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1. Introduction

Frontotemporal degeneration (FTD) is an understudied form of focal dementia. Its public health impact is 

immense because clinical FTD is the most common neurodegenerative disease in individuals <65 years 

old. FTD presents with a specific language deficit (Primary Progressive Aphasia, PPA). A careful analysis 

of everyday speech can help identify variants of PPA. This proposal fills a major gap by providing an 

objective, replicable, fully automated approach to discerning speech characteristics of PPA. FTD may co-

occur with a motor disorder, including Amyotrophic Lateral Sclerosis (ALS) and Chronic Traumatic 

Encephalopathy (CTE) which are directly relevant to the military. Detailed analyses of speech FTD 

spectrum disorders with associated motor impairments are rare, and we propose to extend our analyses to 

FTD patients with motor disorders. Finally, longitudinal analyses of speech can play an important role in 

prognosis and in treatment trials, but longitudinal studies are rare. This study pursues these issues with 

three Specific Aims: 1. Develop an automated algorithm to analyze lexical semantic word-level content and 

grammatical category in FTD; 2. Develop automated algorithms to align lexical content with acoustic signal 

in connected speech samples of FTD speakers; and 3. Develop algorithms to automatically characterize 

the properties of the complex (acoustic and lexical) signals that are associated with sentence boundaries 

and syntactic units in FTD speech.  

2. Keywords

Frontotemporal dementia, primary progressive aphasia, semantic variant primary progressive aphasia, 

non-fluent/agrammatic primary progressive aphasia, behavioral variant frontotemporal dementia, speech, 

natural language processing 

3. Accomplishments

Major Goals:  

Major goals in the first year included: 1 - exploring, testing, and training automated part of speech (POS) 

tagging algorithms in FTD speech; 2 - testing automated dependency parsing in FTD speech; and 3 - 

reviewing and correcting aligned output of speech samples from untrained forced alignment (FA).  

Major goals in the second year included: 1 – Validating FA performance in FTD speech samples; 2 – 

defining speech markers for boundaries of utterance and syntactic structures.  
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Accomplishments:  

Our work was delayed in the first year due to delays in HRPO approval as well as ongoing limited campus 

activity due to the pandemic. Our study team was able to continue some remote work and most recently 

resumed activity on campus. Our center now works in a hybrid mode with continuous clinical data 

collection, supported in part by the digital infrastructure provided by our project. 

1) Major activities:

(a) Tested and trained automated English part of speech (POS) tagger and dependency parser on FTD

speech corpus (aim 1), (b) Tested Forced Aligner performance on FTD speech samples of picture 

description tasks (aim 2), (c) Explored lexical and acoustic markers of utterance boundaries (aim 3). 

2) Specific objectives:

(a) Perform Exploratory Data Analysis (EDA) on untrained POS tags; (b) Characterize speech of different

FTD phenotypes; (c) Validate characteristic speech features of FTD phenotypes with clinical measures; (d) 

use machine learning algorithms to train POS classifiers for FTD syndromes; (e) evaluate accuracy of 

automated POS tagger; (f) review and correct dependency parser analysis of FTD speech samples; (g) 

Review and correct aligned files from untrained forced alignment (FA); (h) Define the acoustic and lexical 

characteristics of utterance boundaries; (i) Define lexical acoustic markers of within-utterance syntactic unit 

boundaries (e.g. dependent clause). 

3) Key outcomes:

We defined well-characterized, distinct FTD speech patterns by FTD phenotype at the word level, reflecting 

words’ lexical roles (Part-of-Speech, POS, e.g., nouns, verbs, adjectives) [see figure 1 in Cho et al. Cortex 

2021]. We validated distinct speech features clinically, by linking them to impaired performance on 

neuropsychiatric tests and to atrophy in relevant areas of the brain cortex per structural MRI [see section 

4.1 and figure 3 in Cho et al. Cortex 2021].  

We successfully applied a Support Vector Machine (SVM) machine learning algorithm to train an automatic 

POS tagger on our FTD speech samples, resulting in speech classifiers for specific FTD phenotypes [see 

Cho et al. LREC 2020, figure 4]. 

We applied time series analysis methods to define the distinct longitudinal behaviors of speech patterns 

over time and disease progression in each FTD phenotype [see Nevler et al. Alzheimers Dement, 2020, 

figure 1]. 
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We evaluated the performance of our current automatic Forced Aligner (FA). This advanced language tool 

is essential for our aim 3, where we align transcripts with the audio signal to extract acoustic features in 

relation to specific parts of the utterances that have syntactic meaning (e.g., dependent clause). In the past 

FA algorithms’ outputs showed many instances of malalignments related to overlapping speakers. In our 

current evaluation we found no malalignments. With this FA output we extracted vowel specific frequency 

(formants) from our speech samples and identified some vowel related speech measures. These vowel 

speech measures capture the way we articulate by relating to the extent and speed of tongue movements 

in specific planes and speech of articulation. Impaired articulation is a hallmark of motor speech disorders, 

such as we see in Amyotrophic Lateral Sclerosis (ALS), where tongue and nasopharyngeal muscle 

weakness involving the vocal apparatus 

result in slurred and dysarthric speech. We 

identified specific vowel measure (figure 1) 

impairment in speakers with ALS compared 

with normal speakers and speakers with a 

pure behavioral syndrome (bvFTD). We 

pursued clinical validation by relating these 

vowel measures specifically to the 

existence and severity of bulbar disease in ALS (figure 2). We also related a composite score derived from 

these vowel measures to cortical atrophy in the motor tongue regions of the brain in the precentral gyrus 

using structural MRI scans available from most of these speakers with ALS (figure 3). 

In aim 3 we manually annotated transcripts for syntactic 

phrase structures (sentence, dependent clause, etc.). 

This was done independently by two expert linguists, 

while discussing ambiguous cases until agreement 

was reached. We then explored acoustic features 

that relate to pausing and to expert labeled syntactic 

boundaries. We identified acoustic markers that relate 

Figure 1 

Figure 2 
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to syntactic boundaries. Specifically, words preceding such

boundaries (e.g. clauses, conjunctions, sentence start) 

had longer duration and a rise in pitch contours, 

compared to words that did not precede a boundary. We 

also identified specific word POS that increase the 

likelihood of a following or preceding boundary. 

Combining these word-level lexical acoustic features 

(POS, word duration and pausing) resulted in an 

automated classifier of syntactic phrase boundary with an AUC of 0.94.  

Based on our syntactic boundary analysis, we are currently pursuing an additional study, where we are 

investigating different approaches to automatically capturing the degree of grammatical complexity of 

utterances. Grammatical complexity is impaired in many neurodegenerative conditions, but especially in 

people with FTD syndromes, where one of the variants is presented predominantly with agrammatism. 

Agrammatism affects the ability to express oneself with complex sentences and to comprehend complex 

messages and instructions and this leads to extreme disability in daily living because of difficulty with 

communication. The speech in disorders such as Alzheimer’s disease also becomes simplified 

grammatically and this could be an early sign for neurodegeneration. Expert training is currently required to 

properly define grammatical structures in speech and objective quantification is challenging. Thus, 

developing automated measures to detect and quantify simplified grammar is essential for implementing 

this early marker in clinical assessments. Automatically identifying syntactic structures (aim 3) is an 

essential first step in this endeavor.  

Some of these findings have already been published and made available on the national medical library 

and we are currently working on three additional manuscripts to report the more recent findings. 

4) Other achievements:

Since the beginning of this project and particularly in the past year we have expanded our speech data 

collection to include the picnic scene picture and other, more traditional neuropsychiatric tasks from each 

participant per visit. We find in our preliminary studies added value in recording and digitizing the 

responses of some neuropsychiatric tests. These include verbal fluency tasks, which inform us about 

semantic and phonetic linguistic processing as well as executive strategies, passage reading, which 

Oral:leg primary motor cortex thickness (L + R) 
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informs on articulation, and story recall, which informs on memory functions. We also developed and 

validated our speech measures across recording environments, mainly, in-person (with the use of tablets 

and smartphones) and remotely (with virtual conference applications). We developed an in-house 

recording application for in-person recording, that ensures high quality recording and secure data transfer 

to our secured servers. This is a complete make-over of our digital speech data flow, supporting speech 

and neuropsychiatric data collection under any condition with minimal burden to patients, caregivers and 

examiners. We have generalized all specifications so that they can be customized to fit other centers and 

protocols. We have already experimented with these data flow pipelines and provided service to other 

centers in our department.  

In another study using our word-level standardized lexical acoustic markers from the cookie theft picture 

descriptions, we compared speech in patients with biological evidence of Alzheimer’s disease (per autopsy 

or CSF biofluid marker profile) between those who presented with aphasia (the logopenic variant of primary 

progressive aphasia, lvPPA, one of the phenotypes described in FTD) and those who presented with a 

typical amnestic syndrome. We found a distinct speech pattern of linguistic impairment in lvPPA compared 

with amnestic AD [Cho et al. Neurology 2022, figure 1], and we also identified a common speech pattern 

for both phenotypes [Cho et al. Neurology 2022, figure 2]. This common pattern relates to more general 

non-linguistic deficits and potentially to their common underlying AD pathology. 

Opportunities for Training and Professional Development:  

While there was no formal intent to provide opportunities for professional development, there are 

postdoctoral fellows who benefit greatly from learning about design and execution of multidisciplinary 

research projects. This includes regular weekly meetings, regular scientific presentations of project 

progress, and sharing these at scientific conferences (see listed presentations below). We also included 

invited guest speakers in our weekly meetings to learn about other research efforts in the field and to 

facilitate potential future collaborations. Our postdoctoral fellows gained new connections and learning 

opportunities with relevant colleagues at Penn and outside of it, including computational linguists, expert 

neurologists, and speech language pathologists. 

Dissemination of Results:  

In addition to peer-reviewed publications (listed below), our team members presented our work regularly 

within our department (Neurology), at other departments within the university of Pennsylvania as well as 
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outside of UPenn (Washington University, Miami University CReATe consortium annual meeting, 

University of California San Francisco). We also hold an outreach annual conference for caregivers of FTD 

patients, where we present our work to the general public.  

Next Reporting Period Activities to Accomplish Goals:  

Our major goals in the next year will include: (a) completing the investigation and clinical validation of FA 

vowel extraction system; (b) improving accuracy of automatic syntactic boundary detection system; (c) 

testing and validating automated measures of grammatical complexity in the speech of FTD patients; (d) 

submitting manuscripts on automated utterance boundary markers, automated grammatical complexity 

measures and vowel measures. 

4. Impact

Impact on Principal Discipline:  

There is increasing interest in developing digital biomarkers to serve as meaningful clinical outcome 

assessment tools in clinical trials for neurodegenerative conditions. We recently participated in the first 

inaugural Holloway summit for digital biomarkers, organized by the Association for FTD and took a leading 

role in organizing the meeting. Researchers were invited from different fields in Academia around the 

world, technology and pharma industries as well as patient advocates. During this meeting, it became 

apparent that digital speech measures are especially appreciated in the research community. Speech and 

language measures derived with advanced language technologies, such as the measures we are 

developing in the current project, are expected to become highly informative and useful in screening for 

clinical trials, monitoring response to treatment and aiding patient care in the home environment.  

Impact on Other Disciplines:  

Since the beginning of this project, we have engaged in many collaborations within Penn and outside of it 

that involve speech data. This includes a collaboration with the FTD center at UCSF, Alzheimer’s disease 

(AD) research centers at Penn and Mt. Sinai medical center, Penn Parkinson’s disease (PD) center. We 

share our standardized operating procedures for speech data collection and provide training and support to 

collaborators’ teams. Processed speech data will be used in multiple observational studies in these centers 

and will facilitate research in the natural disease progression of these neurodegenerative conditions. 

Impact on Technology Transfer:  
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There is increased understanding in the neurodegenerative research community of the value and 

importance of standardizing digital speech measures across centers, languages, and cultures to optimize 

cost-effective outcome measures for multi-center treatment trials for neurodegenerative conditions. Our 

work, emphasizing the development of objective, reproducible and standardized measures, will facilitate 

data sharing and technology transfer in the future, supporting the implementation of digital speech tools in 

clinical settings. 

Impact on Society:  

Because speech is so easily collected with minimal burden to the subject and can even be collected 

remotely, society will benefit from widespread standardized speech analysis methods to track cognitive 

decline and the development of neurodegeneration. 

5. Changes/Problems 

Changes in Approach:  

Our evaluation of the current LDC in-house automated Forced Aligner (aim 2) showed higher accuracy 

than we originally expected when developing aim 2. The validated output seems adequate for the current 

project’s needs and we were able to move forward with developing our articulatory pipeline, which relies on 

FA vowel extraction (FAVE). This objective goes beyond our original tasks in aim 2. We were also able to 

focus our effort on the study of utterance boundaries (aim 3), which is in much earlier stages of 

development. 

Recent changes in the university’s contracts required us to discontinue the use of BlueJeans, a video 

conference application and move to Zoom. This required adjustment of our remote speech data collection 

protocols. Though this was an unexpected change which required some investment on our part, we were 

able to make the required adjustments in time for the transition with no extra burden on our budget. 

Problems or Delays and Actions or Plans for Resolution:  

Our project was delayed by almost six months due to delays in HRPO approval, which was granted in 

March 2021. Additionally, the covid pandemic restricted activity on UPenn campus. This affected our 

ongoing clinical data collection, which is now continuing in a hybrid work mode. Most speech data is 

collected in-person and we are also collecting speech remotely. We are now close to pre-pandemic clinical 

visits capacity, and we maintain contingency plans for remote speech data collection as well. We validated 

the precision of our digital speech measures across these different conditions (in-person versus remote). 
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We implemented an automated analysis of lexical aspects of semi-structured speech

produced by healthy elderly controls (n ¼ 37) and three patient groups with frontotemporal

degeneration (FTD): behavioral variant FTD (n ¼ 74), semantic variant primary progressive

aphasia (svPPA, n ¼ 42), and nonfluent/agrammatic PPA (naPPA, n ¼ 22). Based on previous

findings, we hypothesized that the three patient groups and controls would differ in the

counts of part-of-speech (POS) categories and several lexical measures. With a natural

language processing program, we automatically tagged POS categories of all words pro-

duced during a picture description task. We further counted the number of wh-words, and

we rated nouns for abstractness, ambiguity, frequency, familiarity, and age of acquisition.

We also computed the cross-entropy estimation, where low cross-entropy indicates high

predictability, and lexical diversity for each description. We validated a subset of the POS

data that were automatically tagged with the Google Universal POS scheme using gold-

standard POS data tagged by a linguist, and we found that the POS categories from our

automated methods were more than 90% accurate. For svPPA patients, we found fewer

unique nouns than in naPPA and more pronouns and wh-words than in the other groups.

We also found high abstractness, ambiguity, frequency, and familiarity for nouns and the

lowest cross-entropy estimation among all groups. These measures were associated with

cortical thinning in the left temporal lobe. In naPPA patients, we found increased speech

errors and partial words compared to controls, and these impairments were associated

with cortical thinning in the left middle frontal gyrus. bvFTD patients' adjective production

was decreased compared to controls and was correlated with their apathy scores. Their

adjective production was associated with cortical thinning in the dorsolateral frontal and
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orbitofrontal gyri. Our results demonstrate distinct language profiles in subgroups of FTD

patients and validate our automated method of analyzing FTD patients' speech.
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subject matter, and limited narrative expression (Ash et al.,

1. Introduction

Speech production is a complex, intentional, planned activity.

Speakers select appropriate words from their lexicon that are

consistent with the meaning of an intendedmessage, arrange

words in a specific order following the syntactic rules of the

language, plan their articulations, and articulate the prepared

message following the phonological rules of the language.

This involves multiple brain regions, and we can expect pa-

tients with degenerative brain conditions to show impaired

speech compared to healthy adults. Moreover, depending on

the form of disease, we can expect distinct impairment pro-

files. In this study, we investigate linguistic impairments in

patients with frontotemporal degeneration (FTD) by imple-

menting a fully automated method of lexical analysis.

FTD refers to a group of disorders caused by atrophy in the

brain's frontal, temporal, and parietal lobes, which is related

to the underlying accumulation of abnormal Tau or TDP pro-

teins. The disorders we investigated include two forms of

primary progressive aphasia (PPA), the semantic variant PPA

(svPPA) and the nonfluent/agrammatic variant PPA (naPPA).

