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I. EXECUTIVE SUMMARY 

As a space grade solar panel manufacture, Boeing needs to assemble solar panel by gluing multiple solar 
cells together. A glue deposition robot deposits the glue dots at predefined positions. In current manual 
operation, skilled operators monitor each dot after deposition to confirm that the dot is deposited accurately 
in specified position with specified shape quality – no tails or connections between dots. Early detection of 
gradual degradation in dot quality helps an operator to modulate several process parameters in deposition 
module or to take corrective actions to prevent deposition of overlapping glue dots on the solar panel. This 
dot-to-dot high precision inspection process is a very tedious, repetitive job and could be replaced by 
automated visual inspection system, as has been the case in all other industries (such as automotive) to 
retain US employment.  

In this project we propose to advance in-situ quality inspection technology named SMART-VISTA by 
developing a real-time adaptive solution for anomaly detection on reflective planner surface leveraging 
progress in recent computer vision technology. A dual feedback mechanism is developed based on visual 
perception (i) to refine deposition path of the robot after determining precise coordinates of the solar cells 
in robot frame, (ii) to tune up-stream process parameters based on dot quality inspection results so that 
potential quality degradation of the product can be avoided.  SMART-VISTA system comprises an active 
image acquisition subsystem, an image processing subsystem, and a recommender subsystem with real-
time control feedback. Novel image processing algorithm based on state-of-the art deep learning 
technology performs defect detection, classification and quantization on highly reflective planner surface. 
Then a Bayesian network-based advisory feedback system is developed to recommend the process 
parameters to be changed in up-stream process in a timely manner considering the characteristics of 
detected anomaly and the current context of the process. Finally, digital thread integration of the inspection 
data with digital twin of the inspected object helps in gaining real-time insights of the inspection process. 
Overall, our close loop active visual inspection system provides a complete solution not only to detect 
anomaly but also to prevent occurrence of future anomalies with huge market potential.  

The technology is demonstrated for high quality adhesive deposition at Boeing manufacturing facility. The 
evaluation shows effectiveness of the technology in improving dot deposition path accuracy in terms of 
precise location of dots (<2 mm varaition), dot quality improvement with correct process parameter 
estimation (>90% accuracy). SMART-VISTA technology may yield unprecedented technological solutions 
in the domain of real-time in-situ automated inspection process. In such settings, the active monitoring 
systems works like a real-life human inspector by finding the best position to do inspection. Ability to predict 
future events associated with quality degradation through tracking gradual change in inspected object 
quality will be used to alert up-stream worker to take corrective action as required. Additionally, by 
anticipating the need of future up-stream parameter change, the system can not only respond more quickly 
(e.g., by preemptively tune the appropriate process parameter, etc.), but also better ensure the quality of 
the product.  

SMART-VISTA software along with detailed user manual is shared with MxD.  
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II. PROJECT DELIVERABLES  

 

Table 1: MxD-20-02-07 Project Deliverables 
Table 1: MxD-20-02-07 Project Deliverables 

SOW Deliverable Names 
Deliverables as 
submitted 

DESCRIPTION   FORMAT OF DELIVERY  

Deliverable Task 1.1 A Set of 
Project Requirements 

Deliverable 1: 
Project 
requirements 
documentation  

Deliverable 1 is a description document of the project requirements 
across all the partners.  

Word Document  

Deliverable Task 2.1: Image 
capture system: phase 1: 
manual/semi-automated; 
phase 2: following task 6.1 
fully automatic 

Merged into 
Deliverable 5: 
Vision-based Path 
Planner  

Deliverable 5 is a software module for performing automatic path 
planning of the glue dot deposition robot by camera calibration and 
solar cell localization together with image capture system. This 
deliverable includes following software modules: (1) Cell detection 
and pose estimation module; (2) Module to find solar cell location 
w.r.t. robot; (3) Module to communicate with an industrial camera 
and industrial controller over OPC UA.  

Code repo with readme 
and licensing.txt  

Deliverable Task 2.2: Labeling 
User Interface. Labeled and 

cleaned image data.  

Deliverable 3: 
Labeling User 
Interface  

Deliverable 3 is user-interface used for performing image pre-
processing operations and for labeling glue dot position and defect 
types.  

Software Module  

Deliverable Task 2.3: Meta 

data and storage Interface.  

Deliverable 4: Meta 
data and storage 
Interface  

Deliverable 4 is a storage interface to store image as well as meta 
data to optimize the control feedback.  

Software Module  

Deliverable Task 3.1: Cell 
detection and pose estimation 

algorithm.   

Merged into 
Deliverable 5: 
Vision-based Path 
Planner  

See deliverable 5  See Deliverable 5 
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Deliverable Task 3.2: Glue dot 
detection and anomaly 

localization.  

Merged into 
Deliverable 5: 
Vision-based Path 
Planner  

See deliverable 5  See Deliverable 5 

Deliverable Task 3.3: Glue dot 

classification algorithm.   

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

Deliverable 6 is a software module that includes a GUI for 
visualizing dot inspection results along with process parameters 
recommendations for reducing/removing fluid deposition errors 
using state-of-the-art machine learning techniques. This deliverable 
includes following software modules: (1) Glue dot detection and 
anomaly localization module; (2) Glue dot classification module; (3) 
Glue dot quality quantification module; (4) A BDN network module 
for process parameter optimization; (5) A knowledge graph module 
representing the glue deposition process; (6) User Interface for 
advisory feedback analytics visualization; (7) Edge deployable 
software.  

Code repo with readme 
and licensing.txt  

Deliverable Task 3.4: Glue dot 
degradation quantification 

algorithms.   

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6  See Deliverable 6 

Deliverable Task 4.1: A 
trained BDN network for 
process parameter 

optimization.   

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6 

See Deliverable 6 

Deliverable Task 4.2: A 
knowledge graph 
representing the glue 

deposition process.   

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6 

See Deliverable 6 

Deliverable Task 5.1: The 
User Interface for advisory 
feedback analytics 

visualization.  

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6 

See Deliverable 6 
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Deliverable Task 5.2: Edge 

deployable software solution.  

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6 

See Deliverable 6 

Deliverable Task 6.1: Fully 
automated robotic cell for (a) 
Localization; (b) Deposition; 
(c") Capture 

Merged into 
Deliverable 6: 
Inspection with 
Recommendation 

See Deliverable 6 

See Deliverable 6 

Deliverable Task 6.2: 
Integrated Inspection 
evaluation and 
recommendation system 

Deliverable 7: 
Demonstration of 
the technology 

Deliverable 7 involves transfer the technologies to Boeing 
manufacturing research facility at Charleston for final 
demonstration. (1) Demonstration of the fully automated robotic cell 
for (a) cell localization; (b) glue deposition after path automatic 
refinement; (c) image capture after glue deposition. (2) 
Demonstration of the integrated inspection evaluation and 
recommendation system.  

Video and Final 
Presentation 
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III. PROJECT REVIEW 

Use Cases & Problem Statement 

 Industrial operations have come a long way in the automation era. Unfortunately, several processes remain 
dependent on human input which creates variability in output and reduces final product quality. For 
example, human variability is problematic with (a) real-time adjustments of process parameters (often 
required in less than 0.5 seconds), (b) inspector fatigue, (c) inspector error, and (d) other real-time human 
“adjustments on the fly” required during the manufacturing process. The challenge is to eliminate human 
judgment and variability and replace it with scientific measurement and evaluation which approaches a 
100% accuracy rate. In this proposal, the processes we automate are largely dependent on the human 
workers and the knowledge that they have gained with time and repetition. Replicating the “on the fly” 
adjustments made by an experienced operator performing the job is currently unavailable on the shop floor. 
The goal is to provide a real-time array of actions (through algorithm development and artificial intelligence) 
to be taken to prevent the repeating flaws and in some case propagating the flaw to an out of tolerance 
condition. Therefore, a need exists for a real-time inspection system with automated optimization of process 
parameters to reduce large labor costs, operator subjectivity, variation in quality inspection and corrective 
action, and risk associated with time loss if corrective actions are not taken timely.  

Current work addresses the product quality inspection problem faced by the manufacturing partner in our 
team – Boeing. Boeing is the supplier of all space panels for DoD satellites and competes internationally 

with foreign suppliers.  It currently makes the 
reflective space cells and then assembles them 
into panels for space application.  One of the 
highest risks in the manufacturing process is 
automating the placement of over 10,000 dots of 
adhesive to bond reflective cells to the structural 
backboard of size 2x3 ft. Currently the event 
requires 14 individuals working as a team to 
place dots to assure each dot passes a real-time 
manual verification on dot location, and form 
factor (circular, with limited elongation). 
Unacceptable dots are immediately identified 
and reworked if possible. Operators are 
regularly trained and tested for dot quality and 
location, yet costly problems do occur, halting 

production and creating schedule and financial impacts.  

