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1. Introduction

A number of experimental techniques exist for characterizing the constitutive re-
sponse of ductile elastic-plastic solids, including traditional tension, compression,
and torsion experiments at low and high applied strain rates. Alternatively or simul-
taneously, indentation experiments can be used to ascertain properties of substrate
materials via careful analysis of force-depth data, analysis of derived quantities
such as indentation stress and strain,1,2 and consideration of supplementary data
such as size and shapes of residual imprints. Comparison of experimental data with
numerical solutions obtained from FE simulations3–6 facilitates the modern consti-
tutive property extraction process, since exact analytical solutions are available only
for very simple material behavior (e.g., linear elasticity) and since approximate so-
lutions for more complex behavior are limited in scope and accuracy.7 However,
a disadvantage of the indentation experiment, relative to traditional methods that
supply more uniform stress and strain fields over sampled material regions, is that
stress and strain fields are highly nonuniform during indentation. Thus, even though
indentation may be easier to perform and at lower cost, analysis of the data is more
cumbersome.

Dynamic instrumented indentation is the focus of the present investigation. Unlike
static indentation, dynamic indentation offers the possibility of characterization of
the strain rate sensitivity of the material.8–12 Furthermore, inertia and temperature
changes under near-adiabatic conditions could affect results, the former especially
at very high impact velocities.13,14 In dynamic indentation, strain rate, like strain
itself, is also highly nonuniform, even if the indenter’s velocity is constant.13 In any
real experiment, the indenter will always decelerate prior to unloading.

Instrumented dynamic indentation using the split Hopkinson pressure bar (SHPB)
(i.e., Kolsky bar), as often first credited to Subhash and co-workers,15,16 has been
invoked with a variety of indenter geometries and target materials. Instrumented
dynamic indentation enables recording of velocities and mechanical forces during
the transient indentation process for subsequent analysis. Recent methods with the
SHPB have used a full sphere sandwiched between two specimens17 or a striker
with variable impedance to achieve load cycling.18–20 Dynamic conical indentation
experiments were used9 to deduce strain rate sensitivity, where the indenter was pro-
pelled by a light gas gun, and a combination of interferometry and load transducer
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was used to obtain a time-resolved response. A novel aspect of the current study,
compared to other works that simulate instrumented dynamic indentation,9,17,21 is
the present use of a miniaturized SHPB rather than a full-scale system. Advantages
of miniaturization include reduced inertial effects and decreased velocity rise times
in the input and output bars.20,22 Samples are generally smaller in size, and higher
strain rates can be achieved through miniaturization, at least for conventional (uni-
form versus indentation) loading.22

The present research ultimately seeks to enable extraction of material constitutive
properties from dynamic spherical indentation tests. The material description is re-
stricted to classical ductile elastic-plastic solids23,24 (e.g., engineering metals). Ex-
cluded from the present work are consideration of length scale and size effects.25–27

The basic constitutive models considered here do not contain any intrinsic length
scale(s).

Reviews of methods from the literature for material property extraction from static
and dynamic indentation experiments and simulations are available in a preliminary
report28 and subsequent review article.29 Also in those recent works,28,29 the gov-
erning relationships among global variables were cast in dimensionless form in a
new application of dimensional analysis to dynamic spherical indentation. In such
dimensional analysis, the relationships among those dependent and independent
variables deemed most useful are analyzed in the context of Buckingham’s Pi the-
orem,30–32 which has been applied elsewhere toward static spherical indentation33

and dynamic projectile impact.34 Buckingham’s Pi theorem is used to systemati-
cally reduce the number of independent quantities. That work28,29 notably extended
the treatment of Lee and Komvopoulos14 to account for thermal effects, and differ-
ent mathematically admissible choices were made for dimensionless independent
and dependent variables. See also the study of Nguyen et al.35 that employs a dif-
ferent plastic constitutive law and a different set of dimensionless parameters for
extraction of material properties from FE simulations of dual sharp and spherical
indentation at relatively low but finite rates, again under isothermal conditions. In
contrast to the current work, instrumented dynamic indentation data from SHPB
testing were not reproduced in these prior simulations.14,35

Since the end goal of the present study is establishment of a combined experimental-
numerical methodology to extract dynamic properties, some prior prominent works
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on this topic are noted. Burley et al.36 performed dynamic 5-mm-diameter spheri-
cal impact experiments and FE simulations on copper targets, with impact velocities
ranging from 50 to 300 m/s. Strain rate sensitivity and frictional properties were ob-
tained by a goodness-of-fit procedure on displacement-time histories and residual
indent shapes. Characteristic strain rates ranged from 104 to 106/s, and temperature
rises were significant enough to impart thermal softening. Ito et al.11 performed dy-
namic FE simulations of ballistic impact of spheres into 10 different target metals to
verify an analytical expression relating crater depth to strain rate sensitivity of flow
stress. Impact velocities ranged from 0.6 to 180 m/s, and strain rates from 102 to
105/s. That method11 for identification of rate sensitivity requires indentation depths
attained from impacts at two distinct velocities. Lu et al.9 used dynamic sharp inden-
tation gas-gun experiments, verified by FE modeling, to obtain strain rate sensitivity
of copper. Impact velocities ranged from 6 to 35 m/s and strain rates from 875 to
1750 m/s. Dynamic plasticity model parameters were obtained from simulations37

of specimens in full-size Kolsky bar tests on steel in tension at rates from 500 to
1500/s; simulations of these and other full-scale Kolsky bar experiments at up to
3600/s were used to obtain dynamic properties for two steels.38 Nguyen et al.35,39

obtained yield, hardening, and rate sensitivity parameters for steels using indenta-
tion and FE modeling at lower strain rates ranging from 0.002 (quasi-static) to 0.4/s
(low-rate dynamic).

In the current work, the dynamic dimensional analysis14,28,29 is further refined to
efficiently study effects of parameters entering the popular Johnson-Cook plastic-
ity model.23 This is one of the most widely used high-rate constitutive models for
ductile metals because of its simplicity and containment of necessary physical in-
gredients to curve-fit experimental stress-strain data at different strain rates and
temperatures. The current research directly models instrumented dynamic spheri-
cal indentation experiments in a miniature Kolsky bar apparatus, where the experi-
ments were recently designed and implemented by Casem and coworkers.18–20 The
first stage of the investigation assesses suitability of the explicit dynamic FE code
ALE3D40 to reproduce the experimental test configuration and the data acquired
from three different complex applied velocity histories, rather than constant inden-
ter velocities, which are much more easily implemented numerically13,14 but im-
possible to achieve in real experiments. To this end, accuracy of the Johnson-Cook
model enters the procedure, where representative baseline properties from the lit-
erature22,41–43 on the substrate material are used, without attempting calibration to
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the current indentation data. The material of choice is a polycrystalline aluminum
(Al) alloy designated Al 6061-T6. Mesh densities necessary for extraction of tran-
sient indentation force-depth and stress-strain data, the latter requiring the contact
radius, are determined. Local field variables (e.g., stress, plastic strain, temperature)
and global variables such as mean contact pressure are elucidated.

The second major stage of the current investigation establishes the framework for
dimensional analysis and applies this framework to systematically investigate rel-
ative effects of constitutive parameters (as well as initial temperature) on the pre-
dicted dynamic indentation response. Results show which parameters may be rea-
sonably expected to influence indentation force-depth data, and thus are candidates
for extraction via calibration of FE solutions to experiments. Implementation of
such calibration methods, which likely requires sophisticated numerical optimiza-
tion strategies (e.g., machine learning techniques6,44 for accuracy, speed, and stabil-
ity) as well as analysis of uniqueness of inverse solutions,35,45,46 is outside the scope
of the present study.

The third and final stage of this investigation demonstrates successful extraction
of the strain-rate sensitivity parameter from experimental data and parametric FE
simulations. An error measure associated with cumulative work of indentation is
defined and minimized for parameter optimization. Stress-strain predictions of the
constitutive model and parameter set are compared versus those obtained from ex-
ternal studies that used conventional static and dynamic methods (e.g., standard
SHPB) and are also validated versus static experimental indentation data from an
independent external source.

Sections of this report include the following content. Fundamentals of indentation
analysis, both static and dynamic, and corresponding generic constitutive models
are presented in Section 2. Experiments20,29 are described briefly in Section 3, fol-
lowed by more extensive details of the FE model with baseline parameters. This FE
model has not been presented elsewhere with the exception of the complementary
journal article47 that abbreviates this report. Results of Section 3 reveal both suc-
cess and limitations of the baseline model for reproducing certain features observed
in data from three instrumented dynamic tests. The dimensional analysis and sen-
sitivity investigation are discussed in Section 4, including proposed experimental
methods for extraction of parameters for previously uncharacterized ductile met-
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als. Extraction of strain rate sensitivity and parameter comparisons are presented
in Section 5. Conclusions follow in Section 6. Exploratory simulations including
much higher loading rates are contained in the appendix.

2. Fundamentals

Methods of analysis of indentation and general forms of inelastic constitutive mod-
els are summarized in Section 2. The static case is addressed first, for elastic and
then elastic-plastic solids, followed by the dynamic case. Measures of indentation
stress and strain are defined. The focus is on governing equations used for subse-
quent applications to spherical indentation in Sections 3, 4, and 5; more thorough
treatments are available elsewhere (e.g., Johnson7).

2.1 Static Elastic Indentation

The elastic solutions of Hertz are often used to analyze static indentation up to
initial yield, as well as elastic unloading from a plastically deformed state. The
Hertz analysis7 assumes frictionless contact of homogeneous elastic bodies whose
surfaces are parabolic in shape. The constitutive model is isotropic and linear elas-
tic. Hertz’s equations for spherical indentation into an initially flat substrate are
expressed as follows.7,48 Indicate by P the indentation force, he the elastic (i.e., re-
versible) indentation depth, Ē the effective system modulus, R̄ the effective system
radius, a the contact radius, and k̄ a system stiffness. Let Ei, Es, νi, νs, Ri, Rs be
the elastic moduli, Poisson’s ratios, and radii, labeled with respective subscripts (·)i
and (·)s for indenter and substrate. Then

P = k̄h3/2
e , k̄ = 4

3
ĒR̄1/2, a = (R̄he)

1/2; (1)

Ē = [(1− ν2
i )/Ei + (1− ν2

s )/Es)]
−1, R̄ = (1/Ri + 1/Rs)

−1. (2)

Before deformation, Rs → ∞ ⇒ R̄ = Ri. Often, Rs → ∞ and Ri =constant (i.e.,
small deformation theory) are used to approximate the entire elastic loading process
of a stiff indenter into a flat substrate, which produces a very simple closed-form
solution. The same approximations are also often used to analyze elastic unload-
ing49; however, unloading from a plastic impression has also been described with a
finite Rs.50

For a rigid indenter, Ē = Es/(1− ν2
s ) and Ri = constant. On the other hand, if the
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indenter is deformable, its elastic displacement hi can be approximated by Hertz’s
solution for indentation into a rigid flat surface48:

hi ≈ 3(1− ν2
i )P/(4Eia). (3)

The effective system modulus Ē fully contains effects of material constitutive be-
havior on the load-displacement curves in the linear elastic regime. This modulus
has also been used to encompass all elastic constitutive effects on load-displacement
response in the elastic-plastic regime of indentation,45 as justified by some analyti-
cal and numerical solutions.4,7,51

2.2 Static Elastic-Plastic Indentation

In the elastic-plastic regime, the elastic indentation depth of the system is labeled
as he, and the residual indentation depth is written as hr. The contribution of the
deformation of the indenter to the total depth is written as hi, with hs the remainder.
Then, the total depth h is decomposed into the sums48

h = he + hr = hs + hi; he = (P/k̄)2/3. (4)

If the indenter deforms only elastically, as is typically the case for a very strong
and stiff indenter, then hi can be approximated from Eq. 3. After elastic unloading,
h = hr and he = hi = 0. During elastic unloading, the force-depth curve has a
slope S suggested from Hertz’s theory of29

S(he, hr) = ∂P (he, hr)/∂he =
2
3
k̄(hr) · h1/2

e = 2Ē · a(he, hr). (5)

The contact radius a at depth h can be inferred from Eq. 5 when S is measured at
a given elastic-plastic contact depth h, if Ē is known from independent measure-
ments.52 The radius of the residual indent (i.e., crater) after unloading, denoted by
ar, of a plastically deformed material has been widely used to approximate a at
peak load for various indenter geometries,49 though more sophisticated treatments
of unloading of elastic-plastic solids exist.50

Constitutive behavior of isotropic ductile metals is described in traditional engineer-
ing practice via isotropic elasto-plasticity with possible power-law hardening.6,44,45,53,54

Denote the cumulative scalar plastic strain by ϵP , the initial yield stress by σ0, the
strain hardening exponent by n, and a hardening coefficient by κ. Then a standard
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model for von Mises-equivalent flow stress σ under isothermal conditions is

σ(ϵP ) = σ0

[
1 + κ · (ϵP )n

]
, n = d ln(σ − σ0)/d ln ϵP . (6)

For perfect plasticity, κ = 0, and for linear hardening, n = 1 with κ > 0. Estab-
lished methods (i.e., associative flow, normality, consistency) are used to implement
Eq. 6 in the context of finite deformations with incremental plasticity in numerical
settings24 (e.g., FE software for solid mechanics):

dϵϵϵ = dϵϵϵE + dϵϵϵP , dwP = σσσ : dϵϵϵP = σ dϵP . (7)

The tensor-valued strain increment dϵϵϵ is decomposed into an elastic (·)E and plastic
(·)P part, the Cauchy stress tensor is σσσ, and the non-negative scalar plastic strain
increment dϵP is found from the increment of the plastic strain tensor under the
requirement that its work conjugate entering plastic work per unit volume wP is the
von Mises stress σ. For uniaxial stress conditions,

σ =

 Eϵ (ϵ ≤ σ0/E),

σ0

[
1 + κ · (ϵP )n

]
(ϵ ≥ σ0/E).

