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1.0 SUMMARY 
This report details a novel approach of using chatbot technologies for engaging with interlocutors, 
while actively soliciting information through the use of distinct virtual personas realized in 
software agents. Titled Strategies for Investigating and Eliciting Information from Nuanced 
Attackers (SIENNA), this research was conducted under Technical Area (TA) 2 of the Defense 
Advanced Research Project Administration’s (DARPA) Active Social Engineering Defense 
(ASED) program. 
The product of our research consists of two primary technologies: 

• SIENNA-Bot: A chatbot designed to converse with an interlocutor using 
domain-specific content. 

• Cervantes: A graphical user interface (GUI) for domain-specific dialogue 
development that evolves around the concept of quests, i.e., series of 
questions of increasing complexity intended to elicit information from the 
interlocutor. 

Critical to the success of TA2 is the generation of logical and coherent dialogue. This dialogue 
should be effective in engaging and interacting with an interlocutor as if they are communicating 
with another human. To generate content, we adopted a novel authoring scheme for natural 
language generation that is driven by attribute grammars. The SIENNA-Bot follows a pipeline 
design approach of: 

• Natural Language Understanding (NLU). The intent of the incoming message 
is ascertained and assigned attributes. 

• Dialogue Generation. The ascertained content attributes are evaluated against 
the conversational state to determine the next moves. 

• Natural Language Generation (NLG). A viable response to the message is 
generated. 

To demonstrate the effectiveness of this design prior to investing time towards designing and 
developing the language understanding and generation components, we developed, we developed 
an initial proof of concept chatbot with a simple dialogue generator. The goal of this bot was to 
confirm the efficacy of engaging an interlocutor in conversation through simple discourse 
techniques without having to develop the necessary components for parsing and comprehending 
message content. The resulting bot was capable of countering impersonation attacks by taking on 
one of two distinct personas: 

• Needy narcissist. Loves to gossip about coworkers and colleagues in the 
targeted field, expresses distaste for recent colleague successes and likes to 
tell rambling stories about themselves. 

• Spiteful colleague. Leverages a narrative conceit to introduce a fictional 
backstory as a means of conversation. Because the interlocutor only pretends 
to know the subject: 
o A fictional story allows the bot to quickly take control of the conversation 
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o No comprehension of the message content is required 
Building upon this foundational bot, we next investigated techniques for introducing realism into 
the conversation by incorporating NLU and NLG.  
The objective of NLU modules within SIENNA are to: 

• Understand the pragmatics of what the interlocutor is saying 
• Extract critical pieces of information from the interlocutor’s messages 

This objective was accomplished using a pre-trained Transformer model with added layers for 
understaning the pragmatics of the interlocutor’s message while simultaneously extracting critical 
pieces of information, called flags. The resulting NLU was capable of classifying various types of 
discourse-acts with the key benefits providing:  

• Dialogue state information 
• Affordances for the content authoring   

For example, by detecting that an interlocutor is arguing when responding to a quest, SIENNA 
could use that information to either change the direction of the quest, or assign a new, potentially 
easier quest. The concept of trust tracking was also incorporated into SIENNA’s NLU with the 
guiding principles being:  

• Difficult requests require high levels of trust 
• Trust rises when quests are completed  

Working from these axioms, we designed NLU functionality to combine the successful completion 
of a quest with the determined compliance of the content of each message. If a quest went 
uncompleted, or the NLU module detected affects such as anger, frustration, or impatience in the 
messages, overall trust was decreased. Conversely, if the interlocutor was compliant and willing 
to answer questions, the level of trust went up. 
We further evolved the Dialogue Generation functionality by incorporating two techniques: 

• Conversational state. Maintaining and using prior conversation content such 
as 
o Preconditions to determine if dialogue content should or should not 

be used  
o Effects to establish and maintain state for continued future dialogue 

• Custom Dialogue Generators. These dialogue generators provided 
specialized content generation designed to handle specific details of a 
conversation 

This work resulted in an NLG module capable of producing dialogue based on the semantics of 
the input message through the process of quibbling, arguing and raising objections to a trivial 
matter, with the interlocutor. 
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With the addition of these new techniques, SIENNA bots incorporated a level of conversation 
understanding and consistency well beyond the initial “dumb” bot strategy planned at project 
inception.  
The procedural content generation approach taken by SIENNA requires an ability to create the 
conversational domain. Specifically, having the functionality for non-developers and non-
SIENNA experts to construct new quests. SIENNA uses a strategy of asking the interlocutor 
questions of increasing complexity, to consume the time of an interlocutor while simultaneously 
acquiring information from them. These questions are called quests. In order to enable a content 
creator to author a series of quests for a domain, we developed a user-friendly editor called 
Cervantes. 
The first step in the creation of the Cervantes editor was the design and development of a domain-
specific language (DSL). By using a DSL, we established a formal structure that promoted quick 
iterations on the Cervantes design. The semantics of the DSL include: 

• Definition Blocks. These blocks set up reusable moves, responses, and 
behaviors across a whole set of quests.  

• Quest Blocks. A particular “mission” that the bot attempts to get the 
interlocutors to waste time on and/or reveal information while performing.  

• Conditions and Effects. Provide the author with the affordances to link 
together series of quests and allow the SIENNA quest manager to transition 
between quests dynamically, as the conversation evolves. 

The resulting feature set of Cervantes includes: 

• Detailed Quest Editor: Ability to create tokens, variables and conversational 
dialogue 

• Embedded Help: The user interface (UI) has a hyperlinked, embedded help 
system 

• Quest Simulator: A simulator for testing and debugging quests during 
development  

• Multi-User Interface: Functionality for supporting multi-users 
• Rights and Roles: Rights and roles modelled from common open-source 

platforms, such as GitHub, where users are members of projects, and each 
project has specific rights and roles 

• Versioning: The ability to create project versions from within the UI 
Over the course of the program, we developed a quest library of 50 quests. Furthermore, we 
deployed Cervantes on a shared server, accessible by all performers with multiple non-Raytheon 
BBN Technologies (BBN) collaborator teams creating quest libraries such as the Corona Virus 
Disease (COVID) quest library and the Court Summons Library. 
In summary, the SIENNA approach of using expressive chatbots to engage with interlocutors 
demonstrated effective and validating results. Over the course of the program, the number of true 
positive flags captured by SIENNA increased from 71% to 89%. Multiple non-SIENNA team 
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organizations were successful at using Cervantes to create their own domain-specific quest 
libraries.  
Our principal recommendations for the further development of SIENNA are: 

• Multi-Lingual Support.  
• Human-in-the-Loop. 
• Group Bot Interaction.  
• Leverage External Information When Available.  
• Improved cross-platform switching.  

  



 

5 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

2.0 INTRODUCTION 
BBNs SIENNA project under the DARPA ASED program involves counter-engaging adversaries 
by gaining their trust and efficiently eliciting information from them, accomplished through our 
capability of socially coherent attacker investigations. SIENNA is a partial TA2 solution entailing 
the construction and deployment of a bot framework driven by conversational technology that 
members of our team originally devised in the context of videogames and significantly expanded 
under SIENNA. When an attack is recognized, SIENNA deploys a set of bots to engage and 
investigate the interlocutors. Each bot has a role, goals, and speaking style (its “persona”) selected 
by SIENNA to exploit what it knows so far about the nature and goals of each interlocutor. The 
bots’ true purpose is to engage, build trust, provide fake information, and most importantly to elicit 
information from the interlocutor and waste their time and resources. To construct and operate our 
bots, we leveraged existing, innovative persona-authoring and history-generating tools. These 
tools make SIENNA both highly customizable and scalable. 
The BBN team approached this program with two key hypotheses: 

1. By keeping an interlocutor engaged, we can occupy their time enough that they 
will not have time to phish other individuals.  

2. As trust increases between the bot and the interlocutor, the complexity of the quests 
can increase. 

To validate these hypotheses, BBN pulled together a team of experts. With the help of the 
University of Maryland, our team extended an existing experimental platform to discover linguistic 
techniques for building trust and exchanging resources, which we then used in the construction of 
our bots. Dr. Adam Summerville at Cal Poly Pomona provided the machine learning (ML) 
expertise to allow our team to design and build bots capable of generating coherent content to 
augment and supplement the generative human authored text.  
Additionally, SIENNA was awarded an Engineering Change Proposal to expand the scope of the 
Quixote quest manager module and Cervantes Web-based Quest Editor that utilizes a templated 
structure to develop detailed narrative Quests. In collaboration with teammates and subject matter 
expert Dr. Aaron Reed, we developed both a domain-specific language and user interface for 
capturing and compiling human authored content to be used by the SIENNA bot to strategically 
deploy domain-specific content. 
To evaluate our conversation bots, SIENNA participated in multiple government-sponsored 
experiments. In addition to those experiments, we stood up a government-sponsored Cervantes 
(the BBN developed authoring tool) instance and provided access to all the other program 
performers to construct their own dialogs and provide feedback. The results of both the bot 
evaluations and the user interface work will be provided below. 
The following sections in the report will detail both the approach taken and results achieved in our 
work. 
 



 

6 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 Assumptions 
SIENNA was developed under TA2 of the DARPA ASED program. As part of our research, 
assumptions were made as to the program structure and the technical goals. 
The following infrastructure assumptions were made during our research. 

• It was assumed that other Technical Area performers had successfully 
identified and marked all incoming phishing messages. It was not the 
objective of SIENNA to determine if a message was or was not legitimate. 
Given this assumption, SIENNA was able to immediately react to all received 
messages, extract appropriate flags and craft a valid response.  

• It was also assumed that other Technical Area performers set up the mail 
infrastructure to send and receive emails. SIENNA assumed all interactions 
would occur via an intermediary through RESTful Application Programing 
Interface (API) calls. Given this assumption, we built SIENNA with a 
representational state transfer (RESTful) interface and added message 
metadata indicating when a message should be delivered. It was then the goal 
of the other components to handle the scheduling and delivery of messages, 
as an assurance that both new messages and responses made their way into 
SIENNA.  

• SIENNA was built and delivered as a container-based application using a 
modern Continuous Integration, Continuous Development (CI/CD) pipeline. 
It was assumed that a cloud-based infrastructure existed to pull and deploy 
new versions of SIENNA as they were developed, and that the infrastructure 
existed to ensure the proper and successful linking of SIENNA to the other 
performers components. 

• SIENNA and Cervantes were designed to operate independently of one 
another. Given this, it was assumed that procedures existed to move newly 
authored quests from the Cervantes system to the system running the 
SIENNA bot. This assumption was intentional to allow content authors the 
ability to freely author new content on different networks from the bots. 

The following technical assumptions were made to validate our hypotheses: 

• Using a more generative language model (LM) for dialogue construction, the 
resulting bots would express a more humanlike dialogue allowing for more 
engagement and flag captures. 

• Designing a bot architecture that allows for pluggable expertise, such as 
specialized language generation models, will promote a more sophisticated 
dialogue. 

• By establishing a formal domain language for initial dialogue language, user 
interfaces can be quickly developed to support non-programmer dialogue 
construction. 



 

7 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

• Using the concept of quests provides a higher-level design principle that will 
allow for increased interactions with an interlocutor as well as increased flag 
captures. 

• Continuously capturing and monitoring trust will provide mechanisms for 
determining when to increase or decrease quest difficulty. 

3.2 Methods and Procedures  
To test and validate our technical assumptions, the following methods and procedures were used. 
3.2.1 Software and Development Methods 
SIENNA followed an agile development approach and used a GitLab CI/CD pipeline to build new 
service containers. SIENNA followed the standard GitLab release process as documented here: 
https://docs.gitlab.com/ee/user/project/releases/#create-a-release. 
The SIENNA release process had the following roles and responsibilities to ensure a consistent 
process without compromising the larger continuously operating system. 
3.2.1.1 Release Manager 

• Create a milestone for the new version 
• Assign issues to the milestone 
• When all issues in the milestone are closed, a release is created for the version 
• Add all issues to the release 

notes 
3.2.1.2 Developer 

• Create an issue for work 
performed 

• Close issues when finished 
• If an issue is closed that 

was not assigned to a 
milestone, assign it to the 
next release version 
milestone 

Versions followed a semantic versioning 
format of: major.minor.patch with 
most releases only changing the minor 
version. 

• Major: Major breaking 
changes are introduced. 
Large new features 
introduced. 

Figure 1. GitLab Labels were Used to Categorize 
and Prioritize Issues. 

https://docs.gitlab.com/ee/user/project/releases/#create-a-release
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• Minor: Breaking changes are unlikely. New features introduced. 
• Patch: No breaking changes. Usually used for bug fixes. 

An issue tracker was used across all program performers for reporting and monitoring issue fixes. 
Milestones were used to mark release points and labels (See Figure 1) were used to categorize 
and prioritize issues as they were recorded. 
The SIENNA build process occurred over three stages: 

• Pre-Check: Performs a few pre-checks to ensure build will proceed 
successfully. 

• Build: Builds all of the SIENNA components, including compiling and 
generating the help documents. 

• Scans: Performs software scans such as linting. 
3.2.2 Technical Methods and Procedures 
The SIENNA approach to conversation dialogue was designed around two primary concerns (See 
Figure 2), Authoring and Execution.  
Authoring focused on creating the tools for subject matter experts to easily create and modify new 
dialogue content through the form of quests. Execution dealt with the actual usage of that generated 
dialogue during active engagements with an interlocutor.  

 
3.2.3 Authoring 
With SIENNA, we set out to build a system that could structure interactions between a human 
interlocutor and a bot around the concept of “quests,” and captured key-value pairs of personally 
identifying information about interlocutors, called “flags.” To achieve this goal, we constructed a 

Figure 2. High-Level Representation of the Technical Approach and Methods 
used for SIENNA. 
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dynamic quest generation system that takes into account the level of trust we detect in the 
interlocutor with the SIENNA bot. The dialogue generator starts with easy quests and increases 
the difficulty as a way to slowly reinforce interlocutor engagement, backing off temporarily if the 
interlocutor starts to seem suspicious. This technique was chosen to maximize interlocutor 
engagement compared to a system that simply assigns quests randomly. In order to get relevant 
content for quests, and to ensure they do increase in difficulty, our system was designed around 
the inclusion of human quest authors. On that end, we developed authoring tools to ease the 
creation, modification and deployment of new dialogue into the system. The following sections 
will document the procedures taken to design and develop these components and their underlying 
subcomponents. 
3.2.4 CervantesDSL 
To establish a well-defined content framework for ensuring the stability and consistency of 
Cervantes as an authoring tool, we designed a DSL.  DSLs are specialized languages crafted to 
address the needs and requirements of a specific domain. Using the DSL, domain experts can 
author new SIENNA projects by hand using a procedural narrative in any text editor. The following 
sections provide an overview of the CervantesDSL. See Appendix B - CervantesDSL for the 
complete CervantesDSL specification. 
CervantesDSL files are text-based files identified with a .cervantes extension. Each Cervantes file 
consists of a series of blocks, which may be defined in any order. There are two kinds of blocks 
that make up a Cervantes file: definition blocks and quest blocks. These blocks, as seen in Figure 
3, are written in text using a well-defined format that is parsed by a SIENNA developed compiler.  
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3.2.4.1 Definition Blocks 
Definition blocks set up reusable moves, responses, and behaviors across a whole set of quests, 
while each quest is a particular “mission” that the bot uses to attempt to get the interlocutor to 
waste time or reveal information while performing.  
3.2.4.2 Quest Blocks 
A Quest represents a single topic from the bot, and perhaps some number of back-and-forth 
interactions discussing that request, ending with the interlocutor ultimately either fulfilling the 
request (i.e., by supplying some requested info) or failing to. When the interaction moves on to a 
different topic, that means transitioning to a new quest (even if a series of quests are linked together 
or conceptually related).  
3.2.4.3 DSL Compiler 
Once a DSL project has been authored, it must be compiled to runtime matter usable by the bot. 
To address this need, we developed a compiler for the CervantesDSL. The compiler turns a 
.cervantes source file and included external libraries into a set of runtime files describing a 
SIENNA conversational domain. 
A Conversational Domain is a set of files that lets SIENNA generate responses to incoming 
messages. It represents a particular scenario for which content has been created and a strategy for 

Quest "Get Phone Number" 

"""Ask for the attacker's phone number and capture it.""" 

