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ABSTRACT 

 Deep learning is becoming a technology central to the safety and accuracy of 

many types of systems. Unfortunately, attackers can create adversarial examples that 

manipulate Deep Neural Networks (DNN) into making incorrect predictions by carefully 

crafting perturbations that, to humans, look indistinguishable from examples the DNN 

would classify correctly. Research shows that adversarial examples exist near the 

decision boundary. Decision-based attacks are designed to find adversarial examples by 

traversing the data manifold toward the decision boundary using iterative sampling 

without any knowledge of the model parameters or gradients. In this sense, 

decision-based attacks are very important, as they apply to many real-world attack 

scenarios. We propose a new decision-based attack, High Entropy Input Sampling 

(HEIS), that iteratively steps toward the decision boundary by using entropy over class 

predictions as a heuristic to find adversarial examples without any knowledge of the 

model gradients. Using HEIS, we were able to produce adversarial examples that reduced 

the accuracy of a CIFAR-10 DNN from 91% to 11% for epsilon=0.2 and reduced the 

accuracy of ResNet50, an ImageNet DNN, from 81% to 22% for epsilon=0.4. 

Furthermore, we discovered that the adversarial examples are highly transferable to other 

models, causing dramatic drops in accuracy among all models tested. Finally, we use 

HEIS to break three state-of-the-art neural network defenses. 
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CHAPTER 1:
Introduction

1.1 Machine Learning Using Neural Networks
Machine learning (ML) is the science (and art) of programming computers to learn from
data [1]. The main motivation behind machine learning is the fact that some problems cannot
be solved by a traditional sequential computer program. We want a program or algorithm
that will enable a machine to incrementally perform better at a specific task by providing
it with data to learn from, instead of explicitly programming rules that it must follow. The
goal of this process is to create machines that are trained and able to reliably perform their
tasks (prediction, identification, tracking, etc.) in order to provide confident automation in
areas that were not previously able to be automated.

There are a wide variety and types of machine learning, from Reinforcement Learning (RL)
algorithms, to Linear Regression modeling, to Artificial Neural Networks (ANNs). This
thesis will focus on the study of Deep Neural Networks (DNNs), which originated from
the study of artificial neurons and ANNs. While a simple ANN might consist of a single or
multi-layer perceptron1, a DNN is an artificial neural network that has many, many layers
of artificial neurons (tens or sometimes hundreds of layers). The term Deep Learning refers
to the concept of ML using DNNs and is also the term given to the field of studying DNNs.

Deep Learning using DNNs has become more widely accessible and studied in the last few
decades as computer processing hardware has increased in capability [2]. Advances in neural
network architectures and the ability to train them has been made possible by the advent
of multi-core processors, especially Graphics Processing Units (GPUs) that can perform
thousands of computations in parallel. This significant boost in hardware performance
brought DNN training that was once thought to be impossible into the realm of practical.

ML and DNNs are at the heart of a wide variety of technologies and various applications,
including but not limited to

1Perceptron: a handful of artificial neurons configured in one to several layers.
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• Image/object classification
• Voice recognition
• Natural language processing
• Filtering spam emails
• Automatically flagging offensive online comments
• Detecting fraudulent financial activity
• Building an intelligent "bot" to play a game

In this thesis, the DNNs we utilize are designed, built, and trained for image recognition and
classification using well-known data sets and architectures in order to provide as meaningful
comparability as possible in our results.

1.2 Reliability and Trustworthiness
With the proliferation of ML and Deep Learning, the topics of reliability and trustworthiness
inevitably come into focus, especially in the case of DNNs. Despite their widespread use and
practical successes, it is still not completely understood how DNNs formulate their decision
boundaries/regions or how they come up with their decisions [3]. This lack of understanding
prompts questions like: How trustworthy are the results? How susceptible is the network
to intentionally misleading or noisy data? How robust is the network against attacks? What
does an attack against a Neural Network even look like? These questions have led to research
on what is known as adversarial attacks and adversarial examples. An adversarial attack
is an algorithm that seeks to find minimal perturbations to apply to input data with the
goal of causing the DNN to output incorrect information [4]. Input data that contains these
adversarial perturbations are called adversarial examples. An adversarial example is a piece
of intentionally misleading data that is designed purposefully to cause a machine learning
model to misclassify it while appearing non-malicious [5]. These adversarial examples
often have perturbations that are very small, with individual pieces of the input data being
only slightly altered from the original value. Thus, to the human eye, adversarial examples
often look very similar to their original counterparts, and in many cases can even appear
completely unaltered [4].

Research has shown that it is quite possible for a DNN, when given one of these adversarial
examples, to output an incorrect classification with high confidence – even if the adversarial

2



example appears, to a human observer, exactly the same as the benign original [6], [7], [8].

Why study the creation and effectiveness of adversarial attacks and adversarial examples?
DNNs have become increasingly common as modern decision-making tools [4]. The weak-
nesses of Neural Networks must be studied to explore their fragility, to set realistic expec-
tations on their performance, and ultimately to provoke the creation of effective defenses.
This is especially true when utilizing DNNs in applications where integrity, security, and
trustworthiness of deployed systems are of top priority – such as autonomous cars, facial
recognition systems, or unmanned systems.

1.3 Terms and Definitions
There are several types of adversarial attacks, but in general attacks are classified into several
categories. It is helpful to become familiar with the concepts and terms that are commonly
used among adversarial attack research. Also, it is common when working with image
classification DNNs to use the terms "example", "image", and "sample" interchangeably.
Throughout this thesis, they will be used as such.

1. Targeted vs Non-Targeted [9]
• Targeted: attacks that are designed to produce inputs that are classified as a

specific predetermined category.
• Non-Targeted: attacks that do not care what the predicted category of the adver-

sarial example is, as long as it is not the correct one.
2. Single-Step vs Iterative [10]

• Single-Step: an attack that generates adversarial examples using a single calcu-
lation, e.g. calculating the loss gradient of a model at one time.

• Iterative: an attack that generates adversarial examples over multiple steps,
usually involving multiple predictions or passes through a model/network while
maintaining and updating a perturbation value.

3. White Box vs Black Box vs Gray Box [4], [11]
• White Box: An attack that has total access to the inner workings of the model.

Any information about the model can be used in adversarial example creation,
such as model gradients, confidence scores, training data, training algorithm,

3



model architecture, logits2, etc.
• Black Box: An attack that has no knowledge of the model. Model vulnerability

can only be assessed by observing past inputs and corresponding model outputs.
In literature this is sometimes referred to as a "strict black box" attack.

• Gray Box: Limited access is allowed to the model, but not total internal access.
In this thesis, when referring to "gray box", we assume the attack is allowed
access to change the model inputs, observe and collect model outputs, and can
query the model; yet the attack has no access to any internal parameters like
those listed for "White Box".

There are also different general methodologies for adversarial example creation. Adversarial
attacks like ours that are designed to cause the DNN to misclassify a given input are often
divided into four categories [12]:

1. Gradient-based attacks
• These are some of the most common attacks and rely on detailed model infor-

mation, specifically the gradient of the network weights with respect to an input
image. This is explained later in Chapter 2, Section 2.1.1.

2. Score-based attacks
• These attacks rely on the predicted scores (e.g. class probabilities or logits) of

the model. Conceptually, these attacks try to estimate the gradient from these
scores.

3. Transfer-based attacks
• These attacks do not rely on information about the model itself, but rather on

information from the data the model was trained on. It has been shown that
substitute models trained on the same data can produce adversarial examples
that are very effective on the attacked model [13].

4. Decision-based attacks
• These attacks rely solely on the final decision/prediction of the model. This is

different from Score-based attacks in that they do not need confidence scores or
logits from the model, only the model’s final decision/classification.

• This is also arguably the most relevant type of attack in real-world ML applica-

2Logit: The vector of raw predictions that a classification model generates, which is typically fed to a
normalization function (e.g. softmax).
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tions where users are not likely to have access to training data, logits/confidence
scores, or model gradients.

1.4 High Entropy Input Sampling (HEIS)
We call our proposed attack HEIS, it is a non-targeted, iterative, decision based black box
attack, the methodology of which is explained in detail in Chapter 3. Decision-based attacks
are explained in detail in Chapter 2, Section 2.1.3. These types of attacks aim to fool the
DNN by finding adversarial examples that exist close to a DNN decision boundary. The
advantage of decision-based attacks is that the attacker does not need access to the model
parameters or data like a white box attack would require. This makes decision-based attacks
more robust to common DNN defenses that aim to defend against gradient based attacks
such as gradient masking and gradient regularization [12].

Most adversarial attacks create adversarial examples that cause the target system to misclas-
sify the examples with high confidence [4], HEIS adversarial examples are classified with
low confidence. While other decision based attacks rely on accuracy and/or image distance
metrics [12], HEIS relies solely on an entropy calculation that incentivizes the algorithm
to find adversarial examples that result in distributed model confidence across multiple
classes. Our final ImageNet adversarial examples typically resulted in top-1 classification
confidences no higher than 20-30%. We found this technique produces effective and highly
transferable adversarial examples.

