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Abstract. This work considers the application of the extended Kalman filter 
(EKF) in systems with nonlinear state transition equations. We develop a 
surrogate-based method to approximate the uncertainty bounds of the EKF using 
only one trajectory, without the need to simulate many independent replicates. 
This method is demonstrated in a target tracking problem in 3D space.  

I. Introduction 
Estimating locations and trajectories of mobile targets is a problem of key interest in many defense 
systems. Typically, a target can only be partially observed via sensor or radar systems. As an aid in 
target tracking, state-space models are built to describe both the motion of the target and the sensing 
process. Furthermore, filtering (state estimation) algorithms such as the Kalman filter and its many 
variants have long been used to recover real-time kinematic information on the state of the target from 
the noisy sensor measurements collected to the current time point. Target tracking using the state 
estimation framework has been widely applied in many defense and non-defense settings, such as 
monitoring the motion of unmanned aerial vehicles (UAV), detecting illegal border-crossings, and 
conducting the mission of battlefield surveillance (see ref. [1] for some examples and discussion). That 
said, little is known about the statistical properties of the error in the state estimate in the presence of 
nonlinearities in the state-space model and/or non-normality of the random noises. In this paper, we 
present a method of calculating probabilistic bounds for the state estimation error in nonlinear target 
tracking systems when some popular recursive filters, such as the constant gain Kalman filter (CGKF) 
and extended Kalman filter (EKF), are applied. 

Characterizing the uncertainty of the state estimation error is important and beneficial in several 
respects: First, it demonstrates how well the target state and its trajectory is being monitored and 
managed via the state estimation process. Second, probabilistic bounds for the tracking error transfer 
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naturally to simultaneous confidence intervals (regions) of the target. Then, it becomes possible to 
evaluate the probability of a moving target showing up in a specified region. Third, knowledge about 
the tracking error facilitates the design and the comparison of efficient estimation algorithms and sensor 
systems. Fourth, a proper characterization of the filter error may also be useful in calculating uncertainty 
bounds for parameter estimates in system identification (see, e.g., [2] and [3], for aerospace examples). 

Despite the importance of determining statistical bounds for the estimation error in the CGKF and 
EKF, the problem remains largely unsolved, especially when the system is nonlinear. The technical 
challenges are multifold. It is well-known that even a Gaussian random quantity is not guaranteed to 
stay in the same distributional family after a nonlinear transformation. Because of the iterated nonlinear 
transformations and non-decaying noises in the system across time points, the distribution of the target 
estimate and its error are usually unknowable, and there is no guarantee that they will be a named 
distribution such as Gaussian. In fact, even for linear systems where a Kalman filter is applied, the error 
distribution is generally non-Gaussian when all or some of the noise terms in the state equation or 
measurement equation are non-Gaussian. Moreover, as shown in refs. [4] and [5], the distribution 
remains unknown even in large samples (i.e., there is no central limit effect). In particular, it has been 
observed that the most recent noise terms have a larger impact on the error distribution than earlier noise 
terms. Hence, the use of central limit theorem is, in general, invalid to obtain an approximate probability 
distribution for the error in the asymptotic case. In addition, for the reasons above, the commonly 
assumed N(0, P) distribution for the error, where P is the EKF analogue to the classical error-covariance 
matrix in a linear filter, is also flawed.   

Refs. [6] and [7] demonstrate the same principle of non-Gaussian state error in scalar nonlinear 
systems. Although for some continuous systems, a Fokker-Planck equation can be built to describe the 
transition of the distribution of the state estimation error in dynamical systems (see ref. [8]), there exists 
no closed-form solution for the desired distribution. Finally, probability bounds such as the Chebyshev 
inequality can sometimes be used to construct conservative confidence regions, but those regions are 
often too large to be of practical value. Without knowledge of the probability distribution of the filtering 
error, calculating uncertainty bounds can be very difficult. In this paper, we provide a means for a 
rigorous and practical way to determine the uncertainty bounds (confidence regions) of the estimation 
error in the EKF, and illustrate its application in a target-tracking problem. 
 