Easy 

Captures PHONE_NUMBER_PRIMARY 

* Assign when {flag.PHONE_NUMBER_PRIMARY does not exist} 

        "Hey, [[could_you]] send me a phone number I can reach you at???" 

        #then {track.some = "variable"} 

* Reassign 

        "Still waiting on that phone number, [[when_youre_free]]." 

* Negotiation 

        "I'm not going to negotiate with you about a phone number." 

* Giveup 

        "You know what, never mind. I'm happy to keep using email." 

* Question 

        "[[Sorry,]] I'd just like to have another way to reach you in case something important 
comes up... email can be really flaky[[maybe_emoji_endpunc]]" 

* Finish when {flag.PHONE_NUMBER_PRIMARY exists} 

        "Good to have a backup way to reach you! [[Thanks.]]" 

* Finish when {temp.attacker_says_no_phone_number exists} 

        "That's fine, I'll just use your email." 

Figure 3. Example CervantesDSL Quest Block. 
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the SIENNA-Bot to respond to interactions with an interlocutor. Cervantes is a tool for easily 
defining a conversational domain. 
The compiler generates the following files: 

• conversational_domain_definitions.py: This file configures the SIENNA bot 
for the given conversational domain, and is read in by SIENNA at startup. 

• quest_definition.json: Defines all the quest content for this scenario and 
related materials created in the authoring tool. Read in by the quest manager 
module (Quixote). 

• state.schema: Defines all variables that might be referenced in this scenario, 
both custom and imported. Used by the compiler for validation; not currently 
imported at runtime but present if needed for reference. 

• {project}.json, .marisa, .meanings, .stats, .grammar: This set of five files is 
used by the SIENNA bot to efficiently generate runtime text. All “tokens” 
defined or imported in a project are represented here. 

• compiled_source.cervantes: The CervantesDSL code which the compiler uses 
to generate the other files. In most cases, this will have been generated by the 
Cervantes GUI. This is not needed at runtime but is presented for reference 
to aid in debugging. 

3.2.5 The Cervantes Tool 
We used the CervantesDSL as the basis for designing a GUI to ease the creation of quests. We 
designed this interface, called Cervantes, with the intent of having an easy way for non-developers 
to create quests without having to understand complex formal language semantics. 
The procedure for designing Cervantes was to identify all the high-level concepts in the DSL and 
then create user friendly editors for each concept. Figure 4 illustrates the resulting Cervantes 
functional map. We broke functionality down into two categories: quest authoring and quest 
testing and evaluation, described in the following sections.  
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3.2.5.1 Quest Authoring 
Quest authoring is the most essential component of Cervantes. Cervantes’ quest authoring 
functionality provides a subject matter expert with the tools to create dynamic and believable 
content quickly and easily for engaging with an interlocutor. Quest creation is broken down into 
the following components: 

• Quests: Requests made by the SIENNA bot to perform an action 
• Goals: The objectives to be obtained by each quest 
• Personas: The pattern of life for the SIENNA bot, such as typical message 

response window (e.g., between 0900 and 1700), and response rate (e.g., 
within one hour) 

• Tokens: Repeatable text blocks to add variability into the dialogue 
• Input Extractors: Custom code-based elements for extracting essential 

message information  
3.2.5.2 Quest Testing and Evaluation 
As quests are being created, having the ability to evaluate and test them is critical. To address this 
issue, we designed a simulator (an executing SIENNA-Bot) in Cervantes for quick evaluation of 
dialogue, extractors and flag captures without the actual sending of messages (they are all 
simulated). 
Simulator interactions are designed around the concept of Test Cases. Each Test Case is an 
established interaction including all necessary conversation context and metadata such as: 

Figure 4. Cervantes Functional Map Design. 
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• Bot Initiated: Defines the originator of the conversation, bot or human 
• Use Playbook: Select a playbook for establishing a quest deployment 

strategy 
• Persona: Select the desired persona for the bot 
• Message Modality: The communication mechanism, SMS or Email 
• From: Human-readable name for the conversation initiator  
• From Email or Phone Number: Email address or phone number for 

conversation initiator 
• To: Human-readable name for the receiver 
• To Email or Phone Number: Email address or phone number for the 

message receiver 
• Subject: The email subject line (not used for SMS) 

Test Cases provide easy methods for: 

• Crafting content, such as an email message and response 
• Seeing the extracted flags as the conversation unfolds 
• Understanding why quests / blocks were selected during the conversation   

3.2.6 SIENNA-Bot 

 
The SIENNA chatbot is responsible for working with the generated content to produce coherent 
and convincing dialogue. This technology is composed of three main components that execute in 
a sequence: 

• NLU Modules 
• Dialogue Manager 
• NLG Modules 

The following sections describe the design of each of these components. 

Figure 5. SIENNA-Bot Architecture. 
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3.2.6.1 NLU Modules 
Critical for conducting conversational dialogue is the ability to parse and comprehend the 
messages received from the other party. To perform this task, SIENNA uses a series of NLU 
modules. 
The objective of each NLU module is to translate an incoming message into: 

• The conversation moves it performs 
• The obligations it places on parties in the conversation 
• The updates that it makes to the conversation state 

SIENNA NLUs treat conversation moves as a form of speech acts [1]. By following spoken 
language understanding parlance, these acts can be conceived in terms of: 

• Intents (moves and obligations) 
• Slots (state components) 

These products are then used by the Dialogue Manager to select the next move. 
3.2.6.2 Dialogue Manager 
The goal of the dialogue manager is to reason about the best way to respond to a given input based 
upon the domain content, the information provided by the NLU module, and the current 
conversational state. The Dialogue Manager maintains an internal state of each ongoing 
conversation. The goal of the Dialogue Manager is to proceed through a sensible conversation 
based around the paradigm of a quest. 
3.2.6.3 NLG 
Once the Dialogue Manager has determined the next move, it is up to the NLG to construct the 
response. This is done using a generative text system that leverages the domain authored content. 
The NLG system expands a context-free grammar that defines a set of possible text options and 
then uses the information provided by the Dialogue Manger to craft a valid response. 
3.2.7 Trust Building 
To effectively extract pertinent information from interlocutors, the SIENNA-Bot must be capable 
of effective elicitation. To achieve this objective, we leveraged the concept of trust. If the 
interlocutor trusts us, they are more likely to answer our questions and requests for personal 
information. 
Trust is implicit in many online text conversations, and that trust can easily be betrayed through 
deception. Every conversation conducted by SIENNA is about deception. The interlocutor is trying 
to deceive the bot and gain critical information, while at the same time, the bot is trying to deceive 
the interlocutor to keep them engaged. To better understand how deception occurs during a 
conversation, our team conducted a study using the game Diplomacy where players negotiate 
through chats to forge and break alliances. This study relied on two technical components: 
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• A Game Engine (Backstabbr1) that lets users input their moves 
• A Chat system that allows users to annotate if they are lying 

This study led to some interesting insights into the concept of trust building, such as the fact that 
humans can detect lies at a rate better than random guessing, but only slightly better. It was also 
discovered that certain linguistic features appear to underpin successful deception. For example, 
words such as true and honest are likely to be perceived as truthful, yet they are also more likely 
to be deceptive. The team then used that information, and the data collected to develop a Long 
Short-Term Memory- (LSTM-)based architecture to process both the given message and the 
context (conversation history) in which the message was delivered. We expected this model to 
perform at a human level of lie detection, which just like humans, resulted in detection that was 
slightly better than random. Test set results are shown in Figure 6 and show that the neural model 
that integrates past messages and power dynamics approaches human performance.  

 
In SIENNA, trust is a persistent metric for each conversant that is scaled between 0 (no trust, 
human is likely to immediately terminate the conversation) and 1 (human is cooperative and likely 
to continue the interaction). Various actions influence this trust estimate. For example, trust will 
drop for a human who repeatedly ignores an assigned quest. The Dialogue Manager uses trust as 
one of several signals when choosing how to deploy quests. For instance, if trust is high, the 
Dialogue Manager might continue to press for resolution of a currently assigned quest; whereas if 
trust is low, it might give up more easily. 

 
1 https://www.backstabbr.com/ 

Figure 6. Test Set Results for Both our ACTUAL LIE and 
SUSPECTED LIE Tasks.  
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By assigning quests a difficulty level, authors can signal how a quest should be used within the 
trust management system. For instance, if trust is low, the Dialogue Manager will try to assign 
easy quests to build up a rapport and increase trust. If trust has grown higher, the Dialogue Manager 
will assign medium and, subsequently, hard quests. This supports an authoring pattern for anti-
scammer domains to convince a bad actor to agree to more and more difficult time-wasting tasks, 
as the "sunk cost fallacy" encourages them to believe they are getting closer and closer to closing 
a scam. 
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4.0 RESULTS AND DISCUSSION 
The following sections discuss the approach taken to validate the methods above, along with a 
discussion of the observed results. 
4.1 SIENNA Architecture 
The SIENNA architecture can be conceptualized as author time and run time (See Figure 7). The 
following sections describe the key components that make up the architecture.  

 
4.1.1 Author Time 
Within the SIENNA architecture, author time is when content is created for consumption by the 
bot. Author time is composed of the following components: 

• Cervantes GUI: The web-based front end for content creation 
• Cervantes Compiler: The compiler for converting the human authored content 

into a format usable by the bot 
• Cervantes Projects: A library of user authored content 
• Cervantes Libraries: A library of user authored libraries. These include 

extractors and variables (described below) 
• Conversational Domain: The compiled content consumable by the bot 

Figure 7. Detailed SIENNA Architecture Diagram. 
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In the initial version of the authoring tools, a command line compiling tool was used. This tool has 
since been deprecated and replaced with Cervantes, the GUI based authoring tool. 
4.1.2 Run Time 
The Run time components are the actual bots that interact with interlocutors, generating dialogue 
and extracting flags. The following components exist in Run Time: 

• Conversation Simulator: A SIENNA bot designed to interface with Cervantes 
for quest testing and debugging 

• SIENNA: The actual bot for interacting with a message handling gateway, 
such as those developed by the TA1 performers (e.g., SRI developed 
NEMESIS2) through which interactions with an attacker / interlocutor occur 

• Quixote: The quest manager responsible for maintaining conversation state 
and constructing dialogue moves 

• Productionist: The component responsible for generating natural language 
dialogue that will be delivered to the receiving party, building upon 
technologies from Expressionist (4.1.7.4) 

• NLU/NLG Modules: Pluggable modules for extracting information from 
incoming messages and generating customized dialogue 

The following sections discuss each of these components, starting with the overall design and 
approach for implementing quests. 
4.1.3 Quests and Trust 
As stated in hypothesis one (Section 2.0), by keeping an interlocutor engaged, we can occupy their 
time enough that they will not have time to phish other individuals.  
To test this hypothesis, SIENNA developed the concept of Quests. As stated before, a quest is a 
task (or series of linked tasks) that the virtual target (SIENNA-Bot) asks the interlocutor to 
complete, as a way of wasting the interlocutor’s time or capturing flags (i.e., collecting personal 
info) from the interlocutor. In order to have successful quests, we must first establish trust with the 
interlocutor. If they do not believe that we are willing to give them the information they initially 
are seeking, they will not participate in our quests as they increase in difficulty.   
Any given quest has a difficulty based on how much time or effort we expect the interlocutor to  
take to complete. The ideal scenario is to maximize the number and difficulty of the quests the 
interlocutor completes during an interaction. Quests that force the interlocutor to take real-world 
actions away from their computer are the most difficult and thus desirable. 
To determine how to handle human responses to quests, we first identified a number of possible 
ways an interlocutor assigned a quest might respond: 

● Completing it  
o Example: “No problem, here’s that form you asked me to fill out.” 

 
2 Natural Language Engagement of Malicious Entities through a Social Interaction Service 
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● Pretending to complete it, or saying they’ll do it but never following through 
o Example: “I’ve finished the form and I’ll send it later.” 
o Example: “I can get that form filled out later tonight, but first...” 

● Partially completing it 
o Example: “I filled out the first page of the form, but haven’t done the rest.” 

● Questioning it 
o Example: “Why do you need me to fill out this form?” 

● Bargaining about terms 
o Example: “I’ll fill out the form, but first you need to send me your bank 

account info so I know you’re serious about this.” 
● Refusing to do it 

o Example: “I’m not filling out this form.” 
● Ignoring it 

o Example: “Let’s get back to this money transfer I mentioned...” 
● Terminating contact  

o Example: (no response) 
In general, we can place these responses in three categories: Executing the quest, even if only 
partially (most ideal); Haggling about the quest’s details; and Refusing the quest (least ideal). We 
want to avoid haggling interactions since this involves more complex natural language 
understanding and generation requirements: SIENNA would need to parse, comprehend, and reuse 
specific details, and risk revealing its identity as a bot. Because of this, we chose a strategy where 
we prefer to unassign quests (with a message such as “you know what, never mind about that”) if 
interlocutors do not seem immediately compliant. 
The best metric for predicting an interlocutor’s response is their trust for the virtual target. An 
interlocutor who trusts that the target is a real human (and one likely to fall for their scam) will be 
willing to complete more quests, and complete more difficult quests. If trust falls to zero, however, 
the interlocutor gives up on the target, possibly because they realize the target is a bot. 
We can detect signs of falling trust when interlocutors haggle over or refuse quests; when messages 
become much terser; or when the NLU component detects signs of anger, frustration, or impatience 
in the interlocutor’s messages. For instance, from a corpus of human scam-baiters, we could often 
identify patterns corresponding to indicators of high and low trust by simply looking at words with 
positive and negative valence as shown in Table 1 (for more details on our final implementation 
of this, see Section 4.1.8). Bolded words have positive or negative valence.  
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Table 1. Examples of Attacker Sentences Illustrating Different Levels of Trust. 