5
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CHAPTER 2:
Background and Related Work

Substantial research has been conducted to discover how adversarial attacks affect neural
networks and also how to properly defend DNNs against threats [4], [11], [14]. Summarized
here are a few well known attacks and defenses for neural networks and the general ideas
behind how and why they work. Knowing how these types of attacks work will allow one
to better understand the logic behind HEIS, which is covered in depth in Chapter 3.

2.1 Previous Research - Adversarial Attacks

2.1.1 Gradient Based Adversarial Attacks
A few well-known methods of creating adversarial examples for neural networks are Fast
Gradient Sign Method (FGSM) from [6] and Projected Gradient Descent (PGD) from [15].
To understand how these types of attacks work, one must understand how a neural network
learns by using gradient descent. Gradient descent is a generic optimization algorithm that
is used to minimize some other function by iteratively moving in the direction of the steepest
descent [1]. The descent of the function is determined by calculating the derivative of the
function with respect to each of its coefficients (in neural networks the coefficients are the
network weights). Imagine a ball placed on the side of a large valley. Where will the ball
end up? At the deepest point in the valley, hopefully. That is what gradient descent is trying
to accomplish. The slope of the valley represents the derivative of the function the network
represents, and the starting position of the ball represents the initial neural network weights.
Just like how we expect the ball to end up at the deepest point in the valley, gradient descent
helps find the most optimal values for the neural network weights.

We randomly initialize the parameters of a network to find a starting point of the ‘ball’.
Then we calculate the slope at that position (via the partial derivative(s)) which in turn tells
us how to tune the parameters in order to move the ball down the "valley." From there, we
take a small step (step size is controlled by a parameter called the learning rate) to come
up with a set of new parameters which gives us a new starting point. We simply ’move’ in
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the direction of the most negative slope - bringing us closer to the optimal values (i.e. the
bottom of the valley). If we gradually and repeatedly perform these steps, we will eventually
end up near the bottom of the valley (i.e. descend the gradient), and in the case of a neural
network, this allows gradient descent to find the optimal network weights.

An adversarial attack like FGSM works by using the gradients of a neural network to
create an adversarial example. For an input image, FGSM creates an adversarial example by
examining the gradients of the network’s loss function (with respect to the image) to create
a new image that minimizes the loss [6]. Since the loss is calculated across the entire input
image, which can be broken up into multiple subsections (all the way down to individual
pixels), it is easy to compute how much each portion of the input contributes to the overall
loss by using the chain rule and finding the gradients. Then the adversarial example can
be constructed by adding some small perturbation to the most effective section within the
image. These perturbations are often small enough that the new adversarial example and
the original input image may look identical to the human eye, but due to the perturbations
being in just the right spot, it will fool the network into making wildly different classification
decisions (see Figure 2.1) [6]. PGD is another gradient based attack that works very similarly
to FGSM but uses multiple gradient steps per iteration to create adversarial examples [15].

Figure 2.1. An FGSM example of an input image with added perturbations
that cause a misclassification from ’panda’ with 57% confidence to ’gibbon’
with 99% confidence. Source: [6].

8



2.1.2 Transferable Adversarial Attacks
Research has shown that adversarial examples generated specifically for one model are
often effective against other models that were designed for the same data set [4], [13]; this
is known as transferability. A typical use-case for transferable adversarial attacks is where
an attacker does not have full access to the model they wish to attack, but instead creates
adversarial examples using a model that they do have access to – or one they created to
mimic the target model. This surrogate model is trained using the same or similar data as the
target, then used to create the adversarial examples. Liu et al. [13] showed that it is possible
to create targeted and non-targeted adversarial examples that can transfer to a black-box
system whose model, training data, and truthful label set is unknown to the attacker. Figure
2.2 shows adversarial examples that were created on their surrogate system, and then used to
successfully fool a completely different model. This case is interesting in that their surrogate
model was not trained using the same data set as the model being attacked, but still showed
excellent transferability of the resultant adversarial examples.

Figure 2.2. Original images and corresponding adversarial examples gener-
ated using an ensemble based approach to creating transferable examples.
The images were successful against Clarifai.com, which is a black box image
classification system. Source: [13].
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2.1.3 Decision Based Attacks
One aspect of DNNs that is not yet fully understood is their decision boundaries and
their geometrical properties [16]. Compared to other aspects of DNNs, decision boundary
characterization is still in the early stages of study [17]. Decision based attacks typically
rely on finding adversarial examples that lie close to a model’s decision boundary in order
to cause the model to produce incorrect outputs. For example, let’s examine the decision
boundary of a linear Support Vector Machine (SVM) as shown in Figure 2.3. The line
between green and purple areas of the graph represent the model’s decision boundary.
Data given to the model for classification that falls within the green feature space will be
classified as a triangle; data that falls within the purple feature space will be classified as a
square. Data with features that lie too close to the decision boundary have a higher chance
of being classified incorrectly, as you can see by the fact that there are several instances of
green triangles in purple space and purple squares in green space. Decision based attacks
try to intentionally create or find adversarial examples that lie close to a model’s decision
boundary.

Figure 2.3. An example of several decision boundaries formed by linear SVM
classifiers using an RBF kernel and various hyperparameters. Source: [1].

Since DNNs are typically very high-dimensional systems, it is not easy for humans to
visualize or understand the decisions they make. To explain decision boundaries, it is
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useful to utilize a simple model like a SVM with few dimensions, then simply point out
that the concepts mathematically scale up to higher dimensions, even though they may
not be directly observable. Decision boundaries get more complex as the dimensionality
of the dataset and model goes up. Without showing any boundaries, Figure A.1 shows
a plot of a multi-dimensional feature space where it becomes much harder to visualize
and define boundaries between the different classes, since you must draw boundaries as
three dimensional planes instead of two dimensional lines. Visualizing decision boundaries
becomes even more perplexing, if not impossible, when the data dimensionality increases
beyond three, as is usually the case when dealing with DNNs1. However, it will still have
decision boundaries in the feature space where it decides between one class or another.
Finding input data that lies close to these boundaries is non-trivial and computationally
expensive [16].

A decision based attack is an attack that relies solely on the final decision of the model to
create adversarial examples [12]. The complexity of decision boundaries, however, makes
decision based attacks difficult and requires multiple iterative steps, whereas some white
box attacks can calculate adversarial examples in a single step (e.g. FGSM [15]). This is
likely the reason why there are very few decision based attacks, despite their importance for
real-world systems. In practice, attackers most likely will only have access to the model’s
final decision.

The original Boundary Attack, first proposed by Brendel et al. [12], was the first effective
decision based attack. It works by starting with an adversarial example that already has
a large perturbation (discovered by random sampling around the target), "then performs a
random walk along the boundary between the adversarial and the non-adversarial region
such that: (1) it stays in the adversarial region, and (2) the distance towards the target image
is reduced." Figure 2.4 shows a nice graphical representation of this concept. Although
surprisingly conceptually simple, since their Boundary Attack requires a lot of sampling
and iterations, they discovered that their attack required many more iterations (roughly 75x
more steps) to converge than popular gradient-based attacks. Although it is worth mentioning
that at intermediate step counts, their attack produces adversarial examples that are easily
recognizable by human eyes (see Figure 2.5). The Boundary Attack represents an extremely

1Even simple 1-dimensional gray-scale MNIST images, where images have a square 28x28 shape, have
an input space of 256(28∗28) (assuming pixel values are integer values between 0-255).
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important technique that demonstrates an effective decision based attack that scales to more
natural datasets such as ImageNet. This attack is able to produce adversarial examples that
are effective against models that deploy defensive techniques as well as models in real-world
black box settings [12].

Figure 2.4. The Boundary attack starts with an adversarial example, then
steps along the decision boundary so that (1) and (2) hold. Source: [12].

Figure 2.5. An example of the Boundary Attack shown at various iterations.
Source: [12].

2.2 Previous Research - Neural Network Defenses
With the discovery of adversarial examples and adversarial attacks, there have been many
techniques researched and developed to combat the effectiveness of adversarial examples
on DNNs [4], [18], [19]. Techniques such as defensive distillation [20], [21], adversarial
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training [9], [15], trading off between accuracy and robustness via surrogate-loss minimiza-
tion (an algorithm called TRADES) [22], gradient regularization [23], and region-based
classification [24] help DNNs operate as expected despite Adversarial Attacks.

2.2.1 Defensive Distillation
Papernot et al. first proposed using distillation as a defensive technique against adversarial
examples [20]. Distillation is the term given to the process of training a (usually smaller)
DNN using knowledge gained from a different (usually larger) DNN. The original motivation
behind distillation was to reduce the computational complexity and architecture needs of
a smaller DNN by utilizing knowledge gained from a larger DNN in order to deploy
deep learning in resource-constrained environments, like edge computing or smart phones.
Defensive distillation instead utilized "the knowledge extracted from a DNN to improve
its own resilience to adversarial samples" [20]. Although defensive distillation was very
promising, the defense has been shown to be easily defeated by more advanced adversarial
attacks [21].