As a solar panel manufacturer who relies on fluid deposition on planner surface, Boeing wants to automate 
the quality assessment with real-time feedback/recommendation so that they can take corrective measure 
in time which in turn would increase productivity and overall quality of the product. As an aerospace 
manufacturing engineer of Boeing, I want to automate the deposition of sealant dots on solar cells, so I can 
decrease the necessary flow time and amount of rework. 

Scope & Objectives 

Although Boeing has defined an automated system to perform dot location as shown in Figure 1, yet a 
technical gap still exists on the quality of the automated dot placement. To overcome the processing 
challenge, a new system employing a vision module is needed. The new system evaluates the current dot 
quality, and an artificial intelligence (AI) module predicts the corrective actions (if any) to take before moving 
to the next phase of dot deposition. 

Figure 1: Automated deposition with manual inspection. 
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Our overarching objective of this project is to develop a close-loop AI inspection system integrated with 
Digital Thread to provide timely, actionable insights about the quality of the current adhesive dots. The 
specific objectives are described below: 
 

 Vision-based Inspection with Limited Data: Develop advanced deep neural networks to perform 
visual inspection of dot anomalies that is trainable on coarsely labeled limited defect data. This 
flexibility helps to overcome the challenges of limited defect data in manufacturing scenarios.  

 Close Skills Gap: Provide the operators with real-time feedback about the current glue dot quality, 
type of degradation, highlighted location of degradation on Digital Twin of the solar panel, possible 
reasoning for the degradation, and recommendations for change in process parameters or 
corrective action to be taken before the next dot deposition. Thus, it helps in closing the skill gap, 
reducing operator variability, increasing trust on AI-system.  

 Digital Thread Benefits: Create Digital Twins of solar panels to map real-time glue 
quality inspection results within possible defect sources, enabling downstream decisions 
through Digital Thread integration.  
 
 

Planned Benefits 

Our technology leads to significant quality improvements during the assembly of photovoltaic components. 
The technology developed within this project could be deployed to assist with sealant application and a 
range of Boeing’s own commercial and defense programs where the need to automate the application of 
sealant has been identified as a goal for all programs within 10 years. The solution developed will be 
integrated with the existing automated glue disposal system of Boeing, allowing stakeholders to improve 
the overall process. This technology replaces 14 human workers currently needed in this operation with an 
automated system defined and designed by the Boeing Company in its Solar Panel Manufacturing 
company. Our proposed solution not only addresses the quality control challenges for Boeing, but it also 
enables the integration of AI and Vision modules in several other real-time quality inspection applications 
throughout the US manufacturing base, such as automated welding, painting, and soldering. 

Potential benefits to MxD members are diverse: MxD members can use our unique capability for active 
monitoring and vision-based quality control applications. The framework will be useful for a number of 
applications beyond sealant deposition. A range of real-time inspection actions could be improved using 
this method impacting a range production processes. We anticipate increased interest in MxD membership 
and licensing agreements to use the capabilities of the MxD portfolio enabling MxD to have a robust ROI 
for this project. 

IV. TECHNICAL APPROACH  

  

Figure 2: Overall Pipeline of the current approach: SMART-VIStA 
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The quality control inspection system SMART-VIStA enables the adoption of a real-time inspection 
methodology for sealant deposition with AI learning from previous dots. The dot inspection system 
comprises an image acquisition and deposition path planner subsystem, an image processing subsystem, 
and a recommender subsystem with real-time control feedback. Error! Reference source not found. 
shows the overall pipeline of the current approach that includes a dual feedback mechanism based on 
visual perception. After the solar cells are placed on the planner surface, a robot with mounted camera is 
moved to capture images of the individual cells. As shown in Error! Reference source not found., in 
feedback loop 1, a vision subsystem is employed to determine precise coordinates of the solar cells in robot 
frame to redefine glue deposition path w.r.t. actual cell positions. After the robot makes glue deposition, 
using feedback loop 2, the tuning of up-stream process parameters is performed for reducing/removing 
fluid deposition errors before depositing the next dots using state-of-the-art machine learning techniques. 
This avoids potential quality degradation of the product. Finally, Digital Thread integration of the inspection 
data with the Digital Twin model of the solar cell is done to help users gain real-time insights of the 
inspection process and recommendations through a graphical user interface. Our closed loop active visual 
inspection system provides a complete solution to detect dot anomaly and to prevent the occurrence of 
future faults.  
 

 

Figure 3:Task Overview diagram for SMART-VIStA framework development 

Based on the real-time dot-to-dot glue deposition use case described before, we have come up with work 
packages for the successful execution of this project. Error! Reference source not found. shows the task-
flow of the overall approach. These tasks were performed through collaborative efforts between the various 
team members.  
 

Task 1. Sensor Deployment and Data Collection: 

This task involves camera sensor deployment, and robot deposition path planning for both dot deposition 
and dot image data collection to perform smart inspection (Task 2 and 3). Image dataset preparation (Task 
1.2) as well as process parameter collection for training of different machine learning models (Task 3 and 
4) is also part of this task. Each of the modules are described in detail in the following sub-sections. 
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Task 1.1 Image and Meta Data Acquisition  

Camera Setup: The image acquisition task is performed using a Mako 192c industrial camera. The camera 
was attached to the end effector of the Kuka KR 10 industrial robot, which provides the required flexibility 
to maneuver the camera for image capturing.  

Metadata: Along with the glue dot images, associated metadata about the dot quality, manufacturing 
controls and process parameters (pot pressure, open time, dwell time, trigger delay, motion factor) was 
obtained from automated deposition system. Figure 4 Shows robot nozzle tip motion path and associated 
tunable motion parameters that had direct or indirect effect on got quality. By varying these parameters, 
different scenarios were created for experimental data collection.  

 

Figure 4: Glue deposition robot motion 
path illustration 

Task 1.2 Data Preparation 
and Storage 
 
After acquiring the cell and glue dot 
images, an open-source user-
interface LabelMe1 is used for 
performing image pre-processing 
operations and labelling the image 
into either one of the defect classes 
or as a perfect image, as shown in 
Error! Reference source not 
found..  

 
1 https://github.com/wkentaro/labelme 
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Data Storage: We developed a cloud storage in Amazon S3 (Simple Storage Service) to store all data to 
serve as input for ML model training. A well-defined version control system is set up to keep close track of 
the ML models and the various batch of data inputs used to train them.  
 
 
 

Task 2. Vision-based Deposition Path Planner: 
 

 

Figure 6: Path planner module workflow 

The objective of this module is to determine precise coordinates of the solar cells in the robot frame. To 
achieve this goal, hand-eye calibration is first employed to find out the spatial relationships between a 
camera, robot, and cell. Then, the cell detection module (described in the next section) computes the 
corners of the cells in form of image pixel coordinates. These 2D pixel coordinates are then transformed 
into 3D robot base frame coordinates once the depth from the camera to the object is known. Figure 6 
shows the workflow of this module.  

Task 2.1 Cell Detection and Pose Estimation 

 

Figure 7: Steps in detecting the corners for cell plate 

Cell Detection: In this module, the primary task is to detect and localize the desired cell. The top-view cell 
image is first binarized using OpenCV image-processing libraries. This process also ensures removal of 
scratches, burrs, and marks (referred to as noise) on the plate. The OpenCV algorithms include 2D filtering, 
denoising, sharpening, and morphology reconstruction. In the next step, connected component labeling 
(CCL) is implemented to filter out the region of interest (ROI) of the desired cell. Here, the CCL filters out 
the largest area of connected pixels to obtain the binary image of a single cell. First two images of 

Figure 5: Data Labeling UI 
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Figure 7 shows result of this stage on input image data. 

Corner Detection: After finding the binary image, the cell 
image was observed to have a focal distortion resulting in a 
slight curvature around the top and bottom edges. Hence 
implementing commonly available open-source-based 
corner point detection algorithm would result in an error. To 
alleviate this issue, a two-step approach is implemented – 
first, to find approximate corners through either the OpenCV-
based rectangle corner point detection or Hough Transform 
method and second – to focus on the ROI around these 
detected corners and re-apply Hough transform. The 
approximate corners are obtained using intersection of 
Hough lines (Please refer 

Figure 7, third image from left). While the current method is applied to detect corners for a rectangular 
artifact, this approach can be easily extended to detect corners for an n-sided polygon. The right most 
image in 

Figure 7 shows the output of this stage with detected corner highlighted in green. 

Task 2.2 Camera Calibration and Deposition Path Refinement 

The camera calibration is performed as an eye-in-hand calibration. This method computes the intrinsic 
camera parameters such as focal length, lens distortion, and camera center in addition to computing the 
transformation between the camera coordinate frame and the robot flange frame. It is performed by taking 
many images of a static calibration target (checkerboard of known square size) from different robot poses. 
A least-squares solver reprojects the calibration target points to the images taken using the computed eye-
in-hand calibration until the reprojected points line up well enough with the actual corners of the 
checkerboard in the images. With the eye-in-hand calibration, it is possible to convert any image point from 
pixel coordinates to robot coordinates if the depth (normal distance from the camera center) of the point is 

Figure 8: Eye-in-hand calibration verification by 
sending the tool tip to the corner of a cell 
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known. With a calibrated camera, the depth can be computed by taking images of geometry of known 
dimensions. Once this is done at one height above the table that the target cells rest on, the depth can be 
known at any height by adjusting by the height of the known robot pose.  

