
© 2023 Carnegie Mellon University 1
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps PIM and Capability

Maturity

© 2023 Carnegie Mellon University 2
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Distribution Statement

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering

Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM23-0434

© 2023 Carnegie Mellon University 3
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

A Program View

All software oriented programs are driven by three

concerns:

• Business Mission – captures stakeholder

needs and channels the whole program in

meeting those needs. It answer the questions

Why and For Whom the program exists

• Capability to Deliver Value – covers the

people, processes, and technology necessary

to build, deploy, and operate the program’s

products

• Products – the units of value delivered by the

program. Products utilize the capabilities

delivered by the software factory and

operational environments.

© 2023 Carnegie Mellon University 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps: Modern Software Engineering Practices and Tools that

Encompass the Full Software Lifecycle

DevSecOps is a cultural and engineering practice that breaks down

barriers and opens collaboration between development, security,

and operations organizations using automation to focus on rapid,

frequent delivery of secure infrastructure and software to production.

It encompasses intake to release of software and manages those

flows predictably, transparently, and with minimal human

intervention/effort [1].

A DevSecOps Pipeline attempts to seamlessly integrate “three

traditional factions that sometimes have opposing interests:

• development; which values features;

• security, which values defensibility; and

• operations, which values stability [2].”

Not only does one need to balance the factions. They must do so in a

way that balances risk, quality and benefits within their time,

scope, and cost constraints.

[1] DevSecOps Guide: Standard DevSecOps Platform Framework. U.S. General Services Administration.
https://tech.gsa.gov/guides/dev_sec_ops_gui de. Accessed 17 May 2021

[2] DevSecOps Platform Independent Model, https://cmu-sei.github.io/DevSecOps-Model/

© 2023 Carnegie Mellon University 5
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

© 2023 Carnegie Mellon University

What is the DevSecOps Platform

Independent Model (PIM)

© 2023 Carnegie Mellon University 6
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

SEI DevSecOps Platform Independent Model (PIM)

• is an authoritative reference to fully design and

execute an integrated Agile and DevSecOps

strategy in which all stakeholder needs are

addressed

• enables organizations to implement DevSecOps in

a secure, safe, and sustainable way in order to fully

reap the benefits of flexibility and speed available

from implementing DevSecOps principles,

practices, and tools

• was developed to outline the activities necessary to

consciously and predictably evolve the pipeline,

while providing a formal approach and

methodology to building a secure pipeline tailored

to an organization’s specific requirements

© 2023 Carnegie Mellon University 7
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Reference Architecture/Platform Independent Model (PIM)

A PIM is a general and reusable model of a solution to a

commonly occurring problem in software engineering within a

given context and is independent of the specific technological

platform used to implement it.

A Reference Architecture is an authoritative source of

information about a specific subject area that guides and

constrains the instantiations of multiple architectures and

solutions [1].

NOTE: PSM = Platform Specific Model
[1] DoD Reference Architecture Description, https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf

https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf

© 2023 Carnegie Mellon University 8
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps PIM - Content Diagram

https://cmu-sei.github.io/DevSecOps-Model/

https://cmu-sei.github.io/DevSecOps-Model/

© 2023 Carnegie Mellon University 9
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Requirements

All requirements are organized into

categories based on logical and

functional groupings:

• Governance

• Requirements

• Architecture and Design

• Development

• Test

• Delivery

• System Infrastructure

Example of Requirements Representation in Diagrams from PIM

Requirements Table Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__49c29c66-3cd5-4435-ae7c-2348500911bb

© 2023 Carnegie Mellon University 10
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Capability/Strategic Viewpoint

A capability is a high-level concept that

describes the ability of a system to achieve

or perform a task or a mission.

All requirements in the DevSecOps PIM

were allocated to corresponding

capabilities.

• Capability to Requirements

Traceability Link

• Capability to Operational

Activity Traceability Link

• Capability Definitions Link

• Strategic Taxonomy High

Level

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__b785f5cf-4f26-44ad-a193-fbabb098ed48
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__fae6e797-735c-49e2-b448-35606712d9c7
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__174b3b63-9066-41d3-ae86-5b79364244f8

© 2023 Carnegie Mellon University 11
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Operational Viewpoints

An operational model for a system describes behavior of the system to conduct enterprise operations.

The main operational processes for DevSecOps includes development process for the product, as well

as the DevSecOps process itself.