We also examined behavioral variant frontotemporal de-

mentia (bvFTD). Patients with svPPA, also known as semantic

dementia, are characterized by semantic impairment and

difficulties in confrontation naming and lexical retrieval

(Amici et al., 2007; Hodges & Patterson, 2007; Wilson et al.,

2010). Previous studies have shown that svPPA patients have

difficulty processing words denoting concrete objects (Bonner

et al., 2009; Bonner, Price, Peelle, & Grossman, 2016; Breedin,

Saffran, & Coslett, 1994; Cousins, Ash, Irwin, & Grossman,

2017; Cousins, York, Bauer, & Grossman, 2016; Macoir, 2009),

but their prosody and syntax are less disrupted (Adlam,

Bozeat, Arnold, Watson, & Hodges, 2006; Ash et al. 2006,

2009; Nevler, Ash, Irwin, Liberman, & Grossman, 2019;

Thompson&Mack, 2014). It has also been observed that svPPA

patients' lexical retrieval is related to word familiarity and

frequency (Bird, Lambon Ralph, Patterson, & Hodges, 2000;

Hodges & Patterson, 2007; Rogers, Patterson, Jefferies, &

Lambon Ralph, 2015). Patients with naPPA, also known as

progressive non-fluent aphasia, present with effortful speech,

slow speech rate, grammatical simplification, and speech er-

rors or apraxia of speech (AoS) (Ash et al., 2009; Grossman,

2012; Grossman et al., 1996; Josephs et al., 2006; Ogar,

Dronkers, Brambati, Miller, & Gorno-Tempini, 2007). These

patients may also have difficulty retrieving verbs (Hillis, Oh, &

Ken, 2004; Hillis, Tuffiash, & Caramazza, 2002; Rhee,

Antiquena, & Grossman, 2001). Patients with bvFTD undergo

changes in personality and social cognition and also present

impairments in behavior, such as apathy and disinhibition.

Previous studies have reported that bvFTD patients have

subtle linguistic deficits with reduced retrieval of abstract

words, reduced speech rate, tangential speech with irrelevant
2006; Cousins et al., 2017; Farag et al., 2010; Gunawardena

et al., 2010; Hardy et al., 2016).

While valuable, most previous studies have relied on sub-

jective, manual assessments of speech, which require a sub-

stantial amount of time, labor, and cost. There are also

potential difficulties with manually coding the part of speech

(POS) categories of every token due to the time, effort, and

expertise that are required, so previous studies involving POS

analysis have rarely examined every word of an utterance.

This is a problem in studying language use in patients with

dementia, because many previous studies have shown that

such patients tend to produce fewer words than controls (e.g.,

Ash et al., 2013; Slegers, Filiou, Montembeault, & Brambati,

2018; Tappen, Williams, Barry, & DiSesa, 2002). However,

previous studies have failed to show in detail which POS cat-

egories were reduced in which patient groups due to the effort

required for manual POS tagging. As a result, large-scale

studies have rarely been performed. The present study de-

scribes implementation of a novel, quantitative, reproducible,

automated approach to studying lexical characteristics of

patients with FTD. We show that our novel methods are reli-

able with validation against manual gold-standard data. We

also provide novel findings by directly examining all POS

categories from a semi-structured speech sample elicited

during a picture description task. Few studies have compared

FTD subgroups on a variety of lexical measures and studied

POS production in bvFTD; this is the first comprehensive

assessment of POS expression in bvFTD of which we aware.

We further focus on lexical characteristics of FTD patients'
speech because the lexicon is important in verbal communi-

cation where the goal is to convey meaningful messages to

interlocutors. We also examine two global text measures:

cross-entropy and lexical diversity. Cross-entropy is a useful

measure in understanding how predictable a text sample is, in

comparison to much larger language samples, and lexical di-

versity represents the diversity in a speaker's vocabulary

usage. Our novel, automated technique for text analysis is

based on a modern natural language processing (NLP) pro-

gram and examines speech samples in a large cohort of FTD

patients.

Based on previous findings, we hypothesize that fre-

quencies of POS categories as determined by an automated

POS tagger and lexicalmeasures are valuable in distinguishing

the svPPA, naPPA, and bvFTD patient groups, as follows.

1) In svPPA, we expect that patients would produce fewer

nouns but more pronouns than the other patients related

to their impairment in confrontation naming. We also

expect these patients to produce more wh-words (e.g.,

“What is this?”), since they have difficulty retrieving the

names of objects or understanding a pictured object. We

https://doi.org/10.1016/j.cortex.2021.01.012
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also expect that their nouns would be different on some

lexical measures from those produced by the other patient

groups due to their semantic impairment. Also, because

their speech includes more pronouns and abstract,

ambiguous nouns, we expect the cross-entropymeasure to

be low, indicating more predictability. Furthermore, we

expect these language characteristics to be related to re-

gions of cortical thinning in the temporal lobe (e.g., Cousins

et al., 2017, 2018; Wilson et al., 2010).

2) We expect that naPPA patients would differ from the other

patient groups in their frequency of speech errors, partial

words, due to AoS and their difficulty in retrieving verbs.

We also expect these measures to be related to cortical

thinning in the left frontal lobe (e.g., Ash et al., 2010).

3) In bvFTD, we expect to find reduced production of abstract

words compared to the other groups. We also expect that

bvFTD patients who are apathetic would not modify or

elaborate on the details of objects, so bvFTD patients' use of

fewer adjectives was expected to be related to level of

apathy. Adverb counts might also be lower in apathetic

bvFTD patients, but to a lesser degree than adjective

counts, since adverbs do not always serve the same

modifying and elaborating role that adjectives do. Also, we

expect these measures will be related to cortical thinning

in the frontal lobe (e.g., Massimo et al., 2015).

4) We expect all patients to differ from controls in lexical

diversity, consistent with previous studies, which have

often showed significantly decreased lexical diversity in

brain-damaged patients compared to controls (e.g., Kav�e &

Dassa, 2018).
2. Methods

We report how we determined our sample size, all data ex-

clusions (if any), all inclusion/exclusion criteria, whether in-

clusion/exclusion criteria were established prior to data

analysis, all manipulations, and all measures in the study.

2.1. Participants

We examined 138 patients with FTD diagnosed by experi-

enced neurologists (M.G., D.J.I.) in the Department of

Neurology at the Hospital of the University of Pennsylvania

according to published criteria (Gorno-Tempini et al., 2011;

Rascovsky et al., 2011). This includes 42 patients with svPPA,

22 patients with naPPA, and 74 patients with bvFTD. Among

the svPPA patients, we included 32 cases with concomitant

mild behavioral features, a common co-occurrence. These

patients did not differ significantly from the other 10 svPPA

patients without behavioral impairment in terms of de-

mographic characteristics or linguistic performance. We also

included 37 healthy seniors as a control group. The Institu-

tional Review Board of the Hospital of the University of

Pennsylvania approved the study, and written consent was

obtained from all participants. The conditions of our ethics

approval do not permit public archiving any raw data associ-

ated with this study. Readers seeking access to the data

should contact Penn Frontotemporal Degeneration Center or

one of the authors, Naomi Nevler. Access will be granted to
qualified researchers in accordance with ethical procedures

governing the reuse of sensitive data. Specifically, requestors

must complete a formal data sharing agreement and regula-

tory approvals to obtain the data.

All participants (n ¼ 175) were native speakers of English.

The participants were matched on education level, but not on

age and sex ratio (Table 1). A Tukey's post-hoc test of the

ANOVA analysis revealed that bvFTD patients were signifi-

cantly younger than naPPA patients and controls (vs naPPA,

p ¼ .002; vs control, p ¼ .007). svPPA patients were also

significantly younger (vs naPPA, p ¼ .007; vs control, p ¼ .029).

Separate chi-squared tests indicated that there were more

females in the control group than in the bvFTD group (p¼ .006)

although the sex ratio was not different among the patient

groups. One-way ANOVA tests showed that patient groups

were matched on disease duration [F(2,135) ¼ 1.5, p ¼ .24] and

Mini Mental State Exam [MMSE; F(2,123) ¼ .759, p ¼ .47].

We also measured patients' performance on neuropsycho-

logical assessments (Table 1) with the Boston Naming Test

(BNT, Kaplan, Goodglass, & Weintraub, 2001), Pyramids and

Palm Trees Test (PPT, Howard & Patterson, 1992), Animals and

Tools Category Naming Fluency (Lezak, Howieson, & Loring,

1983) to assess semantic knowledge, and the Philadelphia

BriefAssessmentofCognition (PBAC, Libonetal., 2011) toassess

thedegreeof apathy inparticipants. Legal copyright restrictions

prevent public archiving of the various instruments and test

batteries used in this study, which can be obtained from the

copyright holders in the cited references. As expected, on the

BNT, in which participants are asked to name an object, svPPA

patients had significantly lower scores than the other groups

(p < .001 for all three pairwise comparisons). Patients with

bvFTD also scored significantly lower on the BNT than healthy

controls (p ¼ .01). On PPT, where participants were asked to

choose one of two words that was more closely related in

meaning to a targetword, svPPA patients had lower scores than

controls (p < .001) and naPPA patients (p ¼ .012), and bvFTD

patients also scored lower than controls (p < .001). All patient

groups performed poorly on the category fluency tasks, where

participants were asked to name items in a given category

(either animals or tools), compared to controls (p < .001 for all

three pairwise comparisons). The difference in the fluency task

scores between bvFTD and svPPA patients was also significant

(p< .001). On the PBACapathy scale, where the degree of apathy

is assessed by interviewing family members or observing pa-

tients' behavior during the clinical interview (0 ¼ most

apathetic, 4 ¼ least apathetic), the result of an ANOVA analysis

was significant [F(3,115) ¼ 2.88, p ¼ .039], but pair-wise group

comparisons were not significant. We further compared the

number of participants who were apathetic (PBAC apathy

score � 2) and non-apathetic (PBAC apathy > 2) by group with

chi-squared tests, andwe found that thereweremore apathetic

patients in bvFTD than in svPPA (c ¼ 6.09, p ¼ .014) and in the

control group (c ¼ 6.46, p ¼ .011), but not compared to naPPA

(c ¼ 2.44, p ¼ .12). The participants' demographic and neuro-

psychological characteristics are summarized in Table 1.

2.2. Picture description procedure

The participants were asked to describe the Cookie Theft

picture from the Boston Diagnostic Aphasia Examination

https://doi.org/10.1016/j.cortex.2021.01.012
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Table 1 e Group means (SD) and omnibus test results of clinical and demographic characteristics. ANOVA analyses were
used to compare all measures between groups except sex ratio, where a chi-squared test was used. MRI: Magnetic
resonance imaging, BNT: Boston Naming Test, PPT: Pyramids and Palm Trees Test, PBAC: The Philadelphia Brief
Assessment of Cognition (0 ¼ most apathetic, 4 ¼ least apathetic). Numbers in square brackets are Ns when less than the
total.

control (N ¼ 37) bvFTD (N ¼ 74) naPPA (N ¼ 22) svPPA (N ¼ 42) Group comparisons

Sex

Female (N, percent) 24 (64.9%) 26 (35.1%) 11 (50%) 23 (54.8%) c ¼ 9.9, p ¼ .019

Male (N, percent) 13 (35.1%) 48 (64.9%) 11 (50%) 19 (45.2%)

Education 15.9 (2.5) 15.8 (2.8) 15.3 (3.1) 15.1 (2.8) F(3,171) ¼ .9, p ¼ .437

Age (years) 68.5 (7.9) 63.1 (8.7) 70.4 (9.4) 63.3 (7) F(3,171) ¼ 7.3, p < .001

Disease duration (years) e 4.4 (3.5) 3.2 (1.9) 3.9 (2) F(2,135) ¼ 1.5, p ¼ .239

Time between MRI & picture

description recording (months)

e [42] [8] [26] F(2,73) ¼ 1.1, p ¼ .326

e 2.2 (1.9) 1.7 (1.7) 2.8 (2.6)

Mini mental state exam (0e30) [31] [68] [20] [38] F(3,153) ¼ 12.1, p < .001

29.2 (1) 23.6 (5.5) 22.7 (6) 22.1 (6.3)

BNT (0e30) [23] [68] [16] [40] F(3,143) ¼ 99.8, p < .001

27.9 (2.5) 23.8 (5.8) 24.7 (4.6) 7.5 (6.4)

Animals and Tools (Max 60 sec) [23] [65] [16] [39] F(3,139) ¼ 30.8, p < .001

16.8 (4.6) 9.2 (5.2) 8.2 (4.4) 5.1 (3.8)

PPT (0e52) [18] [35] [7] [19] F(3,75) ¼ 11.4, p < .001

50.8 (1.9) 42.9 (7.9) 48.4 (2.9) 39.6 (6.6)

PBAC Apathy (0e4): N [6] [62] [14] [37] F(3,115) ¼ 2.88, p ¼ .039

3.3 (.5) 2.1 (1.1) 2.7 (1.2) 2.5 (1.2)
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(Goodglass&Kaplan, 1983), and the descriptionswere digitally

recorded. Patients were prompted to continue describing the

picture, if necessary, following a silence of several seconds,

and they were encouraged to continue up to about 60 sec after

the beginning of the description. Recordings were ortho-

graphically transcribed by a linguist (S.A.), blinded to the

clinical features and group membership of the participants,

and further reformatted and time-stamped by trained, blin-

ded annotators at the Linguistic Data Consortium (LDC) of the

University of Pennsylvania. We note that no part of the study

procedures or analyses were pre-registered prior to the

research being conducted.

2.3. POS tagging

We employed spaCy (Honnibal & Johnson, 2015; https://spacy.

io), an NLP library in Python, to automate the POS tagging

process. spaCy has two different schemes of POS tagging. One

is the OntoNotes 5 (Weischedel et al., 2013) version of the Penn

Treebank tag set (Marcus, Santorini, & Marcinkiewicz, 1993).

The other is the Google Universal POS tag set (Petrov, Das, &

McDonald, 2012), which is simpler than the Penn Treebank

scheme. The two POS tag schemes are not independent of

each other, since spaCy maps the Penn Treebank tag to the

simpler Google Universal POS tag set. Here we report the

Universal POS tag results except for the calculation of the

number of tense-inflected verbs, for which we used the Penn

Treebank tags, because tense-inflected verbs are not distin-

guished by the broader Universal POS categories. The POS lists

are included in the Appendix (Table A).

We wrote a Python program (S.C.) by which spaCy auto-

matically tokenized each utterance in the transcripts with its

default language model and annotated the POS category and

the lemma for each word. In total, we had 21,990 tokenized

words with both the Universal and Penn Treebank tags. The
token count of each POS category (both Universal and Penn

Treebank schemes) was tallied for each participant, and the

number of each POS category per 100 words was calculated.

We used POS counts per 100 words in all statistical analyses.

The Universal POS annotation scheme of spaCy uses “X” to

tag words that do not exist in its languagemodel. For example,

sptrkljgl would be tagged as X, since the token is not a valid

English word. Patients did not produce many non-English

words during the picture description task, but they produced

many partial words and speech errors, which looked like non-

English words in the transcription. For example, in the utter-

ance, “There's a pu-um a plate,” pu-was tagged as X by spaCy,

since this is not an English word. We compared the frequency

of this category by group in order to evaluate the frequency of

speech errors and partial words in naPPA patients compared

with other groups.

We also calculated the number of tense-inflected verbs per

100 words, the number of unique nouns per 100 words, the

number of wh-words per 100 words and the total number of

words in each speech sample, using the Penn Treebank POS

tags and lemma counts. First, we summed all tokens produced

by each participant for the total number of words. This mea-

sure included partial words and speech errors. The number of

tense-inflected verbs was calculated by summing the number

of modal auxiliary verbs, the number of past tense verbs, and

the number of present tense verbs, using the Penn Treebank

POS tags (Appendix Table A). This sum was used to compute

the number of tense-inflected verbs per 100 words. We

counted the number of unique lemmas in each speech sample

and calculated the number of unique nouns per 100words.We

also counted the number of wh-words, “what” and “who”,

using a Python script, and calculated the number ofwh-words

per 100 words to examine the clinical observations that svPPA

patients use more wh-words to ask objects' names than the

other groups do, due to their impairments in object

https://spacy.io
https://spacy.io
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knowledge. To see if the ratio of POS categories differed by

group, we calculated the ratio of content words to function

words for each participant. The calculated measures were

used for between-group comparisons, covarying for age and

sex.

2.4. Lexical measures

We performed additional analyses of nouns because of their

potential value in distinguishing FTD patient groups.We rated

nouns for abstractness on a continuum from concrete to ab-

stract (Brysbaert, Warriner, & Kuperman, 2014), semantic

ambiguity (number of a given word's meanings in a context,

Hoffman, Lambon Ralph, & Rogers, 2013), word frequency

(defined as word frequency per million words on a log10 scale,

Brysbaert & New, 2009), age of acquisition (AoA) (Brysbaert,

Mandera, & Keuleers, 2018) and word familiarity (z-stan-

dardized measure of the number of people who know a given

word, Brysbaert et al., 2018). Wewrote a Python program (S.C.)

to provide these parameters automatically for all nouns that

spaCy annotated. We built a pipeline in the programwhich (1)

rated a word if it was listed in the published database and (2)

rated the lemma of a word if the word was not listed in the

published database but its lemma was (e.g., overflowed 0

overflow). The program excluded a word if neither the word

nor its lemma was included in the lists (e.g., countertop, Mary

Jane). This excluded about 3% of the words tagged as nouns

(141 out of 4,157 words) from the analysis. The abstractness

ratings ranged from 1 to 5, where themost concrete was 5 and

the most abstract was 1. For clearer representation, we

inverted the scale so that the most concrete was 1 and the

most abstract was 5.

