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ABSTRACT 

 When making torpedo loadout decisions, planners must consider the capacities 

and capabilities of different ASW units, a limited budget, and diverse adversary 

submarine fleets. Currently, loadout decisions for the Mk-54 lightweight torpedo are 

made manually, and without a systematic approach to deal with threat uncertainty. The 

thesis seeks to inform these decisions by using stochastic optimization to determine the 

type and quantity of torpedoes to loadout to U.S. surface ships, fixed-wing aircraft, and 

helicopters in order to face an uncertain submarine threat with a desired probability of 

kill. We develop two formulations of the Torpedo Allocation Stochastic Optimization 

Model (TASOM): TASOM-1, which minimizes the number of missed submarines; and 

TASOM-2, which minimizes the deviation below the probability of kill threshold. To 

show the value of the stochastic programming approach over the typical deterministic 

planning, we present a notional case designed to represent an operation where ASW units 

are patrolling an area for adversary submarines. We randomly generate 100 threat 

scenarios where the number and class of submarines deployed to the area vary. The 

TASOM-2 loadout notably outperforms the deterministic average loadout. Our models 

combined with an accessible user interface provide planners with a decision aid tool to 

conduct sensitivity analysis to guide torpedo allocation and budget decisions under 

uncertainty. 
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EXECUTIVE SUMMARY 

In anti-submarine warfare (ASW), planners must consider the capacities and 

capabilities of different units and a limited inventory or budget when making torpedo 

loadout decisions. They must also plan for a very diverse submarine threat, a task that is 

further complicated as adversaries continue to grow their fleets and expand their global 

operations. These torpedo loadout decisions typically must be made in advance of the 

detection of an adversary submarine or even an ASW unit deployment.  

Currently, loadout decisions for the Mk-54 lightweight torpedo are made manually, 

and without a systematic approach to deal with threat uncertainty. The goal of this thesis 

is to aid in torpedo allocation decisions using formal mathematical optimization. 

Specifically, this thesis provides a decision aid tool that recommends a torpedo loadout 

plan (i.e., the type and quantity of torpedoes that each surface ship, with embarked 

helicopters, or P-8 squadron should carry), in order to face an uncertain submarine threat 

with a commander’s desired probability of kill. At the core of this tool, we develop mixed-

integer, stochastic optimization models that seek to minimize expected failure to meet a 

desired probability of kill threshold, subject to planner’s budgetary and inventory 

constraints, among others.  

The Mk-54 torpedo type is employed by the MH-60R Seahawk helicopter, P-8 

maritime patrol aircraft, and surface ships when conducting ASW operations. The “mod 

0” and “mod 1” variants of the Mk-54 are currently in use; however, the delivery of a “mod 

2” variant is expected in fiscal year 2026. Of particular interest is the procurement and 

allocation of mod 2 torpedoes as it is anticipated to have significant improved performance 

compared to previous variants, but at a substantially higher cost.  

We develop two formulations of our model, which we call the Torpedo Allocation 

Stochastic Optimization Model (TASOM). The key difference between them relates to the 

assessment of engagements that do not reach a desired probability of kill threshold. The 

first model, TASOM-1, minimizes the expected number of missed submarines: either an 

ASW unit fully meets the probability of kill threshold in its engagement, or it will not 
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engage at all. The second model, TASOM-2, minimizes the expected shortfall from  

(i.e., deviation below) the probability of kill threshold: partial credit is given to 

engagements that do not fully achieve the desired threshold. Additionally, we consider a 

limited budget for purchasing torpedoes, an inventory of torpedoes already in stock, a 

limited magazine capacity for P-8 squadrons, embarked helicopter detachments, and ships 

and a limited salvo size for aircraft units.  

While deterministic models assume perfect information of a certain threat scenario, 

or exactly how many adversary submarines will appear and which ASW units can engage 

them, our stochastic models assume probabilistic information of several possible threat 

scenarios. The solution that TASOM recommends is a torpedo loadout plan that is not 

subordinated to any threat scenario; instead, it reaches a compromise among all scenarios 

that are considered in the analysis in order to minimize the total cost of (a) torpedo 

purchases and (b) either expected number of missed submarines (for TASOM-1) or 

expected shortfall from the desired probability of kill threshold (for TASOM-2).  

The assessed cost for not meeting a probability of kill threshold for a submarine is a 

planner’s input.  

To show the value of the stochastic programming approach over a typical 

deterministic planning, we present a notional case designed to represent an ASW operation 

where four destroyers with embarked MH-60R detachments and two P-8 squadrons are 

patrolling an area for adversary submarines. For the operation, it is anticipated five to ten 

submarines deploy from the adversary fleet comprised of twenty submarines of different 

classes. We set the commander’s desired probability of kill threshold to 90% for all 

submarine threats. From this case, 100 threat scenarios are randomly generated where a 

subset of the submarine fleet deploys and appears to the patrolling ASW units. Here, we 

define a scenario as a configuration of deployed submarines, available ASW units, and 

subsets of ASW units that can engage a certain submarine. In a scenario, an ASW unit may 

not be able to engage every deployed submarine or may be unavailable (i.e., preemptively 

killed) to engage any submarines.  

We first compare the expected “shortage” of TASOM torpedo loadout plan to the 

expected shortage of the “average loadout.” For the average loadout, we use the average 
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number of torpedoes allocated to each ASW unit in the 100 scenarios when each scenario 

is deterministically solved for optimality. In TASOM-1, the expected shortage is the 

expected number of submarines where the probability of kill threshold is not met at all, or 

more simply, the number of submarines missed, in the 100 scenarios. In TASOM-2, the 

expected shortage is the expected scenario average shortfall from the probability of kill in 

the 100 scenarios. A second comparison is made of TASOM loadout plan to another 

deterministic loadout that is optimal to an “all-targets” scenario, where each of the twenty 

submarines from the adversary fleet is targetable by each of the ASW units.  

TASOM-1 loadout performs marginally better than the average loadout. The 

average loadout results in an average of 2.13 submarine misses; the TASOM-1 loadout, 

with a budget limited to the cost of the average loadout, results in an average of  

1.82 submarine misses. TASOM-2 value over planning with the deterministic approach is 

more apparent. The average loadout achieves an expected average probability of kill of 

78%; the loadout for TASOM-2, with a budget limited to the cost of the average loadout, 

achieves 87%. When we compared the stochastic loadouts to deterministic loadouts plan 

optimal for the all-targets scenario, we see similar results for TASOM-1 and TASOM-2. 

Our models are combined with an accessible user interface, which facilitates a user 

with no programming experience to create their own case, quickly generate scenarios, and 

access pertinent results. The TASOM decision aid tool developed in this research (a) uses 

formal mathematical optimization, where the planner has control over all input parameters; 

(b) explicitly deals with uncertain threats without subordinating decisions to deterministic 

assumptions; and (c) facilitates exploration of alternative inputs via sensitivity analysis. 

Together, this research provides planners with a decision aid tool that can be used to guide 

torpedo allocation and budget decisions under uncertainty.  
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I. INTRODUCTION 

Anti-submarine warfare (ASW) is defined as “operations conducted with the 

intention of denying the enemy the effective use of submarines” (Joint Chiefs of Staff 2021, 

p. IV-10). These operations include locating, tracking, and neutralizing enemy submarines. 

This research focuses on the last task. As adversaries continue to modernize and grow their 

submarine fleets, we seek to optimally equipping U.S. Navy’s ASW platforms with 

weapons that can effectively target those submarines. 

Specifically, our primary goal is to develop mathematical models that suggest  

an optimal torpedo allocation plan for ASW platforms. “Optimal” here refers to highest 

expected campaign success under multiple threat scenarios. These models can guide 

decision makers in planning for an uncertain threat when procuring and allocating  

ASW weapons. 

A. BACKGROUND 

1. Anti-submarine Warfare Platforms 

ASW is primarily executed by maritime patrol aircraft, surface combatants and 

their embarked helicopters, and submarines. Communication restrictions and water space 

management requirements typically precludes submarines from operating collaboratively 

with other platform types. We assume that friendly submarines will conduct ASW 

operations in areas that do not overlap with surface and air assets and will not be discussed 

further in this thesis. 

The P-8 Poseidon is a multi-mission maritime patrol aircraft. When conducting 

ASW, it can equip lightweight torpedoes to engage adversary submarines. Compared to 

surface platforms, the P-8 can cover a greater area when searching for submarines and can 

engage without the threat of enemy torpedoes. A P-8 squadron consists of six or seven 

aircraft and a detachment consists of four or five aircraft. Squadrons and detachments can 

deploy and operate out of U.S., allied, and partner air bases worldwide.  