• DevSecOps Capability

Delivery Model Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__81be5267-879e-463c-a8ae-e49c2671c673

© 2023 Carnegie Mellon University 12
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Personnel Viewpoints

Personnel viewpoints are used to model the

socio part of DevSecOps system.

• Personnel Structure –

Posts with Responsibilities

Link

• Critical Roles –

Responsibilities, Goals and

Questions

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__6e950f52-c1b1-40bb-9694-d62719c9804f
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__222c0749-e4e8-4303-9ffa-e7f051881c15

© 2023 Carnegie Mellon University 13
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Everyone Plays a Role in DevSecOps

Critical Roles are mapped to Operational Activities.
• Process Involvement Matrix Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__c682f34a-3ea0-4c62-82a8-f590e26323a7

© 2023 Carnegie Mellon University 14
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Example Threat Modeling Diagram for Write Code
Operational Activity

Write Code
Operational Activity
Connectivity Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__d1e17f3d-0161-4bbb-a829-80b2475a2412

© 2023 Carnegie Mellon University 15
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Threat to Operational Activity Matrix

Threats to
Operational
Activities Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__39d192d3-69c4-41ca-8de0-3bfd9f2c9b0e

© 2023 Carnegie Mellon University 16
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Threats with Attributes

Threats Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__1d6b915b-6f0a-42b0-a6b0-f4ac2e768cc6

© 2023 Carnegie Mellon University 17
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Capturing the Complexity of the DevSecOps System

Example of Threats

Traced to Capabilities

via Operational

Activities

Configuration

Management

Complexity Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__4454eb18-78b4-445c-be9d-3eca2f2bd5be

© 2023 Carnegie Mellon University 18
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

The DevSecOps PIM enables Organizations, Projects,
Teams, and Acquirers to

• specify the DevSecOps requirements to the lead system integrators tasked

with developing a platform-specific solution that includes the designed

system and continuous integration/continuous deployment (CI/CD) pipeline

• assess and analyze alternative pipeline functionality and feature changes as

the system evolves

• apply DevSecOps methods to complex products that do not follow well-

established software architectural patterns used in industry

• provide a basis for threat and attack surface analysis to build a cyber

assurance case to demonstrate that the product and DevSecOps pipeline

are sufficiently free from vulnerabilities and that they function only as

intended

• evaluate the capabilities of software factories

© 2023 Carnegie Mellon University 19
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

© 2023 Carnegie Mellon University

DevSecOps Capability Maturity

© 2023 Carnegie Mellon University 20
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Capability Maturity

• A maturity model is a set of characteristics, attributes, indicators, and patters that

represent progression and achievement in a particular domain or discipline

• A maturity model allows an organization, or software factory, to have its practices,

processes, and methods evaluated against a clear set of artifacts that establish a

benchmark

• Capability maturity levels are arranged in an evolutionary scale that defines

measurable transitions from one level of capability to another.

• Maturity models can be used to

- Determine an organization’s current level of capability and then apply these methods

over time to drive improvements

- Determine how well a program is performing by examining the capabilities of its sister

programs.

• The SEI has been defining such models and associated appraisal methods for

over 30 years.

© 2023 Carnegie Mellon University 21
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Capability Maturity

As a DevSecOps system matures, so will its capabilities

DevSecOps can be broken down into 10 capabilities

• These capabilities are groupings of requirements that, when combined, define a collective

competency in performing a set of functional activities across the product lifecycle

The capability levels represent the measure of consistency and completeness

• This is usually achieved through increased automation, in which functional activities are

performed.

© 2023 Carnegie Mellon University 22
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Maturity Levels

Maturity
Level Title Description

1

Performed Basic Practices This represents the minimum set of engineering, security, and operational practices

that is required to begin supporting a product under development, even if only
performed in an ad-hoc manner with minimal automation, documentation, or process

maturity. This level is focused on minimal development, security, and operational
hygiene.

2

Documented/Automated

Intermediate Practices

Practices are completed in addition to meeting the level 1 practices. This level

represents the transition from manual, ad-hoc practices to the automated and
consistent execution of defined processes. This set of practices represents the next

evolution of the maturity of the product under development’s pipeline by providing the
capability needed to automate the practices that are most often executed or produce

the most unpredictable results. These practices include defining processes that enable

individuals to perform activities in a repeatable manner.

