

AFRL-RH-WP-TR-2022-0105

STRATEGIES FOR INVESTIGATING AND
ELICITING INFORMATION FROM NUANCED

ATTACKERS (SIENNA)

Brian Krisler, Ph.D. / Aaron Reed / Adam Summerville

Zech Bertilson / Alexander Christner / Ian Cook
Nathan Lenz / Matthew Vincent / Dustin Wright / Katelyn Carino

James Ryan / Jordan Hashemi / Bill Ferguson
Raytheon Technologies Corporation

1000 Wilson Blvd.
Arlington, VA 22209

December 2022

Final Report

AIR FORCE RESEARCH LABORATORY
711TH HUMAN PERFORMANCE WING

AIRMAN SYSTEMS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE OH 45433

AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

Distribution A. Approved for public release; distribution unlimited.

NOTICE AND SIGNATURE PAGE
Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.
This report was cleared for public release by the AFRL Public Affairs Office and is available to
the general public, including foreign nationals. Copies may be obtained from the Defense
Technical Information Center (DTIC) (http://www.dtic.mil).
AFRL-RH-WP-TR-2022-0105 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

TIMOTHY R. ANDERSON, DR-IV, Ph.D. WILLIAM P. MURDOCK, DR-IV, Ph.D.
Work Unit Manager Chief, Mission Analytics Branch
Mission Analytics Branch Airman Systems Directorate
Airman Systems Directorate 711th Human Performance Wing
711th Human Performance Wing Air Force Research Laboratory
Air Force Research Laboratory

LOUISE A. CARTER, DR-IV, Ph.D.
Chief, Warfighter Interactions and Readiness Division
Airman Systems Directorate
711th Human Performance Wing
Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE

12/15/2022
2. REPORT TYPE

Final
3. DATES COVERED
START DATE
28 September 2018

END DATE
15 December 2022

4. TITLE AND SUBTITLE
Strategies for Investigating and Eliciting Information from Nuanced Attackers (SIENNA)

5a. CONTRACT NUMBER
FA8650-18-C-7885

5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
H0X1

6. AUTHOR(S)
Brian Krisler /Aaron Reed / Adam Summerville / Zech Bertilson / Alexander Christner / Ian Cook / Nathan Lenz / Matthew Vincent / Dustin Wright / Katelyn
Carino / James Ryan / Jordan Hashemi / Bill Ferguson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies
10 Moulton Street
Cambridge, MA 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory
711th Human Performance Wing
Airman Systems Directorate
Warfighter Interactions and Readiness Division
Wright-Patterson Air Force Base, OH 45433

10. SPONSOR
/MONITOR'S
ACRONYM(S)

11. SPONSOR/MONITOR'SREPORT
NUMBER(S)

AFRL-RH-WP-TR-2022-0105

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution A. Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES
AFRL-2023-1059; Cleared: 2 Feb 2023
14. ABSTRACT
This research was funded under the DARPA Active Social Engineering Defense (ASED) program. Our effort involved counter-
engaging adversaries by gaining their trust and efficiently eliciting information from them, accomplished through our capability of
socially coherent attacker investigations. SIENNA is a partial TA2 solution entailing the construction and deployment of a bot
framework driven by conversational technology that members of our team originally devised in the context of videogames. When
an attack is recognized, SIENNA will deploy a set of bots to engage and investigate the attackers. Each bot has a role, goals, and
speaking style (its “persona”) selected by SIENNA to exploit what it knows so far about the nature and goals of each attacker. The
bots’ true purpose is to engage, build trust, provide fake information, and most importantly to elicit information from the attacker
and waste their time and resources. Additionally, SIENNA was awarded an Engineering Change Proposal to expand the scope of
the Quixote quest module and Cervantes Web-based Quest Editor that utilizes a templated structure to develop detailed narrative
Quests.
15. SUBJECT TERMS
ASED / SIENNA