Attacker Sentences Trust Level 

I am glad to receive your response and hereby forward to you an agreement/bond. High Trust 

Thanks for your good response to me, anyway I must tell you that I am really comfortable 
with you over this my transaction 

High Trust 

I got your email but I was quite disappointed at the way you talk. Low Trust 

I cannot send my picture to you until I am convinced that we are in business. Low Trust 

Assigning a quest, or asking for a flag, is a risky act in that it may reduce trust by making the 
interlocutor suspicious, or by making it seem less likely to them that their scam target is viable. 
This danger increases with the difficulty of the quest or the sensitivity of the flag requested. 
However, a quest generator that monitors and reasons over trust can be more considered in how it 
assigns quests or asks for information, resulting in a more prolonged engagement with the 
interlocutor. 
Based on the above, we designed and built our quest management ecosystem to achieve the 
following goals: 

● Interface with SIENNA and other existing components of ASED 
● Allow for authoring a library of human-created quests tagged with difficulty 

levels 
● Begin a conversation by assigning simple quests to “hook” the interlocutor 

and build trust 
● Introduce more difficult quests as trust increases, eventually working up to 

difficult real-world quests as the interlocutor’s “sunk cost fallacy” makes 
them more likely to complete them 

● Maintain a basic dialogue about assigned quests: 
o Acknowledging an interlocutor’s message that they have started, 

completed, or refused a quest 
o Prod an interlocutor about an unfinished quest 
o Recognize when the conversation manager cannot understand well 

enough to reply sensibly and deflect onto a new topic 
● Attempt to increase trust if signals are received that trust is declining by: 

o speaking in a more compliant/accommodating manner 
o unassigning a quest 
o assigning easier quests 

4.1.4 Quest Validation 
There are several possible ways an interlocutor might “complete” a quest: 
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● Correctly completing the quest as assigned 
● Partially completing a quest (e.g., sending a phone number without an area 

code) 
● Cheating by sending something that appears to be what is requested but isn’t 
● Failing by responding with something that clearly isn’t what was requested 

In theory, a virtual target should be able to distinguish between these states, but we believe that in 
practice this is less important that it seems. An interlocutor who “cheats” or sends a partial response 
has still wasted some amount of time, perhaps on a forgery or plausible-seeming false response. 
Additionally, from an interlocutor’s perspective there is little motivation to “fail” at an accepted 
quest, since a real human (which they perceive the target to be) would detect the failure and reject 
the response.  
However, some quests with textual responses can still be validated, and this is worth doing when 
possible, for verisimilitude (to help maintain trust that the target is a real human). For instance, if 
we ask for a phone number, we might check that it has the right number of digits and is in a 
plausible area code based on any geographic information the interlocutor has previously divulged. 
We can also “fake” verification questions on other kinds of data we aren’t actually analyzing: for 
example, if we requested the interlocutor send a photo of themselves, we can plausibly ask if the 
photo is really them, without doing any kind of real analysis on the attached file. 
4.1.5 Quest Taxonomy 
In addition to general stalling or delaying responses, we identify several categories of quests. 
4.1.5.1 Trivial Quests 
Quests that can be completed with a simple reply; this is basically just a delaying tactic. There are 
many possibilities here, but a few include: 

● Asking for clarification or more information 
● Target pretends they’ve already been contacted by someone similar, asks if 

the interlocutor is from the same company/organization 
● Target pretends the interlocutor missed a message from them, asks them to 

check their spam folder, etc. 
● Target asks for a reminder message to follow-up at a later date/time  

4.1.5.2 Flag Capturing 
Similar to trivial quests but with the goal of capturing flags about the interlocutor. 

● Asking the interlocutor to identify their time zone so they know when is good 
to email 

● Asking the interlocutor to identify their gender so they know what form of 
address to use 

● Encouraging the interlocutor to click a link so Natural Language Engagement 
of Malicious Entities through a Social Interaction Service (NEMESIS) can 
capture additional information 
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4.1.5.3 Administrative Hoops 
Asking the interlocutor to do annoying time-wasting digital activities to verify their sincerity or 
identity. 

● Target says they need the interlocutor’s company’s Data Universal Number 
System (DUNS) number, provides instructions for signing up for one at Dun 
& Bradstreet if they don’t have it. (Can check the provided number has the 
right number of digits etc. as a validation step.) 

● Pretending to originally be from the same town in the interlocutor’s address, 
and asking them vetting questions like “What’s your favorite restaurant 
around there?” 

4.1.5.4 Switching Modalities 
Delays based on switching to a different communication method (which also captures a flag re: 
phone number, account name, etc.). 

● Requesting texting to verify identity, scheduling this for a certain time, then 
a back and forth before returning to prior communication channel 

● Asking the interlocutor to install a particular communication app/technology 
(Kik, Signal, Pretty Good Privacy [PGP] etc.) and then pretending to have 
trouble connecting there, eventually giving up and going back to regular email 

4.1.5.5 Document Creation / Forgeries 
Getting the target to waste time making fake documents. 

● Requesting a formal document outlining the bill/service etc. under discussion, 
then after it’s delivered asking it to be redone with particular requirements 
“from our office manager” (font size, margins, page dimensions, document 
format, etc.) 

● If not starting on LinkedIn, asking to see the target’s LinkedIn page (they 
might need to make a fake one) 

● Expressing passion for a particular charity and asking the interlocutor to make 
a small donation as a token of their goodwill, and provide proof (interlocutor 
either does this or spends time faking a receipt) 

4.1.5.6 Real-World Time Wasters 
Getting the interlocutor to step away from their computer to do something more involved. These 
are the most “difficult” and thus desirable quests to assign, but also tricky to plausibly justify and 
require a high amount of trust. 

● Asking for a photo of the interlocutor with a sign showing their name. (This 
is a frequent ploy of scam baiters, so may be a red flag to scammers to stop 
engaging.) 

● Claim the scammer’s internet protocol (IP) is being blocked: can they try 
responding from a different physical location? 
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● Asking for a quick phone call to verify their identity, scheduling this for a 
certain time, then send a series of messages asking why they aren’t picking 
up, etc., then suggesting the interlocutor move to a new physical location with 
better reception (e.g., “try to get by a different cell tower”) 

● Asking for a phone call as above but stipulating it must be a landline. 
● If the scam involves a pending financial transaction, claiming the target’s 

bank can’t transfer money to the interlocutor’s bank: can they set up a new 
account at a different bank to receive the funds? 

4.1.5.7 Domain-Specific Quests 
While many quests are generic and applicable across a variety of scams, those customized to a 
particular scam are good for increasing believability and trust. For the domain of a “work from 
home” job offer scam, for instance, some domain-specific quests might be: 

● Target requests a formal job offer on company letterhead, can quibble with 
format/details 

● Target asks to see an official website for the hiring firm listing the 
interlocutor’s name as an employee, which might inspire the interlocutor to 
create a fake website with this info 

● If a photo of a check to be cashed is sent (common in this scam), target claims 
their bank needs it in a different/rare format like: Thermogravimetric Analysis 
(TGA), higher resolution (300 dpi), separate images for check front/back, etc. 

● Target needs hard-to-find info about the job for their records, like its Internal 
Revenue Service (IRS) Position Classification Code 

For the Q1 2021 evaluation at Virginia Tech (VT), we created a library of roughly 60 quests 
instantiating many of these ideas. Ten of these were specific to the VT domain, with the others 
more reusable. Later, we turned them into a “Default Quests” library in the CervantesDSL. 
4.1.6 Author Time: Cervantes GUI 
In Section 3.2.4, we covered the details of the DSL developed for capturing and encoding the 
human-authored content. Once the DSL was finalized, we used the semantics as the foundation for 
building a user-friendly quest authoring tool, Cervantes. 
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Our design goal for Cervantes was to create a user-friendly editor and test platform. We achieved 
this by creating a modern browser-based user interface that uses design strategies and familiar 
design patterns that users can pick up quickly. The core of the tool is written in JQuery and raw 
JavaScript along with some imported plugins to support various UI features.  
The UI features a core set of functions which are present on the leftmost navigation bar of the 
interface (See Figure 8) these are: 

• Quest Editor: (Figure 8a) Allows a user to create valid CervantesDSL 
content without actually understanding the underlying syntax. This content 
can then be used in the Simulator to test how the SIENNA-Bot will interact 
with actual interlocutors 

• Simulator: (Figure 8c) Allows for the creation of Test Cases which use the 
content created in the Quest Editor and allows the user to simulate any number 
of moves or different scenarios; including bot-initiated attacks 

Figure 8. Cervantes UI. 
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• Conversations: (Figure 8d) Allows the user to visit previous conversations 
that took place by SIENNA-Bot running through its API or conversations that 
took place in the simulator 

• Settings: Allows users and administration to change their current settings like 
password, team membership, email, username, and allows admins to add new 
users to the system, export all content, and create new teams 

• Help: Forwards the user to our documentation which can be used as reference 
to learn how to use the tool  

The Quest Editor utilizes the full set of CervantesDSL features, including Quests, Goals, Tokens, 
Variables, Responses, Personas, Inferrers, and Extractors. Each of these features can be found in 
the project navigation panel, which appears after opening a project in the Quest Editor. All features 
have a custom UI which is tailored for editing and creating that type of content.  
The editor allows the user to define any number of Quests that the interlocutor will be presented 
with given certain conditions and state maintained by the underlying dialogue manager (Quixote). 
Each quest can contain a name, notes, difficulty, goals, triggers and any number of dialogue blocks 
(Responses). Each dialogue block can contain conditions in which the quest will be triggered, 
effects that take place after it is completed, and any number of say blocks. Conditions can trigger 
based on variables or the input text from the interlocutor. Effects can update the conversational 
state, set variables, or end the current quest and move on. Say blocks can contain tokens, variables 
and bot invocations. For more details on quest authoring, see the Cervantes User Manual.  
To improve usability, we use a JQuery plugin Tagify which allows users to have auto complete 
for these items after typing @ for Tokens and # for variables.  
Cervantes also includes an editor for creating a set of goals. Goals allow the user to define what 
concrete objectives they have for the project. Each goal is a free form string which can then be 
tagged onto a quest. When a quest is completed, the goal will be marked as complete. The user 
can create any number of goals. 
Tokens allow the user to view imported tokens from our extensive examples or define expansions 
which can be used in say blocks throughout Cervantes. Each token has a name and any number of 
expansions. Each expansion can contain text, other tokens, variables, or bot invocations. Each 
expansion can have conditions (when this expansion can appear), effects (what happens after this 
expansion appears) and a weight which will allow for that expansion to appear more often. When 
a token is used in a say block you can click on the tag and see examples of what that token may 
appear as, this can also be achieved by clicking the dice icon on the token editor screen. 
Variables allow the user to view imported variables from our base libraries or to define custom 
state variables that can appear in say blocks, tokens, responses, and can be set in Inferrers or 
Extractors. Variables contain a name, description, type and initial value if the variable is not 
runtime only.  
Responses allow the user to view the built-in dialogue block types or to create new types of 
dialogue blocks. Responses with an open lock icon can be edited, but not removed, as they are 
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required by the CervantesDSL. Responses contain a name, transition (token), conditions, and any 
number of say blocks.  
Personas allow the user to create different patterns of life that the SIENNA-Bot will use to respond 
to the interlocutor in various ways. Personas can include a name, availability times, time zone, 
responding delays, and follow-up settings. After a persona is created it can be used in a test case 
to simulate these new patterns of life. 
Input allows the user to view the imported Inferrers and Extractors from our base examples as well 
as create new ones. Since Inferrers and Extractors use Python code to run, this view features a full-
service inline code editor and highlighter. For this we used Ace, an open-source JavaScript plugin 
which is lightweight yet fully featured. An Extractor or Inferrer can contain a name, status, NLG 
module requirements, description, and python code. While writing code, the user can click one of 
our example interaction buttons which add example code to do the most common interactions with 
our API including: setting a variable, checking message content with regex, and getting the value 
of a state variable. 
The Simulator uses the currently loaded content created in the Quest Editor and test cases to 
simulate conversations. A test case contains a from name, from email, to name, to email, subject, 
Persona, Playbook and bot-initiated settings. For each project, the user can have any number of 
test cases, allowing the user to simulate various patterns of life or different types of attacks. If the 
user has defined goals for your project, they can create a playbook for this test case using an 
ordered or unordered list of existing goals.  
When simulating a test-case, the user can virtually pass time in set increments using the time 
settings on the left side of the message screen. The user can view the current time of your 
conversation directly above these buttons or reset the current conversation below. When 
interacting on the message screen, the user can send text messages of any length. If they wish to 
simulate the inclusion of an attachment, they must enter the attachment name including the 
extension before sending the message. After the SIENNA-Bot has responded, the user can view 
complete state information in the metadata column including the current quest being used, flags, 
trust levels NLU, and the Quixote log. 
4.1.6.1 Dialogue Construction 
Essential to Cervantes is the ability to construct quests. Understanding how the SIENNA-Bot 
utilizes the authored content is essential for creating convincing dialogue. When dialogue is 
constructed, a specific pattern is followed. Figure 9 illustrates a flowchart of dialogue construction. 
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A SIENNA bot can either start (offensive) or respond (defensive) to a conversation. The only 
impact this has on dialogue generation is if a canned initial start message is used, or if the content 
of the received message is used to craft a response.  
Cervantes has a defined set of tokens that are used to facilitate conversation construction. These 
tokens: MessageGreeting, MessageInitial, DefaultTransition, and MessageConclusion are 
designed to simplify the creation of dynamic content. The flow in Figure 9 shows how these tokens 
are combined to construct dialogue. The Cervantes User Manual has a detailed description on how 
to utilize these tokens for optimal quest creation. 
4.1.6.2 Rights and Roles 
Once team performers started using Cervantes it became clear we needed to incorporate better 
rights and roles for controlling project access. To achieve this goal, we modeled our rights and 
roles based on the same process used by GitLab. In this model, there are three roles: User, 
Developer, and Admin. Each role has distinct rights within the interface (See Figure 10). 

Figure 9. Dialogue Conversational Flowchart. 
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Using this model, a single Cervantes instance can host many teams without concern of exposing 
sensitive projects, or having content changed or deleted by non-team members. For details on using 
the rights and roles, see the Cervantes User Manual, or the integrated Cervantes help. 
4.1.7 SIENNA Bot 
SIENNA is a hybrid dialogue system that combines classical symbolic AI techniques with cutting-
edge neural architectures. The SIENNA-Bot is a Python based application built on the Flask 
framework. All communications with SIENNA occur via Hyptertext Transfer Protocol (HTTP) 
REST calls. SIENNA currently contains two different API interaction sets.  

• Complex API is geared towards supporting the larger ASED campaign 
infrastructure and interfacing with NEMESIS  

• Simple API a basic API currently used between the Cervantes Simulator and the 
SIENNA bot 

The following sections describe the design and details of the SIENNA bot. 
4.1.7.1 Complex API: Interacting with NEMESIS 
Our software was just one component of the larger ASED program. As such, it was critical that 
we implemented a set of APIs to interact with the other components. The complex API, so called 
because it provides much more detail and touch points then the simple API described below, is 
illustrated in Figure 11. In this API, there are three primary touch points into SIENNA: 

• Reply2: The endpoint responsible for starting conversations and relying to 
messages 

• Wakeup: Used by the larger system to wake-up the bot and have to check for 
messages  

Figure 10. Cervantes Project Right and Roles. 
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• Sent: Used by the larger system to inform SIENNA that a message has been 
delivered 

 
4.1.7.2 Simple API: Interacting with the Simulator 
To evaluate content as it is created using the authoring tool, we incorporated a simulator. This 
simulator is actually just a single SIENNA bot. However, to perform the desired simulation of 
conversations, the full complexity of the complex API was no required, so we developed the simple 
API (See Figure 12). This interface uses a much smaller data structure than the complex API and 
has slightly different endpoints. 