The 2D pixel coordinates detected from Task 2.1 are transformed into 3D robot base frame coordinates 
using these calibration parameters. Then this information is used to update the deposition path of the robot. 
The accuracy of cell localization with hand-eye-calibrated camera is tested by taking images of a cell, then 
commanding the robot to send the tool tip to the exact corners of the cell, or to marked locations on its 
surface (Please refer Figure 8). It is possible to then visually see if the tool tip lines up with the target on 
the cell. Any misalignment is corrected via a manual adjustment to the camera-to-flange transformation. 

 

Task 3. AI-based Vision System for Real-time Quality Inspection: 

This task involves development of Computer Vision algorithms for detecting quality of the glue dot (Task 
3.1) and its position ((Task 3.2) in terms of expected shape, size and location. Anomaly in shape occurs as 
dot with tail, elongated, sparse, crescent as shown in Figure 9. A dot could be regarded as anomalous if 
the dot size is too small or too big dot. Even if the dot is not deposited in the expected location, then that 
off-center dot is also considered as anomalous.  If a glue dot is found to be anomalous, then the dot is 
further analyzed to find its anomaly class (Task 3.3) and degree of degradation (Task 3.4) with a quality 
metric.  The results of such analysis will be used for (i) up-stream process parameter optimization (Task 
4.1) and (ii) integration with Digital Twin framework for real-time visualization (Task 5.1).  

 

Task 3.1 Anomaly Detection and Localization 

The objective of this task is to detect whether the current dot is anomalous or not. If it is anomalous, then 
highlight the location of anomaly. To achieve this goal, we apply Siemens’s state-of-the-art anomaly 
detection framework CAVGA2. CAVGA is able to localize anomalies with the help of attention maps from 
coarsely annotated data in weakly supervised manner. Its architecture is based on variational autoencoders 
(VAE)3 and guided attention mechanisms as shown in Figure 10.  Along with detecting a glue dot image 
as anomalous, we also focus on spatially localizing the non-circular glue dot anomaly in the image. 
Intuitively, without any prior knowledge of the anomaly, humans look at an entire image to identify the 
anomalous regions. From this idea, an attention-based supervision is applied, in which a network is 
encouraged to generate an attention map that focuses on all normal (i.e., non-anomalous) regions of the 
image to reduce the need for large amount of anomalous training data.  Based on this training regimen, 
when the network is given an image classified as anomalous, the underlying anomalous attention map will 

focus on the image regions considered as 
abnormal by the solution.  

 
2 Venkataramanan, Shashanka, Kuan-Chuan Peng, Rajat Vikram Singh, and Abhijit Mahalanobis. "Attention guided 
anomaly localization in images." In European Conference on Computer Vision, pp. 485-503. Springer, Cham, 2020. 
3 Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Int’l Conf. on Learning Representations (2014). 

Figure 9: Different glue dot shape classes 
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Task 3.2 Dot Segmentation  

The next task is to segment the dot area for shape analysis. However, traditional supervised deep learning-
based segmentation algorithms need detailed labeled data that shows the segmented dots, which is costly 
to acquire in industrial settings. Therefore, our aim was to develop unsupervised object segmentation 
algorithm that does not depend on detailed ground truth segmentation map data.  We extended CAVGA 
for unsupervised segmentation4. Given an input image, the joint optimization through alternate iterations 
between foreground label prediction and mapping function is achieved. . We address two main objectives: 
(a) pixels having similar features and spatial continuity are assigned with the same label and (b) creating a 
significant number of unique foreground labels.  

Let {𝑥௡ ∈ ℝ௣}௡ୀଵ
ே  be a set of p-dimensional feature vectors extracted from CAVGA encoder, where N 

denotes the number of pixels in the input image. Cluster labels {𝑐௡ ∈ 𝑍}௡ୀଵ
ே  is then assigned to all of the 

pixels by {𝑐௡ = 𝑓(𝑥௡)}, where 𝑓: ℝ௣ → 𝑍 denotes a mapping function. Here, 𝑓 is the function that assigns 
each 𝑥௡ a cluster ID from 𝑘 centroids obtained by k-means clustering. If 𝑓 and {𝑥௡} are considered fixed, 
then {𝑐௡} could be obtained by the above equation. On the other hand, if {𝑐௡} is kept fixed,  𝑓 and {𝑥௡}  are 
trainable, then the above equation can be used for supervised classification problem.  

Figure 11: Extension of CAVGA for unsupervised dot segmentation 

 
4Kim, Wonjik, Asako Kanezaki, and Masayuki Tanaka. "Unsupervised learning of image segmentation based on 
differentiable feature clustering." IEEE Transactions on Image Processing 29 (2020): 8055-8068. 

 Figure 10: CAVGA framework with the complementary guided attention loss to minimize the anomalous attention and 
expand the normal attention for the normal images correctly predicted by the classifier 
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Error! Reference source not found., the proposed unsupervised segmentation network is an extension 
of the CAVGA network with inclusion of some basic functions. Current method solves the two sub-problems 
alternatively: predict optimal {𝑐௡} keeping 𝑓, {𝑥௡} fixed and optimize 𝑓 and {𝑥௡}  while {𝑐௡} remains fixed. 
The first step is actually the forward process with super pixel refinement. The other step is the backward 
process with gradient descent. Unlike the supervised learning scenario with known target labels, here the 
batch normalization layer is used for obtaining multiple probable labels {𝑐௡} with different network 
parameters to achieve minimum loss. The error between the network’s predicted labels and the refined 
cluster labels is then backpropagated to update the network parameters. We iterate this forward-backward 
process once after each iteration of CAVGA encoder update to obtain the final segmentation labels {𝑐௡}.  

Task 3.3 Anomaly Classification 

Once the anomaly is detected and localized, it is needed to categorize them into more granular level to 
have better understanding of the root cause. However, the challenge is that for some of the anomaly 
categories, sufficient data was not present for training (less than 10 samples per categories) traditional 
deep learning-based classification algorithms.  

The only solution in such situation is to apply Few-shot learning (FSL) or low-shot learning (LSL) strategy, 
where depending on data availability 1-10 samples per class would be sufficient for training. It also handles 
the issue of imbalanced data distribution over the number of class samples. FSL is a type of meta-learning 
where a learner is trained on various related tasks during the meta-training phase to generalize well to 
unseen tasks with just a few instances during the meta-testing phase.  

Prototypical network5 is a popular FSL approach that is employed here. It learns an embedded space where 
classification can be performed by computing distances to prototype centers of each class as shown in 
Figure 12.The training data is split into support and query set. The same encoder of CAVGA used for 
anomaly detection is employed for feature extraction from support and query sets. Each class prototype in 
the support set is computed as the mean feature vector representation of the class. The query set is then 
used to fine-tune the model parameters. During training, prototypical network loss refines the weights of 
the encoder. The final anomaly classification of the glue dot is performed by calculating the posterior 
probability for the query instance. We classify anomalous glue dots as size-based (small, normal, large) 
and shape-based (tail, elongated, sparse-with tail, and random). 

Task 3.4 Anomaly Quantification with Assessment Score 

Once an anomalous dot is classified, the degree of degradation is computed using the dot quality shape 
assessment module. We introduce a novel metric called Dot Quality Index (DQI) to measure the deviation 
of the dot shape from the circular shape. 

 
5 Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." Advances 
in neural information processing systems 30 (2017). 

Figure 12: Prototypical Network, map images to 
embedding space Retrieve from: 
https://arxiv.org/abs/1703.05175 
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The input to this module is a segmented dot image with dot contour information. While the Hough circle fits 
over the dot for assessing the deviation in the circularity, the morphology segmentation can assess the 
actual contour region. The calculated shape metrics include (i) eccentricity ratio, (ii) circularity, (iii) 
roundness, (iv) radius, (v) offset, (vi) convexity, and (vii) solidity. The values for all these metrics range 
between 0 and 1. The final dot quality score DQI is computed based on the sum of the weighted score for 
each metric with a maximum value of not exceeding 10 as shown in Figure 13. On discussing with the 
Boeing team, the highest weightage is assigned to the eccentricity ratio (maximum deviation from the center 
of the circle to the desired radius of the circle). Although a specific cut-off value was not determined for a 
non-anomalous glue dot, it was observed that the dot quality score above 7.5 was classified as a good dot. 
The glue dot trends over time can be further integrated with the statistical process control charts to monitor 
the shape quality. In this project, the historical trends are plotted in the advisory system GUI. The DQI 
values are also part of the Bayesian Decision Network to correlate dot quality with glue process parameters 
(Task 4.1). 

Task 4. Advisory Feedback 
System 

This task involves the use of current glue inspection results obtained from Task 3 to develop the second 
feedback loop shown in Error! Reference 
source not found. for generating 
recommendations before depositing the next 
dot.  

