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Data Rights

NOTICE

This software was produced for the U. S. Government under Contract 

No. FA8702-19-C-0001, and is subject to the Rights in Noncommercial 

Computer Software and Noncommercial Computer Software 

Documentation Clause DFARS 252.227-7014 (FEB 2014)

(a)  2023 The MITRE Corporation

This technical data deliverable was developed using contract funds 

under Basic Contract No. W56KGU-18-D-0004
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Outline

• Need to understand image quality for machine learning

• Image Chain Analysis (ICA) for machine learning

• Example ICA analysis

• Complexity of the background clutter

• Machine Learning (ML) for object detection

• Clutter and target occlusion

• Next steps



Image Quality for Machine Learning (ML)

A standard measure of image quality 

for ML is needed to

• Ensure imagery collection satisfies 

needs

• Enable sensor design studies

The National Imagery Interpretability 

Rating Scale (NIIRS) has served this 

need based on human perception of 

the imagery

NIIRS measures human 

perception which differs 

from AI/ML performance
𝑴𝑶𝑷 =

𝟏 + 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔

𝟏 + 𝑻𝒓𝒖𝒆 𝑻𝒂𝒓𝒈𝒆𝒕𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑨𝒍𝒂𝒓𝒎𝒔
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S

Measure of Performance (MOP)
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IMAGERY

AI/ML Models 

Multiple Experimental Threads

EMPIRICAL

PERFORMANCE

TRAIN AND TEST AI/ML MODELS

IN CONTROLLED SETTING

OBJECTIVE MOP EVALUATE POSSIBLE

SYSTEM CHANGES:
• TRANSPORT

• TRAINING DATA

• ML ALGORITHM

• COLLECTION PLAN
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Image Chain Analysis

Image Chain Analysis (ICA) provides a framework for understanding 

image quality for machine learning

‒ Systematic experimentation to quantify image quality effects on ML 

performance

MSTAR
XVIEW
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ICA Framework for Exploring Image Quality

• Leverage unclassified imagery data and deep learning tools to 

develop and demonstrate the ICA framework

SAR Experiments

• AI/ML tool: TensorFlow

• Imagery:  MSTAR from AFRL

• Experiments: Training set, sensor noise 

emulation, viewing geometry



Machine Learning Dataset
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Targets Used: 

T72 variants

T62

2S1

BRDM

BTR60

D7

ZIL131

ZSU23

Euclidian distances of target chips: differences between 

T72 variants are small enough to treat them as a single 

target type when determining correct identifications

MSTAR

Images from MSTAR Public 

Release available from AFRL



Optimized Model With Image Filtering
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Performance of model with unedited 

versus filtered images

• Original model trained on full set of 

targets at 15-degree incident angle

• New test model trained with enhanced 

images consisting of original image & 

an inverse processed separately and 

combined into separate layers

• Noise reduction filter

• Dilation & Erosion filter

• New model theoretically uses shapes 

of shadows to aid in detection

• Slight increase in performance 

demonstrated with enhanced data set



Noise Added (% Pixels Affected, Condensed T72 Variants)
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Topological Data Analysis 

A height  incrementally uncovers the 

cycles and connected components 

of the “Figure 8” symbol

https://cs230.stanford.edu/projects_spring_2018/reports/8290918.pdf
There Are a Variety of Filtrations

Filtration Values
Min Max

a) Binary 

b) Height 

c) Radial 

d) Density 

e) Dilation  

f) Erosion  

g) Signed 

Distribution  



50 Trials

50 Random splits

Reported as a percent

Accuracy:

• Mean = 73.3

• Std Dev = 4.4

• 96% confidence interval = [64, 81] 

F1:

• Mean = 67.9

• Std Dev = 5.9

• 96% confidence interval = [58,78]

72.5 ± 8.5

68 ± 10

Topological Features and Classification of Clutter Level
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Clutter Analysis Using K-Means & Morphology Features

High Clutter: K-means cluster with maximum pixels is represented by maroon

Low Clutter: K-means cluster with maximum pixels is represented by light pink

Image K-Means Cluster Mask Filtered Difference

• Clusters

• Morphological 

Filtering

• Structural Similarity

• Texture

OIRDS

OIRDS
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Random Forest Performance
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New Classifier

Standard Random Forest

F1: 0.627

Accuracy: 0.589

Probabilistic Random Forest

F1: 0.632

Accuracy: 0.589
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Training Models for Ensemble Predictor
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OIRDS/39867435_1537_769_1793_1025.tif

Unmodified Mixed 200% Gamma

OIRDS OIRDS
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Factors Affecting Performance
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COWC/Potsdam_2_10_RGB.0.0.jpg
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Assessment of Clutter and Target Occlusion
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The majority of OIRDS imagery maintain an

average clutter level somewhere between

2.5 and 4.5

% Correlation with Clutter

Probability of Target (POT) -2.564%

Average POT % -7.330%

Average Target Occlusion % 9.784%

Clutter itself has little correlation with a human’s ability to 

identify targets; however, there is a small but significant 

correlation between the clutter level and rate of occlusion, 

and a negative correlation with the average pixels on target, 

which will decrease as occlusion increases.

Average Clutter
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Summary and Next Steps

• Summary:
‒ Humans and ML algorithms are sensitive to difference image properties
‒ Image chain analysis aids in understanding factors affecting ML performance
‒ Clutter affects the false alarm rate: Developing metrics to quantify clutter 
‒ Target occlusion affects detection performance
‒ There is a weak, but significant relationship between clutter and target occlusion
‒ Putting it all together: Understanding clutter will help us understand both false 

alarms and target detection

• Next Steps:
‒ Analysis with new data sets – do the findings hold up across a range of conditions?
‒ Development of performance models for ML
‒ Establish the basis for a standard measure of image quality for ML

18
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QUESTIONS?
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Relevant Scoring Definitions

• True Positives = Number of correct target identifications

• False Positives = Number of incorrect object identifications

• False Negatives = Number of true targets missed

• Precision = True Positives / (True Positives + False Positives)

‒ Measure of model’s ability to correctly identify targets

• Recall = True Positives / (True Positives + False Negatives)

‒ Measure of model’s ability to find all true targets

• F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

‒ Measure of model’s overall performance

Ground truth for OIRDS test subset  = 167 cars

Ground truth (visible targets) for OIRDS test subset = 145 cars
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Appendix – ML Model

• Ensemble model – minimum two models agree on detection

• Precision:  0.964

• Recall:  0.796

• Adjusted Recall: 0.917

‒ Adjusted Recall based on targets with probability of target 1 (100% certainty)

• F1 Score: 0.872

• Adjusted F1 Score: 0.940

‒ Uses Adjusted Recall
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Imagery Sources

• xView: xView (xviewdataset.org)

• MSTAR: SDMS Public Web Site (af.mil)

• OIRDS: Overhead Imagery Research Data Set download | SourceForge.net

• COWC: Cars Overhead with Context (COWC) | Library Digital Collections | 

UC San Diego Library (ucsd.edu)

• All data sets are publicly available, open source.

http://xviewdataset.org/
https://www.sdms.afrl.af.mil/index.php
https://sourceforge.net/projects/oirds/
https://library.ucsd.edu/dc/object/bb8332755d#:~:text=The%20Cars%20Overhead%20With%20Context%20%28COWC%29%20dataset%20is,network%20to%20learn%20to%20detect%20and%2For%20count%20cars.
https://library.ucsd.edu/dc/object/bb8332755d#:~:text=The%20Cars%20Overhead%20With%20Context%20%28COWC%29%20dataset%20is,network%20to%20learn%20to%20detect%20and%2For%20count%20cars.
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