phase and (ii) the encrypted traffic phase. During the TLS handshake, the client
and server customization modules do not actively customize the connection and instead
monitor the handshake until completion. After the handshake completes, the encrypted
traffic phase starts and the customization modules become active to disrupt MITM attacks.

We first consider an attacker that is active in the connection, which means they will be
decrypting traffic from the client and server. During the encrypted traffic phase, the TLS

83

client and server customization modules will add data to the TLS traffic. Now if a MITM
attacker is present, then this attacker must be using specialized TLS processing to remove the
customization data prior to message decryption to prevent TLS decode errors. We believe
it is unlikely for a standard attacker to utilize custom TLS processing and to also know
the network specific customization in use during the connection, especially if the dialect
is being rotated on a regular basis. Thus, this unpredictable TLS dialect is highly likely to
cause attacker errors and alert networks to the possibility of a MITM attack.

Alternatively, if the attacker is collecting encrypted data with the ability to decrypt the
traffic offline at a later point, then our customization module will also disrupt the attacker.
When the customization module adds data to the encrypted message, this results in the
decryption key no longer working to decrypt the traffic. Thus, if the attacker somehow
gained access to the decryption key, they must now also determine the changes made to the
original encrypted message before successfully decrypting the intercepted traffic.

Development and testing of the Layer 4.5 customization modules to target TLS MITM
attack disruption is left as future work. These modules are discussed for general MITM
attacks, but testing should involve specific, well-known attacks against TLS to determine
their effectiveness and adaptability to combat multiple attacks. Additionally, several MITM
attacks include a downgrade attack component, which means the customization modules
could be expanded to actively disrupt such attacks during the handshake phase.

84

APPENDIX: Background and Related Works

In this appendix we survey current network protocols and a sample of the customizations
applied to each protocol over the years. Each customization is explored with a focus on
challenges and limitation to understand what made them succeed or fail. We then present
recent protocol customization efforts to include our previous research.

A.1 Network Protocol Customizations
Figure A.1 illustrates the TCP/IP stack and the network protocols we will discuss in this
section, starting with Multiprotocol Label Switching (MPLS) and working up the stack to
layer 5 (i.e., the application layer). For each protocol we will expand on the methods used
to achieve customization of the protocol and any implementation or middlebox struggles.
By reviewing previous protocol customization implementations we inform our research on
what may be necessary to succeed and what can lead to deployment hurdles or even failures.

Application

Network Stack

Socket

Transport

Internet

Network Interface

Physical

User

Kernel

MPLS
IP

TCP, UDP

QUIC, TLS

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Figure A.1. TCP/IP network stack with surveyed protocols.

85

A.1.1 MPLS
The MPLS protocol can be viewed as a layer-based upper-layer transparent protocol cus-
tomization to allow quicker routing decisions within a controlled portion of the network [47].
This protocol is unique because it may not apply to the entire path taken by a network packet
because the packets are modified only within controlled portions of the network, without
end host knowledge. MPLS works when the first hop router/switch in the MPLS portion of
the network inspects the packet and uses the layer 3 address to create and insert a 32-bit
MPLS header below layer 3, seen in Figure A.2, for subsequent devices to base routing
decisions on without complex routing table lookups. Prior to leaving the MPLS network,
the 32-bit MPLS header is removed to allow standard processing by the next-hop device.

App Data
Transport Header

Internet Header
MPLS Header

Network Header

Figure A.2. MPLS packet showing 32-bit MPLS header inserted between
layers 2 and 3. Adapted from [47].

The placement of MPLS between layer 2 and 3 headers was a key design decision. The
protocol could not have been easily implemented as an extension to layer 2 or 3 protocols
without requiring updates to all routing devices in the path, which are likely controlled by
multiple service providers. Additionally, the construction of the MPLS header relies on the
information in layer 3 and not all routers in the path are guaranteed to use MPLS for routing
decisions. Thus, MPLS avoids middlebox interference by only working in defined segments
of the network. Based on the current architecture and the struggles that exist to update layer
2 and layer 3 protocols, the MPLS implementation was designed to be used on an as needed
basis and operates only in controlled networks.

86

A.1.2 IP
IP is the primary layer 3 protocol and it has two versions: IPv4 [48] and IPv6 [2]. The IPv6
protocol is an evolution of IPv4 to allow for larger address spaces and to remove features
of IPv4 that were no longer desired. The key feature change between IPv4 and IPv6 was
how IPv6 can be extended. Figure A.3 illustrates the key differences between IPv4 and IPv6
from a customization perspective.

App Data
Transport Header

IPv4 Options
IPv4 Header (cont)
Network Header

App Data
Transport Header

IPv6 Header (cont)
Length Next Header Hop Limit

IPv6 Header (cont)
Network Header

Figure A.3. IPv4 (left) and IPv6 (right) packets showing applicable extension
fields for customization. Adapted from [2], [48].

The IPv4 protocol supported extension by using an Options field, while the IPv6 protocol
uses a more flexible Next Header field to chain additional headers prior to the layer 4
transport header. Additionally, unlike the IPv4 options, most of the IPv6 follow-on headers
are not processed until the end node receives the packets. As seen by Figure A.4, IPv6 has
suffered from limited deployment. The IPv6 RFC dates back to 1998, but as of July 2022
the adoption of the protocol was approximately 40%.

The main drawback of layer 3 customization is the potential for middlebox interference,
particularly from routers and switches. In 2005, Fonseca et al. conducted experiments to
determine if IPv4 packets using options were accepted over various networks [49]. The
authors found that multiple networks would drop packets that included IP options, despite
being standardized in the RFC. One reason packets may have been dropped was the perceived
overhead of repeated processing by routers when the first router did not recognize the option
being used [49]. This middlebox problem is also present when using the IPv6 Next Header
field for options. RFC 7872 documents real world data regarding the drop rate of IPv6
packets using various Next Header fields [7].