Along with these measures, we also computed cross-

entropy estimation using all the words of the participants'
picture descriptions. Cross-entropy estimation is a measure-

ment that estimates the predictability of all words of a docu-

ment with respect to their predictability in a larger language

sample. High cross-entropy (uncertainty) is observed in a

document that uses unusual words given the source language

sample. A computational linguist (M.L.) computed the cross-

entropy estimation of the speech samples by patients, based

on a 1-g language model of three large-scale corpora: the

SUBTLEXus (Brysbaert & New, 2009), Fisher English Training

Speech (Cieri, Graff, Kimball, Miller, & Walker, 2004), and

Switchboard (Godfrey & Holliman, 1997).

We also calculated lexical diversity for each patient.

Traditionally, lexical diversity has been measured using the

type/token ratio, where type is the number of unique words

and token is the number of instances of each word. However,

the type/token ratio has the disadvantage that the measure is

affected by the total number of words. To address this prob-

lem, various approaches have been suggested by previous

studies (e.g., Covington & McFall, 2010; Jarvis, 2002; McKee,

Malvern, & Richards, 2000; Moscoso del Prado Martı́n, 2017;

Tweedie & Baayen, 1998). In this study, we used the moving-

average type/token ratio (Covington & McFall, 2010), which

has been reported to be a stable measure for lexical diversity

(Cunningham & Haley, 2020). It calculates a type/token ratio

for a fixed-length window, moving one word at a time from

the beginning to the end of a text document, and averages
type/token ratios from all windows. We varied the length of

the window from 20 to 35 words by 5-word increments. Since

the results were the same regardless of the window size, we

reported results from 20-word windows in Fig. 2 and Table 3.

Hereafter, abstractness, ambiguity, frequency, familiarity,

AoA, cross-entropy, and lexical diversity are referred to as

“lexical measures”. “Language measures” is used to refer to

both POS counts and the lexical measures.

2.5. Imaging methods

High resolution T1 volumetric brain MRI data that were

collected on a Siemens 3.0 T Trio scanner at 1 mm isotropic

resolution were available for a subset of patients (n ¼ 94): 18

controls, 42 bvFTD, 8 naPPA, and 26 svPPA patients. Themean

time interval between MRI and speech sample collection was

1.95 months (SD ¼ 2.11 months). Clinical and demographic

characteristics of this subset of patients matched those of the

patients in the full dataset, and the groups in this subset were

matched on demographic characteristics. The demographic

and language measurements of these patient groups are

summarized in the Appendix (Tables B, C).

Sixty-five images were collected in an axial plane with

repetition time ¼ 1620 msec, echo time ¼ 3.87 msec, slice

thickness ¼ 1.0 mm, flip angle ¼ 15�, matrix ¼ 192 � 256, and

in-plane resolution ¼ .9766 � .9766 mm. Twenty-nine images

were collected with a sagittal acquisition with repetition

time ¼ 2300 msec, echo time ¼ 2.95 msec, slice

thickness¼ 1.2mm, flip angle¼ 9�, matrix¼ 256� 240, and in-

plane resolution ¼ 1.05 � 1.05 mm. Briefly, whole-brain MRI

volumes were preprocessed using the antsCorticalTh-

ickness.sh processing pipeline, implemented using the

Advanced Normalization Tools (ANTs) (https://github.com/

ANTsX/ANTs; Tustison et al., 2014). Cortical thickness was

estimated at each voxel of the cortex using the DiReCT algo-

rithm (Das, Avants, Grossman, & Gee, 2009). easy_lausanne

(https://github.com/mattcieslak/easy_lausanne; Daducci

et al., 2012) run on our local template, which was created

based on data from the Open Access Series of Imaging Studies

(OASIS) (Marcus, Fotenos, Csernansky, Morris, & Buckner,

2007), to create a standard cortical parcellation. The tem-

plate parcellation was then spatially normalized to each par-

ticipant's native T1 space using the template-to-native T1

warps generated by ANTs, and then we calculated the mean

cortical thickness in each region of interest (ROI) of the Lau-

sanne 250 scale, which we used for our analysis.

To identify regions of atrophy in patients, we compared

cortical thickness of all patients in each patient group with

those of the controls for all cortical regions of interest (ROIs)

and selected our specific ROIs for each patient group, where

patients' cortical thickness was significantly thinner than that

of the controls (p < .01 for svPPA and bvFTD, and p < .05 for

naPPA, both uncorrected p-values). We applied a more lenient

p-value threshold (p < .05) in selecting ROIs for naPPA patients

due to the small number of patients withMRI data.We further

identified ROIs that were significantly correlated with the

degree of apathy (PBAC, Table 1) for bvFTD patients among the

selected ROIs (p < .05) to mask the regressions. This method

enabled us to restrict our interpretation of the regression re-

sults of adjectives in bvFTD to those brain regions that were

https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
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Fig. 1 eMedian, 1 SD, 25th-75th percentile and outliers in POS categories per 100 words, total number of words and the ratio

of content words by phenotype.
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significantly related to apathy. Adverbs were not considered

in the MRI analyses since the apathy scores were not signifi-

cantly correlated with adverb production for bvFTD patients.

2.6. Statistical considerations

Since the abstractness, ambiguity, frequency, familiarity, and

AoA measures were rated for each noun, we averaged those

values per individual and used mean per measure per

participant in the ANCOVAs. We did not average cross-

entropy and lexical diversity measures, since these were

global measures (only one value per individual). Levene's test

for homogeneity of variance, residuals, and QeQ plots were

employed to validate the requirements for parametric tests.

Group comparisons were performed with Analysis of Covari-

ance (ANCOVA) for the frequency of each POS category per 100

words and each of the lexical measures as a dependent
variable, with phenotype as an independent variable. We

introduced age and sex as covariates in the group comparison

analyses of all language measures, as the groups were not

matched on these factors. For those measures where the re-

quirements for parametric tests were not met, we performed

the rank-based inverse normal transformation (Conover,

1980) on the values of language measures, and the trans-

formed values were used as the dependent variable in an

ANCOVA.When therewas a significant group effect, pair-wise

group comparisons were conducted with the lsmeans package

(Lenth, 2016) in R to adjust formultiple comparisonswith false

discovery rate. Since the group difference from ANCOVA was

marginal in the counts of nouns and adverbs per 100 words,

we performed logistic regressions as supplementary analyses

with age and sex as covariates to compare the number of

patients who had a z-score < �1 by group, where the z-score

scalewas computed based on the controls'mean and standard

https://doi.org/10.1016/j.cortex.2021.01.012
https://doi.org/10.1016/j.cortex.2021.01.012


Fig. 2 e Median, 1 SD, 25th-75th percentile and outliers of abstractness scores, semantic ambiguity ratings, word frequency,

word familiarity, and age of acquisition of nouns; and cross-entropy estimation and lexical diversity across all words.

Table 2 e Group means (SD) and omnibus test results from ANCOVA analyses of the POS categories per 100 words, total
number of words, and the ratio of content words of all participants.

Control bvFTD naPPA svPPA F p

Significant group

differences

Unique nouns 14.7 (3.19) 14.87 (5.93) 16.73 (5.96) 12.21 (5.19) F(3,169) ¼ 3.46 .018

Nouns 20.32 (4.4) 20.16 (6.48) 21.92 (8.7) 17.49 (5.3) F(3,169) ¼ 2.52 .058

Pronouns 7.33 (2.41) 7.13 (3.77) 6.46 (3.2) 9.74 (3.9) F(3,169) ¼ 7.66 <.001
wh-words .34 (.53) .6 (1.12) .34 (.99) 1.61 (1.72) F(3,169) ¼ 9.26 <.001
Tense-inflected verbs 12.47 (1.83) 12.94 (3.68) 11.26 (3.2) 14.14 (2.98) F(3,169) ¼ 3.92 .01

Verbs 22.56 (3.42) 23.59 (4.86) 20.22 (4.42) 24.44 (4.06) F(3,169) ¼ 3.86 .011

Speech errors/partial words .48 (.89) 1.42 (2.26) 3.67 (3.4) .89 (1.54) F(3,169) ¼ 4.18 .007

Adverbs 5.59 (2.07) 6.04 (4.36) 4.37 (3.61) 7.05 (3.36) F(3,169) ¼ 2.82 .041

Total words 174.38 (66.38) 109.99 (62.35) 91 (55.8) 127.57 (66.5) F(3,169) ¼ 11.37 <.001
Adjectives 5.54 (1.82) 3.98 (3.16) 3.17 (2.03) 3.69 (2.04) F(3,169) ¼ 5.87 <.001
Prepositions 9.96 (1.94) 7.63 (4.06) 5.98 (3.19) 7.24 (3.72) F(3,169) ¼ 7.66 <.001

No group differences Determiners 14.16 (2.48) 14.85 (4.33) 14.34 (5.4) 13.35 (4.98) F(3,169) ¼ .97 .41

Conjunctions 4.43 (1.91) 5.12 (2.69) 5.9 (4.68) 4.85 (2.88) F(3,169) ¼ 1.41 .24

Fillers 5.5 (2.56) 5.89 (3.9) 10.03 (10.3) 6.27 (4.83) F(3,169) ¼ 1.46 .23

Ratio of content to

function words

1.32 (.22) 1.36 (.33) 1.3 (.6) 1.32 (.36) F(3,169) ¼ .7 .55
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deviation. For the supplementary analysis for noun counts,

we coded participants who produced fewer nouns (z-

score < �1) as 1 and others as 0 for a dependent variable and

ran a logistic regression with svPPA patients as a reference

group and phenotype as an independent variable, controlling

for age and sex. For the supplementary analysis of adverb

counts, we coded participants who produced fewer adverbs as

1 and others as 0, with the naPPA group as our reference. We
selected these reference groups based on the ANCOVA results.

A Pearson's correlation test was performed to relate adjective

and adverb counts to the apathy scores on the PBAC for each

group to test our hypothesis for bvFTD patients. A series of

separate linear regression analyses were performed to relate

the cross-entropy estimations to each of the five lexical

measures: abstractness, ambiguity, frequency, familiarity,

and AoA.
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Table 3 e Group means (SD) and omnibus test results from ANCOVA analyses of the lexical measures. AoA: Age of
acquisition.

Control bvFTD naPPA svPPA F p

Abstractness (noun) 1.52 (.76) 1.55 (.83) 1.4 (.59) 1.92 (1.14) F(3,169) ¼ 11.68 <.001
Ambiguity (noun) 1.65 (.25) 1.64 (.26) 1.64 (.23) 1.74 (.28) F(3,169) ¼ 11.01 <.001
Frequency (noun) 3.39 (.86) 3.52 (.91) 3.44 (.91) 3.94 (.95) F(3,169) ¼ 12.99 <.001
Familiarity (noun) 2.38 (.14) 2.38 (.16) 2.39 (.14) 2.4 (.16) F(3,169) ¼ 3.81 .011

AoA (noun) 4.51 (1.42) 4.36 (1.33) 4.21 (1.24) 4.15 (1.13) F(3,169) ¼ 4.27 .005

Cross-entropy 9.72 (.49) 9.61 (.66) 9.9 (.84) 9.1 (.79) F(3,169) ¼ 7.7 <.001
Lexical diversity .85 (.03) .79 (.09) .79 (.06) .81 (.09) F(3,169) ¼ 6.21 <.001
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Linear regression analyses were also used to relate the

language measures to cortical thinning. We implemented

univariate multiple regression analyses, covarying for poten-

tial confounding factors: the pulse sequence type used for MRI

acquisition, patients' age, and disease duration. We did not

covary for sex because the participants with MRI data did not

significantly differ in the sex ratio across groups and therewas

no consistent evidence of the effect of sex on cortical thinning.

The regions selected for svPPA and naPPA patients were used

to relate their regions of cortical thinning to language mea-

sures that significantly differed between groups. The regions

that were significantly related to the apathy scores in bvFTD

patients were used to relate cortical thinning to adjective

counts per 100 words. We report t-statistics at a significance

level of .05 (two-tailed, uncorrected) for these regressions. All

statistical analyses were performed in R (R Core Team, 2019)

version 3.5.2 and RStudio (RStudio Team, 2016) version 1.1.456

(S.C.).
3. Accuracy validation of spaCy POS tags

Despite the fact that the accuracy of POS tagging reported by

spaCy is very high (about 97%; https://spacy.io/models/en), it

was not clear how well it would perform for a clinical dataset

with abnormal speech. The training data (OntoNotes 5;

Weischedel et al., 2013) of spaCy included natural conversa-

tions, but the ratio of conversational speech to written texts

was only around 8.3% (120 K out of 1.4 million words) and the

conversations were between healthy adults. To validate the

accuracy of the spaCy POS tags on natural speech of a clinical

population with abnormal speech, a linguist (S.A.) who was

blinded to the automated analysis manually tagged a random

subset of the transcripts comprehensively using the Google

Universal POS scheme (6 Controls, 5 naPPA, 7 svPPA, and 7

bvFTD; 25 cases in total; 14.3% of the full dataset) to generate a

gold standard dataset. We compared the results of spaCy in

the same POS scheme to our gold standard dataset to calculate

the error rates.

The error rate was generally low in all groups. The overall

accuracy of spaCy on this subset of the picture description

data was 91.1%, and the variances between the groups were

not significantly different [Levene's test for homogeneity of

variance: F(3,21) ¼ 2.69, p ¼ .072]. Also, a one-way ANOVA test

revealed that the difference in error rates between the groups

was not significant [F(3,21) ¼ 2.695, p ¼ .075]. The mean error

rate of the control group was 5.4% (SD ¼ 1.7%). The error rates

of individual svPPA, naPPA, and bvFTD patients were slightly
higher than that of the controls [svPPA: 8.8% (SD ¼ 2.8%);

naPPA: 13.3% (SD ¼ 9.2%); bvFTD: 9.0% (SD ¼ 3.0%)], but the

difference among the patients groups was not significant

[F(2,16) ¼ 1.32, p ¼ .3]. While the error rates for svPPA and

bvFTD did not differ from that of controls, the difference be-

tween naPPA patients and the controls was significant

(p¼ .049). This was expected, since naPPA speech contains the

largest number of speech errors and partial words (see below)

and thus differs most from the training data of spaCy.

For further validation, we correlated the token counts of

nouns, tense-inflected verbs, and speech errors/partial words

from spaCy with the counts that a linguist (S.A.) manually

coded for all 175 participants. For the correlation between the

noun counts of each individual, we used all NOUN tokens in the

Universal tag set. Modal auxiliaries (MD), past (VBD) and pre-

sent (VBP, VBZ) tense verbs in the Penn Treebank tag set were

used for the correlation with tense-inflected verb counts. For

speech errors, we compared the X category in the Universal tag

set with the counts ofmanually coded speech errors. We found

that the noun and inflected verb counts of spaCy and counts of

those categories in ourmanual coding were strongly correlated

(nouns: r ¼ .958, p < .001; verbs: r ¼ .973, p < .001). Also, the

correlation of counts of X with our manual coding of speech

errors was significant (r¼ .43, p < .001), suggesting that the POS

tags produced by spaCy were reliable.
4. Results

We first present the results of automatic POS tagging (Section

4.1). Next, we show the group differences in the lexical mea-

sures (Section 4.2). In Section 4.3, we present the regression

results with MRI data.

4.1. POS categories and derived measures

Table 2 summarizes the ANCOVAs comparing the POS mea-

sures per 100 words across the four groups. The groups

differed significantly in the number of unique nouns (Fig. 1Aa).

svPPA patients produced fewer unique nouns than naPPA

patients (p ¼ .022) and marginally fewer than bvFTD patients

(p ¼ .056). Noun production marginally varied by phenotype

after controlling for age and sex (Fig. 1Ab). However, group-

wise paired comparisons failed to reach significance (svPPA

vs bvFTD: p¼ .062; svPPA vs naPPA: p¼ .062). A supplementary

analysis with a logistic regression revealed that there were

significantly more svPPA patients who produced fewer nouns

(z-score <�1) compared to bvFTD patients (z¼�2.01, p¼ .044)

https://spacy.io/models/en
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and controls (z ¼ �2.75, p ¼ .006) but not compared to naPPA

patients (z ¼ �1.67, p ¼ .096). Pronoun production (Fig. 1Ac)

significantly differed between groups; pronouns were more

frequent for svPPA patients than for the other groups (svPPA

vs control: p ¼ .016; svPPA vs naPPA: p ¼ .005; svPPA vs bvFTD:

p ¼ .002). Also, the groups differed in the number ofwh-words

per 100 words (Fig. 1Ad). Patients with svPPA produced more

wh-words than the other groups (p < .001 for all three pairwise

comparisons).