2.2.2 Adversarial Training
Adversarial training is the process in which a network is hardened against adversarial exam-
ples by including them in the training data set [7], or creating its own adversarial examples
while training in order to better recognize them afterwards [6]. The motivation behind ad-
versarial training is that the network would be taught how to correctly classify adversarial
examples and thus be more robust against any future attacks. Although adversarial training
has been shown to still be vulnerable to more sophisticated attacks, recent work has demon-
strated increased model robustness against CIFAR-10 adversarial examples created using
methods like PGD [15]. However, adversarial training has not been successfully proven
robust for more complex, natural datasets like ImageNet [19].

2.2.3 TRadeoff-inspired Adversarial DEfense via Surrogate-loss min-
imization (TRADES)

Statistically, model robustness (performance against adversarial examples) and standard
accuracy (performance against regular samples) can be at odds with each other [25]. Al-
though this trade-off is well known and has been the subject of many empirical studies,
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the underlying theory behind the cause of this trade-off is still largely unknown. Zhang et
al. [22] created a novel defense called TRADES, in which they bound the robust error2
using two terms: one that represents the natural error3 and one they call the boundary
error4. The natural error is measured and optimized using a surrogate loss function. The
entire robust error is then minimized using a differential upper bound on the gap between
robust error and natural error that has been shown to be the tightest upper bound possible
(using the theory of classification-calibrated loss). This approach is unique in that they used
a surrogate loss function consisting of two terms: one that maximizes the standard accuracy
and another regularization term that pushes the network’s decision boundary away from the
training data, which improves adversarial robustness. They discovered that their TRADES
algorithm performs very well compared to other defenses under both white box and black
box threat models, it even won the NeurIPS 2018 Adversarial Vision Challenge [22].

2.2.4 Gradient Regularization
Gradient regularization refers to a defense technique in which models are trained while
being differentiably penalized according to the degree to which small input changes alter
its final predictions. In other words, the model is penalized when small input changes cause
drastically different predictions. Models trained using this input gradient regularization have
been shown to be more robust against adversarial examples, especially those created under
a black box threat model [23].

2.2.5 Region Based Classification (RBC)
One technique designed to help DNNs classify adversarial examples is called RBC. What
makes adversarial examples so effective is that they lie near a decision boundary for a
DNN (the boundary between two or more classification outcomes), sometimes called a
classification boundary between classification regions. Researchers discovered that if you
sample from a hypercube5 around an adversarial example, most of those samples would still

2Robust error: the prediction error for adversarial examples.
3Natural error: the traditional classification error.
4Boundary error: characterizes how likely the input features are close to the decision boundary.
5A hypercube is an abstract, multi-dimensional "cube" centered around an example input. The other

samples in this hypercube can be found by varying the parameters of the center example slightly so as
to remain very similar to the original, but different enough to warrant a separate prediction by the DNN.
Sometimes called a hyperball.
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be correctly classified by the network [24]. In other words, the hypercube mostly overlaps
with the correct side of the decision boundary (see Figure 2.6). Thus, RBC samples from
a hypercube around whatever input it is given, classifies those samples, then makes its
prediction on the original input based on the most common prediction among all the
samples. This technique significantly reduces the effectiveness of some adversarial attacks
without sacrificing prediction accuracy on non-adversarial examples [24].

Figure 2.6. X is a benign example and X’ is a corresponding adversarial
example. The hypercube centered on X’ intersects mostly with the correct
classification region. Source: [24].
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CHAPTER 3:
Design and Methodology

In this chapter we discuss the motivation behind our attack, the framework and hyperpa-
rameters used, and methodology of the algorithm. The basic principle behind HEIS is to
start from a benign1 input image and sample from a surrounding hyperball, with radius
𝜖 bounded by some 𝑙𝑝-norm, to find nearby samples that have a class distribution with
high entropy when fed back through the model. The nearby sample that produces a class
distribution with the highest entropy is then used as the beginning sample for the next round
of the attack (see Figure 3.1). The motivating idea is that by randomly sampling from the
feature space around the input and testing each of those samples on the model, we should
be able to find samples that lie close to the model’s decision boundaries, yet with small
perturbation bounded by 𝜖 . We found that this theory does hold and HEIS is quite capable
of generating adversarial examples that are very effective in both gray box and black box
threat models.

1Benign: an input with no adversarial perturbation(s); could also say "normal" or "regular".
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Figure 3.1. At step 1, 𝑋 is the initial benign input. Only 4 samples for each
iteration are shown here, found by calculating 𝑋+𝜇𝑝 ∗𝜉1 where 𝜉1 is sampled
from a Gaussian distribution, 𝜇𝑝 is a scaling coefficient, and (𝜇𝑝 ∗ 𝜉1) ≤ 𝜖 .
Random sampling finds a nearby image in the feature space that returns
some entropy over the class distribution when fed back through the model.
The neighbor with the highest entropy is used as the starting point for the
next step. The algorithm is explained in more detail in Section 3.1.2.
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3.1 Design
The following are the general steps for conducting our attack:

1. Sample from a hyperball, with radius 𝜖 , around the current input to get several
"Starting Points".

2. Sample from a hyperball around each "Starting Point" and pass those samples back
through the model to examine the resulting class distributions.

3. Calculate the entropy of each class distribution to see which one is highest.
4. Choose the "Starting Point" whose class distribution led to the highest entropy as the

beginning sample for the next round.

After several iterations of this process, the algorithm should theoretically find input data
(i.e. adversarial examples) that lie close to the model’s decision boundaries, having pertur-
bation bounded by 𝜖 , and that result in a very high degree of uncertainty in the model’s
predictions. The attack relies almost solely on the entropy calculation. Entropy is a term for
the measurement of uncertainty in a distribution given by:

𝐻 (𝑋) := −
∑︁
𝑥∈𝑋

𝑝(𝑥)𝑙𝑜𝑔(𝑝(𝑥))

Where 𝑋 is a distribution and each event 𝑥 ∈ 𝑋 occurs with probability 𝑝(𝑥). In our use,
each event corresponds to one of the model’s output classes. This entropy calculation results
in higher values when the class distributions are more spread out, and lower values when
the class distributions are centered on one or only a few classes. We can use this to indirectly
measure the confidence of the model in its predictions without actually having access to the
network’s logits or confidence scores.

The lower the entropy value, we can assume that the model is more confident in its predic-
tions. Conversely, the higher entropy values indicate the model’s predictions were spread
out over more classification categories, and thus had a higher degree of uncertainty about
the input data. We utilize the resulting entropy values to guide the creation of our adversarial
examples. HEIS iteratively finds examples with perturbation bounded by 𝜖 that cause the
model to have high entropy over the predicted class distribution (i.e. lower classification
confidence) thus creating adversarial examples that are highly effective in both gray box and
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black box environments. To avoid the algorithm blindly adding noise at every step without
increasing the effectiveness of the adversarial examples, we included the result of the pre-
vious step as one of the Starting Points in the current step. This means that the algorithm
could potentially carry the same adversarial example forward through multiple steps if it
fails to find a nearby sample that results in a higher entropy calculation. During testing, we
often observed this phenomenon of HEIS opting for none of the Starting Points during one
or several steps.

3.1.1 Hyperparameters
The method HEIS uses to create adversarial examples is fairly straightforward but proved to
be computationally expensive in execution due to the multi-sampling process – similar to the
Boundary Attack [12]. This type of experimentation required many tunable hyperparameters
that could affect the process of creating adversarial examples. These parameters included:

1. Epsilon (𝜖)
• Floating point value between zero and one (0-1).
• Controls the clipping of adversarial examples during creation.
• Utilized as a percentage of original data; i.e. an epsilon of 0.1 means no more

than 10% change in any individual data point (i.e. pixel in an image).
• For example, if the range of input pixels is between 0-255, then an epsilon value

of 0.1 means that pixels will not be allowed to change by more than +/−25.5.
2. Number of Steps (𝑆)

• A positive integer value.
• Number of iterations of the algorithm to complete.

3. Starting Point Noise Coefficient (𝜇𝑝)
• Floating point value between zero and one (0-1).
• Coefficient that determines the amount of noise added when determining starting

points.
4. Number of Starting Points (𝑃)

• A positive integer value.
• Controls the number of starting point samples to use when attempting to find a

nearby sample with the highest entropy.
5. Number of Entropy Samples (𝑁)
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• A positive integer value.
• Number of samples to take when calculating entropy for an individual starting

point.
6. Entropy Noise Coefficient (𝜇𝑒)

• Floating point value between zero and one (0-1).
• Coefficient that determines the amount of noise added when taking samples for

the entropy calculation.

The hyperparameter that we varied the most was epsilon (𝜖). As discussed in Chapter 4, some
of the hyperparameters, like the starting point noise coefficient (𝜇𝑝) and number of starting
points (𝑃), did not seem to alter performance much. Others, like the number of entropy
samples (𝑁), we intentionally kept at a constant value in order to lower computational
requirements; it also allowed us to more easily note meaningful performance changes when
varying other hyperparameters. For all of the CIFAR-10 testing and most of the ImageNet
testing, we used 𝑆 = 100 steps2.