87

Figure A.4. Google IPv6 adoption tracker. Source [4].

The first customization to IP we discuss is Multipath IP (MPIP) [50]. MPIP was designed to
bring multipath support to layer 3 without requiring layer 4 protocols to explicitly request
the multipath capability. MPIP has not been extensively studied and is unlikely to be widely
accepted due to some fundamental changes it makes at the IP layer. One of these fundamental
changes is that MPIP is a connection based protocol and needs to determine and use path
statistics. Additionally, to get over middlebox hurdles, MPIP will either create fake TCP
handshakes on additional paths or conduct UDP wrapping of TCP packets on additional
paths. These methods are clearly outside the bounds of the IP layer and present a significant
barrier to its adoption. The MPIP protocol helps illustrate the challenges of middlebox
interference influencing the protocol customization design.

A protocol customization at layer 3 that ultimately moved to layer 5 was IP multicast [51].
Yang-hau et al. compared multicast at the IP layer to a new multicast implementation at
the application layer. The authors discuss known issues with IP multicast, such as limited
deployment due to infrastructure level changes, and the performance penalties of imple-
mentation at the application layer. The authors ultimately concluded that shifting multicast
to the application layer addresses multiple issues with tolerable performance penalties. This
work motivates that trade-offs exist when deciding on the implementation layer for protocol
customization and implementations at one layer may fail, but ultimately succeed if moved
into a different layer.

88

A.1.3 TCP
TCP is one of the main protocols at layer 4, and it has undergone significant changes since
the initial specification was developed. As seen in Figure A.5, TCP utilizes an Options field,
like IPv4, to allow extensions to the protocol, but officially adding TCP option extensions
accepted by the networking community is not always a quick process. For instance, TCP
has several standardized options defined over various RFCs, some of which have taken
upwards of a decade or longer to be widely deployed, such as window scaling and selective
acknowledgments [3]. One of the more recent TCP extensions was the development of the
application transparent MPTCP, which also took over a decade to be implemented into the
Linux kernel [10], [52].

App Data
TCP Options

TCP Header (cont)

IP Header
Network Header

Figure A.5. TCP packet showing Options field for customization support.
Adapted from [1].

MPTCP is designed for general use, which means it must perform protocol negotiation to
ensure both end-points support the protocol. Additionally, this negotiation phase is subject
to middlebox interference as some devices in the network may remove unknown TCP
options. Therefore, MPTCP must first signal multipath capability during the TCP 3-way
handshake using the defined MP_CAPABLE option. If the end host is not multipath capable
or the option is removed by a middlebox device, the connection will default to a standard
TCP connection. Otherwise, a MPTCP handshake is conducted and additional subflow
connections are established. This fallback mechanism is a common approach taken by
protocols to support backward compatibility.

89

A.1.4 UDP
UDP is a lightweight protocol that could be used in lieu of TCP but, unlike TCP, UDP
was initially designed without an Options field. However, there is recent work in progress
to incorporate an Option field into the protocol, shown in Figure A.6 [53]. This specifi-
cation describes how to overload the UDP header Length field to indicate the presence of
options inserted after the packet’s data section. The length field was chosen because the IP
header includes a Total Length field that accounts for the length of the UDP header and
data, thus making the field redundant [53]. As with TCP, UDP options may experience
middlebox interference from devices inspecting the layer 4 header [54]. Zullo et al. found
that checksum calculation and verification was not consistent across the internet, resulting
in packets not reaching the destination when the UDP Options field was used. The authors
proposed the use of a checksum compensating option to overcome some middlebox inter-
ference, with this option ultimately being incorporated into the draft RFC. Similar to other
protocol customization efforts, the UDP Options field is taking a significant time to become
standardized.

Checksum UDP Options
App Data

UDP Header
IP Header

Network Header

Figure A.6. UDP packet showing proposed UDP Options field for customiza-
tion support. Adapted from [55].

In [56], we prototyped a Linux kernel extension to support a Multipath User Datagram Pro-
tocol (MPUDP) protocol, much like MPTCP. The MPUDP prototype showed promise when
applied to Virtual Private Network (VPN) networks, which avoids TCP-over-TCP problems
and leverages multiple paths between the VPN client and server. However, this MPUDP
implementation faces several barriers to deployment. First, the MPUDP implementation
required modification to the kernel UDP function and based on the long MPTCP adoption
timeline, it is highly unlikely that a MPUDP implementation requiring kernel modification
will be successful.

90

Second, the MPUDP implementation was written to be generic like the MPTCP protocol
and apply to all UDP connections. However, this decision does not fit well for UDP appli-
cations because UDP connections are stateless and may be short-lived (e.g., DNS). Thus, a
MPUDP solution would need a method to track UDP state and would also need a method
to specify which applications should use MPUDP. Both of these requirements are beyond
the responsibilities of UDP and raise the complexity of the protocol beyond what is likely
to be accepted by the networking community.

A.1.5 TCPLS
In 2020, researchers proposed a new layer 4 protocol based on TCP and TLS, known as
TCPLS [11], [57]. Figure A.7 provides a comparison between the standard TLS over TCP
packet and that of the new TCPLS packet.

App Data
TLS Header
TCP Header
IP Header

Network Header

App Data

TCPLS Header

IP Header
Network Header

Figure A.7. TLS over TCP packet (left) vs. TCPLS packet (right). Adapted
from [57].