The number of tense-inflected verbs per 100 words differed

significantly by group (Fig. 1Ae). Pairwise group comparisons

revealed that naPPA patients produced fewer tense-inflected

verbs than svPPA patients (p ¼ .006). Similarly, the group dif-

ference in the total number of verbs was significant (Fig. 1Af).

naPPA patients produced fewer verbs than svPPA patients

(p ¼ .008) and bvFTD patients (p ¼ .016). The groups were also

different in the counts of speech errors and partial words

(Fig. 1Ag). naPPA patients produced this category significantly

more frequently than controls (naPPA vs control: p ¼ .005).

Adverb production also differed by group (Fig. 1Ah). naPPA

patients tended to produce fewer adverbs than svPPA patients

(p ¼ .052). A supplementary analysis with logistic regression

showed that the number of naPPA patients who produced

fewer adverbs (z-score < �1) was greater than the number of

svPPA patients (z ¼ �3.05, p ¼ .002) and controls (z ¼ �3.57,

p < .001) but not greater than the number bvFTD patients

(z ¼ �1.8, p ¼ .07). The adverb counts per 100 words were not

significantly correlated with apathy scores in any of the four

groups (p > .05).

The total number of words participants produced during

the picture description differed significantly by group

(Fig. 1Ai). Controls produced significantly more words than

any of the patient groups (vs bvFTDi: p < .001, vs naPPA:

p < .001, vs svPPA: p¼ .006). Similarly, adjective production per

100 words significantly varied by group (Fig. 1Aj), and all pa-

tient groups used fewer adjectives than controls (vs bvFTD:

p ¼ .013; vs naPPA: p ¼ .003; vs svPPA: p ¼ .002). Furthermore,

bvFTD patients' adjective counts per 100 words were signifi-

cantly correlated with their apathy scores (r¼ .32, p¼ .01). The

correlations of adjective production and apathy scores were

not significant in the other three groups, and bvFTD patients'
apathy scores were not significantly correlated with the other

POS categories. The group difference in prepositions (Fig. 1Ak)

was significant. Each patient group produced fewer preposi-

tions than controls (vs bvFTD: p ¼ .004; vs naPPA: p < .001; vs

svPPA: p ¼ .004). The differences among the patient groups for

these categories were not significant.

The productions of conjunctions, determiners, fillers and

the ratio of content to function words did not differ by group

(Fig. 1B).

4.2. Lexical measures

All participants produced nouns that were not abstract in the

picture description task, which is not surprising given the task

of describing a picture that contains concrete objects. Yet, the

group differences in abstractness were significant (Fig. 2A).

svPPA patients produced nouns that were more abstract (i.e.,

less concrete) compared to bvFTD patients (p < .001), naPPA

patients (p < .001), and controls (p ¼ .001).
Semantic ambiguity ratings of nouns also differed signifi-

cantly by group (Fig. 2B). Nouns produced by svPPA patients

showed higher semantic ambiguity than those produced by all

other groups (vs bvFTD: p < .001; vs naPPA: p < .001, vs controls:

p ¼ .008).

Patients tended to use more frequent nouns than controls,

and the group difference in the frequency of nounswas highly

significant (Fig. 2C). svPPA patients produced more frequent

nouns than bvFTD patients, naPPA patients, and controls

(p < .001 for all three pairwise comparisons).

The familiarity of nouns also significantly differed by group

(Fig. 2D). svPPA patients usedmore familiar nouns than bvFTD

patients (p ¼ .02).

All patients tended to produce nouns acquired at an earlier

age than controls (Fig. 2E), and the group difference in the age

of acquisition of nouns was significant. svPPA patients pro-

duced nouns that were acquired earlier than controls

(p ¼ .007).

The cross-entropy estimation differed significantly by

phenotype (Fig. 2F); the cross-entropy estimation of svPPA

patients was lower than that of bvFTD patients (p ¼ .006),

naPPA patients (p < .001), and controls (p ¼ .001). In other

words, words produced by svPPA patients were more pre-

dictable than those produced by the other groups. To further

examine why svPPA patients' cross-entropy estimation was

lower than those of the other groups, five separate linear

regression analyses were performed to relate cross-entropy

estimation in svPPA patients to abstractness, ambiguity, fre-

quency, familiarity, and AoA of nouns they produced. We

found that abstractness, ambiguity, and word frequency were

significantly related to cross-entropy estimation in svPPA

(abstractness: b ¼ �.63, p < .001, word frequency: b ¼ �.88,

p < .001; semantic ambiguity: b ¼ �2.8, p ¼ .019).

There was a significant group difference in lexical diversity

that was measured by the moving-average type/token ratio

with a window size of 20 words (Fig. 2G). Elderly controls

showed higher lexical diversity than all patient groups (vs

bvFTD: p < .001, vs naPPA: p ¼ .019, vs svPPA: p ¼ .019). When

we tried different window sizes (25 words and 30 words), we

found the same group differences (25-wordwindow: vs bvFTD:

p ¼ .002, vs naPPA: p ¼ .004, vs svPPA: p ¼ .018; 30-word win-

dow: vs bvFTD: p ¼ .001, vs naPPA: p ¼ .006, vs svPPA: p ¼ .019).

4.3. MRI results

Since patients showed significant differences from each other

on the languagemeasures, we examined the relations between

cortical thinning and specific languagemeasures in each group.

We found distributions of cortical thinning that were repre-

sentative of each group (Ash et al., 2009, 2012; Cousins et al.,

2016; Massimo et al., 2009). The MRI results showed that

svPPA patients had significant cortical thinning in the anterior

temporal and orbital frontal cortex areas of both hemispheres,

but cortical thinning was more prominent in the left hemi-

sphere than the right hemisphere (p < .01; Fig. 3A). naPPA pa-

tients had significant cortical thinningmost prominently in the

left middle frontal, inferior temporal and middle temporal re-

gions, but also apparent in the left supramarginal gyrus, right

temporal gyrus, and right pars opercularis (p < .05, Fig. 3B).

bvFTD patients had significant cortical thinning in the frontal
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Fig. 3 e Cortical thinning in svPPA (A), naPPA (B) and bvFTD (C) patients, and areas with cortical thinning that were

significantly related to linguistic measures (p < .05, uncorrected) in svPPA (A1-3), naPPA (B1), and bvFTD (C2) patients. Please

note that these images are for illustration, and the complete results are summarized in Table 4.
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and temporal lobes of both hemispheres (p < .01; Fig. 3C). We

examined patients' speech production in relation to cortical

thinning in greater detail, as summarized in Table 4. Examples

of the associations are illustrated in Fig. 3.

We selected the languagemeasures that were distinctive of

svPPA patients in our main analyses outlined above. These

showed significant associations with cortical thinning in
anterior and middle temporal regions of the left hemisphere

(Table 4). Fig. 3 shows brain images for the regions of cortical

thinning associated with abstractness, ambiguity, and fre-

quency that are frequently described for svPPA in the litera-

ture (Fig. 3A1-3).

We also found that the production of speech errors and

partial wordswas related to cortical thinning in the left rostral
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Table 4 e Results of regression analyses with cortical
thinning in patients. L: left, R: right.

svPPA Estimate Std.
Error

t-value p-value

Noun

L inferior temporal .059 .021 2.85 .01

L middle temporal .054 .026 2.09 .049

L superior temporal .045 .021 2.18 .041

L insula .035 .016 2.19 .04

Pronoun

L inferior temporal �.098 .038 �2.54 .019

L parahippocampal �.059 .028 �2.16 .043

L entorhinal �.104 .05 �2.08 .049

Wh-words

L inferior temporal �.219 .08 �2.6 .021

L middle temporal �.244 .11 �2.14 .044

L superior temporal �.19 .087 �2.2 .039

L fusiform �.303 .108 �2.818 .01

L insula �.142 .065 �2.207 .04

Abstractness

L temporal pole �.582 .228 �2.55 .019

L inferior temporal �.531 .218 �2.42 .025

L middle temporal �.652 .225 �2.89 .011

L superior temporal �.51 .189 �2.69 .019

L fusiform �.597 .243 �2.49 .027

R superior temporal �.309 .14 �2.21 .038

Semantic ambiguity

L inferior temporal �2.609 .833 �3.11 .007

L middle temporal �2.617 .896 �2.96 .011

L bank superior temporal �1.795 .572 �3.13 .006

L superior temporal �1.946 .693 �2.8 .013

L supramarginal �1.722 .601 �2.86 .018

L insula �.5 .205 �2.39 .026

L lateral orbitofrontal �1.182 .564 �2.1 .048

Word frequency

L inferior temporal �.627 .258 �2.46 .024

L middle temporal �.685 .264 �2.58 .019

L bank superior temporal �.379 .176 �2.16 .043

L superior temporal �.49 .208 �2.34 .031

L fusiform �.593 .267 �2.22 .037

Word familiarity

L inferior temporal �.755 .29 �2.61 .016

L middle temporal �.83 .247 �3.41 .009

L superior temporal �.53 .182 �2.98 .018

L rostral middle frontal �.821 .216 �3.8 .001

R rostral middle frontal �.608 .222 �2.72 .014

L precentral �.599 .163 �3.67 .001

L supramarginal �.517 .19 �2.72 .013

L lateral orbitofrontal �.365 .163 �2.24 .001

R superior frontal �.592 .218 �2.72 .013

R pars opercularis �.549 .192 �2.86 .009

Cross-entropy estimation

L inferior temporal .451 .187 2.4 .027

L middle temporal .419 .199 2.1 .048

L bank superior temporal .348 .143 2.45 .026

L superior temporal .392 .156 2.51 .02

L fusiform .713 .224 3.18 .004

naPPA Estimate Std. Error t-value p-value

Speech errors/Partial words

L rostral middle frontal �.194 .044 �4.39 .022

bvFTD Estimate Std. Error t-value p-value

Adjectives

L orbitofrontal .07 .028 2.56 .015

L rostral middle frontal .05 .024 2.28 .031

(continued on next page)

Table 4 e (continued )

svPPA Estimate Std.
Error

t-value p-value

L superior frontal .07 .03 2.29 .03

L caudal middle frontal .07 .025 2.67 .035

L post central .06 .023 2.49 .018

R pre central .07 .033 2.22 .032

R post central .07 .025 2.74 .009
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middle frontal gyrus for naPPA patients (Fig. 3B1), suggesting

that speech errors and partial words are related to impairment

in frontal executive functions. We also related verb, tense-

inflected verb, and adverb counts to cortical thinning in

naPPA patients, but the results were not significant.

The areas that showed a significant relation of cortical

thinning to apathy in bvFTD patients (Fig. 3C1) are also

significantly and positively related to their adjective produc-

tion (Fig. 3C2), but no other POS categories. These areas

include the left rostral and caudal middle frontal, the left su-

perior frontal, and orbitofrontal regions.
5. Discussion

In this study, we examined word production and lexical

measures of speech in FTD patients with a novel, automated

method that is objective, comprehensive and reproducible.

The POS counts derived from the Universal tag set were highly

correlated with manually coded POS tags (Section 3). More-

over, distinct language measures were associated with each

patient group (Sections 4.1e4.2).We found that svPPA patients

produced fewer unique nouns than naPPA patients, and these

nouns were more ambiguous, abstract, and frequent than

those of naPPA and bvFTD patients. Correspondingly, svPPA

patients produced more pronouns and wh-words. A new

measure of cross-entropy estimation showed that their word

selection in general was more predictable from its context

than that of the other groups, and this was likely associated

with noun abstractness, ambiguity, and frequency. Patients'
words were less diverse than those of controls, but there was

no significant group difference among the patient groups.

naPPA patients produced fewer adverbs and more speech er-

rors and partial words than the other groups. bvFTD patients

produced fewer adjectives than controls, and their adjective

production was significantly correlated with apathy scores.

We also found significant associations between our language

measures and cortical thinning. Cortical thinning in left

anterior inferior and middle temporal gyri was associated

with languagemeasures in svPPA, and cortical thinning in the

left middle frontal gyrus was associated with speech errors

and partial words in naPPA. Cortical thinning in the left

dorsolateral frontal and orbitofrontal gyri was associated with

decreased adjective production in bvFTD. We discuss these

findings in turn below.

5.1. Lexical characteristics in svPPA

The profiles of svPPA patients' nouns exhibited characteristics

that significantly differed from those of the other groups. They
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https://doi.org/10.1016/j.cortex.2021.01.012


c o r t e x 1 3 7 ( 2 0 2 1 ) 2 1 5e2 3 1226
displayed high abstractness, semantic ambiguity, word fre-

quency, and word familiarity. This is in line with other find-

ings consistent with the hypothesis attributing the deficit in

svPPA in part to the degradation of visual feature knowledge

associated with object concepts (Bird et al., 2000; Bonner et al.,

2009, 2016; Cousins, Ash, Olm, & Grossman, 2018; Cousins

et al., 2016, 2017; Hoffman et al., 2013), which is due to

cortical thinning in the left anterior and inferior temporal

regions of the brain. This region constitutes a portion of visual

association cortexwhichmay contribute to the representation

of visual feature knowledge associatedwith object concepts. It

may explain in part why svPPA patients produced nouns with

high abstractness in our results: abstract nouns are less

dependent on visual feature knowledge to derive their

meaning, thereby reducing the need to activate the anterior

and inferior temporal regions of the brain. We also found that

an increase in the abstractness rating of nouns was related to

cortical thinning in the left anterior temporal region. In the

context of concrete noun difficulty due to degraded repre-

sentations of visual objects, it is not surprising that svPPA

patients may substitute more pronouns, and this was re-

flected in associations with cortical thinning in the left tem-

poral lobe and pronoun usage.

Previous observations have showed that svPPA patients'
lexical retrieval is strongly graded by word familiarity and

frequency (Bird et al., 2000; Hodges & Patterson, 2007; Rogers

et al., 2015). These observations suggest that at least some

proportion of the svPPA patients' picture description deficit is

due in part to a lexical retrieval deficit that extends beyond

their degraded semantic representations of object knowledge.

As for semantic ambiguity, Hoffman et al. (2013) argue that

this feature is highly correlated with abstractness ratings (|

r|¼ .51, p < .001; Hoffman et al., 2013), suggesting that abstract

words, such as set or time, are more ambiguous than concrete

words, such as desk or orange. Given the high correlation of

ambiguity and abstractness, it is not surprising that svPPA

patients produced more nouns that were abstract and

ambiguous. It is also possible that svPPA patients produce

nouns such as furniture, object, or thing that are superordinate

in a hierarchically organized semantic network because they

do not have access tomore concretewords. These possibilities

need to be studied in future work.

Previous work describing the hub-and-spoke model

(Patterson, Nestor, & Rogers, 2007) claims that disease in the

anterior temporal lobe is responsible for a universal semantic

deficit in svPPA. We found in the present study that svPPA

patients used verbs more frequently than patients with

naPPA. A frequent use of a specific POS category does not

necessarily reflect the integrity of the meaning of this word

class. However, on the assumption that patients use words

with which they are more familiar in a semistructured speech

sample, the more frequent use of verbs than nouns in svPPA

would be contrary to the claim that themeaning of all words is

degraded in svPPA. Likewise, we have showed that the

meaning of words for abstract nouns is relatively preserved in

svPPA (Bonner et al., 2016; Cousins et al., 2016) and that the

meaning of words dependent on number knowledge is
relatively preserved in svPPA (Ash et al., 2016). In a longitu-

dinal study of lexical expression in svPPA, we found progres-

sively reduced use of concrete words relative to abstract

words (Cousins et al., 2018). Findings such as these are more

consistent with a relatively selective degradation of the

lexicon in svPPA. Additional work is needed to assess these

claims.

5.2. Lexical characteristics in naPPA

A distinguishing feature of naPPA is that these patients pro-

ducedmore speech errors and partial words than other groups

did. The increased speech error and partial word rate in naPPA

conforms to previous findings that naPPA patients exhibit

effortful and non-fluent speech (Ash et al., 2009, 2013; Croot,

Ballard, Leyton, & Hodges, 2012; Gorno-Tempini et al., 2004;

Grossman et al., 1996; Weintraub, Rubin, & Mesulam, 1990).

We related increased partial words and speech errors to

cortical thinning in the left middle frontal gyrus, which is in

line with previous findings (Ash et al., 2009; Gorno-Tempini

et al., 2004; Grossman et al., 1996). An important character-

istic of naPPA patients is their AoS, that is, the poor coordi-

nation of the motor articulators during speech production

(Ash et al., 2009; Gorno-Tempini et al., 2011; Grossman et al,

1996, 2005; Josephs et al., 2006; Ogar et al., 2007). It is

claimed that a subset of naPPA patients has AoS without

grammatical impairments, and that this differs from naPPA

patients with grammatical impairments who have AoS

(Josephs et al, 2012, 2013). A major challenge to this area of

investigation is the ability to detect speech errors in an

objective, reliable and reproducible manner. A rating scale

based on subjective judgments has been developed, but reli-

ability is challenging (Josephs et al., 2012; Strand, Duffy, Clark,

& Josephs, 2014). Another challenge is that partial words in

naPPA patients are not explained solely by AoS. Additional

work is needed to confirm the identification of speech errors

and partial words in an naPPA cohort, to extend this obser-

vation to patients with movement disorders such as pro-

gressive supranuclear palsy and corticobasal syndrome, and

to distinguish this from speech errors in patients with bulbar

disease such as amyotrophic lateral sclerosis.