MH-60R Seahawk helicopters share the same advantages over surface platforms as 

the P-8, but they can carry fewer torpedoes and have a much shorter operational range. 
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MH-60R detachments can be embarked on Flight IIA Arleigh-Burke guided missile 

destroyers, Ticonderoga guided missile cruisers, both Independence and Freedom class 

littoral combat ships, and aircraft carriers. Destroyers, cruisers, and littoral combat ships 

have space to embark a maximum of two MH-60Rs.  

For surface platforms, engaging an adversary submarine with an embarked MH-

60R is preferred. Both cruisers and destroyers can fire lightweight torpedoes from their 

surface vessel torpedo tubes (SVTT) and vertical launch anti-submarine rocket (ASROC) 

systems. A torpedo launched from an SVTT has a very limited range and normally is only 

used as a reactionary weapon. A torpedo used in an ASROC is specially modified for 

employment in one of the Vertical Launch System (VLS) modules. An ASROC has an 

increased range and can be used for an offense engagement of a submarine.  

2. Adversary Submarine Forces 

The U.S. Navy must be prepared to face a very diverse threat. According to Janes 

(Janes 2021a), there are 15 different submarine classes in the People’s Liberation Army 

Navy (PLAN) and 27 in the Russian Navy. The PLAN submarine fleet is mostly comprised 

of diesel-electric submarine with a small percentage of nuclear-powered submarines 

(Congressional Research Service [CRS] 2022). While The People’s Republic of China 

represents the pacing threat for the U.S., Russia remains a concern as its navy expands its 

operations globally and continues to modernize. The development of its submarine 

technology has been a particular focus of the Russian Navy (Department of Defense 2018). 

In contrast to the PLAN, the Russian Navy has prioritized the construction of new nuclear 

attack submarines as well as the modernization of its inherited late Cold War era nuclear 

submarine fleet in its shipbuilding program (CRS 2020).  

The divergence of the composition of the Russian and Chinese submarine fleets 

poses a complicated challenge for defense planning. There are significant differences in 

the construction and operations of diesel and nuclear submarines that affect detection and 

engagement. Conventional, or diesel-powered submarines, are typically smaller in size and 

more maneuverable in the littorals. Nuclear-powered submarines can stay submerged for 

much longer periods of time, but are larger and less maneuverable, making them better 

suited for longer range, blue water operations.  
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The effectiveness of ASW weapons depends greatly on submarine hull construction 

and size as well as the operating profile, to include speed and depth. This is applicable to 

the torpedo’s propulsion system, control and guidance system, and warhead. For example, 

engaging submarines at greater depths requires increased propulsion power (Payne 2010). 

3. Mk-54 Lightweight Torpedo 

The Mk-54 lightweight torpedo is fired from surface ships from the SVTT and the 

ASROC systems. It can also be equipped by the MH-60R and the P-8 when conducting 

ASW operations.  

The Mk-54 has been in service since 2004 and has replaced the Mk-46 has the 

primary lightweight torpedo for the U.S. Navy. Its development was motivated by the 

assessment that the primary threat was shifting from fast Russian submarines operating in 

a blue water environment to new, quiet, diesel-electric submarines operating in a littoral 

environment (Janes 2021b). Upgrades in the Mk-54 “mod 0” variant, and the “mod 1” 

variant, have improved shallow-water performance and detection of slower moving targets 

(Janes 2021b). The Mk-54 “mod 2” variant is planned for delivery in fiscal year 2026 and 

will feature a new warhead and propulsion system (Director, Operational Test and 

Evaluation 2021). In this thesis, we consider the allocation of a torpedo inventory 

comprised of mod 0, mod 1, and mod 2 variants.  

B. MOTIVATION 

Currently, torpedo loadout decisions are made manually. The goal of this thesis is 

to aid in torpedo allocation decisions using formal mathematical optimization. Specifically, 

stochastic optimization will allow decision makers to plan for an uncertain threat. Planning 

for uncertainty in threat composition is realistic as typically loadout decision must be made 

in advance of detection of an adversary submarine or even deployment of an ASW unit. Of 

particular interest is the procurement and allocation of mod 2 torpedoes as it is anticipated 

to have significant improved performance, but at a substantially higher cost.  
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C. THESIS ORGANIZATION 

Chapter II reviews previous research on weapon allocation and weapon-target 

assignment (WTA) problems. Chapter III provides the formulation of two stochastic 

optimization models, which seek related (yet slightly different) goals. Chapter IV 

demonstrates the model in the context of a small scenario using notional data and provides 

analysis of model results. Chapter V offers recommendations for future development.  
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II. LITERATURE REVIEW 

The models we present in Chapter III are two-stage stochastic models where we 

decide how to allocate torpedoes to ASW units in the first stage and assign torpedoes to 

submarines in the second stage. We therefore review two types of problems: allocation of 

weapons to units and assignment of weapons to targets. Since weapon allocation decisions 

are often made without complete knowledge of the threat, we focus on reviewing previous 

research that employs stochastic optimization and simulation, both of which seek to address 

this uncertainty.  

A. WEAPON ALLOCATION PROBLEMS 

Page (1991) develops a mixed integer programming model to inform the Army on 

the optimal mix of artillery systems and munitions to employ in a notional land combat 

scenario, as well as what munitions to use on what target types. The model minimizes cost 

of weapon systems and munitions expended while meeting a commander’s kill criteria 

consisting of a required percentage of target types killed in a scenario. 

Jarek (1994) uses simulation to inform the number of shipboard air defense missiles 

needed for air warfare in a theater. The engagements between friendly fighters and inbound 

threats are simulated to determine the expected number of threats that are neutralized 

before reaching a VLS ship’s missile engagement zone. The number of missiles needed to 

expend on the remaining targets is calculated, providing a low end for theater missile 

inventory. A second case without the added defense of friendly fighters provides an upper 

bound for number of missiles needed.  

Although not a WTA problem, the sensor allocation model Tutton (2003) develops 

is included in this review as it uses stochastic optimization in a related problem. In the 

model, the assignment of search packages to targets is determined while considering an 

uncertain enemy order of battle (i.e., the type, quantity, and location of targets). Search 

packages consist of at least one platform with at least one sensor. These packages are 

configured from an inventory of different sensors and different platforms, and their overall 

search performance is precalculated. The model assumes probabilistic information for four 

defined enemy orders of battle and suggests an allocation plan that maximizes the weighted 
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expected number of targets detected, along with an overall value representing several 

sensor characteristics.  

Avital (2004) develops a two-period stochastic supply chain model to determine 

how many antiship cruise missiles should be procured and how to allocate them given an 

uncertain demand. Each scenario is defined as the number and type of missions, or targets, 

each of which has a discrete missile requirement, or demand, to achieve mission success. 

A scenario is met successfully when there are enough missiles to cover all targets. An 

optimal plan minimizes the procurement, distribution, and storage costs while meeting a 

user-specified probability threshold of achieving a successful scenario. 

Cai (2018) uses an agent-based, time-stepped based simulation to find an effective 

mix of precision and area artillery munitions for offensive operations in an urban 

environment. Targets in the simulation have a specified movement behavior where they 

can engage friendly forces or seek shelter. The proportion of each type of the three 

munitions in the artillery battery was one of the primary factors of interest in the 

experiment. Munition mixes have an effect on the experimental measures of effectiveness, 

which include collateral damage, time for mission success, and fratricide rates. Two 

combat scenarios of different terrain sizes were investigated, which largely affect the most 

precise munition. The results of the simulation provide very general recommendations of 

what percentage of certain munition types should be carried.  

Brown and Kline (2021) consider mission coverage instead of target engagement 

in order to determine an optimal weapon loadout for VLS ships. Different types of missiles, 

each employed in different missions (strike, air defense, or anti-submarine warfare) can be 

accommodated in a VLS cell. A war plan consists of a set of missions, where each mission 

has a minimum number of ships and missiles onboard each ship to cover it. Each mission 

also has an associated commander priority. An optimal loadout plan for all VLS ships 

minimizes the shortfalls in the war plan mission coverage. 

Adamah et al. (2021) develop a nonlinear optimization model to determine the type 

and quantity of Mk-48 heavyweight torpedoes to allocate to submarines conducting ASW 

operations. The model considers two different variants of the Mk-48, four different classes 

of friendly submarines, and eleven different classes of adversary submarines. Constraints 
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account for torpedo capacity and inventory. Another requirement is that each submarine 

must carry enough torpedoes to achieve a minimum probability of kill for the least 

vulnerable threat present (i.e., proposed loadouts do not account for threat density). 

From the abovementioned literature, and in relation with this thesis, Page (1991) 

and Avital (2004) both use a commander’s specified threshold for desired success; 

however, they focus on minimizing weapon cost in their models and look at targets as an 

aggregate demand. The simulations in Jarek (1994) and Cai (2018) provide general 

recommendations for total missiles required or munition composition, but not a closed-

form solution that can be taken as an actionable loadout plan for units. Tutton’s (2003) 

model allocates sensors to units, which differs from torpedo allocation in sensors not being 

expended (after use) on targets. Brown and Kline (2021) consider mission coverage instead 

of targets, which is not an appropriate approach for our problem as torpedoes are employed 

solely for engaging adversary submarines (or countering adversary submarine torpedoes). 