(8)

Here ϵ is the total axial strain and σ the axial stress, in this context equal to the von
Mises stress.

2.3 Dynamic Indentation

Dynamics introduces several complexities not present in static indentation. In ad-
dition to mechanisms pertinent to quasi-static indentation (i.e., elasticity, yield, and
strain hardening), rate dependent dislocation kinetics manifests as strain rate sensi-
tivity, usually increasing the plastic flow resistance as strain rate increases. Stress
wave propagation, which involves mass density ρ0, enters the dynamic problem.
For loading times short relative to the time required for heat transport, deformation
conditions can be approximated as adiabatic and temperature rise could be non-
negligible, so specific heat capacity (e.g., cV ) may also affect the response. Finally,
dislocation kinetic processes depend on loading rate to varying degrees, depend-
ing on the specific metallic material. Impact conditions are not severe enough for
problems studied in the present experimental conditions to necessitate inclusion of
nonlinear elasticity (e.g., pressure-dependent compressibility) or thermoelastic cou-
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pling (i.e., thermal expansion), which would be required to describe intense shock
waves, for example.55 Ballistic rates of loading considered in the appendix, how-
ever, do warrant consideration of thermoelastic and nonlinear elastic effects.

For isotropic ductile polycrystalline metals, the inelastic constitutive model of Eq. 6
is usually extended to dynamic regimes by allowing for strain rate and thermal
effects, in addition to initial yield and strain hardening. A generic form of flow
stress is a product of terms accounting for each mechanism:

σ(ϵP , ϵ̇P , T ) = σ0

[
1 + κ · (ϵP )n

]
· f(ϵ̇P ) · g(T ). (9)

Functions f and g account, respectively, for strain rate and thermal sensitivity. De-
noted by T is absolute temperature and by ϵ̇P the scalar effective plastic strain rate
such that dϵP = ϵ̇Pdt over time increment dt.24 In rate form, Eq. 7 becomes, with
ϵ̇ϵϵ the Eulerian velocity gradient56 and ẇP the local rate of plastic working per unit
current volume,

ϵ̇ϵϵ = ϵ̇ϵϵE + ϵ̇ϵϵP , ẇP = σσσ : ϵ̇ϵϵP = σ ϵ̇P . (10)

The local temperature rate is found from the continuum balance of energy,56 where
notation cV is specific heat at constant volume per unit reference volume and ρ the
current mass density:

(ρ/ρ0)cV Ṫ ≈ ζ · ẇP ≈ ζ · σ ϵ̇P . (11)

Thermoelastic coupling is omitted with adiabatic conditions assumed in Eq. 11.
The Taylor-Quinney factor is ζ ∈ [0, 1], usually closer to unity than zero and usually
assumed constant in standard FE software, though ζ often more realistically evolves
with plastic deformation.57,58

2.4 Indentation Stress and Strain

Correlation of the loading portion of a predicted force-displacement curve with test
data3 has been used to determine quasi-static plasticity parameters (e.g., σ0, κ, n),
and unloading used to determine elastic stiffness Ē given some estimate of the
contact area.49,50 Periodic load-unload cycles can alternatively reveal the projected
contact area πa2 if Ē is measured from the initial elastic loading phase.1

Denote the mean contact pressure by p, often identified with Meyer’s hardness H
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in a Brinell test:
p = P/(πa2) = H ≈ cσ̄. (12)

The effective flow stress σ in the sample is σ̄, and c is the constraint factor that
generally depends on geometry and constitutive behavior.3,50,59,60 Yielding begins
at c ≈ 1.1,50,59 whereby hp first becomes nonzero. For deep indentation, h ≫ he

so the plastic response dominates. In this regime, the historical analysis and data of
Tabor61 suggest c ≈ 2.8 for spherical indentation of ductile metals, corroborated by
numerical methods.62 Another typical approximation is c ≈ 3 for this deep plastic
regime.50 Between elastic and deep plastic indentation, 1.1 ≲ c ≲ 3.

For strain hardening materials (n > 0), c should depend on both n and the choice
of “indentation strain” substituted into Eq. 8 for ϵP to acquire a representative value
of σ̄.3,50 Tabor61 proposed ϵP ≈ ϵ̄, where

ϵ̄ = 0.2a/Ri, (13)

which corresponds to plastic strain at the indentation edge.3 Tabor61 assumed a ≈
ar for the contact radius at maximum load, where the radius ar is that of the residual
indent after load removal. This assumption is inconsistent with the Hertz definition
of the true contact area at the instant load removal begins, though it may still be
accurate in some cases.49

Definitions of indentation strain2,50,61 often incorporate the contact radius a, which
may be challenging to obtain directly from experiments. An estimate proposed by
Field and Swain50 is

a = [2(h− he/2)Ri − (h− he/2)
2]1/2. (14)

However, noted by Kalidindi and Pathak,1 the definition of a in Eq. 14—based
on spherical geometry and assuming that the elastic displacement of a preformed
spherical impression is evenly divided above and below the circle of contact50—
is not fully consistent with Hertz’s form Eq. 1. A strategy advocated by Pathak,
Kalidindi, and their coworkers2,6,53 compares indentation stress-strain curves rather
than indentation force-displacement curves to ascertain elastic-plastic properties.
The indentation stress-strain fitting method can be advantageous over fitting of
force-displacement because elastic-plastic properties may be strongly correlated to
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only small regions of the entire force-displacement curve.44 Correlation of total and
recoverable strain energies (i.e., integrals of load-displacement relations) may also
be advantageous for property estimation, since integral values are less sensitive to
experimental noise.32,33

An alternative measure of indentation strain ϵ̂, with corresponding renamed stress
(i.e., mean pressure) σ̂, as established by Kalidindi and Pathak,1,2 is

ϵ̂ =
4

3π

hs

a
≈ hs

2.4a
, σ̂ = p =

P

πa2
≈ cσ̄. (15)

The contact radius obeys the Hertz definition in Eq. 1. This radius can be found from
Eq. 5 during unloading if Ē is known from data collected in the elastic regime.1,2

Note that Eq. 15 produces σ̂ = Ēϵ̂ for h = he, that is, for elastic loading/unloading
commensurate with Hertz’s solution in Eqs. 1 and 2. Use of Eq. 15 with experi-
mental48 and numerical6,53 results gives c ≈ 2 for perfectly plastic metals or for
strain-hardening metals at a uniaxial-equivalent offset of ϵ ≈ 0.1%− 0.2%.

The procedures for producing uniaxial equivalent stress-strain curves from inden-
tation stress and strain, where the latter are given by Eq. 15, are described by Patel
and Kalidindi.53 The equivalent scalar uniaxial stress-strain law for the specimen is
σ = Es ·ϵE = Es ·(ϵ−ϵP ). Then the following correspondence relations are derived
among indentation stress-strain curves (σ̂ vs. ϵ̂) and uniaxial curves (σ vs. ϵ)28,29:

σ̂ =

 Ē · ϵ̂ (σ̂ ≤ cσ0),

Ē · (ϵ̂− ϵ̂P ) (σ̂ ≥ cσ0);
ϵ̂ =

4

3π

hs

a
= ϵ̂E + ϵ̂P ; (16)

ϵE =
1

c

Es

Ē
· ϵ̂E =

1

c

Es

Ē
· σ̂
Ē

=
1

c

Es

Ē2

P

πa2
, ϵP =

ϵ̂− ϵ̂E

β̂
. (17)

The constraint factor c is measured at σ̄ = σ0, and β̂ is a fitted parameter. For
representative elastic-plastic solids with null or linear strain hardening, c ≈ 2.0−2.2

and β̂ ≈ 1.3.53

Dynamics introduces further complexity since strain rates are important. When
comparing dynamic indentation data to experimental data that have been recorded
at a less fluctuating rate (e.g., recorded from traditional Kolsky bar experiments),
a measure of global or effective strain rate for the indentation experiment is often
sought. Strain rates within the substrate are not constant in space or time domains.
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Different definitions of indentation strain rate, and their applicability to instru-
mented dynamic spherical indentation data, have been reviewed in recent work.28,29

3. Finite Element Simulations of Indentation Experiments

3.1 Experimental Protocols

Experimental methods have been discussed by Casem18–20 and are summarized in
what follows. A miniature Kolsky bar (i.e., SHPB)22 is adapted for instrumented
dynamic spherical indentation. Transient force, displacement, and velocity data are
acquired or inferred from each experiment. The loading history (e.g., indenter’s ve-
locity) depends on the velocity of the striker bar and geometric properties of the
system (including pulse shaping) as well as indentation resistance due to properties
of the substrate. Initial clearance between indenter and substrate also affects the ve-
locity history. The loading history is thus not strictly controlled; however, different
final indentation depths are generally achieved by increasing the striker velocity,
which tends to increase the average loading rate. The duration of the loading pulse
is dictated by the time required for a longitudinal wave to traverse twice the length
of the striker bar. With the duration thus relatively fixed by the geometry, a greater
final depth is attained by a larger striker velocity.

The system is shown schematically in Fig. 1 with a truncated input bar; the identical
geometry is used for FE simulations. This view only contains the upper half of the
system, which is axially symmetric. The system consists of a steel (4340) input bar,
the Al 6061-T6 specimen (i.e., substrate), and a tungsten carbide (WC) output bar,
all of nominally cylindrical shape with dimensions listed in Fig. 1. The spherical
surface of the indenter is machined directly into the (right) end of the output bar.
The radius of the cylindrical output bar is only 1

4
the radius of curvature of its spher-

ical tip, meaning the full hemispherical shape indenter is truncated. However, the
contact region remains spherical throughout each experiment, that is, the truncation
of the spherical tip does not affect results apart from possible wave interaction ef-
fects, later revealed to be negligible. The (right, not indented) face of the specimen
is glued to the (left) end of the input bar.

The velocity history υ(t) of the input bar corresponding to its right side in Fig. 1 is
obtained from analysis of diagnostic output of a strain gage. Histories are shown in
Fig. 2a for each of three representative experiments, labeled tests 1, 2, and 3.
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INPUT BAR
cylinder length 60 mm 
cylinder radius 1.5875 mm

SPECIMEN
cylinder length 3.58 mm, cylinder radius 2.39 mm

INDENTER TIP
radius of curvature 3.175 mm

OUTPUT BAR
cylinder length 39.1 mm 
cylinder radius 0.79375 mm

Fig. 1 Kolsky bar set-up: experimental data are extracted from NDI at the left end of the
output bar and at the left end of the specimen (i.e., indented surface), and from a strain gage
at the right end of the truncated input bar

The average velocity over the duration of each test is defined as follows, with tf the
end time beyond which υ ≈ 0, specifically 81 µs, 50 µs, and 60 µs for respective
tests 1, 2, and 3:

ῡ =
1

tf

∫ tf

0

υ(t)dt. (18)

Because of finite wave speeds, the times at which loading and unloading occur in
the indented sample do not match the times at which ῡ changes in the input bar:
absolute times for loading and unloading in the sample are shifted.