TCP was historically extended using the Options field, but this field is limited to a total
of 40 bytes, which is further limited by the number of options being used. This limitation
to the TCP header length hinders further extensions, especially when multiple extensions
are desired during the same connection. TCPLS was designed to extend TCP beyond the
maximum header size restrictions, but also to avoid middlebox interference problems expe-
rienced at layer 4. First, TCPLS mitigates middlebox interference by using TLS encryption,
which common middleboxes are unable to process. Second, TCPLS leverages TLS 1.3
messages to send portions of the TCP header (e.g., options) which allows for arbitrarily
long TCP header parameters. The authors of TCPLS desired capabilities of both protocols
to work together, but there is no architectural support for cross-layer coupling of protocols

91

and TCP options alone could not provide for this. It is unclear to what extent TCPLS will
suffer from middlebox interference and if it will ultimately succeed as a new layer 4 protocol
as its development is at the prototype stage.

A.1.6 QUIC
A newer layer 5 protocol developed to address latency-sensitive web services is the QUIC [5],
[58]. As seen in Figure A.8, QUIC incorporates aspects of TLS and TCP while running
over a standard UDP connection.

App Data
TLS Header
TCP Header
IP Header

Network Header

App Data
QUIC Header
UDP Header
IP Header

Network Header

Figure A.8. TLS over TCP packet (left) vs. QUIC packet (right). Adapted
from [5].

Similar to TCPLS, the design of QUIC is influenced by middlebox interference and also
signals the trouble of extending and integrating lower layer protocols. The protocol aims
to decrease middlebox interference by encrypting the header/payload and by running over
UDP, but allows falling back to a TCP connection if UDP traffic is being filtered [58].
During the initial design of QUIC, some firewalls would block QUIC traffic on the network
without explicit rules to do so [58]. Note that to properly fix firewall issues that filter a
protocol unnecessarily, there must be firewall vendor support to update the software, which
can be a hindrance to protocol development and adoption.

One of the first customization efforts for QUIC was to introduce multipath support since
MPUDP capability does not exist in the Linux kernel [59]. The authors design the QUIC
extension using MPTCP as a guide and show the extension can handle packet losses
better than MPTCP. The main concern with this customization approach is the increased
complexity added to the protocol specification as the extension is not a simple add-on feature
to a running QUIC implementation.

92

A.2 Related Work
In this section we survey related works relevant to protocol customization to include methods
for host-based and network-based customization.

A.2.1 X-Kernel
The x-kernel design of the 1990s argued for the use of an object-based framework for
protocol implementation [60]. In this framework, objects consisted of protocols, sessions,
and messages. The protocol objects were the known protocols, such as TCP and IP. Session
objects were an instance of a protocol and included a protocol interpreter and local state
information. Message objects would be the packets moving through the session and protocol
objects. The authors argue that this design allowed for ease of protocol development,
conducting protocol experimentation, and building complex protocols via composition of
single-function protocols. The main downside to this framework is that it was designed only
for end-host workstations and all protocols are developed/implemented in kernel space.

The x-kernel was focused on a different methodology for developing new protocols since this
was the early days of the internet. The Layer 4.5 architecture proposes a different approach
for customizing protocols. Just like the x-kernel, Layer 4.5 customization modules are
designed like objects to allow easily inserting/removing them from the Linux kernel. Unlike
the x-kernel approach, we do not develop an entirely new kernel architecture that should be
used instead of existing architectures.

A.2.2 eBPF
eBPF expands the original 1992 implementation by introducing map storage to efficiently
share information between the kernel and user space, increased restricted kernel call access,
and expanded triggers to include user and kernel functions [12]. eBPF programs are written
in user space and compiled into eBPF byte code that can be executed by the kernel at various
hook points via an interpreter. Unlike the kernel module approach, eBPF has been designed
to take security into account as part of the execution process. eBPF programs must pass
through a verifier prior to being allowed to execute on a eBPF virtual machine. The verifier
starts by constructing a control flow graph and checking for unbounded loops to determine
that all programs will terminate and that dead code is not present [12]. The verifier is also

93

responsible for determining that the eBPF program will conduct memory accesses only
within allowed bounds [24]. These checks limit the flexibility of eBPF programs, but the
checks are necessary to restrict potentially insecure programs from running with kernel
level permissions.

The use of eBPF has led to relevant research on extending and tuning TCP parameters with
a new program called TCP-BPF [25]. TCP-BPF introduces the ability to set TCP parameters
on a per-connection basis and adjust them programmatically during the connection. The
main use case focused on in the paper is for datacenter connections where the congestion
windows and receive buffers can be set much lower than normal connections [25]. There is
also follow-on work using this TCP-BPF program to extend the TCP stack [61]. Bonaventure
and Tran show that eBPF can be used to implement current TCP options as well as new
options not standardized in the protocol. The authors comment on future work that includes
making the TCP implementation fully modular and incorporating the eBPF methods used
into other protocols such as UDP. The main downside to this use of eBPF is the focused
application to the TCP protocol. It remains unclear if this same approach will be applied to
other protocols, such as UDP.

eBPF can also be used to perform packet transformations, such as IPv4/IPv6 conversions
using hooks at the traffic control stage of packet processing [62]. In this blog post, the author
demonstrates using eBPF filters to convert packets leaving the host to an IPv4 address and
the incoming IPv4 packets into IPv6 packets. To make these changes on the incoming
packets, the eBPF filters must generate the proper headers for IPv6 that are different from
the IPv4 headers and then restructure the filtered packet to appear as if it was an IPv6
packet prior to handing off to the TCP/IP stack for processing. In this simple example, the
authors are illuminating the potential power of using eBPF to do layer-based customization.
However, this particular approach leads to wasteful work being conducted.

