

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DETECTION OF SYNTHETIC ANOMALIES
ON AN EXPERIMENTALLY GENERATED 5G DATA SET

USING CONVOLUTIONAL NEURAL NETWORKS

by

Ashley E. Edmond

September 2022

Thesis Advisor: Preetha Thulasiraman
Second Reader: Chad A. Bollmann

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC, 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 September 2022 3. REPORT TYPE AND DATES COVERED
 Master’s thesis

 4. TITLE AND SUBTITLE
DETECTION OF SYNTHETIC ANOMALIES ON AN EXPERIMENTALLY
GENERATED 5G DATA SET USING CONVOLUTIONAL NEURAL
NETWORKS

 5. FUNDING NUMBERS

 RMQ80

 6. AUTHOR(S) Ashley E. Edmond

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
ONR

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The research microgrid currently deployed at Marine Corps Air Station, Miramar, is leveraging
Verizon’s Non-Standalone (NSA) 5G communications network to provide connectivity between dispersed
energy assets and the energy and water operations center (EWOC). Due to its anchor to the Verizon 4G/LTE
core, the NSA network does not provide technological avenues for cyber anomaly detection. In this research,
we developed a traffic anomaly detection model using supervised machine learning for the energy
communication infrastructure at Miramar. We developed a preliminary cyber anomaly detection platform
using a convolutional neural network (CNN). We experimentally generated a benign 5G data set using the
AT&T 5G cellular tower at the NPS SLAMR facility. We injected synthetic anomalies within the data set to
test the CNN and its effectiveness at classifying packets as anomalous or benign. Data sets with varying
amounts of anomalous data, ranging from 10% to 50%, were created. Accuracy, precision, and recall were
used as performance metrics. Our experiments, conducted with Python and TensorFlow, showed that while
the CNN did not perform its best on the data sets generated, it has the potential to work well with a more
balanced data set that is large enough to host more anomalous traffic.

 14. SUBJECT TERMS
anomaly, 5G, networks, energy, communications, convolution, neural 15. NUMBER OF

PAGES
 93
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DETECTION OF SYNTHETIC ANOMALIES ON AN EXPERIMENTALLY
GENERATED 5G DATA SET USING CONVOLUTIONAL NEURAL

NETWORKS

Ashley E. Edmond
Lieutenant, United States Navy

BS, United States Naval Academy, 2015

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2022

Approved by: Preetha Thulasiraman
 Advisor

 Chad A. Bollmann
 Second Reader

 Douglas J. Fouts
 Chair, Department of Electrical and Computer Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 The research microgrid currently deployed at Marine Corps Air Station, Miramar,

is leveraging Verizon’s Non-Standalone (NSA) 5G communications network to provide

connectivity between dispersed energy assets and the energy and water operations center

(EWOC). Due to its anchor to the Verizon 4G/LTE core, the NSA network does not

provide technological avenues for cyber anomaly detection. In this research, we

developed a traffic anomaly detection model using supervised machine learning for the

energy communication infrastructure at Miramar. We developed a preliminary cyber

anomaly detection platform using a convolutional neural network (CNN). We

experimentally generated a benign 5G data set using the AT&T 5G cellular tower at the

NPS SLAMR facility. We injected synthetic anomalies within the data set to test the

CNN and its effectiveness at classifying packets as anomalous or benign. Data sets with

varying amounts of anomalous data, ranging from 10% to 50%, were created. Accuracy,

precision, and recall were used as performance metrics. Our experiments, conducted with

Python and TensorFlow, showed that while the CNN did not perform its best on the data

sets generated, it has the potential to work well with a more balanced data set that is large

enough to host more anomalous traffic.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MICROGRID AT MIRAMAR ...1
B. ENERGY COMMUNICATIONS NETWORK AT MIRAMAR2
C. MOTIVATION AND CONTRIBUTION ..3
D. THESIS ORGANIZATION ..5

II. BACKGROUND ..7
A. OVERVIEW OF CNN MODEL...7
B. 5G NETWORK ARCHITECTURE: NSA vs. SA11

1. 5G NSA NR networks ..11
2. 5G SA NR networks ...13
3. 5G NSA Network at Miramar ..13

C. LITERATURE REVIEW ...14

III. EXPERIMENTAL DESIGN ..17
A. DATASET ...17

1. Data Collection Process ...17
2. Creating the Anomalous Dataset ..19

B. CNN DESIGN...20
1. Preprocessing Technique Methodology20
2. Preprocessing Technique with Image Results22
3. TensorFlow’s ResNet 50 ..24
4. Characteristics of the CNN Model ...26
5. Summary of Training Process ..27

IV. RESULTS AND ANALYSIS ..29
A. GRAPHICAL REPRESENTATIONS AND METRICS FOR

MEASURING CNN PERFORMANCE ..29
1. Confusion Matrix ...29
2. Learning Curve Plot ..31
3. TSNE Plot ...31

B. DISCUSSION OF FINDINGS ..31
1. 10% Anomalous Dataset ...31
2. 25% Anomalous Dataset ...35
3. 30% Anomalous Dataset ...38
4. 40% Anomalous Dataset ...41
5. 50% Anomalous Dataset ...43

viii

6. Summary of Findings ..47
C. RECOMMENDATIONS FROM FINDINGS47

V. CONCLUSION ..51
A. SUMMARY ..51
B. FUTURE WORK ...52

APPENDIX A. IMAGE GENERATOR ..53

APPENDIX B. DATASETS ..57

APPENDIX C. TASKS ..59

APPENDIX D. CNN MODEL ..65

APPENDIX E. CALLBACKS ..69

LIST OF REFERENCES ..71

INITIAL DISTRIBUTION LIST ...75

ix

LIST OF FIGURES

Figure 1. Suggested Research Microgrid 4G LTE/5G Control of PV and
Backup Generators. Source: [6]. ..3

Figure 2. Typical architecture of CNN consisting of a feature extraction
network and a classifier network. Source: [7]. ..7

Figure 3. The Graphic Depiction of the ReLU Function and Its Derivative.
Source: [9]. ...9

Figure 4. Depiction of the pooling layer. Source: [7]. ..10

Figure 5. Depiction of 5G NSA vs. 5G SA. Source: [20]. ..12

Figure 6. Experimental Data Path from Nighthawk to EdgeBox19

Figure 7. Feature Generator Command ...20

Figure 8. An example of correlation matrix as discussed in [31]. Source: [31].22

Figure 9. Generated Images of Anomalous vs. Benign data. Both anomalous
images exhibit similar image patterns, similar to that of both benign
images. ...24

Figure 10. Directory tree structure layout for every percentage of anomalous
dataset tested. ...24

Figure 11. Example of Residual Learning and skip connections. Source: [11].25

Figure 12. ResNet 50 Architecture. Source: [35]. ...26

Figure 13. Characteristics of the CNN model developed in this thesis.27

Figure 14. Example layout of a confusion matrix and its associated labels.30

Figure 15. A typical learning curve of the 10% anomalous dataset. No severe
overfitting occurred apart from a random spike at epoch 4.32

Figure 16. Confusion Matrix with Anomalous Data at 10%; 96% of anomalous
data was incorrectly labeled. ..33

Figure 17. TSNE plot for 10% anomalous dataset. Large and small clusters of
benign data but anomalous data shows no clustering.34

x

Figure 18. A typical learning curve of the 25% anomalous dataset. Overfitting
is occurring due to the upward slope of the validation loss curve after
epoch 8. ..35

Figure 19. Confusion Matrix with Anomalous Data at 25%; 90% of anomalous
data was incorrectly labeled. ..36

Figure 20. TSNE plot for 25% anomalous dataset. Benign data clustering is
present and anomalous data is more visible. ..37

Figure 21. A typical learning curve of the 30% anomalous dataset. No severe
overfitting occurred. Validation loss is gradually trending
downward. ..38

Figure 22. Confusion Matrix with Anomalous Data at 30%; 67% of anomalous
packets were incorrectly classified as benign. ...39

Figure 23. TSNE plot for 30% anomalous dataset. The larger cluster of benign
data is smaller and very small groupings of anomalous data is spread
throughout the benign data...40

Figure 24. A typical learning curve of the 40% anomalous dataset. No severe
overfitting occurred. Validation loss is gradually trending
downward. ..41

Figure 25. Confusion Matrix with Anomalous Data at 40%; 60% of anomalous
packets were incorrectly classified as benign. ...42

Figure 26. TSNE plot for 40% anomalous dataset. Similar volume of
anomalous and benign clustering compared to 30% anomalous data.43

Figure 27. A typical learning curve of the 50% anomalous dataset. Validation
loss steeply declines after epoch 8 while training loss is flattening.
Model training is near optimal for the given dataset.44

Figure 28. Confusion Matrix with Anomalous Data at 50%; 50% of anomalous
packets were incorrectly classified as benign while 51% were
correctly classified as benign. ..45

Figure 29. TSNE plot for 50% anomalous dataset. Benign data appears to be
more than 50% and anomalous data appears to be less than the
TSNE plot for the 30% anomalous dataset. ...46

Figure 30. A plot of the FPs compared to FNs for each data set. As the
percentages of anomalies increases, the FP and FN converge to 50%.48

xi

LIST OF TABLES

Table 1. Performance metrics on the 10% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 87% accurate at
identifying correctly predicted labels. Model did not perform well
due to FN rate of 96%. ...34

Table 2. Performance metrics on the 25% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 68% accurate at
identifying correctly predicted labels. Model did not perform well
due to high FN rate of 90%. ...37

Table 3. Performance metrics on the 30% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 57% accurate at
identifying correctly predicted labels. Model did not perform well
due to FN rate of 67%. ...40

Table 4. Performance metrics on the 40% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 52% accurate at
identifying correctly predicted labels. Best model performance due
to the FN rate being 60%. ..43

Table 5. Performance metrics on the 50% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 50% accurate at
identifying correctly predicted labels, which is the worst accuracy in
the group. Best FN rate performance of 50%. ...46

Table 6. Comparison of the FPs and FNs for each anomalous data set. For the
50% anomalies dataset, the FP and FN values are similar because
there are few features to rely on when labeling anomalous data.48

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

3GPP Third Generation Partnership Project
5GLL 5G Living Labs
AI Artificial Intelligence
BACNET Building Automation and Control network
CNN Convolutional Neural Network
DER Distributed Energy Resources
DNN Deep Neural Network
DOD Department of Defense
DoE Department of Energy
EMS Energy Management System
EPC Evolved Packet Core
EWOC Energy and Water Operations
ICS Industrial Control Systems
IoT Internet of Things
IPEM Intelligent Power and Energy Management
MCAS Marine Corps Air Station
MEC Mult-Access Edge Computing
mmWave Millimeter wavelength
NFV Network Function Virtualization
NPS Naval Postgraduate School
NR New Radio
NSA Non-Standalone
OFDM Orthogonal Frequency-Division Multiplexing
OS Operating System
PCAP Packet Capture
PV photovoltaic
RAN Radio Access Network
ReLU Rectified Linear Unit
ResNet Residual Network
RRU Remote Radio Unit

xiv

SA Standalone
SDN Software Defined Network
SLAMR Sea Land Air Military Research
TSNE T-Distributed Stochastic Neighbor Embedding
UWB Ultra-Wideband

xv

ACKNOWLEDGMENTS

I find myself in constant awe of my professors and peers here at the Naval

Postgraduate School. I never saw myself obtaining a master’s degree in a technical field

after undergraduate school, but I am forever grateful that I was given the opportunity. I

have met many people during my time who have had a major impact on my professional

and personal life. I would like to thank Dr. Preetha Thulasiraman for guiding me on this

journey. I would also like to thank the NPS AT&T team and TMGCore team for supporting

my data collection; without this support my results would not be possible. Thanks goes to

my family for giving me moral support when studying got tough. Last, I would like to give

a special thanks to my fiancé, whom I met my first quarter here and who continues to give

me constant love, support, and encouragement.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The U.S. electrical grid is a complex system that is at risk from various threats. In

2011, “the Department of Defense (DOD) partnered with the Department of Energy (DoE)

and the National Renewable Energy Lab to develop renewable energy technology to cut

costs, provide energy security, and comply with DOD mandates” [1]. The main

recommendation that came from these government organizations was the implementation

of microgrid technology at military bases [1]. “A microgrid is a local energy grid with

control capability, which means it can disconnect from the traditional grid and operate

autonomously” [2]. The benefits of the microgrid are that it provides resiliency,

incorporates renewable energy, and provides redundancy to important facilities if the

power grid fails. [3].