Patients with naPPA in our study produced fewer verbs

than the other groups. Decreased verb use in naPPA patients

has also been observed in previous studies (Ash et al, 2009,

2013). Several accounts have been forwarded to explain this

finding. One suggestion is that naPPA patients have difficulty

producing tense-inflected verbs and constructing complex

sentence structures due to a syntactic deficit, which leads to a

reduced use of verbs in their speech (Ash et al., 2009, 2013;

Grossman et al., 1996; Grossman et al., 2005). Alternatively,

disease in naPPA may also affect motor association regions of

the frontal lobe and interferewith the representation of action

knowledge associated with verbs of action (Hillis et al, 2002,

2004). Yet another possibility is that the entire class of verbs is

associated with a richer and more demanding set of featur-

esdincluding not only its semantic attributes but also a rich

set of grammatical and thematic propertiesdand naPPA
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patients have limitations in executive functioning that may

make verbs more difficult for naPPA patients to process

(Kramer et al., 2003; Libon et al., 2007; Weintraub et al., 1990).

Previous work based on a smaller cohort of patients has sug-

gested that the latter explanations are less likely than the

grammatical one (Gunawardena et al., 2010), and we could not

provide further evidence on these competing claims since the

verb counts were not associated with cortical thinning in

naPPA patients in our results. Additional work is needed to

assess these claims.

5.3. Lexical characteristics in bvFTD

We hypothesized that bvFTD patients would differ in the

counts of adjectives due to apathy and also that their nouns

would be less abstract than those in the other groups. Our

results showed that bvFTD patients produced fewer adjectives

compared to controls, and their decreased adjective produc-

tion was significantly correlated with their apathy scores,

suggesting that bvFTD patients with fewer adjectives tended

to be more apathetic. We identified regions of cortical thin-

ning that were significantly related to apathy, including the

left dorsolateral frontal and orbitofrontal gyri, and this result

is in line with previous studies (Massimo et al., 2009, 2015).

Furthermore, those regions that showed significant relations

to the apathy scores were also significantly related to the ad-

jective counts in bvFTD in our study. However, adverb pro-

ductionwas not related to the degree of apathy in bvFTD. Also,

we did not confirm our previous observation that bvFTD pa-

tients tend to produce relatively more concrete words than

abstract words (Cousins et al., 2017), and this may have been

due in part to the limited range of concreteness that could be

achieved in a picture displaying many concrete nouns with

little evocation of features leading to a description of the

picture's abstract characteristics.

It is interesting that adjective counts were negatively

correlated with apathy scores in bvFTD, but adverb counts

were not. This might be because not all adverbs serve as

modifiers in a sentence. For example, so-called pro-adverbs,

such as here or there, perform like function words, replacing

prepositional phrases (e.g., in the kitchen). It might be the case

that bvFTD patients used more pro-adverbs than modifying

adverbs, resulting in an insignificant correlation with the

apathy score. Additional work is needed to investigate this

possibility.

Apathy is not only the most common symptom in bvFTD,

occurring in 84% of patients (Rascovsky et al., 2011), but also a

prevalent behavioral symptom in patients with other neuro-

degenerative disorders (e.g., Clark et al., 2008). Our study

provided an easily reproducible language variable, adjective

production, that might signal the degree of apathy in bvFTD

patients. Identifying a language variable that is associated

with apathy is particularly valuable, since social/behavioral

impairments due to apathy cause the greatest caregiver

distress (Massimo et al., 2009). Further study is needed to
examine if adjective production is also associated with apathy

in patients with other neurodegenerative diseases, such as

Alzheimer's disease.

5.4. Validating an automated lexical analysis of PPA
patients' speech

An important strength of our study is that we were able to

validate an automatedmethod for analyzing POS categories in

a semi-structured speech sample produced by patients with

speech deficits. An automated analysis is reliable in normal,

healthy speakers. Here we were able to show that there was

over 90% agreement between the automated POS tagging with

the Google Universal scheme and the gold-standard POS

tagging data of a linguist for speakers with abnormal speech.

Indeed, the results of the present study are in line with many

previous findings, suggesting that our novel, automated POS

tagging and lexical analyses are valid in studying FTD patients'
speech.

Speech is central to human daily functioning and our

approach has potential to serve as a clinical endpoint for

treatment trials. While the present study focuses on cross-

sectional data, work in progress assesses objective analyses

of our longitudinal speech samples. Language production is a

multifaceted process that requires a large expanse of brain

tissue and is a sensitive marker for capturing even very early

stages of neurodegeneration. Semi-structured speech data

such as a picture description is inexpensive to collect on a

large scale, when compared to MRI or lumbar puncture for

cerebrospinal fluid which are expensive and/or invasive.

However, it is nearly impossible to utilize and analyze large-

scale speech data in a reproducible manner without an auto-

mated method. We believe that the method proposed in this

paper can facilitate analyzing large-scale speech data in a

quantifiable, automated, and reproducible way and can be

used in automatic prescreening for neurodegeneration in the

future (e.g., Cho et al., 2020).
6. Conclusion

While our study has many strengths, there are also some

limitations that should be kept in mind when interpreting our

results. One limitation is that the accuracy of the POS tagging

for naPPA patients was not as high as for the other groups.

Thus, the results of naPPA patients need to be interpretedwith

caution. This is an expected result for a POS tagger, since all

existing POS taggers are trained with speech/text data of

healthy adults. Accuracy could be improved if we trained a

POS tagger using our patients' speech samples with speech

errors and other abnormalities as a training dataset. Also,

since our automatedmethods rely on texts, theremight be, for

example, minor speech errors that were transcribed with

regular spellings and our pipeline might have missed tagging

those tokens as speech errors. We used an open-source POS
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tagger in the present study, but we plan to develop NLP tools,

including a POS tagger, a syntactic dependency parser, and an

automated speech recognition system for automatic tran-

scription that will be trained on patients' speech in the near

future. Another limitation is that we had a relatively small

number of digitized speech samples and a small number of

MRI samples for naPPA patients. This limited our ability to

perform statistically robust regression analyses in this patient

group. We collect data on a regular basis, and future studies

will contain more speech samples.
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Appendices
e POS tag set and the Penn Treebank tag set. MD, VBD, VBP,
umber of tense-inflected verbs.

Gloss

noun, singular or mass

noun, plural

verb, modal auxiliary

verb, base form

verb, past tense

verb, gerund or present participle

verb, past participle

verb, non-3rd person singular present

verb, 3rd person singular present

affix

adjective

adjective, comparative

adjective, superlative

pronoun, possessive

wh-determiner (e.g., which cookie)

wh-pronoun, possessive (e.g., whose cookie)

existential there

adverb

adverb, comparative

adverb, superlative

wh-adverb (e.g., where)

pronoun

preposition

unknown

interjection, exclamation

determiner

conjunction
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Table B e Demographic and clinical characteristics of the subset of patients with MRI data. The p-values for the group
differences in this subset were from ANOVA analyses, except the sex ratio, where a chi-squared test was used. Linear
regressionmodels (all measures but the sex ratio) were used to compare this subset and the remaining dataset to the grand
mean of the entire data using the sum codingmethod.We reported themodels' estimated coefficients (bÞ, t-statistics, and p-
values. A chi-squared test (sex ratio) was used for the comparisons of this subset to the remaining dataset. MMSE: Mini
Mental State Exam; BNT: Boston Naming Test; PPT: Pyramids and Palm Trees Test; F: females; M: males.

Controls
(n ¼ 18)

bvFTD
(n ¼ 42)

naPPA
(n ¼ 8)

svPPA
(n ¼ 26)

Group differences
in this subset

Comparison with
the full set

Age (years) 65.9 (6.8) 63 (8.5) 65.5 (8.1) 61.2 (7.1) F(3,90) ¼ 1.53, p ¼ .21 b ¼ 2.5, t(167) ¼ 1.91, p ¼ .059

Sex 9 F, 9 M 15 F, 27 M 2 F, 6 M 17 F, 9 M c ¼ 7.26, p ¼ .06 c ¼ .24, p ¼ .62

Education (years) 16.1 (2.9) 15.9 (2.2) 17.4 (3) 15.3 (2.6) F(3,90) ¼ 1.37, p ¼ .26 b ¼ �.16, t(167) ¼ �.35, p ¼ .72

Disease duration (years) e 4 (3.4) 3 (2) 3.6 (2) F(2,73) ¼ .43, p ¼ .66 b ¼ .48, t(132) ¼ 1.4 p ¼ .16

MMSE (0e30) 28.9 (1.1) 25.1 (4.3) 25.1 (3.4) 23.6 (6.1) F(3,88) ¼ 5.26, p ¼ .002 b ¼ .26, t(149) ¼ .28 p ¼ .78

BNT (0e30) 27.7 (2.7) 24.5 (4.1) 24.8 (5.1) 7.7 (6.3) F(3,89) ¼ 90.81, p < .001 b ¼ .44, t(139) ¼ .32 p ¼ .75

PPT (0e52) 51.3 (1.1) 45.4 (6.9) 48.5 (3.7) 39.1 (7.1) F(3,48) ¼ 8.75, p < .001 b ¼ �.52, t(71) ¼ �.37, p ¼ .71

Animals and tools (max 60 sec) 16.8 (5) 10 (4.9) 9.8 (4.8) 6 (3.9) F(3,86) ¼ 18.52, p < .001 b ¼ .18, t(135) ¼ .15, p ¼ .88

Table C e POS counts per 100 words and lexical measures of the subset of patients with MRI data.

Controls bvFTD naPPA svPPA

Nouns 19.42 (4.67) 21.67 (6.94) 23.65 (7.33) 17.43 (5.12)

Unique nouns 14.4 (3.37) 16.26 (6.27) 19.44 (3.84) 12.24 (4.6)

Pronouns 7.64 (2.33) 6.21 (3.58) 5.55 (1.86) 9.4 (3.89)

wh-words .63 (.35) 1.3 (3.04) 1.16 (1.81) .9 (1.32)

Tense-inflected verbs 12.02 (1.56) 12.26 (3.8) 11.28 (3.88) 13.71 (3.2)

Verbs 22.46 (3.1) 22.67 (4.56) 20.81 (4.67) 24.11 (4.68)

Speech errors/Partial words .81 (1.16) 1.17 (1.86) 3.36 (3.93) .73 (1.12)

Adverbs 5.61 (1.79) 5.46 (3.31) 3.51 (2.88) 7.94 (4.69)

Adjectives 6.01 (1.68) 3.89 (2.38) 3.35 (2.28) 3.3 (2.6)

Prepositions 10.81 (1.52) 8.34 (4.07) 5.48 (2.73) 7.78 (3.96)

Total words 194.22 (75.56) 112.23 (67.5) 85.75 (50) 121.88 (66.49)

Determiners 13.6 (2.16) 15.6 (3.93) 16.5 (4.24) 12.76 (5.3)

Conjunctions 4.38 (1.82) 5.01 (2.78) 4.36 (3.24) 5.02 (3.31)

Interjections 5.02 (2.43) 5.7 (3.83) 8.9 (4.78) 6.45 (5.43)

Ratio of content to function words 1.31 (.26) 1.36 (.35) 1.28 (.24) 1.32 (.32)

Abstractness (noun) 1.54 (.24) 1.48 (.26) 1.35 (.21) 1.86 (.51)

Ambiguity (noun) 1.69 (.05) 1.66 (.06) 1.63 (.09) 1.77 (.13)

Frequency (noun) 3.58 (.17) 3.61 (.28) 3.49 (.4) 4.01 (.44)

Familiarity (noun) 2.36 (.03) 2.35 (.05) 2.36 (.03) 2.41 (.07)

AoA (noun) 4.4 (.38) 4.21 (.42) 4.14 (.5) 4.1 (.46)

Cross entropy 9.75 (.52) 9.66 (.74) 10.21 (1) 9.18 (.58)

Lexical diversity .85 (.04) .79 (.09) .8 (.06) .8 (.1)
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Abstract 
Two variants of primary progressive aphasia (PPA) are subtypes of frontotemporal degeneration (FTD), which is the most common type 
of dementia among individuals under 60 years of age. Semantic variant PPA (svPPA) patients present with semantic deficits in single 
word use, whereas nonfluent/agrammatic PPA (naPPA) patients produce simplified speech with frequent speech errors and slow speech 
rates. In this study, we built machine learning systems to classify PPA patients (n=63) and healthy elderly controls (n=36). We 
automatically extracted 18 lexical and 21 acoustic features with a natural language processing library and a speech activity detector, and 
we trained classifiers, experimenting with various feature selection and reduction techniques. Our models showed high accuracy, 
correctly distinguishing patients from controls in more than 90% of cases, svPPA patients from naPPAs in about 89% of cases, and 
controls, svPPA, and naPPA patients in more than 80% of cases. Our results show that classification of PPA patients using automatically 
derived linguistic features from digitized speech samples is highly promising, and could potentially be applied in community settings 
for prescreening. We plan to extend this project by including more features and additional FTD subgroups in the near future.  

Keywords: Primary progressive aphasia, automatic classification, narrative speech 

1. Introduction 
Frontotemporal degeneration (FTD) is a type of focal 
dementia caused by atrophy in the brains’ frontal and 
temporal lobes. It is the most common type of 
neurodegenerative disease among people under 60 years of 
age (Ratnavalli et al., 2002). Since individuals diagnosed 
with FTD are relatively young, usually still in the 
workforce, the personal and societal costs of the disease are 
substantial. For example, FTD diagnosis often results in 
early departure from the workforce, increasing economic 
burden for a household with an FTD patient and negatively 
affecting not only patients but also the quality of life of 
their families (Galvin et al., 2017). Because there are no 
disease-modifying drugs approved for FTD, earlier 
screening and slowing the apparent disease progression rate 
through behavioral adjustments to the environment are key 
to helping patients and their families. This paper proposes 
three machine learning systems to automatically classify 
two subgroups of FTD that could potentially be applied in 
prescreening. 

About half of patients with FTD present with a 
linguistic impairment known as primary progressive 
aphasia (PPA), and sometimes this can be accompanied by 
a social-behavioral impairment known as behavioral 
variant FTD (bvFTD). There are several variants of PPA. 
Among these subgroups, semantic variant PPA (svPPA) 
patients are characterized by impaired confrontation 
naming, frequent substitution of pronouns for nouns, and 
difficulty in processing concrete words, although they 
show intact prosody and syntax (e.g., Amici et al., 2007; 
Bonner et al., 2016; Cousins et al., 2016; Nevler et al., 
2019). Nonfluent/agrammatic PPA (naPPA) patients, on 
the other hand, present with effortful speech, slow speech 
rates, frequent speech errors, simplified grammar, and 
difficulty in retrieving verbs (e.g., Ash et al., 2009; 
Grossman et al., 1996; Rhee et al., 2001). Patients with 
either of the two subtypes have frontotemporal lobar 

degeneration spectrum pathology, which is commonly 
associated with misfolding of TDP-43 or tau proteins.  
 Since PPA patients show salient linguistic 
characteristics, we would expect automatic classification 
by means of linguistic features to yield high levels of 
accuracy. There are a few previous studies that have 
pursued this approach. Fraser et al. (2014) extracted 58 
lexical and semantic features from the speech samples of 
10 svPPA and 14 naPPA patients and 16 controls. The 
authors trained classifiers only with significant features for 
three different tasks: control versus svPPA, control versus 
naPPA, and svPPA versus naPPA. Their models for 
controls versus svPPA/naPPA showed high levels of 
accuracy, from 90% to 100%. However, their best 
performance for classifying svPPA and naPPA patients was 
only 79.2% accurate, suggesting that classifying patient 
groups is more difficult than distinguishing patients from 
controls. Peintner et al. (2008) extracted 41 acoustic, 81 
LIWC (Language Inquiry and Word Count; Pennebaker et 
al., 2001), and 11 lexical features from 39 participants (9 
bvFTD, 8 naPPA, 13 svPPA, and 9 controls), and trained 
classifiers for various classification tasks. Their composite 
feature set (significant features from each feature set) 
showed accuracy over 90% in most classification tasks, 
except control versus bvFTD and four-way classification. 
However, they did not list what features were used in the 
composite set, making it difficult to reproduce their results. 
Themistocleous et al. (2019) extracted 14 acoustic features, 
such as mean fundamental frequency and amplitude 
differences between the first and second harmonics, from 
50 patients (17 logopenic variant PPA (lvPPA), 14 svPPA, 
11 naPPA, and 8 naPPA with apraxia of speech) and trained 
classifiers with 3-fold group cross validations and a one-
against-all strategy. Their models correctly identified 
naPPA 82% of the time and svPPA 66% of the time. The 
authors only used acoustic features, which explains why the 
accuracy of svPPA patients, who rarely show impairments 
in prosody, was relatively low. More importantly, all 
previous studies have had relatively small datasets, raising 



the question of whether their results could be generalized 
to larger datasets. In this paper, we studied 99 participants 
(63 patients and 36 controls) to investigate whether lexical 
and acoustic features could predict the diagnostic status of 
the participants.   