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
 SAR

18. NUMBER OF PAGES
81 a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON
Timothy R. Anderson, Ph.D.

19b. PHONE NUMBER (Include
area code)

i

TABLE OF CONTENTS
LIST OF FIGURES……………………………………………………………………………………………………iii
LIST OF TABLES…………………………………………………………………………………………………….iii
1.0 SUMMARY ... 1
2.0 INTRODUCTION .. 5
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 6

3.1 Assumptions .. 6
3.2 Methods and Procedures .. 7

3.2.1 Software and Development Methods .. 7
3.2.1.1 Release Manager .. 7
3.2.1.2 Developer .. 7

3.2.2 Technical Methods and Procedures .. 8
3.2.3 Authoring .. 8
3.2.4 CervantesDSL ... 9

3.2.4.1 Definition Blocks ... 10
3.2.4.2 Quest Blocks .. 10
3.2.4.3 DSL Compiler.. 10

3.2.5 The Cervantes Tool .. 11
3.2.5.1 Quest Authoring .. 12
3.2.5.2 Quest Testing And Evaluation ... 12

3.2.6 SIENNA-Bot .. 13
3.2.6.1 NLU Modules .. 14
3.2.6.2 Dialogue Manager ... 14
3.2.6.3 NLG ... 14

3.2.7 Trust Building ... 14
4.0 RESULTS AND DISCUSSION ... 17

4.1 SIENNA Architecture ... 17
4.1.1 Author Time ... 17
4.1.2 Run Time .. 18
4.1.3 Quests and Trust ... 18
4.1.4 Quest Validation ... 20
4.1.5 Quest Taxonomy... 21

4.1.5.1 Trivial Quests .. 21
4.1.5.2 Flag Capturing ... 21
4.1.5.3 Administrative Hoops .. 22
4.1.5.4 Switching Modalities ... 22
4.1.5.5 Document Creation / Forgeries .. 22
4.1.5.6 Real-World Time Wasters ... 22
4.1.5.7 Domain-Specific Quests .. 23

4.1.6 Author Time: Cervantes GUI ... 23
4.1.6.1 Dialogue Construction ... 26
4.1.6.2 Rights and Roles .. 27

4.1.7 Sienna Bot .. 28
4.1.7.1 Complex API: Interacting With Nemesis .. 28

ii

4.1.7.2 Simple API: Interacting With The Simulator .. 29
4.1.7.3 System Engineering (SE) ... 30

4.1.7.3.1 Global Bot Blackboard ... 30

4.1.7.3.2 Scheduled Message Delivery .. 31

4.1.7.3.3 Inactivity System Wakes ... 31

4.1.7.3.4 End State Criteria .. 31

4.1.7.3.5 Offensive Attacks.. 31

4.1.7.4 Dialogue Generation .. 32
4.1.7.5 Nlu Modules .. 33

4.1.8 Trustist .. 35
4.1.9 Comprehensionist ... 38
4.1.10 Specialist... 45

4.2 Performance Evaluation .. 47
4.3 Verified Flag Accuracy ... 48

4.3.1 Message Quality ... 49
4.4 SIENNA-Bot Stress Testing .. 50
4.5 Content Generation ... 52

5.0 CONCLUSIONS .. 53
6.0 RECOMMENDATIONS .. 54
7.0 REFERENCES ... 56
8.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 57
APPENDIX A - Papers and Publications .. 59
APPENDIX B - CERVANTES Domain Specific Language (DSL) ... 60
APPENDIX C - Symbol Name Conventions... 70
APPENDIX D - State Schema ... 72
APPENDIX E - Quest Library .. 75