A. MICROGRID AT MIRAMAR

In May 2016, the electric companies Black & Veatch and Schneider Electric were

selected to design and build the microgrid at Marine Corps Air Station (MCAS) Miramar

in San Diego, CA [3]. The Miramar microgrid is the first of its kind on U.S. military bases

and is the most energy-forward defense installation in the nation [3], [4]. In the event of a

utility grid outage, the companies designed the microgrid to generate power for multiple

facilities using energy resources [3]. The microgrid at Miramar is operated directly out of

the Energy and Water Operations Center (EWOC). The EWOC is the main control hub for

all energy control systems and activities [3]. It manages and operates distributed energy

resources (DER) including but not limited to photovoltaic (PV) array inverters and backup

generators located across the base, as well as the building-level research microgrid. The

building level research microgrid is the EWOC environment for testing and validating

potential new systems before being added to the larger installation-wide microgrid at the

base.

Non-critical control and management of the building-level research microgrid is

performed by an Intelligent Power and Energy Management (IPEM) integrated microgrid

controller, referred to as the Energy Management System (EMS). The EMS was installed

2

by Raytheon in 2015 but did not have full operational status until February 2022. The EMS

is housed in the EWOC facility. The Miramar microgrid was completed in March 2021 [4].

B. ENERGY COMMUNICATIONS NETWORK AT MIRAMAR

The various DERs that the EWOC currently manages and controls are dispersed

across the Miramar base. However, the EWOC does not have remote monitoring

capabilities of its PV inverters and backup generators, which limits visibility of DER

operational status on a continuous basis. In August 2021, the EWOC partnered with U.S.

Ignite, a national non-profit, to build and implement an energy communications

infrastructure that would allow MCAS Miramar to support smart technology using Internet

of Things (IoT) devices. EWOC and U.S. Ignite aim to leverage wireless communications

to connect specific DERs to the EMS located in the EWOC. Specifically, the EWOC and

U.S. Ignite proposed the use of 5G communications [5].

U.S. Ignite has a 5G living lab (5GLL) program at MCAS Miramar that is funded

through NIWC-PAC and connected to the Verizon 4G LTE/5G Ultra-Wideband (UWB)

network. This is a technology pilot program meant to develop applications of 5G that

support the DOD mission. The Verizon commercial network (through the 5GLL effort)

currently provides ubiquitous 4G LTE connectivity across the base. There are also two

dozen small cell nodes that have been installed [5]. The small cell nodes operate in the

millimeter wavelength (mmWave) spectrum to provide areas of ultra-high bandwidth and

low latency across the base. PV inverters and backup generators located at various

buildings on the base are within range of one or more of these small cell nodes. By

leveraging 5G, the EWOC aims to have seamless connectivity to remotely monitor and

control DERs (PV arrays and backup generators) across the base, improving the ability to

assess the situation and respond accordingly during outages and other events [6]. Figure 1

provides a suggested architecture for EMS integration with PV arrays and back generators

over Verizon’s 4G LTE and 5G networks.

3

Figure 1. Suggested Research Microgrid 4G LTE/5G Control of PV and

Backup Generators. Source: [6].

The wireless infrastructure discussed above is currently in the phase of

implementation and testing at Miramar. At present, the PV inverters and backup generators

to be included in the network have been identified, but connectivity between the DERs and

the EMS has yet to be established.

C. MOTIVATION AND CONTRIBUTION

The Verizon 4G LTE/5G network currently deployed at Miramar is a commercial,

non-standalone (NSA) network as seen in Figure 1. In the NSA architecture, the control

signaling of the 5G radio network is anchored to the 4G core (further discussion of the 5G

NSA architecture will be provided in Chapter II). The use of a commercial network exposes

Miramar to a range of cyber threats. While Verizon has a robust cybersecurity framework

that deals with the standard issues of encryption, authentication and availability, the

4

Verizon NSA network architecture does not provide technological avenues for cyber

anomaly detection.

The objective of this thesis is to develop a traffic anomaly detection model using

supervised machine learning (ML) for the energy communications infrastructure at

Miramar. The idea is to produce a mathematical model that would allow us to classify

packets/data traffic as anomalous or benign based on specific data features. As stated

above, the energy communications network at Miramar is still under implementation.

Therefore, our goal in this thesis is to provide a proof of concept for the use of supervised

ML to efficiently detect anomalies on 5G data. It is imperative that the cyber analytical

framework does not substantially decrease resiliency of the microgrid.

In this thesis, we develop a preliminary cyber anomaly detection platform using

supervised ML. Specifically, we use a Convolutional Neural Network (CNN), which is a

type of deep learning model used for classification tasks. We chose the CNN because of

its ability to train itself using a labeled dataset and subsequently classify data that passes

through is benign or anomalous. Incorporating anomaly detection for the messages

transmitted between the DERs and EMS over the NSA 5G network will help operators

reduce false alarm rates, limit power consumption, and potentially detect cyber threats.

Since 5G network data has not yet begun to flow at Miramar, the dataset that we

used to train our algorithm was generated using an AT&T 5G cellular tower deployed at

the Naval Postgraduate School (NPS) Sea Land Air Military Research (SLAMR) facility.

We leveraged the NPS Cooperative Research and Development Agreement (CRADA) with

AT&T and TMGCore to generate a benign 5G data set. The dataset was then manipulated

to include anomalies to train and test the accuracy of the CNN. The research presented in

this thesis is foundational and provides a starting point to use ML models for anomaly

detection on the Miramar energy communications network.

The contributions of this work are as follows:

• The first experimental collection of 5G network data using the AT&T

network infrastructure at NPS.

5

• Manipulation of the 5G data set through the addition of synthetic

anomalies. Creation of five different datasets that incorporate different

percentages of anomalies within the data (10%, 25%, 30%, 40%, and

50%). We use these datasets to train the CNN.

• Use of a preprocessing technique to transform the network flow data into

data that can be used as input to the CNN.

• Comparison of the different datasets to show the differences of how the

CNN performs and identify any performance tradeoffs.

This thesis supports funded research through the Office of Naval Research and their

NextStep program to study cyber anomaly detection on 5G supported energy

communications networks.

D. THESIS ORGANIZATION

The remainder of this thesis is organized as follows: In Chapter II, we provide an

overview of the CNN model and discuss the differences between 5G standalone (SA) vs.

5G NSA architectures, as they relate to cyber security. We also provide a thorough

literature review. Chapter III describes the experimental process of obtaining the dataset

used for training the CNN. We also explain how the CNN is used with the data set and how

anomalies were implemented. Chapter IV describes and analyzes the results obtained from

the experiments. Chapter V concludes the thesis with recommendations for future research

opportunities.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

In this chapter, we provide a basic overview of a CNN model. We also discuss the

5G architecture of a SA vs. NSA network to highlight the significance of the MCAS

Miramar communication architecture in terms of cybersecurity. Lastly, we provide a

literature review that highlights the related work in this area, specifically the use of CNNs

to detect cyber anomalies.

A. OVERVIEW OF CNN MODEL

The CNN model is used in this research to classify 5G wireless data. CNNs are

commonly applied in imagery data analysis to find in finding patterns in images. Figure 2

illustrates the typical architecture of the CNN, which is separated into two main networks

which are the Feature Extraction Network and the Classifier Network [7].

Figure 2. Typical architecture of CNN consisting of a feature extraction

network and a classifier network. Source: [7].

An image is provided as input into the feature extraction network which is

comprised of several convolution layers and pooling layers. The convolution layer

generates new images called feature maps that emphasizes unique features from the

original image by passing the image through trained convolution filters. The feature map

that is created is then passed through an activation function [7]. An activation function is

8

added to the convolution layer to increase the non-linearity of the output. CNNs commonly

use the Rectified Linear Unit (ReLU) activation function in the convolution layer [8].

ReLU activation functions are in place to resolve the vanishing gradient problem [9].

The vanishing gradient occurs when hidden layers that are close to the input layer

are not properly trained due to backpropagation adjustments not reaching earlier hidden

layers in a neural network. Backpropagation in a neural network is when errors are back

propagated from the output nodes to the input nodes [7]. We will not be going into detail

about backpropagation in this thesis. Further reading on backpropagation can be found

in [7].

The ReLU function and its derivative are defined in Eq. (2.1) and Eq. (2.2),

respectively. Figure 3 shows the ReLU function and its derivative. ReLU activation output

is either zero, if the input x is negative, or the output equals x, if x is positive [9].

 (2.1)

 (2.2)

9

Figure 3. The Graphic Depiction of the ReLU Function and Its Derivative.

Source: [9].

After the convolution layer, “the pooling layer reduces the size of the image, as it

combines neighboring pixels of a certain area of the image into a single representative

value” [7]. Figure 4 shows the representative value from pooling which can either be set as

the mean or maximum of the selected pixels [7]. In Figure 4, the pixels are divided into

four quadrants which create a 2x2 square of pixels. Mean pooling adds the value of the

pixels in each quadrant and divides by the number of pixels in the quadrant. This results in

one value for each quadrant, creating a 2x2 pixel product. The same steps are taken for

maximum (max) pooling, but instead of taking the mean of each quadrant, the maximum

value is taken to create the final 2x2 pixel product. The pooling process is beneficial for

relieving the computational load and preventing overfitting [7].

10

Figure 4. Depiction of the pooling layer. Source: [7].

Overfitting happens when models learn the specifics of a training data set too well.

This causes the model to not be able to generalize to new datasets and is usually due to the

limits of training data [10]. An overfit model will not perform as well to data it has not seen

before. Furthermore, “complex models such as deep neural networks (DNN) can detect

subtle patterns in the data but if the training set is too noisy or too small then the model is

likely to detect patterns in the noise itself” [11]. Common solutions to overfitting include

simplifying the model by selecting fewer parameters, gathering more training data, and

reducing the noise in the training data.

The way we test how a model will generalize is by splitting the data into two sets,

which are the training set and the test set. We train our model on the training set and we

test using the test set [11]. Generalization error is the error rate from when we evaluate our

model on the test data. If the training error is low but the generalization error is high, the

model is overfitting the training data [11]. Regularization techniques reduce overfitting by

constraining the model to make it simpler. Common regularization techniques for neural

networks include early stopping, dropout, and data augmentation. Early stopping interrupts

training when its performance on the validation set starts dropping, which in turn prevents

overfitting [11]. Dropout regularization can potentially add up to 2% accuracy on state-of-

11

the-art neural networks, which significantly reduces the error rate [11]. During all training

steps, every input neuron has a chance, with probability p, that it will not be considered

during the current training step but could potentially be considered for future training steps

(i.e., dropped); a commonly used value for p is 50% [11]. After training, the neurons are

no longer dropped and there is a less chance of overfitting. Lastly, “data augmentation

consists of generating new training instances from existing ones, artificially boosting the

size of the training set” [11]. Performing this technique reduces overfitting [11]. Once

pooling is completed, the output of the feature extraction network is the input to the

classification network. This network contains fully connected layers that use the features

given to classify the image into different classes based on a training dataset [8].

In Chapter III, we will provide further detail on the type of CNN used for this

research and provide justification in experimental design specifics.

B. 5G NETWORK ARCHITECTURE: NSA vs. SA

The Third Generation Partnership Project (3GPP) standardized the 5G network

which includes both SA New Radio (NR) and NSA NR [12]. NR is a new radio access

technology based on orthogonal frequency-division multiplexing (OFDM). The 5G NR

uses two main frequency ranges. The first includes 6 GHz frequency bands and below. The

second includes bands in the mmWave range, which includes 20–60 GHz. The mmWave

range enables 5G UWB networks [13].