Our Layer 4.5 customization architecture prototype did not use eBPF due to concerns
about the possible need to extend eBPF functionality and helper functions within the Linux
kernel to fulfill design requirements. For example, the eBPF “direct packet access” helper
functions are available to the traffic control layer, but are not available at the socket layer.
Additionally, eBPF programs must pass verification through the eBPF verifier, which can
be quite restrictive. For instance, the eBPF program must be verified to finish, which would

94

restrict the use of kernel locks that may be required when dealing with applications using
multithreading/multiprocessing. However, we believe it is possible to use eBPF at the cost
of possible architecture restrictions and kernel modification, which can take a significant
amount of time and effort.

A.2.3 XDP and DPDK
Two main packet processing techniques available at the Network Interface Card (NIC) are
XDP and the Data Plane Development Kit (DPDK). These mechanisms both allow for the
interception of incoming network packets prior to processing by the kernel network stack.
DPDK is used to pass control of the NIC to user space, bypassing the kernel network stack
and using a user space network stack [63]. XDP, on the other hand, can be used with eBPF
to allow eBPF programs written in user space to act on the incoming packets prior to the
kernel network stack [64].

These mechanisms may seem useful for implementation of Layer 4.5 since they can im-
mediately perform operations on packets prior to being handled by the kernel stack or user
implemented stack. However, both of these approaches lack aspects of the desired design
of Layer 4.5. For instance, XDP is designed for operations on incoming packets only and
would need to perform Layer 4.5 processing prior to kernel stack processing, which seems
like a violation of the kernel layer based processing design. DPDK must implement the
network stack in user space and can’t rely on kernel level security tools or functions without
incurring a context switch penalty. Since this network stack is user defined, we could im-
plement Layer 4.5 entirely in user space using this method. This approach will only apply
to endpoints using DPDK and is thus not a general enough approach to consider.

A.2.4 In-Band Network Telemetry
The use of SDNs and a programmable data plane gave rise to the concept of In-Band
Network Telemetry (INT) [65]. INT utilizes a programmable data plane to embed telemetry
metadata into network packets using different methods. The INT over TCP/UDP method
inserts the metadata between the packet header and the application data [66], illustrated in
Figure A.9.

95

App Data
Metadata

INT Header

Packet Headers

Figure A.9. Network packet showing INT header and associated metadata
inserted between packet header and application data by a network device.
Adapted from [66].

Each network device adds to the telemetry metadata until the last-hop router receives
the packet. At this point, the telemetry data is removed from the packet and delivered to a
telemetry server. The insertion of telemetry data between the packet headers and application
data is similar to MPLS but avoids conflicts with standard packet processing mechanisms
within the network designed to parse packets between layers 2 and 4. Our customization
architecture follows the same approach when adding data during protocol customization to
also avoid potential interference from common network devices.

The main difference between our architecture and INT is the device performing the cus-
tomization and the purpose of the customizations. All INT metadata is inserted within
the network by programmable devices, such as switches, while our architecture targets the
end-host. Additionally, our protocol customizations are written to match specific applica-
tions and flows, while INT matches generic network packets for the purpose of performing
network measurements.

A.2.5 Network Function Virtualization
Network Function Virtualization (NFV) aims to replace specialized physical middlebox
processing with that of software processes on commercial-off-the-shelf equipment [67]. In
[68], the authors develop a framework, known as CHIMA, for deploying service function
chains leveraging INT to monitor the deployment and perform updates as necessary to meet
the desired network goals. CHIMA leverages an ONOS SDN controller for distribution of
the service functions to network switches supporting P4 programmability and INT, while
utilizing MPLS for network routing decisions. The continuous monitoring of function

96

deployment matches that of our customization architecture and solidifies the importance of
such monitoring. Our research differs from CHIMA in that we focus on customization of
end-devices and the applications they are running instead of within the network.

A.2.6 L3AF
The Walmart L3AF project [13] aims to support kernel functions as a service via a central
repository. The L3AF project utilizes a user space daemon for distribution of eBPF pro-
grams targeted at the XDP and traffic control layers of the stack to perform the desired kernel
function, such as load balancing and rate limiting at the NIC. The Layer 4.5 customization
architecture differs from L3AF in that we target customization of applications, provide
network-wide orchestration and management of these customizations, and each customiza-
tion is applied on a per-process basis. Chapter 2 shows that this continuous management
enables novel solutions for security and middlebox traversal.

A.2.7 Application Specific Customization
There are several methods to provide customization capabilities to targeted applications
and/or application protocols. First, Bonaventure et al. in [14], [15] make the case that exper-
imentation and feature design of routing protocols is a slow process and argue that protocol
design should allow for custom plugins to extend the functionality without changing the
protocol standard. The authors implement plugin versions of multiple network protocols and
demonstrate the insertion of various plugins during protocol communication, without the
need to recompile the protocol. The plugins are achieved by using a user space implemen-
tation of eBPF and adding anchor points throughout the protocol to signify points where a
given function can be replaced in the protocol execution by another function. Through the
use of multiple anchors, a plugin could achieve new functionality within the protocol.

The protocol plugin work provides further insight into customization distribution. The
authors design a plugin negotiating and distribution scheme, but just like the L3AF project
do not provide a mechanism for the continuous management and monitoring of the plugins in
use on the network. Additionally, the main drawback to this form of customization is the time
it will take to fully implement and standardize each pluginized application protocol. Layer
4.5 differs from the protocol plugin work by targeting application flows for customizations

97

to allow remaining transparent to the application being customized. However, the plugin
work is able to directly modify application functionality, which Layer 4.5 is not capable of
doing.

Second, in [69], the authors describe using the service mesh layer present between microser-
vice applications and the transport layer to achieve customizations. The service mesh layer
utilizes application companion proxies as a vantage point for network customization. Layer
4.5 differs from this work by supporting all current applications, not just those designed to
use services provided by application companion proxies.