Only Adamah et al. (2021) involve torpedoes as the weapon type; however, their model is 

nonlinear and also does not recommend a torpedo loadout plan that accounts for multiple 

targets, just the least vulnerable target. 

B. WEAPON-TARGET ASSIGNMENT PROBLEMS 

The WTA problem is a major topic in research regarding weapon employment, 

particularly that of naval missiles, and was first introduced in Manne (1958). The WTA 

problem can be viewed from either an offensive or defensive perspective as it can be 

formulated to optimize the assignment of weapons to targets to either maximize damage 

on target or minimize a cost, which can include weapons expended and battle damage 

incurred.  

Uryasev and Pardalos (2004) use the WTA problem to demonstrate a method for 

military planners to manage for risks that can arise from uncertainty. The authors first 

present a deterministic WTA model which specifies a constraint where a minimum 

required probability of kill for each target must be met while minimizing mission cost. 

Uncertainty is then introduced in a stochastic model by assuming the probabilities of kill 

are dependent on the scenario. Comparing the deterministic solution using the expected 

probability of kill to the stochastic solution revealed the lack of robustness in the 
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deterministic weapon assignment decisions, which performed poorly in over half of the 

scenarios.  

Simulation has also been used to inform weapon target pairing decisions. Buss and 

Ahner (2006) develop the Dynamic Allocation of Fires and Sensors (DAFS) combat 

simulation to evaluate future combat systems for the Army (Havens 2002). DAFS is a 

discrete-event simulation that represents entity movement, detection, and weapon effects 

events. User inputs define weapon ranges, munitions carried by a weapon, and probabilities 

of kill for munition to target. An optimization process within DAFS is periodically 

executed to revise weapon to target assignments in order to maximize the current 

probability of success. Further work has taken steps to adapt DAFS for a naval warfare 

application by accounting for radar and electronic sensors and the unique behavior of naval 

ordnance (Hattaway 2008). DAFS reports all weapon and target interactions during the 

simulation, which can be used to evaluate the effectiveness of weapons within a network 

of weapons.  

More recent work focuses on efforts to aid weapon target decisions in real-time. 

Laird (2016) considers a mix of weapons to assign against swarming threats from air, 

surface, and sub-surface. In order to improve computational times and make the model 

usable for actual combat operations, a preprocessing algorithm is implemented to create 

pairings that meet weapon-target feasibility requirements and assigns a reward value to 

each feasible pairing based on target value, time needed to engage, and probability of kill. 

Weapons are assigned to targets so as to maximize total reward in a scenario. 

Templin (2021) considers a derivative of the WTA problem with the simplifying 

assumption that there is only one target to engage. The focus of the research is to inform 

firing policy, specifically the amount and type of missiles to use on a threat. A heuristic 

model generates feasible sequences of missiles that meet a minimum probability of kill 

threshold and evaluates their cost and effectiveness.  

Except for DAFS, the models reviewed in this section only consider one shooter 

unit. While we desire to plan for an uncertain threat, where different types and quantities 

of targets are present in a scenario, Uryasey and Paradalos (2004) plan for one scenario but 

an uncertain probability of kill of the weapon. Like the other simulation work reviewed, 
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DAFS (Havens 2002; Buss and Ahner 2006; Hattaway 2008) does not supply a closed-

form solution of how weapons should be assigned to targets or allocated to units. Both 

Laird (2016) and Templin (2021) plan for a given threat and do not account for any 

uncertainty in the threat scenario. 
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III. OPTIMIZATION MODEL 

This chapter introduces two formulation variants of our model, which we call the 

Torpedo Allocation Stochastic Optimization Model (TASOM). The key difference 

between them relates to the assessment of engagements that do not reach a desired 

probability of kill threshold. The first model, TASOM-1, minimizes the expected number 

of missed submarines: either an ASW unit fully meets the probability of kill threshold in 

its engagement, or it will not engage at all. The second model, TASOM-2, minimizes the 

expected shortfall from (i.e., deviation below) the probability of kill threshold: 

engagements may still occur even if they not fully achieve the desired threshold. Both 

models also consider the cost of the additional weapons acquired (not in inventory) for the 

recommended loadouts.  

In what follows, we will use the following terminology: 

• Red target—An individual submarine of a particular class that could be 

deployed. 

• Blue shooter—An individual P-8 squadron or detachment, an MH-60R 

detachment, or a surface ship with VLS capability that is available for 

ASW operations.  

• Scenario—A configuration of deployed red targets, surviving (not killed) 

blue shooters, and subsets of blue shooters that can engage a certain red 

target.  

A. ASSUMPTIONS 

A blue shooter is an individual P-8 squadron or detachment, an MH-60R 

detachment, or surface ship with VLS capability that is available for ASW operations. 

Engagements of multiple red targets from an individual squadron or detachment can be 

interpreted as separate flights from the same squadron or detachment.  
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Our model only considers offense engagements. For a ship, this means we only 

seek to determine the allocation of torpedoes to be used as ASROCs from the VLS and not 

those that may be employed from the SVTT as reactive shots.  

To ensure engagements are feasible, particularly for the aircraft, it is necessary to 

differentiate between capacity and maximum number of torpedoes a blue shooter can 

expend on a target (also known as maximum “salvo” size). Capacity for ships would be 

VLS cells available for ASROCs, a ship magazine for embarked helicopters, and a 

shoreside magazine for P-8 squadron. The maximum salvo size would be what the aircraft 

would physically carry.  

Another assumption is that time is not a component in TASOM. The decisions of 

which blue shooters engage which red targets and with what torpedoes are made at once:  

if a blue shooter can engage multiple red targets during a deployment, weapon assignment 

decisions are made as if engagements were simultaneous.  

Similarly, shooter to target decisions are made when multiple blue shooters can 

engage the same red. Both TASOM-1 and TASOM-2 have the capability for this type of 

“cooperative engagement.”  However, in practice, this is a rare event and our computational 

experience is limited to a single shooter per target. 

Lastly, the scenario information defines whether a blue shooter can engage a target. 

Thus, we assume no risk of losing track during an engagement, regardless of the salvo size. 

B. TASOM-1 

This model focuses on minimizing the cost of purchasing new torpedoes and the 

expected “cost” of red targets for which the desired probability of kill is not achieved (a 

planner’s input). Specifically, a shooter engages a red target to achieve the desired 

probability of kill threshold, or else they will not engage at all. The assessed cost for not 

meeting a target probability of kill threshold is assumed to be a planner’s input. In our test 

case, we set the cost of completely missing a target to $100M. 
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1. Indices and Sets [Size] 

t T∈    torpedo variants [∼3]; 

b B∈    individual blue shooters [∼10]; 

bp P∈   platform type of b shooter [~3]; 

r R∈    individual red targets [~20]; 

rs S∈    submarine type of r target [~3]; 

ω∈Ω   scenarios defining red force composition [~50]. 

2. Scenario-Dependent Sets 

,DR Rω ⊂   subset of individual red targets that are deployed, under scenario ω; 

,EB Bω ⊂  subset of individual blue shooters that exist, i.e., not killed, under 

scenario ω; 

,E
rB Bω ω⊂  subset of individual existing blue shooters that can engage target 

,Dr R ω∈  under scenario ω. 

3. Parameters [Units] 

cost    nominal cost of loading a torpedo from inventory [$]; 

'tcost    cost of purchasing and loading torpedo variant t [$]; 

budget   budget for purchasing torpedoes [$]; 

inv    inventory of torpedoes variant t [torpedoes]; 

rthres    probability of kill threshold for target r [unitless]; 

rε  cost for not meeting probability of kill threshold for target r [$]; in 

our test cases we set it to $100M for all targets;  

bcap    number of torpedoes shooter b can carry [torpedoes]; 
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rmaxb  maximum number of blue shooters that can shoot at target r 

[shooters]; 

bmaxt  maximum number of torpedoes shooter b can expend on a target 

[torpedoes]; 

, ,b rt p spkill  probability of killing submarine type sr by platform type pb with 

torpedo variant t [unitless].  

4. Scenario-Dependent Parameters [Units] 

probω
  probability of scenario ω occurring [unitless]. 