The NSA and SA architectures are essentially different deployment modes of 5G.

The MCAS Miramar energy communication network is based on the 5G NSA NR network.

Explaining the distinctions between the two will provide clarity to the level of security

vulnerability.

1. 5G NSA NR networks

The NSA architecture is based on dual connectivity between 4G and 5G networks.

Essentially, the NSA is a 5G radio access network (RAN) that operates on the 4G LTE

core, known as the Evolved Packet Core (EPC). More specifically, the NSA deployment

requires that the 5G NR control plane be anchored to the 4G LTE EPC. This anchoring can

12

be seen on the left side of Figure 5. This dual connectivity was standardized in 3GPP in

2017 [12]. The NSA architecture is the first step to transition to 5G SA architecture and it

is an important step because it creates a 5G network on an already stable and existing 4G

LTE infrastructure [14]. This is important for MCAS Miramar since it alleviates the

financial pressure of replacing the full 4G/LTE network already in place and enables

leveraging the functioning existing network.

Figure 5. Depiction of 5G NSA vs. 5G SA. Source: [20].

However, the NSA also has its disadvantages. The 5G NSA cannot provide for

certain capabilities in an SA 5G network. Several features and functions available in the

5G core network (5GC) are not available in the NSA network [14]. For example, the NSA

does not enable low latency [15]. Another disadvantage is that the NSA requires a higher

level of energy consumption [16]. In addition, the 5G SA takes advantage of key

technologies such as Software Defined Networks (SDN) and Network Function

Virtualization (NFV). The use of these functions entails a change in network infrastructure,

elements, and various control components which are not compatible with the NSA

architecture [17]. SDN and NFV will be explained further in the next section.

13

In terms of security, the 5G NSA network inherits all the vulnerabilities of the LTE

network. Furthermore, common solutions to alleviate cyber threats, such as ML and

artificial intelligence, are inherently unavailable in the NSA network.

2. 5G SA NR networks

The right side of Figure 5 shows that the SA architecture is a new 5G system based

solely on the deployment of a 5G network that consists of NR and the 5GC [17]. 5G SA

networks are designed to address the limitations of previous cellular network generations

and provide more robust security [17]. The security comes in the form of new features and

services such as cell densification, Multi-Access Edge Computing (MEC), network slicing,

virtualization of the Radio Access Network (RAN) and 5GC. Cell densification serves

“large numbers of users and new techniques such as beamforming to direct the wireless

communication channel at users and reduce interference” [18]. The MEC is a cloud

paradigm that pushes applications closer to the edge of the network to improve latency and

enable high data rates in real time [17] [18]. Network slicing creates “multiple virtual

networks that provide different quality of service levels over shared physical

infrastructure” [18]. The virtualization of the RAN and 5GC dynamically scales the

network functions [18]. Two virtual functions in the network are SDN and NFV, which are

implemented for network splicing. “SDN abstracts the network control level from data

transmission devices, allowing implementation in software” [17]. NFV virtualizes the

network functions that serve as switches and storage devices, which improves efficiency

and quality of service. Both functions make deployment of the network simpler, faster, and

more flexible [17], [18], [19]. NFV and SDN enable slicing and the extension of additional

tools into 5GC and RAN such as ML. ML increases network service efficiency by enabling

dynamic allocation through network slicing. The ML inclusion in the 5G SA system helps

in real-time source administration of the virtual network functions and the RAN [19].

3. 5G NSA Network at Miramar

The 5G NSA network at MCAS Miramar is limited when it comes to functions that

are provided with a 5G SA network. The network will not have the implemented features

such as the SDN or NFV. This means there are no ML solutions provided with the

14

implementation of the 5G NSA network. To address this limitation, this work will

incorporate ML solutions to predict traffic flow anomalies on the Miramar 5G NSA

network. Providing the network with an anomaly detection model will be crucial to

maintaining a secure network.

C. LITERATURE REVIEW

To be well versed in utilizing ML on a wireless network, related work from other

researchers must be reviewed. This section discusses selected relevant literature in the

fields of anomaly detection, cyber security, ML, and wireless networks or systems.

In [21], the authors use a CNN for anomaly detection for 5G networks. Their idea

behind detecting anomalies on a 5G network is to pair software defined security (SDS)

with the CNN to provide end-to-end protection of the network. Unable to obtain 5G

anomalous data, they use open source benign and malicious NetFlow data to test their

image generator that converts network flows to images to input into the CNN. NetFlow

data is flow records of IP traffic that moves between network devices. The results showed

up to a 96% accuracy rate of the CNN detecting anomalies [21]. Related, [22] lists other

preprocessing techniques for processing input data and converting it for the CNN. Two

popular techniques mentioned are the normalization of input data which makes the data

standardized and able to feed into the CNN and Vector-to-Matrix which converts the data

to form a matrix [22].

In [23], the authors introduces a layered approach to threat modeling on a 5G

network. Threat modeling is defined as an approach to identify security requirements,

potential threats, vulnerabilities, and prioritizing remediation methods. The authors

detailed different attack vectors affecting each layer of the network stack. They also

categorized the attacks in terms of type, impact, affected components, affected layer, and

entry point [23].

In [24], the authors present a methodology that generates anomaly detection

datasets in Industrial Control Systems (ICS) to evaluate cyber anomalies using machine

and deep learning using a four-step approach. They successfully created the Electra dataset

and employed different supervised and semi-supervised machine learning models

15

including Random Forest, Support Vector Machine, Deep Learning, and Dense Neural

Networks, showing they can be used in an industrial environment [24].

In [25], the authors generate a 5G dataset inspired from 3GPP specifications for a

5G network. To test their ML model, the authors injected anomalies into the dataset such

that they represented unexpected increases in data traffic in a designated remote radio unit

(RRU) cell. The author represented these traffic/data spikes as either a 1 or 0 [25]. In this

thesis, we use a similar approach in creating our anomalous data. We will further discuss

the approach of defining anomalous packets in Chapter III.

As the research shows, there are different methods of developing preprocessing

techniques for CNN inputs as well as different ways to create anomalous data and

categorizing 5G threats. In the next chapter, we will discuss how we obtained the necessary

5G data to train our CNN and how the data set was manipulated to create anomalies. We

will also detail the preprocessing technique used to input the data into our CNN model.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. EXPERIMENTAL DESIGN

In this chapter, we discuss the process of obtaining the 5G benign dataset collected

from the AT&T 5G cellular tower at the NPS SLAMR facility. We then describe how we

created our own anomalous dataset from the benign dataset. We conclude the chapter by

explaining the preprocessing technique used to input into the CNN followed by the design

of the CNN model.

A. DATASET

As was discussed in Chapter I, 5G data flow on the Miramar network has not yet

begun. To obtain a dataset on which to train our algorithm, we developed a process to

collect data on the newly established NPS 5G network, serviced by AT&T. We were able

to manipulate the collected data collected to produce our own anomalous data. To begin

this experimental collection at the SLAMR facility, we required the 5G cellular tower to

be operating at 5G+ speeds. To measure the speed of the upload and download times, we

used the speed test created by Ookla [26].

1. Data Collection Process

The first step in the data collection process was to establish that our data be in

packet capture (PCAP) form. The reason for the PCAP form is because the CNN can

potentially be placed to monitor and collect the wireless network traffic flowing between

the DER and the EMS. We then positioned ourselves within range of the NPS 5G cellular

tower to gain wireless connection to our devices. A Linux based laptop was then directly

connected to a Netgear Nighthawk router via ethernet cord, and a Mac operating system

(OS) laptop was connected to the NPS 5G wireless network. The Netgear Nighthawk we

used is a 5G/5G+ mobile hotspot device configured to run the wireless gateway from the

cellular tower to the TMG Core Edgebox 4.5 located on the NPS campus. The TMG Core

Edgebox is a high-density, two-phase liquid immersion cooling data center with the

purpose of handling high performance computing [27]. The Edgebox can store the wireless

network traffic being transferred from the NPS cellular tower located at the SLAMR

facility while monitoring and decrypting the traffic in real time.

18

We simulated PCAP files being transferred from the Linux OS laptop that is

connected to the Nighthawk to the datacenter. In conjunction with the file transfer, the Mac

OS laptop was monitoring the traffic flowing into a designated node in the datacenter. A

variety of PCAPs were chosen to try and replicate the potential wireless dataflow that will

occur at MCAS Miramar. The open source PCAPs we used were ICS normal traffic [28],

MODBUS ICS traffic with various cyber-attacks/anomalies [29], and Building Automation

and Control network (BACNET) traffic [30]. We separated the PCAP files into three

folders that represented the different open-source sites and ranged in file sizes. The folder

names, associated sizes, and content are as follows: p1 with a size of 209.2 MB and

contains ICS normal traffic, p2 with a size of 4.48 MB and contains MODBUS ICS traffic

with various cyber-attacks/anomalies, and p3 with a size of 479 KB and contains BACNET

traffic. The original intention of collecting these specific PCAPs was to find a way to replay

the content over the NPS 5G network to simulate the recorded anomalies and cyber-attacks.

The attempt at finding a way to replay the PCAPs failed due to specific clients and services

in the PCAP trace not being available on the 5G network at the time of experimentation.

As a result, we used the rsync command in the Linux OS terminal which allows the transfer

of folders from local directories to remote directories. In our set up the local directory is

the Linux OS and the remote directory is the Mac OS logged into the datacenter. It is

important to note that the rsync command does not read the content of the folders/files

being transferred. It transfers all the data from one place to another, meaning the PCAPs

sent will not reflect their content. Any folder/file could have been used for this transfer and

produce the same results.

Once rsync is executed and progress of the data transfer is tracked, to physically

capture the traffic coming into the datacenter, we used the network program analyzer

tshark. The tshark command allows us to capture specific traffic coming into the

designated node on the EdgeBox. We repeated the transfers of all three folders multiple

times to collect a large amount of data to train our CNN. Figure 6 shows the experimental

data path from the Nighthawk to the EdgeBox. This is the data path used for data collection.

The simulated generator labeled in the figure represents the Linux OS laptop that stored

p1, p2, and p3.

19

Figure 6. Experimental Data Path from Nighthawk to EdgeBox

2. Creating the Anomalous Dataset

The raw data collected was in PCAP form. Reading the PCAP into memory with

tshark allowed for the extraction of the fields (features) within the PCAP. For each packet

in the PCAP, the features extracted were the source IP, destination IP, protocol, TCP

acknowledgment number, TCP sequence number, TCP destination port number, TCP

source port number, TCP flags, TCP length, TCP time delta, TCP checksum, TCP header

length, TCP PDU size, TCP time relative, TCP window size, IP length, IP identification

number, and IP header length. These 18 features were chosen based on how likely these

same features would be present in the data capture at the the MCAS Miramar 5G network.

The extracted fields can then be written to a convenient file format, such as a csv file. The

command used to generate the features with tshark is shown in Figure 7.

20

Figure 7. Feature Generator Command

Once the benign data features were collected and written to a csv file, we then

needed to ensure the data was in a form amenable to ML classification techniques. In the

literature, we found a simple method to achieve this goal. In [25], the author simulated

anomalous data by adding an additional column to the features and labeled each row with

either a 1 or a 0 (where a 1 represents anomalous data and 0 represents non-anomalous

data). This is a reasonable approach for our data labeling due to the fact that we currently

do not know what anomalies will be on the MCAS Miramar network or what patterns they

will display across the network. To implement this approach, the author used the original

data from their own selected features to generate a csv file and added a column of either a

1 or 0 [25]. The method we used to generate our dataset involves a similar idea from [25],

but instead of adding a 1 or 0 to a csv, we used a script that takes advantage of the Python

library to read in the data from the tshark features collected and label the data directly in

memory with either a 1 or 0. Since there are so many unknowns with the MCAS Miramar

network, the labels 1 or 0 were randomly assigned throughout each prospective dataset.