Last, application proxies can be used to perform protocol customization for a specific
application. For example, in [18] we utilize a pair of application proxies to customize
the OpenFlow protocol used in the SDN control channel. The use of application proxies
for protocol customization requires directing traffic to the specific proxy, which means the
traffic must traverse the network stack multiple times resulting in additional processing
overhead. Additionally, application proxies are typically used for a single application or
application type and modifications to the customizations they provide require changes to
the proxy device. The Layer 4.5 customization architecture provides generalized support for
application customization on the end device while also providing continuous management
of the customization in use. Through this continuous management, customizations can be
rotated transparent to the application.

A.2.8 Virtual Transport Layer
The Virtual Transport Layer (VTL) [70] leverages eBPF functionality at the socket layer
to perform application transparent customization. The customization performed by VTL
focuses on improving the performance of TCP applications depending on the unique con-
ditions of the network. When an application first creates a TCP connection, VTL intercepts
the message and uses a machine learning component to determine which protocol is best
for the given application and dynamically maps the application socket to that of the optimal
protocol, such as UDP or QUIC. When a message is received by the device, the message
is intercepted using XDP to redirect the message to the VTL socket before delivery to the
application’s TCP socket. The VTL work focuses on one customization capability and is
complementary to our efforts.

98

A.2.9 Middlebox Support
It is well known that the current protocol extension methodology suffers from middlebox
interference [7], [10], [49], [54], [58]. To specifically address interference from middleboxes
conducting deep packet inspection, some protocols leverage application encryption [11],
[58]. Layer 4.5 customization could also leverage encrypted application traffic to bypass
middlebox support, but this is not applicable to all customizations possible with Layer 4.5.

In [71], the authors develop the OpenBox architecture for SDN environments and leverages
the common processing conducted by multiple virtualized packet inspection services (i.e.,
middleboxes) to reduce redundant processing. Since middlebox interference is a primary
concern when performing protocol customizations, the Layer 4.5 customization architecture
may be able to integrate with OpenBox to allow proper customization processing by treating
protocol customization as a necessary middlebox processing step.

A.3 Our Previous Work
In this section we shift to our previously published, peer-reviewed work during the PhD
research timeline involving protocol customization.

A.3.1 Protocol Dialecting
In [18], the authors create multiple protocol dialects for the SDN control plane using the
OpenFlow protocol. The dialects are developed to provide additional protection to the TLS
handshake and subsequent communications between the SDN switch and controller. The
first dialect customizes the transaction ID field of the OpenFlow header, which holds a
32-bit randomly generated value. During the first OpenFlow Hello message from the switch
and controller, this value is transparently replaced with a keyed message authentication code
that must be verified by each device before proceeding with the TLS handshake. After the
verification completes, a second dialect is used to transparently append a 512-bit keyed hash
to each message send over the control channel.

Each of the dialects used achieves application transparency by using proxies between the
controller and switch. This proxy approach is viable, but requires additional infrastructure,
which presents a deployment challenge. Additionally, the proxies add communication over-
head since they must intercept each message, process the OpenFlow traffic, customize it, and

99

then send the traffic to the receiving proxy for verification. The customization architecture
of this dissertation follows the application transparent customization, but does not require
the use of proxies by moving the customization point to be within the network stack on each
end device.

A.3.2 Link Optimization
U.S. Navy ships rely on satellite networks with relatively low bandwidth capability. Since
the Department of Defense controls both endpoints of the satellite connection (i.e., ship
and shore), this means we can more easily specialize the protocols over this connection.
In [41], the authors customized the DNS protocol over a simulated satellite link by removing
“unnecessary” bits from each request and reply message. The goal was to transmit the
minimum necessary information to successfully perform a DNS request and process the
reply. To accomplish this task, the authors developed custom DNS servers on both endpoints
of the satellite link that were capable of using the customized DNS protocol. This method
allowed the end hosts on the network to utilize the standard DNS protocol and only perform
the customization on the resource constrained link.

Given the unique operating environments of naval ships, our generic customization archi-
tecture needs to support customization updates from a centralized source. However, similar
to the dialect work, this work suffers from overhead and development complexity. For in-
stance, if the DNS protocol was to be further customized, the custom server on both ends
would need to be updated before using the new customization, which could be challenging.

100

List of References

[1] J. Postel, “Transmission control protocol,” Internet Requests for Comments, Tech.
Rep. 793, 1981 [Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt

[2] S. E. Deering and R. M. Hinden, “Internet protocol, version 6 (IPv6) specification,”
Internet Requests for Comments, Tech. Rep. 2460, 1998 [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc2460

[3] K. Fukuda, “An analysis of longitudinal TCP passive measurements,” in Interna-
tional Workshop on Traffic Monitoring and Analysis, 2011, pp. 29–36.

[4] Google, “Google IPv6,” accessed Jul. 05, 2022 [Online]. Available: https://www.
google.com/intl/en/ipv6/statistics.html

[5] J. Iyengar and M. Thomson, “QUIC: A UDP-Based multiplexed and secure trans-
port,” Internet Requests for Comments, RFC 9000, 2021 [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc9000

[6] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet, “Revealing
middlebox interference with tracebox,” in Proceedings of the 2013 Conference on
Internet Measurement, 2013, pp. 1–8.

[7] F. Gont, J. Linkova, T. Chown, and W. Liu, “Observations on the dropping of pack-
ets with IPv6 extension headers in the real world,” Internet Requests for Comments,
Tech. Rep. 7872, 2016 [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc7872

[8] S. Huang, F. Cuadrado, and S. Uhlig, “Middleboxes in the internet: A HTTP per-
spective,” in 2017 Network Traffic Measurement and Analysis Conference (TMA),
2017, pp. 1–9.