0 20 40 60 80

t [µs]

0

1

2

3

υ
[m

/s
]

test 1, ῡ =0.61 m/s

test 2, ῡ =1.06 m/s

test 3, ῡ =1.36 m/s

(a) input bar velocity

0 10 20 30 40

h [µm]
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700

P
[N

]

exp, test 1

exp, test 2

exp, test 3

(b) force vs. depth

Fig. 2 Experimental data: (a) inferred velocity history at truncated right end of input bar with
average input velocity ῡ for three tests (b) measured force P vs. depth h for three tests

Displacement histories of the indented face of the sample at its radial edge (left end)
and the left end of the output bar are measured in-situ using a normal displacement
interferometer (NDI) focused on each location. The displacement and force histo-
ries for the tip of the indenter, that is, the output bar at its right end in Fig. 1, are
calculated using a linear elastic wave analysis with the strain gage and NDI data. In-
dentation depth h is defined as the difference between the indenter tip displacement
and the radial edge displacement of the face of the substrate recorded by the NDI.
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Unlike traditional static indentation, rigid body motion (translation) of both the in-
denter and specimen can be substantial. Deformations of the input and output bars
remain elastic and small throughout the duration of each test; these components
are thus reusable. All experiments reported here are performed at room temperature
T0 ≈ 300 K.

Experimentally procured data include the loading and unloading force-displacement
histories for each test shown in Fig. 2b. Certain results are summarized in Table 1
for reference, to be compared with numerical predictions later. Maximum load Pm

and corresponding depth hm increase with test number. Similarly, the residual im-
print depth hr and radius ar also increase with test number. The residual imprint
radius is measured using confocal microscopy.

The initial indenter radius is hereafter simply denoted as R = Ri = 3.175 mm. The
initial sample dimensions are denoted by Ls/Ds =

3
4

and Ds =
3
2
R. Static spherical

indentation experiments on Al 6061-T6 have been reported elsewhere6 with a WC
indenter of radius 2R. Finite element simulations of the static problem6 to compa-
rable indentation strains suggest that the radius and length of cylindrical specimens
used in the current work are large enough to mitigate boundary edge effects for slow
enough loading. Stress wave interactions with finite sample boundaries could have
effects that cannot be ruled out a priori in dynamic experiments.

The measured indentation depth and depth rate are the respective true indentation
depth hs and depth rate ḣs in the substrate, relative to those measured for the far-
field surface away from any pile-up or sink-in effects. In Section 3 and Section 4,
the notation is simplified such that hs → h and ḣs → ḣ. The elastic stiffness of
WC (Ei = 629 GPa) is about an order of magnitude larger than that of aluminum.
The approximation in Eq. 3 then suggests that the deformation of the spherical end
of the indenter, hi, should be negligible relative to h for loads and contact radii
encountered in this work.

The substrate material is assumed homogeneous and isotropic. Analysis of static
indentation48 for the same Al 6061-T6 alloy, which has a mean grain diameter of 59
µm, suggests that the region of amply deformed material at the yield point for the
current indenter radius contains 40 to 50 grains, enough to average out elastic and
slip system anisotropies of individual crystals. Halving R to 1.6 mm would reduce
the deformed volume by a multiplier of 1

8
, so only 5 to 7 grains would be sampled.
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Thus, use of a much smaller indenter would invalidate the assumptions of material
homogeneity and isotropy, and a single crystal plasticity model58 should be used to
resolve individual grains in simulations with small R.

3.2 Model Protocols

Dynamic FE simulations were conducted with the ALE3D code. Although the ge-
ometry is axisymmetric, a three-dimensional (3-D) rendering was found necessary
to provide better contact stability. A quarter section of the true 3-D geometry, with
appropriate symmetry boundary conditions on faces of symmetry, was sufficient;
see Fig. 1 and Fig. 3. Hexahedral elements with reduced integration were employed.
Meshes of the sample and proximal ends of input and output bars, the latter encom-
passing the indenter’s tungsten carbide tip, are shown in Fig. 3.

INPUT BAR

SPECIMEN

OUTPUT BAR

INDENTER
TIP

Fig. 3 Finite element mesh zoomed in on specimen, moderate mesh refinement (3, 092, 480 ≈
3.1M total elements for entire system)

Velocity history boundary conditions were applied to the end of the steel input
bar, corresponding exactly to the three experimentally inferred velocity histories in
Fig. 2a for tests 1, 2, and 3. As shown in the rightmost columns of Table 1, these
input velocities lead to average indentation depth rates of around 1 to 3 m/s, and to
average indentation strain rates ranging from around 1100/s to 2600/s depending on
the definition used for indentation strain. In the appendix, lower and much higher
velocities are investigated, with ῡ multiplied up to tenfold.

Tied contact was used to model the glued interface between one face of the speci-
men and the input bar. Sliding separable contact with possible friction was used to
model the interaction between indenter and the other face of the specimen. Adia-
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batic conditions are invoked since analysis times are on the order of tens of µs: all
plastic work is converted to thermal energy leading to local temperature rise.

Standard output from FE simulations includes transient nodal positions (e.g., giving
deformed shapes) and local stress, plastic strain, and temperature fields. Such lo-
cal fields cannot be obtained from experimental data. Global variables interrogated
from simulations include the total indentation force P obtained from summing per-
tinent nodal forces, the indentation depth h measured as the difference between the
displacement of the indenter tip and the radial edge of the specimen (similarly to
experiments), and the transient contact radius a. To determine the latter, which is
also not presently available from experiments, a small force threshold was used to
delineate those nodes on the surface of the sample in direct contact with the inden-
ter.

Deformations remained very small and elastic in the input and output bars through-
out each simulation. Accordingly, only the mass densities and linear elastic moduli
are important for the constitutive responses of the input bar (steel, ρ0 = 7.81 g/cm3,
E = 207 GPa, ν = 0.29) and output bar/indenter (WC, ρ0 = 14.9 g/cm3, E = 629

GPa, ν = 0.24).

The substrate, consisting of polycrystalline Al 6061-T6, deforms plastically during
the dynamic indentation process. The popular Johnson-Cook model23,63 is invoked
for the specific versions of yield and flow functions expressed generically in Eqs. 6
and 9:

σ(ϵP , ϵ̇P , T ) = [A+B(ϵP )n] · [1+C · ln{ϵ̇P/ϵ̇0}] · [1−{(T −TR)/(TM −TR)}m];
(19)

σ0 = A, κ = B/A; f = 1+C ·ln[ϵ̇P/ϵ̇0], g = 1−[(T−TR)/(TM−TR)]
m.

(20)
In rate sensitivity function f of Eq. 20, C = ∂σ/∂ ln ϵ̇P is a fitting parameter and ϵ̇0

is a normalization constant. In g of Eq. 20, TR and TM are a reference temperature
and melt temperature, with m a thermal softening exponent. When T < TR, g is
instead set to unity, which avoids numerical issues when m < 1, and when T > TM ,
g = 0 since negative flow stress is prohibited. Usually, B > 0, n > 0, C > 0,
and m > 0, such that strength increases with increasing strain and strain rate and
decreasing temperature. Increasing n does not necessarily increase instantaneous
yield strength, since ϵP is often less than unity. Since T < TM for solid behavior,
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the smaller the value of positive m, the greater the strength decrement. On the other
hand, flow stress for ϵ̇P > ϵ̇0 always increases with increasing C. Typically, and in
the current work, TR < TM and ϵ̇0 > 0 are interpreted as fixed universal constants
for normalization. Thus, the number of material parameters that may vary from
material to material in Eq. 19 is six: A,B,C,m, n, TM . Additionally, parameters
that may vary with substrate material in the present context are the isentropic elastic
moduli E, ν, specific heat per unit reference volume cV , and mass density per unit
reference volume ρ0.

Trial simulations with thermal expansion and nonlinear compressibility enabled for
the aluminum alloy showed that effects of thermal expansion from adiabatic tem-
perature rise and effects of nonlinear compressibility were negligible for the present
moderate loading rates. Thus, thermal expansion was disabled and constant bulk
and shear moduli were used. The fixed Taylor-Quinney approximation ζ = 1 was
used in Eq. 11, presumably producing an upper bound on adiabatic temperature rise
from plastic dissipation. As discussed later in Section 3.3, effects of static and dy-
namic friction at the contact surface (byproducts of properties of indenter and sam-
ple) were negligible on force-depth predictions for realistic values of corresponding
coefficients, so contact friction was omitted in most simulations.

Relevant properties and parameters are listed in Table 2 with supporting references
appended to the title. Variations among Johnson-Cook parameters exist in the liter-
ature for the same Al 6061-T6 material, depending on which experimental data and
testing regimes are emphasized in the calibration procedure. Representative values
based on the collective literature22,40–42,64 are used here, to be refined in Section 5
on dynamic property extraction. All current simulations are performed at an initial
temperature equal to the reference temperature: T0 = TR, in agreement with exper-
imental protocols for tests 1, 2, and 3. Later in Section 4, T0 is increased among
some simulations to better elucidate effects of thermal softening. In these later sim-
ulations, thermal expansion is also omitted to avoid spurious contact interactions in
the initial state, presuming that the experimental apparatus would be recalibrated at
high temperature to account for any difference in sample dimensions due to thermal
expansion. Property ranges investigated parametrically later are shown in Table 3.
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Table 1 Loading conditions and results: average input velocity ῡ, force and depth at maximum load Pm and hm, and residual imprint depth and radius
hr and ar for experiments (exp) and simulations (sim); peak indentation strains ϵ̄m, ϵ̂m and their average rates over the loading phase for simulations
(experimental strains not available without measured a); average depth rates ḣA (sim)

Test ῡ (m/s) Pm (N) Pm (N) hm (µm) hm (µm) hr (µm) hr (µm) ar (µm) ar (µm) ϵ̄m (-) ϵ̂m (-) ˙̄ϵ (1/s) ˙̂ϵ (1/s) ḣA (m/s)
(exp = sim) (exp) (sim) (exp) (sim) (exp) (sim) (exp) (sim) (sim) (sim) (sim) (sim) (sim)

1 0.61 323 327 17.1 18.8 10.1 11.1 351 370 0.0202 0.0248 1100 1350 1.02
2 1.06 487 514 25.0 26.8 15.1 16.7 419 450 0.0245 0.0293 1898 2270 2.08
3 1.36 700 749 34.0 36.2 23.3 24.1 483 550 0.0287 0.0337 2223 2607 2.80

Table 2 Baseline geometric and material parameters22,40,40–43,48,64

Parameter (units) Value Definition Parameter (units) Value Definition
E (GPa) 71.0 modulus of Al 6061-T6 ν (-) 0.33 Poisson’s ratio of Al 6061-T6
ρ0 (g/cm3) 2.77 mass density of Al 6061-T6 cV (MPa/K) 2.48 specific heat of Al 6061-T6
A (GPa) 0.3 initial yield strength of Al 6061-T6 B (GPa) 0.2 hardening coefficient of Al 6061-T6
n (-) 0.3 hardening exponent of Al 6061-T6 C (-) 0.05 rate sensitivity of Al 6061-T6
TM (K) 925 melt temperature of Al 6061-T6 TR (K) 300 reference temperature (universal)
m (-) 1 thermal softening of Al 6061-T6 ϵ̇0 (1/s) 1 reference strain rate (universal)
Ē (GPa) 71.2 system modulus with WC indenter R (mm) 3.175 indenter radius
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Table 3 Ranges of dimensionless parameters of substrate investigated in simulations. Fixed components remain constant while dimensionless ratios are
adjusted among simulations. Velocity boundary conditions and ῡ correspond to test 3.

Dimensionless parameter Values considered Baseline Fixed components Description
E/E0 0.2, 0.5, 1, 2, 10 1 E0 = 71 GPa elastic modulus∗

ν 0, 0.15, 0.33, 0.45, 0.49 0.33 - Poisson’s ratio
Cl/ῡ =

√
E/ρ0/ῡ 103, 2× 103, 3.7× 103, 5× 103, 104 3.7× 103 E = 71 GPa, ῡ = 1.36 m/s wave speed

(TM − TR) · cV /E 0.005, 0.01, 0.022, 0.05, 0.1 0.022 TR = 300 K, cV = 2.48 MPa/K, E = 71 GPa melt temperature
cV /cV 0 0.1, 0.2, 0.5, 1, 2 1 cV 0 = 2.48 MPa/K specific heat∗

A/E 0.001, 0.003, 0.0042, 0.006, 0.01 0.0042 E = 71 GPa static initial yield
B/A 0, 1

3 , 2
3 , 1, 5

3
2
3 A = 0.3 GPa strain hardening coefficient

n 0, 0.15, 0.3, 0.5, 1 0.3 - strain hardening exponent
C 0, 0.02, 0.05, 0.1, 0.2 0.05 - strain rate sensitivity
m 0.5, 1, 1.5, 3, ∞ 1 - thermal softening
(T0 − TR) · cV /E 0, 0.0015, 0.0045, 0.0095, 0.0195 0 TR = 300 K, cV = 2.48 MPa/K, E = 71 GPa initial temperature
∗For exploration only; E and cV are normalization factors and not true independent variables in the present dimensional analysis.
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System modulus Ē of Eq. 2 quantified in Table 2 accounts for the true elastic mod-
ulus of both the indenter and substrate. This value is used in the Hertz solutions
(Rs → ∞) of Section 2.1 that are compared with some forthcoming results. If a
rigid indenter is assumed instead, then Ē increases by ≈10%. However, since the
indenter’s material is held fixed among experiments, elastic and other intrinsic prop-
erties of the indenter can be excluded from the list of independent variables in the
dimensional analysis of Section 4. The initial radius R = Ri of the indenter is also
fixed among all experiments and simulations.