After labeling, the data can then be directly passed to further ML pre-processing modules.

This approach allows us to dynamically generate datasets with various percentages of

anomalous labels. Datasets with 10%, 25%, 30%, 40%, and 50% anomalous data were

generated with this approach.

B. CNN DESIGN

Our CNN design is comprised of a preprocessing technique that will allow an image

input into the CNN and the image classification model from the TensorFlow

implementation of Residual Network (ResNet) 50.

1. Preprocessing Technique Methodology

The preprocessing technique of the CNN is in place to create a way to provide an

input to the CNN. In [31], the authors used a correlation matrix, referred to as an SC matrix

21

in [31], to convert NetFlow data into images. The NetFlow data collected in [31] was

converted into a csv file, where every row in the NetFlow sample file is called a record.

The author then used a correlation matrix to evaluate the comparisons among the features

selected in the NetFlow data. In a SC matrix, all features are given a numeric value and are

placed in a sequential order, which gives the matrix the ability to compare correlations

between features with decimals ranging from -1 to 1 [31]. Figure 8 shows the correlation

matrix described in [31].

The original NetFlow features are represented at the top of Figure 8 as the orange

blocks where x0 is the first feature, x1 is the second feature and so on, with xn reflecting

the last feature. For every feature, the correlation between itself and every other feature is

calculated and is denoted as the anchor feature. The anchor feature is the orange block

located in the SC matrices box at the center of each 3 by 3 matrix in Figure 8. An example

of how the 3 by 3 matrix is derived in Figure 8 is noting x 01 (white block) is the calculated

correlation between feature 0 (the anchor feature) and feature 1. The white blocks

surrounding the anchor feature are called correlation values. The SC matrices are

comprised of each individual feature along with the correlation values to create a 3 by 3

matrix. The top eight features as well as the anchor feature correlation values are arranged

in a 3 by 3 matrix, with the anchor feature having a value of 1 and placed in the center of

the matrix. Once all 3 by 3 matrices are computed, they are then concatenated together to

create a 3 by 3(n) matrix, where n represents the number of features. The values in that

matrix are then computed as pixel values in red, green, blue (RGB) color map using a

simple python color mapping function that is included in the matplotlib library in Python.

The resulting image is a 3 by 3(n) size pixel image for each NetFlow record, which is an

adequate input for a CNN.

22

Figure 8. An example of correlation matrix as discussed in [31]. Source:

[31].

2. Preprocessing Technique with Image Results

We used the same preprocessing technique as in [31], but in our case we used

individual packets vice the NetFlow data. For all the packet captures that we obtained at

the NPS 5G site, we merged the p1, p2, and p3 PCAPs into one large capture. Then, for

each packet within the combined capture we transformed the packet into an image utilizing

the methodology in [31]. A minimum of nine features is needed for the method in [31] to

work. In our work we used 18 features. The 3 by 3 matrices were computed and were

concatenated together which yielded a 3 by 54 (3 by 3 x 18) matrix. The values in the 3 by

54 matrix were used as pixel values in a RGB color map using the same python library

method previously discussed, resulting in an image of size 3 by 54 pixels for each sample.

The resulting images, shown in Figure 9, are images generated from two anomalous

packets and two benign packets. The two anomalous packets have different image patterns

from the two benign images. However, when compared together, both anomalous images

exhibit similar image patterns, similarly when comparing both benign images.

The images were then sorted into directories we created which were labeled

anomalous or non-anomalous (benign). We created a directory tree structure for every

23

percentage of anomalous dataset tested. This tree structure is shown in Figure 10. Each

directory is comprised of training, validation, and testing subdirectories. For each of the

training, validation, and testing subdirectories, there are two additional subdirectories

labelled anomalous and benign. The anomalous and benign images are sorted into the

appropriately labeled subdirectories. Each image data is then split among the directories as

follows: 60% of the data will be used to train, 20% of the data will be used to validate, and

20% of the data will be used to test. The reason for splitting the dataset is to prevent

overfitting of the CNN model. The training dataset is for the CNN to learn the parameters

of the difference between anomalous and benign images. The validation dataset evaluates

the model after each epoch of training on data that was not used during the initial training.

The test dataset is the final dataset that has never been used in training and is used to

evaluate the final version of the CNN model.

Each directory was then passed into a dataset generator from the Tensorflow

Library, where it pulls labels for each dataset from the name of the subdirectory the images

were located. The Tensorflow dataset generator performs various processing methods on

the images, including flipping various images, shearing various images, and using a

processing method optimized for images destined for use in a ResNet50 model. The dataset

generators output the processed images in tensor format with their associated label, and are

ready for use in either training, validation, or testing of a ResNet50 model. Tensor format

is a represented matrix or array that hosts all the data [32].

The code for the image generator can be found in Appendix A. The code for the

training, validating, and testing datasets can be found in Appendix B.

24

Figure 9. Generated Images of Anomalous vs. Benign data. Both anomalous

images exhibit similar image patterns, similar to that of both benign
images.

Figure 10. Directory tree structure layout for every percentage of anomalous

dataset tested.

3. TensorFlow’s ResNet 50

The programming language we used to implement our CNN is Python. More

specifically, we used the free open-source library TensorFlow. “TensorFlow is an end-to-

end open-source platform for ML that has tools, libraries, and community resources that

lets researchers push the state-of-the-art in ML and developers easily build and deploy ML

powered applications” [32]. In the open-source library, over 300 image classification

models are available [33]. In this research, we use ResNet 50, which is an established image

classification model for basic image processing that includes 50 layers, which includes

convolution layers and the fully connected layer. The ResNet models use skip connections

which means the input image feeding into a layer is added to the output of the layer; this is

known as residual learning [11]. Residual learning makes it feasible to train on deep

networks without losing any information during training and boosts the performance of the

system [34]. The residual connection advantages of the ResNet 50 architecture are that the

25

skip connections keep the gained knowledge during training and speeds up the training

timeline of the CNN model by increasing the size of the network [34].

Figure 11 depicts a skip connection and residual training. The right half of Figure

11 depicts the example of residual learning. The objective of training a neural network is

to make it model a target function, which is represented in Figure 11 as ()h x [11]. When

an input of x is added to the output, the network is forced to model a new function labeled

()f x , which enables the skip connection [11].

Figure 11. Example of Residual Learning and skip connections. Source: [11].

Each ResNet 50 mode has residual units that include three convolutional layers,

with batch normalization and ReLU activation functions, which means that the connection

skips three consecutive blocks. This is shown in Figure 12 using the colors peach, red, blue,

and yellow. Batch normalization is a procedure used in conjunction with an activation

function that standardizes a collection of inputs to the model [11]. Within the residual

block, the three convolution layers are stacked with the following dimensions: 1x1, 3x3,

and 1x1. The purpose of these convolution layers is to reduce the dimensions and calculate

the feature map. The pooling layers do not occur within the residual layer, but outside of

the residual block, which is depicted in Figure 12.

26

Figure 12. ResNet 50 Architecture. Source: [35].

4. Characteristics of the CNN Model

Figure 13 shows our CNN model, which include TensorFlow’s pre-trained ResNet

50 model. In row two of Figure 13, labeled input_2, a four-dimensional array is always

given as input to a CNN. The input shape includes batch size (the number of images),

height, width, and depth (RGB layers). The input layer has a shape of 224x224 pixels and

the 3 RGB channels. The 224x224 pixel size is required since the pre-trained ResNet 50

model was built with a 224x224 input layer shape. The batch size is labeled ‘none’ due to

the network not knowing the batch size in advance [36]. Our data preprocessing modules

ensure the images used for training/validation/testing of the model will have a 224x224x3

shape which is needed to feed into the input layer of the model. Immediately following the

input layer, in row three of Figure 13, labeled resnet50, a pre-trained ResNet 50 model is

added to our architecture. The pre-trained model weights have already been optimized for

image classification tasks. The pre-trained model is trained on images from the ImageNet

database. The output of the last convolutional block of ResNet 50 layer is a 7x7x2048-

dimensional array used as an input for the fully connected (dense) layer, which will be used

to classify the images in our dataset. Regarding the functionality of each of the layers in

our model, the ‘none’ in the ResNet 50 layer refers to random initialization, which means

random numbers are used to initialize the weights. To combat overfitting, a global average

pooling layer, in row four of Figure 13, is added after the ResNet 50 layers, followed by a

dropout layer (shown in row five of Figure 13). The pooling layer serves to combat model

overfitting by reducing the dimensionality to two dimensions and the number of trainable

parameters of the model. Dropout provides for model regularization. Lastly, the dense

27

layer, in row six of Figure 13, is added to the architecture. The fully connected layer is used

for classification of two classes, anomalous or non-anomalous. The code for the CNN

model implementation can be found in Appendices C, D, and E.

Figure 13. Characteristics of the CNN model developed in this thesis.

5. Summary of Training Process

In summary, our experimental design allowed the capturing of benign PCAPs on

the NPS 5G network. Utilizing the benign data, we manipulated it to create several different

percentages of anomalous datasets while making the data an agreeable image input for the

CNN by using a correlation matrix preprocessing technique. For each packet, 18 features

were extracted with tshark and used to create the correlation matrix. The correlation values

within the matrix were then used as pixel values and an image was created. Every packet

resulted in a single image. Based on the percentages of anomalies we inputted, those

images were then sorted into a directory structure, which were then passed into

TensorFlow’s image generator that produced training, validating, and testing datasets.

These datasets were then used for training and testing the CNN model. The model is

28

designed to take batches of images from the datasets to push through the CNN model to be

classified into either benign or anomalous labels.

29

IV. RESULTS AND ANALYSIS

This chapter discusses the results and analysis of the experiments conducted on the

10%, 25%, 30%, 40%, and 50% anomalous datasets that were created. The chapter begins

by explaining the metrics used to visualize performance of the CNN model, then compares

all graphical representations with the discussion of how effective the CNN is for this work.

The chapter concludes with providing recommendations for deployment on the energy

communications network at Miramar.

A. GRAPHICAL REPRESENTATIONS AND METRICS FOR MEASURING
CNN PERFORMANCE

Three different graphical representations were used on the datasets. The first visual

used was the confusion matrix, the second a learning curve plot, and finally a t-distributed

stochastic neighbor embedding (TSNE) plot.

1. Confusion Matrix

The confusion matrix is a binary classification method that is used to show model

performance [37]. The matrix cross classifies predicted and actual values to evaluate the

quality of the classifier [37]. Figure 14 depicts how a general confusion matrix is set up

with the following terminology: true positive (TP), false negative (FN), false positive (FP),

and true negative (TN). TP means the model correctly predicted a positive value and a TN

means the model correctly predicted a negative value [37], [38]. FP means the model

incorrectly predicted a positive value and a FN means the model incorrectly predicted a

negative value [37], [38]. The positives will be categorized as anomalous and the negatives

as benign.

30

Figure 14. Example layout of a confusion matrix and its associated labels.

To measure performance, the following metrics were used: recall, precision, F1

score, and accuracy. Recall is the ratio of TP values predicted to the sum of TP values and

the total number of FN numbers. Recall measures the predicted positive rate [38], [39].

Recall is shown in Eq (4.1) [38]. Precision is the ratio of TP values to the sum of TP values

and FP values. Precision measures the percentage of how often the model classifies positive

predictions as a TP [39]. Precision is shown in Eq (4.2) [38]. The F1 score is the ratio of

the product of precision and recall to the sum of precision and recall, multiplied by two

[38]. The F1 score combines precision and recall, which compares the performance of the

classifiers. The F1 score is shown in Eq (4.3) [38]. Accuracy is the ratio of the number of

correct predictions to the total number of predictions [39]. Accuracy measures the number

of predictions the model classified correctly and is shown in Eq (4.4) [39].

tpRecall
tp fn

=
+

 (4.1)

tpPrecision
tp fp

=
+

 (4.2)

()()1 2()Precision RecallF score
Precision Recall

=
+

 (4.3)

31

of correct predictionsAccuracy

of total predictions
= (4.4)

2. Learning Curve Plot

The learning curve plot is a visual technique to observe how well the model does

with the effects of adding training data. The learning curve plots both the training and

validation loss in conjunction with the training set size [40]. The y-axis of a learning curve

is the loss value, which evaluates how the model is learning; higher numbers indicate more

learning. The x-axis represents epochs. In a learning curve the risk of overfitting increases

if too small of a dataset it used, meaning the training loss will be low and the validation

loss will be high [40].