II. Motivating Application 
While the method here is generic and applicable to a broad class of nonlinear systems, we will 

illustrate the method via a target tracking problem. In this work, a discrete-time state-space model 
modified from Sect. 6.3.3 in [9] is used to represent the target tracking problem with nonlinear 
acceleration. In particular, let us consider the case when the dynamics of acceleration are controlled by 
a nonlinear mapping, which models the situation where the motion of a target is “smoothly” maneuvered. 
This is a generalization of the popular constant velocity motion model used in [10], the constant 
acceleration motion model used in [11], or the nearly constant acceleration motion model used in [12]. 
Allowing the acceleration to change smoothly, the velocity and the trajectory of the target will have 
more flexibility compared with the classic constant acceleration motion model. 

For the measurement system, it is assumed in this paper that the target can only be partially observed 
via a linear mapping with noise. For example, consider the case when the height of the target is 
unavailable, but the information about the latitude and the longitude is available, or only the latitude is 
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observed. Another example is tracking or surveilling objects within a fixed camera’s view so that the 
received information is projected to a 2D screen. 

To estimate the true state of the target from noisy observations in a tracking setting, nonlinear 
recursive filters are applied (see ref. [13] for an example). That is, a target motion model and an 
observation model are constructed to reflect the dynamics in the true physical process of the target 
motion and the data acquisition. Given the previous target state estimate, the one-step ahead prediction 
and the expected observation are computed according to the system model. Once the newest 
measurement is observed, the residual (difference between the observed data and the expected 
observation) can be calculated. Integrating the one-step-ahead prediction and the information in the 
residual, the target state estimate is updated to the current time step. The illustrative application of thise 
paper is the tracking error, i.e., the difference between the true target state and the filtering estimate. A 
schematic of this state estimation process when the target is a UAV drone is given in Figure 1. 

In this paper, our analysis will focus on the situation when the generic EKF or CGKF is used in the 
tracking problem. As one of the most popular nonlinear filtering algorithms, the EKF is widely used in 
the field of target tracking and collision avoidance (see ref. [14] for an example). Meanwhile, although 
the CGKF, as a constant-gain tracker, is not as adaptive as varying-gain algorithms such as the EKF, it 
provides considerable computational savings when the dimension of the problem is high or when there 
is a need for rapid data processing. Applications of constant-gain target trackers can be found in 
problems like aircraft engine performance estimation [15], wireless sensor networks [16], and 
prediction of reentry of risk objects [17]. 

 

 

Figure 1. Schematic of the target tracking problem. A UAV drone is the target. 

For linear systems with symmetric noise distributions and with the Kalman filter used for the state 
estimation, it was shown in [5] that a surrogate process can be constructed that stochastically dominates 
the unknown distribution of the tracking error. Then, the confidence regions of the surrogate will 
automatically serve as the approximate confidence regions for the true error. In scalar nonlinear systems 
with either the extended Kalman filter or the constant-gain filter, a similar analysis is presented in [6]. 
However, for nonlinear systems, the error distribution is not guaranteed to be symmetric or well-shaped, 
so its confidence region can be ill-shaped. Consequently, it is not possible to use the same arguments as 
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[5] or [6] to create a surrogate with the appropriate stochastic dominance relationships in the 
multivariate nonlinear case. 
 

