
Contracts in System Development
© 2023 Carnegie Mellon University 1

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Contracts in System Development: From

Multiconcern Analysis to Assurance

MAR C H 1 7 , 2 0 2 3

Jérôme Hugues

Sam Procter

Contracts in System Development
© 2023 Carnegie Mellon University 2

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

DM23-0235

Contracts in System Development
© 2023 Carnegie Mellon University 3

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Contracts in Software Engineering and beyond
Well established practice to support (de)composition and analysis

Pre/post conditions (Eifflel, then SPARK2014, ACSL, …)

set_second (s: INTEGER) -- Set the second from `s’.

require

valid_argument_for_second: 0 <= s and s <= 59

ensure

second_set: second = s

end

Definition (Contract). A contract related to an

element is a tuple K=(I,O,A,G):

• I are inputs: the data required by the element,

• O are outputs: the data provided by the element,

• A are assumptions: the properties required by the

element,

• G are guarantees: the properties provided by the

element.

Assumptions/guarantees on component interfaces (10.1016/j.scico.2017.12.007)

10.1016/j.scico.2017.12.007

Contracts in System Development
© 2023 Carnegie Mellon University 4

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Short (5 pg) position paper, mostly

Contribution: metaphor of contract applies beyond system design.

Common elements: two elements (parties), definition of a property to agreed upon and

verification method that evaluates the property

 Review of a typical V-cycle for applicability

 “The House Believes that... formalized contracts improve processes definitions and

reasoning”

State-of-the art: different contract types (e.g.: behavioral, interface, quality-of-

service) support either the verification of the design (proper refinement,

decomposition) or of different system properties (timing, confidentiality, etc.)

Journal First: Contracts in System Development: From Multi-

Concern Analysis to Assurance, J. Hugues and S. Procter
IEEE Software: 10.1109/MS.2022.3167533

https://doi.ieeecomputersociety.org/10.1109/MS.2022.3167533

Contracts in System Development
© 2023 Carnegie Mellon University 5

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

A notional system development process

(1)

System

Requirements

Integration

Verification

Validation

Logical

Architecture

Physical

Architecture

Implementation

(1)

(2, 5)

(3)

(6)

(3,4)

(2, 5)

(2, 5)

(1)

(1)

(3,4)

(2, 5)

Contracts in System Development
© 2023 Carnegie Mellon University 6

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1: Requirement Allocation and Verification
a.k.a “Am I delivering the right product?”

Parties: “customer” , “Q&A”

Requirements are developed and

allocated to system elements, recursively

Requirements might be decomposed

hierarchically and allocated

Examples:

Contract meta-theory, Benveniste et al.

Requirements associated with element(s)

Attached to verification method (eg, review,

JUnit test, formal methods, etc.)

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 7

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2: Analysis Contracts
a.k.a “Is verification Artifact A correct?”

Parties: “model”, “analysis tool”

Often implicit, analysis contracts are

assumptions made by an analysis on the

model or implementation it operates on.

Evaluate whether an analysis can run and

produce meaningful, correct output.

Why as a contract? Separation of

concerns, tool vs applicability of a tool.

Later part of assurance argument.

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 8

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3: Vertical Integration Contracts
a.k.a “Is my decomposition correct?”

Parties: elements of system design

Assumptions and guarantees between

models of the same system element at

different levels of abstraction (refinement)

Often built into modeling language itself,

notions of refinement and (de)composition

Contracts specified in terms of observable

behaviors are verifiable using model

checking or runtime verification

Example: observer pattern in Lustre, pre/post

condition between spec and implementation

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 9

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4: Horizontal Integration Contracts
a.k.a “Is my (re)composition correct?”

Parties: elements of system design

Dual of the precedent: composition rules

for contracts allows to guarantee system-

level properties from atomic elements.

Examples: pre/post conditions.

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 10

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5: Conformance Contracts
a.k.a “Am I building Artifact A correctly?”

Many industries incentivize or require

compliance with external standards or best

practices

Similar to Analysis contracts, conformance

contracts verify this compliance directly on

system artifacts

E.g. conformance to architectural

guidelines for coping with complexity,

technical debt, or domain-specific

constraints (e.g. safety-critical)

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 11

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6: Implementation contract
a.k.a “Does the implementation conform to its specs?”

Special case of the vertical contract for the

“big jump” between a model and the

corresponding software source code

Two semantics gaps

1. Ideal semantics vs. software “physics”

2. Expression of a property in a model

vs. as a test case

System

Reqs

Integ.

Verif.

Valid.

Logical

Arch.

Physical

Arch.

Impl.

Contracts in System Development
© 2023 Carnegie Mellon University 12

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Contract
Verification
Plan

Claim 1

Claim 2

Claim 3

Contract 1

gu
ar

an
te

e Assumption 3

Assumption 2

Contract 2

gu
ar

an
te

e

Static Verification
AADL
Evidence
(Data)Assumption 1

AADL
Evidence
(Data)

Behavioral
model

Assumption
Assumption

Assumption

Analysis

Proof Oblg

Analysis

AADL
Evidence
(Data)

Behavioral
model

Conclusion – (What’s this about model-based? AADL?)

All these elements have been elaborated in the scope of the SAE AADL, a language for

component-based design of safety-critical systems used for the last 20+ years

ALISA (requirements, verification), Resolute/REAL (conformance, vertical), AGREE (horizontal)

Composing contracts enables precise system assurance: from top-level concerns

to lower-level details

Full chain of custody

Properties, assumptions,

Verification methods used,

Intermediate results,

Rationale for composition, …