3.3 Model Results

Investigated first are effects of FE mesh density on the global indentation response.
Meshes of increasing numbers of elements ranging from approximately 387 K to
24.8 M were implemented in simulations with boundary conditions for test 3, which
corresponds to the largest indentation force, indentation depth, and local strains
among the three tests. Normalized force versus depth is shown in Fig. 4a for four
different levels of mesh refinement, along with experimental results and the Hertz
elastic solution. The latter is notably stiffer than FE model and experiment at larger
depths, since plastic yielding occurs in simulations and experiments. The 387 K
element mesh is too coarse, but the 3.1 M element mesh is sufficient to resolve the
P −h response, since effects of further increases in numbers of elements are small.

The normalized contact radius from simulations and the Hertz theory is shown in
Fig. 4b. The mean contact pressure p = P/(πa2) divided by E of the specimen
is shown versus normalized depth in Fig. 4c. Both sets of results show only the
loading phase.

The elastic Hertz solution gives a smaller contact radius and larger contact pressure
than the elastic-plastic simulations. Although the contact radius appears to be rela-
tively mesh insensitive in Fig. 4b, the contact pressure in Fig. 4c converges rather
slowly with increasing number of elements. Oscillations arise when nodes come in
and out of contact during the dynamic event. Small changes in a can manifest as
large changes in p. Accordingly, when p is of high interest, the more refined 10.5
M element mesh is used subsequently. But when only P vs. h data are studied,
the 3.1 M element mesh is used for numerical cost efficiency. Contact oscillations
prevented accurate extraction of a or p during the unloading histories.
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Fig. 4 Baseline simulation results: (a) dimensionless force vs. depth for different mesh den-
sities, test 3 (b) dimensionless contact radius vs. depth for different mesh densities, test 3 (c)
dimensionless mean contact pressure vs. depth for different mesh densities, test 3 (d) force
vs. depth for all three experiments and simulations (3.1 M element mesh). Contact model is
frictionless.

Experimental force-displacement histories are compared with model predictions for
all three tests in Fig. 4d. Selected data are also compared in Table 1. For all three
tests, the model reasonably reproduces the curvatures of the experimental data for
loading and unloading portions. Since the indentation curvatures are primarily dic-
tated by the material properties of the substrate, these similarities suggest that the
present constitutive model and parameters (i.e., Johnson-Cook plasticity with pa-
rameters of Table 2), are acceptable. However, the maximum load Pm and corre-
sponding peak depth hm are consistently over-predicted by the simulation, relative
to experiment, for all three tests. The discrepancy is thought to arise more from im-
precision of representation of the testing geometry and boundary conditions rather
than inaccurate constitutive modeling, though the latter cannot be unequivocally
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excluded. Uniform scaling of the velocity histories for all three simulations by a
factor slightly exceeding unity did not produce improved model agreement for all
three tests. Even though “perfect” agreement is not achieved, the present results
are deemed sufficiently realistic to warrant further study of local field variables in
Section 3. The constitutive parameters are sufficient to serve as “baseline” condi-
tions for parameter sensitivity investigations in the context of dimensional analysis
in Section 4.

Similarities and differences between simulations and experiments are quantified for
discrete load-unload points in Table 1. Maximum load Pm is over-predicted by 1%
to 7%. Corresponding depth hm is over-predicted by 1.7 to 2.2 µm. Residual depth
is over-predicted by 0.8 to 1.6 µm. Simulations also over-predict the residual im-
print size ar; however, identification of the edge of the residual imprint is subjective
and imprecise in both model and experiment due to the lip at each edge; tabulated
values are considered accurate only to ±10%, so errors may be overestimated. In-
dentation strains (see Section 2.4) based on definitions of ϵ̄ = 0.2a/R of Tabor61

and ϵ̂ = 4h/(3πa) of Pathak and Kalidindi,2 and their average rates, are listed in
the right four columns for simulations in Table 1. Denote by tm the time duration
over which P is increasing, and by am the value of contact radius when P = Pm

and h = hm. Then the maximum indentation strains and average indentation strain
rates listed in Table 1 are computed from, with R = Ri =constant,

ϵ̄m = 0.2
am
R

, ˙̄ϵ = 0.2
am
R tm

; ϵ̂m =
4

3π

hm

am
, ˙̂ϵ =

4

3π

hm

am tm
. (21)

Peak indentation strains increase from test 1 to test 2 to test 3, as do average indenta-
tion strain rates, for both sets of definitions in Eq. 21. This behavior is in qualitative
agreement with increasing average applied velocity ῡ with increasing test number.
Peak indentation strains and average rates are consistently around 20% larger when
ϵ̂ rather than ϵ̄ is used for their definitions. With β̂ = 1.3 as an approximation in
Eq. 17,29,53 peak uniaxial equivalent strains range from 2 to 2.5%, and average uni-
axial equivalent strain rates from 900 to 1700/s, across the simulations of tests 1, 2,
and 3. Experimental values cannot be determined for indentation strains and strain
rates since am is not measured in the dynamic experiments.

Denote by µ the coefficient of contact friction used for the indenter-specimen inter-
face. Static and dynamic coefficients were assumed equal, and were allowed to vary

21



among different trial simulations with the input velocity history of test 3. Effects of
µ on P , a, and p were found to be negligible on the global P − h response for a
reasonable range µ ≤ 0.2 (e.g., see other references54,65,66) for the moderate veloc-
ity input conditions of Fig. 2a, so µ = 0 is used henceforth in Sections 3, 4, and
5. This choice handily eliminates µ from the list of independent variables entering
the dimensional analysis of Section 4. The same assumption of frictionless con-
tact was used elsewhere6 in FE simulations of static spherical indentation with the
same Al 6061-T6 substrate and WC indenter materials, wherein close agreement of
simulated and experimentally measured48 data was inferred.

A friction coefficient is difficult to quantify independently for the present experi-
ments, but a frictionless assumption becomes more realistic as the smoothness of
surfaces increases. In the current experiments, both the indenter and specimen are
polished to a smooth mirror finish. Very small differences in residual indentation
profiles, notably the height at the pile-up location (i.e., the lip of the indentation)
were detected in dynamic simulations when µ was increased, but the residual con-
tact radius ar and depth hr were negligibly different when µ = 0.2 was used. For
much higher rates of loading as in the appendix, µ does noticeably affect the load-
depth response.

Inconsistent prescriptions of friction coefficients exist among FE studies of inden-
tation in the literature. Differences could be due to different surface conditions of
tested materials, but more often values are not rigorously justified. Frictionless con-
tact is assumed in static spherical simulations of Dean and Clyne,67 while a value
of µ = 0.15 is used without apparent explanation in a different study.66 Friction-
less contact appears to be the most common assumption in prior FE simulations
of dynamic indentation,10,11,13,14,21,35 though this assumption is made often for con-
venience or is not explained. In simulations of dynamic sharp indentation, µ was
unstated by Lu et al.,9 and µ = 0.125 was used elsewhere65 without apparent ex-
planation. A few more rigorous works have prescribed µ based on calibration of FE
models to indentation depth histories and shapes of indentation profiles: a best value
of µ = 0.1 was found by Burley et al.36 while a value of µ = 0.2 was found in other
works.54,68 Also noted from prior ballistic simulations36 is that frictional effects be-
come more prominent as the indentation rate (i.e., impact velocity) increases. The
same conclusion is drawn in the appendix of this work.
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Contours of predicted local axial Cauchy stress, local Cauchy pressure, local plastic
strain, and local temperature are shown for test 3 at a simulation time of 40 µs in
Fig. 5. At this time instant, the load P is ≈ 91% of peak load Pm. Results in Fig. 5a
and Fig. 5b show maximum magnitudes of axial stress and pressure around 1.5 and
1.0 GPa, respectively. The maximum plastic strain and temperature rise relative to
T0 = 300 K attained in the specimen are approximately 8% and 20 K, respectively,
in Fig. 5c and Fig. 5d. According to the Johnson-Cook model and baseline param-
eters for Al 6061-T6 in Table 2, a 20 K temperature rise would produce a drop
in yield strength of only 3.2%. The WC output bar (indenter) shown on the right
of each figure does not deform plastically or measurably increase in temperature;
maximum local deviatoric stresses remain far below the yield strength of WC.

Surface imprints of the sample are of interest since they may facilitate identification
of material properties (if unknown a priori).65,69 The residual plastic imprint, after
complete withdrawal of the indenter, may also be useful for comparison with ex-
perimental measurements (Table 1) and estimation of the system modulus Ē during
unloading.49 In Fig. 6a, the increase in imprint size with applied load P is obvious;
a substantial amount of elastic recovery between maximum depth at P = Pm and
the residual state is also evident. A lip of plastically deformed material is clear in
the residual imprint, but it is obscured by elastic deformation during loading. The
slope S entering Eq. 5 is estimated from simulation results in Fig. 6b. The value
of S = 78.3 N/m provides nearly exact confirmation of the system modulus Ē in
Table 2 when ar is used in Eq. 5, as proposed by Oliver and Pharr.49 If, on the other
hand, am of Table 1 is used with the same S, Eq. 5 produces a value of Ē around
10% too large. Discrepancies may be due to approximations inherent in the use of
Hertz theory, which is here liberally extended to the dynamic elastic-plastic regime.

The basic constitutive model in Eqs. 19 and 20 is viewed as an example of poten-
tially high interest since it is very widely used by the applied engineering com-
munity. Other simple constitutive models for rate and temperature sensitivity in-
clude power-law forms.5,9,14,29,70 More elaborate models constructed from physics
and materials science arguments exist,55,71–75 though the relative extent of predictive
physics versus phenomenology varies among these. Methods of dimensional analy-
sis set forth in prior work29 and advanced next in Section 4 should be applicable to
other elastic-plastic models if consideration is given to the necessary independent
variables (e.g., material parameters entering the constitutive theory).
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(a) axial stress (b) local pressure

(c) plastic strain (d) temperature

Fig. 5 Contours of field variables from simulation of test 3, t = 40µs, P/Pm = 0.911: (a) axial
Cauchy stress σxx, (b) local Cauchy pressure − 1

3 (σxx + σyy + σzz), (c) effective plastic strain
ϵP , and (d) absolute temperature T (3.1 M elements; specimen is on left, indenter and output
bar on right)
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Fig. 6 Simulation results for test 3: (a) surface displacement of specimen at load levels P/Pm,
where Pm is maximum indentation force and “residual” is final plastic imprint; (b) assessment
of slope during unloading for inference/confirmation of system modulus Ē

4. Dimensional Analysis and Parameter Sensitivity

Given a sample of solid material with unknown physical properties, a typical ob-
jective of indentation experiments is determination of such properties via analysis
of load-depth history data, as well as analysis of possibly available information on
contact radius and the size and shape of any residual imprint. If functional rela-
tionships between the indentation response and constitutive properties are available
for a given set of boundary and initial conditions, then it may be possible to invert
such relationships to extract constitutive properties. In principle, these functional
relationships could be found from experiments alone on a (very large) collection of
different materials whose physical properties span the domain of interest. However,
if numerical methods are sufficiently accurate, determination of functional relation-
ships between global indentation response and constitutive properties is much more
easily and efficiently accomplished using simulations, since many properties can be
adjusted in simulations with trivial effort.

Results presented later in Section 4 are directed toward this objective, although no
attempt is made to determine invertible analytical relationships, which may not ex-
ist. Rather, complexity of the response functions suggests that numerical databases
be used,35 whereby information contained in large databases constructed from nu-
merous FE simulations spanning a sufficiently wide domain of independent dimen-
sionless variables could be compared with experimental findings on new materi-
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als to deduce each new material’s constitutive properties. Multi-fidelity approaches
with surrogate and analytical models6,44 can be used to reduce computational cost
of database population by higher-fidelity FE simulations alone, as appears neces-
sary for the present case of highly refined, explicit 3-D simulations whose results
are sensitive to many material properties (Section 4).