III. Overview of Analytical Approach and Extensions 

A. State-Space Model and EKF 
Given a time sampling interval ∆𝑇𝑇,  the discrete-time state-space model below is taken as the 

mathematical representation of the evolution of the unknown target state 𝒙𝒙𝑘𝑘  and the associated 
measurement process: 

𝒙𝒙𝑘𝑘 = 𝒇𝒇(𝒙𝒙𝑘𝑘−1) + 𝒘𝒘𝑘𝑘
𝒛𝒛𝑘𝑘 = 𝑯𝑯𝒙𝒙𝑘𝑘 + 𝒗𝒗𝑘𝑘 ,  

where 𝒇𝒇 is a (generally) nonlinear state transformation function, 𝑯𝑯 is a linear measurement matrix, 
and 𝒛𝒛𝑘𝑘 is the observed information at the time step k. Moreover, we assume that the noise terms 𝒘𝒘𝑘𝑘 
in the state transformation equation and 𝒗𝒗𝑘𝑘 in the measurement equation have mean zero and finite 
magnitude covariance matrices. We further assume that the noise terms themselves are both 
independent and identically distributed random variables, and that 𝒘𝒘𝑘𝑘 and 𝒗𝒗𝑘𝑘 are independent.  

Then, given a trajectory of the noisy observations 𝒛𝒛1,… ,𝒛𝒛𝑘𝑘, the EKF algorithm (ref. [18, Sect. 13.2]) 
generates the state estimate 𝒙𝒙�𝑘𝑘  of the unknown target state 𝒙𝒙𝑘𝑘  recursively by 𝒙𝒙�𝑘𝑘 = 𝒇𝒇(𝒙𝒙�𝑘𝑘−1) +
𝑲𝑲𝑘𝑘[𝒛𝒛𝑘𝑘 − 𝑯𝑯𝑯𝑯(𝒙𝒙�𝑘𝑘−1)], where 𝑲𝑲𝑘𝑘 is the EKF gain matrix computed at the time step k. Meanwhile, a 
matrix 𝑷𝑷𝑘𝑘 (sometimes erroneously called an error-covariance matrix) is computed in the algorithm 
iterations to update the EKF gain matrix. Then, our goal in this work is to develop robust and effective 
methods to compute the confidence intervals (regions) for the state estimation error of the EKF defined 
as:  

𝒆𝒆𝑘𝑘 = 𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘 . 

B. Motivation and Background 
To calculate uncertainty bounds for the unknown distribution of the tracking error, a surrogate 

process is constructed in a manner different from the method for linear systems in [5]. Under certain 
conditions, it can be shown that the generalized method here provides an appropriate surrogate 
probability distribution for nonlinear systems that is close to the unknown distribution for the true error; 
see ref. [19] for analysis when the Kalman-like gain matrix (traditionally called Kk, as shown in Sect. 
III.A) is decaying to 0 across iterations (k → ∞). Therefore, their regions of high confidence (probability) 
are close, so we can use the confidence regions of the surrogate as the approximate confidence regions 
for the actual tracking error. The approach is expected to be applicable for all common distributions of 
additive system noises with finite second moment, such as Gaussian or t-distribution. The methods of 
ref. [19], however, are inappropriate in a target tracking setting because tracking is not possible with a 
gain matrix decaying to 0. Therefore, we need a new method applicable in the setting of a non-decaying 
gain matrix. 

As above, the estimation error is defined as the difference between the true state and the filter 
estimate. To develop a new surrogate process that is applicable for tracking problems, we need to 
develop a method that does not require that the gain matrix decays to 0. We first apply the multivariate 
mean value theorem, leading to an error term that is an autoregressive (AR) process with random and 
dependent coefficient matrices. We use ergodicity theory to construct another surrogate AR process with 
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deterministic coefficients estimated from the ergodic averages, i.e., averages over one trajectory. The 
characteristic functions of both the true error and the surrogate are analyzed to investigate how close 
their distributions are. Under some conditions, an upper-bound is derived for the distance between two 
distributions for each component of the error and the surrogate. Therefore, the probability that the 
surrogate falls into a specified confidence region is close to the probability that the tracking error falls 
into the region, so it is possible to calculate approximate uncertainty bounds for the error and eventually 
for the target state. An illustration of the analytical approach is shown in Figure 2. 
 

 

Figure 2. Illustration of the analytical approach. 