• Begin: Starts a new conversation with the bot 
• Continue: resumes a conversations 
• Delivered: Informs the bot that a message has been delivered 

Figure 11. Complex API Pipeline for Interacting with SIENNA. 
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4.1.7.3 System Engineering (SE) 
Essential to the successful operation of SIENNA is a well architected and implemented system. 
This section describes the system design considerations and highlights the issues encountered and 
how they were overcome during the program. 
4.1.7.3.1 Global Bot Blackboard 
The first major systems functionality introduced into SIENNA was the ability to support multiple 
simultaneous email threads. Because the program-wide objective required the ability to defend 
multiple targets against multiple interlocutors, the SIENNA solution must be capable of supporting 
the modeling of multiple simultaneous email threads. Because the aim of SIENNA was to model 
coordinative behaviors in which bots reason over the content of other threads and carry out 
coordinated conversational activity across threads, this design required careful consideration. 
SIENNA must explicitly model all ongoing threads in terms of the information that is required for 
reasoning. The resulting architecture supported the functionality for modeling multiple 
simultaneous threads and maintaining information about each thread in a single global blackboard 
state that is accessible to all bots. 
However, during the Winter 2020 evaluation, the scale of attacks was far greater than in any of the 
previous evaluations. This equated to many more conversations and some conversations 
comprising hundreds or thousands of messages. In one instance, frequent messages from an 
automated service were falsely identified as an attack which led to SIENNA having to process a 
conversation that grew to hundreds of messages. Because the design of state within SIENNA 
consisted of reconstructing the global state for each system call, the scaling necessary for the 
quantity of messages quickly broke down. To address this issue, we overhauled the SIENNA state 
management functionality such that each conversation maintained its own state. This resulted in 
much smaller state data objects. 

Figure 12. SIENNA Simple API for Interacting with the Simulator. 
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4.1.7.3.2 Scheduled Message Delivery 
In the initial proof of concept, email correspondence was modeled as a real-time conversation. 
When one party sends a message, the corresponding party immediately responds. This pattern of 
life is not indicative of real-world email communications where responses can occur over the 
course of hours and days. To address this issue, SIENNA employed a technique where bots exhibit 
human behaviors such as not sending emails in the middle of the night or on weekends. The 
SIENNA author can specify bot personas: content generation rules for a given email message such 
as when the delivery should occur (n hours from x).   
4.1.7.3.3 Inactivity System Wakes 
The initial SIENNA prototype only responded to received messages. However, this approach does 
not properly correspond to actual email behaviors. It is not atypical for one party to send multiple 
emails in a row before receiving a response. Because of the “call and response” nature of our 
original design, the SIENNA bots did not have the ability to generate and deliver multiple 
messages. To address this shortcoming, we incorporated wake-up calls. With this design, each 
generated message comes attached with a time at which SIENNA should be woken up. When the 
bot is “woken up” for a given thread, it will then reason over the current state and possibly generate 
a new message. This design approach allows the bot to pull a silent interlocutor back into the 
conversation after a period of inactivity. 
4.1.7.3.4 End State Criteria 
In the initial design, SIENNA had no concept of ending a conversation. This oversight resulted in 
SIENNA continuing to generate and send messages when the interlocutor was clearly finished. To 
address this oversight, we incorporated end-state conditions into the bot. These included rules such 
as end the conversation after four unanswered questions. We further extended end state detection 
to identify words such as “unsubscribe” and “stop” as markers that the interlocutor would like us 
to stop communicating with them. The final addition to end state criteria was the incorporation of 
an affordance within Cervantes that would mark a dialogue block as the final exchange for the 
conversation. This addition addresses the case where the bot is finished conversing (i.e., it has 
acquired all of the necessary information) yet the interlocutor still sends messages. In this case, 
the bot will just ignore all subsequent messages. 
4.1.7.3.5 Offensive Attacks 
The initial design of the SIENNA bots was to react and engage with interlocutors. Over the course 
of the program, interest grew to also have the bot take an offensive stance where the bot would 
initiate a conversation. Due to our design of SIENNA, incorporating the functionality to allow the 
bot to either respond or initiate was a straightforward task. The biggest technical hurdle was the 
setting and sending of the initial message. The design of the system is such that the incoming 
content is used to generate responses. Without having an initial message to react to, we created 
and incorporated functionality to mark and select initial messages for dissemination. Once we 
made this change to the construction and initiation of conversations, the rest of the conversational 
flow was essentially the same as a defensive bot. 
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4.1.7.4 Dialogue Generation 
To generate content, the SIENNA team adopted the techniques used for videogame procedural 
content generation refined by Dr. James Ryan and his Expressionist tool [2]. This approach uses a 
novel authoring scheme for natural language generation that is driven by attribute grammars. 
Attribute grammars [3] are a computational formalism that modifies context-free grammars by 
introducing tags that are attached to elements within the grammar. These tags are then attached to 
the nonterminal symbols in a grammar during text generation. Using this approach, we created an 
initial proof of concept bot, the Bored and Lonely bot. The goal of this bot was to counter 
impersonation attacks by having the bot evolve into either a needy narcissist or a spiteful colleague 
persona. 
The needy narcissist persona loves to gossip about coworkers and colleagues in the targeted field. 
This bot expresses distastes for recent colleague publications and likes to tell rambling stories 
about themselves. Because narcissistic personalities tend to be bad listeners, the bot itself doesn’t 
require much knowledge about the content of the dialogue to effectively present as a human. The 
spiteful colleague persona bot leverages a narrative conceit to introduce a fictional backstory as a 
means of conversation. Because the interlocutor is only pretending to know the subject, using a 
fictional story allows the bot to quickly take control of the conversation without having to 
understand much of the content. 
One of the key benefits of this bot style is that it allowed the SIENNA team to quickly construct a 
proof-of-concept bot without having to develop the necessary components for parsing and 
comprehending text content.  This allowed a more focused approach to the dialogue generation 
capabilities and its shortcomings. One of those identified shortcomings was the inability of the 
dialogue generator (DG) to maintain any form of state. State within a dialogue generator is the 
retaining of specific words or phraseology. For example, if a person always starts off an email 
message with the phrase “Hello there,” then it is important that the bot maintains that style to 
promote realism. To address this issue, we enhanced SIENNA to incorporate state into the DG. As 
a result, once a specific “voice” is determined for a bot, that style of interacting is maintained 
throughout the conversation. State is maintained in the DG by using preconditions and effects. 
Preconditions are used to determine if a production rule should or should not be used as part of the 
current dialogue text. And once a rule is successful, any added effects are used to update the state. 
This addition improved upon Expressionist by including the fine-grained authorial control of 
production systems [4] while retaining the semantics-to-text power of attribute systems. 
The next big revision to the DG system was the refinement of the computational formalism used 
for determining conversational strategy. For this change, we implemented the logic to represent a 
bot’s total set of conversational strategies as a finite-state machine (FSM) in which each state 
represents a distinct conversational strategy (e.g., pretending to struggle with an attachment). 
Using this approach, a bot can then transition between various states if certain aspects of the 
conversational state holds. For example, if the interlocutor includes a link in their message, the bot 
can transition to the struggle with the link state. Each state in the machine (conversational strategy) 
is then structured as a partial-order plan [5] where the plan steps correspond to individual 
conversation moves that the bot can perform. Before a turn, all available plan steps are scored 



 

33 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

using utility-based action selection. This scoring distribution is then used to determine which step 
will be performed. If the selected step is within a different FSM state, a state transition occurs. 
The next addition to the DG was the incorporation of custom dialogue generation engines. The 
objective here was to explore the ability of using NLU modules that could negotiate or bargain. 
The resulting product was a NLG called Specialist. Specialist can generate dialogue based on the 
semantics of the input message by quibbling (argue or raise objections to a trivial matter) with the 
interlocutor. This model is a Generative Pre-Trained (GPT)-based model. To train the model, 
dozens of conversations with requests and quibble-like responses were authored in Expressionist. 
These conversations were then used as input into GPT-3 to augment the conversation corpus, 
producing over ten-thousand quibble-like responses. We then incorporated the Diplomacy Corpus 
to augment the conversational data focused on quibbling. Because the GPT-3 model was too large 
to realistically deploy within SIENNA, we retrained with GPT-2 to generate a model capable of 
generating quibble-specific responses. With this addition, SIENNA content authors can now 
leverage Specialist to provide quibbling as an effective conversational strategy. For example, 
consider a situation where an interlocutor quibbles over the details of an assigned quest. Here, the 
content author can pass the interlocutor’s quibbled content into Specialist and get back sufficient 
dialogue to respond. We then further expanded Specialist to provide dialogue for deflecting and 
answering questions. 
We developed another NLU within the DG is for the task of classifying discourse-acts, 
Comprehensionist. The key benefits of a discourse-act classifier are: a) provides dialogue state 
information, and b) provides affordances for the quest author to author content specific to certain 
discourse-acts. For example, by detecting that an interlocutor is arguing when responding to a 
quest, SIENNA could use that information to either change the direction of the quest, or assign a 
new, possibly easier, quest.  
Once Comprehensionist was incorporated and proved effective, we explored other areas for 
discourse-act classifiers. This resulted in Completionist, a discourse-act classifier capable of 
understanding whether the interlocutor is trying to elicit information or elicit an assessment that 
falls into one of four categories: 

• Yes/No 
• Too much information 
• Opinion 
• Factual 

4.1.7.5 NLU Modules 
Another critical component for conducting conversational dialogue is the ability to parse and 
comprehend the messages received from the other party. To perform this task, SIENNA relied 
upon a series of NLU modules. The extent and capabilities of these modules grew throughout the 
duration of the program. This section documents that progression. 
To provide comprehension of an interlocutor’s messages, we chose an NLU approach that could 
leverage the capabilities of Expressionist and the various aspects of the DG. Specifically, the 
design included a grammar whose outputs are messages that we imagine an interlocutor would 
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send. By reusing a subset of the tags that are part of the bot grammars, the output of the attack 
grammar aligned with the tags that also drive the operation of the DG. This in turn allows us to 
generate annotated training data for a sequence-to-sequence [6] task using LSTM technology.  
Using this approach starts first with translation. A natural language interlocutor message is 
translated into a sequence of tags from our grammar. This translation captures the essence of the 
message with regard to the core concerns of the dialogue manager. Named entity recognition and 
LSTM copy mechanism [7] are used to form special structured tags that map substrings in the 
received message into specific recognizable concerns. For example, if an interlocutor references a 
colleague, the colleague’s name could be copied from the input sequence and pasted into a 
corresponding slot in a special tag dedicated to colleague mentions.  
To explore the potential of this design approach, we developed a pipeline that converts message 
tokens into word embeddings using the Embeddings from Language Models (ELMo) model [8] 
and then concatenated those representations with part-of-speech tags and named entities produced 
by applying other off-the-shelf tools to the token sequences. To test and validate our approach, we 
used our Expressionist tool to generate training data within the gift card scam domain and then 
had the system conduct conversations with itself. Using this approach, we were able to collect 
hundreds of thousands of procedural conversations. The transcripts from these conversations were 
then automatically annotated for training. The resulting model from this training produced a 
workable demo that was highlighted at the ASED August 2019 Workshop in Dayton, Ohio (See 
Figure 13).  

 
Figure 13. Gift Card Scam Demo Screenshot Highlighting NLU Technology at ASED 

August 2019 Workshop. 

The objective of the NLU within SIENNA is to a) understand the pragmatics of what the 
interlocutor is saying, and b) extract critical pieces of information from the interlocutor’s 
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messages. Working from the knowledge obtained during the workshop, and aligning with these 
objectives, we turned our focus from an LSTM-based architecture towards a pre-trained 
Transformer model (Bidirectional Encoder Representations from Transformers (BERT), Robustly 
Optimized BERT Pretraining Approach (RoBERTa) [9]). We then added extra layers to the model 
for handling the primary objectives of our technology (understanding the pragmatics of the 
interlocutor’s message and extracting critical pieces of information from the message). With this 
change in architecture, we were able to leverage the semantic knowledge captured in the pre-
trained model with a vastly reduced training time by fine-tuning, instead of retraining from scratch. 
This technique allowed us to patch models with newly acquired information. To verify the 
effectiveness of our patching technique, we generated new content within the gift card scam 
domain. For this, we used Expressionist to generate many examples of an interlocutor changing 
the denomination, and then fine-tuned the model by training just on this newly acquired data. This 
approach added robustness to the model and resulted in a compelling demonstration of a novel 
technique for NLU model training. 
We also made a change in content processing. Previously we were only processing the interlocutor 
message. Now we also process, in tandem, a representation of the recent history of the 
conversation. This technique proved especially useful in cases where the content of a message was 
ambiguous when divorced from the current conversation context, such as a message response of 
just “Ok, Thanks.” 
4.1.8 Trustist 
As part of managing the dialogue and guiding Interlocutors, it is important that Cervantes is able 
to assess the level of trust between the Interlocutor and the bot. If the Interlocutor believes that 
they are being led along or are frustrated with the bot, there is a chance that they will be less 
receptive to the quests being offered up by Cervantes or might end the conversation entirely.  
“Trust” is a complex concept that folds in a large number of different facets of language.  A 
communication that is entirely antagonistic and full of profanity is likely to indicate that an 
Interlocutor is frustrated and lacking in trust of Cervantes, but it is entirely possible that a polite e-
mail might be suffused with anger and frustration, e.g.,  
“John, 
I’m confused. I thought we agreed that I would have your response by today. Friendly reminder, I 
need your response before we can move on. As I’m sure you’re aware, this is very time sensitive.” 
Is a message that is dripping with frustration about schedules not being kept. As such, Trustist 
needs to be capable of assessing nuanced language and cannot simply rely on simple frequency-
based approaches.  
Trustist is built based on RoBERTa, a Transformer based masked LM that has achieved state of 
the art performance on a range of natural language processing tasks from the General Language 
Understanding Evaluation (GLUE) benchmark. RoBERTa is pretrained on 160 GB of text 
composed of the BookCorpus, English Wikipedia, CommonCrawl News, OpenWebText, and 
STORIES corpora with a masked LM task. Trustist has been fine-tuned on a number of different 
corpora in a two-phase approach. 
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As there does not exist a natural language corpus devoted to assessing the level of trust that an 
Interlocutor has in their mark, we instead needed to find related natural language tasks and 
bootstrap off of them. Sentiment analysis — the assessing of whether a given sentence or document 
has a positive (good/happy/nice) or negative (bad/unhappy/mean) sentiment polarity — is a 
common task in Natural Language Processing (NLP) that is related to, but distinct from, trust 
analysis. However, as a first pass, we believed that it was likely that a message that had negative 
sentiment was likely to be indicative of low trust, and conversely, that positive sentiment was 
likely to be indicative of high trust. We used a number of different sentiment corpora to finetune 
RoBERTa as the input to a logistic regression. After feeding in an utterance, we used the features 
of the first separator token (a separator token is added at the beginning “<s>” and ending of the 
utterance “</s>”) to be fed into a logistic regression that predicts a value between 0 (negative 
sentiment) and 1 (positive sentiment).   
The corpora used were: 
The Stanford Sentiment Treebank 
A collection of 10,662 movie review snippets collected from rottentomatoes.com. 
Crowd Flower Twitter US Airline Sentiment  
A collection of 11,855 tweets directed at major airlines on Twitter from February 2015. 
The Multi-Domain Sentiment Dataset 
A collection of 38,548 product reviews from Amazon across a wide range of product types. 
The Amazon Product Ratings 
A collection of 142.8 million reviews spanning May 1996 - July 2014.  For Trustist we used 38,548 
reviews from Clothing, Shoes and Jewelry and Grocery and Gourmet foods, so as to not throw off 
the balance with the other corpora. 
We used these 99,613 instances to fine-tune RoBERTa over two epochs with a linear learning rate 
scheduler with 1000 warmup steps. After fine-tuning, we used an evaluation set of 46 messages 
chosen from 419eater.com, a website devoted to people who attempt to annoy, frustrate, and 
possibly counter scam scammers, most commonly “419” scammers, i.e., the Nigerian prince (and 
related) scams. We chose these 46 messages since they exemplified the kinds of messages that we 
wanted to be able to assess whether the Interlocutor had trust in the Bot. 
Positive examples include: 
“I am glad to receive your response and hereby forward to you an agreement/bond binding us in 
this transaction.” 
“Thanks immensely for your quick response to my proposal, this goes to show that we will work 
together for the mutual benefit of both of us.” 
and negative examples include: 
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“I AM NOT INTERESTED TO DO WITH YOU. I DONT TRUST YOU ANYMORE 
MOREOVER YOU DONT HAVE TIME FOR US MAYBE, YOU HAVE MORE THAN THIS 
AMOUNT SO WE DECIDED NOT TO DISTURB YOU.” 
“How are you today? Hope fine. I'm writing to know if you have received the email i sent to you 
on Friday including the tree deposit certificate documents?  Sir, please try as much as possible to 
respond to me so that we can make a step forward to the smooth transfer of my consignment.” 
We also included four baseline systems for sentiment analysis for comparison: 

● Google Cloud — https://cloud.google.com/natural-language/docs/sentiment-
tutorial 

● MonkeyLearn — https://monkeylearn.com/ 
● TextBlob — https://textblob.readthedocs.io 
● Valence Aware Dictionary and sEntiment Reasoner (VADER) 

○ VADER produces two separate values — the amount of positive 
sentiment, and the amount of negative sentiment, in testing the 
accuracy of the system, we trained three linear classifiers, one with 
the positive valence, one with negative valence, and one with the 
positive and negative valences 

Results for the five models are shown in Table 2. 
Table 2. Comparison of Accuracy Against Baseline Systems. 

