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Contracts in Software Engineering and beyond
Well established practice to support (de)composition and analysis

Pre/post conditions (Eifflel, then SPARK2014, ACSL, …) 

set_second (s: INTEGER) -- Set the second from `s’.

require 

valid_argument_for_second: 0 <= s and s <= 59 

ensure

second_set: second = s 

end

Definition (Contract). A contract related to an 

element is a tuple K=(I,O,A,G):

• I are inputs: the data required by the element,

• O are outputs: the data provided by the element,

• A are assumptions: the properties required by the 

element,

• G are guarantees: the properties provided by the 

element.

Assumptions/guarantees on component interfaces (10.1016/j.scico.2017.12.007)

10.1016/j.scico.2017.12.007
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Short (5 pg) position paper, mostly

Contribution: metaphor of contract applies beyond system design.

Common elements: two elements (parties), definition of a property to agreed upon and 

verification method that evaluates the property

 Review of a typical V-cycle for applicability

 “The House Believes that... formalized contracts improve processes definitions and 

reasoning”

State-of-the art: different contract types (e.g.: behavioral, interface, quality-of-

service) support either the verification of the design (proper refinement, 

decomposition) or of different system properties (timing, confidentiality, etc.)

Journal First: Contracts in System Development: From Multi-

Concern Analysis to Assurance, J. Hugues and S. Procter
IEEE Software: 10.1109/MS.2022.3167533

https://doi.ieeecomputersociety.org/10.1109/MS.2022.3167533
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A notional system development process
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1: Requirement Allocation and Verification
a.k.a “Am I delivering the right product?”

Parties: “customer” , “Q&A”

Requirements are developed and 

allocated to system elements, recursively

Requirements might be decomposed 

hierarchically and allocated

Examples:

Contract meta-theory, Benveniste et al.

Requirements associated with element(s)

Attached to verification method (eg, review, 

JUnit test, formal methods, etc.)
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2: Analysis Contracts
a.k.a “Is verification Artifact A correct?”

Parties: “model”, “analysis tool”

Often implicit, analysis contracts are 

assumptions made by an analysis on the 

model or implementation it operates on. 

Evaluate whether an analysis can run and 

produce meaningful, correct output. 

Why as a contract? Separation of 

concerns, tool vs applicability of a tool. 

Later part of assurance argument.
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3: Vertical Integration Contracts
a.k.a “Is my decomposition correct?”

Parties: elements of system design

Assumptions and guarantees between 

models of the same system element at 

different levels of abstraction (refinement)

Often built into modeling language itself, 

notions of refinement and (de)composition

Contracts specified in terms of observable 

behaviors are verifiable using model 

checking or runtime verification

Example: observer pattern in Lustre, pre/post 

condition between spec and implementation
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4: Horizontal Integration Contracts
a.k.a “Is my (re)composition correct?”

Parties: elements of system design

Dual of the precedent: composition rules 

for contracts allows to guarantee system-

level properties from atomic elements.

Examples: pre/post conditions. 
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5: Conformance Contracts
a.k.a “Am I building Artifact A correctly?”

Many industries incentivize or require 

compliance with external standards or best 

practices

Similar to Analysis contracts, conformance 

contracts verify this compliance directly on 

system artifacts

E.g. conformance to architectural 

guidelines for coping with complexity, 

technical debt, or domain-specific 

constraints (e.g. safety-critical)
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6: Implementation contract
a.k.a “Does the implementation conform to its specs?”

Special case of the vertical contract for the 

“big jump” between a model and the 

corresponding software source code

Two semantics gaps

1. Ideal semantics vs. software “physics”

2. Expression of a property in a model 

vs. as a test case
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Conclusion – (What’s this about model-based? AADL?)

All these elements have been elaborated in the scope of the SAE AADL, a language for 

component-based design of safety-critical systems used for the last 20+ years

ALISA (requirements, verification), Resolute/REAL (conformance, vertical), AGREE (horizontal)

Composing contracts enables precise system assurance: from top-level concerns 

to lower-level details

Full chain of custody

Properties, assumptions,

Verification methods used,

Intermediate results, 

Rationale for composition, …