3

Managed Pipeline Execution Practices are completed in addition to meeting the level 1 and 2 practices. This level

focuses on consistently meeting the information needs of all relevant stakeholders
associated with the product under development so that they can make informed

decisions as work items progress through a defined process.

4

Proactive Reviewing and

Optimizing DevSecOps

Practices are completed in addition to meeting the level 1-3 practices. This level is

focused on reviewing the effectiveness of the system so that corrective actions are
taken when necessary, as well as quantitively improving the system’s performance as it

relates to the consistent development and operation of the product under development.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Glossary__d6e6f9fb-ff5c-4499-8450-8875f2240834

© 2023 Carnegie Mellon University 23
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Core Capabilities (1 of 3)

Capability Definition
Configuration
Management

Configuration management is the set of activities used to establish and maintain the integrity of the system and product under development, and
associated supporting artifacts throughout their useful lives. Different levels of control are appropriate for different supporting artifacts and
implementation elements and for different points in time. For some supporting artifacts and implementation elements, it may be sufficient to
maintain version control of the artifact or element that is traced to a specific instance of the system or product under development in use at a given
time, past or present, so that all information related to a given instance, or version, is known. In that case, all other variations of the artifacts and
elements can be discarded as subsequent iterations are generated or updated. Other supporting artifacts and implementation elements may require
formal configuration, in which case baselines are defined and established at predetermined points in the lifecycle. Baselines, and subsequent changes,
are formally reviewed and approved which will serve as the basis for future efforts. The configuration management capability of a system matures as
the consistency and completeness of the integrity controls are put in place to capture all supporting artifacts and implementation elements associated
with the system and product under development while keeping pace with the DevSecOps pipeline through automation and integration with all
aspects of the lifecycle. This includes (1) monitoring the relationship between artifacts and elements for a given instance, or version, of the system or
product under development, (2) capturing sufficient information to identify and maintain configuration items, even if those who created them are no
longer available, (3) defining the level of control each artifact and element requires based on technical and business needs, (4) systematically
controlling and monitoring changes to configuration items, and (5) enforcing and logging of all required relevant stakeholderreviews and approvals,
based on the organization, project, and team policies and procedures.

Deployment Deployment is the set of processes related to the delivery or release of the product under development into the environment in which users of the
product interact with it. The deployment capabilities of the system mature with increased levels of automation and advanced rollback and release
functionality.

Hosting Services Hosting services are made up of the underlying infrastructure and platforms that both the system and product under development operate upon. This
includes the various cloud providers, on premises bare-metal and virtualization, networks, and other software as a service (SaaS) that is utilized along
with the management, configuration, access control, ownership, and personnel involved.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 24
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Core Capabilities (2 of 3)

Capability Definition
Integration Integration is the process of merging changes from multiple developers made to a single code base. Integration can be made manually on a periodic

basis, typically by a senior or lead engineer, or it can be made continuously by automated processes as individual changes are made to the code base.
In either case, the purpose of integration is to assemble a series of changes, merge and deconflict them, build the product, and ensure that it
functions as intended and that no change broke the whole product, even if those changes worked in isolation.

Monitor &
Control

Monitor and control involves continuously monitoring activities, communicating status, and taking corrective action to proactively address issues and
consistently improve performance. More mature projects automate as much of this as possible. Appropriate visibility enables timely corrective action
to be taken when performance deviates significantly from what was expected. A deviation is significant if it precludes the project from meeting its
objectives when left unresolved. Items that should be monitored include cost, schedule, effort, commitments, risks, data, stakeholder involvement,
corrective action progress, and task and work product attributes like size, complexity, weight, form, fit, or function.

Planning &
Tracking

Planning and tracking is the set of practices one uses to define tasks and activities. It also includes the resources one needs to perform those tasks and
activities, achieve an objective or commitment, and track progress (or lack thereof) towards achieving the given objective. It provides the mechanisms
required to inform relevant stakeholders where an effort currently is within the process and whether it is on track to provide the expected outcomes.
These mechanisms allow relevant stakeholders to determine what has been accomplished and what adjustments or corrective actions need to occur
to account for impediments and other unforeseen issues. Ideally, impediments and issues are proactively identified and addressed. Practices include
documenting activities and breaking them down into actionable work to which one can assign resources, capturing dependence, forecasting, mapping
work to requirements, collecting data, tracking progress to commitments, and reporting status. The planning and tracking capability of a system
matures as the automation and integration of associated practices increases.