Task 4.1 Process Parameter 
Optimization 

The objective of this module is to recommend 
process improvements (e.g., adjust dispense 
pressure, robot motion, or time parameters) to 
reduce the total number of glue dot defects. 
Bayesian Decision Network (BDN) is applied to 
achieve this goal.  

 

 

 

 

Figure 13: Pie Chart of DQI Metric with associated weightages 
of different descriptors 

Figure 14: Overall Bayesian Decision Network structure for process parameters recommendation 
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BDN is a graphical inferencing tool for calculating the probabilistic estimate of desired variables based on 
known observations6 as shown in Figure 14. The BDN training was performed in five steps7: (i) developing 
the causal network, (ii) cleaning and discretizing the raw data, (iii) learning the network parameters using 
the conditional probability table, (iv) analyzing the network, and (v) providing inferences. Based on the 
experimentation at the Boeing site, some of the critical process parameters contributing to the glue dot's 
quality were dispense pressure, motion factors and time constants. Further, on correlating the process 
parameters with the quality results, it was observed that the motion factor was the most significant 

parameter (based on the random forest algorithm 
analysis).  

 

Thus, to provide any recommendations, firstly, the motion factor is assessed, with the evidence such as 
dispense pressure, nozzle timings and user-defined quality attributes, as shown in Figure 15. If no changes 
are recommended for the motion factor, then the dispense pressure and time parameters are evaluated for 
any recommendations, in stage 2 and stage 3 respectively. During predictions, BDN produces output based 
on the most recent trained model. After each batch of operation, the user is provided with an option to re-
train the model. In this case the model will be trained again with both existing and new data without affecting 
inference performance. It is also important to note that if certain threshold of glue dots in a batch are non-
anomalous, then the network would not provide any recommendations. 

Task 4.2 Knowledge-based Recommendation 

A deterministic approach was also planned to be incorporated within the feedback system to preserve the 
knowledge of experienced worker. To that end, an initial framework for machine understandable 
representation of the glue deposition and inspection process (as shown in Figure 16Error! Reference 

 
6 Prediction of selective laser melting part quality using hybrid Bayesian network." Additive Manufacturing 32 (2020): 
101089 
7 https://github.com/pgmpy/pgmpy 

Figure 15: Recommendation strategy for improving the glue dot quality over time 
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source not found.Error! Reference source not found.) was developed using Semantic Technology 
Knowledge Graph8.  

 The objective of this module is to provide recommendations for corrective actions to be taken if a deviation 
from normal process is identified. This recommendation will presumably take the form of an action to take, 
whether by a human or robotic agent. Therefore, this module is a knowledge-based rule implementation. 
We developed an information model to map dot inspection results to rules and return the recommendations 
as shown in Figure 17Error! Reference source not found.. In this figure the Step 2 in Figure 16Error! 
Reference source not found. is shown at (1), namely the ingestion of labeled data for a particular glue 
dot. When new data is created, the inference engine9 (at 3) will try to perform inferences based on the pre-
defined rules (e.g., at 2). It should be noted that rules shown in the figure are in a form of pseudocode for 
readability, and that rules in the context of this project are knowledge-based ones from semantic model. 
The reasoner tries to match the features and produces a task recommendation (at 4, repeated from Figure 
16).  

This KG-based recommendation module is designed to be performed in OWL/RDFS graphs using the 
Topbraid Composer environment. Primary model integrations are with: (i) FONM – Functionality, Behavior, 
Objects, and Properties, (ii) SSF – Extensions to FONM to integrate QUDT and SSN, (iii) QUDT – 

Quantities, Units, and Dimensions, (iv) SOSA/SSN – 
Sensors and Observations, (v) W3C ORG – For 
manufacturers (vi) W3C PROV – Provenance. Five 

primary models have been constructed within the context of the Glue Dot project: (i) Glue Dot, (ii) Deposition 
Robot, (iii) Solar Cell, (iv) Task and Procedure.   

The workflows presented in Figure 17 require interaction with external services. The glue dot semantic 
module is implemented as a RESTful semantic web service running on an Amazon Web Services instance 
using the Topbraid Live Semantic Web Service. The data pipeline is implemented using SPARQL Motion10 
and SPIN Map11, both of which are Topbraid tools. The former allows the ontologists to develop semantic 
application workflows, while SPIN Map allows the ontologist to map different data formats into RDF. Both 
of these modules are implemented using the W3C SPIN RDF library. The general data pipeline is shown 
in Figure 18Error! Reference source not found.Error! Reference source not found.. In this figure we 
show a single web service running on the cloud: insertSGDataToMxDGDDataAndEvaluate. This web 
service is used to ingest image data for a glue dot deposition into the data knowledge graph. It also performs 
an analysis on the glue dot by comparing the data to what is expected and returns the result.  

 
8 Here we describe the basic framework that was implemented at the initial phase of the project. However, later Boeing didn’t 
want to use it, so refinement of the module was not done, and it is also not integrated with the final SMART-VISTA framework. 

9 We use the term inference engine because it is widely understood but the implementation will use a triple store’s available 
reasoner. Most reasoners support forward/backward chaining in the same way classical inference engines would. 
10 https://www.youtube.com/watch?v=5r4mHN7KuWo 
11 https://www.topquadrant.com/spin/SPINMapRDBMS/ 

Figure 16: Knowledge graph representing the glue 
deposition process 
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Figure 17: KG-based recommendation module workflow 

 

Figure 18: General semantic module data pipeline 
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Task 5. Software Subsystem Integration 

In this task, a User Interface for analytics visualization is implemented with different levels of integration. 

Task 5.1 User Interface Design for Analytics Visualization 

The objective of this module is to use the results of modules described in Task 3 and 4 to process glue dot 
images in real time, display the resulting quality metrics and recommendations to the user in a clear and 
actionable way, and save this information to a log file for potential further analysis. This task is accomplished 

with a GUI module that 
displays and logs 
process information, 
and a UI Manager 
module that detects 
new glue dot images, 
passes them to the 
processing modules, 
and gives the results to 
the GUI module to be 
displayed. The design 
of the UI will be 
discussed after an 

overview of the UI manager module’s functionality.  

Figure 19 shows the three key parts of the UI manager module and how dot images move from camera 
capture to the UI manager. The observation, processing and display processes occur in parallel to increase 
the performance and responsiveness of the UI.  

Once a new image is detected in the pre-defined local folder where dot images are expected to be dumped 
by the camera attached to the deposition robot, Figure 20Error! Reference source not found. shows 
how the image is passed to the processing modules and how the processing modules pass their results to 
the Bayesian recommendation module and the GUI module.  

 

  

Figure 19: Overall UI workflow 

 Figure 20: GUI Workflow: Processing and UI Threads 
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As shown in Figure 19 Figure 21, the GUI is divided into three areas. Specifically, an upper section for 
process state and glue dot quality data, a middle section for images, and a lower section displaying the 
current process parameters and a help textbox. The most important information is emphasized in the upper 
row of the middle section so that the user can tell at a glance how well the process is performing. More 
specific information about the process state and what factors contributed to these primary displays of 
process quality are arranged above and below this emphasized row.  

The key displays of current process quality (from left to right in Figure 21) include a schematic 
representation of the cell, the segmented dot image with highlighted anomaly area if it is a defective dot, 
and a plot showing the current value of the dot quality index as a continuation of its recent values. The user 
will be able to quickly notice a potential quality issue from the schematic representation filling in the grey 
spaces with red circles to represent anomalous dots, or from the segmented images highlighting problem 
areas, or from a decreasing trend in the dot quality index. Then, the more specific details above and below 
this row can be consulted to provide more information about the nature of the potential quality issue.  

Once all the dot images corresponding to a cell is completed, the UI will use a popup window to show the 
Bayesian recommender’s suggested parameter adjustment at the end of the batch as shown in Error! 
Reference source not found.Error! Reference source not found.. If the user is unclear about the 
meaning of any data displayed in the GUI, moving the mouse over that number or figure will cause the help 
textbox at the bottom of the window to display a short explanation about the nature and significance of that 
type of data. Figure 23 shows how our approach was effective in reducing occurrence of defective dots in 
the next cell batch with correct recommendation generation. 

Figure 21: GUI for inspection and advisory feedback analytics visualization 



 

DISTRIBUTION STATEMENT A.  Approved for public release: distribution unlimited.  