For example, if a valid Gaussian surrogate is constructed, the approximate uncertainty regions for 
the unknown tracking error will be hyper-ellipsoids. Consequently, we can calculate approximate 
confidence regions of the target as hyper-ellipsoids centered at the current state estimate point. 

The framework and the analysis in this work can also be extended to systems with nonlinear 
measurement transformations or other variants of Kalman filters, as long as the ergodicity of the system 
can be established (i.e., the system is able to reach a stochastic steady state). In that way, the method 
here has potential in tracking problems as well as other DoD-related problems where it is important to 
have some clear understanding of how close the state estimate is to the unknown true state. 

C. Method Description 
Given that the aforementioned state transformation function 𝒇𝒇 is twice continuously differentiable, 

we can express the error dynamic in the following AR form: 

𝒆𝒆𝑘𝑘+1 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘+1𝑯𝑯)[𝒇𝒇(𝒙𝒙𝑘𝑘)− 𝒇𝒇(𝒙̂𝒙𝑘𝑘) + 𝒘𝒘𝑘𝑘+1] −𝑲𝑲𝑘𝑘+1𝒗𝒗𝑘𝑘+1
≡ (𝑰𝑰 − 𝑲𝑲𝑘𝑘+1𝑯𝑯)𝑭𝑭𝑘𝑘+1𝒆𝒆𝑘𝑘 + [(𝑰𝑰 − 𝑲𝑲𝑘𝑘+1𝑯𝑯)𝒘𝒘𝑘𝑘+1 − 𝑲𝑲𝑘𝑘+1𝒗𝒗𝑘𝑘+1]
≡ 𝑩𝑩𝑘𝑘𝒆𝒆𝑘𝑘 + 𝛆𝛆𝑘𝑘+1.

 

where 𝑭𝑭𝑘𝑘+1 is based on the first-order approximation inherent in the EKF. However, 𝑭𝑭𝑘𝑘+1 is not 
computable since (from the mean-value theorem of calculus) each row is evaluated at a point between 
𝒙̂𝒙𝑘𝑘  and the unknown true 𝒙𝒙𝑘𝑘 . Note that 𝒆𝒆𝑛𝑛 = ∑𝑘𝑘=0𝑛𝑛  𝑩𝑩𝑛𝑛𝑛𝑛𝛆𝛆𝑘𝑘  with 𝑩𝑩𝑛𝑛𝑛𝑛 = ∏𝑖𝑖=𝑘𝑘

𝑛𝑛−1 𝑩𝑩𝑖𝑖  for 𝑘𝑘 < 𝑛𝑛, and 
𝑩𝑩𝑛𝑛𝑛𝑛 = 𝑰𝑰. 

As shown above, the error dynamics can be expressed as a multivariate AR process with random 
(probabilistically) dependent coefficients 𝑩𝑩𝑘𝑘 that can not be computed directly as well as dependent 
noise terms 𝛆𝛆𝑘𝑘 (due to the random EKF gain matrix 𝑲𝑲𝑘𝑘 being sequentially dependent in general). 
Consequently, there are several technical challenges in computing its confidence regions. First, the 
exact distribution of 𝒆𝒆𝑘𝑘 is usually unknown due to the iterated nonlinear transformation and persistent 
noises. Even asymptotically, there is, in general, no central limit effect to guarantee a normally 
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distributed error (see [4] and [5] for details in the linear case; [6] or [7] for the nonlinear case). Second, 
despite the common assumption that 𝑷𝑷𝑘𝑘 in the EKF represents the error-covariance matrix (cov(𝒆𝒆𝑘𝑘)) 
(e.g. pp. 399 and 402 in [18]), the matrix 𝑷𝑷𝑘𝑘 may, in fact, be a poor estimate of cov(𝒆𝒆𝑘𝑘). (A dramatic 
example of this phenomenon was shown in the oral presentation slides associated with this paper at the 
AIAA Defense Forum in April 2023; the true 95% confidence interval in the example was over 10 times 
wider than the interval predicted by the use of the commonly assumed 𝑁𝑁(𝟎𝟎,𝑷𝑷𝑘𝑘) distribution.) 