Quality
Assurance

Quality assurance is a set of independent activities (i.e., free from technical, managerial, and financial influences, intentional or unintentional)
designed to provide confidence to relevant stakeholders that the DevSecOps processes and tools are appropriate for and produce products and
services of suitable quality for their intended purposes. It assumes that the organization's, team's, and project's policies and procedures have been
defined based on all relevant stakeholder needs, which will result in a value stream that consistently produces products and services that meet all
relevant stakeholder expectations. The quality assurance capability of a system matures as its ability to assess adherence to and the adequacy of the
defined policies and procedures improves.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 25
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

DevSecOps Core Capabilities (3 of 3)

Capability Definition
Software
Assurance

Software assurance is the level of confidence that software functions only as intended and is free from vulnerabilities either intentionally or
unintentionally designed or inserted as part of the software throughout the full software lifecycle. It consists of two independent but interrelated
assertions:

1. The software functions only as intended. It exhibits only functionality intended by its design and does not exhibit functionality not intended.
2. The software is free from vulnerabilities, whether intentionally or unintentionally present in the software, including software incorporated into the
final system.

It is the responsibility of the DevSecOps system to ensure that software that meets the organization's threshold for software assurance is allowed to
be deployed and operated.

Solution
Development

Solutions development determines the best way of satisfying the requirements to achieve an outcome. Its goals are to evaluate baseline requirements
and alternative solutions to achieve them, select the optimum solution, and create a specification for the solution. Each development value stream
develops one or more solutions, which are products, services, or systems delivered to the customer, whether internal or external to the enterprise.

Verification &
Validation

Verification and validation is the set of activities that provides evidence that the system or application under development has met the requirements
and criteria that are expected. The scope includes the general realm of testing, verifying, and validating activities and matures as automation,
feedback, and integration with other elements increase.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 26
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Configuration Management Capability Levels

Level Description

1

• All supporting artifacts and implementation elements that require configuration control are identified and documented.
• The level of configuration control for each supporting artifact and implementation element is defined.
• While the configuration management of supporting artifacts may be a fully manual process, an automated version control system, or set of systems, must be in place to track current
and historical versions of fi les used to create implementation elements.

2

• Automated configuration management system(s) are in place for all identified supporting artifacts and implementation elemen ts.
• Immutable logging is in place for all changes to configuration items and associated metadata, such as who made the change, when the change occurred, and what was changed.
• Changes to the system and product under development are associated with an approved requirement or change request.
• All relevant stakeholders are notified when changes to configuration items are requested.
• Some integration between the automated version control system used for fi le tracking and other aspects of the DevSecOps pip eline has occurred in order to enable the automatic
triggering of other activities.
• The automated version control system traces relationships between test artifacts and requirements, and test results and ass ociated artifacts, to a specific instance of the system or
product under development in use at a given time, past or present.

3

• Manage and control the volatil ity of change. Be able to identify impacted supporting artifacts and implementation elements a given change request will impact.
• Use automatic discovery tools to scan current instance of system and product under development, and associated configuratio ns, to identify mismatches between current instance
and approved versions under configuration management in order to ensure integrity of the instantiated instances. Automaticall y report all mismatches to relevant stakeholders.
• The system shall automatically maintain an audit trail of all system configuration changes to include what was changed, who /what changed it, and when the change occurred.
• System only allows authorized individuals, or entities, to make specific types of changes to the product under development based on the individual’s role, or entity’s purpose, and
where they are in the DevSecOps pipeline.

4

• Automatically correct any misconfiguration of the currently instantiated system and product under development based on appr oved supporting artifacts and implementation
elements under configuration control.
• The system shall monitor user activities and actively identify security-related actions and system configuration changes that are uncharacteristic of the given user and notify relevant
stakeholders of the uncharacteristic behavior to validate the change was appropriate and to avoid insider threats.
• A fully automated change proposal process is in place, where changes are proposed and automatically routed to relevant stak eholders for approval and implemented by the system.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 27
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Deployment Capability Levels

Level Description

1 • The system can manually recover if a failure occurs in a deployed product, deploying the product at the last known acceptab le state.

2

• A quality criterion for the deployment of the system and product under development is defined.
• While monitoring for failures can be a combination of manual and automated detection processes:
- the system can automatically recover if a failure occurs in a deployed product, deploying the product at the last known accep table state.
- the system can automatically recover the product to a previously working state in the event of system failure.
- the system can track the changes between deployed products and the personnel and reasoning involved in the change.