3.1.2 Algorithm
The HEIS algorithm is surprisingly simple and fairly straightforward; Algorithm 1 shows
the steps taken in creating adversarial examples. There is an outer for loop that runs the
algorithm through 𝑆 number of steps (line 1), creating 𝑃 Starting Points at each step (line
3). Clipping is applied to each Starting Point to bound perturbation by 𝜖 (line 4). There is
an inner for loop (line 6) that creates 𝑁 samples from each starting point (line 8), passes
them back through the model to create the class distributions (line 9), then calculates the
entropy for each distribution (line 10). The last step is to simply choose the starting point
that resulted in the highest entropy as the next 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (lines 12-13). Figure 3.1 shows a
high-level representation of this process as the algorithm takes steps towards the decision
boundary. Figure 3.2 shows how HEIS takes 𝑃 starting points and 𝑁 entropy samples by
controlling the sampling process using 𝜇𝑝 and 𝜇𝑒. Figure 3.3 shows the entropy calculation
process for each starting point. The entries in array 𝐸 align with their corresponding starting
points in array 𝑋𝑠𝑝.

Since HEIS is an iterative multi-sampling process, it can be computationally expensive for

2In Section 4.2, we tested a few different values of 𝑆 on our ImageNet model.
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Algorithm 1 HEIS
Variables
𝑋 the original sample
𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 array of current images
𝑋𝑠𝑝 array of starting points (also images)
𝑥𝑚𝑎𝑥/𝑥𝑚𝑖𝑛 the max/min values of the input data
𝐸 array of floating point values
𝑚𝑜𝑑𝑒𝑙 the target ML model (in our case an image classification DNN)
Functions
𝑐𝑙𝑖𝑝(𝐴, 𝑏, 𝑐) clips values in array 𝐴 between 𝑏 and 𝑐

𝐴.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑥) appends item 𝑥 to the end of list 𝐴
𝑎𝑟𝑔𝑚𝑎𝑥(𝐴) returns the index of the largest value in list 𝐴
𝑚.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑋) uses model 𝑚 to predict values of 𝑋
1: for 𝑠𝑡𝑒𝑝𝑠 = 1, 2, . . . , 𝑆 do
2: 𝜉1 ← 𝑁 (𝜇, 𝜎2) ⊲ 𝜉1 = random normal noise
3: 𝑋𝑠𝑝 ← 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝜇𝑝 ∗ 𝜉1 ⊲ get 𝑃 Starting Points
4: 𝑋𝑠𝑝 ← 𝑐𝑙𝑖𝑝(𝑋𝑠𝑝, 𝑋 + 𝜖, 𝑋 − 𝜖) ⊲ clip by 𝜖

5: 𝑋𝑠𝑝 ← 𝑐𝑙𝑖𝑝(𝑋𝑠𝑝, 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛) ⊲ clip by max/min of input data
6: for 𝑋′ in 𝑋𝑠𝑝 do
7: 𝜉2 ← 𝑁 (𝜇, 𝜎2) ⊲ 𝜉2 = random normal noise
8: 𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ← 𝑋′ + 𝜇𝑒 ∗ 𝜉2 ⊲ get 𝑁 Entropy Samples
9: 𝑦_𝑝𝑟𝑒𝑑 ← 𝑚𝑜𝑑𝑒𝑙.𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠) ⊲ 𝑦_𝑝𝑟𝑒𝑑 = class distribution

10: 𝐸.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦_𝑝𝑟𝑒𝑑))
11: end for ⊲ 𝐸 now contains entropy values for each class distribution
12: 𝑚𝑎𝑥_𝑖𝑛𝑑𝑒𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝐸) ⊲ find highest value in 𝐸

13: 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑋𝑠𝑝 [𝑚𝑎𝑥_𝑖𝑛𝑑𝑒𝑥] ⊲ choose that Starting Point going forward
14: end for

larger numbers of steps and large batches of inputs. As you can see in Algorithm 1, there
are two main for loops, and a sampling of the feature space happens inside of each loop.
This means that the process does not scale easily to large batches of input data and can be
memory intensive for data sets with large feature spaces. This is the main reason we limited
some of our hyperparamter testing, as discussed in Chapter 4, Section 4.1.1.
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Figure 3.2. X is the current image – either the benign image at step 1 or the
final result of a previous step. Random sampling around X, controlled by 𝜇𝑝,
gives 𝑃 starting points (Algorithm 1, lines 2-3). The current image is always
one of the starting points so the algorithm is not needlessly adding noise if
the other starting points fail to produce a higher entropy. Random sampling
around each starting point, controlled by 𝜇𝑒, gives 𝑁 entropy samples (Al-
gorithm 1, lines 7-8).
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Figure 3.3. Entropy samples (𝑋𝑠𝑎𝑚𝑝𝑙𝑒𝑠) are passed through the Model to
generate 𝑦_𝑝𝑟𝑒𝑑, the class distribution/predictions (Algorithm 1, line 9),
which is fed through the entropy function (Algorithm 1, line 10). The entries
in array 𝐸 align with their corresponding starting points in array 𝑋𝑠𝑝. The
largest value in array 𝐸 determines which starting point will be chosen as
the beginning sample for the next step.
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3.2 Methodology
To test our attack, we used two well-known datasets: CIFAR-10 and ImageNet. CIFAR-
10 samples were pulled from the TensorFlow3 Keras Datasets module. ImageNet samples
were pulled from the FastAI Imagenette dataset4, however, these images are now able to
be pulled directly from the TensorFlow API using the Tensorflow_datasets package. Using
well-known datasets is an easy and conventional way to test new attacks and defenses
since there are an abundance of DNNs trained on them and most research involving neural
network attacks and defenses use them.

3.2.1 CIFAR-10
CIFAR-10 is a collection of 32x32 color images, where each image belongs to one of 10
classes. It is commonly used in many machine learning applications to test computer vision
algorithms since its low resolution allows researchers to quickly train DNNs for various
purposes and to test new concepts. Our CIFAR-10 samples were pulled from the TensorFlow
Keras Datasets module.

We tested the attack against four variations of CIFAR-10 DNNs, three of which were trained
using some of the defensive techniques discussed in Chapter 2, Section 2.2. The baseline
CIFAR-10 model we used was a Wide Residual Network (WRN) consisting of 38 layers and
approximately 2.66 million trainable parameters. The variants of the model we used were
able to achieve a high prediction accuracy against the CIFAR-10 dataset, shown in Table
3.1. The four variants of our CIFAR-10 WRN model, Vanilla, GR, AT, and TRADES are
described below.

1. The Vanilla Model
• No defensive techniques used in training.

2. The GR Model
• Trained using Gradient Regularization as a defense.
• Gradient regularization was discussed in Chapter 2, Section 2.2.4.

3. The AT Model
• Trained using Adversarial Training as a defense.

3https://www.tensorflow.org/
4https://github.com/fastai/imagenette
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• Adversarial training was discussed in Chapter 2, Section 2.2.2.
4. The TRADES Model

• Trained using TRADES as a defense.
• TRADES was discussed in Chapter 2, Section 2.2.3.

We utilized two versions of each of these four models for a total of eight models. All eight
versions were architecturally identical and were all trained on CIFAR-10, however, they
were all trained separately. For each variation of the model, one version was used during the
adversarial example creation process (i.e. the gray box setting), then we tested the resulting
adversarial examples on the second version of the model (i.e. the black box setting).

Table 3.1. Benign Accuracy of our CIFAR-10 Models

Model Defense Technique Top 1 Accuracy
Vanilla None 91%

GR Gradient Regularization 91%
AT Adversarial Training 92%

TRADES TRADES 87%

3.2.2 ImageNet
The original ImageNet dataset consists of 10,000,000+ images depicting 10,000+ object
categories. However, the training dataset that is used in many ML and computer vision
competitions, like the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), is a
subset of the original dataset and consists of approximately 1.2 million images divided into
1,000 categories. We used a smaller version of the ImageNet dataset, called Imagenette,
which consists of images from only 10 categories that are easily classifiable by the DNNs we
tested. This small subset of the ImageNet dataset is useful for testing new ideas, algorithms,
and experiments since doing so on the entire ImageNet dataset is very time consuming and
resource intensive. The images we used were 244x244 color images. Since our attack turned
out to be quite resource intensive, we limited our dataset to 100 images from the Imagenette
dataset, 10 images from each of the 10 classes. The accuracy numbers reported in this thesis
are all based on this 100-image subset.

We created our ImageNet adversarial examples on a well-known ImageNet DNN: ResNet50,
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first proposed by He et al. in [26]. ResNet50 consists of 50 network layers and just over
25.5 million trainable parameters. For the gray box attack setting, we tested the resulting
adversarial examples back on the same ResNet50. Additionally, we tested the transferability
of our adversarial examples against three other well-known DNNs: MobileNetV25, VGG166,
and DenseNet2017 for the black box attack. These models, along with their pretrained
ImageNet weights, are available directly through the TensorFlow API using the Keras
Applications module. Using these ImageNet models and our Imagenette data set, Table 3.2
shows our baseline accuracy scores against benign images.