iii

LIST OF FIGURES
Figure 1. GitLab Labels were Used to Categorize and Prioritize Issues.. 7
Figure 2. High-Level Representation of the Technical Approach and Methods used for SIENNA. 8
Figure 3. Example CervantesDSL Quest Block. ... 10
Figure 4. Cervantes Functional Map Design. .. 12
Figure 5. SIENNA-Bot Architecture. .. 13
Figure 6. Test Set Results for Both our ACTUAL LIE and SUSPECTED LIE Tasks. ... 15
Figure 7. Detailed SIENNA Architecture Diagram. .. 17
Figure 8. Cervantes UI. .. 24
Figure 9. Dialogue Conversational Flowchart. .. 27
Figure 10. Cervantes Project Right and Roles. .. 28
Figure 11. Complex API Pipeline for Interacting with SIENNA. ... 29
Figure 12. SIENNA Simple API for Interacting with the Simulator. .. 30
Figure 13. Gift Card Scam Demo Screenshot Highlighting NLU Technology at ASED August 2019 Workshop. 34
Figure 14. Evaluation Flag Accuracy Over Time. ... 48
Figure 15. Evaluation Message Quality. .. 50
Figure 16. SIENNA Stress Test Harness. .. 51
Figure 17. Stress Test Results. ... 51
Figure 18. SIENNA Developed Quest Types. ... 52
Figure 19. Phishing Email Report Rate by Click Status (n=295,825, 679) Source: 2022 DBIR 53

LIST OF TABLES
Table 1. Examples of Attacker Sentences Illustrating Different Levels of Trust .. 20
Table 2. Comparison of Accuracy Against Baseline Systems. .. 37
Table 3. Accuracy Rate by Class ... 41

1
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

1.0 SUMMARY
This report details a novel approach of using chatbot technologies for engaging with interlocutors,
while actively soliciting information through the use of distinct virtual personas realized in
software agents. Titled Strategies for Investigating and Eliciting Information from Nuanced
Attackers (SIENNA), this research was conducted under Technical Area (TA) 2 of the Defense
Advanced Research Project Administration’s (DARPA) Active Social Engineering Defense
(ASED) program.
The product of our research consists of two primary technologies:

• SIENNA-Bot: A chatbot designed to converse with an interlocutor using
domain-specific content.

• Cervantes: A graphical user interface (GUI) for domain-specific dialogue
development that evolves around the concept of quests, i.e., series of
questions of increasing complexity intended to elicit information from the
interlocutor.

Critical to the success of TA2 is the generation of logical and coherent dialogue. This dialogue
should be effective in engaging and interacting with an interlocutor as if they are communicating
with another human. To generate content, we adopted a novel authoring scheme for natural
language generation that is driven by attribute grammars. The SIENNA-Bot follows a pipeline
design approach of:

• Natural Language Understanding (NLU). The intent of the incoming message
is ascertained and assigned attributes.

• Dialogue Generation. The ascertained content attributes are evaluated against
the conversational state to determine the next moves.

• Natural Language Generation (NLG). A viable response to the message is
generated.

To demonstrate the effectiveness of this design prior to investing time towards designing and
developing the language understanding and generation components, we developed, we developed
an initial proof of concept chatbot with a simple dialogue generator. The goal of this bot was to
confirm the efficacy of engaging an interlocutor in conversation through simple discourse
techniques without having to develop the necessary components for parsing and comprehending
message content. The resulting bot was capable of countering impersonation attacks by taking on
one of two distinct personas:

• Needy narcissist. Loves to gossip about coworkers and colleagues in the
targeted field, expresses distaste for recent colleague successes and likes to
tell rambling stories about themselves.

• Spiteful colleague. Leverages a narrative conceit to introduce a fictional
backstory as a means of conversation. Because the interlocutor only pretends
to know the subject:
o A fictional story allows the bot to quickly take control of the conversation

2
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

o No comprehension of the message content is required
Building upon this foundational bot, we next investigated techniques for introducing realism into
the conversation by incorporating NLU and NLG.
The objective of NLU modules within SIENNA are to:

• Understand the pragmatics of what the interlocutor is saying
• Extract critical pieces of information from the interlocutor’s messages

This objective was accomplished using a pre-trained Transformer model with added layers for
understaning the pragmatics of the interlocutor’s message while simultaneously extracting critical
pieces of information, called flags. The resulting NLU was capable of classifying various types of
discourse-acts with the key benefits providing:

• Dialogue state information
• Affordances for the content authoring

For example, by detecting that an interlocutor is arguing when responding to a quest, SIENNA
could use that information to either change the direction of the quest, or assign a new, potentially
easier quest. The concept of trust tracking was also incorporated into SIENNA’s NLU with the
guiding principles being:

• Difficult requests require high levels of trust
• Trust rises when quests are completed

Working from these axioms, we designed NLU functionality to combine the successful completion
of a quest with the determined compliance of the content of each message. If a quest went
uncompleted, or the NLU module detected affects such as anger, frustration, or impatience in the
messages, overall trust was decreased. Conversely, if the interlocutor was compliant and willing
to answer questions, the level of trust went up.
We further evolved the Dialogue Generation functionality by incorporating two techniques:

• Conversational state. Maintaining and using prior conversation content such
as
o Preconditions to determine if dialogue content should or should not

be used
o Effects to establish and maintain state for continued future dialogue

• Custom Dialogue Generators. These dialogue generators provided
specialized content generation designed to handle specific details of a
conversation

This work resulted in an NLG module capable of producing dialogue based on the semantics of
the input message through the process of quibbling, arguing and raising objections to a trivial
matter, with the interlocutor.

3
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

With the addition of these new techniques, SIENNA bots incorporated a level of conversation
understanding and consistency well beyond the initial “dumb” bot strategy planned at project
inception.
The procedural content generation approach taken by SIENNA requires an ability to create the
conversational domain. Specifically, having the functionality for non-developers and non-
SIENNA experts to construct new quests. SIENNA uses a strategy of asking the interlocutor
questions of increasing complexity, to consume the time of an interlocutor while simultaneously
acquiring information from them. These questions are called quests. In order to enable a content
creator to author a series of quests for a domain, we developed a user-friendly editor called
Cervantes.
The first step in the creation of the Cervantes editor was the design and development of a domain-
specific language (DSL). By using a DSL, we established a formal structure that promoted quick
iterations on the Cervantes design. The semantics of the DSL include:

• Definition Blocks. These blocks set up reusable moves, responses, and
behaviors across a whole set of quests.

• Quest Blocks. A particular “mission” that the bot attempts to get the
interlocutors to waste time on and/or reveal information while performing.

• Conditions and Effects. Provide the author with the affordances to link
together series of quests and allow the SIENNA quest manager to transition
between quests dynamically, as the conversation evolves.

The resulting feature set of Cervantes includes:

• Detailed Quest Editor: Ability to create tokens, variables and conversational
dialogue

• Embedded Help: The user interface (UI) has a hyperlinked, embedded help
system

• Quest Simulator: A simulator for testing and debugging quests during
development

• Multi-User Interface: Functionality for supporting multi-users
• Rights and Roles: Rights and roles modelled from common open-source

platforms, such as GitHub, where users are members of projects, and each
project has specific rights and roles

• Versioning: The ability to create project versions from within the UI
Over the course of the program, we developed a quest library of 50 quests. Furthermore, we
deployed Cervantes on a shared server, accessible by all performers with multiple non-Raytheon
BBN Technologies (BBN) collaborator teams creating quest libraries such as the Corona Virus
Disease (COVID) quest library and the Court Summons Library.
In summary, the SIENNA approach of using expressive chatbots to engage with interlocutors
demonstrated effective and validating results. Over the course of the program, the number of true
positive flags captured by SIENNA increased from 71% to 89%. Multiple non-SIENNA team

4
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

organizations were successful at using Cervantes to create their own domain-specific quest
libraries.
Our principal recommendations for the further development of SIENNA are:

• Multi-Lingual Support.
• Human-in-the-Loop.
• Group Bot Interaction.
• Leverage External Information When Available.
• Improved cross-platform switching.