 
Final Project Report | March 25, 2023  24 

1415 N. Cherry Avenue 
Chicago, IL 60642 
(312) 281-6900 

mxdusa.org 
@mxdinnovates 
info@uilabs.org 

 

 

V. RESULTS 

Algorithm Evaluation: 

Vision-based Deposition Path Planner: 

For detecting the corner pixels, the traditional approach may consider shadows as part of the cell, resulting 
in non-accurate coordinates location. However, through filtering out the shadows and reflections, our 
approach was able to detect near-accurate pixel coordinates (green dots), as highlighted in Figure 24. A 
case study was conducted to validate the results from this algorithm. The evaluation metric was its 
comparison with the ground truth pixel coordinates based on user observation. The average accuracy for 
this case was reported to be 99.45%. The accuracy was calculated based on the deviation on the pixel 
coordinates in X or Y direction with respect to the image size (1600 X 1200 pixels in this case). Error! 
Reference source not found. shows the results for the pixel accuracy for four corners – top right, bottom 
right, top left and bottom left. Figure 25 shows the results for corners detected in varied position, 

Figure 22: At the end of a solar cell batch, process parameter recommendation is shown through a pop-up window 

Figure 23: Effect of implementing process parameter recommendation from previous cell (shown in Figure 22): no 
more defective dots deposited in the current batch 
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orientation, and shadow effects. An initial 
eye-in-hand calibration was performed on a 
checkerboard. These transforms, along with 
the pixel coordinates were deployed in the 
transformation matrix to move the robot to 
the desired location. The robot arm tooltip 
was driven to desired locations on the cells 
to within 4 mm of the target location. Once 
the additional manual was made to the 
camera-to-flange transform, this error was 
reduced to around 1 mm.  

Table 1: Accuracy in corner coordinates location (2D – Pixel 
Units) 

 Traditional 
Approach 

Our Approach Ground Truth Accuracy (%) 

X     Y X Y X Y X Y 
Top Right 21 231 33 239 37 237 99.75 99.83 

Bottom Right 12 768 33 768 37 751 99.75 98.58 

Top Left 1376 234 1380 234 1380 224 100 99.16 
Bottom Left 1382 771 1386 782 1381 769 99.68 98.92 

 

 

 

 

 

 

 

 

 

 

AI-based Vision System for Real-time Quality Inspection: 

The qualitative results for dot anomaly detection, localization, and segmentation are shown in Error! 
Reference source not found.Error! Reference source not found.. It can be observed that the anomalous 
dots are rightly identified with high localization accuracy. The attention based CAVGA approach helped to 
localize the anomalies which is useful for users to understand the defects. The second row of the figure 

Figure 24:Cell corner detection result comparison 

Figure 25: Cell corner detection results for varied position, orientation, type of cells, and with different shadow 
effects: proposed method is robust enough to handle these challenges. 
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also shows output of our unsupervised segmentation approach which is able to segment the dots with high 
accuracy.  

 

Table 2 shows quantitative accuracy of our approach which supports the qualitative results.  

Figure 27 shows qualitative results for anomaly classification. Anomaly dot are classified into different 
shape as well as size classes. Overall >90% accuracy was achieved for anomaly classification. The 
classified performed poorly when the inter-class variation in different shape or size classes is low. For 
example, the dot image in top right corner was falsely classified as having tail while its true ground truth 
class is elongated. However, the dot has properties of both the classes to some extent that confused the 
shape classifier. 

 

 

Table 2: Anomaly detection result 

Total 
Predicted 

Acceptable Dot Not Acceptable Dot (Anomaly) 

Actual 
Acceptable Dot 29.94% 03.56% 

Not Acceptable Dot (anomaly) 0.62% 65.89% 

 
 

Figure 27: Anomaly classification results 

Figure 26: Qualitative results for anomaly 
detection, localization, and segmentation: top 
show shows original dot images, middle row 

shows segmented dot, bottom row shows 
anomaly detection results where area of anomaly 

is highlighted in orange color 
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Dot Quality Assessment Score 

The dot quality assessment was performed using the shape metrics discussed in Task 4.4 above. Figure 
28 shows the dot quality index (DQI) calculated for different quality of glue dots. The blue outline represents 
the shape of the glue dot while the red circle represents the desired circular shape. The green and the 
yellow lines from the center of the circle represent the maximum and minimum point of the glue dot - an 
important parameter to calculate eccentricity. It was also observed that the results from the dot quality index 
were in-sync with the dot anomaly detection module. For example, the images (a) and (b) had DQI below 
7.5 and were classified as anomalous, while a good quality glue dot of DQI 9.5 was classified as a non-
anomalous glue dot. This metric was significant to capture the relations and uncertainties for the process 
parameter recommendation module. 

 

 

Advisory Feedback System 

Three variations in the BDN designs were evaluated to assess accuracy of recommendations –  

 Design I – With DQI, NN classification and segmentation  
 Design II – With DQI and NN classification only 

 Design III – With DQI only 

Figure 29 shows the results for the random 
forest feature importance, in which motion 
factor is the most critical parameter for the 
quality. Three case studies results are 
reported in which the motion factor, dispense 
pressure, and nozzle timings are predicted 
with varying number evidence as shown in 
Figure 30-Figure 32. For the motion factor 
and nozzle timings, Design I shows highest 
accuracy as evident from Figure 31. For the 
dispense pressure, although Design II shows 

highest accuracy of 93.88%, it decreases rapidly as a greater number of evidence are removed (see 
Figure 30). Alternatively, the Design I shows consistent accuracy levels even with variations in the 
available evidence. Although Design I takes more training time, a pre-trained module can be deployed, 
and this model can be re-trained in the background while the process is running or when the system is 
idle. 

 

Figure 28: DQI measurement accuracy 

Figure 29: Feature importance for process parameters (MF – 
Motion Factor, DT – Dwell Time, TD – Trigger Delay, OT – 

Open Time and DP – Dispense Pressure) 
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Figure 30: For predicting the dispense 
pressure, if all evidence is present, 
Design II (DQI and NN classification only) 
module gives highest average accuracy 
(93.88%). But as more evidence becomes 
unavailable (which may occur in certain 
computer vision application). 

Figure 31: For predicting the motion factor, 
Design I (DQI, NN Classification and 
Segmentation) report the highest 
prediction accuracy when all the evidence 
are available. 

Figure 32: For predicting the nozzle timings, 
Design I (DQI, NN Classification and 
Segmentation) report the highest prediction 
accuracy when all the evidence are 
available. 
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MxD-20-02-07 Project Deliverables 
# DELIVERABLE 

NAME  
DESCRIPTION  FORMAT 

OF 
DELIVERY 

1 Project 
requirements 
documentation 

Description of the project requirements across all the partners. Word 
Document 

3 Labeling User 
Interface 

A user-interface will be used for performing image pre-processing 
operations and for labeling glue dot position and defect types. 

Software 
Module 

4 Meta data and 
storage Interface 

Storage interface to store image as well as meta data to optimize the 
control feedback. 

Software 
Module 

5 Vision-based 
Path Planner 

This deliverable is a software module for performing automatic path 
planning of the glue dot deposition robot by camera calibration and solar 
cell localization together with image capture system. This deliverable 
includes following software modules: 

 Cell detection and pose estimation module. 
 Module to find solar cell location w.r.t. robot. 
 Module to communicate with an industrial camera and industrial 

controller over OPC UA. 

Code repo 
with readme 
and 
licensing.txt 

6 Inspection with 
Recommendation 

This deliverable is a software module that includes a GUI for visualizing 
dot inspection results along with process parameters recommendations 
for reducing/removing fluid deposition errors using state-of-the-art 
machine learning techniques. 
This deliverable includes following software modules: 

 Glue dot detection and anomaly localization module. 
 Glue dot classification module. 
 Glue dot quality quantification module. 
 A BDN network module for process parameter optimization 
 A knowledge graph module representing the glue deposition 

process. 
 User Interface for advisory feedback analytics visualization 
 Edge deployable software.  

Code repo 
with readme 
and 
licensing.txt 

7 Demonstration of 
the technology  

Transfer the technologies to Boeing manufacturing research facility at 
Charleston for final demonstration. 

 Demonstration of the fully automated robotic cell for (a) cell 
localization; (b) glue deposition after path automatic refinement; 
(c) image capture after glue deposition. 

 Demonstration of the integrated inspection evaluation and 
recommendation system. 

Video 

8 User Manual Detailed documentation to install and run all the modules of the SMART-
VISTA software. 

Word 
Document 
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System Overview 
 

The goal of this project is to develop an Artificial Intelligence-based solution for sealant deposition 
monitoring on planner surface with real-time feedback about glue dot quality and corresponding process 
parameter change recommendations so that dot quality is maintained in future. The framework consists of 
two main modules:  

 Vision-based Deposition Path Planner Module: This module performs automatic path planning 
the glue dot deposition robot by camera calibration and solar cell localization. 

 Inspection with Recommendation Module: This module includes a GUI for visualizing dot 
inspection results along with process parameters recommendations for reducing/removing fluid 
deposition errors using state-of-the-art machine learning techniques. 
 

 

Overall workflow during deployment of SMART-VISTA framework is shown in Figure 33Error! Reference 
source not found.. Yellow boxes highlight the part of the process flow that will be done manually. Parallel 
inspection software employing SMART-VIStA will be running in the background without hampering the 
normal workflow. After the solar cells are organized manually in predefined locations, the “Vision-based 
Deposition Path Planner” module is run. The goal of this module is to refine the deposition path after 
finding precise coordinates of the solar cells in robot frame camera. 