3. TSNE Plot

A TSNE plot is a non-linear embedding algorithm that preserves points within

clusters [40]. The TSNE reduces dimensionality, which allows the separation of data in

clusters. It is used for visualization purposes and is separated by colors [11]. The TSNE

plot interprets the feature maps from different levels of a neural network and makes the

classification viewable to the human eye. The TSNE plot generated from our model

differentiates between what the model classifies as benign data and anomalous data.

B. DISCUSSION OF FINDINGS

The following section analyzes the results of running the 10%, 25%, 30%, 40%,

and 50% anomalous datasets through the CNN model. These results represent how well

the CNN performed with the created datasets. The FN rates are of great importance in the

evaluation of the model; a FN indicates that the model predicted a packet was benign when

it was actually anomalous.

1. 10% Anomalous Dataset

As previously mentioned, the positive label is represented as anomalous data and

the negative label is represented as benign data. The learning curve in Figure 15 shows a

typical validation loss vs. training loss trend during model training. After the first few

32

epochs, training loss was consistently lower than the validation loss. The learning curve

did not indicate that severe overfitting was occurring, apart from a random spike in

validation loss at epoch 4. The validation loss curve was still trending downward with a

very slight slope at the end of training. Further epochs would have likely resulted in severe

overfitting due to the validation loss curve leveling out.

Figure 15. A typical learning curve of the 10% anomalous dataset. No severe

overfitting occurred apart from a random spike at epoch 4.

The confusion matrix in Figure 16 shows that 96% of anomalous packets were

incorrectly classified as benign. For the benign packets, 97% of the packets were correctly

classified as benign.

33

Figure 16. Confusion Matrix with Anomalous Data at 10%; 96% of

anomalous data was incorrectly labeled.

The performance metrics in Table 1 indicate that the model is 87% accurate at

identifying the correctly predicted labels. Despite the relatively high accuracy percentage

(87%), and high TN rate (97%) achieved by the model, the model did not perform well.

The rate of FNs was 96%, meaning that for all the anomalous packets processed by the

model, only 4% of the anomalous packets were classified as anomalous. The high TN rate

and high accuracy score achieved by the model is an artifact of the distribution of

anomalous packets in the training dataset. The bulk of the training data were packets

labelled as benign; thus, the model was heavily skewed towards classifying most data as

benign and was not provided enough anomalous packets to learn the discerning patterns

present in anomalous packet data.

34

Table 1. Performance metrics on the 10% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 87% accurate at identifying
correctly predicted labels. Model did not perform well due to FN rate of

96%.

 Precision Recall F1-score
Anomalous .111 .038 .057
Benign .900 .966 .932

Accuracy .873

As expected from the data above, the 10% anomalous TSNE plot in Figure 17

shows a large cluster and a few smaller clusters of benign data. The anomalous data is

sporadically spread throughout the plot. Most of the benign data is represented in a large

ball meaning the model was able to classify the benign data more easily than the anomalous

data. The anomalous data was spread out and not shown clustered together meaning the

model had a hard time classifying the anomalous data.

Figure 17. TSNE plot for 10% anomalous dataset. Large and small clusters of

benign data but anomalous data shows no clustering.

35

2. 25% Anomalous Dataset

The learning curve in Figure 18 shows a typical validation loss vs. training loss

trend during model training. After the first few epochs, training loss was consistently lower

than the validation loss. The learning curve indicates that overfitting occurred. After epoch

8, the validation loss started to exhibit a slight upward trend while the training loss curve

continued to decrease in value.

Figure 18. A typical learning curve of the 25% anomalous dataset. Overfitting

is occurring due to the upward slope of the validation loss curve after
epoch 8.

The confusion matrix in Figure 19 shows that 90% of anomalous packets were

incorrectly classified as benign. For the benign packets, 90% of the packets were correctly

classified as benign.

36

Figure 19. Confusion Matrix with Anomalous Data at 25%; 90% of

anomalous data was incorrectly labeled.

The performance metrics in Table 2 indicate that the model is 68% accurate at

identifying the correctly predicted labels. Despite the decent accuracy percentage (68%),

and high TN rate (90%) achieved by the model, the model did not perform well. The rate

of FNs was 90%, meaning that for all the anomalous packets processed by the model, only

10% of the anomalous packets were classified as anomalous. The high TN rate and decent

accuracy score achieved by the model is similar to the case of the 10% anomalous dataset.

The under representation of anomalous data causes the model to be skewed toward

classifying anomalous packets as benign.

37

Table 2. Performance metrics on the 25% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 68% accurate at identifying
correctly predicted labels. Model did not perform well due to high FN rate

of 90%.

 Precision Recall F1-score
Anomalous .282 .101 .148
Benign .726 .903 .805

Accuracy .682

The TSNE plot for 25% anomalous data is shown in Figure 20. The figure still

shows a large cluster and a few smaller clusters of benign data, but with a higher amount

of anomalous data present throughout the smaller groupings of benign data. The anomalous

data is more visibly clustered together within the benign data compared to the 10%

anomalous data TSNE plot. This means the model has classified more anomalous data but

does not take the FNs into account.

Figure 20. TSNE plot for 25% anomalous dataset. Benign data clustering is

present and anomalous data is more visible.

38

3. 30% Anomalous Dataset

The learning curve in Figure 21 shows a typical validation loss vs. training loss

trend during model training. The plot was similar to that of the 10% anomalous dataset

model. After the first few epochs, training loss was consistently lower than the validation

loss. The learning curve did not indicate that severe overfitting was occurring; validation

loss was still trending downwards at a very gradual rate. Further epochs of training would

have likely caused the plateau and/or increase in validation loss indicating overfitting.

Figure 21. A typical learning curve of the 30% anomalous dataset. No severe

overfitting occurred. Validation loss is gradually trending downward.

The confusion matrix in Figure 22 shows that 67% of anomalous packets were

incorrectly classified as benign. For the benign packets, 67% of the packets were correctly

classified as benign.

39

Figure 22. Confusion Matrix with Anomalous Data at 30%; 67% of

anomalous packets were incorrectly classified as benign.

The performance metrics in Table 3 indicate that the model is 57% accurate at

identifying the correctly predicted labels. The model was mediocre in its performance, with

an accuracy that was only slightly better than a random binary guess. Additionally, the rate

of FNs was 67%, meaning that for all the anomalous packets processed by the model, only

33% of the anomalous packets were classified as anomalous. While the metrics for the

model are not great, the model did perform better than the 10% and 25% anomalous dataset

models. This is likely due to the increased number of anomalous packets in the dataset; the

model had more anomalous training samples and thus was able to better differentiate the

anomalous packet patterns.

40

Table 3. Performance metrics on the 30% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 57% accurate at identifying
correctly predicted labels. Model did not perform well due to FN rate of

67%.

 Precision Recall F1-score
Anomalous .299 .327 .313
Benign .700 .672 .686

Accuracy .569

The TSNE plot for 30% anomalous data, shown in Figure 23, shows a smaller large cluster

of benign data and an increase in smaller groups from the 25% anomalous data TSNE plot.

There are more smaller clusters of anomalous data spread throughout the groupings of the

benign data. Based on the higher volume of anomalous clustering in the 30% anomalous

data TSNE plot, this model is better at classifying benign and anomalous data, even though

it visually does not look like 30% of the plot is anomalous data.

Figure 23. TSNE plot for 30% anomalous dataset. The larger cluster of

benign data is smaller and very small groupings of anomalous data is
spread throughout the benign data.

41

4. 40% Anomalous Dataset

The learning curve in Figure 24 shows a typical validation loss vs. training loss

trend during model training and had similar trends to the plot for the 30% anomalous

dataset model.

Figure 24. A typical learning curve of the 40% anomalous dataset. No severe

overfitting occurred. Validation loss is gradually trending downward.

The confusion matrix in Figure 25 shows that 60% of anomalous packets were

incorrectly classified as benign. For the benign packets, 61% of the packets were correctly

classified as benign.

42

Figure 25. Confusion Matrix with Anomalous Data at 40%; 60% of

anomalous packets were incorrectly classified as benign.

The performance metrics in Table 4 indicate that the model is 52% accurate at

identifying the correctly predicted labels. Similar to the 30% anomalous data model, the

40% anomalous data model had mediocre performance. The accuracy was slightly better

than a random binary guess. While the accuracy of the 40% model was lower than that of

the 30% model, the rate of FNs was 60%, meaning that the 40% data set model was able

to identify 7% more anomalous packets than the 30% model. The increase in anomalous

packets in the training set, while hurting overall accuracy, is better in classifying anomalous

data.

43

Table 4. Performance metrics on the 40% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 52% accurate at identifying

correctly predicted labels. Best model performance due to the FN rate
being 60%.

 Precision Recall F1-score
Anomalous .401 .397 .399
Benign .601 .605 .603

Accuracy .522

The 40% anomalous data TSNE plot in Figure 26 shows two smaller large clusters

of benign data and about the same anomalous groupings from the 30% anomalous data

TSNE plot. Based on the similar volume of anomalous clustering in the 30% anomalous

data TSNE plot, this model visually has the same results in classifying benign and

anomalous data.

Figure 26. TSNE plot for 40% anomalous dataset. Similar volume of

anomalous and benign clustering compared to 30% anomalous data.

5. 50% Anomalous Dataset

The learning curve in Figure 27 shows a typical validation loss vs. training loss

trend during model training and had similar trends to the plot for the 40% anomalous

44

dataset model. However, after epoch 8, the validation loss steeply declined while the

training loss had plateaued, suggesting the model training was near optimal for the given

dataset.

Figure 27. A typical learning curve of the 50% anomalous dataset. Validation

loss steeply declines after epoch 8 while training loss is flattening. Model
training is near optimal for the given dataset.

The confusion matrix in Figure 28 shows that 50% of anomalous packets were

incorrectly classified as benign. For the benign packets, 51% of the packets were correctly

classified as benign.

45

Figure 28. Confusion Matrix with Anomalous Data at 50%; 50% of
anomalous packets were incorrectly classified as benign while 51% were

correctly classified as benign.

The performance metrics in Table 5 indicate that the model is 50% accurate at

identifying the correctly predicted labels. Overall, the model performs like random binary

guessing. With regards to achieving a lower FN rate, this model is the best performance

we were able to achieve. Unfortunately, the FN rate performance came at a tradeoff with

the lack of performance of benign packet classification.

46

Table 5. Performance metrics on the 50% anomalous dataset: precision,
recall, f1-score, and accuracy. CNN model is 50% accurate at identifying
correctly predicted labels, which is the worst accuracy in the group. Best

FN rate performance of 50%.

 Precision Recall F1-score
Anomalous .502 .498 .500
Benign .502 .507 .505

Accuracy .502

The 50% anomalous data TSNE plot in Figure 29 shows consistent clusters of benign data,

but less cluster of anomalous data from the 30% and 40% anomalous data TSNE plots.

Visually it can be determined that even though we had anomalous data at 50%, there is an

abundance of benign clustering compared to anomalous. Based solely on the 50%

anomalous data TSNE plot, the visual classifications are by far the worst at classification.

Figure 29. TSNE plot for 50% anomalous dataset. Benign data appears to be

more than 50% and anomalous data appears to be less than the TSNE plot
for the 30% anomalous dataset.