2. Objectives
Our objectives were to train three predictive models for 
classifying (1) controls vs. patients, (2) svPPA vs. naPPA 
patients, and (3) controls, svPPA and naPPA patients, 
experimenting with different feature selection and 
reduction techniques, and to identify predictive features for 
classifying PPA patients.   

3. Methods
3.1 Participants 
Our participants consisted of 63 patients diagnosed 
clinically with either svPPA or naPPA and 36 healthy 
elderly controls. Forty-two of the 63 patients had svPPA 
and 21 were naPPA patients. The patients were diagnosed 
by experienced neurologists at the Department of 
Neurology of the Hospital of the University of 
Pennsylvania in accordance with published criteria (Gorno-
Tempini et al., 2011). Of the 42 svPPA patients, 32 showed 
concomitant mild behavioral symptoms, which is a 
common co-occurrence in this group. We focused on 
frontotemporal lobar degeneration (FTLD) spectrum 
pathology in this study, and so we did not include lvPPA 
patients, who most often have Alzheimer’s pathology. Our 
participants were matched on sex ratio and education 
levels, but not on age, because naPPA patients on average 
have an later disease onset than svPPA patients (Johnson et 
al., 2005). The patient groups did not differ on the Mini 
Mental State Exam scores (MMSE) or disease durations, 
but they significantly differed on the Boston Naming Test 
(BNT) scores, which is expected due to svPPA patients’ 
difficulty in naming tasks. All participants were native 
speakers of English. The study was approved by the 
Institutional Review Board of the Hospital of the 
University of Pennsylvania, and all participants signed a 
written consent form. Participants’ demographic and 
neuropsychological characteristics are summarized in 
Table 1.  

controls svPPA naPPA p-value
Age 68.5 (7.9) 63.3 (6.9) 70.4 (9.4) 0.001 
Sex 23 F/13 M 23 F/19 M 11 F/11 M 0.483 
Education 
(years) 

15.9 (2.5) 15.1 (2.8) 15.3 (3.1) 0.408 

MMSE 
(range: 0-30) 

29.2 (1) 22.1 (6.3) 22.7 (5.9) < 0.001 

BNT 
(range: 0-30) 

27.9 (2.5) 7.5 (6.4) 24.7 (4.6) < 0.001 

Disease 
duration (yrs) 

NA 3.9 (2) 3.2 (1.9) 0.214 

Total number 
of words in 
Cookie Theft 

174.4 
(66.4) 

148.1 
(62.8) 

91.0 (55.8) < 0.001 

Table 1: Mean (SD) demographic and neuropsychological 
characteristics of the participants. MMSE: Mini Mental 

State Exam, BNT: Boston Naming Test. 

3.2 Data 
The Cookie Theft picture from the Boston Diagnostic 
Aphasia Examination (Goodglass et al., 1983) was used to 
elicit narrative speech from the participants. Participants 
described the picture for about one minute, and their 
descriptions were digitally recorded. Some patients made 
several recordings, but we used the earliest recording of 
each participant in this analysis in order to differentiate 
among the conditions early in the disease course. An expert 
linguist generated verbatim transcription of the picture 
descriptions, including all non-verbal speech, hesitations 
and false starts, and a team of trained annotators at the 
Linguistic Data Consortium (LDC) of the University of 
Pennsylvania reviewed and revised the annotations for 
quality checking.  

4. Feature Extraction
4.1 Lexical Features 
We ran a POS tagger in spaCy (Honnibal & Johnson, 2015) 
to automatically tag POS categories of all words that the 
participants produced in the picture descriptions. Before 
running the tagger, we cleaned the transcripts by removing 
interviewers’ prompts and annotations for non-verbal 
speech. A professional linguist manually validated the 
accuracy of spaCy with a subset of our data (n=21). The 
mean group accuracy varied from 95% (controls) to 90% 
(PPAs). There was no significant difference in the accuracy 
among patient groups (p>0.05). Since the accuracy of the 
spaCy POS tagger with their basic model 
(‘en_core_web_sm’) was high, we did not train a POS 
tagger separately in this study. The POS tokens were tallied 
per participant, and the count of each POS category per 100 
words was calculated (= (raw counts/total number of 
words) * 100). In addition to the frequency of each POS 
category, we measured the number of tense-inflected verbs 
and unique nouns per 100 words. We summed the number 
of modal auxiliary verbs, past tense verbs and present tense 
verbs that spaCy tagged to count the number of tense-
inflected verbs per 100 words. The number of noun lemmas 
was used for the number of unique nouns per 100 words.   
 We also rated nouns that participants produced for 
concreteness (Brysbaert et al., 2014), semantic ambiguity 
(Hoffman et al., 2013), word frequency (Brysbaert & New, 
2009), age of acquisition (AoA; Brysbaert et al., 2018) and 
word familiarity (Brysbaert et al., 2018) for their potential 
to distinguish svPPA patients from others. Since the 
published norms we used had a limited number of words, 
we rated the lemma of a noun if a noun itself was not listed 
in the published norms. A noun was not rated if neither the 
noun nor its lemma was listed in the norms. In total, we had 
18 text-related features: POS counts per 100 words (nouns, 
verbs, adjectives, adverbs, prepositions, determiners, 
conjunctions, interjections, pronouns, and speech 
errors/partial words—[X] in spaCy), number of tense-
inflected verbs and unique nouns per 100 words, lexical 
features of nouns (concreteness, ambiguity, frequency, 
AoA, familiarity), and total number of words.   



4.2 Acoustic Features 
We used an in-house Gaussian Mixture Models-Hidden 
Markov Models based Speech Activity Detector (SAD) 
developed at the LDC to segment the recordings into 
speech and silent pause segments. We set the minimum 
duration of a speech segment at 250 ms and that of a silence 
segment at 150 ms. We reviewed the outputs of SAD, 
corrected wrong segmentations, and excluded 
interviewers’ speech and non-verbal speech segments. 
Using the durations of speech and silent pause segments, 
we extracted 12 durational features:  

• The mean duration of speech and pause segments
• The number of total pauses and speech segments
• Total speech time (speech only)
• Total pause time (pause only)
• Total time (speech time + pause time)
• Sample duration (duration of the entire recording)
• Percent of speech time of the total time
• Breath frequency (= number of pauses over total

time) 
• Speech frequency (= number of speech segments

over total time) 
• Pause rate per minute (= number of pauses over

total speech time)

 We also pitch-tracked speech segments of the 
participants with a script in Praat (Boersma & Weenink, 
2020) and extracted the 10th to 90th fundamental frequency 
(f0) percentile values for each speaker. To minimize 
individual differences in pitch due to physiological factors, 
such as sex, height, and the size of the larynx, the extracted 
f0 values in Hz were converted to semitones (St) using each 
speaker’s 10th percentile as a baseline: St = log2(Hz / 10th 
percentile)*12. We had 21 acoustic features in total, 
including pitch percentile values along with the 12 
durational features. The final feature set included 18 lexical 
and 21 acoustic features and 3 demographic characteristics 
of the participants: age, sex, and education level.  

5. Model Training
We trained two different machine learning algorithms from 
the scikit-learn package (Pedregosa et al., 2011) in Python: 
Random Forest and Support Vector Machine (SVM) 
classifiers.  In all models, we imputed missing values with 
a mean value using SimpleImputer and standardized 
features with StandardScaler in scikit-learn for effective 
learning. We performed leave-one-out cross-validation 
(CV) to evaluate the generalizability of the models and
reported the average accuracy of all CV folds.

We experimented with feature selection and reduction 
methods. For feature selection, we performed t-tests (for 
binary classifications) and trained models with features that 
were significant at the level of p < 0.05, 0.01, 0.005, and 
0.001. We used the same feature set used in the control-
patient pairwise classification for the three-way 
classification (control vs. svPPA vs. naPPA). We compared 
the performance of models trained with selected features 
and a model without any feature selection. For feature 
reduction, we performed Principal Component Analysis 
(PCA) and trained models, varying the number of 
components from 1 to 10. We compared the performance 
of models trained with PCA components and that of a 

model trained without any feature reduction and reported 
the best performance after tuning hyperparameters.  

6. Classification Results
6.1 Binary Classification between Controls and 

Patients 

An SVM classifier trained with all features which were 
reduced to 10 PCA components performed best in this 
classification task, showing 90.9% accuracy and 0.94 area 
under the curve (AUC). Our model correctly identified 33 
controls out of 36 and 57 patients out of 63. The full 
classification report is shown in Table 2, and the receiver 
operating characteristic (ROC) curve for this contrast is 
provided in Figure 1. 

Accuracy Precision Recall F1-score 
Controls 0.92 0.85 0.92 0.88 
Patients 0.90 0.95 0.90 0.93 
Weighted average 0.91 0.91 0.91 0.91 

Table 2: Classification report of the SVM classifier for the 
classification of patients and controls. 

Figure 1: Receiver Operator Characteristic Curve for the 
classification of controls and patients. 

6.2 Binary Classification of Patient groups 
A Random Forest classifier trained with features that were 
significant at the level of p<0.005 and reduced to three PCA 
components performed best in this classification task. The 
model showed 88.9% accuracy with 0.87 AUC. The model 
correctly identified 40 svPPA patients out of 42 and 16 
naPPA patients out of 21. Our model resulted in a higher 
F1-score for classifying svPPA patients (0.92) than naPPA 
patients (0.82), suggesting that in general identifying 
naPPA patients was more difficult than identifying svPPA 
patients. The full classification scores are in Table 3, and 
the ROC curve for this contrast is provided in Figure 2.  



Accuracy Precision Recall F1-score 
svPPA 0.95 0.89 0.95 0.92 
naPPA 0.76 0.89 0.76 0.82 
Weighted average 0.89 0.89 0.89 0.89 

Table 3: Classification report of the Random Forest 
classifier for the classification of svPPA and naPPA 

patients. 

Figure 2: Receiver Operator Characteristic Curve for the 
classification of svPPA and naPPA patients. 

 The features that were selected included counts of 
nouns, pronouns, verbs, tense-inflected verbs, speech 
errors/partial words, unique nouns per 100 words; 
concreteness, semantic ambiguity, frequency of nouns; 
participants’ age and total number of pauses. Figure 3 
shows group differences in the selected features.  

Figure 3: Group differences in selected features for the 
classification of svPPA and naPPA patients. The POS 
counts and the numbers of tense-inflected verbs and 

unique nouns are per 100 words. The top two rows show 
features where values of naPPA patients are significantly 

higher than those of svPPA and the bottom two rows 
show features where values of svPPA patients are 

significantly higher than those of naPPA (both at 
p<0.005).  

Among the 11 selected features, most were lexical, and 
only one acoustic feature, total number of pauses, was 
selected. As expected, semantic aspects of nouns that 
patients produced, such as concreteness and semantic 
ambiguity, were important features in distinguishing 
svPPA patients from naPPA patients. Further discussion of 
the acoustic features in PPA patients can be found in Nevler 
et al. (2019), and further discussion of the lexical features 
can be found in Cho et al. (under review).  

6.3 Three-way Classification 

An SVM classifier trained with all features without any 
feature reduction performed best for the three-way 
classification, yielding 80.8% accuracy with 0.9 macro-
averaged AUC. The model correctly identified 32 controls 
out of 36, 34 svPPA patients out of 42, and 14 naPPA 
patients out of 21. The model’s F1-score is high for controls 
and svPPA patients (> 0.8), but it was below 0.7 for naPPA 
patients, again suggesting that naPPA patients were 
difficult to identify. The full classification report and the 
confusion matrix are provided in Tables 4 and 5, and the 
ROC curve for this contrast is provided in Figure 4. 

Figure 4: Receiver Operator Characteristic Curve for the 
classification of controls and svPPA and naPPA patients. 

Accuracy Precision Recall F1-score 
Control 0.89 0.84 0.89 0.86 
svPPA 0.81 0.83 0.81 0.82 
naPPA 0.67 0.70 0.67 0.68 
Weighted average 0.81 0.81 0.81 0.81 

Table 4: Classification report of the SVM classifier for the 
three-way classification. 



Control svPPA naPPA 
Controls 32 2 2 
svPPA 4 34 4 
naPPA 2 5 14 

Table 5: Confusion matrix of the three-way classification 
(column: actual, row: predicted). The number of 

accurately classified participants is highlighted in gray. 

7. Discussion and Conclusion
This paper reports the results of automatic classification 
systems for three classification tasks: i) control versus 
patients, ii) svPPA versus naPPA patients, and iii) control 
versus svPPA versus naPPA. We automatically extracted 
18 lexical features from one-minute narrative speech 
samples using spaCy, one of the most modern, state-of-the-
art natural language processing libraries in Python. We also 
automatically extracted 21 acoustic and durational features 
with SAD. Using these features with additional 
demographic information, we trained three machine 
learning classifiers, experimenting with different feature 
selection and reduction techniques, and used leave-one-out 
cross-validation. We found group differences in the 
selected features. Our model for the control versus patient 
classification trained with all features, which were reduced 
to 10 PCA components, correctly distinguished patients 
from controls in more than 90% of cases. Our classifier for 
the svPPA versus naPPA task selected 11 features (9 
lexical, 1 acoustic and 1 demographic), which were later 
reduced to 3 PCA components. Our classifier correctly 
identified the diagnostic group of the patients with 88.9% 
accuracy, which outperformed the system for the same task 
in previous studies (79.2% in Fraser et al., 2014; 82% for 
naPPA patients in Themistocleous et al., 2019). Lastly, our 
system for the three-way classification, which was trained 
with all features without any feature reduction, showed 
high overall accuracy (over 80%) in classifying controls, 
svPPA and naPPA patients, which is much higher than the 
chance level (33.3%). The performance of the systems in 
this report is highly promising in that we only had one-
minute narrative speech samples, which are quick and easy 
to collect. We believe that this line of research could 
potentially benefit populations with the earliest features of 
PPA.  

 Our models performed well, but there is still room for 
improvement, in particular, for the three-way classification 
system, where classification of naPPA was < 80%. In the 
future, we plan to include more features, such as letter or 
category fluency scores, Mel-frequency cepstral 
coefficients, or word frequency as log-odds ratio (Monroe 
et al., 2008) to improve the performance of the models. We 
also aim to extend our research by including more patient 
groups. First, we would consider evaluating patients with 
lvPPA, which is another variant of PPA associated with 
Alzheimer’s disease pathology, with frequent filler words 
(um or uh) as a prominent feature. Second, we would 
consider including bvFTD patients, who have pathology 

similar to that of svPPA and naPPA patients. Although 
without obvious aphasia, these patients do have subtle 
speech deficits (Nevler et al., 2018). In addition, we plan to 
collect conversational data in the near future to explore 
subtle group differences among these patient groups that 
may not have been captured in monologue, narrative 
speech samples. In natural conversation, speakers employ 
a variety of prosodic features to deliver the intended 
message effectively. We believe these additional features 
will improve the models’ performance. 
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Abstract

Background:Speech is a complex activity requiringproper function and connectivity of

multiple brain networks and as such is sensitive to focal neurodegeneration. We have

previously reported on acoustic markers of dysprosody in speech samples of speakers

with frontotemporal dementia (FTD) phenotypes. In the current study we explore the

longitudinal changes in acoustic-prosodic markers in FTD.

Method: We analyzed 102 speech samples of picture descriptions from 46 partici-

pants with FTD (Table 1): 8 with non-fluent/agrammatic primary progressive aphasia

(naPPA), 14 with semantic variant PPA (svPPA), 10 with logopenic aphasia (lvPPA) and

14with behavioral FTD (bvFTD).We automatically segmented the acoustic signal into

segments of continuous speech or silence,measured their durations, and derived other

measures.Weused linearmixed effects (lme)models to test changes over time for each

acousticmeasure, controlling for sex, education, and random intercepts.Wealso exam-

ined any interaction between phenotypes and disease duration.

Result: bvFTD speakers increased their pause duration by 0.27 seconds per year and

their pause rate by 3.9 pauses perminute (ppm) each year. Their speech segment dura-

tion shortened by 0.1 seconds per year (p=0.041), decreasing their total speech time

by 6.6 seconds (p=0.003) per year. Thus, bvFTD patients reduced the proportion of

speech in their samples by 5.16 percent per year (p=0.008). svPPA speakers increased

their pause rate similarly, but in contrast, their pause duration decreased by 0.097 sec-

onds per year and they increased their speech segment frequency by 8.32 per minute

each year (p=0.054). naPPA and lvPPA speakers increased their pause rate over time

and spent less total time (speech + pause) describing the picture (by 5.6 seconds per

year; p=0.018). They did not differ from bvFTD and svPPA in these two acoustic mea-

sures.