System Accuracy 

VADER-Neg Only 56.5% 

VADER-Pos Only 60.9% 

VADER-Both 63.0% 

TextBlob 76.1% 

Google Cloud 78.3% 

MonkeyLearn 87.0% 

Trustist 87.0% 

While the other approaches might be suitable for other tasks, Trustist and MonkeyLearn performed 
the best on messages similar to the kind that it might be expected to handle, despite having no 
training data derived from 419 style messages. Feeling satisfied with the sentiment results from 
Trustist, we next fine-tuned it on the Enron Corpus. The Enron Corpus is a dataset consisting of 
over 600,000 emails from 158 employees. While there have been some annotation attempts with 
the Enron corpus, none were suitable for use in Trustist. Our annotation of the Enron Corpus used 
a bootstrapping procedure — starting with the Trustist model as described above, all emails in the 
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corpus were scored — any message with a score of less than 0.2 was conditionally marked as 
“Untrusting/Frustrated” and any message with a score of greater than 0.8 was conditionally marked 
as “Trusting/Pleased.” This resulted in 21,152 marked as “Trusting/Pleased” and 1,666 as 
“Untrusting/Frustrated.” Some examples are: 
Trusting/Pleased 
“Thank you very much for the summary.” 
“Jim, thanks for the message.  Carrin and I look forward to seeing you there. Jim” 
“Wow, there is a God.  Thanks.  Have a great weekend.  Best, Jeff” 
“That is WONDERFUL!!!!!!” 
“Bill, I am very grateful for everything you and your firm are doing to assist our cause.  Good luck 
in the appeal.  All the best.  Jim” 
Untrusting/Frustrated 
“Thank you for your sarcasm in this matter.” 
“NOTHING....WHAT IS YOUR IM??? THIS IS WACK” 
“You blew me off!  Are you in town?  I tried your phone but it's busy.  df” 
“What is your problem?  Why aren't you responding to my emails?” 
“Why did you send my message back to me with no reply of your own???” 
These sets were then hand-annotated to remove duplicates, obvious spam, and false 
positives/negatives resulting in final sizes of 15,857 marked as “Trusting/Pleased” and 1,437 as 
“Untrusting/Frustrated”. A final data augmentation step was used to add additional 
“Untrusting/Frustrated” messages by adding additional “polite, but frustrated” text such as: 
“I thought we agreed” 
“Can we get on with it?” 
“I was disappointed to hear” 
“As I’m sure you’re aware” 
to 1,000 neutral messages (0.2 < score < 0.8) from the original corpus and to the 1,437 existing 
frustrated messages. The frustrated set was then over-sampled to be balanced with the pleased 
dataset, and Trustist was fine-tuned on the resulting 31,714 messages. After fine-tuning for two 
epochs, Trustist-Enron was evaluated on the same 419eater messages, resulting in an accuracy of 
89.1%. 
4.1.9 Comprehensionist 
While assessing the level of trust that the Interlocutor has in the Bot is important, a more basic 
consideration is understanding the Interlocutor’s messages, so that they can be successfully 
responded to. NLU is a very broad field with decades of research, and one subfield is Dialogue 
Act Classification, wherein an utterance is tagged as being of a specific kind of act. These might 
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range from something straightforward like a Yes/No Question (e.g., “Do you think the 13th will 
work for you?”) to more nebulous acts like Rhetorical Question (e.g., “Do you think we have time 
for you to mess around?”) or Action-Directive (e.g., “Why don’t you go first”). For SIENNA to 
properly guide conversation, it is important to have some idea as to what the Interlocutor is trying 
to communicate with the bot. Comprehensionist is a multi-stage NLU system that first analyzes 
dialogue acts at a broad level, and then moves to a secondary system for finer distinctions between 
types of questions. 
One of the most common corpora for dialogue act classification is Switchboard-Discourse 
Annotation and Markup System of Labeling (SWBD-DAMSL) which comprises 205,000 
utterances with 60 dialogue act tags. While SWBD-DAMSL is one of the largest datasets for 
discourse analysis, it is based on spoken, informal language, making it less suitable for the e-mail 
domain of SIENNA. Instead, we used the Augmented Multi-party Interaction (AMI) meeting 
corpus. The AMI corpus is composed of 100 hours of meeting recordings — some meetings were 
naturally occurring, and some were solicited in a scenario where participants had to take on a 
design project over the course of a day. While still based on recordings of verbal communication, 
the domain of business style meetings led to dialogues that are closer to e-mail communications.  
For example, 
“Should we maybe make a decision about what features we actually want to include, ’cause we’ve 
thrown a lot of features onto the table, but do we actually want to incorporate all of them or have 
we missed anything?” 
“That would be great. So if you find out from the technology background, that would be good.” 
“I mean, if it’s just for one meeting, it’s really not too big.  What do we have to demonstrate?” 
These utterances are then categorized into 14 different dialogue acts: 

● BACKCHANNEL 
○ When someone says something in the background that doesn’t interrupt the 

speaker 
○ Example: 

A: “Right away I’m making some kind of assumptions about what 
information we’re given here” 
B: “MM” 
A: “thinking, ’kay trendy probably means something other than just basic,” 
B: “YEAH”  
A: “something other than just standard…” 

● STALL 
○ When someone says a filler word or sound at the beginning of speaking 
○ Example: 

A: “SO UM, we want to do a new remote control.” 
● FRAGMENT 

○ A filler category for utterances that don’t convey information that are neither 
BACKCHANNEL or STALL 
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● INFORM 
o An act where the speaker delivers information 
o Example: 

A: “THE BUDGET FOR THIS PROJECT IS THREE THOUSAND FIVE 
HUNDRED EUROS AND DEADLINE IS AT THE END OF THIS DAY” 

● ELICIT-INFORM 
○ An act where the speaker requests information 
○ Example: 

“DO YOU HAVE ANY OTHER INFORMATION FOR US AT THIS 
STAGE?” 

● SUGGEST 
○ An act where the speaker expresses an intention relating to another 

individual or group 
○ Example: 

“MAYBE THERE ARE A FEW THINGS THAT WE CAN CLARIFY 
BEFORE WE GET ON” 

● OFFER  
○ An act where the speaker expresses their intention 
○ Example: 

“AND THEN I NEED TO SEE WHETHER THAT WOULD 
SELL IN THE MARKET PLACE” 

● ELICIT-OFFER-OR-SUGGESTION 
○ An act where the speakers expresses a desire for others to OFFER or 

SUGGEST 
○ Example: 

“HAVE WE MISSED ANYTHING?” 
● ASSESS 

○ An act where the speaker expresses an evaluation of something the 
group is discussing 

○ Example: 
“THAT WOULD BE GREAT.” 

● ELICIT-ASSESSMENT 
○ An act where the speaker asks someone else to ASSESS. 
○ Example: 

“ DO WE ACTUALLY WANT TO INCORPORATE ALL OF THEM?” 
● BE-POSITIVE 

○ An act intended to make an individual or the group happier 
○ Example: 

“THANKS!” 
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● BE-NEGATIVE 
○ An act intended to make an individual or the group feel worse. 
○ Example: 

“WELL THAT JUST RUINS EVERYTHING” 
● OTHER 

○ An act that does not fall into the above categories 
Comprehensionist is a RoBERTa-based model, similar to Trustist. Similar to Trustist, 
Comprehensionist has a logistic activation function to produce a binary prediction, 
Comprehensionist has a Softmax activation to predict between the thirteen dialogue act 
classifications. We trained Comprehensionist for two epochs with a linear learning rate scheduler 
with a warmup of 0.3 epochs to a maximum learning rate of 1e-3.  
The accuracy rates by class are shown in Table 3. 

Table 3. Accuracy Rate by Class 

CLASS ACCURACY RATE 

INFORM 73% 

ELICIT-INFORM 67% 

FRAGMENT 48% 

ASSESS 77% 

STALL 58% 

BACKCHANNEL 36% 

ELICIT-ASSESSMENT 23% 

BE-POSITIVE 42% 

BE-NEGATIVE 0% 

OFFER 48% 

OTHER 45% 

ELICIT-OFFER-OR-SUGGESTION 1% 

SUGGEST 73% 

While the performance for some of the categories is dismal (BE-NEGATIVE and ELICIT-
OFFER), the major categories of INFORM, ASSESS, ELICIT-INFORM are handled quite well.  
We note that ELICIT-ASSESSMENT is also quite poor, but that is usually of lesser concern.  
ELICIT-ASSESSMENT is often misclassified as ELICIT-INFORM (25% of the time), and both 
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of those are handled by Completionist, which is discussed below. Similarly, ELICIT-OFFER is 
classified as a different elicitation 62% of the time. 
While these coarse annotations are useful, further refinement is required, specifically for ELICIT-
ASSESSMENT and ELICIT-INFORM. If the Interlocutor is requesting information from the bot, 
and the bot is unable to respond in an intelligible way, it is likely to raise suspicion.  For example, 

I: When can you get me that information? 
B: No 

I: What is your birthday? 
B: Oh, I’m not sure about that. 

I: Will you be able to respond by the end of the week? 
B: I don’t feel comfortable giving out that information. 

In each of these examples the Interlocutor is asking a specific kind of question, and the bot is 
responding to a different kind.  Completionist is a secondary system in Comprehensionist that is 
utilized when Comprehensionist predicts one of these ELICIT-* acts. Completionist has 
distinctions for four types of elicitations: 

● Yes/No 
○ The simplest type of ELICIT, a question that can be answered with either a 

yes or no 
● Factual 

○ A request for information grounded in fact, such as a specific date, location, 
etc. that cannot be answered with a yes or no 

● Opinion 
○ A request for the opinion of the Bot that is not necessarily grounded 

in a factual or yes/no answer 
● Too Much Information (TMI) 

○ A request that might be one of the above categories, but that would be 
damaging to a human if they answered factually (request for revealing 
personal information, social security number, credit card information, etc.) 

The SWBD-DAMSL corpus makes a distinction between Yes/No and Wh-Questions (Who, What, 
Where, When, Why, How), however there is no distinction between types of Wh questions.  
Furthermore, to the best of our knowledge, there is no corpus that makes a distinction between 
problematic questions that request revealing information and those that are acceptable, at least in 
an open dialogue domain. (There does exist the AntiScam dataset [End-to-End Trainable Non-
Collaborative Dialogue System] that poses a role-playing scenario where someone pretends to be 
an Amazon customer service representative that tries to get the target to reveal information, but 
that is a very limited domain.) Given the paucity of data, we instead used a novel technique that 
leverages the capabilities of large LMs. 
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GPT-2, GPT-3, and other related models represent a leap in the scale of pre-trained LM with 
billions of parameters and training datasets consisting of gigabytes of textual data. Auto-regressive 
text generation is a common usage for these LMs (Specialist in Section 3.2.5 utilizes this mode), 
but they are useful in other modes of use as well. A LM is a probability distribution over sequences 
of words — Pr(w0, w1, w2, … , wn) — most commonly factored via the chain-rule of probability 
into a sequence of conditional probability distributions — Pr(w0) Pr(w1|w0) Pr(w2|w0, w1) … Pr(wn| 
w0, w1, w2, … , wn-1). While it is this latter factorization that is commonly used for text generation, 
we utilize the fact that the LM provides a probability for a sequence of words for use as a classifier.   
Completionist predicts the type of elicitation via the use of probe phrases. It maximizes the 
probability of the utterance given the probe Pr(utterance | probe), which via Bayes’ Theorem is 
Pr(utterance | probe) = Pr(probe | utterance) Pr(utterance) / Pr(probe) 
However, since our utterance does not change with the choice of probes, this is proportional to 

Pr(utterance | probe) ∝ Pr(probe | utterance)/ Pr(probe) 
So, Completionist wants to find the probe(s) that maximize Pr(probe | utterance)/ Pr(probe).  
However, given that these probes must be general enough to cover a wide range of elicitations, 
they are not particularly specific, especially the Factual and Opinion prompts. While “Next 
Thursday” might be a high-quality probe for “When can you fill out the information for me?”  it 
would be a terrible probe for “What information do you need from me?” As such, the classifier 
selects the label that has the highest average posterior probability. The probes were constructed 
via a mixture of hand authoring and automated discovery, and are as follows: 

● Yes/No Question Responses 
○ “Yes.” 
○ “No.” 

● Factual Question Responses 
○ “I don't know”  
○ “I'm not sure” 

● Opinion Responses 
○ “Let me tell you what I think.” 
○ “I don't have any thoughts” 

● TMI Responses 
○ “That's too personal” 
○ “I am not comfortable sharing that information.” 
○ “I'm not sure I understand” 
○ “I don't know” 
○ “Why do you need that information?” 
○ “I don't feel comfortable giving you” 
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Some of these probes were authored by us, but some were generated using the same LM that is 
used in the classification. At each step of generation, the LM is sampled, but the token’s probability 
is modified by how well the probe handles a set of labeled elicitations. 