Complexity of functional relationships can be mitigated via classical tools of dimen-
sional analysis.30–32 More specifically, the number of independent variables entering
such relationships can be systematically reduced by casting response functions in
dimensionless form, then applying Buckingham’s Pi theorem to reduce the number
of independent quantities by the number of independent physical dimensions enter-
ing the problem. This number is four for dynamic indentation, since length, time,
mass, and temperature are the physical dimensions of present relevance.

In the analysis that follows, several assumptions are invoked upon consideration of
FE simulation results of Section 3. These assumptions reduce the number of possi-
ble independent parameters, which simplifies the dimensional analysis. First, with
the exception of the indenter radius R, the geometry of dynamic indentation sys-
tem is assumed fixed, including sizes and shapes of components, and the materials
comprising the input bar and indenter/output bar. The length and radius of the cylin-
drical specimen are fixed, but the substrate material itself can vary; hence, the mass
of the specimen varies with its initial density. Therefore, the physical dimensions of
the experimental system (except for R) and constitutive properties of the bars can
be excluded from the set of independent variables, since these remain fixed. Contact
is frictionless, as justified in Section 3.3.

A system velocity, denoted by υ, is assumed to be a defined, controllable quantity
for each simulation or experiment analyzed, and is not labeled a dependent variable.
For example, the system velocity υ could be simply assigned as the indenter veloc-
ity ḣ if constant in a simulation,13,14,21 or it could be assigned the initial (measured)
projectile impact velocity for a spherical impact experiment.8,76 The indenter veloc-
ity in a SHPB experiment is generally not constant, even during the loading phase
alone16,18,19: a transient period may exist over which the indenter accelerates, and
then the indenter always decelerates. The velocity of the striker bar could be used
for υ as a measure of the input loading rate; otherwise, the average indenter veloc-
ity over some finite time interval could be used.16 The entire input velocity history
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υ(t) is the true independent variable associated with the applied loading rate. In the
forthcoming analysis, the average input velocity ῡ of Eq. 18 is used for the sys-
tem velocity for normalization and convenience, since corresponding simulations
of Section 4 all impose the same history υ(t). Initial temperature T0 is assumed to
be prescribed uniformly over the sample for any given test.

4.1 Variable Identification

The dimensional analysis considers only global, scalar quantities that are either (1)
imposed or extracted from indentation simulations and experiments or (2) homo-
geneous and stationary material properties. Local field variables are not addressed.
Dependent and independent variables in dimensional form are first identified. De-
pendent variables of interest are defined as follows:

• Indentation force P ;

• Indentation contact radius a;

• Mean pressure p = P/(πa2), which is trivially known if P and a are known;

• Indentation strains ϵ̄, ϵ̂ and their rates (e.g., Eqs. 13, 15, and 21);

• Size and shape of the residual imprint if plastic deformation occurs, including
residual imprint depth hr and residual imprint diameter ar.

Independent variables account for the loading conditions and the constitutive prop-
erties of the specimen. The material is assumed to be homogeneous and isotropic
elastic-plastic, with linear elasticity sufficient for the elastic response and effects
of thermal expansion negligible, as justified in Section 3. The Johnson-Cook con-
stitutive model of Eq. 19 is assumed to be sufficient for representing the inelastic
response. Adiabatic conditions are assumed a priori, with ζ = 1 in Eq. 11, as in
Section 3, so the only prescribed thermal loading condition is the initial tempera-
ture. In dimensional form, independent variables are then elements of the following
list of 14 items:

• Indentation depth history h(t);

• Effective indentation (system) velocity history υ(t), producing average input
velocity ῡ;
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• Indenter radius R;

• Initial temperature T0;

• Substrate initial mass density ρ0, specific heat per unit volume cV , and melt
temperature TM ;

• Substrate elastic properties E, ν [dropping (·)s subscripts];

• Substrate plastic properties A, B, C, m, n.

Of these independent variables, h and υ vary with time during an indentation simu-
lation or experiment. The first four items listed above dictate the loading conditions.
The remaining 10 quantities are material properties. Mass density, melt temperature
(at ambient pressure), and specific heat are uniquely defined regardless of consti-
tutive model. Elastic modulus and Poisson’s ratio are uniquely defined given that
elasticity is isotropic and linear. Plastic properties A, B, C, m, n notably depend on
the selection of the Johnson-Cook functional form for yield and flow stress. More-
over, their values may not be unique for a given material, but rather are typically
estimated by calibration to traditional stress-strain data across a range of applied
strains, strain rates, and initial temperatures. Time is not an explicit independent
variable, since given the depth and velocity histories and other independent vari-
ables, the time at which a particular depth value h is achieved is determined implic-
itly32 (e.g., only two of h, υ, t are truly independent). Recall that ϵ̇0 and TR entering
Eq. 19 are treated as universal constants and thus can be excluded as independent
variables.

The number of independent dimensions is four: length, time, mass, and temperature.
For the indentation problem,29,32 it is more convenient to work with stress (recov-
ered from mass, length, and time) than mass, so the four independent dimensions
are recast into stress, length, time, and temperature. The following combinations of
E,R, ῡ, cV are used as normalization constants:

• Stress: modulus E;

• Length: indenter radius R;

• Time: dynamic loading time scale t̄ = R/ῡ ;

• Temperature: normalized inverse specific heat T̄ = E/cV .
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The elastic modulus is a standard prescription for stress normalization.28,29,32,33 This
is a convenient choice in the context of elastic indentation with a rigid indenter,
since then P is directly proportional to E as in Eq. 1 with Eq. 2. Often, h and υ have
been used for normalization.13,14,32 However, in the present simulation framework,
it is more convenient to normalize with R and ῡ, which are easily held fixed in simu-
lations with the same FE mesh (same indenter geometry) and same velocity history
boundary conditions applied across different simulations. In high-throughput exper-
iments, these choices would facilitate use of the same loading apparatus and striker
bar velocity while switching out different substrates of the same cylindrical size.
Either the melt temperature or specific heat could be used to obtain the normaliza-
tion temperature. The latter is chosen here since, unlike TM , it does not explicitly
enter the Johnson-Cook Eqs. 19 and 20. As T̄ decreases, the tendency for adiabatic
temperature rise decreases.

Applying the Pi theorem via normalizing the remaining independent variables, the
number of independent variables is reduced from 14 to 10 in dimensionless form
when history υ(t) is fixed:

• Indentation depth h/R;

• Poisson’s ratio ν;

• Mass density through an elastic wave speed via Cl t̄/R, where Cl =
√
E/ρ0;

• Yield strength A/E;

• Strain hardening coefficient B/A;

• Strain hardening exponent n;

• Strain rate sensitivity coefficient C;

• Thermal softening exponent m;

• Initial temperature (T0 − TR)/T̄ ;

• Melt temperature (TM − TR)/T̄ .

In the context of this normalization strategy, the Johnson-Cook Eq. 19 for equivalent

29



yield and flow stress is rewritten in dimensionless form as

1

E
σ(ϵP , ϵ̇P , T ) =

A

E

[
1 +

B

A
(ϵP )n

]
·
[
1 + C · ln ϵ̇P

ϵ̇0

]
·
[
1−

( {T − TR}/T̄
{TM − TR}/T̄

)m]
.

(22)
Written in this way, B/A matches the hardening coefficient κ widely used in other
generic plasticity models (e.g., Fernandez-Zelaia et al.6 and Patel and Kalidindi53),
with A = σ0 and n unchanged. As R/(Cl t̄) → 0, inertial effects should become
less important since stress wave equilibrium should be achieved more rapidly rela-
tive to viscoplastic rate effects. As (TM − TR)/T̄ increases, the thermal softening
effect decreases. Ambient temperature T0 will differ from TR for preheated samples.

4.2 Functional Forms

Given the independent dimensionless variables, the sought dependent variables can
be expressed as dimensionless functions. For example, indentation force and con-
tact radius are ΠP and Πa:

P

ER2
= ΠP

(
h

R
,
T0

T̄
;
TM

T̄
,

R/t̄√
E/ρ0

,
A

E
,
B

A
,C, n,m, ν

)
, (23)

a

R
= Πa

(
h

R
,
T0

T̄
;
TM

T̄
,

R/t̄√
E/ρ0

,
A

E
,
B

A
,C, n,m, ν

)
. (24)

Arguments preceding the semicolons on right sides of Eqs. 23 and 24 are loading
conditions, and arguments following the semicolons are material properties. The
isothermal, quasi-static Hertz solution of Section 2.1 should be recovered for finite
E,R, T0, TM as A/E → ∞ (infinite yield strength so behavior remains elastic),
T̄ → 0 (infinite specific heat so temperature cannot change) with either or both of
t̄ → ∞ (infinitesimal input velocity) and Cl → ∞ (instantaneous stress propaga-
tion), where for Rs → ∞:

ΠP

(
h

R
,∞;∞, 0,∞, ·, ·, ·, ·, ν

)
=

4

3(1− ν2)

(
h

R

)3/2

[R̄ → R], (25)

Πa

(
h

R
,∞;∞, 0,∞, ·, ·, ·, ·, ν

)
=

(
h

R

)1/2

[R̄ → R]. (26)

Analytical functional forms, if they exist, should be consistent with elastic limits in
Eqs. 25 and 26. Dimensionless functions for the mean contact pressure, constraint
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factor relative to σ0 = A, and indentation strains can also be constructed from
Eqs. 23 and 24:

p =
E

π

(
R

a

)2

· ΠP ≈ c · A, ϵ̄ = 0.2
a

R
= 0.2 · Πa, ϵ̂ =

4

3π

h

a
=

4

3π

h/R

Πa

.

(27)
Knowledge of the dimensionless response alone is insufficient for complete prop-
erty identification through inversion of the response functions for their dimension-
less arguments. For example, E is needed to recover A if dimensionless argument
A/E is known from P/(ER2) histories. Fortunately, experimental load-depth data
are captured in dimensional form (i.e., P vs. h). Additionally, R, t̄, and T0 are
known a priori as prescribed conditions, inserting respective length, time, and tem-
perature dimensions into the true physical problem. If E is not known a priori, its
value might be obtained through implicit solution of Eq. 23 given sufficient data on
P , where E is to be calibrated along with other constitutive properties. Whether or
not this is tractable depends on uniqueness of the response function with respect to
the model parameters.

4.3 Parameter Sensitivity Predictions

For a material with unknown physical properties but expected isotropic linear elastic-
plastic behavior, a stated goal of instrumented dynamic experiments on samples of
such material is determination of its properties for numerical modeling, namely 10
scalar values (ρ0, E, ν, cV , TM , A,B,C,m, n) in the context of the Johnson-Cook
model with linear elasticity and constant specific heat. From the present experi-
mental capabilities, the most abundant data will consist of force-depth curves (P
vs. h) obtained from a sample at known initial temperature T0. Thus, the focus of
the current sensitivity study, in the context of dimensional analysis, is understand-
ing effects of independent parameters on the dimensionless force-depth response,
that is, ΠP versus h/R, with the functional arguments given by Eq. 23.

The input velocity and its mean, υ(t) and ῡ, could vary among different experi-
ments, as could the radius of the indenter R and the initial temperature T0. How-
ever, only the latter (T0) is varied among the present simulations. In complementary
experiments on each new material, the testing apparatus would be held the same,
avoiding the need to change input and output bars and recalibration for a new in-
denter size. In the FE simulations and dimensional analysis, this avoids the need to
generate meshes of new system geometries or redefine the normalization time t̄ and
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normalization length R. Assuming that Eq. 23 exists, in analytical or more likely
numerical (database) form, the objective then would be to determine the 10 scalar
material parameters that provide a best fit to experimental P versus h data collected
at different T0 but the same R and t̄.

Ranges of parameters studied in subsequent dynamic FE simulations are given in
Table 3. Values are chosen to span the domain of properties that may reasonably be
expected for engineering metals. Although the baseline values of elastic modulus E
and specific heat cV are used as normalization constants in the dimensional analysis
(the latter via T̄ = E/cV ), effects of these quantities are also explored parametri-
cally. Such exploration is useful since both E and cV would not be known a priori
for a completely uncharacterized material. Test data in dimensional form would
need to be used to deduce E and cV by inversion and implicit fitting of Eq. 23.

Effects of elastic modulus and Poisson’s ratio on ΠP = P/(ER2) are shown in
Fig. 7 at T0 = TR. Holding other properties fixed, a halving or doubling of E

noticeably softens or stiffens the dimensionless response. Indentation force is rela-
tively less affected by ν, in agreement with other studies.32,66,77 As ν decreases with
E fixed, the bulk modulus decreases, which tends to reduce the indentation stiff-
ness. The rather low sensitivity of the response to ν suggests that P versus h data
would not enable extraction of a very precise value.
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Fig. 7 Predicted normalized indentation force vs. depth over elastic property ranges of Table 3:
(a) dimensionless Young’s modulus E/E0; (b) Poisson’s ratio ν. Baseline properties “base”
correspond to those of Section 3 and Table 2.