5. Derived Sets and Parameters [Units] 

, ,T DR Rω ω⊂  subset of individual red targets that are targetable, i.e., can be 

engaged by an existing blue shooter: , ,{ | }T D
rR r R b Bω ω ω= ∈ ∃ ∈ ; 

, ,DR Rω ω∅ ⊂   subset of individual red targets that are not targetable: 

   , , ,\D TR R Rω ω ω∅ = ; 

rmiss  value of ln(1 )rthres− −  (where ln refers to natural logarithm) for 

target r [unitless]; 

, ,' t b rpkill ω  probability of target r of submarine type sr being  killed by shooter b 

of platform type pb with torpedo variant t [unitless]:  

,
, , , ,' for , if  bD

t b r t p c p c rpkill pkill b B r R Bω ω ω= ∈ ∈ ∈ . 

6. Decision Variables [Units] 

,t bX  number of torpedoes of variant t from inventory to be loaded onto 

shooter b [torpedoes]; 

,'t bX  number of torpedoes of variant t purchased to be loaded onto shooter 

b [torpedoes]; 
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, ,t b rYω  number of torpedoes of variant t expended by shooter b on target r 

under scenario ω [torpedoes]; 

,b rBω  equals 1 if shooter b engages target r under scenario ω, and 0 
otherwise [unitless];  

rDω  equals 1 if probability of kill threshold for target r is not met under 

scenario ω, and 0 otherwise [unitless]. 

7. Formulation 

,

,

,, ', ,min ' '( )
T

rt bX X D t b r R

r
r R

t r rt b

r

cost X prob D

prob

cost X thres

thres
ω

ω

ω
ω

ω

ω
ω

ε

ε
∅

∈

∈

+

+

+∑∑ ∑ ∑

∑ ∑
 (1)  

,s.t. ' 't t b
t b

cost X budget≤∑∑  (2) 

 ,t b t
b

X inv t T≤ ∀ ∈∑  (3) 

 , ,'t b t b b
t

X X cap b B+ ≤ ∀ ∈∑  (4) 

 
,

'
, , , ,

|

, ,
T

r

t b r t b t b
r R b B

Y X X t T b B
ω ω

ω ω
∈ ∈

≤ + ∀ ∈ ∈ ∈Ω∑  (5) 

 ,
, ,

r

T
b r r

b B

B maxb r R
ω

ω ω ω
∈

≤ ∀ ∈ ∈Ω∑  (6) 

 ,
, , , , if ,T

t b r b b r r
t

Y maxt B b r R b Bω ω ω ω ω≤ ∀ ∈ ∈ ∀ ∈Ω∑  (7) 

 ,
, , , ,ln(1 ' ) ln(1 ) ,

r

T
t b r t b r r r r

t b B

pkill Y thres miss D r R
ω

ω ω ω ω
∈

− ≤ − + ∀ ∈ ∈Ω∑ ∑  (8) 

 ,
, , 0 and integer , , ,T

t b rY t T b B r Rω ω ω≥ ∀ ∈ ∈ ∈ ∈Ω  (9) 

 , ,, ' 0 and integer ,t b t bX X t T b B≥ ∀ ∈ ∈  (10) 

 ,{0,1}   r R ,T
rDω ω ω∈ ∀ ∈ ∈Ω  (11) 

 , {0,1}   r R , ,T
b rB b Bω ω∈ ∀ ∈ ∈ ∈Ω  (12) 
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8. Discussion 

The objective function (1) minimizes the cost of torpedoes allocated, from 

inventory or purchased, and the expected cost of not meeting the probability of kill 

threshold, including red submarines that are targetable and not targetable. The first term 

(cost of loading torpedoes already in inventory) is usually negligible compared to the cost 

of loading torpedoes that need to be purchased. Since a shooter must fully meet the 

probability of kill threshold in an engagement, we apply the cost of not meeting a threshold 

to the desired threshold itself. This is done for comparison purposes with TASOM-2. We 

also note that the last term in the objective function is a constant. It penalizes individual 

red targets guaranteed to survive (due to the lack of blue shooters capable of targeting 

them). We keep it in order to measure total damage (not just from the targetable red 

submarines).  

Constraint (2) ensures the total cost of torpedoes purchased does not exceed the 

budget. Constraints (3)  ensure that all torpedoes that are allocated, when not purchased, 

are in inventory. Constraints (4) limit the total number of torpedoes carried by each blue 

shooter to its capacity. Constraints (5) limit the total number of torpedoes expended in 

engagements by a blue shooter for whichever scenario occurs to the number of torpedoes 

allocated to that shooter. Constraints (6) limit cooperative engagements: a limited number 

of blue shooters is allowed to engage each red target in any given scenario. Constraints (7) 

ensure each shooter expends torpedoes only on targets that it is engaging and further limits 

the number of torpedoes it can expend on the target.  

Constraints (8) ensures the mix of torpedoes expended on a target achieves a 

specified minimum probability of kill for any given scenario, or deems the target 

engagement under that scenario as fully unsuccessful. Note: original constraints to enforce 

meeting all thresholds are: 

, , ,
, ,(1 ' ) 1 ,t b r

r

Y T
t b r r

t b B

pkill thres r R
ω

ω

ω ω
∈

− ≤ − ∀ ∈ ∈Ω∏∏ . 
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Constraints (8) are derived after taking natural logarithms on both sides, for an equivalent 

expression. We then add r rmiss Dω  to the right-hand side in order to signal when an original 

constraint was not met.  

Lastly, Constraints (9) to (12) include variable domains. 

C. TASOM-2 

This model focuses on minimizing the cost of purchasing new torpedoes and the 

cost due to expected total deviation from the desired probability of kill threshold. Thus, as 

opposed to TASOM-1, TASOM-2 only penalizes the unmet fraction of the threshold. 

Unfortunately, the linearization that led to Constraints (8) cannot be used to measure this 

deviation. Instead, engagements are pre-generated as candidate “packages,” where each 

package consists of a torpedo mix. Thus, we may also pre-calculate the probability that a 

candidate package kills a red target, and we may penalize the shortfall as desired (e.g., 

linearly, quadratically, logarithmically). In our computational experience we use a linear 

penalty, where two shortfalls of, say, 0.1 probability of kill each, are equivalent to one 

shortfall of 0.2 and another of 0.0. (A quadratic penalty would be smaller in the former, 

and a logarithmic one would be smaller in the latter.) 

Albeit not a model limitation, for the computational experience we will not pre-

generate “cooperative engagements” on the same target from different blue shooters. 

Limiting the candidate engagements to torpedo mixes from a single blue shooter reduces 

the computational complexity which, in turn, helps us to solve this model faster. 

For brevity, we only show additional sets and parameters used in TASOM-2 with 

respect to TASOM-1. However, we still list all decision variables. 

1. Derived Sets and Parameters [Units] 

c C∈  all potential combinations of torpedo variants [combinations]; 

,c tn  number of torpedoes of variant t in combination c [torpedoes]; 
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bC C⊂  subset of combinations that can be carried by shooter b:  

,{ | }b c t b
t

C c C n maxt= ∈ ≤∑ ; 

 

 

, ,' c b rpkill ω  probability of target r of submarine type sr by shooter b of platform 

type pb with torpedo combination c [unitless]: 

, ,
, , , ,' 1 (1 ) , if  and c t

b r

n E
c b r t p s r b

t

pkill pkill b B B c Cω ω ω= − − ∈ ∩ ∈∏ . 

2. Decision Variables [Units] 

,t bX  number of torpedoes of variant t purchased to be loaded onto shooter 

b [torpedoes]; 

,'t bX  number of torpedoes of variant t purchased to be loaded onto shooter 

b [torpedoes]; 

, ,c b rYω  equals 1 if shooter b engages target r with torpedo combination c 

under scenario ω, and 0 otherwise [unitless]; 

r
ωδ  shortfall of probability of kill threshold for target r under scenario ω 

[unitless]. 

3. Formulation 

, ,
, ,, ',

min ( ' )
T

t b t t b r rX X t b r R r R
r rcost X cost X prob prob thres

ω ω

ω
ω ωδ

ω ω

ε δ ε
∅∈ ∈

++ +∑∑ ∑ ∑ ∑ ∑  (13) 

 ,s.t. ' 't t b
t b

cost X budget≤∑∑  (14) 

 ,t b t
b

X inv t T≤ ∀ ∈∑  (15) 

 , ,'t b t b b
t

X X cap b B+ ≤ ∀ ∈∑  (16) 
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,

, , , , ,' , ,
T

b

c t c b r t b t b
c Cr R

n Y X X t T b B
ω

ω ω
∈∈

≤ + ∀ ∈ ∈ ∈Ω∑ ∑  (17) 

 ,
, , , ,' ,

br

T T
c b r c b r r r

c Cb B

pkill Y thres r R R
ω

ω ω ω ωδ ω
∈∈

≥ − ∀ ∈ ∈ ∈Ω∑ ∑  (18) 

 ,
, , 1 ,

br

T
c b r

c Cb B

Y r R
ω

ω ω ω
∈∈

≤ ∀ ∈ ∈Ω∑ ∑  (19) 

 ,
, , {0,1} , , ,T

c b rY c C b B r Rω ω ω∈ ∀ ∈ ∈ ∈ ∈Ω  (20) 

 , ,, ' 0 and integer ,t b t bX X t T b B≥ ∀ ∈ ∈  (21) 

 ,0   r R ,T
r
ω ωδ ω≥ ∀ ∈ ∈Ω  (22) 

4. Discussion 

The objective function (13) minimizes the cost of allocated torpedoes, from 

inventory or purchased, and the expected cost of not meeting the probability of kill 

threshold, including red submarines that are targetable and not targetable. The latter 

expected cost is based on the deviation between the achieved probability of kill and the 

desired threshold.  