Table 3.2. Benign Accuracy of our ImageNet Models

Model Top 1 Accuracy Top 5 Accuracy
ResNet50 81% 94%

MobileNetV2 83% 98%
VGG16 73% 89%

DenseNet201 86% 96%

3.2.3 Comparing to Other Attacks
We tested all of our CIFAR-10 and ImageNet models against the Boundary Attack from [12],
discussed in Chapter 2, Section 2.1.3. We utilized the Adversarial Robustness Toolbox
(ART)8 Evasion Attacks module to implement the Boundary Attack. This module allows
users to implement both the targeted and non-targeted versions of the attack; we opted to
use the non-targeted version.

The Boundary Attack is also a black box decision based attack and thus uses a similar
methodology to our attack, so we felt like a comparison of results between the two attacks
would be the most reasonable to make. The difference between the Boundary Attack and
HEIS is that the Boundary Attack starts with an adversarial example with a large perturbation
that already classifies incorrectly and then iteratively reduces the distance between the
adversarial example and a benign image (i.e. working from the outside in, you might say),

5MobileNetV2: first proposed by Sandler, Howard, Zhu, Zhmoginov, and Chen in [27]
6VGG16: first proposed by Simonyan and Zisserman in [28]
7DenseNet201: first proposed by Huang, Liu, Maaten, and Weinberger in [29]
8https://adversarial-robustness-toolbox.org/

27



while HEIS starts with a benign image and iteratively works its way "outward" to find an
adversarial example that produces the highest entropy.
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CHAPTER 4:
Results

In this Chapter we will discuss and analyze the results of running HEIS on the DNNs and
datasets discussed in Chapter 3. In the early stages of testing, we used the CIFAR-10 dataset
to help guide our selection of meaningful hyperparameters to see what variations caused
the most impact on the performance of the model against the adversarial examples. After
thoroughly testing the attack on CIFAR-10, we tested it against the ImageNet DNNs. Our
target ImageNet DNN, ResNet50, is larger and more complex than our CIFAR-10 models.
Due to this size difference and more complex input data (244x244 images as opposed to
32x32), it took much longer to run the attack against ResNet50 than it did against the
CIFAR-10 models; for this reason we did not explore as much of the hyperparameter space
while testing against ImageNet.

4.1 HEIS and CIFAR-10
We will first discuss the results of the hyperparameter testing we did for the CIFAR-
10 models, then analyze the performance of HEIS against the undefended and defended
models covered in Section 3.2.1. We utilized the undefended Vanilla model to test how each
hyperparameter affected the performance of the adversarial examples created by HEIS.
Once we decided on a set of hyperparameters, we tested HEIS against the Vanilla model
and the models that incorporated defenses. We discovered that HEIS performs very well in
a gray box setting and produces adversarial examples that are extremely effective in a black
box setting as well, with high transferability to other models. In our gray box testing, HEIS
performance was similar to, but slightly beaten by the Boundary Attack from [12]. In our
black box testing, HEIS outperformed the Boundary Attack in all of our experiments.

4.1.1 Hyperparameter Testing
Recall from Chapter 3 that HEIS takes 𝑆 Number of Steps, sampling from the input images
at two different times: once to obtain 𝑃 Starting Points, and then again to take 𝑁 samples
around each Starting Point. The first sampling is controlled by the Starting Point Noise
Coefficient, 𝜇𝑝, while the second is controlled by the Entropy Noise Coefficient, 𝜇𝑒. We
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intentionally used a fixed 𝜇𝑒 value of 0.1, which we found was sufficient to obtain reasonably
diverse samples. The value for 𝜇𝑝, however, controlled how different the Starting Points
were allowed to be from the original data. A larger value for 𝜇𝑝 meant that the Starting
Points, in terms of the average pixel distance, could be further away from the original
sample. We wanted to test how varying this coefficient effected the overall performance
of the resulting adversarial examples, as we would like to have adversarial examples that
are not too different from the original image, but large enough to see the model’s accuracy
drop. Our initial intuition was that a value of 0.1 would be sufficient, however we wanted to
see what would happen if we used larger and smaller values. We tested several values for
𝜇𝑝 on the Vanilla model and, as you can see in Figure 4.1, we found that smaller 𝜇𝑝 values
decreased the performance of the attack as expected, resulting in the model being able to
classify the inputs at a correspondingly better rate, but larger coefficients did not improve
performance enough to justify the added noise in the resulting adversarial examples. For
this reason, we utilized a 𝜇𝑝 of 0.1 for the rest of our testing.
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Figure 4.1. Vanilla Accuracy for 𝜖 = 0.3

Next, we tested the effect of increasing or decreasing 𝑃, the number of Starting Points.
Increasing this hyperparameter allows the algorithm to take more samples from the hyperball
surrounding the input in hopes of finding the perfect one with the highest entropy to utilize
in future steps. We hypothesized that increasing 𝑃 would cause a corresponding increase in
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the effectiveness of the resulting adversarial examples (meaning a drop in model accuracy).
However, we discovered that increasing 𝑃 only resulted in increased computation times
and no desirable increase in attack performance (see Figure 4.2). For this reason, we used
𝑃 = 10 for the rest of our testing1.
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Figure 4.2. Vanilla Accuracy vs 𝑃

4.1.2 Undefended CIFAR-10 Performance
After settling on a baseline set of hyperparameters for HEIS, we ran the attack against the
undefended CIFAR-10 Vanilla model. The Boundary Attack [12] performed better in gray
box attacks when HEIS was constrained to 𝜖 values less than 0.2, but the performance
of both attacks were similar when HEIS was allowed 𝜖 values of 0.2 and larger, with
the Boundary Attack slightly outperforming HEIS. Our gray box attack results, shown in
Figure 4.3, show that HEIS reduced Vanilla’s accuracy from 91% to ~10% for 𝜖 ≥ 0.2,
compared to the Boundary Attack’s reduction to ~7%. The Figures in this Section also show

1We performed similar tests for our ImageNet Convolutional Neural Network (CNN) with similar results
(see Section 4.2).
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the "benign" data points – the Vanilla model’s accuracy against the original unperturbed
CIFAR-10 dataset.
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Figure 4.3. Vanilla Gray Box Accuracy

Although the Boundary Attack worked very well in gray box settings, the adversarial
examples that it created were very specific to the network on which they were created. As
shown in Figure 4.4, the Boundary Attack adversarial examples had almost no effect on the
Vanilla model in a black box setting, despite the model having the exact same architecture
and training set as the Vanilla model that was used to create them. HEIS was able to
reduce black box accuracy from 91% to 15-20% for 𝜖 ≥ 0.2, while the Boundary Attack’s
performance indicated almost no adverse effect and remained around 90%.
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Figure 4.4. Vanilla Black Box Accuracy

4.1.3 CIFAR-10 Adversarial Examples
During testing, we investigated several instances of adversarial examples created using HEIS
to see what they looked like when depicted visually, and also to examine model performance
against single images to see if the desired effects were taking place. As predicted, we
observed the confidence scores spreading out over multiple classes. For example, in Figures
4.6-4.11, HEIS not only caused the model to misclassify the image, but also created high
uncertainty across all of the model outputs. Tables 4.1 and 4.2 show the network outputs
for each individual classification category.

To see if this increase in class distribution entropy held true for the rest of the dataset, we
calculated the average entropy across all of the adversarial examples at each step and plotted
it in Figure 4.5. For most 𝜖 values, the entropy over class predictions had a steep increase
from 38% to over 60% during the first 30 steps of the HEIS algorithm. After 30 steps, the
entropy began to plateau with only slight increases after that. This indicates the algorithm
indeed finds examples that exist near to adjacent decision boundaries of the model. We also
saw this trend when we examined the entropy values for our ImageNet adversarial examples
in Section 4.2. Since this plateau effect was common to both datasets, we decided to explore
the effectiveness of HEIS for smaller values for 𝑆 (number of steps) on our ImageNet DNN,
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the results of which are covered in Section 4.2.2. The implication is very promising for the
attack; if HEIS remains effective for significantly smaller values of 𝑆, then that bodes well
for computational overhead and real-world applications for this iterative, multi-sampling
process.
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Figure 4.5. Average Entropy Values (TRADES model)
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Figure 4.6. Airplane: 99.42% Figure 4.7. Bird: 82.81%
Airplane: 5.89%, Ship: 4.73%

𝜖 = 0.031

Table 4.1. CIFAR-10 airplane – before and after HEIS

Label Benign HEIS (𝜖 = 0.031)
Airplane 99.4247% 5.8900%

Automobile 0.0025% 0.1165%
Bird 0.1535% 82.8113%
Cat 0.0148% 1.2953%
Deer 0.0030% 1.1949%
Dog 0.0025% 1.4807%
Frog 0.0105% 0.6862%
Horse 0.3024% 0.5213%
Ship 0.0769% 4.7309%
Truck 0.0093% 1.2731%
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Figure 4.8. Ship: 85.63%
Automobile: 13.79%