In order to address the challenges above, we propose a surrogate-based approximation method 
similar to the constant-gain Kalman filter case in [20]. Specifically, we construct a surrogate process 
𝒆𝒆‾𝑛𝑛 whose distribution is close to the unknown true error distribution 𝒆𝒆𝑛𝑛 under certain conditions. 
Meanwhile, the surrogate distribution itself must be computable or be easily simulated. As we assume 
only one trajectory of observations 𝒛𝒛1, … , 𝒛𝒛𝑛𝑛, note that the EKF error 𝒆𝒆𝑘𝑘 ,𝑘𝑘 = 1, 2, … ,𝑛𝑛, demonstrates 
a “settling down” or ergodic behavior for large n in some systems. To construct a surrogate process that 
mimics the true error dynamics 𝒆𝒆𝑘𝑘 as closely as possible, let us use the following AR surrogate process 
𝒆𝒆‾𝑘𝑘: 

𝒆𝒆‾𝑘𝑘+1 = 𝑪𝑪𝑘𝑘𝒆𝒆‾𝑘𝑘 + 𝛈𝛈𝑘𝑘+1, 

with 𝑪𝑪𝑘𝑘 being a particular deterministic matrix and 𝛈𝛈𝑘𝑘+1 being an appropriate noise term. 
First, if the system settles down after some transient phase, we expect that the Kalman gain will also 

settle down, and we can approximate its value by some ergodic average (one-path average of dependent 
terms). Consequently, we replace 𝛆𝛆𝑘𝑘 with 𝛈𝛈𝑘𝑘 having the same distribution as (𝑰𝑰 − 𝑲𝑲∗𝑯𝑯)𝒘𝒘𝑘𝑘 − 𝑲𝑲∗𝒗𝒗𝑘𝑘, 
where 𝑲𝑲∗ is the limiting value of 𝑲𝑲�𝑛𝑛 = ∑𝑘𝑘=1𝑛𝑛  𝑲𝑲𝑘𝑘/𝑛𝑛. Second, since 𝑩𝑩𝑘𝑘 is not directly observable or 
easily computable, we replace it with a computable quantity related to the Jacobian matrix. Specifically, 
we use 𝑪𝑪𝑘𝑘 ≡ (𝑰𝑰 − 𝑲𝑲∗𝑯𝑯)𝑱𝑱∗, where 𝑱𝑱∗ is the limiting (ergodic) average from 𝑱̅𝑱𝑛𝑛 = ∑𝑘𝑘=1𝑛𝑛  𝑱𝑱𝑘𝑘/𝑛𝑛, and 𝑱𝑱𝑘𝑘 
is the Jacobian (matrix derivative) of 𝒇𝒇 evaluated at 𝒙̂𝒙𝑘𝑘 for 𝑘𝑘 = 1,⋯ ,𝑛𝑛. Note that both 𝑱𝑱𝑘𝑘 and 𝑭𝑭𝑘𝑘 
are from the first-order approximation but that only 𝑱𝑱𝑘𝑘 is computable since it is evaluated at a known 
point. Therefore, the surrogate process  𝒆𝒆‾𝑘𝑘  is an AR  process with deterministic coefficients and 
independent noise terms, so its limiting or finite-sample distribution can be potentially computed. In 
practice, we use the observed quantities 𝑲𝑲�𝑛𝑛 and 𝑱̅𝑱𝑛𝑛 for large values of n as approximations to the 
limiting values 𝑲𝑲∗ and 𝑱𝑱∗. Using theory of Markov processes, the formal justification for the approach 
above is given in [20] for the CGKF case; the corresponding justification in the EKF case is ongoing 
research, but a numerical demonstration of the validity is given in Sect. IV below. 