Constraint (14) ensures the total cost of torpedoes purchased does not exceed the 

budget. Constraints (15) ensure that all torpedoes that are allocated, when not purchased, 

are in inventory. Constraints (16) limit the total number of torpedoes carried by a b shooter 

to its capacity. Constraints (17) limit the number of torpedoes within the torpedo 

combinations used in engagements by a blue shooter for whichever scenario occurs to the 

number of torpedoes allocated to that shooter. Constraints (18) calculates the deviation 

when the combination of torpedoes expended on a red target fails to achieve a specified 

probability of kill for any given scenario. Of note, this equation could be eliminated and 

the deviation 
r
ωδ  easily precalculated for every candidate combination c: deviation is 0 if 

c meets or exceeds the threshold, or the shortfall otherwise. That would allow for any 

deviation to be penalized nonlinearly (which we do not in our computational experience, 

but is a straightforward extension). Constraints (19) ensure that at most one combination 

of torpedoes is used to engage a red target for any scenario. 

Lastly, Constraints (20) to (22) include variable domains. 
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D. DETERMINISTIC MODELS 

Later in Chapter IV, we compare the solutions from the stochastic models to 

deterministic solutions found by solving versions of TASOM-1 and TASOM-2 for one 

scenario. In the deterministic version of both TASOM-1 and TASOM-2, the scenario set 

is a singleton, ˆ{ }ωΩ = , and 
ˆ 1probω = . That is, we assume “perfect information” about a 

certain scenario ω̂ . Sometimes ω̂  may be one of the original scenarios (in order to analyze 

the value of perfect information); others, ω̂  may refer to a hybrid scenario (such as to 

analyze the value of the stochastic solution). The objective function for the deterministic 

version of TASOM-1 minimizes the cost of torpedoes allocated, from inventory or 

purchased, and the cost (instead of expected cost) of not meeting the probability of kill 

threshold in the assumed scenario. Similarly, for the deterministic version of TASOM-2, 

the objective function minimizes the cost of allocated torpedoes and the cost of not meeting 

the probability of kill threshold.  
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IV. RESULTS AND ANALYSIS 

We present a case designed to represent an ASW operation where several ASW 

units are patrolling an area for adversary submarines. For this case, we randomly generate 

100 scenarios where different adversary submarines appear to the ASW units. We use 

unclassified, notional data of inventories, costs, capabilities, and threats. Using this test 

case, we first determine the value of using TASOM over the deterministic approach of 

planning. We then explore how our models can be used to inform torpedo allocation and 

budgeting decisions. 

A. BASELINE DATA 

All input data for the models are contained in a multi-sheet Microsoft Excel 

workbook (Microsoft Corporation 2022). Inputs can easily be changed by the user to 

consider more torpedo variants, shooter platforms, target types, individual blues, and 

individual reds.  

Our notional case considers three different torpedo variants, ten individual blue 

shooters available for the campaign, and twenty individual red targets that can deploy in a 

scenario. Mod 0 and mod 1 torpedoes have a pre-existing inventory; any mod 2 torpedoes 

must be purchased (at a nominal price of $2 million per unit). There is a notional cost to 

load torpedoes from inventory (in order to prevent extra torpedoes from being included in 

a solution loadout plan); this cost is not applied to the budget limit. Torpedo inventory and 

purchasing costs are listed in Table 1. Torpedo loading cost is assumed the same for all 

torpedoes and listed in Table 2, along with budget for purchase of new torpedoes.  

Table 1. Torpedo inventory and cost data 

 

torpedo_type cost ($ millions) inventory
mod_0 0.005 30
mod_1 0.008 30
mod_2 2 0

Torpedo Data
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Table 2. Budget and torpedo loading cost data. 

 
 

Table 3 lists the capacity and salvo restrictions for each of the three different blue 

platform types. The probability of kill of a torpedo depends on the variant, the platform 

type of the shooter, and the submarine type of the target; these data are listed in Table 4. 

Table 3. Platform data 

 
 

Table 5 lists the ten blue shooters considered in our test case. All ship units have an 

embarked helicopter detachment. Table 6 lists the individual red target data. Of the twenty 

reds, ten are classified as type 1 submarines, seven as type 2, and three as type 3. The 

commander’s desired probability of kill threshold is set to 0.9 for all threats, and the dollar 

penalty is applied for not meeting that threshold: the entire threshold is penalized in 

TASOM-1, but only the shortfall (unmet fraction) is penalized in TASOM-2. In TASOM-

1, the maximum number of blues that can engage the same red is explicitly set by the user. 

We set this value to one in all runs for our test case. This input is implicit in TASOM-2: it 

is dictated by the generated candidate torpedo mixes for each engagement. In our 

computational runs we have generated mixes limited to one blue shooter.  

purchasing budget ($ millions) loading cost for owned torpedoes ($ millions)
25 0.0001

Misc Data

platform_type torpedo capacity max salvo size
ship 6 6
helo 15 2
p8 50 5

Platform Data
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Table 4. Probability of kill data 

 

Table 5. Individual shooter data 

 

platform_type sub_type torpedo_type pkill
ship type1 mod_0 0.13
ship type1 mod_1 0.16
ship type1 mod_2 0.2
ship type2 mod_0 0.13
ship type2 mod_1 0.16
ship type2 mod_2 0.2
ship type3 mod_0 0.19
ship type3 mod_1 0.2
ship type3 mod_2 0.4
p8 type1 mod_0 0.29
p8 type1 mod_1 0.3
p8 type1 mod_2 0.6
p8 type2 mod_0 0.34
p8 type2 mod_1 0.35
p8 type2 mod_2 0.65
p8 type3 mod_0 0.39
p8 type3 mod_1 0.4
p8 type3 mod_2 0.7
helo type1 mod_0 0.29
helo type1 mod_1 0.3
helo type1 mod_2 0.6
helo type2 mod_0 0.34
helo type2 mod_1 0.35
helo type2 mod_2 0.65
helo type3 mod_0 0.39
helo type3 mod_1 0.4
helo type3 mod_2 0.7

Pkill Data
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Table 6. Individual target data 

 
 

B. SCENARIO GENERATION 

From the abovementioned baseline data, the user can generate scenarios either 

manually or randomly. Manually creating a scenario may be preferable if only a few 

defined scenarios are to be considered and probabilities of occurrence are known. For other 

cases, we have developed a random scenario generator function. This function allows many 

scenarios to be created according to some additional parameters provided by the user via 

the input file. The scenario generator function writes the scenarios to its own data sheet in 

the same excel workbook as the rest of the input data for the test case. The user can then 

review and modify the generated scenario data, if desired. For each scenario, the scenario 

generator function determines (and records): 

1. How many and which specific red targets deploy. 

2. Which blue shooters, if classified as a ship, are preemptively killed. Note: 

if the killed shooter is a blue ship, its embarked helicopter is also 

considered killed. 
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3. For every surviving blue shooter and deployed red target, whether the 

shooter detects and can engage the target. Note: if a ship can engage a 

target, its embarked helicopter can also engage it. 

4. All the targets each shooter could kill, the targets that are “undetected” 

(i.e., untargeted), and which shooters are killed.  

For our baseline test case we generate 100 equally probable scenarios according to 

the parameters defined for the case, summarized in Table 7. In this example, the given 

inputs specify that, from the fleet of twenty red targets, a random selection of five to ten 

targets can deploy in every scenario. Any blue ship is killed prior to engagement with 10% 

probability. Among those surviving, every blue ship detects a red target in the same area 

with 40% probability, and the same occurs for every MH-60R. For the P-8s, the probability 

is 60%. We assume only platforms that have detected the target are allowed to engage it.  

Table 7. Scenario generator inputs 

 
 

A sample of resulting scenario data output is presented in Figure 1. Each scenario 

is defined in a row and each blue shooter has a column where the reds that it can engage 

(for that scenario) are listed in the corresponding cell, separated by commas. Note, in this 

figure, the columns for “ddg2,” “helo2,” “ddg3,” “helo3,” and “ddg4” are hidden and only 

the first thirty scenarios are visible. For example, in scenario “1,” platform “ddg1” can 

shoot at red targets “r3,” “r6,” and “r2;” all red targets are detected (thus can be attacked) 

by some blue shooter; and, two blue shooters (“ddg2” and “helo2” are killed, noting that 

the latter was embarked on the former). On the other hand, in scenario “15,” red target 

“r13” is in the area, but undetected; and, blue platform “ddg3” and its “helo3” are killed. 