Effects of other thermo-mechanical properties on ΠP = P/(ER2) are shown in
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Fig. 8, where here, initial temperature T0 = TR = 300 K. Elastic wave speed at
fixed E has a very small effect on ΠP when varied by a factor of 10 in Fig. 8a. Thus,
inertia seems to influence the global force-depth response very little for the present
loading conditions. Velocities exceeding 5 m/s may be required to induce noticeable
inertial effects on indentation force, as quantified elsewhere for simulations of much
higher constant impact velocities.13 It appears unlikely that instrumented dynamic
indentation data collected for the present range of impact velocities would enable
much inference about wave speed (i.e., mass density) of an unknown material.
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Fig. 8 Predicted normalized indentation force vs. depth over thermo-mechanical property
ranges of Table 3: (a) dimensionless wave speed Cl/ῡ via variation of initial mass density ρ0,
(b) dimensionless melt temperature (TM −TR) · cV /E via variation of TM , and (c) dimension-
less specific heat capacity cV /cV 0. Baseline properties “base” correspond to those of Section 3
and Table 2.

Denoting ∆TM = TM − TR in Fig. 8b, changing ∆TM by a factor of 20 negligibly
affects ΠP for T0 = TR. As suggested by findings in Fig. 5d, temperature rise
is expected to not exceed 25 K, and is highly localized. Even with TM reduced
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from 925 to 443 K, adiabatic temperature rise is still insufficient to thermally soften
the material enough to affect the global force-depth response. As shown in Fig. 8c,
increasing or reducing cV by a factor as much as 10 similarly is insufficient to affect
thermal softening for T0 = TR. The low sensitivity of simulation results to TM and
cV show that little information regarding the melt temperature or specific heat is
afforded by dynamic spherical indentation.

Inelastic constitutive properties are investigated next, specifically those entering the
Johnson-Cook framework of Eqs. 19, 20, and 22. Normalized parameters A/E and
B/A are considered in respective Figs. 9a and 9b at T0 = TR. Indentation force
ΠP is notably sensitive to variations in both parameters, with stiffness higher when
larger values of either parameter are invoked. It appears that information about ini-
tial yield stress A and strain hardening coefficient B (at fixed n) could be inferred
from measured dynamic P versus h data, though whether unique values of each
parameter could be determined from an arbitrary dynamic indentation data set is
uncertain.
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Fig. 9 Predicted normalized indentation force vs. depth over yield and strain hardening co-
efficient ranges of Table 3: (a) dimensionless initial yield stress A/E via variation of A; (b)
dimensionless hardening coefficient B/A via variation of B. Baseline properties “base” corre-
spond to those of Section 3 and Table 2.

Effects of the strain hardening exponent n and strain rate sensitivity factor C are
demonstrated in Fig. 10 for T0 = TR. System stiffness decreases as n increases in
Fig. 10a, where the stiffest response arises for n = 0, which results in a constant
effective static yield strength of A + B. Such behavior is not unexpected, since re-
sults of Fig. 5c imply that local plastic strain values should remain less than unity
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throughout the indentation simulation, so long as departures from baseline proper-
ties are not so extreme as to induce plastic strain localization. Sensitivity of results
to n is comparable to that of B/A.

Global force-depth response is also notably influenced by strain rate sensitivity pa-
rameter C, as evident in Fig. 10b. A straightforward increase in system stiffness is
afforded by an increase in C. Changing C by a factor of two significantly affects ΠP

in the plastic regime. Similarly to A and B, dynamic indentation data are expected
to reveal influences of n and C. Testing at different loading rates could be used to
further isolate effects of C.
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Fig. 10 Predicted normalized indentation force vs. depth over strain hardening exponent and
strain rate sensitivity ranges of Table 3: (a) hardening exponent n; (b) rate sensitivity C. Base-
line properties “base” correspond to those of Section 3 and Table 2.

Thermal softening parameter m and initial temperature T0 are studied through FE
results of Fig. 11. For T0 = TR, effects of m on ΠP versus h/R are negligible in
Fig. 11a, as expected from contours in Fig. 5d wherein adiabatic temperature rise
is localized and small (e.g., not expected to exceed 25 K for baseline parameters).
Note that m → ∞ suppresses thermal softening of flow stress in Eq. 19, and reduc-
ing m increases thermal softening when other parameters are held fixed.

Effects of increasing the initial specimen temperature T0 while holding m = 1 fixed
are shown in Fig. 11b. Thermal softening becomes noticeable for a 50% increase in
T0, to 429 K, and drastic when T0 approaches TM (e.g., the softest case shown for
858 K).
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Fig. 11 Predicted normalized indentation force vs. depth over thermal softening exponent and
initial temperature ranges of Table 3: (a) softening exponent m at T0 = TR, (b) dimensionless
initial temperature T0 · cV /E via variation of T0, (c) softening exponent m at T0 = 1.14TR =
343 K, and (d) softening exponent m at T0 = 1.91TR = 572 K. Baseline properties “base”
correspond to those of Section 3 and Table 2.
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Effects of m at two elevated initial temperatures (343 and 572 K) are shown respec-
tively in Figs. 11c and 11d. As T0 increases, ΠP becomes more sensitive to varia-
tions in m. Collectively, the present results imply that room-temperature data from
instrumented dynamic spherical indentation at the present moderate rates would not
be useful for determination of m. Thermal softening is more prominent at higher
loading rates of the appendix and other works on ballistic spherical impact.11,36

Results imply that data collected at higher initial specimen temperatures and the
current moderate loading rates could likely facilitate its quantification.

Among the independent constitutive parameters investigated in the current study,
all except two would be expected to affect the quasi-static indentation response
at room temperature and/or elevated temperatures. The two properties unique to
dynamic indentation are the mass density (manifesting via the wave speed Cl) and
the plastic strain rate sensitivity (manifesting in the Johnson-Cook model via C).
As shown in Fig. 8a, inertial effects appear to be nearly insignificant for the present
conditions, so Cl does not warrant closer investigation.

However, C significantly affects results for ΠP in Fig. 10b. To supplement the ΠP

versus h/R information, considered next are simulation results on contact radius,
mean contact pressure, and indentation strain for different choices of C. Although
such history data are not presently available from the dynamic indentation exper-
iments of Section 3, examination of corresponding history data from simulations
provides insight into how useful such data could be were it to become available
in the future, if and when the contact radius a could be measured in the dynamic
experiments.

Shown in Fig. 12 are Πa = a/R of Eq. 24 and p/E, the latter represented versus
indentation depth as well as versus the indentation strain ϵ̂ of Pathak and Kalidindi2

as listed in the last part of Eq. 27. Results correspond to T0 of room temperature.
As evident in Fig. 12a, contact radius decreases with increasing C. Since force P

simultaneously increases with C as in Fig. 10b, the contact pressure p = P/(πa2)

significantly increases with strain rate sensitivity, more so than P itself. This sug-
gests that contact pressure should be a better result from which to calibrate C than
total contact force, since influences of C are magnified.
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Fig. 12 Predicted response functions for variations of strain rate sensitivity parameter C
over ranges in Table 3: (a) dimensionless contact radius a/R, (b) dimensionless pressure
p/E vs. normalized depth h/R, and (c) dimensionless pressure p/E vs. indentation strain
ϵ̂ = 4h/(3πa). Baseline C = 0.05 corresponds to Section 3 and Table 2; refined 10.5 M el-
ement mesh used to better resolve pressure and indentation strain.
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Results of p/E versus normalized indentation depth and indentation strain (i.e.,
indentation stress-strain curves) provide similar visual insight in respective Fig. 12b
and Fig. 12c. The transient constraint factor c is obtained by multiplying p/E by
E/A = 236.7. At maximum load, c ranges from 3.10 for C = 0, similar to what
would be expected for a mildly hardening, rate insensitive material,50,61 to a much
larger value of 5.94 for C = 0.2 wherein plastic strength is drastically increased by
rate sensitivity.

Another opportunity for constitutive property extraction arises from examination
of surface imprints, for example calibration of constitutive parameters to provide
closest agreement between simulated and measured profiles. Simulations provide
indentation surface profiles throughout the deformation history. Focusing again on
rate sensitivity parameter C of unique interest to dynamic indentation, predicted
surface profiles are shown for four values of C in Fig. 13, all at T0 = TR. For
completeness, the baseline case is shown already in Fig. 6a. Imprints are notably
affected by C. As C increases, the maximum residual imprint depth decreases, as
does the sharpness of the lip along the edge of the crater. Such findings confirm
that surface imprints provide useful supplementary information for determination of
strain rate sensitivity from instrumented dynamic spherical indentation. This agrees
with prior studies of ballistic spherical impact.11,36

Presently, experiments provide coarse size estimates of residual imprints via inspec-
tion of images from a confocal microscope. Displacement profilometry may be pur-
sued in the future, to acquire accurate profile shapes from recovered specimens and
enable refinement or confirmation of model parameters and friction coefficients.36,68
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Fig. 13 Surface displacement of specimen at load levels P/Pm, where Pm is maximum indenta-
tion force and “residual” is final plastic imprint variations of strain rate sensitivity parameter
C over ranges in Table 3: (a) C = 0, (b) C = 0.02, (c) C = 0.1, and (d) C = 0.2. Baseline result
for C = 0.05 is shown in Fig. 6a of Section 3.
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4.4 Simulated Strain Rates

Effective strain rates witnessed in the present simulations can be calculated in sev-
eral ways. First, using results on peak depth, contact radius, and time over which
load increases, the indentation strain rates from Eq. 21 as quantified in Table 1 are
obtained for all three tests. Values range from 1100/s to 2600/s depending on test
number and indentation strain definition. Strain rates based on Tabor’s definition ϵ̄61

are around 20% smaller than those based on Pathak and Kalidindi’s ϵ̂.2

Second, an average plastic strain rate can be estimated by dividing the plastic strain
in the indented zone by the simulation time. For test 3, ϵP ≈ 0.1 was achieved
locally over a load time of 50 µs, giving ϵ̇P ≈ 2000/s, which agrees within 25% of
the indentation strain rates in Table 1.

Third, an effective plastic strain rate can be deduced by comparing the increase
in indentation stress p observed in Fig. 12(c) between simulations with C = 0.05

(which reasonably matches experimental P vs. h data, to be slightly refined to C =

0.055 for test 3 in Section 5) and C = 0, which replicates static conditions since in-
ertial and thermal effects are small. According to analysis of static indentation,2,48,61

p = cσ̄, where σ̄ is the uniaxial flow stress and c is a constraint factor ranging from 2
to 3. Assuming the same proportionality factor c applies in the moderately dynamic
regime, the effective plastic strain rate is obtained by inversion of the Johnson-Cook
relation Eq. 19 with σ = σ̄ and ϵ̇0 = 1/s as ϵ̇P ≈ exp[(p|C=0.05/p|C=0−1)/C] ≈ 800

m/s: for deep indentation with h/R ≳ 0.01, mean stress p for C = 0.05 is ≈ 4
3

that
for C = 0 (i.e., dynamic stress is 33% higher than static). This 800 m/s estimate is
≈ 1

3
to 1

2
those of the other two strain rate estimates.

4.5 Summary and Recommendations

Conclusions from the sensitivity analysis are collected in Table 4. Those consti-
tutive properties that significantly affect the global indentation response data (i.e.,
ΠP ) are candidates for extraction from instrumented dynamic spherical indenta-
tion. Those that do not should be determined using other methods such as those
proposed in the rightmost column of Table 4. Specifically, pragmatic traditional al-
ternatives78–80 to indentation are recommended to determine mass density ρ0, melt
temperature TM , and specific heat per unit volume at constant volume cV . Precision
of dynamic indentation experiments in the very small-depth regime is likely insuffi-
cient to directly ascertain elastic compliance via comparison with Hertz’s solution.
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Table 4 Effects of constitutive parameters on dynamic force-depth response (Y:= very signif-
icant) at room and elevated temperatures for dynamic indentation strain rates on the order
of 103/s, and recommended experiments for their determination. At rates ≳ 104/s, effects of
inertial and thermal properties become significant for T0 ≈ TR, and contact friction becomes
increasingly important.