47

6. Summary of Findings

As more anomalous packets were added to the training dataset, the models were

able to achieve reduced FN rates. However, the reduction in FN rates came at the cost of

decreasing the correct classification of benign packets. Overall, the best performing model

was the 40% anomalous data model. Although the model exhibited a higher FN rate (60%)

than the 50% anomalous data model (50% FN rate), the performance of benign

classification (60%) was still significantly greater than random binary guessing. The 40%

anomalous data model outperformed the lower percentage models due to the reduction in

FN rates. The TSNE plots did have a huge impact at deducing whether the CNN model is

correctly classifying the datasets.

C. RECOMMENDATIONS FROM FINDINGS

By not obtaining a true dataset from the MCAS Miramar network, we attempted to

create a synthetic 5G network dataset by incorporating generic classification labels of ones

and zeros as anomalous and benign data. The datasets were not effective given the overall

poor performance of the CNN results. Through our findings the following are

recommendations and lessons learned. The poor performance of the model can be

attributed to how we labeled the anomalies in the dataset. The random assignment of zeros

and ones may not be representative of actual anomalies, which with a true dataset would

have more features to enable classification. This is proven by comparing the FPs and FNs

for each anomaly dataset. In Table 6 we compare the number of FNs and FPs for the five

datasets used. Figure 30 shows the plot of these values. From both Table 6 and Figure 30,

we can see the data converge, meaning the generic labeling method used in [25] did not

work well in our process. The CNN did not have enough anomalous features to properly

classify between anomalous and benign packets. If the p1, p2, and p3 PCAPs were to be

replayed (rather than transferred) over the NPS 5G network, there would likely be more

anomalous features to increase the CNN model performance.

48

Table 6. Comparison of the FPs and FNs for each anomalous data set. For
the 50% anomalies dataset, the FP and FN values are similar because there

are few features to rely on when labeling anomalous data.

% of
Anomalies

FP FN

10 .96 .03
20 .90 .10
30 .67 .33
40 .60 .39
50 .50 .49

Figure 30. A plot of the FPs compared to FNs for each data set. As the

percentages of anomalies increases, the FP and FN converge to 50%.

This work solidified that the building of the CNN model can be useful and

potentially effective if properly trained on a true dataset. The model can perform

classification tasks based off the benign classifications being higher than binary guessing

for the 40% anomalous dataset; however, the model is not learning to classify actual

anomalies present in the packets due to the non-representative random assignment of

labels. The 18 features currently chosen to create the images through the preprocessing

49

technique can be thoroughly selected and defined based on a true dataset. This will

highlight the differences even further between anomalous and benign packets. By

narrowing down the features and making them more relevant to the MCAS Miramar

network, model performance will likely increase. The design of the model is potentially

effective based on its ability to learn the patterns present with the anomalous and benign

images, meaning the model can classify better if given a true dataset.

Based on the findings it would be beneficial to train the model on a larger dataset

with more epochs to decrease the potential of overfitting in the models that had slight

indication. By increasing the dataset size, the model will have access to more anomalous

images and thus will have a better chance of learning the patterns present in the anomalous

image. The increased pattern recognition capacity of the model will result in better

classification performance. The anomalous data created for the model was synthetically

generated and only used two classifiers (1 or 0) to indicate benign or anomalous. A true

dataset from the energy communications network at Miramar would allow us to create a

more balanced dataset which may result in higher model performance. The advantage of

using the developed model is that it can autonomously classify anomalous data flowing

through the 5G network without the need for human intervention. This is an effective way

of limiting user oversight in anomaly detection of the network. This work is the first step

in studying ML models for the MCAS Miramar network and lessons can and have been

learned.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

V. CONCLUSION

The purpose of this thesis is to develop an anomaly detection model using

supervised ML for the energy communications infrastructure at MCAS Miramar. This

research provides a preliminary cyber anomaly detection platform that could be potentially

used on the Miramar network. We developed a CNN and trained the model using an

experimental collection of network data transferred over a 5G connection.

A. SUMMARY

MCAS Miramar is the most energy forward defense installation in the nation

mainly due to the operations of the EWOC and the future capability of wireless

communications between the systems [3], [4]. Currently, the Verizon 5G NSA network is

deployed at Miramar, which means the network architecture does not have cyber anomaly

detection. This thesis has explored that a supervised ML detection platform for cyber

anomaly detection although it may not be the best option for the task at hand.

This thesis begins by obtaining the 5G benign dataset collected from the AT&T 5G

cellular tower at the NPS SLAMR facility. We created our own anomalous dataset from

the benign dataset by pulling features from packets and establishing an additional feature

that categorized whether a packet was anomalous or benign. Five different anomalous

datasets were created to test the model: 10%, 25%, 30%, 40%, and 50%. Next, we

implemented a preprocessing technique that allowed an image input from the datasets to

be fed into our CNN ResNet 50 design.

To demonstrate the ability of anomaly detection using the CNN, we trained,

validated, and tested each anomalous dataset. To measure CNN performance results, we

used graphical representations and metrics from TensorFlow. Experiments showed that as

more anomalous packets were added to the training dataset, the models achieved a reduced

FN rate. The reduction of FN rates costed the ability of the model to properly classify

benign packets. The best performance occurred with the 40% anomalous data model

because it shows the most balance between a high TP rate and a low FN rate.

52

Overall, the CNN model did not have a good performance due to the synthetically

generated data, which did not allow the model to accurately classify anomalous data from

benign data. A true balanced 5G NSA dataset from the energy communications network at

Miramar will also help model performance

B. FUTURE WORK

The work presented in this thesis the first step of incorporating ML solutions for

the MCAS Miramar network. We tested our model on a synthetic dataset generated from

the NPS network. Thus, further experimentations can be conducted to advance this

research. To that end, the following is recommended: First, create a larger dataset from the

5G data collected from the NPS network. Currently the data in the archive can be imitated

to create a bigger dataset than the one used during the initial tests. By increasing the dataset

size, the model has the potential of creating a better learning curve therefore getting better

performance. Second, collect data from the MCAS Miramar network. Once the MCAS

Miramar 5G NSA network is flowing, a dataset can be put together using real data from

the source. This potentially could lead to testing where Verizon can simulate cyber

anomalies or attacks on the network to create a realistic dataset to help test the model.

Lastly, test an alternative machine learning method. An unsupervised machine learning

method such as an autoencoder would be beneficial. The autoencoder requires no

classification labels and may be better suited for detecting anomalous data in the 5G

network as it requires no need to transform the data into an image as input to the model.

The MCAS Miramar base would benefit from exploring an unsupervised approach.

53

APPENDIX A. IMAGE GENERATOR

The following script is the process of turning packet data into images using a

preprocessing technique.

import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
import IPython

NUM_OF_FEATURES = 11
FINAL_DIR = "C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder"

def get_max_corr_features(df_corr):
    # Intent here is to: for each feature in the correlation matrix, index
 that into that feature so you can figure out
    # the 7 most correlated features to it.

    corr_list = []
    for i in range(0,NUM_OF_FEATURES):
        df_corr_feature = df_corr.iloc[i]
        df_corr_feature_maxes = df_corr_feature.nlargest(n=9)
        corr_list.append(df_corr_feature_maxes)

    return corr_list

def generate_surrounding_matrix(df, df_corr_list):
    # Todo: for each record in the df, generate the surrounding
 correlation matrix for each feature
    # Will look like: [[0, 1, 2], [7, FEATURE, 3], [6, 5, 4]] where each
 number is the N'th
    # highest correlation feature to the anchor feature

    # Resulting matrices will be calculated for every numeric feature in
 the record, then all of
    # the matrices will be concatenated. This represents 1 image.

    # This process is repeated for entire passed df. Once complete, the
 next step will be to use
    # matplotlib to color the matrices, resulting in our actual image.

    df_length = len(df)
    sm_list = []
    df_corr_list = df_corr_list[:-1]

    # outer for loop will iterate through every row(record) in the df.

54

    for i in range(0, df_length):
    #for i in range(0, 50000):
        record = df.iloc[i]
        sm_record_matrix = []
        record_start_flag = True

        # inner for loop will iterate through every feature in the record
        for each in record.index:
            # check to make sure we only consider numeric features
            if (pd.api.types.is_numeric_dtype(record.loc[each])) ==
False:
                continue

            sm_constructor = []
            record_values = []

            # inner nested loop matches feature to what is in the
 df_corr_list and grabs
            # those column names
           
            for items in df_corr_list:
                if each == items.index[0]:
                    column_names = items.index[1:]
                    break
            # second inner nested loop now grabs the record values for the
 column names
            # listed in the column_names
            for name in column_names:
                record_values.append(record.loc[name])

            center = record.loc[each]
            f0 = record_values[0]
            f1 = record_values[1]
            f2 = record_values[2]
            f3 = record_values[3]
            f4 = record_values[4]
            f5 = record_values[5]
            f6 = record_values[6]
            f7 = record_values[7]

            # Will look like: [[0, 1, 2], [7, FEATURE, 3], [6, 5, 4]]
 where each number is the N'th
            sm_constructor.append([f0, f1, f2])
            sm_constructor.append([f7, center, f3])
            sm_constructor.append([f6, f5, f4])

            if record_start_flag:
                sm_record_matrix = sm_constructor
            else:
                sm_record_matrix[0] += sm_constructor[0]
                sm_record_matrix[1] += sm_constructor[1]

55

                sm_record_matrix[2] += sm_constructor[2]

            record_start_flag = False
           
        sm_list.append(sm_record_matrix)
    return sm_list

def convert_to_image(df_SM, label_flag):
    # Grab each image matrix and convert to an actual image

    if label_flag == 0:
        IMAGES_DIR =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\images\\10_percen
t\\images_benign"
       

    if label_flag == 1:
        IMAGES_DIR =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\images\\10_percen
t\\images_anomalous"

    cnt = 0
    for each in df_SM:
        plt.imsave(IMAGES_DIR + f"\\image_{cnt}.jpg", each,
cmap='viridis')
        cnt += 1

def main():

    DATA_DIR =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\csv\\pw1.csv"
    percent = int(sys.argv[1])/100
   
    # Read in our data
    df = pd.read_csv(DATA_DIR)
    # Clean up df by removing NaN rows and filling NaN values with 0
    df = df.dropna(how='all')
    df = df.fillna(0)

    # Seperate out traffic by the benign=0 or anomalous=1 label based on
 our cmd line percentage
    df1 = df.sample(frac=percent, replace=False, random_state=42)
    df0 = df.drop(df1.index)
   
    # Generate our Correlation Matrices
    df0_corr = df0.corr()
    df1_corr = df1.corr()

    df0_corr_list = get_max_corr_features(df0_corr)  
    df1_corr_list = get_max_corr_features(df1_corr)

56

    df0_SM = generate_surrounding_matrix(df0, df0_corr_list)
    df1_SM = generate_surrounding_matrix(df1, df1_corr_list)

    convert_to_image(df0_SM, 0)
    convert_to_image(df1_SM, 1)

    print(f"Your {len(df0_SM)}/{len(df1_SM)} images have been saved to
{FINAL_DIR}...")
   