Conclusion: In our study all FTD speakers became more dysfluent and produced

shorter descriptions with time, however, only bvFTD speakers actually exhibited

reduced speech production. In contrast, svPPA speech had more frequent pauses and

speech segments over time, rendering it “fragmented” and inefficient. These findings

support the role of automated acoustic analysis in characterizing speech longitudinally

in neurodegeneration.
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Abstract
Background and Objectives
We compared digital speech and language features of patients with amnestic Alzheimer disease
(aAD) or logopenic variant primary progressive aphasia (lvPPA) in a biologically confirmed
cohort and related these features to neuropsychiatric test scores and CSF analytes.

Methods
We included patients with aAD or lvPPA with CSF (phosphorylated tau ([p-tau]/β-amyloid
[Aβ] ≥0.09, and total tau/Aβ ≥0.34) or autopsy confirmation of AD pathology and age-
matched healthy controls (HC) recruited at the Frontotemporal Degeneration Center of the
University of Pennsylvania for a cross-sectional study. We extracted speech and language
variables with automated lexical and acoustic pipelines from participants’ oral picture de-
scriptions. We compared the groups and correlated distinct features with clinical ratings and
CSF p-tau levels.

Results
We examined patients with aAD (n = 44; age 62 ± 8 years; 24 women; Mini-Mental State
Examination [MMSE] score 21.1 ± 4.8) or lvPPA (n = 21; age 64.1 ± 8.2 years; 11 women;
MMSE score 23.0 ± 4.2) and HC (n = 28; age 65.9 ± 5.9 years, 15 women; MMSE score 29 ±
1). Patients with lvPPA produced fewer verbs (10.5 ± 2.3; p = 0.001) and adjectives (2.7 ± 1.3,
p = 0.019) and more fillers (7.4 ± 3.9; p = 0.022) with lower lexical diversity (0.84 ± 0.1; p =
0.05) and higher pause rate (54.2 ± 19.2; p = 0.015) than individuals with aAD (verbs 12.5 ± 2;
adjectives 3.8 ± 2; fillers 4.9 ± 4.5; lexical diversity 0.87 ± 0.1; pause rate 45.3 ± 12.8). Both
groups showed some shared language impairments compared with HC. Word frequency
(MMSE score: β = −1.6, p = 0.009; Boston Naming Test [BNT] score: β = −4.36, p < 0.001),
adverbs (MMSE score: β = −1.9, p = 0.003; BNT score: β = −2.41, p = 0.041), pause rate
(MMSE score: β = −1.21, p = 0.041; BNT score: β = −2.09, p = 0.041), and word length
(MMSE score: β = 1.75, p = 0.001; BNT score: β = 2.94, p = 0.003) were significantly correlated
with both MMSE and BNT scores, but other measures were not correlated withMMSE and/or
BNT score. Prepositions (r = −0.36, p = 0.019), nouns (r = −0.31, p = 0.047), speech segment
duration (r = −0.33, p = 0.032), word frequency (r = 0.33, p = 0.036), and pause rate (r = 0.34,
p = 0.026) were correlated with patients’ CSF p-tau levels.

Discussion
Our measures captured language and speech differences between the 2 phenotypes that tra-
ditional language-based clinical assessments failed to identify. This work demonstrates the
potential of natural speech in reflecting underlying variants with AD pathology.
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Speech production is a complex behavior involving co-
ordinated activation of multiple brain regions. Thus, exam-
ining speech production provides potential opportunities to
identify neurodegenerative disease markers that are sensitive
to specific phenotypes. Because Alzheimer disease (AD)
accounts for up to 80% of patients with dementia,1 much
attention has been paid to cognitive and linguistic pro-
filing of AD. Language produced by patients with amnestic
AD (aAD) has been found to be “empty” with an abun-
dance of nonspecific words, circumlocutions, and sparse
content.2

Logopenic variant primary progressive aphasia (lvPPA) is
1 of the PPA variants3,4 that is an atypical, nonamnestic
manifestation of AD,3,5-9 with a majority of autopsied
cases associated with underlying AD pathology.9,10 Since
the identification of this PPA variant, many studies have
been dedicated to characterizing its language and speech
features compared to other variants of PPA.11,12 Previous
studies have shown that patients with lvPPA speak slowly
with impaired lexical access13 and have poor phonemic
discrimination14 with limited auditory-verbal short-term
memory, naming impairment,4,5 and dysfluencies.12

Previous studies of patients with neurodegeneration
suggest that language and speech features are useful as a
screening tool15-17 because speech samples are easy to
collect noninvasively and are sensitive to cognitive im-
pairments. Despite the shared pathology of aAD and
lvPPA, previous studies have focused on the linguistic
profiling of these 2 syndromes separately. With few
comparative studies, an important gap remains in the lit-
erature. Most previous quantitative work has focused on
measures such as the Boston Naming Test (BNT) that
assess lexical retrieval during confrontation naming of an
object. However, descriptions of natural, connected
speech in aAD and lvPPA are frequently informal. In this
study, we identified similarities and differences between
patients with aAD and lvPPA with biological confirmation
of underlying AD pathology by analyzing digitized, natural
speech samples with reliable and reproducible automated
methods. From previous studies, we hypothesized that
patients with lvPPA would produce more dysfluent speech
with more limited lexical content than those with aAD.
We also hypothesized that patients with aAD and those
with lvPPA would share some linguistic features, includ-
ing decreased speech production. We associated language
and speech variables with clinical test scores and CSF
analytes for additional validation and specific mechanistic
clarification.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
The Institutional Review Board of the Hospital of the Uni-
versity of Pennsylvania approved the study of human partic-
ipants, and all participants agreed to participate in the study by
written consent. All digital data were stored in secured Health
Insurance Portability and Accountability Act–compliant
servers and handled by personnel trained in personal identi-
fiable information protection.

Participants
We examined oral picture descriptions that were produced by
93 participants who were recruited in the Department of
Neurology at the Hospital of the University of Pennsylvania
from early 2000 to early 2019. All patients were assessed
by experienced neurologists (M.G., D.J.I.) following published
diagnostic criteria,18,19 and their clinical phenotypes were
reviewed in a consensus conference. To support the diagnosis,
participants underwent comprehensive neuropsychological as-
sessments with the National Alzheimer’s Coordinating Center
Uniform Data Set version 320 and the Rey Complex Figure
Test.21 Of 152 patients whose clinical phenotype was either AD
(n = 114) or lvPPA (n = 38), we included only 44 participants
with aAD and 21 patients with lvPPAwho had AD pathology at
autopsy (n = 15; 4 with lvPPA and 11 with AD) or whomet the
criteria of underlying AD pathology on CSF analyte levels (n =
50; 17with lvPPA and 33with AD; phosphorylated tau [p-tau]/
β-amyloid42 [Aβ] ≥0.09

22 and total tau/Aβ ≥0.3423). Five pa-
tients with aAD who had a CSF Aβ value >192 pg/mL24 were
still included in the analysis because both their p-tau/Aβ ratio
and total tau/Aβ ratio met the criteria. Patients with aAD or
lvPPA who did not meet both cutoffs, did not have CSF or
autopsy data, or did not have AD pathology at autopsy were
excluded from the analysis. Thirteen patients of 15 with autopsy
data had a high probability of having AD pathologic change on
the basis of established ABC scoring.25 Four patients with
posterior cortical atrophy and 3 patients with nonamnestic mild
cognitive impairment who did not meet the criteria for lvPPA18

were excluded from the analysis. None of the participants in-
cluded in the study had other neurologic, psychiatric, or medical
conditions that could affect cognition. Twenty-eight age-
matched elderly healthy controls (HC) who did not have
cognitive impairment were included as a control group.

Data Collection
We digitally recorded the participants’ descriptions of the
Cookie Theft picture from the Boston Diagnostic Aphasia
Examination.26 Descriptions were a 1 minute long. Recordings

Glossary
aAD = amnestic AD;Aβ = β-amyloid42;AD = Alzheimer disease; BNT = Boston Naming Test; lvPPA = logopenic variant PPA;
p-tau = phosphorylated tau; POS = part-of-speech; PPA = primary progressive aphasia.
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were orthographically transcribed by a linguist and trained
annotators. Transcribing a 1-minute speech sample usually
took 5 to 7 minutes, and our usual transcription interrater
agreement rate was between 93% and 94%. The earliest re-
cording of each participant was analyzed with our lexical and
acoustic pipelines, as described below.

Lexical Pipeline
We automatically tagged the part-of-speech (POS) category
of all tokens using spaCy,27 which is a Python package for
natural language processing, with its large language model
(en_core_web_lg) for English. The number of tense-
inflected verbs was calculated by summing the number of
modal auxiliaries and past-tense and present-tense verbs.
Dysfluency markers, including fillers, repetitions, and partial
words, were counted separately. The count of each POS
category, tense-inflected verbs, and dysfluency markers was
converted to counts per 100 words to control for the total
number of words per participant.

We rated each word for concreteness,28 semantic ambiguity,29

frequency,30 age at acquisition,31 and familiarity31 using
published norms. Word length by the number of phonemes
for each word was calculated with the Carnegie Mellon Uni-
versity Pronouncing Dictionary32 using the Natural Language
Toolkit package33 in Python. We calculated the mean scores
of these measures for content words (nouns, verbs, adjectives,
and adverbs) per participant.

Last, we measured lexical diversity using the moving-average
type-token ratio,34 which has been described as one of the
most reliable measures for calculating lexical diversity.35 The
window length was set at 15 words. We also experimented
with larger windows (20-word and 25-word windows). Be-
cause the results remained the same, we reported only results
from 15-word windows. Hereafter, the measures from the
lexical pipeline were referred to as language measures. De-
tailed descriptions of the lexical pipeline and validation of the
POS tagging accuracy have previously been published.36

Acoustic Pipeline
We used an in-house speech activity detector to segment
audio recordings into speech segments and silent pauses. We
visually reviewed the segments. Nonspeech segments at the
beginning and end of each recording and interviewer’s
prompts were excluded from the analysis.

Using the speech activity detector output, we calculated
duration-related measurements, including mean speech seg-
ment duration, mean pause segment duration, percent of
speech, and pause rate per minute. We summed the number
of syllables of all words from the published norm32 and
computed articulation rate as the number of syllables per
second.

In addition, we pitch-tracked all speech segments with Praat.37

To normalize physiologic differences in pitch (f0), we

converted the pitch values from Hertz to semitones using the
10th pitch percentile of each participant as a baseline: semi-
tones = 12 × log2(f0/baseline f0).We used the converted 90th
percentile as a measure of the pitch range of each speaker.
Hereafter, the measures from the acoustic pipeline were re-
ferred to as speech measures. Detailed descriptions of the
acoustic pipeline have been published previously,38 and the
list of all analyzed features is included in eTable 1, links.lww.
com/WNL/B1000.

CSF Analysis
Forty-two (30 with aAD and 12 with lvPPA) patients had
CSF biomarkers collected within 1 year of the Cookie
Theft recording, including Aβ and p-tau. CSF was analyzed
with 2 platforms, Luminex xMAP or Innotest ELISA,
which was then transformed to the Luminex scale.39 We
previously related CSF p-tau levels directly to cerebral tau
burden in our autopsy cohort.39 To determine the asso-
ciation of language and speech features with in vivo mea-
sures of pathology, we examined the relationship between
our language and speech variables and the 2 CSF bio-
markers of Aβ and p-tau. Only 1 HC had CSF biomarkers
in this dataset.

Statistical Methods
To compare the groups, we tested whether requirements for
parametric tests were met with a Levene test. If the data met
the requirements for parametric tests, we performed an
analysis of variance. If not, we performed a Kruskal-Wallis test.
We visually assessed residuals of the models to ensure that the
data were suitable for linear modeling. When a group differ-
ence was significant, we in addition performed a post hoc
pairwise t test or pairwise Wilcoxon rank-sum test for pairwise
group comparisons, adjusting p values for multiple group
comparisons (n = 3) with the false discovery rate. We
reported the effect size of each group comparison using the
Cohen d.

Patients’ language and speech variables were z scored using
the mean and SD of the HC. These z scores were used for
visualization and linear regressions to estimate relations of our
language variables and clinical ratings. We did not use z scores
to determine significant group differences withZ tests because
the test statistic in some variables did not follow a normal
distribution.

The z scored variables that showed significant group differ-
ences were associated with patients’ clinical assessments to
investigate the relations of our language and speech features
to clinical ratings of cognitive, language, and memory im-
pairment. Analyzed clinical assessments included the MMSE,
BNT, Rey complex figure copy and delayed recall, Craft Story
delayed recall, and forward digit span scores. To examine
potential interactions, we included phenotype as an in-
teraction term (clinical ratings

e

language or speech variable ×
phenotype). The p values were adjusted with the false dis-
covery rate.
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To validate our findings with levels of specific CSF bio-
markers, we correlated patients’ CSF analyte levels with the
language and speech variables using Pearson correlation tests.
CSF p-tau levels were log-transformed to normalize the data.
We also checked whether patients’ clinical phenotype and the
time difference between Cookie Theft recording and CSF
sample collection were significant factors with linear re-
gressionmodels. Because the 2 factors were not significant, we
reported only the results of simple correlations to simplify the
models. All statistical analyses were performed with R version
4.1.0 and RStudio version 1.4.1717 (R Core Team, Vienna,
Austria).

Data Availability
Anonymized data will be shared on request from any qualified
investigator for purposes of validation or replication of study
methods.

Results
Participant Characteristics
Table 1 shows the demographic and clinical characteristics of
the participants. The 3 groups did not differ in age, sex, or
education level. The patient groups did not differ from
each other in disease duration, CSF biomarkers, and most
clinical ratings except the Rey complex figure and forward
digit span scores. Patients with aAD were more impaired in
both Rey complex figure copy and delayed recall because
these patients had the amnestic variant of AD. On the
other hand, patients with lvPPA were more impaired on
forward digit span, and this was in line with our previous
observation.9

Differences Between Patients With aAD and
Patients With lvPPA
The group means of all language and speech variables are
summarized in eTable 2, links.lww.com/WNL/B1000.
Patients with lvPPA produced fewer tense-inflected verbs
compared to those with aAD (p = 0.001, jdj = 0.94) and HC
(p = 0.048, jdj = 0.61; Figure1A). The tense-inflected verb
counts of patients with aAD did not significantly differ from
those of HC (p = 0.124, jdj = 0.4). Patients with lvPPA
showed lower lexical diversity than those with aAD (p =
0.05, jdj = 0.52) and HC (p = 0.005, jdj = 1.02), yet patients
with aAD did not differ from HC (p = 0.149, jdj = 0.39;
Figure1A). Larger windows yielded similar results (20-
word window: lvPPA vs aAD p = 0.047, jdj = 0.53 and
lvPPA vs HC p = 0.004, jdj = 1.02; 25-word window:
lvPPA vs aAD p = 0.052, jdj = 0.52 and lvPPA vsHC p = 0.004,
jdj = 1). Patients with lvPPA produced fewer adjectives
than those with aAD (p = 0.019, jdj = 0.66) andHC (p < 0.001,
jdj = 1.72); Patients with aAD also produced fewer adjectives
than HC (p = 0.003, jdj = 0.75; Figure 1A). Thus, both patient
groups were impaired in their adjective production, but patients
with lvPPA were more severely impaired compared with those
with aAD.

Patients with lvPPA also produced more fillers than patients
with aAD (p = 0.022, jdj = 0.6) and HC (p = 0.01, jdj = 1.06;
Figure 1B), while patients with aAD did not differ significantly
from HC (p = 0.383, jdj = 0.23). Patients with lvPPA showed
a higher pause rate than those with aAD (p = 0.015, jdj = 0.55)
and HC (p < 0.001, jdj = 1.58; Figure 1B). The pause rate of
patients with aAD was also higher than that of HC (p < 0.001,
jdj = 1.34). Last, patients with lvPPA produced more partial
words than HC (p = 0.042, jdj = 0.61), but they did not differ
significantly from those with aAD (p = 0.147, jdj = 0.3), and
patients with aAD did not differ from HC (p = 0.313, jdj =
0.24). Thus, patients with lvPPA produced an abnormal
number of partial words, while speakers with aAD did not.

Impaired Language and Speech Features in
Both aAD and lvPPA
Figure 2 shows all language and speech features in which both
patient groups differed from HC. Both patient groups produced
fewer prepositions and nouns than HC; patients produced
shorter speech segments than HC, and their percent of speech
time of the total time was also lower than that of HC (p < 0.001,
jdj > 0.8 for all comparisons). Both groups’ content words were
shorter, more frequent (length and frequency: p < 0.001, jdj >
0.8), acquired earlier (lvPPA: p < 0.001, jdj = 0.95; aAD: p <
0.001, jdj = 0.56), and more concrete (lvPPA: p = 0.028, jdj =
0.7; aAD: p = 0.002, jdj = 0.86) than those of HC. Both patient
groups produced more adverbs (lvPPA: p = 0.029, jdj = 0.84;
aAD: p = 0.029, jdj = 0.73) and repetitions (lvPPA: p < 0.001,
jdj = 1.39; aAD: p < 0.001, jdj = 0.79) than HC. Patients also
spokemore slowly (lvPPA: p< 0.001, jdj = 1.01; aAD: p< 0.001,
jdj = 0.57), and they produced fewer words in total than
HC (lvPPA: p = 0.032, jdj = 0.7; aAD: p = 0.007, jdj = 0.73).