Note that in the important special case where the initial state and noise terms in the state-space model 
are all Gaussian distributed, then the limiting distribution for 𝒆𝒆‾𝑛𝑛  is 𝑁𝑁(𝟎𝟎,𝑷𝑷�), where 𝑷𝑷� =
lim𝑛𝑛→∞ cov(𝒆𝒆‾𝑛𝑛).  We can approximate 𝑷𝑷� , the limiting surrogate covariance matrix by running n 
iterations of the recursion cov(𝒆𝒆‾𝑘𝑘+1) =  𝑪𝑪𝑘𝑘cov(𝒆𝒆‾𝑘𝑘)𝑪𝑪𝑘𝑘𝑇𝑇 + cov(𝛈𝛈𝑘𝑘+1). Note that 𝑱𝑱∗ and 𝑲𝑲∗, as needed 
in the recursion, are approximated by ergodic average values from a large number of iterations (which is 
available). This approach based on 𝑁𝑁(𝟎𝟎,𝑷𝑷�) is used in the calculation of probabilities and confidence 
regions in Section IV below. 

 

IV. Numerical Study 

A. Kinematic State-Space Model 
The following numerical study example is based on Section III and the kinematic models described 

in [10] and [11]. Consider a maneuvering object in the xyz plane (3-dimensional space), and the EKF is 
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used to track the kinematic state of the target. At each time step, the target state is described as the 
following 9 × 1 vector: 

𝒙𝒙 =  �𝑝𝑝𝑥𝑥 , 𝑣𝑣𝑥𝑥,𝑎𝑎𝑥𝑥 ,𝑝𝑝𝑦𝑦, 𝑣𝑣𝑦𝑦,𝑎𝑎𝑦𝑦,𝑝𝑝𝑧𝑧 , 𝑣𝑣𝑧𝑧,𝑎𝑎𝑧𝑧�
𝑇𝑇 , 

where 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦 and 𝑝𝑝𝑧𝑧 denote the position of the target along axis x, y and z, respectively. Furthermore, 
𝑣𝑣𝑥𝑥 , 𝑣𝑣𝑦𝑦  and 𝑣𝑣𝑧𝑧  denote the corresponding velocities, and 𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦  and 𝑎𝑎𝑧𝑧  denote the corresponding 
accelerations. A graphical illustration of the tracking problem is given in Figure 3. 

 

Figure 3. Graphical illustration of the target tracking problem. 

We follow the notation in the standard state-space model in Sect. III.A. Following ref. [9, Chap. 6], 
we choose a specific form of the state transition function by setting 𝒇𝒇(𝒙𝒙) = 𝑨𝑨𝒙𝒙 + 𝒖𝒖(𝒙𝒙), where the 9 × 9 
matrix 𝑨𝑨 is taken as a block diagonal matrix with each of the three 3 × 3 blocks in 𝑨𝑨 being  

�
1 ∆𝑇𝑇 ∆𝑇𝑇2

2
0 0 ∆𝑇𝑇
0 0 1

�, 

and the control function 𝒖𝒖 is as follows: 

 𝒖𝒖(𝒙𝒙𝑘𝑘) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−0.1𝒙𝒙𝑘𝑘1
−0.1𝒙𝒙𝑘𝑘2

−0.5𝒙𝒙𝑘𝑘3 + 0.5sin (𝒙𝒙𝑘𝑘3)
−0.05𝒙𝒙𝑘𝑘4
−0.05𝒙𝒙𝑘𝑘5

−0.5𝒙𝒙𝑘𝑘6 + 0.5cos (𝒙𝒙𝑘𝑘6)
−0.05𝒙𝒙𝑘𝑘7
−0.05𝒙𝒙𝑘𝑘8

−0.5𝒙𝒙𝑘𝑘9 + 0.5sin (𝒙𝒙𝑘𝑘9)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

The covariance matrix 𝑸𝑸 of the state noise 𝒘𝒘𝑘𝑘 is taken as a block diagonal matrix with each of the 
three 3 × 3 blocks being: 
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σ𝑤𝑤2

⎣
⎢
⎢
⎢
⎡
∆𝑇𝑇4

4
∆𝑇𝑇3

2
∆𝑇𝑇2

2
∆𝑇𝑇3

2
∆𝑇𝑇2 ∆𝑇𝑇

∆𝑇𝑇2

2
∆𝑇𝑇 1 ⎦

⎥
⎥
⎥
⎤

. 