[9] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” Internet Requests
for Comments, Tech. Rep. 3234, 2002 [Online]. Available: http://www.rfc-editor.
org/rfc/rfc3234.txt

[10] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP extensions
for multipath operation with multiple addresses,” Internet Requests for Comments,
Tech. Rep. 8684, 2020 [Online]. Available: https://datatracker.ietf.org/doc/html/
rfc8684

101

http://www.rfc-editor.org/rfc/rfc793.txt
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2460
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc7872
https://datatracker.ietf.org/doc/html/rfc7872
http://www.rfc-editor.org/rfc/rfc3234.txt
http://www.rfc-editor.org/rfc/rfc3234.txt
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/rfc8684

[11] F. Rochet, E. Assogba, and O. Bonaventure, “TCPLS: Closely integrating TCP and
TLS,” in Proceedings of the 19th ACM Workshop on Hot Topics in Networks, 2020,
pp. 45–52.

[12] B. Gregg, BPF Performance Tools, 1st ed. Boston, MA, USA: Addison-Wesley Pro-
fessional, 2019.

[13] The Linux Foundation Projects, “L3AF,” accessed Jun. 09, 2022 [Online]. Avail-
able: https://l3af.io

[14] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay,
O. Pereira, and O. Bonaventure, “Pluginizing QUIC,” in Proceedings of the ACM
Special Interest Group on Data Communication, 2019, pp. 59–74.

[15] T. Wirtgen, C. Dénos, Q. De Coninck, M. Jadin, and O. Bonaventure, “The case for
pluginized routing protocols,” in 2019 IEEE 27th International Conference on Net-
work Protocols (ICNP), 2019, pp. 1–12.

[16] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “TRIMMER: Application special-
ization for code debloating,” in Proc. 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018 [Online]. Available: https://dl.acm.org/doi/
abs/10.1145/3238147.3238160

[17] D. K. Hong, Q. A. Chen, and Z. M. Mao, “An initial investigation of protocol cus-
tomization,” in Proceedings of the 2017 workshop on forming an ecosystem around
software transformation, 2017.

[18] M. Sjoholmsierchio, B. Hale, D. Lukaszewski, and G. Xie, “Strengthening SDN se-
curity: Protocol dialecting and downgrade attacks,” in 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft), 2021, pp. 321–329.

[19] T. Taleb, B. Mada, M.-I. Corici, A. Nakao, and H. Flinck, “PERMIT: Network slic-
ing for personalized 5g mobile telecommunications,” IEEE Communications Maga-
zine, vol. 55, no. 5, 2017.

[20] H. Derhamy, J. Eliasson, and J. Delsing, “IoT interoperability — On-Demand and
low latency transparent multiprotocol translator,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1754–1763, April 2017.

[21] Z.-L. Zhang, U. K. Dayalan, E. Ramadan, and T. J. Salo, “Towards a software-
defined, fine-grained qos framework for 5g and beyond networks,” in Proceedings
of the ACM SIGCOMM 2021 Workshop on Network-Application Integration, 2021,
pp. 7–13.

102

https://l3af.io
https://dl.acm.org/doi/abs/10.1145/3238147.3238160
https://dl.acm.org/doi/abs/10.1145/3238147.3238160

[22] Y.-W. E. Sung, X. Sun, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards systematic
design of enterprise networks,” IEEE/ACM Transactions on Networking, vol. 19,
no. 3, pp. 695–708, December 2010.

[23] K. Jones, “Loadable kernel modules,” Login: The Magazine of USENIX and SAGE,
Special Focus Issue: Security, vol. 26, no. 7, November 2001 [Online]. Available:
https://www.usenix.org/system/files/login/articles/1832-jones2.pdf

[24] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos, E. P. C. Júnior, and L. F.
Vieira, “Fast packet processing with eBPF and XDP: Concepts, code, challenges,
and applications,” ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–36, Jan-
uary 2020.

[25] L. Brakmo, “TCP-BPF: Programmatically tuning TCP behavior through BPF,” in
NetDev 2.2, 2017 [Online]. Available: https://legacy.netdevconf.info/2.2/papers/
brakmo-tcpbpf-talk.pdf

[26] T. J. Salo and Z.-L. Zhang, “Semantically aware, mission-oriented (samo) networks:
A framework for application/network integration,” in Workshop on Network Applica-
tion Integration/CoDesign, 2020.

[27] D. Lachos, Q. Xiang, C. Rothenberg, S. Randriamasy, L. M. Contreras, and
B. Ohlman, “Towards deep network & application integration: Possibilities, chal-
lenges, and research directions,” in Workshop on Network Application Integra-
tion/CoDesign, 2020.

[28] U. Naseer and T. A. Benson, “Configanator: A data-driven approach to improving
{CDN} performance.” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 1135–1158.

[29] NSF, “What is GENI,” accessed Jun. 03, 2022 [Online]. Available: http://www.geni.
net/about-geni/what-is-geni/

[30] J. Corbet, “Toward signed BPF programs,” accessed Aug. 04, 2022 [Online]. Avail-
able: https://lwn.net/Articles/853489/

[31] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs, “Ratcheted en-
cryption and key exchange: The security of messaging,” in Annual International
Cryptology Conference, 2017 [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-319-63697-9_21

[32] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,” in
Annual Cryptology Conference, 2010 [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-642-14623-7_34

103

https://www.usenix.org/system/files/login/articles/1832-jones2.pdf
https://legacy.netdevconf.info/2.2/papers/brakmo-tcpbpf-talk.pdf
https://legacy.netdevconf.info/2.2/papers/brakmo-tcpbpf-talk.pdf
http://www.geni.net/about-geni/what-is-geni/
http://www.geni.net/about-geni/what-is-geni/
https://lwn.net/Articles/853489/
https://link.springer.com/chapter/10.1007/978-3-319-63697-9_21
https://link.springer.com/chapter/10.1007/978-3-319-63697-9_21
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_34
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_34

[33] NIST, “Glossary: Challenge-response protocol,” accessed January 30, 2022. Avail-
able: https://csrc.nist.gov/glossary/term/challenge_response_protocol

[34] D. Lukaszewski and G. Xie, “Towards software defined layer 4.5 customization,” in
2022 IEEE 8th International Conference on Network Softwarization (NetSoft), 2022,
pp. 330–338.