Figure 4.9. Cat: 65.06%
Frog: 20.86%, Deer: 7.89%

𝜖 = 0.1

Table 4.2. CIFAR-10 ship – before and after HEIS

Label Benign HEIS (𝜖 = 0.1)
Airplane 0.1122% 0.8538%

Automobile 13.7933% 0.5392%
Bird 0.1218% 3.6012%
Cat 0.0556% 65.0599%
Deer 0.0673% 7.8953%
Dog 0.0151% 0.2392%
Frog 0.0808% 20.8602%
Horse 0.0085% 0.0721%
Ship 85.6333% 0.6374%
Truck 0.1122% 0.2418%
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Figure 4.10. Horse: 99.45% Figure 4.11. Cat: 76.19%
Frog: 17.57%
Deer: 4.61%

𝜖 = 0.2

Table 4.3. CIFAR-10 horse – before and after HEIS

Label Benign HEIS (𝜖 = 0.2)
Airplane 0.0953% 0.5714%

Automobile 0.0119% 0.1172%
Bird 0.0324% 0.4680%
Cat 0.0482% 76.1925%
Deer 0.1704% 4.6138%
Dog 0.1590% 0.0479%
Frog 0.0047% 17.5749%
Horse 99.4500% 0.0100%
Ship 0.0110% 0.0176%
Truck 0.0171% 0.3869%
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4.1.4 Defended CIFAR-10 Performance
For the defended models under gray box attack, the defensive techniques reduced the
performance of HEIS, while the Boundary Attack [12] did not suffer as much loss in
performance. However, for black box attacks, HEIS outperformed the Boundary Attack
when testing the adversarial examples against our defended models for every value of 𝜖
except 0.031, where the performance was nearly identical. Recall from Section 3.2.1, the
three defenses which we tested HEIS against were:

1. Gradient Regularization (GR model)
2. Adversarial Training (AT model)
3. TRADES (TRADES model)

As you can see in Figure 4.12, HEIS was able to drop the performance of the Vanilla model
from 91% to 11% for 𝜖 ≥ 0.2 while the defended models were able to maintain accuracy
scores in the 20-30% range, only dropping below 20% for 𝜖 ≥ 0.6. The Boundary Attack
did not suffer such setbacks in gray box settings (Figures 4.14, 4.16, and 4.18) and was still
able to achieve ~8-10% accuracy against all models. In black box tests (Figure 4.13), HEIS
achieved accuracy drops from 91% to 17% on the Vanilla model for 𝜖 ≥ 0.2, while the
defended models finally dipped below 30% accuracy for 𝜖 ≥ 0.4. However, the Boundary
Attack adversarial examples had almost no effect against the black box defended models,
and we observed only slight performance drops in Figures 4.15, 4.17, and 4.19, where the
models were still able to achieve an accuracy above 80% for every test.

Although hindered, HEIS still worked quite well on our defended models and showcases
how effective black box attacks can be even against neural network defenses. Our GR model
dropped from 90% accuracy to ≤ 32% for 𝜖 ≥ 0.2 in our gray box tests and ≤ 23% for
𝜖 ≥ 0.4 in our black box tests. The AT model dropped from 90% accuracy to ≤ 36% for
𝜖 ≥ 0.2 in gray box testing and ≤ 25% in black box testing for 𝜖 ≥ 0.4. The TRADES
model dropped from 87% gray box accuracy to ≤ 33% for 𝜖 ≥ 0.2 and ≤ 31% black box
accuracy for 𝜖 ≥ 0.3.

As a side note, the adversarial examples produced from running HEIS on these defended
models appeared extremely similar to the ones that are displayed in Sections 4.1.3 and
A.1.1, so we do not show them in this thesis.
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Figure 4.12. HEIS Gray Box Accuracy
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Figure 4.13. HEIS Black Box Accuracy
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Figure 4.14. HEIS Gray Box Accuracy (GR Model)
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Figure 4.15. HEIS Black Box Accuracy (GR Model)
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Figure 4.16. HEIS Gray Box Accuracy (AT Model)
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Figure 4.17. HEIS Black Box Accuracy (AT Model)
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Figure 4.18. HEIS Gray Box Accuracy (TRADES Model)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20
30
40
50
60
70
80
90

100

Epsilon (𝜖)

A
cc

ur
ac

y
(%

) Benign
HEIS

Boundary

Figure 4.19. HEIS Black Box Accuracy (TRADES Model)

42



4.2 HEIS and ImageNet
In this section, we discuss the performance of HEIS against the ImageNet dataset. We used
ResNet50 (from [26]) to create the adversarial examples, then tested their transferability
against three other DNNs trained on ImageNet: MobileNetV2 from [27], VGG16 from [28],
and DenseNet201 from [29]. We also tested the Boundary Attack [12] against ResNet50
in order to give a side-by-side comparison of performance against a known adversarial
attack. Similarly to our CIFAR-10 testing, the Boundary Attack performed better against the
target model during gray box tests in top-1 accuracy. However, we still observed significant
performance degradation in both top-1 and top-5 accuracy2 using HEIS adversarial examples
for epsilon (𝜖) values as low as 0.2.

Since we only had one version of the ResNet50 model with preloaded ImageNet weights,
we were not able to do the same black box testing we did before for the CIFAR-10 models
where we had two separately trained models with identical architecture. Instead, we tested
the HEIS and Boundary Attack adversarial examples created on ResNet50 against three
other ImageNet DNNs to see how transferable they were. We discovered that the adversar-
ial examples produced by HEIS transferred very well to the other ImageNet models and
observed significant drops in top-1 and top-5 accuracy among all three of the other models,
even for 𝜖 values as low as 0.2. This was not the case for the Boundary Attack adversarial
examples, as they were only effective against the original target model, and had very little
effect on the other ImageNet models. Section 4.2.3 explores the results of this transferability
testing.

4.2.1 HEIS Performance
After running HEIS and the Boundary Attack against ResNet50, we noticed familiar trends
in the performance of each. The Boundary Attack adversarial examples excelled against the
model by avoiding the correct output class, although interestingly they only significantly
reduced the top-1 accuracy while the top-5 accuracy remained virtually undisturbed. The
HEIS adversarial examples, as hypothesized, were effective in increasing overall uncertainty
by spreading out the model’s confidence scores across multiple classification outputs and
were thus quite effective in reducing both top-1 and top-5 performance. In other words, HEIS

2Top-1 and top-5 accuracy refer to the highest (top-1) and five highest (top-5) class predictions the model
produces for a given input.
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was effective in not only obscuring the single correct output class, but produced adversarial
examples that had such high uncertainty across enough classes that it even effected top-5
performance. This is exactly what we hoped to accomplish with HEIS and we think that
these high entropy classification outputs cause the resulting adversarial examples to transfer
well to other ImageNet models.

As you can see in Figure 4.20, HEIS was able to drop the performance of ResNet50 from
81% top-1 accuracy to below 50% for 𝜖 ≥ 0.2. For 𝜖 ≥ 0.4, the accuracy drops to ~20%
for top-1 and ~30% for top-5. In contrast, the Boundary Attack only significantly dropped
top-1 accuracy to ~9%, while the top-5 accuracy of ~92% is nearly unchanged from the
model’s performance on the original, unperturbed dataset.
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Figure 4.20. ResNet50 Gray Box Accuracy

An interesting trend to note in Figure 4.20 is that as 𝜖 values go above 0.4, the HEIS
adversarial examples stop negatively impacting the accuracy of the models and the per-
formance plateaus. This is also noticeable in the CIFAR-10 testing we performed if you
examine Figures 4.12 and 4.13. This also holds true in Section 4.2.3 when we discuss the
transferability of our ImageNet adversarial examples to other models. As we can see in
Sections 4.1.3 and 4.2.2, when displaying the adversarial images and observing them with
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the human eye, the images created using higher 𝜖 values are obviously noisier and have
more visible perturbations than those with lower 𝜖 values (for instance, when comparing
adversarial examples at 𝜖 = 0.1 and 𝜖 = 0.5). So why do the models not perform worse
when 𝜖 values go above 0.4? We will hypothesize the reason behind this in Section 5.1.

Since ImageNet is a larger dataset, having 244x244 color images versus 32x32 colors images
for CIFAR-10, and 1,000 classes instead of just 10, we wanted to run a quick test on the
effect of increasing 𝑃, the number of starting points, to see if it helped HEIS achieve better
results against ResNet50. Table 4.43 shows the results of those tests, which were surprisingly
similar to our CIFAR-10 test results. Increasing 𝑃 had almost no effect on the performance
of HEIS; perhaps more testing using higher values of 𝑃 would have yielded different results,
but this would have meant significantly increased computation time so we did not test any
values above 100. For these reasons, we used 𝑃 = 10 for the rest of our ImageNet testing.

Table 4.4. ResNet50 accuracy for 𝜖 = 0.1.