3

• Both the system and product under development are fully automated in terms of orchestration and deployment into target envi ronments
• Various release strategies are supported to include canary, Blue-Green, multiple service, batch, roll ing, and A/B testing.
• The product under development is deployed continuously, supported by sufficient automation in which no human intervention i s required to release the product to its users.
• The system shall automatically collect the necessary data to monitor the system and product under development for failures and quality issues and alert relevant stakeholders when
corrective actions are required.
• In the event that a failure or cancellation occurs during deployment of the product or system, the system will automaticall y restore a the most recent working version.
• Automated updating or patching of software used by the system. Patches are rolled out automatically to the various parts of the system.

4

• Continuous improvement of the testing procedures is performed based on the data collected from the system and product under development tests.
• The system shall automatically identify and track when the defined quality criteria have not been met and the automated qua l ity controls have been bypassed. All relevant
stakeholders will be automatically notified, and the noncompliance issue will be tracked to closure.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 28
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Hosting Services Capability Levels

Level Description

1

• The hosting services adequately support the scalability, reliability, regulatory, and security requirements to operate, mai ntain, and build an organization's product.
• The hosting services provide compatibility with the testing frameworks and tools util ized throughout system and product dev elopment l ifecycles.

2

• Logs from hosting services are aggregated, auditable, and analyzable.
• System transaction logs are available and immutable.
• Performance metrics can be visualized and analyzed for hardware, software, database, and network components.
• Role-based access control is util ized throughout.
• All information collected uses proper techniques to mitigate privacy and sensitivity concerns, and can be properly disposed of when necessary.
• All configuration items are identified and resources are planned and executed in order to maintain configuration integrity of the given item.
• Disaster recovery processes are documented and supported.

3

• The system infrastructure is provisioned using IaC and is automated.
• Captured metrics can generate alerts based off of defined values.
• The system is able to automatically alert and communicate metrics associated with security risks of the underlying infrastr ucture to stakeholders so they can manage risk and make
decisions regarding risk and impact to software applications.
• Automatic upgrading of operating system software and supporting services is in place.

4

• Qualities such as performance, capacity, security, compliance, and risk tolerance are continuously being monitored using au tomated tools. Results from the automated tools are
automatically reported to all relevant stakeholders to ensure the quality of the automated process and to identify and track improvements to quality attributes.
• System configuration and performance are continuously being monitored using automated tools to identify and report all anomalies. Results from the automated tools are
automatically reported to all relevant stakeholders so they can manage risk and make decisions.
• Infrastructure is immutable and can be automatically replaced versus update in place.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 29
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Integration Capability Levels

Level Description

1

• Documented, repeatable, processes exist that may be manual, automated, or some combination of the two.
• Some individual processes (e.g., merging changes) may require expert subjective judgement.
• Processes may require manual intervention between phases and/or to coordinate steps between disparate systems
• Some human-human and human-process contact occurs outside the orchestration pipeline.
• Process initiation is manual and irregular.

2

• Most individual processes are scripted and repeatable.
• Expert subjectivity has been removed from all processes by adopting processes with objective criteria for success.
• An orchestrated integration pipeline exists; however, it may not be fully automated.
• Some human-human and human-process contact occurs outside the orchestration pipeline.
• Integration process initiation is regular whether manual or automated.

3

• All individual processes are scripted and fully automated.
• An orchestrated integration pipeline controls all processes from start to finish.
• All human-process contact occurs from within the context of the orchestration pipeline (e.g., approvals captured in ticketing system, SCM, etc., and orchestration continues).

4

• The entire integration pipeline is fully automated, requiring no manual intervention.
• The entire integration pipeline runs in near real time as changes are committed to the code base.
• Alerts, notifications and results of integration are sent to relevant engineers automatically.
• A successfully integrated product is ready for delivery with no additional manual processes required.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 30
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Monitor & Control Capability Levels

Level Description

1

• All supporting artifacts and implementation elements that require monitoring and control are identified and documented.
• The level of monitoring and control for each supporting artifact and implementation element is defined.
• A policy and plan for planning and performing the monitor and control capability is established and maintained.
• The work products of the monitor and control capability are placed under appropriate levels of control.

2

• The people performing or supporting the monitor and control capability are trained as needed.
• Automated monitor and control system(s) are in place for all identified supporting artifacts and implementation elements.
• Automated collection of work products, measures, and measurement results are in place.
• Automated comparison of actual measurements to expected measurements is performed, and deviations are quantified.
• Automated alerting when significant deviations occur.