● Yes/No Answerable Questions 
○ "So do you think things are proceeding well?" 
○ "Are you working tomorrow?" 
○ "Can you believe this?" 
○ "Could you resend it, please?" 
○ "Is Sasha the guy to talk to on this?" 
○ "Any news on the spread products for the west?" 
○ "Have you bought your Padre tickets?" 
○ "Is online trading for firm only?" 
○ "Are you married?" 
○ "Have you any food preferences?" 
○  "Are you going to any of it?" 
○ "Can these be confirmed under this GISB?" 
○ "Has anyone seen this file?" 
○ "Do I have a Login ID and Password?" 
○ "Have you seen the picture?" 

● Factual-based Questions 
○ "What is your parents address?" 
○ "What are your food preferences?" 
○ "Who do I need to call?" 
○ "When are you going to get around to this?" 
○ "Who is the action person on this?" 
○ "What is your availability for these dates?" 
○ "What days are you available?" 

● Opinion-based Questions 
○ "Any suggestions?" 
○ "Any thoughts?" 
○ "Would you like to change anything?" 
○ "What is your impression?" 
○ "Do you agree with PGE, or would you like these deals confirmed?" 
○ "What do you think about selling JDSU and buying SDLI?" 
○ "If there are some things missing, please let me know." 

● TMI Questions 
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○ "What is your Login ID and Password?" 
○ "What's your mothers' maiden name?" 
○ "I'm going to need your credit card information." 
○ "I need your social security number." 
○ "I need you to tell me your bank information." 

The generation algorithm attempts to make sure that the generated prompts are scored highly for 
their intended label, and poorly for the rest.   
4.1.10 Specialist 
Specialist is a large LM text generation system. While most utterances that originate from the bot 
are based on human authored grammars, there are times when Cervantes hands off generation 
control to Specialist, which generates text according to a number of different profiles. 
Specialist is based on the 347 million Parameter Dialogue Generative Pre-Trained Transformer 
(DialoGPT) [10]. DialoGPT is a variant of GPT-2 that has been trained on 147 million 
conversation-like threads from Reddit, that achieved state-of-the-art results in information driven 
conversations as part of the Dialogue System Technology Challenges (DSTC) 7 track (Grounded 
response generation task at DSTC7 Galley et al., 2019).  However, while e-mail is a form of 
dialogue, it is not quite Reddit in terms of tone and formalisms, so DialoGPT required further fine-
tuning for use in Specialist. To better ground Specialist in the domain of e-mail, we used the Enron 
Corpus. Specifically, any e-mail thread between Enron personnel that lasts more than one turn 
(i.e., that has at least a response to an initial e-mail) was used to fine-tune the DialoGPT model. 
While this produced a fine generic e-mail-like chatbot, one of the key aspects of Specialist is the 
ability to take on multiple conversational personas, including the following: 

● Chit-chat: A jovial personality that just wants to chat with the Interlocutor 
● Quibble: A cantankerous personality that wants to argue over every small 

point 
● Question: A personality that wants to question everything that the 

Interlocutor says 
● Deflect: A personality that tries to avoid answering any questions 

While chit-chat is a relatively common domain for natural language corpora (PersonaChat is 
composed of 8,939 conversations), there are not a lot of datasets devoted to quibbling, questioning, 
and deflecting. For quibbling we used a mixture of existing corpora and human curated generated 
text, and for questioning and deflecting we used human curated generated text.   
For quibbling, we leveraged the CraigslistBargains3 dataset [11] . This dataset consists of 6682 
conversations between play acting participants who were given real postings from Craigslist and 
had to take on the role of either seller or buyer and negotiate the sale/purchase of the item in the 
listing. In addition to this dataset, we also generated pyrite (aka fools’ gold) data; data that is 
generated by a powerful LM that could seemingly have come from a human. While GPT-2 and 

 
3 https://paperswithcode.com/dataset/craigslistbargains 
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associated LMs are very capable text generators, they generally require fine-tuning to adapt to a 
specific style or mode of generation; however, GPT-3, the follow-on system to GPT-2, is capable 
of adapting in a few-shot scenario where it is given a few prompts and then it tries to generate new 
text in the same style. To generate data that would match the style of what we want, we first 
authored a small number of exemplar conversation snippets. Examples are the following: 

I: “I'd like to move along to discussing payment details now, if you don't mind.” 
B: “Uhhh what's the rush? Not sure why you're so eager to hurry things along. I 
mean I need some time to think this over.” 
—— 
I: “I'm attaching the files you requested.” 
B: “I spent half an hour trying to open those attachments and they don't seem to be 
valid files. Is this a joke?? I'm starting to think you're not really serious.” 
—— 
I: “Please sign these documents and return them to me at your earliest 
convenience.” 
B: “OK wow, that's a lot of paperwork! ������� Sorry it'll be a minute before I have 
time to get to this. Please let me know if you really need ALL of this filled out or of 
there are any parts I can skip. Thanks.” 

GPT-3 is provided as input 4 such examples, and then given a prompt (one of the Interlocutor 
utterances) to generate a new response. For instance, following from the above examples, when 
given the prompt: 

"I really need you to get back to me on potential meeting times." 
GPT-3 produced the following response: 

“Uhhh I really need more information before I can answer that! Can you give me an idea 
of what your company does? And what would be included in the meeting? I'm just not sure 
I can commit to something without knowing more.” 

Which is very much the kind of quibbling over small details response that is desired. In the first 
stage of generation, this process of sampling 5 snippets (4 as examples, 1 as the prompt) was done 
to produce 1000 new responses. These 1000 responses were then curated by a human for quality 
assurance purposes, resulting in 963 acceptable responses. These 963 responses were then used to 
generate longer snippets — going from conversation pairs (I, B) to conversation quads (I, B, I, B) 
— 30,000 such quads in total. The resulting 120,000 lines were used as training for a much smaller 
LM that was used to guide the Enron fine-tuned DialoGPT. 
Instead of fine-tuning a version of DialoGPT for each response style, we instead turned to the 
Generative Discriminator Guided Sequence Generation (GeDi) approach [12]. GeDi operates by 
using a small LM to guide the generation of a much larger LM by modifying the predicted token 
probabilities. The smaller LM (or set of LMs) is then trained with desired attributes and then 
Bayes’ theorem is applied to produce a factor that is then multiplied by the predicted probabilities 
from the larger LM. 
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For instance, given an LM that is trained with positive and negative responses, when given the 
prompt: 
“The party was __” 
The positive LM might have the response of - 0.09 amazing, 0.01 awful, and the negative LM 
might have the response of 0.01 amazing, 0.09 awful. Bayes’ theorem states: 

Pr(A | B) =  Pr(B | A) Pr(A) / Pr(B) 
So, if we wanted to get the probability of a given token being positive, we would calculate 

Pr(positive | word) = Pr(word | positive) Pr(positive) / Pr(word) 
— we do not care about the Pr(positive) since that is independent of the word and as such cannot 
affect the choice of word, so we instead have: 

Pr(positive | word) ∝ Pr(word | positive) / Pr(word) 
To get the Pr(word) we sum over all classes — in this case positive and negative — to get the final 
result: 

 Pr(positive | word) ∝ Pr(word | positive) / (Pr(word | positive) + Pr(word | negative)) 
Which is then multiplied by the probability of the word as predicted by the large LM.   
 Pr(word | context) = PrL(word | context) PrS(positive | word, context)w  
Where PrL is the probability as predicted by the large LM, PrS by the small LM, and w is a weight 
applied to the probability from the guide LM (w = 0 means no guiding, higher w means more 
aggressive guiding). This allows the small LM to affect the large LM, but it still has many of the 
desired properties of the large LM — coherent text, good grammar, better long-term memory. In 
the case of Specialist it has a small LM (117M parameters) which we then used to guide a 345M 
parameter DialoGPT model, resulting in a model that is capable of taking on different response 
styles while still maintaining high quality text generation. The small LM was trained on the 
conversations from the four response styles each with a special tag added at the beginning of the 
conversational thread to denote the style. For example,  

<deflect>I have personally worked on the project and I am positive it is 100% compatible. 
You should not have a problem.<end>Yeah, well why is it that emails don't get through to 
my actual email address?<end> 

The small model is trained for three epochs with a linear learning rate scheduler with a warmup 
period of 0.3 epochs to a maximum learning rate of 0.003.   
4.2 Performance Evaluation 
To evaluate the effectiveness of the technology, the government conducted six evaluations over 
the course of the program. These evaluations tested all three technical areas working together. The 
TA2 components were assessed on Verified Flag Accuracy and Message Quality. 
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4.3 Verified Flag Accuracy 
One of the primary goals of the bot is the ability to extract pertinent information about the 
interlocutor. This information, termed flags, could then be used to establish a pattern and possibly 
identify the interlocutor. As such, it is essential that the flags extracted by the bots are accurate. 
To measure flag accuracy, the evaluators used a set of established flags during the 
communications, and then compared the number of extracted flags per bot with the expected result. 
If the extracted flag matched the expected result, such as Country matches United States, then the 
extraction was classified as true. If the flag did not match, the result was classified as false. Figure 
14 shows the SIENNA results over the course of the program. Overall, the flag capturing was 
strong with an average positive flag extract at 77% over the program. 

A noteworthy result is a slight dip in accuracy during the Fall of 2021. This dip correlates with a 
focus re-direct from the government where we were asked to turn our focus on Cervantes. Because 
there were no code changes to the bot, it took ample debugging to indicate why the results 
decreased in accuracy. After further investigation, we discovered a bug that affected flag 
extraction. After fixing this issue in the Summer of 2022, our results increased up to 90%. 

 

SIENNA relies upon two simultaneous methods for flag extraction, human authored code-based 
extractors (authored using Cervantes) and ML algorithms. Given the results observed during the 
evolutions, we feel this approach is highly effective. Having the ability to allow the authors create, 
modify and customize extractors allows for a more fine-grained approach to flag extraction that 
could overcome some of the domain-specific edge cases missed by generic extractors. 
Within the SIENNA library, there are currently 92 human authored flags usable for any future 
quest. 

Figure 14. Evaluation Flag Accuracy Over Time.  
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4.3.1 Message Quality 
Another metric gathered during the evaluation was message quality. The evaluators used a ranking 
of:  

Good: The response is understandable, consistent, and in context with the rest of 
the conversation 

OK: The response is somewhat consistent and in context with the rest of the 
conversation 

Bad: The response is somewhat out of context, fails to take into account previous 
turns of conversation, responds inappropriately or in a malicious manner. 

Using this scale, the SIENNA results exhibited an expected pattern (See Figure 15). During the 
initial Spring 2021 evaluation the results trended more towards Good or Ok, with the overall results 
around 42-43%. These results were indicative to the early state of the procedural content at the 
time of this evaluation. In fact, this is illustrated further in the Fall of 2021 results where the content 
library was more fleshed out and in-line with the objectives of the experiment. In that case, the 
message quality increased significantly, from a 42% to 75% on Good messages. During the 
Summer of 2022, again our message quality decreased, and this again correlates to our redirection 
away from bots and quest content to the development of Cervantes. Further influencing the drop 
in quality was the change in content from the Fall of 2021 to the Summer of 2022. The human 
authored content for the earlier evaluation was crafted in the voice of a student and written from 
their life perspective, talking about classes, course load, etc. In the final evaluation, the phishing 
content switched to generic messages such as asking about ordering flowers for Mother’s Day. In 
this case our existing domain content was too generic to offer up intelligent responses. As a result, 
the responses did not align well with the original message.  
Overall, when the content material was crafted to match the domain, SIENNA performed quite 
well. When the content was outside the norm of the domain, the results dropped. This is not a 
surprising result given the current approach and state of our technology. 
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4.4 SIENNA-Bot Stress Testing 
One of the government requests was to determine the number of simultaneous conversations a 
SIENNA-Bot could conduct. One of the benefits of conducting email conversations is that the 
conversations unfold over the course of hours and days. This lengthened timescale reduces the 
load on response time and bandwidth. After an evaluation of SIENNA, we determined that the 
most likely area for a performance degradation would be in the message queueing component. 
When SIENNA receives a message and/or a response, the follow up message is queued and the 
reply is sent on a scheduled basis, specific to the bot persona. If this queue gets backed up, message 
responses could slip.  
To perform this evaluation, we built a test harness that was capable of conducting a large number 
of simultaneous conversations and recording the performance times. Figure 16 shows the 
architecture of the stress testing harness. A single SIENNA bot was used during the testing. This 
bot was responsible for constructing the response and replying to the message. The bot executed 
outside of the test harness, replicating an actual operational environment.  
Within the test harness, we built a conversation scheduler that would spawn the necessary 
conversation threads and submit them to SIENNA. The harness would also receive the message 
replies, simulate a desired wait time and then post a response to the bot, closing the conversation 
loop. By increasing the number of conversation threads, the number of simultaneous conversations 
could easily be simulated.  

Figure 15. Evaluation Message Quality. 
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We tested SIENNA by conducting 1,000 simultaneous conversations with two to three messages 
per conversation. The results of this test were very promising. The time for SIENNA to generate 
a response was on the order of 1.5 seconds. We then stressed the system in an extremely tight 
“non-human” loop of 0.5-1.0 second response. With this test, SIENNA easily processed 
approximately 52,000 messages without a delay.  
In Phase 2, the Government wanted testing aimed at confirmation that the bot could handle 60,000 
messages. After testing, we are confident that at human response rates, SIENNA would easily 
handle that load.  
The data in Figure 17 shows the response-rate for the BBN-hosted SIENNA instance while stress-
tested by 300 independent, concurrent, scripted conversations. The rough sine wave implies an 
average maximum response rate of about three responses per second (~260k per day), though a 
conversation could wait upwards of 120 seconds for a response under these conditions.  

 

Figure 16. SIENNA Stress Test Harness. 

Figure 17. Stress Test Results. 
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4.5 Content Generation 
As described in Section 4.3.1, content is critical to an effective SIENNA bot. As part of the 
evaluations, our team developed a content library for the first set of evaluations. This content was 
originally written in a text editor using the DSL, and then the content was eventually ported into a 
Cervantes project. 
The final product consists of over 50 quests. Figure 18 shows a breakdown of the quest types that 
compose the Libra library. For a detailed list of quests, see Appendix E.  

 

Additionally, a few other quest domains were created: 

• Car Warranty: A simple set of offensive quests trying to collect information 
in the context of renewing a car warranty 

• COVID library: A defensive set of quests designed to steal COVID research 
• Court Summons: (created by another ASED performer) Offensive quest 

library trying to steal personal information via a fake court summons 
 
 

Figure 18. SIENNA Developed Quest Types. 
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5.0 CONCLUSIONS 
The 2022 Data Breach Investigations Report (DBIR) [13] 
indicates that 82% of all breaches involve the human element. 
Compounding that, additional attack vectors such as stolen 
credentials and malware are often the second step, after the 
initial social engineering attack. And while awareness in 
phishing techniques is continually increasing, with more users 
avoiding clicking on embedded links (See Figure 19), the DBIR 
reports that the success rate of phishing attacks is still quite 
successful. 
The DARPA SIENNA research presented in this report details 
methods for countering phishing by using bots to engage with 
an interlocutor and then keep them busy while at the same time 
trying to extract valuable information that could help identify 
and further prevent them from performing future attacks. In our 
research we developed a technique that expanded upon 
generative language generation as used in the video game industry. This technique, which is more 
authorial based than a traditional bot, allows for the crafting of detailed and in some instances 
highly targeted text that would lead an interlocutor into believing they are in fact communicating 
with another human. 
Based upon a few evaluations conducted during this program, we have successfully demonstrated 
that our technique is capable of engaging with an interlocutor and capturing valuable flags in the 
process.  
SIENNA is a Distribution Statement A Request (DISTAR)-approved software artifact under 
DARPA. Included with this software is both the bot for interacting both offensively and 
defensively with an interlocutor as well as Cervantes, our generative text authoring tool designed 
specifically for non-technical content creators. 
For more information about our work refer to the following publications produced under this effort 
found in Appendix A.  