Constitutive Affects P − h Affects P − h Suggested
parameter T0 ≈ TR T0 ≫ TR experiment
E Y Y wave speed
ν Y Y wave speed
ρ0 N N Archimedes
cV N N calorimetry
TM N Y traditional melt
A Y Y static indentation or traditional tension*
B Y Y static indentation or traditional tension*
n Y Y static indentation or traditional tension*
m N Y high-T indentation or high-T tension*
C Y Y dynamic indentation (rates ≈ 103/s)

traditional Kolsky bar (rates ≲ 104/s)
mini SHPB,22 ballistic or plate impact (≳ 105/s)

∗Traditional (e.g., Instron machine) compression or torsion also admissible

Thus, wave speed measurements (i.e., conventional ultrasound81) are suggested as
pragmatic alternatives to accurately measure E and ν, once ρ0 is found.

It is emphasized that conclusions drawn from the current sensitivity study are lim-
ited to moderate strain rates achieved by input velocities on the order of 1 m/s,
leading to average indentation depth rates ranging from 1 to 3 m/s and average
strain rates on the order of 103/s (Table 1 and Section 4.4). As shown by dynamic
simulations in the appendix and in other works,11,14,36 increasing the loading rate
by a factor of 10+ leads to increasingly prominent roles of thermal sensitivity, mass
density and nonlinear compressibility (affecting shock waves), and contact friction.
Much higher effective strain rates can be achieved in ballistic impact, ranging from
104 to 106/s. Thus, a value of C extracted from higher velocity tests would be more
accurate for strain rates in the ballistic range, whereas the presently determined
value of C is applicable to moderate strain rates of ≈ 103/s. As noted in Section 5,
Al 6061-T6 and some other metals show an increase in strain-rate hardening at
rates ≳ 104/s, likely due to increased dislocation drag.41,72 The Johnson-Cook (one-
parameter) rate sensitivity model of Eq. 19 is unable to account for this transition;
a more sophisticated model72 may be more realistic for addressing the full range of
rates up to the shock and ballistic regime.

Even though five Johnson-Cook parameters A,B,C,m, n and elastic properties
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E, ν affect the dynamic indentation response when different initial temperatures
are considered, whether or not reasonably unique values of all parameters could be
extracted from instrumented dynamic spherical indentation data at a single repre-
sentative loading rate is unknown, since multiple constitutive parameters may affect
the P versus h response similarly. Some non-uniqueness is inherent in the Johnson-
Cook parameters even when calibrated to traditional stress-strain data, as evidenced
by property ranges reported elsewhere for Al 6061-T6, for example.22,40–42,64

A potentially more robust strategy, avoiding traditional uniaxial stress-strain test-
ing, would obtain rate insensitive properties A, B, and n from static indentation
data using previously documented procedures,6,67 then strain rate sensitivity param-
eter C from dynamic indentation on a specimen initially at room temperature, and
finally temperature sensitivity parameter m from indentation on a specimen at suf-
ficiently elevated initial temperature. In Section 5, this strategy is used to acquire
a value of C that produces best fits of work of dynamic indentation from simula-
tions to the present experimental data. The experimental setup is being augmented
to permit elevated temperature testing (e.g., for extraction of m); when established
and operational, details will be reported in future work.

As shown in Section 5, given static properties A,B, n (independently validated
herein vs. static indentation data48), the dynamic indentation strain rates achieved
in the present study are sufficient to enable determination of a reasonable value of
C that falls within bounds of other investigations.41,42 However, modest differences
in input pulse magnitudes and shapes among the 3 tests in Fig. 2(a) produce very
similar P − h response curves up to maximum loads, which differ depending on
the average magnitude of input velocity. Such similarities persist for simulations
in the appendix for input velocities varying by factors of 1

2
to 2. If static and dy-

namic properties A,B, n, and C were needed to be extracted solely from dynamic
indentation data, then the present dynamic indentation experiments wound need to
be redesigned to accommodate a much wider range of velocities.

Reducing R could enable a higher strain rate, but as explained in Section 3.1, shrink-
ing the dimensions of the system by only a factor of 1

2
—approximately increasing

the strain rate by a factor of 2 at fixed P and load duration—would produce an in-
dented volume at yield that contains too few grains to be considered homogeneous
and isotropic. As shown in the appendix, a simulated increase in loading rate by
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only a factor of two shows very little difference in response other than increased
depth (as expected given C ≪ 1), so decreasing R by 1

2
would appear to produce

little additional useful information. Lowering the input velocity could reduce the
strain rate accordingly, but reduction by a factor of 1

2
produces too little plastic de-

formation for the same pulse duration, where the latter is limited by the length and
wave speed of the striker bar.

Also as shown in the appendix, increasing the indentation rate by a factor between 2
and 5 leads to penetration of the specimen by the cylindrical edge of the output bar,
which invalidates analysis of the response as one of spherical indentation. Rather,
the problem becomes one of long-rod ballistic penetration. Increasing the rate by a
factor between 5 and 10 produces stresses large enough to damage (i.e., plastically
deform) other system components such as the input bar and striker interface. In
order to achieve higher striking velocities without damaging the system, its physical
dimensions could be increased, but this requires a significant rebuild of the device.
This proposition is not pursued further since strain rates obtained elsewhere in full-
sized instrumented experiments enabling sharp indenters with impact speeds up to
50 m/s9 produced strain rates on the order of 103/s, which are no greater than those
achieved here with a miniaturized system. Furthermore, the dimensional analysis of
Section 4 assumes that the geometry of the system is fixed except for the indenter
radius R.

Pulse shapers could be used to alter the input velocity history profiles, but this
proposition also appears unpromising given the similarity of responses for differ-
ent shaped pulses observed in the existing data. Some variations in aspect ratios
and construction materials of the input, output, and striker bars could be accommo-
dated, but their dimensions are restricted by pragmatic constraints22 including the
requirement that stress waves in the bars be 1-D (i.e., rods rather than plates).

Thus, the present work suggests that the instrumented dynamic indentation tech-
nique used here is restricted to strain rates on the order of 103/s. Much lower
spherical indentation rates should be studied using quasi-static or mildly dynamic
(velocity-controlled) methods,2,35 and much higher spherical indentation rates should
be studied using ballistic impact.11,36 These limitations and recommendations are
highlighted in Table 4. Other listed techniques could be used to achieve very high
loading rates (e.g., normal or inclined plate impact, laser shock), but extraction of
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dynamic plastic properties from shockwave data is complicated.55

Benefits of the miniaturized indentation system over macroscale systems include its
small size and portability (the present system fits on a tabletop, whereas a standard
Kolsky bar or plate impact device occupies an entire laboratory room), and its re-
quirement of relatively small samples of material. Once perfected, the miniaturized
system should enable low-cost, high-throughput testing of many small samples of
differently fabricated materials in a relatively short time, albeit limited to the mod-
erately dynamic rate regime.

5. Johnson-Cook Parameter Determination

An ultimate goal of the combined experimental-numerical approach is identifica-
tion of elastic, plastic, and other constitutive properties of the indented material.
Results in Section 4 show that at modest input velocities (order of one to several
m/s) and initial room temperature (not elevated temperature) conditions, the load
depth (P vs. h) response is sensitive to elastic constants E, ν and the Johnson-Cook
yield and hardening parameters A,B,C, n. A brute-force calibration of all six elas-
tic and plastic parameters, with 10 levels per parameter, would thus require 106

simulations to arrive at a best fit for a single experiment. Even if E and ν are as-
sumed known a priori (e.g., via ultrasonic determination), 104 simulations would
be required per experiment. This number exceeds computational resources with
higher-fidelity models alone, considering the expense of dynamic 3-D simulations
with over 3 M hexahedral elements needed to model the experimental setup with
sufficient mesh resolution. Advanced multi-fidelity approaches (e.g., surrogate and
analytical models6,44), outside the present scope, can be pursued in the future to
alleviate computational burden.

Therefore, guided by the findings of the sensitivity analysis of Section 4, the present
study seeks to extract a best value for the dynamic rate sensitivity parameter C, as-
suming that the elastic (E, ν) and quasi-static properties (A,B, n) are known a pri-
ori from external testing. A similar strategy was used for property extraction from
ballistic spherical impact, limited to Johnson-Cook parameter C and friction coeffi-
cient µ by Burley et al.36 or C alone by Ito and Arai.11 Also, using FE simulations of
standard Kolsky bar tests, only C and thermal sensitivity m were extracted in prior
works37,38 with the understanding that A,B, n could be easily obtained by a priori
fitting of the Johnson-Cook equation to quasi-static data. The same assumptions
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are invoked here, noting that static indentation experiments and FE models have
been well developed elsewhere6,67 to obtain yield and power-law strain hardening
properties such as A,B and n.

Determination of C is achieved by varying its value over the physically anticipated
domain C ∈ [0, 0.1], in increments of 0.005. Simulation results are compared with
experimental data for tests 2 and 3, noting from Fig. 4 that the loading in test 1
(shallow final indentation depth) is largely elastic, so plastic properties cannot be
as well identified. Only P − h data from the loading phase of each test, up to peak
depths around hm, are compared in the calibration procedure, since unloading is
dominated by elastic rather than plastic properties.

The metric used to determine a best value of C is minimization of the error defined
in Eq. 28 as the normalized, cumulative absolute value of the difference between
experimental (·)exp and simulated (·)sim indentation force P :

normalized error =
[
(1/Wexp)

∫ hm

0

|Psim(h)− Pexp(h)|dh
]
,

Wexp =

∫ hm

0

Pexp(h)dh.
(28)

This error essentially measures the magnitude of the difference in areas under load-
depth curves between experiments and simulations, that is, the normalized differ-
ence in work of indentation W . Error is calculated for each test and for both in
combination, where the latter uses the summed cumulative differences in the nu-
merator and the sum of both experimental W in the denominator of Eq. 281.

Force-depth curves for C ∈ [0.45, 0.65] are shown in Figs. 14a and 14b for respec-
tive tests 2 and 3. Normalized errors for each test and totaled are shown in Fig. 14c.
A best fit of C = 0.065 is obtained for test 2 with an error measure of 1.5% and a
best fit of C = 0.55 for test 3 with an error of 3.0%. The optimum value for both
tests is C = 0.060, with a normalized error of 2.8%. This calibrated value of C re-
fines the initial guess of C = 0.05 that was used for baseline and parameter studies
in Sections 3 and 4. Recall that the initial guess on C, along with assumed values
of A,B, n,m, and TR, were not calibrated to indentation results, but rather were
chosen as order-of-magnitude estimates within ranges available from other sources
on Al 6061.22,40–42,64
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Fig. 14 On extraction of Johnson-Cook rate parameter C from dynamic indentation experi-
ments and simulations: (a) indentation force P vs. depth h for loading phase of test 2, range
of C in simulations, (b) indentation force P vs. depth h for loading phase of test 3, range of C
in simulations, and (c) error in work of indentation W for each test and total (minimized at
C = 0.06)

Johnson-Cook parameters used in the current work for indentation are compared
with those obtained from other experimental investigations in Table 5. The reference
by Zhu et al.42 contains two parameter sets: one for specimen sizes of 25 mm, the
other for 50-mm specimens. Corresponding predictions of the flow stress under 1-
D plastic strain (uniaxial stress conditions) from the Johnson-Cook equation Eq. 19
are compared in Fig. 15 using these four tabulated sets of parameters, for strain
rates ranging from quasi-static (10−3/s) to dynamic (103/s).
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Table 5 Johnson-Cook parameters of Al 6061-T6 from present study and other experiments

Source Loading A [GPa] B [GPa] n C TR m
Present work dynamic indentation 0.300 0.200 0.300 0.060 300 1.00
Zhu et al. (1)42 static and dynamic tension (25 mm) 0.203 0.244 0.427 0.083 - -
Zhu et al. (2)42 static and dynamic tension (50 mm) 0.236 0.430 0.376 0.024 - -
Lesuer et al.41 static testing and macro Kolsky bar 0.324 0.114 0.420 0.002 294 1.34
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Fig. 15 Comparison of Johnson-Cook model results with parameters from indentation (present
work) and other experiments41,42 (a) flow stress σ vs. plastic strain ϵP for strain rate ϵ̇P =
10−3/s, (b) flow stress σ vs. plastic strain ϵP for strain rate ϵ̇P = 1 /s, (c) flow stress σ vs. plastic
strain ϵP for strain rate ϵ̇P = 103/s, and (d) indentation stress (mean pressure) p = P/(πa2)
vs. indentation strain ϵ̂ = 4h/(3πa) from indentation simulations and static indentation data48
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Most of the current curves fall in between those of other external studies. All ather-
mal parameters except n, which is slightly lower, are within bounds set by the other
three external parameter sets. However, not shown in Table 5, the library param-
eters40 for Al 6061 encompass values of n ≤ 0.259, m ≤ 1.0, C ≥ 0.1, and
TR ≥ 300 K. So the present parameter set lies within previously established exper-
imental bounds.