All scenarios have probability 1%. After the generation process, the planner may edit these 

scenario inputs in Excel (along with any of the other input data) before running TASOM.  
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Figure 1. Sample of scenario data 

C. IMPLEMENTATION 

Both TASOM models have been implemented using Pyomo, a Python optimization 

modeling package (Hart et al. 2011, 2017), using CPLEX (IBM 2022) as the core solver. 

Hardware includes a personal laptop with 16 gigabytes of random-access memory available 

and eight processors.  

In our notional, baseline test case with three torpedo variants, ten blue shooters, and 

twenty red targets, containing 100 scenarios, the number of variables and constraints in 

both models are listed in Table 8. 

TASOM-1 solves to optimality in 112 seconds; TASOM-2 solves in 15 seconds. 

The computational runtimes in seconds are listed in Table 9. Additional runtimes for other 

test cases with the same assets but 500 and 1,000 scenarios, respectively, are included for 

comparison.  
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Table 8. Computational data for baseline case with 100 scenarios 

 continuous 
variables 

binary 
variables 

integer 

variables 

constraints 

TASOM-1 0 4,548 11,433 8,320 

TASOM-2 758 15,9263 60 4,529 

 

Table 9. Comparison of computation times for baseline case with various 
number of scenarios 

TASOM-1 TASOM-2 

  
 
 

D. OUTPUT DISPLAY 

Results are written to a separate multi-sheet Excel workbook. The optimal “torpedo 

loadout plan,” or the type and quantity of torpedoes assigned to each individual blue 

shooter for the baseline budget of $25M, is listed in Table 10. For example, TASOM-1 

allocates five mod 0, fifteen mod 1, and four mod 2 torpedoes to the P-8 squadron “p1.” 

TASOM-2 allocates twelve mod 0, ten mod 1, and three mod 2 torpedoes to “p1.” Of note, 

TASOM-1 only allocates two torpedoes to a unit that is not a P-8 (“helo3”) while TASOM-

2 allocates torpedoes to eight of the ten blue shooters.  

blue mod_0 mod_1 mod_2
p1 5 15 4
p2 10 15 5
ddg1 0 0 0
helo1 0 0 0
ddg2 0 0 0
helo2 0 0 0
ddg3 0 0 0
helo3 0 0 2
ddg4 0 0 0
helo4 0 0 0

blue mod_0 mod_1 mod_2
p1 12 10 3
p2 10 12 2
ddg1 0 0 0
helo1 2 0 2
ddg2 6 0 0
helo2 0 0 2
ddg3 0 6 0
helo3 0 0 0
ddg4 0 6 0
helo4 0 2 0
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A sample from the blue-red engagement results, with the type and quantity of 

torpedoes that each shooter expends on each engaged target, by scenario, is presented in 

Table 11. Both the TASOM-1 and TASOM-2 engagement results are structured similarly: 

each row contains an engagement, and engagements are ordered and grouped by scenario. 

For example, for the TASOM-1 results, in scenario “1,” “p1” engages “r3,” “r13,” “r17,” 

and “r2.”  Specifically, “p1” engages “r3” with two mod 0, two mod 1, and one mod 2 

torpedoes.  

A sample from the “miss” results is presented in Table 12. For TASOM-1, the miss 

results indicate whether a detected red target was missed or not in each scenario. For 

example, in scenario “1,” every detected red target is engaged and meets the desired 

probability of kill threshold. In scenario “2,” however, “r4” is detected, but not engaged. 

For TASOM-2, the miss results report the shortfall from the desired probability of kill 

threshold for every detected red target in each scenario. For example, in scenario “2,” 

“r13,” “r17,” “r16,” and “r9” are engaged with a torpedo combination that meets the desired 

probability of kill threshold, but “r4” is engaged with a combination that only achieves a 

probability of 0.84, or a shortfall of 0.06. For both models, the miss results do not list the 

undetected red targets (that are automatically missed); that information is reported in the 

input scenario data. 

A sample from the summary results is presented in Table 13. For TASOM-1, the 

objective value (in millions of dollars) and the total number of red targets missed are  

reported for each scenario. Recall, the objective value for each scenario is the sum of (i) 

the total cost of torpedoes purchased; (ii) the total cost of loading torpedoes from inventory; 

and (iii) the penalty incurred from missing any red targets (detected or undetected). For 

example, in scenario “1,” the objective value is $22.0045M. $22M is the cost for 

purchasing eleven mod 2 torpedoes and the remainder is the cost of loading out 45 

torpedoes from inventory as there were no missed targets in this scenario. The last row 

reports the expected objective value, the number of each torpedo type used from inventory, 

the number of each torpedo type purchased, and the average number of red targets missed 

in a scenario. 
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For TASOM-2, the objective value (in millions of dollars) and the average shortfall 

from the desired probability of kill are reported for each scenario. Recall, the objective 

value for each scenario is the sum of (i) the total cost of torpedoes purchased; (ii) the total 

cost of loading torpedoes from inventory; and (iii) the penalty incurred from any 

probability of kill shortfalls for any red targets (for an undetected target, the value of the 

entire threshold is penalized). For example, in scenario “2,” the objective value is 

$24.054M. $18.048M is the cost for purchasing nine mod 2 torpedoes and six mod 1 

torpedoes, $6M is the penalty for the 0.06 shortfall on the one under-targeted engagement, 

and the remainder is the cost of loading out 60 torpedoes from inventory. The last row 

reports the expected objective value, the number of each torpedo type used from inventory, 

the number of each torpedo type purchased, and the expected average probability of  

kill shortfall. 

Table 10. Stochastic loadout plan for budget level of $25M 

TASOM-1 TASOM-2 

  
 

  

blue mod_0 mod_1 mod_2
p1 5 15 4
p2 10 15 5
ddg1 0 0 0
helo1 0 0 0
ddg2 0 0 0
helo2 0 0 0
ddg3 0 0 0
helo3 0 0 2
ddg4 0 0 0
helo4 0 0 0

blue mod_0 mod_1 mod_2
p1 12 10 3
p2 10 12 2
ddg1 0 0 0
helo1 2 0 2
ddg2 6 0 0
helo2 0 0 2
ddg3 0 6 0
helo3 0 0 0
ddg4 0 6 0
helo4 0 2 0
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Table 11. Sample of engagement results 

TASOM-1 TASOM-2 
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Table 12. Sample of miss results 

TASOM-1 TASOM-2 

E. COMPARISON OF DETERMINISTIC VS. STOCHASTIC MODELING

We first determine the value of (hypothetical) complete knowledge of the adversary

before making loadout decisions. To do that, we optimize for one scenario at a time 

(therefore obtaining different loadouts, each one suited to a particular scenario). This 

solution by scenario is not implementable in real life, given the loadouts must be 

established before the actual scenario unveils. Nevertheless, it gives us an ideal objective 
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value (by individual scenario and in expected value). We then compare it to the loadout 

plan from the stochastic solution, which is a compromise among all 100 scenarios. In 

addition, we consider two implementable loadout solutions, derived from typical 

deterministic manual planning: the “average loadout” plan and the loadout plan from the 

“all-targets” scenario. 

Table 13. Sample of summary results 

TASOM-1 

 

TASOM-2 

 

 

1. Expected Value of Perfect Information  

The expected value of perfect information (EVPI) assesses how much better (in 

terms of expected cost from purchasing torpedoes and missing targets) a torpedo loadout 

plan would be if a planner had perfect scenario information beforehand (Avriel and 

Williams 1970). The EVPI is found by subtracting the expected optimal deterministic cost 

from the optimal stochastic cost. By denoting zΩ  as the optimal objective function value 

to a given stochastic model (such as TASOM-1 or TASOM-2) with scenarios in set Ω  
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(and, accordingly, { }z ω being such objective for a deterministic case for single scenario ω

), EVPI can be defined as: 

 { }EVPI z prob zω ω

ω

Ω

∈Ω

= −∑ . 

The EVPI for our notional case, and budgets of $25M and $10M, respectively, is presented 

in Table 14. If, for example, a planner is using TASOM-1 and has a purchasing budget of 

$25M, and perfect information could be attained for less than $14.12M, that would be a 

worthwhile investment. Otherwise, using the stochastic loadout is more cost efficient. Note 

that, for this problem, having perfect information for planning purposes would involve 

knowing with certainty all of the following: how many and which red submarines are 

deployed to an area; which blue shooters will detect and engage them; and, then, 

appropriately allocating torpedoes to ships and squadrons.  