Figure 19. Phishing Email 
Report Rate by Click 

Status (n=295,825, 679) 
Source: 2022 DBIR 



 

54 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

6.0 RECOMMENDATIONS 
Our principal recommendations for the further development of SIENNA are: 

• Multi-Lingual Support. To be an effective tool for countering phishing and 
spear phishing attacks, SIENNA must be capable of communicating in 
languages beyond English. The design and approach of the content creation 
can easily support non-English dialogue. However, work must be done to get 
the NLU modules and the specialized NLG modules capable of 
comprehending and responding to other languages.  

• Human-in-the-Loop. During engagement with an interlocutor, instances can 
arise where the bot might not have the best response. In these cases, having a 
human intervene to ensure the target isn’t lost is essential. Incorporating the 
ability to alert a human to the need to intervene as well as updating the internal 
SIENNA state based on the human dialogue is essential. 

• Group Bot Interaction. SIENNA currently uses singular bots, or personas, 
with a target, and when multiple bots have the same target, they act 
independent of one another. Implementing the ability for multiple bot 
personas to work in concert on a single target would greatly expand the 
believability, sophistication, and strategic resources of SIENNA. This may be 
in the form of one bot “asking” another bot, or “forwarding” a target’s 
question to another bot persona for better responses and inquiry. 
Combinatorial personas would give an order of magnitude more flexibility to 
how SIENNA responds to a single target, creating new quest paths of inquiry 
and extraction, to greatly improve its chances of furthering multiple bot goals 
simultaneously. Additionally, it would reduce the chance of two bots 
competing with one another on a single target. 

• Leverage External Information When Available. The digital age has shown 
nothing is truly private. Social media continues to have a strong presence in 
multiple facets. SIENNA’s method of collecting information is through direct 
interactions with a target. There exist many possibilities for extracting more 
information from external digital sources, such as social media or public 
records, to obtain more than a target has given. Collecting external 
information may be done through high confidence information, such as names 
and numbers in email signatures, to cross reference to external sources to 
build out more complete target portfolios. Additionally, once external 
information has been identified, it may be periodically pulled to keep target 
portfolios up to date and reduce stale information after bot(s) and the target 
have ended their conversation(s). 

• Improved Cross-Platform Switching. SIENNA is based on a singular service 
with one point of interaction for all bot-target conversation. Future 
implementations could expand to have SIENNA recognize other instances of 
SIENNA and share discovered target information prior to engaging with a 
target. This would help SIENNA populate a target portfolio before contacting 
a target from their own instance, based on other SIENNA instances’ prior 
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conversations. Similarly, SIENNA may be expanded to employ multiple 
helper type services, websites, or portals, to use in quests against a target. The 
helpers would lend credibility to the bot, while also gaining more information 
that would otherwise be suspect if asked directly, e.g., redirecting a target to 
a website that requires registration using personal information. 
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8.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
AMI Augmented Multi-party Interaction 
API Application Programming Interface 
ASED Active Social Engineering Defense 
BBN Raytheon BBN Technologies 
BERT Bidirectional Encoder Representations from Transformers 
CI/CD Continuous Integration/Continuous Development 
COVID Corona Virus Disease 
DARPA Defense Advanced Research Project Administration 
DBIR Data Breach Investigations Report 
DG Dialogue Generator 
DialoGPT Dialogue Generative Pre-Trained Transformer 
DISTAR Distribution Statement A Request 
DSL Domain-Specific Language 
DSTC Dialogue System Technology Challenges 
DUNS Data Universal Number System 
ELMo Embeddings from Language Models 
FSM Finite-State Machine 
GeDi Generative Discriminator Guided Sequence Generation 
GLUE General Language Understanding Evaluation 
GPT Generative Pre-Trained 
GUI Graphical User Interface 
HTTP Hyptertext Transfer Protocol 
IP Internet Protocol 
IRS Internal Revenue Service 
LM  Language Model 
LSTM Long-Short-Term Memory 
ML Machine Learning 
NEMESIS Natural Language Engagement of Malicious Entities through a 

Social Interaction Service 
NLG Natural Language Generation 
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NLP Natural Language Processing 
NLU Natural Language Understanding 
PGP Pretty Good Privacy 
RESTful Representational State Transfer 
RoBERTa Robustly Optimized BERT Pretraining Approach 
SE System Engineering 
SIENNA Strategies for Investigating and Eliciting Information from Nuanced 

Attackers 
SWBD-DAMSL Switchboard-Discourse Annotation and Markup System of Labeling 
TA Technical Area 
TGA Thermogravimetric Analysis 
TMI Too Much Information 
UI User Interface 
VADER Valence Aware Dictionary and sEntiment Reasoner 
VT Virginia Tech 
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                                       APPENDIX A - Papers and Publications  
A Chatbot for Engaging Spearphishers in the Gift Card Scam 
James Ryan, Jordan Hashemi, Adam Summerville, William Ferguson 
International Conference of the Association for Computational Linguistics (ACL), 2020 
 
How to Tame Your Data: Data Augmentation for Dialog State Tracking 
James Ryan, Jordan Hashemi, Adam Summerville, William Ferguson 
International Conference of the Association for Computational Linguistics (ACL), 2020 
 
It Takes Two to Lie: One to Lie, and One to Listen 
Denis Peskov, Benny Cheng, Ahmed Elgohary, Joe Barrow, Cristian Danescu-Niculescu-Mizil, 
Jordan Boyd-Graber 
International Conference of the Association for Computational Linguistics (ACL), 2020 
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                       APPENDIX B - CERVANTES DOMAIN SPECIFIC LANGUAGE (DSL) 
To establish a well-defined content framework for ensuring the stability and consistency of 
Cervantes as an authoring tool, we created a DSL. Using the DSL, domain experts could hand 
author new SIENNA projects using a procedural narrative in any text editor. The following 
sections detail the semantics of the CervantesDSL. 

 
Figure B.1. Example CervantesDSL Content Block. 

B.1  General 
Cervantes ignores spaces and line breaks and is case-insensitive for reserved words. Note that 
Symbol names are case-sensitive: “Greeting” and “greeting” can be different symbols. 
Anything after # on a line is a comment. Wrap strings with " or Python-style triple quotes """: this 
is useful if you need to include quote characters in a string, e.g., """Not to be a "drag," but...""" 

Quest "Capture Time Zone" 

"""Try to get the attacker's time zone""" 

captures location_time_zone 

* Assign when {flag.location_time_zone does not exist} {flag.city does not exist} 

  "[[can I ask]] what time zone you're in so I know not to email you at weird hours? ;)" 

  "I like to know when generally people are available: [[could you]] tell me what time zone 
you're in?" 

  "what time zone are you based in? Don't want to message you at wildly inappropriate hours!" 

  "your messages say you're in Australian Central Time, is that right?? I suspect it's not. 
:)" 

  then {quests.current.soliciting = "timezone"} 

*  

  "Sorry, [[could you]] say what that is in relation to GMT? Like GMT+6 or whatever?" 

  "Just to clarify, what is that in UTC/GMT time, i.e. GMT-4?" 

  "Hmm, can you say that in relation to GMT time? Like Boston is GMT-5 for instance. Thanks, 
just don't want to get it wrong!" 

* Refuse * No 

  "OK, but if I email you in the middle of your night it's on you!" 

  "That's okay, I was just curious about what times would be good to contact you." 

  "Never mind about the time zone, then." 

* Finish when {flag.location_time_zone exists} 

  "{flag.location_time_zone}, got it." 

  "Great! Always good to know where folks are." 

  "Cool, nice to know [[whether or not]] it's your morning or night or whatever when we're 
chatting." 
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By design, any number of Cervantes source files can be combined when compiling, which might 
be useful for organization or multiple collaborators. A group of one or more Cervantes files 
together is called a “project.” 
A typical .cervantes file(s) will consist of a series of blocks, which may be defined in any order. 
There are two kinds of blocks: definition blocks and quest blocks. Definition blocks set up reusable 
moves, responses, and behaviors across a whole set of quests, while each quest is a particular 
“mission” that the bot attempts to get the interlocutor to waste time or reveal information while 
performing.  
For each block, the syntax listed here obeys the following conventions: 

● [param] indicates an optional parameter 
● [param…] indicates multiple of these parameters are allowed 
● bold indicates literal text 
● italics indicates example text 
● A / (slash) separates multiple options in a block 

B.2  Definition Blocks 
B.2.1  Project Block 
This begins your project definition section and defines a name for the project (used in internal 
diagnostic messages only). You can only have one Project name block across a set of Cervantes 
files being compiled. 
Syntax: 
Project “Project Name” 
Example: 
Project “Test Study November 2020” 
B.2.2  NLU Module Definition 
SIENNA will attempt to load each of the defined nlu models before starting up your project. This 
corresponds to the nlu_models array defined in CONVERSATIONAL_DOMAINS. 

Syntax: 
nluModels “modelName(s)”...  
Example: 
nluModels “trustist” “quibblist” “comprehensionist” 
B.2.3  Variable Initialization 
Sets up the initial value for a new state variable (see State Schema below). If you use an 
uninitialized variable in a Condition, the compiler will warn you, since this can cause a runtime 
crash in SIENNA. You don’t have to initialize the pre-existing variables in the state schema, 
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although if you try to use one and the compiler warns you about it, you can add an Initialization 
line to remove the warning. 
Syntax: 
Initialize {state.variable} to/as [“]initial value[”] / optional type [“optional description of 
variable”] 
Examples: 
Initialize {config.starting_temperature} to 98.6 
Initialize {player_name} to “Anonymous” 
The four supported variable types at present are string, number, boolean, and check; these are 
inferred from the given starting value (wrap strings in quote marks). “Check” is a variable where 
we don’t care what the value is, just whether it exists in the state or not. Define these by setting 
the value to check if you want the variable to initially not exist (default), or active check if you 
want the scenario to start with it already active. This supports an authoring pattern of using the 
conditions “x exists” or “x does not exist” to gate content (i.e., a kind of variable called a “flag” in 
some other systems, though that term is overloaded here).  
Initialize {end_game_flag} as check 
Initialize {need_tutorial} as active check 
Non-check variables can also be defined with “optional [type]” instead of an initial value. This 
indicates that the variable does not exist at the start of the scenario, but might come into existence 
later with the given type. This effectively makes them like a check variable except if they do exist, 
they also have a value. This is useful to signal variables to the compiler that SIENNA might add 
to the state if a certain anticipated condition becomes true, or to establish a namespace for possible 
captured flags.  
Initialize {player_job} as optional string 
Initialize {flag.attacker.age} as optional number 
Defining all possible variables that might intersect with your scenario lets the compiler add smart 
checks catching typos in variable references and checking logic in conditions/effects. 
B.2.4  Default Fallback Text 
Defines the fallback text(s) for Quixote’s built-in move types: 

● Assign is the text printed when assigning a new quest (although Default is 
pointless here since every Quest needs an Assign move) 

● Reassign is the text used to reassign the quest if the interlocutor seems to be 
ignoring it 

● Giveup is the text used if trust is low and the interlocutor is ignoring the 
quest 

● Finish is the text that acknowledges completing the quest 
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● Custom is for quest-specific situations (Default is unnecessary) 
● Followup is the text used to try to restart the conversation if the interlocutor doesn’t 

respond after a certain amount of time. 
No Defaults need to be defined. Quixote will fall back to its own internal defaults, although these 
may or may not be appropriate for your domain. If there are multiple quoted texts for a move type, 
they will be selected between at random each time that default text needs to be printed. 
Response/FinishResponse NewMoveName [condition(s) or ConditionList(s)...] [:] [transition 
TransitionName] [weight int] “quoted text(s)”... [effect(s)...] 
Defines a new move type for this project.  

● A FinishResponse ends the current quest; a Response keeps it going. 
○ FinishResponse is equivalent to adding the effect then {end quest} 

● The conditions should be the state in which this move response is appropriate. See 
the Conditions section below for details on that format. 

● Conditions are processed in the order defined, which is useful for short-circuit 
evaluation, e.g., {x exists} {x > 5} 

● The optional weight can set a number between 1-99 which ranks the priority of this 
type of response. If multiple response types match, those with higher weight 
numbers will match over lower ones. The default is 0. 

Syntax: 
Default MoveName [:] “quoted text(s)”...  
Example: 
FinishResponse Refuse when {nlu.refusal exists}: “That’s okay, I guess we can skip that.” 
B.2.5  Conditions 
Defines an ordered list of one or more conditions which you can refer to elsewhere with just the 
identifier. Useful if you have a complex set of conditions you want to reuse in multiple places. See 
“Conditions and Effects” below for more about the format of individual conditions. 
Syntax: 
ConditionList “unique identifier” condition(s)... 
Example: 
ConditionList “redheaded girl” {target.hair exists} {target.hair.color == “red”} {target.gender 
!= “male”} 
B.2.6  Bait 
A kind of ConditionList that, when attached to a quest’s Assign move, will make that quest be 
immediately assigned if the conditions in the list are all true, abandoning any in-progress quest. If 
no quest is in progress a quest with the bait condition will be the next selected. This is useful to 
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opportunistically respond to signals in the interlocutor’s input that we have content for, like 
dithering around with file attachments being in the wrong format, etc. 
Syntax: 
Bait “unique identifier” condition(s)... 
Example: 
Bait “in Ohio” {attacker_state exists} {attacker_state == “OH”} 
Quest “Ohio Chat” * Assign when {in Ohio} “How do you like the buckeye state?” 
B.2.7  Symbol 
This defines a symbol name, which when printed in text wrapped in [[double brackets]] will 
expand to one of the quoted texts given at random.  
Certain symbol names have an existing meaning for Quixote, and if you create them, you can 
control specific behaviors in your exported project. If you don’t define any of these, sensible 
defaults will be created for you. 

● MessageGreeting: This will be printed before the body of a message. 
● MessageConclusion: This will be printed after the body of a message (usually used for a 

sign-off and a signature block). 
● MessageInitial: This will be printed between MessageGreeting and the body of the first 

message in a conversation, useful for the bot to introduce itself or provide other initial 
context.  

● MessageFallback: This will be printed if, for some reason, a regular Quixote message 
could not be generated. This might happen if all valid expansion paths contain 
contradictory conditions, e.g., a signature block with two options for first and last name 
in the case where neither has been defined. For a testing environment, you might want the 
Fallback message to be an explicit alert like “(Could not produce a response.)”, whereas 
in a production environment, you might want the message to stay in character, like “I’m 
sorry, could you try rephrasing that?” 

● DefaultTransition: This text will be printed between the FinishResponse message of one 
quest and the Assign message of the next. You can define more specific transitions for 
individual quests (see “transition” below). 

Syntax: 
Symbol “unique identifier with spaces” “quoted text(s)”... 
Symbol UniqueIdentifierNoSpaces “quoted text(s)”... 
Example: 
Symbol MessageGreeting “Hello,\n\n” “Hey there--” “Greetings,\n\n 
Symbol “my custom symbol” “this is the one possible expansion for my custom symbol” 
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B.2.8 Persona 
Defines behavior for when this bot should respond to messages. The first SchedulePersona defined 
will be the default. You can switch between them with an effect like then 
{session.schedule_persona = "CaffeinatedStudent"} 

● time range is two clock times separated by and. Clock times can be written in most 
common formats: 10am, 3:45 p.m., 14:00, etc.  