After deposition path is automatically updated, the deposition process starts. During deposition of glue dots, 
the camera attached with the arm of the robot captures image of individual glue dot and saves it in local 
folder. “Inspection with Recommendation” module is run in parallel whenever new image is available in 
the local folder. The module performs follows tasks: 

 Deep Learning-based computer vision module analyses current glue dot quality and find out if it is 
anomalous or not. If it is detected as an anomalous dot, the module also finds out the category of 

Figure 33: Overall system workflow starting from manually putting the individual cells on a sheet till the quality 
checked glued sheet product 
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anomaly and highlights the location of degradation. This module also segments out the glue dot 
from background for quantitative analysis, i.e., finding Dot Quality Index. 

 Deep Bayesian Network finds relationship among the glue deposition process parameters with the 
observed/measured dot defect metrics to recommend process improvements (e.g., clean nozzle, 
adjust pot pressure, etc.) to reduce the total number of defects. 

 A GUI maps real-time glue quality inspection results on the Digital Twin of solar panel. 

 
System Requirements 

Hardware and software specifications of SMART-VISTA framework are noted in Table 3. The hardware set 
up is illustrated in Figure 34. The setup information, system goal and assumptions made during SMART-
VISTA software development are described in detail in Table 4,Table 5, and Table 6, respectively. 

 

Table 3: System Specifications 

Hardware and Software Specifications 
Robot S7 1500 (connected directly to the KUKA controller) 
Robot control library mxAutomation /Robot Integrator  
Simulation Software Process Simulate  
Camera Mako 192-C gigE  
Equipment for Deposition 

Techcon TS5322/TS5322D  
 

 

 

Table 4: SMART-VISTA setup 

Setup 
Calibrate robot and camera Establish relationship between robot and cells 
Calibrate dot sizes Calibration will be performed by weight 

 

Figure 34: Hardware setup 

Commented [HA(SDU1]: @Amine: provide source to 
Joshua 
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Table 5: SMART-VISTA system goals 

System Goals 

Quality Goal ~1 NC dot/100 

Hardware Resource Goal Use same vision hardware for localization and classification 

Time Goal 2 seconds per dot  

 

Table 6: Assumptions made during SMART-VISTA framework development 

Assumptions 

Glue Type White silicon grease   
Height of Nozzle Fixed 
Angle of Nozzle  Fixed 
Amount of Glue  Fixed for both dot sizes small and large 
Number of Dots per Cell 12 dots per cell 
Number of Cells   3 cells   

Cell Size 2” x 5”   

Task Space 

24” x 48”    
Dot Size Categories Two discrete dot sizes: small and large 

Dot Shape Categories Tail, elongated, crescent, sparce with tail, random 

Dot Speed Depends on: 1. Dispense time (valve open + valve closed)  
2. Retreat speed 
3. Break off pattern speed 
4. Move to next dot spot    

Dot-to-Dot Hardware 
Operations  

1. Dispense dot  
2. Take image 
3. Move to next dot 

Dot-to-Dot Software 
Operations 

1. Store Image  
2. Do computer vision-based quality inspection on each image 
3. Generate parameters optimization recommendation 
4. Display results on UI 

Dot-to-Dot Operation time  2 sec cycle time 

Glue Removal  After the whole sheet is done, no stopping of robot in-between. 
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System Architecture 

SMART-VISTA dot-to-dot inspection system comprises an image acquisition subsystem, an image 
processing subsystem, a recommender subsystem, and a user interface with near real-time control 
feedback. Figure 35 shows the overall process workflow of the system.  

After the glue deposition robot makes a dot deposition, the image acquisition system uses the camera 
mounted on the same robot to capture image of the cell featuring one or multiple glue dots (always including 
the latest one). The glue deposition process starts again after the image capture. 

Then, the acquired images are preprocessed to find the region of interest for detailed glue quality 
evaluation. The inspection system validates glue dot position, size, and shape (according to specification) 
and accordingly quantify dot quality. The inspection results are fed to the recommender system.   

The recommender system generates up-stream process parameter tuning recommendations for 
reducing/removing fluid deposition errors before depositing the next dot. This avoids potential quality 
degradation of the product.  

Finally, the inspection results along with the corresponding recommendations are displayed on a user 
interface to help users gain real-time insights of the inspection process.  

Note that, the inspection process software will run in the background independent of the robotic operation. 
Thus, there is no time restriction for the SMART-VIStA operation.  
 

 

Software Installation and Usage Documentation 
 

Figure 35: The SMART-VISTA inspection with recommendation system workflow 
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As mentioned before, the overall pipeline is divided into two software packages based on two primary 
phases: phase one is vision-based path planning and phase two is dot inspection during dot deposition. 
Each of these two packages are described in detail below. 

Software Package 1: Vision-based Deposition Path Planner 
 

This python package includes modules that assist in the process of robotic dot deposition, e.g., camera 
calibration, cell localization, and PLC communication over OPC UA. These packages were used 
independently for convenience but could be combined using a single python routine. 

Requirements 
 

Implemented in the programming language Python, the proposed tool relies on the following code libraries: 

• Python >= 3.9 

• Opcua 

• OpenCV  

• Pillow 

• Yaml 

• Allied Vision (Vimba) 

Installation 
 

First, Download and unzip this directory: link 

Then, go folder root “mxd_delivery-main/SMART-VISTA_framework/ RobotPathInitialization” and run following 
commands to create Python environment: 

 Create and activate Anaconda Environment  
conda create --name boeing-ml python=3.9  
conda activate boeing-ml  

 
 Install Allied Vision (Vimba)  

 
Get vimba by installing Vimba SDK from Allied Vision. In the terminal change directory to the Allied 
Vision Vimba Install Directory. Navigate further to "VimbaPython\Source". It should contain 
"setup.py". While in this directory on the terminal, run "pip install ."up in the code.  
 

 Install OPC UA Python Library  
pip install opcua  

 Install Opencv  
conda install -c menpo opencv  

 Install Pillow  
conda install pillow  

 Install Yaml 
conda install -c anaconda yaml 

 
If these steps succeed without errors, the framework is ready to run. 

We now present the steps to use the tool.  
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1. Calibrate camera using multiple poses and associated checkerboard images using hand-eye-
calibration.py  

2. Capture image(s) of cell(s) and deposit it into the “Images” folder 
3. Run corner_pixel_coordinates.py  to detect corners of the solar cell images: the pose 

information with associated cell image name is saved in the text file Localization_input.yaml 

Example content of Localization_input.yaml 
cell_1: 
      base2flange: 
        A: 176.05 
        B: 89.68 
        C: 176.06 
        X: 858.75 
        Y: -151.48 
        Z: 532.48 
      length: 125 
      width: 50.8 

4. Run localization.py to detect corners of the solar cell w.r.t to robot base: the pose information is 
saved in the text file localization_output.yaml 

Example content of Localization_output.yaml 
cell_1: 
  base2cell: 
    A: 0.5579474732615125 
    B: 0 
    C: 0 
    X: 829.8958074220801 
    Y: -108.63305998898431 
    Z: 0 
  base2flange: 
    A: 176.05 
    B: 89.68 
    C: 176.06 
    X: 858.75 
    Y: -151.48 
    Z: 532.48 
  corners: 
    bottom_left: 
      base: 
      - 829.8958074220801 
      - -108.63305998898431 
      - 308.10180073624883 
      camera: 
      - -64.64644524527064 
      - 15.614584006284678 
      - 268.0923139507875 
      flange: 
      - 224.5519528260482 
      - 42.755762629105654 
      - -27.61098054192751 
      pixel: 
        u: 97 
        v: 813 
    bottom_right: 
      base: 
      - 954.8894448949585 
      - -109.85028906473116 
      - 308.43186841994174 
      camera: 
      - 60.35232992870386 
      - 16.16794194304892 
      - 268.0923139507875 
      flange: 
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      - 223.52498773762187 
      - 41.560609464430755 
      - 97.37908686992783 
      pixel: 
        u: 1442 
        v: 819 
    top_left: 
      base: 
      - 830.6281731181048 
      - -58.657054928694706 
      - 307.2384590250367 
      camera: 
      - -64.18176578365735 
      - -34.37208294808501 
      - 268.0923139507875 
      flange: 
      - 225.4304277511332 
      - 92.7315605303477 
      - -26.882484729084396 
      pixel: 
        u: 102 
        v: 271 
    top_right: 
      base: 
      - 955.6163776804847 
      - -60.88860726370214 
      - 307.5860725844807 
      camera: 
      - 60.81700939031715 
      - -32.80423546058633 
      - 268.0923139507875 
      flange: 
      - 224.38555709139678 
      - 90.52208997606357 
      - 98.10222803976616 
      pixel: 
        u: 1447 
        v: 288 
  depth: 268.0923139507875 
  length: 125 
  width: 50.8 

5. Use “base2cell” as the transform between the robot base and bottom left corner of cell. Use 
“python-com” to download the base2cell information to the PLC using Python. 