57

APPENDIX B. DATASETS

The following script highlights training, validation, and test datasets.

import numpy as np
import os
import tensorflow as tf

def fetch_data(train_dir, val_dir, test_dir, model_type):
    # build in unit tests for obtaining shape of image and input data for
troubleshooting
    import pathlib
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
   
    train_data_dir = pathlib.Path(train_dir)
    val_data_dir = pathlib.Path(val_dir)
    test_data_dir = pathlib.Path(test_dir)

    # may need to adjust image size
    IMAGE_SIZE = (224,224)
    model_type = model_type

    if model_type == "mobilenetv2":
        from tensorflow.keras.applications.mobilenet_v2 import
preprocess_input
   
    if model_type == "resnet50":
        from tensorflow.keras.applications.resnet50 import
preprocess_input

    if model_type == "vgg16":
        from tensorflow.keras.applications.vgg16 import preprocess_input

    if model_type == "vgg19":
        from tensorflow.keras.applications.vgg19 import preprocess_input

    if model_type == "densenet121":
        from tensorflow.keras.applications.densenet import
preprocess_input
   

    batch_size = 32
    train_datagen = ImageDataGenerator(
            preprocessing_function=preprocess_input,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True,
            vertical_flip=True,
            rotation_range=45)

58

    train_set = train_datagen.flow_from_directory(
            train_data_dir,
            target_size=IMAGE_SIZE,
            color_mode = 'rgb',
            batch_size=batch_size,
            shuffle=True,
            seed=42,
            class_mode='categorical')
   
    val_datagen = ImageDataGenerator(
        preprocessing_function=preprocess_input)
   
    val_set = val_datagen.flow_from_directory(
            val_data_dir,
            target_size=IMAGE_SIZE,
            color_mode = 'rgb',
            batch_size=batch_size,
            shuffle=True,
            seed=42,
            class_mode='categorical')
   
    test_datagen = ImageDataGenerator(
        preprocessing_function=preprocess_input)
   
    test_set = test_datagen.flow_from_directory(
            test_data_dir,
            target_size=IMAGE_SIZE,
            color_mode = 'rgb',
            batch_size=batch_size,
            shuffle=True,
            seed=42,
            class_mode='categorical')

    return train_set, val_set, test_set

59

APPENDIX C. TASKS

The following script creates the data class models and callback models to drive

model training.

import os
import sys
#import yaml

import tensorflow as tf
import math
import pathlib
import models
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import pickle
import callbacks
import data_class
import PIL
import PIL.Image

from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from matplotlib import cm

from sklearn.metrics import classification_report, confusion_matrix
import IPython

def pca_tsne(checkpoint_path, test_set, pca_filename, save_directory):

    model = tf.keras.models.load_model(checkpoint_path, compile=False)
    model.summary()
   
    feature_extractor = tf.keras.Model(model.input, model.layers[-
2].output)
    feature_extractor.summary()

    embeddings = feature_extractor.predict(test_set)
    print(embeddings.shape)

    true_labels = test_set.labels

    tsne = TSNE(2)
    pca = PCA(n_components=2)

    pca_result = pca.fit_transform(embeddings)

60

    tsne_result = tsne.fit_transform(embeddings)

    cmap = cm.get_cmap('tab20')
    fig, ax = plt.subplots(figsize=(8,8))
    number_categories = 2
    classes=['Anomalous', 'Benign']
    for lab in range(number_categories):
        indices = (true_labels == lab)
        ax.scatter(tsne_result[indices,0], tsne_result[indices,1],
c=np.array(cmap(lab)).reshape(1,4), label = classes[lab], alpha=0.5)
    ax.legend(fontsize='large', markerscale=2)
    #plt.show()
    final_filename = os.path.join(save_directory + "\\Plots\\" +
pca_filename + ".jpg")
    plt.savefig(final_filename)

    print("Explained variation per principal component:
{}".format(pca.explained_variance_ratio_))
    return

def metrics(checkpoint_path, test_set, metrics_filename, save_directory):

    # Load the Model
    model = tf.keras.models.load_model(checkpoint_path, compile=True)

    # Create a Confusion Matrix
    y_pred= model.predict(test_set)
    predicted_labels = np.argmax((y_pred), axis=1)
    print('Confusion Matrix')
    #quitIPython.embed()
    con_mat = confusion_matrix(test_set.labels, predicted_labels)

    #Normalization Confusion Matrix
    con_mat_norm = np.around(con_mat.astype('float') /
    con_mat.sum(axis=1)[:, np.newaxis], decimals=2)
    print(con_mat_norm)

    # Print and Save Classification Report
    classes=['Anomalous', 'Benign']
    class_report= classification_report(test_set.labels, predicted_labels,
target_names = classes, digits=3)
    print(class_report)
    final_text = os.path.join(save_directory + "\\Metrics\\" +
metrics_filename + ".txt")
    out_text = open(final_text, "w")
    out_text.write(class_report)
    out_text.close()

    # Build Confusion Matrix DF
    con_mat_df = pd.DataFrame(con_mat_norm,
                     index = classes,

61

                     columns = classes)

    # Plot Confusion Matrix and Heat map
    figure = plt.figure(figsize=(8, 8))
    sns.heatmap(con_mat_df, annot=True,cmap=plt.cm.Blues)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    #plt.show()
    final_filename = os.path.join(save_directory + "\\Metrics\\" +
metrics_filename + ".jpg")
    plt.savefig(final_filename)

    return

def main(train_dir, val_dir, test_dir, checkpoint_path, save_directory,
model_type, model_dir, pca_tsne_flag, metrics_flag, fine_tune_flag):  

    train_set, val_set, test_set = data_class.fetch_data(train_dir,
val_dir, test_dir, model_type)
    #IPython.embed()
    filename = str(input("Please enter desired filename for model: "))

    if pca_tsne_flag == True:
        #pca_tsne:
        #pca_filename = str(input("Please enter desired filename for pca:
 "))
        pca_filename = filename
        pca_tsne(checkpoint_path, test_set, pca_filename, save_directory)
        return

   
    if metrics_flag == True:    
        # Get Metrics Report Including Confusion Matrix
        #metrics_filename = str(input("Please enter desired filename for
 metrics: "))
        metrics_filename = filename
        metrics(checkpoint_path, test_set, metrics_filename,
save_directory)
        return

    model = models.create_model(model_type, checkpoint_path,
fine_tune_flag)

    if not fine_tune_flag:
       
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),
                                #loss='binary_crossentropy',
                                loss='categorical_crossentropy',
                                metrics=['accuracy'])

62

    model.summary()

    history = model.fit(train_set,
                                epochs=10,
                                validation_data = val_set,
                                steps_per_epoch = (len(train_set)//32),
                                #validation_steps = 50,
                               
callbacks=callbacks.make_callbacks(model_dir))

    # Plot Learning Curve
    plt.plot(history.history['loss'], label='Training Loss')
    plt.plot(history.history['val_loss'], label='Val Loss')
    plt.title('Loss for CNN')
    plt.ylabel('Loss value')
    plt.xlabel('No. epoch')
    plt.legend(loc="upper right")

    # Save the Plot
    #img_save_path = os.path.join(hparams.model_dir ,
 "learning_curve.jpg")
    img_save_path = os.path.join(save_directory + "\\Plots\\" + filename +
"_learning_curve.jpg")
    #img_save_path = os.path.join(save_directory + "\\Plots\\" +
 "learning_curve.jpg")
    plt.savefig(img_save_path)

    return

if __name__ == "__main__":
    train_dir =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\images\\10_percen
t\\images_train" #directory path
    val_dir =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\images\\10_percen
t\\images_val" #directory path
    test_dir =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\images\\10_percen
t\\images_test" #directory path
    checkpoint_path =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\checkpoints\\Save
_Directory\\Models\\10_percent\\checkpoint10-0.14.pb\\"
    save_directory =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\checkpoints\\Save
_Directory" #directory path
    model_type = "resnet50" # (resnet50, vgg16, vgg19, mobilenetv2,
densenet121, fully_connected)
    #model_type = "simpleCNN" # (resnet50, vgg16, vgg19, mobilenetv2,
densenet121, fully_connected)

63

    model_dir =
"C:\\Users\\hatha\\OneDrive\\Documents\\AshThesisFolder\\checkpoints\\Save
_Directory\\Models"
    pca_tsne_flag = True
    metrics_flag = False
    fine_tune_flag = False
    main(train_dir, val_dir, test_dir, checkpoint_path, save_directory,
model_type, model_dir, pca_tsne_flag, metrics_flag, fine_tune_flag)

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

APPENDIX D. CNN MODEL

The following script is Tensorflow’s ResNet 50 CNN model.

import tensorflow as tf
import os
from tensorflow import keras

def fine_tuning_option(checkpoint_path):
    #load checkpoint weights and put into model
    fine_tune_at = 150
    model = tf.keras.models.load_model(checkpoint_path, compile=True)
    model.trainable = True

    # freeze all the layers before the fine_tune_at (based on ResNets (our
 highest performing model) base) 175 layers
    base_model_layer = model.layers[1]
    print("Number of layers in the base model: ",
len(base_model_layer.layers))
    for layer in base_model_layer.layers[:fine_tune_at]:
        layer.trainable = False
   
    return model

def create_fully_connected_model(input_shape):
    model = tf.keras.models.Sequential([
          tf.keras.layers.Flatten(input_shape),
          tf.keras.layers.Dense(200, activation='sigmoid'),
          tf.keras.layers.Dense(60, activation='sigmoid'),
          tf.keras.layers.Dense(10, activation='softmax')
       ])
    return model

def create_simple_CNN_model(input_shape):
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(32, 32, 3)))
    model.add(tf.keras.layers.MaxPooling2D((2, 2)))
    model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(tf.keras.layers.MaxPooling2D((2, 2)))
    model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
    model.add(tf.keras.layers.Flatten())
    model.add(tf.keras.layers.Dense(64, activation='relu'))
    model.add(tf.keras.layers.Dense(2, activation='softmax'))
    return model

def create_vgg16_model(input_shape):

66

    base_model = tf.keras.applications.VGG16(input_shape=input_shape,
  include_top=False,
  weights='imagenet')

    base_model.trainable = False
    print("Number of layers in the base model: ", len(base_model.layers))
    global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
    prediction_layer = tf.keras.layers.Dense(8, activation='softmax')
    inputs = tf.keras.Input(shape=(224, 224, 3))

    x = base_model(inputs, training=False)
    x = global_average_layer(x)
    x = tf.keras.layers.Dropout(0.2)(x)
    outputs = prediction_layer(x)
    model = tf.keras.Model(inputs, outputs)

    return model

def create_vgg19_model(input_shape):
    base_model = tf.keras.applications.VGG19(input_shape=input_shape,
  include_top=False,
  weights='imagenet')

    base_model.trainable = False
    print("Number of layers in the base model: ", len(base_model.layers))
    global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
    prediction_layer = tf.keras.layers.Dense(8, activation='softmax')
    inputs = tf.keras.Input(shape=(224, 224, 3))

    x = base_model(inputs, training=False)
    x = global_average_layer(x)
    x = tf.keras.layers.Dropout(0.2)(x)
    #x = tf.keras.layers.Dense(100, activation='relu')(x)
    #x = tf.keras.layers.Dense(50, activation='relu')(x)
    outputs = prediction_layer(x)
    model = tf.keras.Model(inputs, outputs)

    return model

def create_mobilenetv2_model(input_shape):
    base_model =
tf.keras.applications.MobileNetV2(input_shape=input_shape,
  include_top=False,
  weights='imagenet')

    base_model.trainable = False
    print("Number of layers in the base model: ", len(base_model.layers))
    global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
    prediction_layer = tf.keras.layers.Dense(8, activation='softmax')
    inputs = tf.keras.Input(shape=(224, 224, 3))

67

    x = base_model(inputs, training=False)
    x = global_average_layer(x)
    x = tf.keras.layers.Dropout(0.2)(x)
    outputs = prediction_layer(x)
    model = tf.keras.Model(inputs, outputs)

    return model

def create_resnet50_model(input_shape):
    base_model = tf.keras.applications.ResNet50(input_shape=input_shape,
  include_top=False,
  weights='imagenet')

    base_model.trainable = False
    print("Number of layers in the base model: ", len(base_model.layers))
    global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
    #prediction_layer = tf.keras.layers.Dense(2, activation='softmax')
    prediction_layer = tf.keras.layers.Dense(2, activation='softmax')
    inputs = tf.keras.Input(shape=(224, 224, 3))

    x = base_model(inputs, training=False)
    x = global_average_layer(x)
    x = tf.keras.layers.Dropout(0.2)(x)
    # x = tf.keras.layers.Dense(100, activation='relu')(x)
    # x = tf.keras.layers.Dense(50, activation='relu')(x)
    outputs = prediction_layer(x)
    model = tf.keras.Model(inputs, outputs)

    return model

def create_densenet121_model(input_shape):
    base_model =
tf.keras.applications.DenseNet121(input_shape=input_shape,
  include_top=False,
  weights='imagenet')

    base_model.trainable = False
    print("Number of layers in the base model: ", len(base_model.layers))
    global_average_layer = tf.keras.layers.GlobalAveragePooling2D()
    prediction_layer = tf.keras.layers.Dense(4, activation='softmax')
    inputs = tf.keras.Input(shape=(224, 224, 3))

    x = base_model(inputs, training=False)
    x = global_average_layer(x)
    x = tf.keras.layers.Dropout(0.2)(x)
    outputs = prediction_layer(x)
    model = tf.keras.Model(inputs, outputs)

    return model

def create_model(model_type, checkpoint_path, fine_tune_flag):