Relationships to Clinical Measures
Figure 3 illustrates relationships between the speech and
language features and 2 clinical ratings: MMSE and BNT.
Only 1 variable showed a significant interaction with pheno-
type. Patients with aAD who had lower MMSE scores pro-
duced more adverbs (β = −1.9, p = 0.003), yet patients with
lvPPA who had lower MMSE scores produced fewer adverbs
(β = 2.67, p = 0.015).

MMSE score was significantly related to 5 language and
speech variables. Patients with lower MMSE scores produced
more frequent (β = −1.6, p = 0.009) and shorter (β = 1.75, p =
0.001) content words, paused more frequently (β = −1.21, p =
0.041), and produced more adverbs (β = −1.9, p = 0.003) and
partial words (β = −1.52, p = 0.021).

BNT score was significantly associated with 10 variables.
Patients with lower BNT scores produced frequent words
(β = −4.36, p < 0.001), produced many adverbs (β = −2.41,
p = 0.041), and had a high pause rate (β = −2.09, p = 0.041).
Patients with lower BNT scores also produced fewer prepo-
sitions (β = 2.42, p = 0.048) and nouns (β = 5.18, p = 0.003).
Patients with lower BNT scores showed a low percent of
speech produced during the picture description (β = 2.4, p =
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0.045), and they produced shorter (β = 2.94, p = 0.003), less
concrete (β = 4.24, p = 0.003), and earlier-acquired (β = 4.69,
p = 0.003) content words with shorter speech segments (β =
3.89, p = 0.041).

The other clinical ratings, namely the Rey complex figure copy
and delayed recall, the Craft Story delayed recall, and the
forward digit span, and their interaction with patients’ phe-
notype were not significantly related to our language/speech
measures after p value adjustments for multiple comparisons.

CSF Results
Forty-two (30 with aAD and 12 with lvPPA) patients had CSF
biomarkers, including p-tau, collected within 1 year of the
Cookie Theft recording (mean interval 4.7 ± 3.5 months). This
subset did not differ demographically or clinically from the larger

group of patients. The aAD and lvPPA subset groups did not
differ in age (p = 0.64), sex (p = 0.99), education (p = 0.82),
disease duration (p = 0.75), or time difference between CSF
sample collection and the Cookie Theft recording (p = 0.43).

Patients’ CSF p-tau level correlated with lower preposition
counts (r = −0.36, p = 0.019), lower noun counts (r = −0.31, p =
0.047), and higher word frequency (r = 0.33, p = 0.036;
Figure 4A). In addition, patients’ p-tau levels were correlated
with a higher pause rate (r = 0.34, p = 0.026) and shorter mean
speech segment durations (r = −0.33, p = 0.032; Figure 4B). The
other measures (adverbs, partial words, tense-inflected verbs,
articulation rate, lexical diversity, total words, fillers, repetitions,
adjectives, percent of speech, word length, concreteness, age at
acquisition) were not related to patients’ p-tau levels. Aβ alone
did not significantly correlate with any of the language measures.

Table 1 Demographic and Clinical Characteristics of Participants

aAD (n = 44) lvPPA (n = 21) p Value HC (n = 28) p Value

Age, y 62.0 (8.0) 64.1 (8.2) 0.335 65.9 (5.9) 0.098

Education, y 16.0 (2.6) 16.1 (3.2) 0.919 15.9 (2.6) 0.965

Sex (male), n (%) 20 (45.5) 10 (47.6) 0.870 13 (46.4) 0.986

Disease duration, y 3.7 (2.6) 3.4 (1.5) 0.599 NA

CSF p-tau 38.5 (20.1) 38.4 (16.0) 0.982 12.0 (NA) 0.387

CSF Aβ 139.9 (36.2) 135.0 (26.2) 0.605 415.0 (NA) <0.001

CSF p-tau/Aβ 0.3 (0.2) 0.3 (0.2) 0.877 0.0 (NA) 0.297

MMSE score, n 44 21 0.133 28 <0.001

Mean (SD) 21.1 (4.8) 23.0 (4.2) 29.2 (1.0)

BNT score, n 42 19 0.513 21 <0.001

Mean (SD) 20.1 (8.4) 18.6 (8.6) 27.9 (2.7)

Animal fluency score, n 36 19 0.856 21 <0.001

Mean (SD) 10.6 (4.9) 10.4 (4.2) 20.6 (6.0)

F-letter fluency score, n 25 6 0.141 1 0.049

Mean (SD) 8.8 (3.8) 6.3 (2.4) 16.0 (NA)

Digit span forward score, n 31 15 <0.001 6 <0.001

Mean (SD) 5.8 (2.1) 3.2 (1.7) 9.0 (1.8)

Rey figure copy score, n 29 14 0.005 21 <0.001

Mean (SD) 18.8 (13.4) 30.1 (6.2) 34.7 (2.1)

Rey figure delayed score, n 28 14 0.010 21 <0.001

Mean (SD) 6.9 (7.5) 13.6 (7.5) 19.0 (7.2)

Craft story delayed score, n 19 6 0.898 1 0.005

Mean (SD) 8.9 (9.8) 9.5 (5.8) 43.0 (NA)

Abbreviations: aAD = amnestic Alzheimer disease; Aβ = β-amyloid42; BNT = Boston Naming Test; HC = healthy controls; lvPPA = logopenic variant primary
progressive aphasia; MMSE = Mini-Mental State Examination; NA = not applicable; p-tau = phosphorylated tau.
The patient groups were comparedwith t tests except for the sex ratio. The comparisons of all groups were tested with analysis of variance except for the sex
ratio. The sex ratios were compared with χ2 tests.
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Discussion
LvPPA is most frequently associated with underlying AD
pathology, but direct comparison of lvPPA with aAD has been
reported rarely. Patients with lvPPA have been compared to
patients with the other types of PPA, who generally have
frontotemporal lobar degeneration pathology.11,12 While it

may be clear that patients with lvPPA differ from patients with
the other PPA variant due to different pathology, it remains to
be seen how patients with nonamnestic lvPPA differ from
patients with aAD who have the same pathology. To fill this
gap in the literature, the current study focuses on character-
izing the language similarities and differences between lvPPA
and aAD in a biologically confirmed cohort. To optimize
reliability and reproducibility, we used fully automated lexical
and acoustic analyses to characterize language and speech
markers of AD pathology. We expected that patients with
nonamnestic lvPPA would produce more dysfluent speech
and have limited vocabulary compared to patients with aAD
because of the phenotypic characteristics of lvPPA. Results
confirmed that patients with lvPPA produced fewer adjectives
and tense-inflected verbs with lower lexical diversity than
patients with aAD and HC. Patients with lvPPA also paused
more frequently and produced more fillers and partial words
than HC and patients with aAD. It is important to note that
the patient groups did not differ in brief language-based
clinical assessments such as animal and letter fluency tasks or
the Craft Story delayed recall test, even though they differed
on some of our language and speech measures, highlighting
the importance of monitoring the language and speech
characteristics of these patients. We also found that both
patient groups shared impairments in some language and
speech features relative to HC. For example, both patient
groups produced more adverbs, including words like “there”
and “here,” but fewer prepositions and nouns than HC. In
addition, patients’ content words were acquired earlier,
shorter, more frequent, and less concrete than those of HC.

Figure 1 Speech Differences Between lvPPA and aAD

For ease of visualization, z-scored values compared to HCmean and standard deviation are plotted (A and B). Horizontal black line indicates themean of the
healthy controls (HC). aAD = amnestic Alzheimer disease, lvPPA = logopenic variant primary progressive aphasia.

Figure 2 Impaired Language and Speech Measures in Both
lvPPA (Green) and aAD (Yellow)

Only speech measures that were significantly different from those of
healthy controls (HC) (gray) are plotted, andmeasureswere standardized on
the basis of the HC mean and SD. Numbers in blue indicate z-scored values
based on HC. aAD = amnestic Alzheimer disease; AoA = age of acquisition;
lvPPA = logopenic variant primary progressive aphasia.
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Patients produced more repetitions and fewer total words
with a slower articulation rate and a shorter mean speech
duration than HC. Some of these variables were significantly
related to clinical test scores and p-tau levels in CSF. We
discuss these findings below.

The patient groups significantly differed on 6 language and
speech measures: pause rate, partial words, fillers, adjectives,
tense-inflected verbs, and lexical diversity. Fillers, adjectives,
tense-inflected verbs, and lexical diversity were significantly
more impaired in patients with lvPPA than those with aAD,
emphasizing the deficits in lexical retrieval and poor fluency in
these patients. However, these language and speech features
distinguishing between lvPPA and aAD were not related to
any of the clinical ratings that we examined, including MMSE,
BNT, the Rey complex figure, the Craft Story delayed recall,
and forward digit span. It is important to note that the

mechanism thought to subserve retrieval of a single word in
response to a stimulus picture or recall of episodic memory
appears to differ from lexical retrieval during natural con-
nected speech.40 It is thus critical to monitor these speech
features because they are not easily explained by more general
and commonly used clinical measures.

The result that tense-inflected verb production differed be-
tween lvPPA and aAD has rarely been reported. This finding
seems to suggest that patients with lvPPA produced fewer
complete sentences, assuming that there was at least 1 tense-
inflected verb per inflection phrase. This would be consistent
with the observation that patients with lvPPA who had limited
auditory-verbal short-term memory produced briefer
sentences.3,4 Frequent fillers in lvPPA were in line with pre-
vious observations and consistent with their limited lexical
retrieval.12,13,18 Lower adjective counts in patients with aAD

Figure 3 Results of Linear Regression Models of Language and Speech Measures in Patients With MMSE and BNT Scores

Standardized estimated coeffi-
cients (x-axis) are plotted with col-
ors: positive coefficients in blue
and negative coefficients in red.
The p values are adjusted with the
false discovery rate. AoA = age of
acquisition; BNT = Boston Naming
Test; MMSE = Mini-Mental State
Examination. *p < 0.05, **p < 0.01,
***p < 0.001.

Figure 4 Significant Correlations of the Speech Variables and CSF p-tau Levels (A and B)

aAD = amnestic Alzheimer disease; lvPPA = logopenic variant primary progressive aphasia; P-tau = phosphorylated tau.
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compared to HC have been previously reported,41 yet we
further showed that adjective production was more impaired
in nonamnestic lvPPA than in aAD. Lexical diversity has
frequently been examined in the AD literature,15,16,42 and
previous studies have found that the lexical diversity of pa-
tients with aAD was lower than that of HC. We showed that
lexical diversity was even lower in lvPPA than in aAD. The fact
that patients with lvPPA and aAD significantly differed on
these measures suggests that our language and speech vari-
ables may capture subtle but unique phenotypic differences
between lvPPA and aAD. In addition, traditional clinical rat-
ings are relatively insensitive to these linguistic features. In
addition, none of the 6 variables except pause rate correlated
with CSF p-tau. This may suggest that these markers are
related more narrowly to the phenotype. Further studies, in-
cluding the anatomic distribution of pathology in an autopsy
cohort with quantitative measures of pathologic burden, may
help shed light on this issue.

Some language and speech measures were related to MMSE
and BNT scores but not to the other clinical ratings, including
the Craft Story delayed recall, Rey figure copy and delayed
recall, and forward digit span. Because the Rey figure copy is
not worse in lvPPA than aAD, a visual-perceptual deficit
leading to difficulty perceiving the stimulus picture is unlikely
to account for the observed distinct speech and language
deficits in lvPPA. Pause rate showed more impairment in
lvPPA than aAD. This might indicate word-finding difficulty
in lvPPA that could provoke frequent pausing to recall an
appropriate word from the lexicon. It could also be that pa-
tients with lvPPA spoke slowly—these patients’ articulation
rate was lower than that of HC—due to their difficulty in
retrieving words to generate utterances. Pause rate was sig-
nificantly related to both MMSE score, an indicator of general
cognitive impairment, and BNT score, a measure of con-
frontation naming. Elevated pause rate therefore may reflect
in part both patients’ word-finding difficulties and their gen-
eral cognitive impairments. Partial word count, which was
impaired only in lvPPA, correlated only withMMSE score but
not BNT score, suggesting that it reflected in part disease
severity and general cognitive impairments of patients with
lvPPA but not impaired object naming.

Word-finding difficulty in aAD and lvPPA has previously been
noted13,43-47; studies have shown that patients had impair-
ments in auditory-verbal short-term memory and could not
recall the phonologic form of a word. However, comparative
studies have not been reported to examine whether both
patients with aAD and patients with nonamnestic lvPPA
would show word-finding difficulty to a similar degree during
natural speech. In our study, both patient groups produced
content words that were more abstract, acquired earlier, more
frequent and shorter than those of HC, suggesting that they
had difficulties in retrieving the full spectrum of lexical items
needed to describe the picture. Word frequency and length
were significantly related to both MMSE and BNT scores,
which suggests that these lexical measures reflect in part

patients’ disease severity and difficulties in lexical retrieval
during confrontation naming. On the other hand, concrete-
ness and age at acquisition were significantly associated only
with BNT score, indicating that these may be more sensitive
to word-finding difficulty in patients. Patients with lvPPA and
aAD did not significantly differ on these measures, confirming
that some degree of word-finding difficulty is present in both
aAD and nonamnestic lvPPA.

Adverb counts were greater in patients compared to HC. This
may be related to patients frequently using proadverbs, in-
cluding “here” and “there,” which replaced locational prepo-
sitional phrases. Patients typically produced utterances like
“Mom is standing here,” for example, when HC produced
“Mom is standing in front of the sink.” Elevated adverb counts
were associated with low BNT scores, suggesting that greater
adverb use reflected patients’ difficulties in naming specific
locations during natural speech. Patients’ difficulty in pro-
ducing locational phrases was also partly reflected in the de-
creased preposition counts compared to HC, which was also
related to BNT scores. On the contrary, patients’ pronoun
counts did not differ from those of HC; thus, increased ad-
verbs and decreased prepositions seem to support the in-
ference that patients had relatively more difficulty naming
locations than naming objects. Additional work is needed to
determine whether these language markers are related to
temporal propositions and other features in connected
speech.

Some of our language and speech variables correlated with CSF
p-tau levels but not with Aβ. This finding is in line with previous
findings that patients’ cognitive impairment is generally not
related to Aβ levels but to accumulation of p-tau.48-50 Speech
production is one of the most essential daily functions of
humans, which needs to be taken into consideration in AD
clinical trials and may serve in monitoring response to
treatment. Because our automated procedures for collect-
ing speech features are highly reliable and reproducible,
investigations of speech variables as secondary outcome
measures should be considered in disease-modifying trials
targeting tau.

It is a strength of our study that we directly compared lan-
guage and speech features in patients with aAD and lvPPA
with biological evidence of underlying AD pathology. We
examined natural connected speech quantitatively using au-
tomated analyses of digitized speech samples. We inspected
differences and similarities among these groups and showed
that our variables could capture subtle linguistic differences
between the 2 phenotypes, and traditional cognitive measures
appear to be insensitive to some of the features that distin-
guish aAD and lvPPA. These methods may be useful in
monitoring disease progression and response to therapeutic
interventions because collecting 1-minute speech samples is
easy, highly reproducible, and inexpensive and can be done
remotely compared to collection of other biomarkers. Our
ongoing projects are currently testing the value of these
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language and speech features in longitudinal datasets and
developing machine learning classifiers for distinguishing
patients with AD pathology from those with other types of
neurodegenerative changes such as frontotemporal lobar
degeneration.

Limitations of this study include the assessment of relatively
small samples, the difficulty obtaining train-test generaliz-
ability data in rare lvPPA and early-onset aAD cases such as
these, the use of a single stimulus picture to elicit the speech
sample, and the absence of high-resolution MRI data to assess
the anatomic associates of these linguistic features. In addi-
tion, we had only 12 patients with lvPPAwith CSF biomarkers
within 1 year of the picture description data collection, so we
were not able to examine the relations between CSF bio-
markers and the language/speech variables for each group.
Future study with more CSF data will be needed to explore
each group’s relations between language/speech measures
and CSF biomarkers. Last, because we had only 1 HC with
CSF data, we were not able to determine whether our lan-
guage and speech measures are able to distinguish HC with
positive CSF AD biomarkers from those with negative CSF
AD biomarkers. The relation between CSF biomarkers and
language/speech variables in HC will need to be studied
further in future research.

We implemented automated methods to analyze acoustic and
lexical characteristics of the natural speech of patients with aAD
and lvPPA. We identified language and speech markers that
differed between the groups. We also found language and
speech markers that were shared between these 2 AD pheno-
types. This work demonstrates the potential of natural speech
to reflect underlying AD pathology while distinguishing be-
tween specific phenotypes with the same pathology. Consid-
ering the cost-effectiveness and reliability of speech data, such
markers could contribute to monitoring of patients for AD
clinical trials in a more precise and inclusive way.
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