 

Software Package 2: Inspection with Recommendation  
 
An operator-friendly user interface designed to help subject matter experts with the inspection process. The 
GUI will display: (i) real-time inspection results overlaid on the Digital Twin of the current solar panel, (ii) 
recommended actions to correct anomalies and (iii) dot analytics and trends. 

This software package contains the necessary resources to configure an appropriate Python environment 
for installing and running the SMART-VISTA user interface framework. 

Requirements 
 

Implemented in the programming language Python, the tool relies on the following code libraries: 

 python=3.6 
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 scipy 

 opencv 

 pillow 

 pytorch 

 torchvision 

 matplotlib 

 scikit-image 

 scikit-learn 

 shapely 

 pgmpy 

 ipython 

 PyYAML 

 Watchdog 

 easyfsl 

Installation 
 

First, Download and unzip this directory: link 

Next, use following instructions to create the environment to run the software. 

 Go to folder root “mxd_delivery-main/SMART-VISTA_framework/ InspectionWithRecommendation” and 
run following command to create Python environment from PlatformIndependedtEnvB.yml (or 
use the Anaconda package manager) and activate it. 

conda env create -f PlatformIndependedtEnvB.yml 
conda activate boeing-ml 

 Install Easyfsl 

pip install easyfsl 

 

If all went well, the tool is now ready to be used. 

To use the tool, run the following command: 

 To start the UI Framework, activate its python environment and then run: 

python UImanager.py 

The user will be prompted to select a dot image folder. This is the folder that UImanager.py will search for 
pre-existing dot images and observe for new dot images on an ongoing basis. Along with the dot images, 
a process parameter .yml file should be present in the same folder which records the process parameter 
settings during the dot deposition of these images. This repository provides pre-captured test data which is 
placed under the folder "Test_data" that can be selected in this stage. 
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Next, the user will be prompted to select or create a folder for storing the "csv" log files that will be generated 
after processing the test data by the UI framework. For example, a folder named "CSV_data" is provided 
with this package that can be selected in this stage. 

However, any two different folders can be specified during this stage, but it is recommended that they be 
descriptively named and only used by the UI framework and the module being used to capture and save 
dot images. 

After getting these two folders’ paths as input from the user, the UI window will close, and the UI framework's 
behavior will depend on the specific contents of the input image folder under observation. 

In order to generate recommended parameter changes, information about the process parameters that 
were set during capturing the current dot images is necessary. Therefore, the UI framework will not start 
processing any dot images until a valid parameter .yml file is present in the observed image folder. Instead, 
it will continue to prompt the user to add a valid parameters file. If a valid parameter information file is 
present in the observed folder, the UI framework will start working. It will sequentially display the processed 
output for all the dot image files currently within the folder. When new images are added to the observed 
folder, the UI framework will process and display their results as they are added. 

If multiple images are added at once or if a subfolder of images is added, they will be processed in the 
sequence in which they were captured (assuming the file naming convention used appends the capture 
time to the end of each image's name when they are saved initially). If process parameters are changed 
during new dot image capture, then add a new parameter file to the observed folder with the updated 
parameters. The UI will use the most recently added parameters file as the current process parameters. 

The UI framework will continue to run and process new dot images added to the specified folder until the 
GUI is closed or the process is ended by the user. 

Troubleshooting 
 

Problem: Some files cannot be extracted from the compressed directory 
Try: 
 -Noting which files give this error and downloading them individually from this repository 
 
Problem: Environment won't build 
Try: 
 -Making sure all channels listed in PlatformIndependentEnvB.yml are added to Anaconda navigator 
 
 -Change build options to allow for more permissive environment solving 
 
 -Manually add the necessary packages one at a time to a new python environment  
 
Problem: UI launches but does nothing after the user specifies the observed folder and the log folder 
Try: 
 -Ensure that there is a process parameters information .yml file present in the observed folder 
 
Problem: DQI output image displays with an outline applied with incorrect rotation 
Try: 
 -If this error occurs, edit the python environment to change the version of the scikit-image package to 
0.17.2 
 
Problem: UI Framework crashes with errors about PyTorch installation 
Try: 
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 -Verify that the environment's version of PyTorch includes CUDA 
 

 

 

VI. DISCUSSION & ANALYSIS 

 

Industry Impact 
 

SMART-VIStA may yield unprecedented technological solutions in the domain of real-time in-situ 
automated inspection process. In such settings, the active monitoring systems works like a real-life human 
inspector by finding the best position to do inspection. Ability to predict future events associated with quality 
degradation through tracking gradual change in inspected object quality can be used to alert up-stream 
worker to take corrective action as required. Additionally, by anticipating the need of future up-stream 
parameter change, the system can not only respond more quickly (e.g., by preemptively tune the 
appropriate process parameter, etc.), but also better ensure the quality of the product.  

Thus, SMART-VIStA improves the performance of the automated glue disposal process and reduces 
manufacturing costs associated with reworking the glue disposal after wiping, scrapping a low-quality glued 
solar panel, shipping defective products, or re-inspecting products.  

The system can be adapted with minor modification for any defect assessment and real-time feedback that 
requires human interpretation in conjunction with a robot. It can be integrated with upstream processes for 
providing intelligent feedback of defects checklist through Enterprise Resource Planning (ERP) and 
Manufacturing Execution Systems (MES). 

 

Key Performance Indicators & Metrics  
 
 

KPI Metric Baseline Goal Demonstration 

Robotic 
system 

localization 
Positional error 

Localizing using the 
native robot teach 
methods yielded 
>4mm of metric 

error 

Achieve metric 
error of <2mm 
using computer 

vision 

Demonstrate ability to place 
dots onto 6 solar cells (72 

dots) with an average metric 
error <2mm, with cell 

localization accuracy >99%  

Glue dot 
quality 

conformance 

Anomaly 
detection & 

classification 
accuracy 

Detect metric using 
visual human 

inspection 

Achieve metric 
accuracy >95% 
using computer 

vision 

Correct, consistent and robust 
dot defect detection& 

categorization using computer 
vision in a production-like 

environment on 3 mock solar 
cells with >95% accuracy 

Feedback 
accuracy  

Process 
parameter 
prediction 
accuracy  

Currently feedback 
is provided by 

human operators in 
an informal manner 

Up-stream 
process parameter 
prediction with up-
to 90% accuracy  

Demonstrate process 
parameter prediction ability in 
a production-like environment 
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on 3 mock solar cells with 94% 
accuracy 

Speed of 
inspection 

and adaptive 
feedback  

Time to perform 
inspection and 

parameter 
optimization  

Current speed is 
based on subjective 
interpretation and 

knowledge of 
operator 

Dot classification 
and adaptive 

feedback of each 
cell in less than 3 

seconds 

Demonstrate process 
parameter feedback ability in a 
production-like environment on 

3 mock solar cells with 2-3 
seconds processing time per 
cell (12 dots in a cell batch) 

Visual 
Feedback to 

operators 

Visual access to 
inspection 

analytics within 
Digital Twin 

None UI interface  

Demonstrate easy to use UI 
for real-time dot-by-dot defect 

and trend analysis, 
recommendations within solar 

cell Digital Twin  

Qualifying 
record of 

each dot on 
each cell 

Defect record of 
each dot on each 

cell for 
traceability  

Overall sheet image 
with dots but no 
record of specific 

defects of each dot 
on cell 

Database of dot 
inspection record 
will be stored for 
future retrieval or 

analysis 

Demonstration of storage of 
dot defect information and 

trend analysis 

Deployment 
Cost and 
Training  

Cost and 
Training Time 

At least 6 weeks of 
training needed for 

the manual 
inspection 

System that is 
easy to set up and 

ready for use 
within 1-2 hours. 

Setup and demonstration of 
the system at the site in a 

production-like environment on 
3 mock solar cells 

 

 

 

Accessing the Technology 
 

The software code will be shared in MxD SharePoint with detailed user manual. Members may access the 
software under MxD agreement. Instructions to create environment required to run the software will be 
provided in the user manual. However no general software support will be provided after the project 
duration. Anyone interested to use the software may contact Siemens to know future course of action. 

 

Workforce Development 
The algorithm development, data gathering, CNN training, implementation and integration, will be used to 
train students at both graduate and undergraduate levels with industry-relevant skills making them ready 
to join workforce upon graduation. Computer Vision and AI related topics will be integrated with several 
graduate and undergraduate courses at the UC. This project also served as a training platform for one M.S. 
student and two Ph.D. students and learning several key aspects on CV and AI for manufacturing. 

 

Lessons Learned 
 

Issue What went well What went poorly Learning 
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Lighting and 
Background: CV 
algorithms require 
fine-tuning to adapt to 
specific lighting and 
reflective conditions.  

Current algorithm 
works well on test 
data with same 
lighting/background 
characteristic as 
training 

If lighting/background 
changes, finetuning of 
the algorithm 
parameters is needed 

This challenge can be 
addressed by considering all 
the possible variations in 
images in the training pool. 

Robot End Effector: 
Reducing the vision 
hardware to one 
image sensor requires 
an optimization of 
hardware placement.  