Table 14. Expected cost from stochastic and deterministic models, and value 
of perfect information, for budget levels of $25M and $10M 

 TASOM-1 TASOM-2 
 Stochastic  Deterministic  EVPI Stochastic  Deterministic  EVPI 
Budget 
$25M 

$114.70M $100.58M $14.12M $33.04M $22.35M $10.68M 

Budget 
$10M 

$199.90M $194.56M $5.34M $38.61M $27.90M $10.70M 

 
 

2. Average Loadout vs. Stochastic Loadout 

Typically, the value of the stochastic solution (VSS) is assessed by comparing the 

objective value of the stochastic solution to the value of the deterministic solution that 

replaces the uncertain variable in the problem with its expected value (Birge and Louveaux 

1997). The typical approach consists of: (a) defining an “average-demand scenario,” which 

we denote ω ; (b) calculating its first-stage solution, X  (loadouts) using a deterministic 

version of TASOM; (c) fixing that loadout solution in TASOM in order to calculate the 

second-stage (WTA) solution by scenario; and (d) comparing each of those individually, 

and on the aggregate, to the full stochastic (TASOM) solution.  
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However, in our problem, the uncertainty relates to which red targets appear and 

which blue shooters can engage them; thus, finding the “average” scenario is somewhat 

arbitrary: we could consider ω  where blue shooters need to kill a fraction of each red 

target; but, that does not seem to represent a sensible scenario in itself. Or, ω  where blue 

shooters need to kill an “average subset” of red targets (such as those that appear most 

frequently); but, that makes the deterministic solution myopic to the existence of other red 

targets.  

Thus, we replace steps (a) and (b) above by a single step that calculates the average 

loadout X  across all scenarios directly, when each scenario is (deterministically) solved 

for optimality. Specifically, we use the average number of torpedoes allocated to each blue 

shooter in the 100 scenarios, and refer to this as the “average loadout plan,” X .   

Loadout plans (total torpedoes by type) for TASOM-1 and TASOM-2 are 

summarized in Table 15, including: (i) the stochastic loadout with the baseline budget of 

$25M; (ii) the stochastic loadout where the budget is limited based on the cost of torpedoes 

purchased in the abovementioned (deterministic) average loadout plan, X ; and (iii) the 

average loadout plan itself. 

Here, the VSS is found by subtracting the optimal stochastic cost from the expected 

cost of using the average loadout: 

 { }( )VSS prob z X zω ω

ω

Ω

∈Ω

= −∑ , 

where { }( )z Xω  still refers to the optimal objective function value of a (deterministic) 
TASOM for single scenario ω , but with its loadout variables fixed to X . 

The larger the VSS, the greater the justification to use a stochastic programming 

approach in planning instead of using the simpler approach of planning for the average 

scenario. The VSS for our notional case, and budgets of $25M and $10M, respectively, is 

presented in Table 16. For example, when planning with TASOM-1 and a $25M budget, 

using the average loadout will cost an additional $92.60M than if the stochastic loadout 

was used.  
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Table 15. Summary (total torpedoes) for: deterministic, fixed average 
loadout plan with unlimited budget; stochastic loadout plan when  
budget is limited by the deterministic solution; and stochastic, for 

a $25M budget 

 TASOM-1 TASOM-2 

 Deterministic 

(fixed 
average  
loadout) 

Stochastic 

(budget as in  
deterministic) 

Stochastic 

($25M 
budget) 

Deterministic 
(fixed 

average 
loadout) 

Stochastic 

(budget as in  
deterministic) 

Stochastic 

($25M 
budget) 

mod 0 2 2 15 5 14 30 

mod 1 23 26 30 24 64 36 

mod 2 6 6 11 5 4 9 

Table 16. Value of stochastic solution over manual planning with 
deterministic, fixed average loadout plan, for budget limited by the 

deterministic solution, and for budget of $25M 

 TASOM-1 TASOM-2 

 Stochastic  Deterministic VSS Stochastic  Deterministic VSS 

Limited 
budget 

$179.40M $207.30M $27.90M $40.50M $103.24M $62.74M 

$25M $114.70M $207.30M $92.60M $33.04M $103.24M $70.21M 

 

A more detailed comparison of each loadout performance for TASOM-1 is shown 

in Figure 2. Performance is evaluated in TASOM-1 by the number of targets where the 

probability of kill threshold is not met at all, or by the number of targets missed, in a 

scenario. Plotted are exceedance functions that show the probability (percentage of 

scenarios) where the number of targets missed exceeds a given value. The stochastic 

loadout with a budget of $25M performs, as expected, significantly better than the average 

loadout which only expends $12M:  two or more submarines are missed in 65% of the 

scenarios under the deterministic loadout; only 25% under the stochastic with the baseline 

budget. However, when TASOM-1 is forced to use the budget dictated by the deterministic  
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model, its improvement over the average loadout plan is diminished. Nevertheless, it is 

important to remark that the deterministic solution is unable to take advantage of additional 

budget, whereas TASOM-1 does. 

 
Figure 2. TASOM-1: Exceedance functions for misses for: deterministic, 

fixed average loadout plan with unlimited budget; stochastic loadout plan 
when budget is limited by the deterministic solution; and stochastic 

loadout plan for a $25M budget 

The comparison for each loadout performance for TASOM-2 is shown in Figure 3. 

Note for TASOM-2, the performance is evaluated by the average shortfall in meeting the 

probability of kill thresholds for all targets in a scenario. Plotted are exceedance functions 

that show the probability the average shortfall exceeds a value, under a given loadout. The 

difference between the stochastic, even with a similar budget of $10M, and the average 

loadout performance is significant: the average probability of kill shortfall is 0.1 or greater 

for 50% of the scenarios under the average loadout; only 2% of the scenarios under the 

stochastic with a limited budget. The expected shortfall is 0.1144 under the average loadout 

and 0.0365 under the stochastic with a limited budget.  
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Figure 3. TASOM-2: Exceedance functions for average probability of kill 

shortfall: deterministic, fixed average loadout plan with unlimited budget; 
stochastic loadout plan when budget is limited by the deterministic 

solution; and stochastic loadout plan for a $25M budget 

3. Loadout from All-Targets Scenario vs. Stochastic Loadout 

Another important study, from a planner’s perspective, consists of calculating a 

solution that plans against a scenario consisting of all targets. The “all-targets” scenario is 

defined as a deterministic scenario where all blue shooters are alive and have detected and 

able to engage all twenty red targets. 

We compare the deterministic solution that plans for the all-targets scenario with 

the TASOM-1 and TASOM-2 solutions for the same 100 simulated scenarios as above. 

We use budgets of $25M and $10M. The loadouts recommended by this analysis are 

summarized in Table 17. (Of course, TASOM solutions for a budget level of $25M are 

unchanged with respect to the previous analysis.)  
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Table 17. Summary (total torpedoes) of the stochastic loadout plan and the 
loadout plan from the all-targets scenario 

 TASOM-1 TASOM-2 

Stochastic Deterministic (all-
targets loadout) 

Stochastic Deterministic (all-
targets loadout) 

Budget 
$25M 

mod 0 15 26 30 35 

mod 1 30 30 36 55 

mod 2 11 12 9 10 

Budget 
$10M 

mod 0 10 15 30 22 

mod 1 24 15 30 72 

mod 2 5 5 5 3 

 
As shown in Figure 4, for TASOM-1, with the budget of $25M, the stochastic 

loadout only performs slightly better than the deterministic loadout planned for an all-

targets scenario. However, the performance increase is more significant when the solutions 

with the $10M budget are considered:  two or more submarines are missed in 70% of the 

scenarios under the deterministic loadout; only 60% under the stochastic.  

When we consider various budget levels, the performance of TASOM-1 loadout 

remains only marginally better over the deterministic, as shown in Figure 5. At a budget 

level of $5M, the expected number of misses is 4.59 under the deterministic loadout and 

5.15 under the stochastic loadout. 
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Figure 4. TASOM-1: Exceedance functions for misses for deterministic, 

fixed loadouts from all-targets scenario and stochastic loadouts, for $25M 
and $10M budgets  

 
Figure 5. TASOM-1: Expected number of missed targets for various budget 

levels 
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The difference between the stochastic and the deterministic loadout performance is 

much more dramatic for TASOM-2, as shown in Figure 6. With a budget of $10M the 

deterministic loadout produces an average probability of kill shortfall of 0.1 or greater for 

65% of the scenarios; in contrast, in the stochastic models it is only 2% of the scenarios for 

the same budget. With a budget of $10M, the expected average shortfall is 0.1421 under 

the deterministic loadout and 0.0317 under the stochastic loadout.  