68

    if fine_tune_flag:
        return fine_tuning_option(checkpoint_path)

    model_type = model_type.lower()
    input_shape = (224, 224, 3)
    if model_type == 'fully_connected':
        return create_fully_connected_model(input_shape)

    if model_type == 'vgg16':
        return create_vgg16_model(input_shape)

    if model_type == 'vgg19':
        return create_vgg19_model(input_shape)

    if model_type == 'mobilenetv2':
        return create_mobilenetv2_model(input_shape)

    if model_type == 'resnet50':
        return create_resnet50_model(input_shape)

    if model_type == 'densenet121':
        return create_densenet121_model(input_shape)

    if model_type == 'simpleCNN':
        return create_simple_CNN_model(input_shape)

   
    else:
        print('unsupported model type %s' % (model_type))
        return None

69

APPENDIX E. CALLBACKS

The following script allows for the saving of parameters after every epoch.

import os
import tensorflow as tf
import math

def make_callbacks(model_dir):
    checkpoints = []
    #if 'checkpoint' in callback_list:
    checkpoints.append(_make_model_checkpoint_cb(model_dir))
    #if 'csv_log' in callback_list:
    checkpoints.append(_make_csvlog_cb(model_dir))
    #if 'reducelr' in callback_list:
    checkpoints.append(_make_model_reducelr_cb())
    #print("reduce lr was called")
    return checkpoints

def _make_model_checkpoint_cb(model_dir):
 
    checkpoint = tf.keras.callbacks.ModelCheckpoint(
        os.path.join(model_dir, "checkpoint{epoch:02d}-
{val_loss:.2f}.pb"),
        monitor='val_loss',
        verbose=1,
        save_best_only=True,
        save_weights_only=False,
        mode='min',
        save_freq='epoch')
    return checkpoint

def _make_model_reducelr_cb():
    reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(
        monitor = 'val_loss',
        factor = 0.1,
        patience = 7,
        verbose = 1,
        min_lr = 1e-7)
    return reduce_lr

def _make_csvlog_cb(model_dir):
    print("entered_csv_log")
    csv_log = tf.keras.callbacks.CSVLogger(os.path.join(model_dir,
"log.csv"), append=True, separator=';')
    return csv_log
   

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

LIST OF REFERENCES

[1] E. W. Prehoda, C. Schelly, and J. M. Pearce, “U.S. strategic solar photovoltaic-
powered microgrid deployment for enhanced national security,” Renewable and
Sustainable Energy Reviews, vol. 78, pp. 167–175, 2017

[2] Energy.gov, “How microgrids work,” Jun. 2014 [Online]. Available:

https://www.energy.gov/articles/how-microgrids-work

[3] Black & Veatch, “Marine Corps Air Station Miramar microgrid: From design and
construction to operations and commissioning,” Jun. 2022 [Online]. Available:
https://www.bv.com/projects/marine-corps-air-station-miramar-microgrid-design-
and-construction-operations-and

[4] US Marines, “Microgrid at Marine Corps Air Station Miramar,” Jun. 2021
 [Online]. Available: https://www.marines.mil/News/News Display/Article/
 2677033/microgrid-at-marine-corps-air-station-miramar/

[5] USIgnite, “Request for Proposal (RFP) restoration of existing Energy

Management System (EMS) & support of EMS integration with Photovoltaic
(PV) array inverters & backup generators at MCAS Miramar,” Miramar, CA,
U.S., Aug. 2021

[6] USIgnite, “Request for Proposal (RFP) integration of existing Energy
Management System (EMS) with Distributed Energy Resources (DER) at MCAS
Miramar,” Miramar, CA, USA, Jan. 2021.

[7] P. Kim, Matlab Deep Learning with Machine Learning, Neural Networks and
Artificial Intelligence, New York, NY, USA: Apress, 2017

[8] Ujjwalkarn, “An intuitive explanation of convolutional neural networks,” Aug.
2016 [Online]. Available: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/

[9] B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics in
deep neural networks,” in 2018 Chinese control and decision conference (CCDC).
IEEE, 2018, pp. 1836–1841.

[10] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics:

Conference Series, vol. 1168, no. 2, pp. 022022, 2019.

[11] Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow

Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly Media,
Inc., 2019.

72

[12] G. Liu, Y. Huang, Z.Chen, L.Liu, Q. Wand and N. Li, “5G deployment:
Standalone vs. non-standalone from the operator perspective,” IEEE
Communications Magazine, vol. 58, no. 11, pp. 83–89, 2020.

[13] Verizon, “What is 5G NR,” Dec. 2019 [Online] Available:

https://www.verizon.com/about/our-company/5g/what-is-5g-nr

[14] G. Holtrup et al., “5G system security analysis,” Aug. 2021 [Online]. Available:

https://arxiv.org/pdf/2108.08700.pdf

[15] S. Teral, “5G best choice architecture IHS Markit Technology | White Paper,”

Jan. 2019 [Online]. Available: https://www.redestelecom.es/siteresources/files/
894/48.pdf

[16] P. Frenger and R. Tano, “More capacity and less power: How 5G NR can reduce

network energy consumption,” 2019 IEEE 89th Vehicular Technology
Conference (VTC2019-Spring), pp. 1–5, 2019.

[17] Positive Technologies, “5G security issues,” Nov 2019. [Online]. Available:

https://www.gsma.com/membership/wp-content/uploads/2019/11/5G-
Research_A4.pdf

[18] CISA and USD R&E, “5G security evaluation process investigation version 1,”

May 2022 [Online]. Available: https://www.cisa.gov/sites/default/files/
publications/5G_Security_Evaluation_Process_In vestigation_508c.pdf

[19] S. Sridharan, “Machine Learning (ML) in a 5G standalone (SA) self organizing

network (SON),” International Journal of Computer Trends and Technology, vol.
68, no. 11, pp. 43–48, 2020.

[20] D. Darah, “5G NSA vs. SA: How does each deployment mode differ,” May 2022

[Online]. Available: https://www.techtarget.com/searchnetworking/feature/5G-
NSA-vs-SA-How-does-each-deployment-mode-differ

[21] J. Lam, R. Abbas, “Machine learning based anomaly detection for 5G networks,”

Mar. 2020 [Online]. Available: https://arxiv.org/abs/2003.03474

[22] M. Alabadi and Y. Celik, “Anomaly detection for cyber-security based on

convolution neural network: A survey,” 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–14,
2020.

[23] M. N. I. Farooqui, J. Arshad, and M. M. Khan, “A layered approach to threat

modeling for 5G-based systems,” Electronics, vol. 11, no. 12, p. 1819–1836, Jun.
2022 [Online]. Available: https://www.mdpi.com/2079-9292/11/12/1819

73

[24] A. L. Perales Gomez et al., “On the generation of anomaly detection datasets in
industrial control systems,” IEEE Access, vol. 7, pp. 177460–177473, 2019.

[25] S. Sevgican, M. Turan, K. Gokarslan, H. B. Yilmaz, and T. Tugcu, “Intelligent

network data analytics function in 5G cellular networks using machine learning,”
Journal of Communications and Networks, vol. 22, no. 3, pp. 269–280, 2020.

[26] Ookla, “Speedtest by Ookla – The global broadband speed test,” 2019 [Online].

Available:https://www.speedtest.net/

[27] L. Weston, “New LP-CRADA between NPS, TMGcore focused on high-density

computing,” Oct. 2021 [Online] Available: https://nps.edu/-/new-lp-crada-
between-nps-tmgcore-focused-on-high-density-computing

[28] Netresec, “SCADA / ICS PCAP files from 4SICS,” Jan. 2018 [Online] Available:

https://www.netresec.com/?page=PCAP4SICS

[29] tjcruz-dei, “Release modbus TCP SCADA #1 tjcruz-dei/ICS_PCAPS,” GitHub,

Jan.2019 [Online] Available: https://github.com/tjcruzdei/ICS_PCAPS/releases/
tag/MODBUSTCP%231

[30] J. Smith, “ICS-pcap,” GitHub, Jul. 2022 [Online] Available: https://github.com/

automayt/ICS-pcap

[31] X. Liu, Z. Tang, and B. Yang, “Predicting network attacks with CNN by

constructing images from netFlow data,” 2019 IEEE 5th Intl Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing, (HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS), pp. 61–66, 2019.

[32] TensorFlow, “An end-to-end open-source machine learning platform,” 2022

[Online]. Available: https://www.tensorflow.org/

[33] TensorFlow, “TensorFlow Hub,” May 2022 [Online]. Available:

https://tfhub.dev/

[34] M. Talo, “Convolutional neural networks for multi-class histopathology image

classification,” Mar. 2019 [Online] Available: https://arxiv.org/pdf/
1903.10035.pdf

[35] L. Ali, F. Alnajjar, H. Jassmi, M. Gochoo, W. Khan, and M. Serhani,

“Performance evaluation of deep CNN-based crack detection and localization
techniques for concrete structures,” Sensors, vol. 21, pp.1688-1710, 2019.

74

[36] S. Verma, “Understanding input and output shapes in convolution neural network|
Keras,” Apr. 2020 [Online]. Available: https://towardsdatascience.com/
understanding-input-and-output-shapes-in-convolution-network-keras-
f143923d56ca

[37] Devopedia, “Confusion matrix,” Aug. 2020 [Online] Available:

https://devopedia.org/confusion-matrix

[38] P. Schneider and K. Böttinger, “High-performance unsupervised anomaly

detection for cyber-physical system networks,” in Proceedings of the 2018
workshop on cyber-physical systems security and privacy, 2018, pp. 1–12.

[39] Google Developers, “Classification: Machine learning crash course,” Jul. 2022
 [Online] Available: https://developers.google.com/machine-learning/crash-
 course/ml-intro

[40] J. T. Vanderplas, Python Data Science Handbook: Essential Tools for Working

With Data, O’Reilly Media, Inc., 2017.

75

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	22Sep_Edmond_Ashley_First8
	22Sep_Edmond_Ashley
	I. Introduction
	A. microgrid at Miramar
	B. Energy COMMUNICATIONS network at miramar
	C. Motivation and contribution
	D. THesis organization

	II. background
	A. overview of CNN Model
	B. 5g network architecture: NSA vs. sa
	1. 5G NSA NR networks
	2. 5G SA NR networks
	3. 5G NSA Network at Miramar

	C. literature review

	III. experimental design
	A. dataset
	1. Data Collection Process
	2. Creating the Anomalous Dataset

	B. cnn design
	1. Preprocessing Technique Methodology
	2. Preprocessing Technique with Image Results
	3. TensorFlow’s ResNet 50
	4. Characteristics of the CNN Model
	5. Summary of Training Process

	IV. Results and analysis
	A. graphical representations and metrics for measuring CNN performance
	1. Confusion Matrix
	2. Learning Curve Plot
	3. TSNE Plot

	B. discussion of findings
	1. 10% Anomalous Dataset
	2. 25% Anomalous Dataset
	3. 30% Anomalous Dataset
	4. 40% Anomalous Dataset
	5. 50% Anomalous Dataset
	6. Summary of Findings

	C. Recommendations from findings

	V. conclusion
	A. summary
	B. future work

	appendix A. image generator
	Appendix B. datasets
	APPENDIX C. tasks
	Appendix D. CNN model
	appendix E. callbacks
	List of References
	initial distribution list