[35] HashiCorp, “Vagrant: Development environments made easy,” accessed Jun. 27,
2022 [Online]. Available: https://www.vagrantup.com

[36] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: Towards an open, distributed
SDN OS,” in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, 2014 [Online]. Available: https://dl.acm.org/doi/abs/10.1145/2620728.
2620744

[37] F. Pacheco, E. Exposito, M. Gineste, C. Baudoin, and J. Aguilar, “Towards the de-
ployment of machine learning solutions in network traffic classification: A system-
atic survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1988–
2014, November 2018.

[38] G. Fairhurst, “Update to IANA registration procedures for pool 3 values in the differ-
entiated services field codepoints (DSCP) registry,” Internet Requests for Comments,
Tech. Rep. 8436, 2018 [Online]. Available: https://www.rfc-editor.org/rfc/rfc8436

[39] R. Barik, M. Welzl, A. Elmokashfi, T. Dreibholz, S. Islam, and S. Gjessing, “On
the utility of unregulated IP diffserv code point (DSCP) usage by end systems,”
Performance Evaluation, vol. 135, p. 102036, November 2019. Available: https:
//www.sciencedirect.com/science/article/pii/S0166531619300203

[40] E. Bergen, “Dynamic data exfiltration over common protocols via socket layer pro-
tocol customization,” M.S. thesis, Dept. of Comp. Sci., Naval Postgraduate School,
Monterey, CA, USA, 2022.

[41] K. Pittner, D. Lukaszewski, and G. Xie, “An empirical study of application-aware
traffic compression for shipboard satcom links,” in 2021 IEEE Military Communica-
tions Conference (MILCOM), 2021, pp. 213–218.

[42] J. Damas, M. Graff, and P. Vixie, “Extension mechanisms for DNS (EDNS(0)),”
Internet Requests for Comments, Tech. Rep. 6891, 2013 [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc6891

[43] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network traffic mon-
itoring and analysis (ntma): A survey,” Computer Communications, vol. 170, no. 1,
pp. 19–41, March 2021.

104

https://csrc.nist.gov/glossary/term/challenge_response_protocol
https://www.vagrantup.com
https://dl.acm.org/doi/abs/10.1145/2620728.2620744
https://dl.acm.org/doi/abs/10.1145/2620728.2620744
https://www.rfc-editor.org/rfc/rfc8436
https://www.sciencedirect.com/science/article/pii/S0166531619300203
https://www.sciencedirect.com/science/article/pii/S0166531619300203
https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc6891

[44] X. Wang, “On the feasibility of detecting software supply chain attacks,” in 2021
IEEE Military Communications Conference (MILCOM, 2021 [Online], pp. 458–463.
Available: https://ieeexplore.ieee.org/abstract/document/9652901

[45] L. Totimeh and A. Barthel, “Fleet Cyber Readiness: Cyber Operational Response
Procedures,” accessed Aug. 05, 2022 [Online]. Available: https://www.doncio.navy.
mil/chips/ArticleDetails.aspx?ID=14055

[46] S.-W. Han, H. Kwon, C. Hahn, D. Koo, and J. Hur, “A survey on MITM and its
countermeasures in the TLS handshake protocol,” in 2016 Eighth International Con-
ference on Ubiquitous and Future Networks (ICUFN), 2016, pp. 724–729.

[47] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architec-
ture,” Internet Requests for Comments, Tech. Rep. 3031, 2001 [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3031

[48] J. Postel, “Internet protocol,” Internet Requests for Comments, Tech. Rep. 791, 1981
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc791

[49] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica, “IP options are not an op-
tion,” Technical report, EECS Department, University of California, Berkeley, Tech.
Rep., 2005 [Online]. Available: https://www.academia.edu/12804189/IP_options_
are_not_an_option?from=cover_page

[50] L. Sun, G. Tian, G. Zhu, Y. Liu, H. Shi, and D. Dai, “Multipath IP routing on end
devices: Motivation, design, and performance,” in 2018 IFIP Networking Conference
(IFIP Networking) and Workshops, 2018, pp. 1–9.

[51] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system multicast,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1456–1471,
October 2002.