Of note, the deterministic and stochastic solutions for TASOM-2 do not have the 

same symmetric grouping as the solutions in TASOM-1. In all solutions using model 

TASOM-1, torpedoes are almost exclusively loaded out to P-8 squadrons. In our notional 

case, torpedoes from aircraft will result in higher probabilities of kill and P-8s have a 

greater max salvo size than a helicopter, an important consideration when only one ASW 

unit can engage a submarine. In TASOM-2, solutions utilize helicopters and ships in 

addition to P-8s; the deterministic solutions only use P-8s. For this reason, the stochastic 

loadout with a budget of $10M is still able to perform better than the deterministic loadout 

with the greater budget of $25M.  

At all considered budget levels, the performance of TASOM-2 loadout remains 

significantly better over the deterministic version, as shown in Figure 7. For a budget of 

$5M, the expected average probability of kill shortfall is 0.1463 under the deterministic 

loadout and 0.0526 under the stochastic loadout.  

As discussed above, the deterministic solution for TASOM-2 only loads out 

torpedoes to P-8s. We consequently see very similar performances of the deterministic 

loadouts at different budget levels and the expected average shortfall for the deterministic 

loadout does not consistently decrease as the budget level increases: in fact, the expected 

average shortfall increases when the budget is raised from $11M to $15M. This is not 

necessarily a contradiction: the deterministic plan is created against an all-targets scenario 

and shortfall for that assumed scenario (not shown) actually decreases as budget increases. 

However, when that plan is tested against 100 specific scenarios, the shortfall need not be 

monotonic.  
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Figure 6. TASOM-2: Exceedance functions for average probability of kill 

shortfall for deterministic, fixed loadouts from all-targets scenario and 
stochastic loadouts, for $25M and $10M budgets  

 
Figure 7. TASOM-2: Expected average probability of kill shortfall for 

various budget levels 
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F. SENSITIVITY ANALYSIS 

1. Varying Budget Level  

Performance metrics can be compared at different budget levels to help inform 

torpedo budget decisions. In Figure 8, we see how increasing the budget yields improved 

performance for TASOM-2. For example, with a budget of $8M, the average shortfall for 

the desired probability of kill is 0.02 (or greater) in 70% of the scenarios. With a budget of 

$10M, that improves to 50% of the scenarios. Note that the loadout from using a budget of 

$25M (our baseline budget), is not plotted as its performance is almost identical to that of 

a loadout from using a budget of $20M. 

 
Figure 8. TASOM-2: Exceedance functions for average probability of kill 

shortfall for stochastic loadouts for various budgets levels 

2. Varying Desired Probability of Kill 

Sensitivity analysis can also be conducted on the probability of kill threshold 

desired for red target engagements. Here, probability of kill thresholds for all targets have 

been uniformly adjusted. In Figure 9, when the desired probability of kill threshold  

is reduced to 0.85 (from the original 0.90 in all previous test cases), the number of mod 2 
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torpedoes purchased in TASOM-2 loadout plan is reduced. Specifically, for all budget  

levels (starting at $5M), and for any probability of kill threshold (starting at 70%), a 

minimum of two mod 2 torpedoes are purchased by TASOM-2. This number increases to 

twelve mod 2 for 95% and $25M, respectively.  

 
 

Figure 9. TASOM-2: Number of mod 2 torpedoes purchased for different 
budget levels and desired probability of kill thresholds 

3. Varying Effectiveness of Mod 2 

We specify different, hypothetical probability of kill values of the mod 2 torpedo 

in Table 18. Note, the percentage increase of the mod 2 compared to the mod 1 applies 

uniformly for ship or air platforms, but differently against each target type. The percentage 

value shown in the table is the percent increases in probability of kill of a mod 2 torpedo 

from a mod 1 torpedo against a type 1 target. Of note, that percentage is reduced against 

type 2 and type 3 targets. For example, if the probability of kill increases by 100% (from a 

mod 1 probability of kill) with the mod 2 torpedo against a type 1, the probability of kill  
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increases by only 90% against a type 2 target and 85% against a type 3 target. This roughly 

follows the performance of the mod 2 that we assumed in the baseline test case; the mod 2 

exact probability of kill values used in the test case are not represented but are most similar 

to those at the 85% level. 

In Figure 10, we vary the probability of kill of a mod 2 torpedo to find the number 

of mod 2 torpedoes purchased under different budget levels. Here, we keep our original 

desired probability of kill threshold of 0.90. When the mod 2 torpedo probability of kill 

improves by 25%, no mod 2 torpedoes are purchased, at any budget level. If the mod 2 

improves by 40%, at most five torpedoes are purchased. When the mod 2 improves by 

100%, we see that is no longer beneficial to buy more than eight mod 2 torpedoes at any 

budget level.  

Table 18. Probability of kill values of the mod 2 torpedo at various levels of 
percentage increase over mod 1 probability of kill value 

platform class mod 0 mod 1 
mod 2  

25%b 40% 55% 70% 85% 100% 

ship type1 .13a .16 .2 .22 .25 .27 .30 .32 

ship type2 .13 .16 .18 .21 .23 .26 .28 .30 

ship type3 .19 .2 .22 .25 .28 .31 .34 .37 

aircraft type1 .29 .3 .38 .42 .47 .51 .56 .6 

aircraft type2 .34 .35 .40 .46 .51 .56 .61 .67 

aircraft type3 .39 .4 .44 .5 .56 .62 .68 .74 

a The probability of kill values for the mod 0 and mod 1 torpedoes are the same values used in 
previously presented test case.  
b The percentage value represented here is the increase from the mod 1 torpedo probability of kill 
against a type 1 target. Against a type 2 target, the percentage increase is 10% less; against a type 
3 target, the percentage increase is 15% less.  
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Figure 10. TASOM-2: Number of mod 2 torpedoes purchased for different 

budget levels and probability of kill values of a mod 2 torpedo 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

We have developed two different stochastic models that guide the optimal 

allocation of torpedoes to ASW units. The models seek to address an uncertain submarine 

threat while achieving a desired probability of kill threshold while not exceeding a budget 

and, when possible, minimizing cost. A notional test case demonstrates the value of using 

the stochastic models over the typical deterministic planning approach. The performance 

improves marginally with TASOM-1 (which focuses on expected number of threats that 

are targeted at the desired probability of kill levels), and significantly with TASOM-2 

(which focuses on expected proximity to the desired probability of kill levels). Our models 

are combined with an accessible user interface, which facilitates a user with no 

programming experience to create their own case, quickly generate scenarios, and access 

pertinent results. The stochastic models developed in this research provide decision makers 

with a tool to conduct sensitivity analysis to guide torpedo allocation and budget decisions. 

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Further Development of TASOM-2 

We recommend further development of TASOM-2 over TASOM-1. The soft 

constraint used for the desired probability of kill threshold is more realistic than the hard 

constraint in TASOM-1, where the desired probability of kill threshold must be achieved 

in an engagement (or no torpedoes are expended at all). Additionally, TASOM-2 solves 

significantly faster than TASOM-1 and has demonstrated greater performance 

improvements when compared to the deterministic model for the average loadout and “all-

targets” loadout.  

Recommended future work includes exploring the effects of penalizing the 

probability of kill shortfall differently. For example, an exponential penalty of degree n 

would incentivize spreading the probability of kill shortfall among different targets (n >1) 

or concentrate them on fewer targets (n <1). This would involve pre-calculating the penalty 

on the shortfall of a combination in an engagement (we already pre-calculate the 
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probability of kill as , ,'c b rpkill ω ), removing constraints (18), and modify the objective 

function (13) to: 
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where parameter , , , ,[ ( ' )]n
c b r r r c b rpenalty thres pkillω ωε= − . For example, penalizing the 

probability of kill shortfall quadratically may be preferable if we prefer not to let one 

submarine escape without any engagement. 

 Additionally, replacing the purchasing cost of torpedoes, tcost , in the objective 

function (13) with a nominal cost would facilitate more insightful analysis of the 

performance metrics of different torpedo loadouts. Constraint (14) already accounts for a 

purchasing budget and when conducting budget sensitivity analysis, the inclusion of the 

purchasing cost in the objective function is somewhat redundant.  

2. Additional Cases and Real-World Data 

Only one test case was considered in this thesis, but additional cases should be 

tested to verify model results. Additional cases can be expanded to consider more realistic 

ASW operations. In our case, all ASW units and all deployed adversary submarines were 

confined to one area. A more realistic case may involve ASW units patrolling their own 

separate areas, like in a barrier defense plan. Adversary submarines appearing in one of 

many areas can easily be controlled when creating scenarios. Additionally, friendly 

submarines, with their own, separate torpedo inventory, operating in their own, separate 

area, can be incorporated in a case to represent a more comprehensive ASW operation. 

Multiple cases with multiple areas can be run in a series to consider a campaign level 

problem in order to inform fleet wide torpedo allocation decisions. 
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