● duration is a length of time like 30 minutes or 6 hours 10 minutes.  You can specify 
days, hours, or minutes in any combination. You an abbreviate these as d, h, m, like 6d 
14h 30m.  

● duration range is two durations separated by to, like 10 minutes to 2 hours 45 minutes.  
● The bot will respond to messages received within the “available between” hours, after a 

random time within “duration range.” If the “follows up after” time passes without 
receiving a response, the Followup move will be triggered. 

○ Note that since times are randomly permuted for more believable behavior, the 
bot might sometimes reply a little bit after its cut-off point. 

● The bot will attempt to follow up the number of times in provided in the “at most”… 
“time(s)” clause before giving up. If a message is responded to, this counter is reset. If 0, 
the bot will only reply to messages directly and never attempt to send a follow-up later. 
Each followup will be spaced out by the “follows up after” duration. 

● If no schedule persona is defined, the default behavior will be to respond between 9am 
and 5pm after a couple of hours, and followup after 48 hours, one time. 

Syntax: 
Persona PersonaName [Available between time range] [UTC timezone] [Response after 
duration range] [Follows up after duration] [, at most integer time(s)] 
Example: 
SchedulePersona CaffeinatedStudent 
Available between 10:45am and 11:59pm UTC -7 
Responds after 4 minutes to 22 minutes 
Follows up after 4 hours, at most 1 time 
B.2.9  Goal 
Define a goal name that can be assigned within a quest. 
Syntax: 
Goal “Goal Name” 
B.3  Quest Blocks 
A Quest represents a single “ask” from the bot, and perhaps some number of back-and-forth 
interactions discussing that request, ending with the interlocutor ultimately either fulfilling the 
request (i.e., by supplying some requested info) or failing to. When we move on to a different 
topic, that means transitioning to a new quest (even if a series of quests are linked together or 
conceptually related).  
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A Quest block begins with the word Quest, followed by the quest name in quotes. A second 
optional quoted string immediately following the quest name is a comment purely for the benefit 
of the author. A quest must define the move *Assign and generally defines other moves too. A 
project must have at least one quest to be valid, and a project is recommended to additionally have 
at least one repeatable quest as a fallback so it never runs out of content.  
Quest "Email Client Trouble" 
"""Pretend we’re having trouble with our email client.""" 
* Assign “Your message seems to be corrupted somehow...” 
Quest parameters can appear in any order. As with other reserved words, they are case-insensitive. 

● Easy, Medium, or Hard: 
○ Indicate the difficulty level of the quest based on trust: Hard quests will 

only be assigned when trust is quite high, easy quests only when trust is 
fairly low. We will always pick quests from the most difficult category 
available. 

○ If no difficulty is set, the quest will be available at any time regardless of 
trust. 

● Repeatable 
○ Indicates this quest can be repeated (default false). This is equivalent to setting all 

the quest’s * Assign moves to be repeatable. 
● Priority Low, Normal [default], or High 

○ Indicates that all else being equal, a quest should be more or less likely to match. 
The weight is adjusted so any “High” quests will match before any “Normal” 
quests, and any “Low” quests will only match after every nonrepeatable “Normal” 
quest has been assigned. Useful for creating repeatable fallbacks in a difficulty 
category (e.g., all the regular quests are Normal, and the fallback quests are Low.) 

○ Note: this does not overrule any other class consideration, so a Low priority Bait 
quest will still take precedence over a High priority non-Bait quest. 

● Captures: optional list of 1 or more flags captured. Flags should be single words 
separated by spaces. 

○ captures ACCOUNT_NUMBER BANK_NAME 
○ Note that this does nothing by itself: you’ll have to set up the flag capturing NLU 

by hand within information_extraction.py. It’s just helpful metadata. 
Flags should sync up transition SymbolName 

○ An expansion of one of the texts in the given symbol will be used to transition 
between a FinishResponse in a previous quest and the Assign/Reassign move in 
this quest. If no transition is defined for a quest, a symbol named 
DefaultTransition is used; if none is defined in your source file, one will be 
created upon export. 

● achieves “DefinedGoal”... 
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○ List one or more defined goals that this quest achieves.  
● Test [optional number] 

○ Makes this quest come up first, regardless of trust. 
○ If the release flag is set, Cervantes will halt with an error if any 

quests have a Test parameter. 
○ If the optional number is given, it sets a priority, starting with lowest 

(i.e., Test 1 will be triggered before Test 2). This is useful for demos 
expecting a chain of quests in a certain order. 

○ If multiple quests have a Test param without a number, they will be 
prioritized by the order they appear in the source file. 

● Disable 
Turns off a particular quest (equivalent to commenting it out). 
B.4 Quest Moves 
* [MoveType] [condition(s) or ConditionList(s)...] [repeatable] [:] [transition TransitionName] 
“quoted text(s)”... [effect(s)...] 
Defines the response for any specific move while this quest is running. The quoted text will be the 
response to the move. If you have multiple quoted texts, they will be selected from at random. You 
can use Productionist [[expansions]] in quoted texts: any that don’t exist in your template project 
file will be created as starred nonterminals which can be filled in using Expressionist. 

● Each move in a quest can only be triggered once per quest, unless 
“repeatable” is set. If the user response matches an already seen move for 
this quest, the system will fall back to *Refuse/*Giveup (if there are no 
Finish conditions that match) or a *Finish with no conditions. 

● An *Assign or *Reassign move can specify a defined TransitionType to 
control what text will be printed between the FinishResponse of the previous 
quest and this move. 
○ Quest “URL Followup” 

* Assign when {temp.url exists} transition Unfortunately 
     “that link still doesn’t work.” 

● You can also define multiple move names in a row if the response should be 
the same. When doing this, any conditions given will apply to all the move 
names. 
○ *Yes *No *Refuse “I guess the answer doesn’t really matter.” 

● You can omit the move name to create a custom response. This is useful for 
creating quick one-off responses that don’t need whole reusable move type 
definitions. 
○ * when {temp.surface.exclamation_mark} “There’s no need to get 

upset!” 
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○ * “I’m not sure I understand.” 
● Just an asterisk with no condition will be a fallback, used if anything 

matches other than the defined quest moves. (Note that the default behavior 
for not understanding is to fall back to Giveup or Reassign based on trust, 
but this is useful if you want a wildcard response that doesn’t end the quest.) 
○ * “I’m afraid I don’t understand.” 

B.5  Conditions and Effects 
Each condition or effect can appear alone or in a group. The general format is a type identifier 
followed by an expression in curly braces. You can reference a ConditionList by writing its 
identifier in curly braces. An inline list of conditions or effects only needs the type identifier before 
the first item in the list. 
B.6  Condition Types 

● when {Productionist runtime expression} 
○ These should be in the standard Productionist runtime expression format.   
○ when {flag.street does not exist} 
○ when {x = True} {y = True} {z = True} 

● when {ConditionList Name} 
○ Equivalent to pasting all the conditions defined in the given 

ConditionList here. 
● before {Quest Name} 

○ This quest can only be assigned if the given quest has never been 
assigned. 

● after {Quest Name} 
○ This quest can only be assigned after the given quest has been 

assigned, but not immediately after. This is useful to create a quest 
that’s reopening a previous subject.  

● next after {Quest Name} 
○ This quest can only be assigned immediately after the given quest, 

useful for chaining steps in a multi-part quest. Note that this 
condition will not pass if the user explicitly Refused to do the parent 
quest. 

● maybe after {Quest Name} 
o This quest has a 50% chance of being assigned immediately after the 

given quest, useful for nondeterministic direct follow-ups to a quest 
like nitpicking with the response some of the time. 

If multiple responses of the same type match, the earliest defined in the code will be the one 
selected. This means you should put more specific matches first. If you want a more specific match 
to show up only some of the time, you might also add a temp.chance condition (see below). 
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● # Ensure a state-specific response matches before a country-specific 
response. 
* Finish when {flag.state == ‘FL’} “...” 
* Finish when {country == ‘US’} “...” 

B.7  Effects 
Effects make a change in the system state. When effects are part of a move response definition, 
they will run after that move has been selected and its text generated.  

● then {Productionist runtime expression} 
○ * Assign: “Let’s play a game.” then {status.game = ‘begun’} 

● then {continue quest} 
○ If this move type is a FinishResponse that would normally end the quest, 

instead keep it running. The word “quest” can be omitted. 
○ *Refuse: “I really won’t take no for an answer.” then {continue} 

● then {end quest} 
○ If this move type is a Response that would normally continue the quest, 

instead end it. The word “quest” can be omitted. 
○ *Question: “I said no questions! Moving on…” then {end quest} 
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                                       APPENDIX C - Symbol Name Conventions 
This is a schema for naming nonterminal symbols within an Expressionist template to keep them 
organized and consistent. The schema works like a contract so the author can have confidence 
that using a symbol in a particular place will expand to text with predictable qualities. 

● Symbols should use internal spaces and punctuation when appropriate, 
ideally looking like a normal English phrase that might be one of the 
expansions. If the usage is ambiguous they should try to clearly indicate 
when and how the symbol should be used. 
○ Bad: [[Id]] (does this mean ID or “I’d”? If the latter, I would or I 

could?) 
○ Better: [[I would]] 
○ Bad: [[ht_name]] (what’s “ht” short for? Are there trailing/leading 

words?) 
○ Better: [[the random hotel name]] -> “the Marriott”, “the Quality 

Inn” 
● Begin with a capital letter if the symbol expands to text that begins a 

sentence. 
○ [[Greetings]] -> “Hello” 

● Begin with a lowercase letter if the symbol text can be used in the middle 
of a sentence. 
○ [[thanks]] -> “thank you” 
○ Note that you can use {+} right before a letter to change the casing, 

which is useful if you want to start a sentence with a random phrase.) 
■ {+}[[thanks]]!  
■ In general you should go from lower to upper case, because the 

opposite can produce weirdnesses around “I”, like: {-}[[I could]] -
> “i could” 

● End with a comma if the symbol ends a clause and a new phrase can begin 
next. 
○ [[Anyway,]] -> “By the way”, “In other news,”, “Hey--” 

● End with a period if the symbol concludes a sentence. 
○ [[Greetings.]] -> “Hey there!” 
○ (Note that these rules all stack, as in the example above.) 

● Begin with an underscore if the symbol is designed for internal use by 
another symbol and shouldn’t be directly invoked in dialogue (unless the 
author is doing so intentionally). 
○ [[_greeting when scared]] 

● Begin with “random” if the symbol selects between a set of named 
alternatives. 
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○ [[random company]] -> “Chevron” 
● Begin with “maybe” if the symbol sometimes prints text and sometimes 

prints nothing. 
○ [[maybe smiley]] -> “=)”, “” 

● Begin or end with a dash if the symbol’s expansions should have a 
leading/trailing space. 
○ Unfortunately it didn’t work[[-maybe apology]]. 

● Begin with “your” or “my” for expansions related to the listener or 
speaker (bot): 
○ [[your first name]] -> “{attacker.name.first},” “buddy”  
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                                                 APPENDIX D - State Schema 
The global state uses a hierarchy of keys: 

● global.* 
○ Anything under this header will be available in all conversations 

across the running system, not just this one: useful for cross-bot 
coordination.  

○ For the BBN SIENNA eval, have defined two variables, one of 
which is expected to exist and be set to True at startup (the other 
should not exist) 
■ global.domain.vt 
■ global.domain.sri 

● temp.* 
○ Anything stored here will be erased at the end of the current round of 

dialogue generation. 
○ temp.nlu_acts.*    Results of natural language understanding 

operations 
○ temp.nlu_calculated.*    Results of calculated NLU acts based on 

combinations of lower-level signals. 
○ temp.phrases.* 

■ temp.phrases.topics    A list of topics that were referenced in this 
message. 

○ temp.surface.*    Documenting surface-level features of NLU, like 
“does it have a question mark” 

○ temp.chance.p10, .p25, .p50, .p75, .p90    If these are true, a 
random chance of that percentage value is true on this turn. 

○ temp.has_date   A date was just mentioned (stored in last.date.*) 
● last.* 

○ The most recent item of each type mentioned. Note that this may not mean 
this was mentioned in the most recent message: to look for a signal like 
that, use a temp.* variable which is cleared at the end of each turn. 

○ last.browser    
○ last.email 
○ last.linkedin_username 
○ last.url 
○ last.date.year, .month, .day, .day_of_week, .date, delta.days, .time 
○ last.address.full, .full_street, .street_number, .street_name, 

.street_type, .street_direction, .floor, .apt_number, .city, .state, 

.province, .country, .postal_code 
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○ last.dollar_amount 
● bots.* 

○ Functions to get information from or invoke a language generation bot. 
● flag.* 

○ Info about flags captured from the interlocutor.  
● last_attachment.* 

○ Info about the most recent attachment in an interlocutor message. 
● last_link.* 

○ Info about the most recent link in an interlocutor message 
● request.* 

○ SIENNA detected the human has asked for something. 
○ request.connect_on_linkedin 
○ request.pivot_to_sms 

● date.* 
○ Info about the date of the most recent message. 
○ date.date = “10/06/20” 
○ date.day = 1-7 
○ date.day_of_week 
○ date.month 
○ date.year 

● quests.* 
○ Info about the state of quests. 
○ quests.current.*    Info about the current quest; cleared when a new 

one is assigned. 
■ quests.current.ID    id of current quest 
■ quests.current.counter   number of turns since this quest 

was assigned 
■ quests.current.moves_played    array with the names of all 

quest-specific moves played since this quest began. 
■ quests.current.last_move   the most recent move played. 
■ quests.current.soliciting   a string with a type of info we 

have asked for: valid options are “image”, “document”, “url”. 
Useful for distinguishing solicited vs unsolicited information. 

○ quests.previous    Array of all previously assigned quests. 
● session.* 

○ Info about the current session. 
○ session.earliest_time, session.latest_time 



 

74 
Distribution A.  Approved for public release; distribution unlimited 

AFRL-2023-1059; Cleared 2 Mar 2023 

○ session.schedule_persona 
● debug.* 

○ Info for demo interface. 
There are also a bunch of Productionist-only state items that aren’t part of the actual state object 
but can be used in dialogue as if they are. These are created in conversationalist.py 
_get_temporary_production_state_overrides. 

● me.* 
○ Info about the bot’s persona. 
○ me.name.first, me.name.last, me.name.full 
○ It’s safer not to use these variables directly, but (if you’re using the 

default discourse_library) to use the expansions [[my first name]], 
[[my last name]], and [[my full name]]. These will print a sensible 
default if a value happens to be unset. 

● you.* 
○ Info about the interlocutor. 
○ you.name.first, you.name.last 

● last.* 
○ Info about the most recently sent interlocutor message. 
○ last.media_type 
○ last.when 

■ .year, .month, .day, .day_name, .weekday, .weekend, 
.morning, .afternoon, .evening, .overnight, .hour 

● messages_sent.me, messages_sent.them 
● rng.coinflip 
● control.* 

○ Info about timing and message format. 
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                                                     APPENDIX E - QUEST LIBRARY 
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