[52] C. Paasch and S. Barre, “Multipath TCP in the Linux kernel,” accessed Jun. 09,
2022 [Online]. Available: http://www.multipath-tcp.org

[53] J. Touch, “Transport options for UDP,” Internet-Draft draft-touch-tsvwg-udp-
options-18, IETF Secretariat, Tech. Rep. 18, 2022 [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-tsvwg-udp-options/

[54] R. Zullo, T. Jones, and G. Fairhurst, “Overcoming the sorrows of the young UDP
options,” in 2020 Conference on Network Traffic Management and Analysis, 2020
[Online]. Available: https://tma.ifip.org/2020/wp-content/uploads/sites/9/2020/06/
tma2020-camera-paper70.pdf

105

https://ieeexplore.ieee.org/abstract/document/9652901
https://www.doncio.navy.mil/chips/ArticleDetails.aspx?ID=14055
https://www.doncio.navy.mil/chips/ArticleDetails.aspx?ID=14055
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc791
https://www.academia.edu/12804189/IP_options_are_not_an_option?from=cover_page
https://www.academia.edu/12804189/IP_options_are_not_an_option?from=cover_page
http://www.multipath-tcp.org
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-udp-options/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-udp-options/
https://tma.ifip.org/2020/wp-content/uploads/sites/9/2020/06/tma2020-camera-paper70.pdf
https://tma.ifip.org/2020/wp-content/uploads/sites/9/2020/06/tma2020-camera-paper70.pdf

[55] J. Postel, “User datagram protocol,” Internet Requests for Comments, Tech. Rep.
768, 1980 [Online]. Available: http://www.rfc-editor.org/rfc/rfc768.txt

[56] D. Lukaszewski, “Multipath transport for virtual private networks,” M.S. thesis,
Dept. of Comp. Sci., Naval Postgraduate School, Monterey, CA, USA, 2017.

[57] M. Piraux, F. Rochet, and O. Bonaventure, “TCPLS: Modern transport services with
TCP and TLS,” Internet-Draft draft-piraux-tcpls-02, Tech. Rep. 02, 2022 [Online].
Available: https://datatracker.ietf.org/doc/draft-piraux-tcpls/

[58] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F. Kouranov, I. Swett, J. Iyengar, and others, “The QUIC transport protocol: Design
and internet-scale deployment,” in Proceedings of the conference of the ACM special
interest group on data communication, 2017, pp. 183–196.

[59] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, “Multipath
QUIC: A deployable multipath transport protocol,” in 2018 IEEE International Con-
ference on Communications (ICC), 2018, pp. 1–7.

[60] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture for implement-
ing network protocols,” IEEE Transactions on Software Engineering, vol. 17, no. 1,
p. 64, January 1991.

[61] V.-H. Tran and O. Bonaventure, “Beyond socket options: Making the Linux TCP
stack truly extensible,” in 2019 IFIP Networking Conference (IFIP Networking),
2019, pp. 1–9, tex.organization: IEEE.

[62] G. Marsden, “BPF: Using BPF to do packet transformation,” accessed Aug. 04, 2022
[Online]. Available: https://blogs.oracle.com/linux/notes-on-bpf-6

[63] The Linux Foundation Projects, “Data Plane Development Kit,” accessed Jan. 30,
2022 [Online]. Available: https://www.dpdk.org

[64] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ah-
ern, and D. Miller, “The eXpress data path: Fast programmable packet processing in
the operating system kernel,” in Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, 2018, pp. 54–66.

[65] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li, “In-band net-
work telemetry: A survey,” Computer Networks, vol. 186, p. 107763, February 2021.

[66] Open Networking Foundation, “INT dataplane specification,” accessed Aug. 05,
2022 [Online]. Available: https://p4.org/p4-spec/docs/INT_v2_1.pdf

106

http://www.rfc-editor.org/rfc/rfc768.txt
https://datatracker.ietf.org/doc/draft-piraux-tcpls/
https://blogs.oracle.com/linux/notes-on-bpf-6
https://www.dpdk.org
https://p4.org/p4-spec/docs/INT_v2_1.pdf

[67] B. Yi, X. Wang, K. Li, M. Huang et al., “A comprehensive survey of network func-
tion virtualization,” Computer Networks, vol. 133, pp. 212–262, March 2018.

[68] E. Battiston, D. Moro, G. Verticale, and A. Capone, “CHIMA: A framework for net-
work services deployment and performance assurance,” in 2022 IEEE 8th Interna-
tional Conference on Network Softwarization (NetSoft), 2022, pp. 163–170.

[69] S. Ashok, P. B. Godfrey, and R. Mittal, “Leveraging service meshes as a new net-
work layer,” in Proceedings of the 20th ACM Workshop on Hot Topics in Networks,
2021, pp. 229–236.

[70] E.-F. Bonfoh, S. Medjiah, and C. Chassot, “A zero-touch solution for transport layer
adaptation to applications and networks,” in 2021 IFIP Networking Conference
(IFIP Networking), 2021, pp. 1–9.

[71] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined framework
for developing, deploying, and managing network functions,” in 2016 ACM SIG-
COMM Conference, 2016, pp. 511–524.

107

THIS PAGE INTENTIONALLY LEFT BLANK

108

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

109

	22Sep_Lukaszewski_Daniel_First8
	22Sep_Lukaszewski_Daniel
	1 Introduction
	1.1 Thesis

	2 Design of the Layer 4.5 Customization Architecture
	2.1 Network-Wide Orchestration
	2.2 Automation of Customization of Devices
	2.3 Strengthening of Security
	2.4 Support for Middlebox Traversal
	2.5 Limitations
	2.6 Summary

	3 Prototyping and Evaluation
	3.1 Distribution Overhead
	3.2 Processing Overhead
	3.3 Embedding Security Requirements
	3.4 Assisting Middlebox Traversal
	3.5 Insights
	3.6 Summary

	4 Enabling Customization of Encrypted Flows
	4.1 Motivation
	4.2 Design of Module Message Buffering
	4.3 Evaluation
	4.4 Insights
	4.5 Summary

	5 Rotating Customizations in Wide Area Networks
	5.1 Motivation
	5.2 Design of Module Hot-Swapping
	5.3 Evaluation
	5.4 Insights
	5.5 Summary

	6 Summary of Contributions
	6.1 Reproducibility
	6.2 Future Work

	Appendix: Background and Related Works
	A.1 Network Protocol Customizations
	A.2 Related Work
	A.3 Our Previous Work

	List of References
	List of References
	Initial Distribution List