For the measurement model, we assume that the state can be partially observed through the 
measurement matrix 𝑯𝑯 below and the measurements have additive noise 𝒗𝒗𝑘𝑘 with a covariance matrix 
as follows: 

𝑯𝑯 = �
1 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 0

0 0 0
0 0 0
1 0 0

� and 𝑹𝑹 = σ𝑣𝑣2 �
∆𝑇𝑇 0 0
0 ∆𝑇𝑇 0
0 0 ∆𝑇𝑇

�. 

In this example, let us assume that for illustrative purpose ∆𝑇𝑇 = 0.05, σ𝑤𝑤 = 4, σ𝑣𝑣 = 2, and all noises 
(and initial state) are Gaussian. 

B. Statistical Justification for Use of Surrogate Method with EKF 
As mentioned in Sect. III.C, the surrogate method has been formally justified in the case of the 

CGKF but not (yet) in the case of the EKF. However, in ongoing research, partial theoretical and 
statistical (numerical) justification has been completed for the EKF. We now present some of the 
statistical justification.  

In particular, to provide partial statistical justification of the convergence of the error 𝒆𝒆𝑘𝑘  in 
distribution, using the model in Sect. IV.A above, let us simulate one long trajectory of 105 samples of 
the filtering error 𝒆𝒆𝑘𝑘. Note that convergence in distribution is a critical part of justifying the above-
discussed stochastic steady-state behavior and ergodic averaging. Because the points along the same 
trajectory are dependent, we use the method of batch means (see ref. [21, Chap. 4]) to create nearly 
independent samples for use with standard statistical tests. We use a batch size of 250 and drop the first 
104 samples for the “burn-in” (transient) period. Therefore, we have (105 – 104)/250 = 360 batch mean 
values for each of the nine components of the error. 

Then, let us perform the following three statistical tests for the batch mean values. We use the 
following tests:  

(i) Runs test for randomness (independence), where the null hypothesis is that after batch mean 
processing, the values are independent (see ref. [22, Sect. 4.5]). 

(ii) Matched-pair t-test for first 180 batch mean values against the last 180 batch mean values 
(among the total of 360 batch means along one trajectory), where the null hypothesis is that the 
mean values of the two divided groups are the same (see ref. [23, Appendix B]). 

(iii) Kolmogorov-Smirnov (KS) goodness-of-fit test, where the null hypothesis is that the two 
groups come from the same distribution. 

Table 1 below shows the probability values (P-values) of all three tests using the batch means for 
each of the nine components. The results show that at the level of 0.05 for each test, the individual tests 
fail to reject the null hypothesis. Hence, there is no statistical indications of behavior that is contrary to 
that predicted by the surrogate process method. Note that because we are testing multiple hypotheses 
above, a multiple comparisons test (such as the Tukey-Kramer method) could also be applied (ref. [23, 
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Chap. 12]). However, given that there was no rejection of any null hypothesis in Table 1, and given that 
multiple comparisons tests widen the associated intervals for hypothesis testing, it appears that no 
adjustment for multiple comparisons is needed here. 

Table 1. P-values of statistical tests applied to batch mean values. 