As measured by Nicholas and Lesuer et al.,41,64 the Al 6061-T6 alloy demonstrates
enhanced hardening at strain rates exceeding 103/s that cannot be adequately fit us-
ing the Johnson-Cook model with one value of C. This transition is attributed to
a change from obstacle-controlled to drag-controlled dislocation glide resistance.
Similar phenomena have been noted for other metals.72 The higher hardening rate
at low strain demonstrated by the parameters of this study at ϵ̇P = 103/s in Fig. 15c
may reflect this or other mechanisms appearing more prominently in dynamic in-
dentation than at milder dynamic rates of focus in other works.42,64

Another independent validation of the present set of Johnson-Cook parameters is
observed by comparing indentation stress-strain curves2 from the current simula-
tions with experimental static indentation stress-strain data obtained elsewhere48 on
the same as-received Al 6061-T6 material, with WC likewise used for the spherical
indenter. The present simulations with C = 0 replicate quasi-static loading, since
results in Section 4 confirm that inertia and temperature rise have an insignificant
effect on P at the moderate loading rate (mean indenter speed < 3 m/s) of test 3.
Close agreement of the simulation with C = 0 and the static experimental data
confirm that the choices of A,B, and n in Table 5 are valid for indentation stud-
ies. The 30%+ increase in mean stress p (deep indentation) for the dynamic cases
with C ∈ [0.05, 0.06] relative to static cases verifies that rate sensitivity is eas-
ily discerned by comparing static indentation with the present dynamic indentation
method.

49



6. Conclusions

Simulations of instrumented dynamic indentation experiments in a miniature Kol-
sky bar have been performed. The tested material is aluminum alloy Al 6061-T6.
The FE model, with representative baseline material parameters obtained from the
literature for Johnson-Cook plasticity, reasonably replicates the curvature of the
experimental load versus depth data for three different experimental loading histo-
ries corresponding to different velocity profiles for the Kolsky input bar. Uniaxial-
equivalent strain rates for simulations of these three experiments, averaged over
their time histories, have been estimated from indentation strain rates to range from
900 to 1700/s. For baseline properties, maximum local plastic strains have been
calculated on the order of 10%, leading to maximum local adiabatic temperature
rise on the order of 25 K. This rise has been found to be insufficient to significantly
affect load-depth curves through thermal softening at these moderate dynamic rates.

A framework for dimensional analysis of instrumented dynamic spherical indenta-
tion has been implemented. Parametric FE simulations have revealed the sensitivity,
or lack thereof, of the predicted response to variations in the independent variables
encompassing material properties and loading protocols. The sensitivity analysis
has shown that the global indentation force versus indentation depth response for
dynamic loading is significantly influenced by four Johnson-Cook plasticity pa-
rameters for specimens initially at room temperature: the initial yield strength A,
the strain hardening coefficient B, the strain hardening exponent n, and the strain
rate sensitivity factor C. For specimens at initially high temperatures, the global
response is also significantly influenced by the thermal softening parameter m.

A combination of room- and elevated-temperature tests is recommended for extrac-
tion of Johnson-Cook parameters for previously uncharacterized ductile materials,
where static indentation is recommended to inform A, B, and n and dynamic inden-
tation is recommended to inform C. The present experimental setup is realistically
restricted to effective strain rates on the order of 103/s. Experimental methods other
than dynamic instrumented indentation are recommended for determination of mass
density, melting temperature, specific heat, and linear elastic constants, since these
parameters either too weakly affect the global response or cannot be obtained prag-
matically at high precision, given the fidelity of available dynamic indentation data.

Extraction of C from the present dynamic data and simulations has been demon-
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strated and reasonably validated, with a few exceptions, versus independent ex-
perimental sources for strain rates up to the order of 103/s. For confirmation of C
pertinent to much higher loading rates, other techniques such as ballistic impact
should be considered. Inertial, thermal, and frictional properties become increas-
ingly important in the ballistic regime.
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Appendix. Higher Indentation Velocities
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Additional simulations were performed to examine effects of a wider range of in-
dentation rates. Velocity history input conditions of Fig. 2a for tests 2 and 3 were
multiplied by a factor of 0.5, 2, 5, or 10, holding the time scale fixed. Predicted
load-depth curves are shown in Fig. A-1.
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Fig. A-1 Indentation force P vs. depth h from simulations of of tests 2 and 3 with amplified in-
put velocities: (a) baseline material properties of Table 2; 0.5, 2, 5× or 10× velocity increase for
test 2 or test 3; (b) baseline properties vs. no thermal softening (m → ∞), static and dynamic
friction (µ = 0.2), or equation of state (EOS) for thermal expansion and compressibility; 5×
or 10× velocity increase for test 3. At 5–10× input velocities, thermal softening m and contact
friction µ have significant influence, and nonlinear EOS rather than linear elasticity has mod-
est influence.

Reduction of the input velocity by factor of 0.5 for test 3 produced a shallower
indentation depth and a lower plastic strain than the original test 3. Differences in
curvature of the load-depth response in Fig. A-1a are too small to enable resolution
of strain rate effects between these two cases, since halving the strain rate produces
only a 2–3% decrease in flow stress for the Johnson-Cook model with C ≈ 0.05.
Thus, further experiments with lower input velocities are likely not useful, since
rate effects cannot be discerned and the plastic strain itself becomes too small to
improve extraction of hardening parameters. Increasing the velocity by a factor of 2
produces an increase of the maximum indentation depth, and the maximum load is
doubled to around 1500 N. However, the curvature of the P − h response is nearly
indistinguishable from that for the original test 3 (as expected given the low value
of C). Experiments with the indentation rate multiplied by only a factor of two are
not expected to provide much more information on material properties.

Increasing the input velocities by higher factors of 5 to 10 produces more drastic
differences. Recall from Fig. 1 that the radius of the cylindrical output bar onto
which the truncated indenter tip is machined is 0.794 mm, much smaller than the
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radius of curvature of the indenter R of 3.175 mm. Thus, for sufficiently deep in-
dentation, the sharp edge of the cylinder, where the spherical tip is truncated, will
contact and penetrate the specimen. In this situation, the problem is no longer one of
spherical indentation, but rather is a cylindrical punch with a slightly rounded front
face. In the present dynamic regime, it is akin to ballistic penetration by a long rod.
Results cannot be reasonably compared with static or lower-rate indentation since
physical mechanisms differ.

As shown in Fig. A-2, this ballistic penetration regime is entered for a velocity
increase of 5× for test 3. In Fig. A-2a, localized plastic deformation of large mag-
nitude arises at the edge of the cylinder as it penetrates the specimen. Adiabatic
heating occurs simultaneously as shown in Fig. A-2b. For the 5× amplification fac-
tor, the P − h curve is rounded in Fig. A-1a, but the load eventually relaxes. From
Fig. A-1a, the depth at which contact penetration begins is h ≈ 100µm.

Also as shown in Fig. A-2, for a velocity increase of 10× that for test 3, deformation
is even more severe, and the local temperature rise much greater. The substrate ther-
mal softens and approaches melt conditions in adiabatic shear zones at the contact
interface along the cylinder wall. Elements become highly distorted, and the simu-
lation terminates before elastic recovery can take place, if at all. The cylindrical bar
with spherical tip is thus lodged in the substrate. For this highest velocity, plastic
yielding of the steel input bar is predicted in the vicinity of the applied loading (i.e.,
due to impact from the striker bar). A similar undesirable situation occurs for a 10×
increase of velocity for test 2, as evident by the plateau in P versus h response in
Fig. A-1a.

Results in Fig. A-1a use baseline material properties for the Al 6061-T6 material,
with linear elasticity, no thermoelastic coupling, and no contact friction. Results in
Fig. A-1b consider variations of these properties. Disabling thermal softening by
setting m → ∞ produces an increase in stiffness evident in the P − h response
at 5× and 10× input velocities. Thus, thermal softening becomes important in this
higher-velocity regime, in contrast to the milder conditions considered in Section 4
and Fig. 11a. The friction coefficient µ also more noticeably affects the P − h

response at higher velocities, whereas use of µ = 0 or µ = 0.2 did not appreciably
affect the P − h response for lower rates of Sections 3 and 4.
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(a) plastic strain, 5× vel (b) temperature, 5× vel

(c) plastic strain, 10× vel (d) temperature, 10× vel

Fig. A-2 Contours of field variables from simulations of test 3 with amplified input velocity,
t = 40µs: (a) effective plastic strain ϵP , 5× velocity increase, (b) absolute temperature T ,
5× velocity increase, (c) effective plastic strain ϵP , 10× velocity increase, and (d) absolute
temperature T , 10× velocity increase. In both cases (5 and 10× velocity), the cylindrical edge
of the indenter penetrates the specimen, leading to strain localization and adiabatic heating,
invalidating the test. Localized melting is approached and plastic deformation of steel input
bar occurs for 10× velocity.
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A pressure-volume-temperature equation of state (EOS)1 is implemented in another
simulation, with Grünesien parameter of 2.19 for thermoelastic coupling and pres-
sure derivative of the bulk modulus of 4.42 from the experimental literature2 for
nonlinear compressibility. Use of the EOS influences results for 10× velocity, but
not by much until well after the penetration regime begins. Recall from Section 3.2
that adiabatic conditions are used in simulations, so heat conduction is ignored at
time scales on the order of µs, a typical assumption3,4, though some more rigorous
FE studies consider conduction5,6. The presently predicted temperature rise is thus
an upper bound with the Taylor-Quinney factor set to the default value of unity. Alu-
minum has a large thermal conductivity compared to many materials (e.g., steel),
so any overestimation of temperature rise would be more severe in Al than in other,
less conductive, materials.

The present results provide useful bounds on experimental loading protocols. The
duration of the loading pulse is dictated by the time required for a longitudinal wave
to traverse twice the length of the striker bar, which is considered fixed in the ex-
perimental setup. Variations in loading rate by a factor of 2 do not provide enough
differences to discern strain rate sensitivity when C is small as for the present alloy.
Much lower average input velocities than 1 m/s will produce too shallow indenta-
tions, with too little plastic strain, to improve determination of Johnson-Cook pa-
rameters. Increasing the input velocity by a factor between 2 and 5 leads to contact
of the substrate with the cylindrical edge of the indenter-output bar interface, which
invalidates the spherical indentation assumption. The experiment becomes ballistic
impact and penetration by a rod for average input velocities exceeding 10 m/s. In
this ballistic penetration regime, effects of thermal softening, rate sensitivity, static

1Clayton J. Nonlinear elastic and inelastic models for shock compression of crystalline solids.
Springer; 2019.

2Guinan M, Steinberg D. Pressure and temperature derivatives of the isotropic polycrystalline
shear modulus for 65 elements. Journal of the Physics and Chemistry of Solids. 1974;35:1501–1512.

3Lesuer D, Kay G, LeBlanc M. Modeling large-strain, high-rate deformation in metals.
Lawrence Livermore National Laboratory; 2001. Report No.: UCRLJC-134118.

4Zhu D, Mobasher B, Rajan S, Peralta P. Characterization of dynamic tensile testing using
aluminum alloy 6061-T6 at intermediate strain rates. ASCE Journal of Engineering Mechanics.
2011;137:669–679.

5Burley M, Campbell J, Dean J, Clyne T. Johnson-Cook parameter evaluation from bal-
listic impact data via iterative FEM modelling. International Journal of Impact Engineering.
2018;112:180–192.

6Ito K, Arai M. Simple estimation method for strain rate sensitivity based on the difference
between the indentation sizes formed by spherical-shaped impactors. International Journal of Me-
chanical Sciences. 2021;189:106007.

64



and dynamic friction, thermal expansion, and nonlinear compressibility become in-
creasingly important. The melt temperature can even be approached in adiabatic
shear bands. The yield stress of other (steel) components of the system is exceeded
in the ballistic regime (e.g., peak input velocities around 20 m/s), which will lead
to permanent damage of the experimental device. So increasing the input velocity
above a factor of around 2 is not recommended.
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List of Symbols, Abbreviations, and Acronyms

TERMS:

Al aluminum

ARL Army Research Laboratory

CSM continuous stiffness measurement

DEVCOM US Army Combat Capabilities Development Command

FE finite element

SHPB split Hopkinson pressure bar

WC tungsten carbide

MATHEMATICAL SYMBOLS:

a contact radius

A initial yield stress

B strain hardening coefficient

C strain rate sensitivity

E elastic modulus

h indentation depth

m thermal softening exponent

n strain hardening exponent

p mean pressure

P indentation force

R indenter radius

t time

T temperature

W indentation work

ϵ strain
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ν Poisson’s ratio

ρ mass density

σ stress

υ velocity
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