The camera is 
positioned such that it 
can capture the solar 
cell and dots, which 
are much different 
sizes.  

Adjusting the camera 
focus changes the 
camera intrinsic 
parameters, so an 
optimal focal 
plane must be chosen 
for the two objects. 
Otherwise, the camera 
would need to be 
recalibrated 
before each 
localization. 

Using a separate fixed 
camera capable of capturing a 
whole array of solar cells 
would significantly reduce EE 
design challenges and 
improve localization 
performance.  

Process Parameters 
Optimization and 
Recommendation 

The current method 
considers entire cell 
plate to generate 
predictions. 

For online training, the 
larger the training data 
size, the more time it 
takes to provide recom
mendations.  

In such cases, an offline 
trained module can be 
deployed for the given batch 
and the model can be later 
retrained when the system is 
offline. 

The module can be adapted to 
provide recommendations after 
every glue dot using ‘Dynamic 
Bayesian Network’ approach. 
The current method considers 
entire cell plate to generate 
predictions. 

System Integration Integrated system 
performance is 
satisfactory.   

Integration effort was 
more than expected. 

Plan integration at the 
beginning of development and 
revise it as needed throughout 
the development process. 

 

VII. CONCLUSIONS & FUTURE WORK 

The quality inspection solution SMART- VIStA could be used for other manufacturing processes that include 
human-in-the-loop for quality inspection. Many manufacturing companies are being asked to increase 
automation, but for small manufacturing operations, the cost can be prohibitive. This technology will help 
small and large companies examine the optimum process parameters that can be changed adaptively in 
response to degrading quality of the product to ensure that the company is maximizing efficiency, 
minimizing cost.  
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Next Steps & Challenges 
 
The Siemens Technology team leading the work is the entity within Siemens who will be involved actively 
with other Siemens Business – such as Siemens PL, Siemens Digital Industry or Siemens Gas and Power– 
by demonstrating the prototype developed under this project. Siemens Digital Industry-Factory Automation 
(DI-FA) has shown interest in adopting the SMART-VIStA solution as a potential pilot customer to 
demonstrate the tool in different operational environment. They will be involved in discussions related to 
plans for technology transition and commercialization. The technology will be demonstrated to Siemens 
other business divisions such as Digital Industry-Motion Control (DI-MC) to develop and realize additional 
use cases. Siemens Technology has multiple teams and projects actively researching and developing 
technologies in related domains. We also plan to further develop the technologies by launching more 
research and development projects working with other entities. We will proactively pursue to insert the 
developed technology to the product roadmap of Siemens.  
 
Boeing is also committed towards adoption of this technology. They are aligned with the future factory 
movement and aim to embed this project with other automation efforts to improve engineering processes 
at this site and beyond with other deployments and programs. The decision to produce this effort is 
particularly well timed as there are future plans to update the working environment to support automation 
in the near term. The design of the system will seek to deliver tools to enable workers and train them in new 
skills to manage and safely work around such proposed automation. The results will also benefit other AI 
related automation programs with the learnings for adding this functionality to Boeing’s automation 
capabilities.   

 

Transition Plan 
 

Requirements to Extend the Technology for Other Organization: One of the salient features of 
the developed technology is the ease with which manufacturers of different sizes can customize and adapt 
SMART-VISTA. The core technology modules are designed to be modular so that the end-users can pick 
and choose the components to suit their diverse needs as follows: 

o Inspection path planning for best view monitoring: To use this module, it is needed to update the 
definition of best view quality metric specific to the use case. Other applications could be 
automated welding, painting, soldering, etc. 

o Deep learning algorithms for visual anomaly detection, localization and classification: This module 
could be adapted for other defect detection problems by retraining the modules with use case 
specific anomaly data. Other applications could be crack/scratch detection, leak detection etc. 

o Defect quantification using shape analysis can be used for other shapes of defects. 
o Process parameter optimization: This module could be applied to optimize any upstream process 

parameters that directly causes defect in product by retaining with use case specific data. 
o Digital Twin interface for defect trend feedback/analytics: This module could be adapted to any 

other inspection problems with minor modifications to suit the use case. 

This approach would be most beneficial for different stages of designing a manufacturing process, like, 
process design and fine-tuning, commissioning, or during operation.  

 

Types of adaptations and extensions of our work: The knowledge generated from this project enables us 
to identify and extend the technology to further monitoring challenges and to run trials in different production 
environments as follows:  
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 Detection of weld spatter and quality issues in TIG, MIG and other welding process; feedback to 
welding process parameters including quality and strength of welds and aesthetics.  

 Detection of defects in leather for use in car upholstery and other high-end apparel.  
 Detection of defects in leather for nesting shapes and process planning in cutting stock problems 

for handbags, shoes and other high-end apparel. Possible reduction of scrap and optimization of 
material for a given master schedule. 

 Detection of defects in rolled sheets (rolling process), including centerline cracking, inclusions and 
other defects.  Adaptation in sheet metal and other industries using metal plates, sheets and foil – 
examples including rolling mills, automotive body panels, kitchen counter tops and appliances (Auto 
Manufacturers, Appliance manufacturers)  

 Application for detection of anomalies in PCB or other electronic components. Possible application 
at Intel, AMD, NVidia. 

 Defect detection and feedback in Printed Electronics (Additive Manufacturing). Possible 
applications at Optomec, Rockwell Collins. 

 Real time process control in Powder Bed Fusion (PBFAM) and Direct Metal Deposition (DMD) 
Additive Manufacturing by training images of each layer with CNN for defect prediction (porosity, 
balling, surface roughness) and process feedback (laser power, speed, hatch pattern etc.) 
modifications. 

 Inspection of aircraft panels for blemishes/defects in moving aircraft parts line and real time 
feedback of process parameters 

Educational Outreach: University of Cincinnati will be responsible for the education transition and 
outreach of this project. The focus is to disseminate information through the university and industry 
community mechanisms. Project results and methods will be disseminated through conferences, papers, 
classwork, and presentations through MxD and other channels within the manufacturing and defense 
related industries. Results obtained and techniques generated from this project including computer vision 
algorithms, machine learning methods, inspection and process Digital Twin will be integrated into courses 
offered at UC. These courses include “Manufacturing Processes” offered to undergraduate Mechanical 
Engineering students, “Robot Control and Design,” “CAD for Manufacturing,” “Computational Methods in 
Additive Manufacturing,” “Precision Engineering & Computational Metrology, “Intelligent & Autonomous 
Mobile Robots”, and “Mathematical Models of Decision Making” offered at the graduate level. All these 
courses are taught by the PI or Co-PI at the University of Cincinnati. Topics related to robot hand-eye 
calibration, transformation and path planning will be integrated in robot control and design MECH 
5131/6032. Bayesian Network aspects would be integrated in Decision Engineering class MECH 7020. All 
course and training materials will be made available to MxD tier 1 and 2 members. 

Do you need a transition or commercialization partner? Advocating for the solution from an end-user 
perspective will encourage the productization at Siemens level. 

The table below provides a catalog of all of the project deliverables and their respective transition routes. 
Deliverables can transition through deployment at an industry member’s site, as an educational reference 
or through a commercialization effort. Each of these transition routes are detailed below.  

Table X: Deliverable Deployment Summary 

# DELIVERABLE FILE NAME 
TECHNOLOGY 
INTEGRATION EDUCATION COMMERCIALIZE 

1 Vision-based Path Planner X X 
 

2 Inspection with Recommendation X X  

 

Deliverable 1 – Vision-based Path Planner 
 Technology Integration: Boeing will deploy Vision-based Path Planner software at their Charleston, 

Technology Center of Excellence to further develop a hardened production solution before working 
with an aerospace integrator on a production system. 
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 Education: Vision-based Path Planner software will be used to educate undergraduate and 
graduate students with integration in multiple courses so that the students get a broad perspective 
and applications of automation using image-processing. 

 Commercialization: NA 

Deliverable 2 – Inspection with Recommendation 
 Technology Integration: Boeing will deploy Inspection with Recommendation software at their 

Charleston, Technology Center of Excellence to further develop a hardened production solution 
before working with an aerospace integrator on a production system. 

 Education: The inspection recommendation software will be used in selective graduate level 
courses for providing additional insights on applications of random forest algorithm for feature 
importance and Bayesian Decision Network for probabilistic estimates of the process parameters. 

 Commercialization: NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Demos 
This section should minimally include all setup instructions, bills of materials, known exceptions, 
and additional relevant materials to enable someone to replicate the demonstrations.  
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Appendix C: Validation & Testing 
This section should minimally include the project test plan, results, and exceptions to 
functionality/modes of operation.  
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Appendix D: User Resources 
This section should minimally include all installation manuals, user guides, and additional 
materials necessary for a user to use the technology deliverables.  
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Installation Manual 
The installation manual should cover how to install all technology components as an 
inexperienced user with no installation completed previously. Clearly state any assumptions.  

User Guide 
The user guide should provide enough instruction for an inexperienced user to understand how 
to use all modes of operation and features of the technology. The user guide should also 
describe any known bugs or exceptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