𝑃 Top 1 Accuracy Top 5 Accuracy
10 73% 82%
25 70% 83%
50 70% 83%
100 73% 82%

4.2.2 ImageNet Adversarial Examples
In this section we explore what our ImageNet adversarial examples look like and what kind
of response we get from ResNet50 when making predictions against individual samples.
Figures 4.21 and 4.22 show an example of an image before and after running HEIS at
𝜖 = 0.1. As you can see, while the perturbations did cause ResNet50 to miss the top-1
category, it was still able to get the correct class in the top-5. This is obviously an image
that ResNet50 struggles with, as even its benign prediction confidence is only 35%, but it
is still an interesting case as you can clearly see in Table 4.5 that the predictions after HEIS
have increased the model’s confidence in almost every category except the ones it was the
most sure of before.

3Recall from Section 3.2.2 that ResNet50’s baseline accuracy against this dataset is 81% for top-1 and
94% for top-5.
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Figure 4.21. Cassette: 35.13%
Spotlight: 18.42%
Car mirror: 12.37%

Figure 4.22. Polaroid: 36.25%
Cassette: 22.12%

Microwave: 15.31%
𝜖 = 0.1

Table 4.5. ImageNet cassette player – before and after HEIS

Label Benign HEIS (𝜖 = 0.1)
Cassette player 35.1274% 22.1206%

Spotlight 18.4222% 5.5675%
Car mirror 12.3761% 0.5946%

Polaroid camera 7.3647% 36.2499%
Loupe 3.3186% 0.3931%

Microwave 0.4415 % 15.3066%
Television 0.2580% 1.9116%

Space heater 0.0665% 1.8408%
Oscilloscope 0.1602% 1.7111%

Radio 0.4684% 1.2323%

In Figures 4.23-4.30, we see that as we increase 𝜖 above 0.2, HEIS starts causing ResNet50
to become increasingly unconfident in predictions it was quite sure of before, in some cases
even causing the DNN to begin crossing interesting decision boundaries; such as from long
metallic objects like chainsaws and space shuttles to canines, or from canines to fowl, or
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from buildings to animals, etc. More ImageNet HEIS adversarial examples can be seen in
Appendix A, Section A.1.2.

Figure 4.23. Car mirror: 93.31%
Sunglasses: 2.04%

Grille: 0.68%

Figure 4.24. Iron: 17.24%
Car mirror: 14.92%
Disk Brake: 9.46%

𝜖 = 0.2

Figure 4.25. Chainsaw: 50.04%
Space shuttle: 24.26%

Projectile: 2.01%

Figure 4.26. Briard: 13.28%
Chainsaw: 11.31%
Schipperke: 9.58%

𝜖 = 0.3
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Figure 4.27. Cocker spaniel: 51.68%
Springer: 17.22%
Poodle: 13.41%

Figure 4.28. Goose: 19.24%
Swan: 9.55%

Badger: 7.73%
𝜖 = 0.4

Figure 4.29. Church: 95.51%
Monastery: 1.05%

Figure 4.30. Hare: 30.92%
Fountain: 27.22%
Stone wall: 6.59%

𝜖 = 0.5

Just like we did for CIFAR-10 in Section 4.1, we wanted to see if this uncertainty trend
held true for our entire ImageNet dataset. We calculated the average entropy across all of
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the adversarial examples at each step and plotted it in Figure 4.31. Again we see a definite
upward trend in the average entropy, indicating that even for this more complex model
and dataset – HEIS indeed finds examples that exist near to adjacent decision boundaries.
However, just like our CIFAR-10 testing, it ceases to increase much after 30-40 steps. Since
this plateau effect was common across both datasets, this caused us to wonder if maybe HEIS
could perform just as well with significantly lower step counts. If so, the attack becomes
much more computationally feasible and realizable for real world applications, as there may
be limits on how often systems allow high frequency interactions of the type common to
black box attacks.

0 10 20 30 40 50 60 70 80 90
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Steps

En
tro

py

𝜖 = 0.031
𝜖 = 0.1
𝜖 = 0.2
𝜖 = 0.3
𝜖 = 0.4
𝜖 = 0.5
𝜖 = 0.6
𝜖 = 0.7
𝜖 = 0.8
𝜖 = 0.9
𝜖 = 1.0

Figure 4.31. Average Entropy Values (ResNet50)

We tested HEIS (𝜖 = 0.5) against ResNet50 for smaller step sizes. We found that while
it did give us our expected decrease in computation time, as you can see in Figure 4.32
there is a positive correlation between the effectiveness of the adversarial examples and
the number of steps HEIS is allowed to take. Although it is worthwhile to point out that
even with drastically reduced step counts, the ResNet50 HEIS adversarial examples still
caused significant drops in performance among all four models. For example, at only five
steps, ResNet50 dropped from 81% top-1 accuracy down to 48%. Those same adversarial
examples then caused MobileNetV2 to drop from 83% to 30% in top-1 accuracy. At 15 steps,
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ResNet50 dropped to 36% top-1 accuracy, and testing those adversarial examples against
VGG16 dropped its performance from 73% top-1 accuracy down to 34%. DenseNet201,
our top ImageNet performer, finally dropped below 50% top-1 accuracy (from 86%) for
𝑆 ≥ 25. The other positive outcome when dropping the number of steps, besides decreased
computation time, is that it results in adversarial examples that are visibly less perturbed
when viewed with the human eye (see Figure 4.33).
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Figure 4.33. HEIS adversarial examples produced for increasing values of 𝑆
(𝜖 = 0.5). The top left image is the original ImageNet sample, then from
left to right 𝑆 = [5, 15, 25, 50, 100]

4.2.3 HEIS Transferability
The most effective use of HEIS was in the transferability of its adversarial examples to the
other models, which is where the Boundary Attack [12] severely underperformed. After
running HEIS and the Boundary attack against ResNet50, we took the resulting adversarial
examples and passed them through our three other ImageNet models. Although these models
are all trained on the same dataset, they are architecturally quite different from each other.
Figures 4.34, 4.35, and 4.36 show the results of these tests against MobileNetV2, VGG16,
and DenseNet201 respectively. As we observed in Section 4.2.2, HEIS produces adversarial
examples that create a high degree of uncertainty among the model’s output classes. We
discovered that this led to the creation of adversarial examples that were very transferable
to our other ImageNet models and were even able to degrade their performance in both
top-1 and top-5 accuracy. This is quite an interesting result. Since the ResNet50 adversarial
examples were effective at degrading both the top-1 and top-5 accuracy of all three other
ImageNet DNN, it suggests that HEIS creates adversarial examples that are able to obscure
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features in the input data that multiple DNNs relied on for classification.

Table 4.6 highlights some of the most notable drops in performance among our other Ima-
geNet models when classifying our ResNet50 adversarial examples. MobileNetV2 dropped
66 percentage points in top-1 accuracy for 𝜖 ≥ 0.3, VGG16 dropped 53 percentage points
and DenseNet201 dropped 56 percentage points for 𝜖 ≥ 0.5. As you can see in Table 4.6,
similarly significant drops were also observed in top-5 accuracy.

Table 4.6. ImageNet: HEIS Transfer Accuracy

Model Top 1 Drop Top 5 Drop 𝜖

MobileNetV2 83% −→ 17% 98% −→ 20% ≥ 0.3
VGG16 73% −→ 20% 89% −→ 25% ≥ 0.5

DenseNet201 86% −→ 30% 96% −→ 45% ≥ 0.5
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Figure 4.34. HEIS Transfer Accuracy (MobileNetV2)
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Figure 4.35. HEIS Transfer Accuracy (VGG16)
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Figure 4.36. HEIS Transfer Accuracy (DenseNet201)
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CHAPTER 5:
Discussion and Future Work

5.1 Discussion

5.1.1 Real World Applications
In real world applications of adversarial attacks, it is most likely the case that attackers will
not have access to the ML system or model that they are trying to defeat. It is in these black
box environments where attacks can also be the most difficult, since you cannot know for
sure what data the system may have been trained on. In HEIS, we introduce a decision based
attack that requires no knowledge of the model or the training data, and without the need
for a surrogate model. The practicality associated with strict black box attacks like HEIS
cannot be understated, any model can be attacked and the attack does not rely on gradients
or approximations or prior knowledge.

While the Boundary Attack from [12] is a phenomenal and practical black box attack, we
found that its adversarial examples do not generalize well and are only effective against the
target model, and then only against top-1 accuracy. HEIS creates high entropy, multi-class
uncertainty among the target model’s class predictions, and the adversarial examples transfer
extremely well to other models. It is reasonable to assume that adversarial examples created
from complex, natural datasets like ImageNet could also be effective against real-world
models without knowing the actual training data.