Component of 
𝒆𝒆𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Runs Test Matched-

Pairs t-Test KS Test 

1st Component 𝑝𝑝𝑥𝑥 0.34 0.29 0.56 
2nd Component 𝑣𝑣 1.00 0.11 0.17 
3rd Component 𝑎𝑎𝑥𝑥 0.09 0.14 0.40 
4th Component 𝑝𝑝𝑦𝑦 0.46 0.86 0.82 
5th Component 𝑣𝑣𝑦𝑦 0.17 0.85 0.82 
6th Component 𝑎𝑎𝑦𝑦 0.92 0.85 0.48 
7th Component 𝑝𝑝𝑧𝑧 0.92 0.68 0.89 
8th Component 𝑣𝑣𝑧𝑧 0.46 0.46 0.48 
9th Component 𝑎𝑎𝑧𝑧 0.21 0.42 0.56 

 
C. Numerical Results 

We now apply this surrogate-based method to the 3D tracking problem described above and compute 
confidence intervals for each component of 𝒆𝒆1000. Figure 4 shows the marginal density plots of the 
surrogate overlaying those of the empirical terminal error density obtained from 104 independent 
replicates, where the dashed curves are the marginal density of the surrogate 𝒆𝒆�1000 and the red solid 
curves are the marginal empirical density of true 𝒆𝒆1000 . Note that the surrogate densities are the 
Gaussian marginal densities derived from the 𝑁𝑁(𝟎𝟎,𝑷𝑷�) distribution, as mentioned at the end of Section 
III. 



 
DISTRIBUTION STATEMENT A—Approved for public release; distribution is unlimited. 

 
10 

 
Figure 4. Marginal empirical densities of 𝒆𝒆𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 (solid line) vs.  

marginal densities of surrogate 𝒆𝒆�𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 (dashed line). 

Although there are some discrepancies between the density curves of the nine components in Figure 
4, the surrogate densities computed from one trajectory are close to the corresponding empirical error 
density from the 104 independent replicates in all cases. This demonstrates the effectiveness of the 
surrogate as an approximation.  

The 95% confidence intervals of each component of the terminal error are summarized in Table 2 
below. As shown, the surrogate confidence intervals are close to the corresponding empirical quantiles 
of the true error. This result is in line with the density plots in Figure 4. 

 



 
DISTRIBUTION STATEMENT A—Approved for public release; distribution is unlimited. 

 
11 

Table 2. 95% confidence intervals from empirical quantiles of 𝒆𝒆𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 and   
Gaussian-based quantiles for the surrogate 𝒆𝒆�𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. 

Component of 𝒆𝒆𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 Empirical Quantiles Surrogate Approximation 
1st Component 𝑝𝑝𝑥𝑥 (−0.344, 0.340) (−0.373, 0.373) 
2nd Component 𝑣𝑣 (−1.500, 1.535) (−1.864, 1.864) 
3rd Component 𝑎𝑎𝑥𝑥 (−7.871, 7.713) (−8.906, 8.906) 
4th Component 𝑝𝑝𝑦𝑦 (−0.403, 0.363) (−0.375, 0.375) 
5th Component 𝑣𝑣𝑦𝑦 (−1.745, 1.534) (−1.555, 1.555) 
6th Component 𝑎𝑎𝑦𝑦 (−8.303, 7.420) (−8.031, 8.031) 
7th Component 𝑝𝑝𝑧𝑧 (−0.395, 0.386) (−0.427, 0.427) 
8th Component 𝑣𝑣𝑧𝑧 (−1.734, 1.711) (−2.094, 2.094) 
9th Component 𝑎𝑎𝑧𝑧 (−7.897, 7.949) (−8.915, 8.915) 

 

V. Conclusions 
In this work, we consider the application of the EKF algorithm in target-tracking problems with 

nonlinear discrete-time systems. We introduce a surrogate-based method to approximate the uncertainty 
bounds for the state estimation error of the EKF error using one trajectory. The method is relatively 
easy to use in that it relies on simple running (ergodic) averages of certain quantities in the EKF. 
Ongoing work is extending the theoretical justification for the method from the CGKF setting in ref. 
[20] to the EKF setting. This paper provides further support for the method through numerical tests in 
a standard tracking setting. It is shown that the uncertainty bounds computed from the surrogate method 
are close to the empirical confidence bounds of the error distribution. 
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