3

• The relevant stakeholders of the monitor and control capability are identified, involved, and are obtaining the information they need to make decisions.
• Sharing of monitor and control information to relevant stakeholders is automated.
• Stakeholders can tailor the visualizations of the information provided to meet their needs.

4

• The monitor and control capability is itself subject to being monitored and controlled and corrective action is taken when necessary.
• Automated collection of monitor and control capability work products, measures, measurement results, and improvement information, including records of
significant deviation, criteria for significant deviation, and corrective action results, are in place.
• Root causes of defects and other problems in the monitor and control capability are identified and corrected.
• Monitor and control capability is itself subject to continuous improvement.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 31
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Planning & Tracking Capability Levels

Level Description

1
Manual practices are used, with possible use of some rudimentary tools, that collect and store information used to track and report status and outputs from planning and tracking
activities.

2

• Planning and tracking tools are used to define tasks and activities, along with the resources needed to perform them and ac hieve an objective or commitment, and track progress, or
lack thereof, towards achieving the given objective.
• The tools provide the ability to capture and associate planning and tracking metadata, such as estimates, assumptions, prio ritization, assignment, status, commitments, assets,
association to implementation elements and supporting artifacts, and agreements. Metadata may consist of mostly manually coll ected information, with minimal automation.
• Automated visualization techniques are used to organize activities, understand dependencies, coordinate multiteam efforts, and road map future commitments. The automated
system is used to share project plans and status of current activities with relevant stakeholders.

3

• The planning and tracking tools are able to coordinate multiple value streams at the organizational level. Planning and tra cking activities are integrated to include both technical and
non-technical activities, such as quality assurance, documentation, testing, and configuration management. Dependencies between technical and non-technical activities can be
visualized in order to coordinate efforts and identify issues.
• Metadata is used to support estimation, projections and what-if scenarios simulations. Organizations, projects, and teams are able to customize metadata, and associated use, in
order to meet relevant stakeholder needs.
• The planning and tracking tools are integrated with other tools in order to automatically collect metadata associated with various value stream activities. This includes defect, issues,
and noncompliance efforts as they are automatically discovered and subsequently addressed and tracked to closure and asset ma nagement.
• Automated stakeholder notification and status reporting, and associated visualizations, are used to notify relevant stakeho lders of changes to plans or commitments, status of
current activities, deviations from defined thresholds, and asset renewals and maintenance.

4

Data is used to
• apply statistical analytical methods to planning and tracking practices in order to improve and optimize the team’s, projec t’s, and organization’s ability to meet objectives and
commitments
• provide objective quantitative status to relevant stakeholders
• automatically generate tasking and execute processes based on plan

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 32
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Quality Assurance Capability Levels

Level Description

1

• All relevant stakeholders associated with the products and services associated with the product under development and the s ystem that supports it have been identified.
• All relevant stakeholder expectations and regulatory requirements are documented.
• Policies and procedures are developed and documented to describe how the DevSecOps processes and tools are required to be u sed in order to meet all relevant stakeholder
requirements.
• Documented policies and procedures may use a traditional document-centered approach, and dissemination may be a manual process .
• All current policies and procedures are readily available to all personnel.

2

• Automated tools are used to maintain configuration control of policies and procedures.
• All relevant stakeholders are automatically notified of changes to policies and procedures.
• Independent resources have been identified and a plan exists to review or audit activities that have been defined within th e documented policies and procedures.
• DevSecOps processes and tools are periodically audited based on the plan to identify noncompliance with policies and proced ures and inadequacies regarding the value stream’s
ability to consistently produce products and services that meet all relevant stakeholders’ expectations and regulatory requir ements. The audits may be conducted manually, use
automation, or a combination of both.
• All identified noncompliance and inadequacies are independently documented, reported to relevant stakeholders, and tracked to closure.

3

• DevSecOps tools are configured to automatically enforce policies and procedures as a product under development progresses t hrough the system.
• Automated processes are monitored by an independent resource in order to detect and report noncompliance issues to all relevant stakeholders.
• Noncompliance and inadequacy issues identified through automated or manual auditing are documented and tracked to closure u sing an automated issue tracking system that is
consistent with the tools used for all other planning and tracking purposes, in order to integrate all efforts that must be p lanned and tracked to completion.
• All quality assurance tools, such as origin and static analysis tools, are fully integrated into the system’s pipeline, and associated policies are automatically enforced as the product
under development progresses through the system.
• The system automatically monitors and enforces compliance to defined quality criteria as defined for both the product under development and the system regarding the
implementation of enhancements and modifications.