5.1.2 HEIS Perturbations
As observed in Sections 4.1.3 and 4.2.2, one of the main drawbacks of HEIS is that it
adds a decent amount of visible perturbation to the image. The images begin to become
unrecognizable after 𝜖 values of around 0.5 for CIFAR-10 and are noticeably noisy in the
ImageNet adversarial examples for 𝜖 values as small as 0.41. This is because, as explained
in Section 3.1.1, our clipping hyperparameter, 𝜖 , controls the percentage HEIS allows the

1More CIFAR-10 and ImageNet adversarial examples can be seen in Appendix A.
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pixel values to stray from their original value. For example, if 𝜖 = 0.5, the algorithm is
allowed to alter the data by up to 50%. If the pixel range is 0-255, an individual pixel
could now be anything between +/-127 of its original value (clipped between 0 and 255,
of course). However, it is not uncommon for adversarial attacks to result in visibly obvious
perturbations [13], [15]. Although these perturbations are obvious to the human observer,
many ML applications are designed to augment or replace humans with the goal of increased
automation and efficiency – so in many cases, it may not matter whether or not the adversarial
examples have visual perturbations, as they may never be seen by an actual human. This
is why black box attacks, especially decision based attacks, remain very relevant to DNN
research.

In Section 4.2.1, we discovered that for 𝜖 ≥ 0.4, the HEIS adversarial examples stopped
negatively effecting performance and instead the model’s accuracy plateaued. We believe
this to be a side effect from the methodology of the attack. Since the entropy calculation is
the only metric HEIS uses to choose adversarial examples (and not accuracy), we observed
that the algorithm would often iterate through multiple steps where it could not find samples
with higher entropy than the one from the previous step. This typically occurred around
30-50 steps. At this point the class distributions usually contained small "peaks" around two
or three classes and the rest of the categories were lower (although still much higher than
for a benign image). In our Vanilla CIFAR-10 model, these peaks were more often than not
centered around the "Cat" and "Frog" classes (observable in Figures 4.9 and 4.11). Perhaps
the "Cat" and "Frog" decision regions in the network were the largest? Or the decision
boundaries for those two classes coincided with most other boundaries? In any case, this
outcome became the most common which means that is where the entropy calculation
maximized. With only 10 output classes, even a network that constantly outputs one class
for every input is still correct 10% of the time, as we see in Section 4.1. In our ImageNet
testing these "peaks" were not as noticeable since there were 1000 different output classes.

5.1.3 Unanswered Questions
During experimentation, we witnessed a few surprising observations. The most surprising
was the fact that increasing the value of 𝑃, the number of starting points, did not improve
the performance of the adversarial examples. Would increasing 𝑃 beyond 100 have given
better results? What about a combination of increasing 𝑃 and 𝜇𝑝 to allow the algorithm to
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search a wider space around the current image?

Could HEIS be integrated with another type of attack, like PGD, to create a more robust,
multifaceted attack? Or create a hybrid attack that results in adversarial examples that are
less perturbed yet still highly transferable? There are several possible avenues for this type
of research; one possibility could be to create HEIS adversarial examples and then use them
as the starting point for a gradient-based attack, or the reverse – taking adversarial examples
from another attack and using them as the starting point for HEIS with small step counts.

5.2 Future Work
Our first suggestion for further HEIS experimentation is to run the attack against ImageNet
DNNs that were trained using defensive techniques discussed in Chapter 2. In Section
4.1.4 we found that some of these techniques reduced the effectiveness of our CIFAR-
10 adversarial examples, so it would be interesting to see how robust a more complex
DNN like ResNet50 would be against HEIS if it were fortified by such defenses. Another
avenue for future research is to compare HEIS against other boundary and decision-based
attacks – not just the Boundary Attack from [12]. Comparing against multiple attacks under
controlled conditions using similar or identical parameters is the easiest way to convey
attack effectiveness.

For high 𝜖 values, HEIS produces adversarial images that are easily recognizable by the
human observer as having visual perturbations. For low 𝜖 values, HEIS creates adversarial
examples with visually less perturbation, except the examples are not as effective compared
to examples with higher 𝜖 values. There are several avenues of testing and experimentation
that could possibly improve or assist HEIS in creating stronger adversarial examples with
less perturbation.

• When sampling, only add partial noise to smaller areas within the images, instead of
across the entire image. Since HEIS takes a large number of samples, restricting the
amount of noise and where within the image it gets added might reduce the overall
amount of noise produced in the final adversarial examples. This should work since
the algorithm could still theoretically find the desired high-entropy samples given
enough iterations.
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• Clip pixel values in only a positive or negative direction instead of both (e.g. only
allow pixel values to get larger or smaller but not both).

• Increasing 𝑃 and/or 𝜇𝑝 to increase the sample space from which HEIS chooses its
starting points.

• Decrease the amount of steps. Although this tactic was explored briefly in this thesis,
perhaps combining it with any of the previous suggestions might lead to better overall
results.

Perhaps there is potential for an adaptive version of HEIS that varies the amount of noise
added when sampling for starting points or entropy samples. One possible implementation
could be to increase the amount of noise allowed in the sampling process by adaptively
updating 𝜇𝑝 and/or 𝜇𝑒 if the attack progresses through multiple iterations yet fails to find
samples with higher entropy.

58



CHAPTER 6:
Conclusion

Despite their high performance in computer vision applications, ML systems like DNNs are
still susceptible to noisy or intentionally perturbed data. This threat is even more concerning
in safety critical applications or when incorporated into secure systems. Types of systems
like those utilized in autonomous cars, facial recognition systems, and unmanned aerial
vehicles can be vulnerable to adversarial attacks, which can have devastating real-world
consequences if not handled correctly by the controlling software. In this thesis, we present
a technique that achieves excellent black box results and creates adversarial examples that
exhibit high transferability to other models.

Without having any knowledge of the inner workings of any model, HEIS was able to
drop the accuracy of our Vanilla CIFAR-10 model, a DNN with 38 layers and 2.66 million
trainable parameters, from 91% to 11% for 𝜖 = 0.2; and drop the accuracy of ResNet50, a
DNN with 50 layers and 25.5 million trainable parameters, to below 50% in both top-1 and
top-5 metrics using 𝜖 values as low as 0.2 and 0.3. What’s more, these adversarial examples
worked splendidly against other DNNs whereas another popular decision based attack, the
Boundary Attack [12], did not.

As the use of ML systems increases, people need to understand the limitations of tools like
DNNs and realize how fragile they can be. Previous research has shown that adversarial
attacks are easily realized in the physical world [5], [30] and cyberspace [31]. As Jatho
and Kroll point out in [32], "We must be extremely judicious about when, where and how
we employ these technologies", for AI applications are often "wildly optimistic" and can
"inflate our expectations of what this technology can do." This is especially true in critical
applications where unintentional vulnerabilities can cause irreparable harm, especially when
dealing with human safety, security applications, or military and defense operations. It is
our hope that adversarial research like ours will continue to expose vulnerabilities in ML
systems in order to inspire increasingly robust defenses that enable them to continue to
operate in the real world undeterred.

59



THIS PAGE INTENTIONALLY LEFT BLANK

60



APPENDIX: A

This appendix contains extra visuals for the reader that are not necessarily important to add
into the body of the thesis. For example, Section A.1 shows the same adversarial examples
created by HEIS across multiple values of 𝜖 to show how much visual perturbation is
produced.

3D Plot of Multiple Classes in a Dataset

Figure A.1. 3-dimensional plot showing multiple classes. Drawing a boundary
between two or more classes proves challenging with increased dimensionality
as boundaries here become three dimensional planes instead of two dimen-
sional lines. Source: https://www.doka.ch/Excel3Dscatterplot.htm
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A.1 More HEIS Adversarial Examples

A.1.1 More CIFAR-10 Adversarial Examples

Figure A.2. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.031)

Figure A.3. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.1)
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Figure A.4. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.2)

Figure A.5. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.3)
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Figure A.6. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.4)

Figure A.7. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.5)
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Figure A.8. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.6)

Figure A.9. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.7)
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Figure A.10. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.8)

Figure A.11. CIFAR-10 HEIS Adversarial Examples (𝜖 = 0.9)
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Figure A.12. CIFAR-10 HEIS Adversarial Examples (𝜖 = 1.0)
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A.1.2 More ImageNet Adversarial Examples

Figure A.13. ImageNet HEIS Adversarial Examples (𝜖 = 0.031)

Figure A.14. ImageNet HEIS Adversarial Examples (𝜖 = 0.1)
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Figure A.15. ImageNet HEIS Adversarial Examples (𝜖 = 0.2)

Figure A.16. ImageNet HEIS Adversarial Examples (𝜖 = 0.3)
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Figure A.17. ImageNet HEIS Adversarial Examples (𝜖 = 0.4)

Figure A.18. ImageNet HEIS Adversarial Examples (𝜖 = 0.5)
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Figure A.19. ImageNet HEIS Adversarial Examples (𝜖 = 0.6)

Figure A.20. ImageNet HEIS Adversarial Examples (𝜖 = 0.7)
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Figure A.21. ImageNet HEIS Adversarial Examples (𝜖 = 0.8)

Figure A.22. ImageNet HEIS Adversarial Examples (𝜖 = 0.9)
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Figure A.23. ImageNet HEIS Adversarial Examples (𝜖 = 1.0)
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