Test and Evaluation of AI Cyber Defense Systems

APRIL 26, 2023
Shing-hon Lau
Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM23-0403
Agenda

• Intersection of AI and cyber

• Methodology for test and evaluation of AI cyber defenses
Intersection of AI and cyber

AI for defending cyber systems
- Network defense, endpoint protection, malware detection

AI for attacking cyber systems
- Decision support, automating of portions of attacks

Cyber defense for AI systems
- AI is ultimately just software on a computer

Cyber offense against AI systems
- Identifying code, models, data, etc., after owning AI box

Adversarial AI / ML
- Attack an AI system through cleverly selected valid inputs

Cyber attacks for adversarial AI effects
- E.g., buffer overflows to realize adversarial AI attacks
Thinking about AI systems

• Consider AI at several levels:
 – the model level
 – the system level
 – the mission level

• Gaining an understanding of AI at a system or mission level provides more accurate insights, but is considerably more difficult
AI for defending cyber systems

• Network defense
 – Use network traffic to determine malicious activity
• Endpoint behavior detection
 – Observe local execution to determine malicious activity
• Malware detection
 – E.g., Heuristic-based anti-virus or anti-malware

• More on this later…
AI for attacking cyber systems

- Decision support for red teams
- Automated and semi-automated tools for well-defined activities
- Continuous automated red teaming
- Researchers have developed proofs of concept of machine learning or AI-based malware
Cyber defense for AI systems

- AI systems are software running on computers
- Data is a first-order concept in machine learning systems
- Control of data can allow attacker to have arbitrary control of system behavior
- Use of AI expands the attack surface

https://insights.sei.cmu.edu/blog/a-hitchhikers-guide-to-ml-training-infrastructure/
Cyber offense against AI systems

What do you steal when you own the AI box?
How do you identify key AI components?
What information is revealed by stolen materials?
Adversarial AI and ML

Do the wrong thing
https://openai.com/blog/adversarial-example-research/

Learn the wrong thing

Reveal the wrong thing
https://gab41.lab41.org/robust-or-private-model-inversion-part-ii-94d54fd8d4a5
Adversarial AI and ML

• What does adversarial AI and ML look like for network data, static binary analysis, dynamic binary analysis, firmware, etc.?

• What are the data sources?

• What are the right set of features and architectures for cyber domains?

• How can red teams or adversaries map ML feature level changes back to a cyber domain while respecting constraints, e.g.,
 – Cyber attacks must still be effective
 – Executables must be valid and must execute with correct effect
 – Firmware must not brick devices
Cyber attacks for adversarial AI effects

- Cyber attacks are often treated as orthogonal to adversarial AI

- An adversarial AI attack can be the objective of a cyber attack:
 - Insert a backdoor into an ML model by introducing poisoned data into the ML dataloader process during training
 - Cause misclassifications of test samples by adding adversarial noise during testing

- Common AI software is typically research-quality code, with plenty of security flaws
Agenda

- Intersection of AI and cyber
- Methodology for test and evaluation of AI cyber defenses
AI for defending cyber systems

• Network defense
 • Use network traffic to determine malicious activity
• Endpoint behavior detection
 • Observe local execution to determine malicious activity
• Malware detection
 • E.g., Heuristic-based anti-virus or anti-malware
Organizations are turning to AI-powered network defenses

• There is a significant shortage of qualified cybersecurity staff
 - The US has a shortfall of 700k+ cybersecurity staff (https://www.cyberseek.org/heatmap.html)
 - AI can act as significant force multiplier
 - AI can address “easy” alerts, freeing human analysts to handle harder problems
 - AI may be able to catch complex threats that may elude analyst detection (e.g., SolarWinds)

• Cyber attacks can be so rapid that human response is impractical
 - NotPetya attack took down an entire Ukrainian bank in 45 seconds
 - Human reaction to the threat is slow; the damage can be irreversible
Test and evaluation of AI defenses

• AI defenses pose a test and evaluation challenge unlike those posed by traditional cybersecurity defenses
 - Organizations might need to evaluate tools in a black-box or gray-box environment, without direct access to the innards of the defense
 - AI defense designers intend for systems to learn from their network environment, necessitating creation of a realistic testbed
 - Designers intend for defenses to learn and change over time, so a singular evaluation is insufficient
 - Adversarial manipulation can fool AI defenses, creating vulnerabilities an adversary may exploit
Creating a testing and evaluation methodology

• Based on the identified challenges, our methodological approach:

 - Creates a realistic network environment where an AI defense can be deployed
 - Populates the network environment with sufficiently realistic background traffic to allow the AI to learn
 - Tests AI defense performance against realistic cyber attacks
 - Tests AI defense performance when exposed to adversarial manipulation

• Tooling development to expedite and partially automate testing
Creating a network environment
Simulating realistic user behavior (background traffic)

- 99 employees split across 5 divisions
- We provided a unique behavior for each user
 - Customized work schedules
 - Role-specific work tasks
 - Hobbies that influence personal use
- We set privileges and access by role
- Traffic results from simulated behavior—it is not directly simulated
Realistic network user behaviors

- SEI GHOSTS software used as the foundation of network traffic generation (available on public GitHub repository)

- GHOSTS was initially designed to create realistic background traffic to support cyber training exercises

- We repurposed it to run indefinitely to generate background traffic on our network

- GHOSTS permits definition of a user’s behavior throughout the day using “timelines”
 - Developed timeline generator that permits fine-grained control of user behavior on a day-to-day basis. This can be customized for each user
Testing with meaningful cyberattacks (malicious traffic)
Automated testing (MITRE CALDERA)
Cyber attack test coverage

<table>
<thead>
<tr>
<th>Not Detectable</th>
<th>Used</th>
<th>Supported but Not Vulnerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 Caldera supports tactic, and network is vulnerable.</td>
<td>70 Caldera supports tactic, but network is not vulnerable.</td>
<td></td>
</tr>
<tr>
<td>30 Network is vulnerable, but Caldera does not currently support tactic.</td>
<td>34 Not Available</td>
<td>3 Potential Obfuscation</td>
</tr>
</tbody>
</table>

- We have mapped our cyber attack test suite to the MITRE ATT&CK framework.
- Not all attacks with the ATT&CK framework are detectable by the types of AI defenses we consider.
- A total of 70 techniques are covered so far in our methodology.
Test cases

- Four meaningful cyberattacks were defined and implemented using the functionality in CALDERA and using publicly-available knowledge and tools:
 - Creation of a domain administrator account
 - Creation of a local administrator account
 - Disabling a public-facing webserver
 - Exfiltration of user files
- Tests were performed in a baseline condition and obfuscated conditions
- An initial test was performed, followed by a test after one month
Looking ahead

• Testbed improvements
 - Collect sensor data to facilitate other avenues of research, particularly involving adversarial machine learning
 - Create a more “modern” test network that is likely closer to what was envisioned when designing AI defenses

• Improved automation
 - Automation at the “above-VM” level to facilitate more types of cyberattacks with minimal human intervention and to offer coordination with blue-team results

• Accommodating replay traffic
 - Results on the best simulated data are no substitute for results using real data

• Increasing the set of test attacks
 - The broader the set of test attacks, the more we understand AI defense capabilities
Dr. Shing-hon Lau
slau@sei.cmu.edu

U.S. Mail
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612 USA

Website
https://www.sei.cmu.edu/contact-us/index.cfm