4

• All automated activities are continuously being audit for noncompliance issues through the use of automated tools, with reg ards to both the system and product under
development.
• Results from the automated auditing tools are automatically reported to all relevant stakeholders to ensure the quality of the automated auditing process, in addition to tracking
noncompliance issues to resolution.
• The system automatically identifies and tracks when the defined quality criteria have not been met or the automated quality controls have been bypassed. All relevant stakeholders
will be automatically notified and the noncompliance issue will be tracked to closure.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 33
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Software Assurance Capability Levels

Level Description

1

• All relevant stakeholders and expectations with regards to the products and services associated with the product under deve lopment and the system that supports it have been
identified.
• System functional and nonfunctional requirements are documented.
• A comprehensive software bil l of materials (SBOM) is compiled detail ing all components that make up the DevSecOps system.
• All relevant system constraints and regulatory requirements are documented.
• Software assurance processes and tools are inventoried, and policies and procedures are written setting out how they are to be used to meet assurance requirements.
• Documented policies and procedures may use a traditional document-centered approach, and dissemination may be a manual process .

2

• Software assurance related to DevSecOps metrics are defined and collected.
• Baseline and threshold levels for software assurance are established.
• Metrics are tracked over time and made available to all stakeholders as needed.
• Results of system functional testing are collected and periodically analyzed.
• Known vulnerabilities in all components that make up the DevSecOps system are periodically collected and analyzed.
• Processes and policies are in place to periodically compare present metrics to past and make adjustments as necessary.
• Processes and policies are in place and reviewed periodically.
• Reports are reviewed from all software assurance products.
• Processes and policies are in place to identify when the level of software assurance implied by captured metrics and reports exceeds the organization's threshold and to make
adjustments as necessary.

3

• The organization has established a comprehensive risk analysis and management program.
• Software assurance metrics, reporting, and analysis are incorporated into the risk management process.
• Results of the risk management process are incorporated into software assurance policies and procedures.
• Software assurance metrics and thresholds are periodically updated as a result of risk management activities.
• The organization prioritizes software assurance tasks based on the level of risk to the organization.

4

• All software assurance tools, or as many as are feasible, are run continuously and reports are disseminated automatically t o all relevant stakeholders.
• Software that fails to meet the organization's software assurance thresholds is automatically prevented from being delivered or deployed.
• Automated procedures are in place to remediate software assurance issues found within the operating DevSecOps system.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 34
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Verification & Validation Capability Levels

Level Description

1

• All relevant stakeholders, with regards to the products and services associated with the product under development and the system that supports it, have been identified.
• All testing cases, procedures, and their artifacts are configured, stored, and maintained for a given instance of a product under development.
• The system and product under development support the necessary technologies to execute tests.

2

• Automated tools are used to trace tests to requirements.
• Automated tools are used to trace tests cases and artifacts to specific versions of a product under development.
• Automated tools are used to configure, store, and execute tests.
• Test coverage reports are generated and captured for a specific instance of the system or product under development.
• Tests are performed across multiple phases of the software lifecycle, such as development, test, and operations, providing feedback continuously.
• Security patching is automatically tested, resulting in automated report generation and delivery.
• Both functional and nonfunction tests are manually or automatically executed.

3

• Tests are executed automatically using a continuous integration technique.
• An MBSE approach is used to plan and execute testing of the system and product under development.
• The system and product under development automatically execute quality tests that either passes or fails the appropriate co mponent under test based on quality metrics for any
change being made. Appropriate monitoring of the system and product under development enforces the quality metrics.
• The system provides the necessary environment to perform advanced security testing such as fuzz and penetration testing act ivities.

Link to
DevSecOps

PIM

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656

© 2023 Carnegie Mellon University 35
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Contact Information

Timothy A. Chick
CERT Applied Systems Group Technical Manager, CMU-Software Engineering Institute

Adjunct Faculty Member, CMU-Software and Societal Systems Department

tchick@sei.cmu.edu

https://www.sei.cmu.edu

https://s3d.cmu.edu

mailto:tchick@sei.cmu.edu
https://www.sei.cmu.edu/
https://s3d.cmu.edu/