5
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

2.0 INTRODUCTION
BBNs SIENNA project under the DARPA ASED program involves counter-engaging adversaries
by gaining their trust and efficiently eliciting information from them, accomplished through our
capability of socially coherent attacker investigations. SIENNA is a partial TA2 solution entailing
the construction and deployment of a bot framework driven by conversational technology that
members of our team originally devised in the context of videogames and significantly expanded
under SIENNA. When an attack is recognized, SIENNA deploys a set of bots to engage and
investigate the interlocutors. Each bot has a role, goals, and speaking style (its “persona”) selected
by SIENNA to exploit what it knows so far about the nature and goals of each interlocutor. The
bots’ true purpose is to engage, build trust, provide fake information, and most importantly to elicit
information from the interlocutor and waste their time and resources. To construct and operate our
bots, we leveraged existing, innovative persona-authoring and history-generating tools. These
tools make SIENNA both highly customizable and scalable.
The BBN team approached this program with two key hypotheses:

1. By keeping an interlocutor engaged, we can occupy their time enough that they
will not have time to phish other individuals.

2. As trust increases between the bot and the interlocutor, the complexity of the quests
can increase.

To validate these hypotheses, BBN pulled together a team of experts. With the help of the
University of Maryland, our team extended an existing experimental platform to discover linguistic
techniques for building trust and exchanging resources, which we then used in the construction of
our bots. Dr. Adam Summerville at Cal Poly Pomona provided the machine learning (ML)
expertise to allow our team to design and build bots capable of generating coherent content to
augment and supplement the generative human authored text.
Additionally, SIENNA was awarded an Engineering Change Proposal to expand the scope of the
Quixote quest manager module and Cervantes Web-based Quest Editor that utilizes a templated
structure to develop detailed narrative Quests. In collaboration with teammates and subject matter
expert Dr. Aaron Reed, we developed both a domain-specific language and user interface for
capturing and compiling human authored content to be used by the SIENNA bot to strategically
deploy domain-specific content.
To evaluate our conversation bots, SIENNA participated in multiple government-sponsored
experiments. In addition to those experiments, we stood up a government-sponsored Cervantes
(the BBN developed authoring tool) instance and provided access to all the other program
performers to construct their own dialogs and provide feedback. The results of both the bot
evaluations and the user interface work will be provided below.
The following sections in the report will detail both the approach taken and results achieved in our
work.

6
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
3.1 Assumptions
SIENNA was developed under TA2 of the DARPA ASED program. As part of our research,
assumptions were made as to the program structure and the technical goals.
The following infrastructure assumptions were made during our research.

• It was assumed that other Technical Area performers had successfully
identified and marked all incoming phishing messages. It was not the
objective of SIENNA to determine if a message was or was not legitimate.
Given this assumption, SIENNA was able to immediately react to all received
messages, extract appropriate flags and craft a valid response.

• It was also assumed that other Technical Area performers set up the mail
infrastructure to send and receive emails. SIENNA assumed all interactions
would occur via an intermediary through RESTful Application Programing
Interface (API) calls. Given this assumption, we built SIENNA with a
representational state transfer (RESTful) interface and added message
metadata indicating when a message should be delivered. It was then the goal
of the other components to handle the scheduling and delivery of messages,
as an assurance that both new messages and responses made their way into
SIENNA.

• SIENNA was built and delivered as a container-based application using a
modern Continuous Integration, Continuous Development (CI/CD) pipeline.
It was assumed that a cloud-based infrastructure existed to pull and deploy
new versions of SIENNA as they were developed, and that the infrastructure
existed to ensure the proper and successful linking of SIENNA to the other
performers components.

• SIENNA and Cervantes were designed to operate independently of one
another. Given this, it was assumed that procedures existed to move newly
authored quests from the Cervantes system to the system running the
SIENNA bot. This assumption was intentional to allow content authors the
ability to freely author new content on different networks from the bots.

The following technical assumptions were made to validate our hypotheses:

• Using a more generative language model (LM) for dialogue construction, the
resulting bots would express a more humanlike dialogue allowing for more
engagement and flag captures.

• Designing a bot architecture that allows for pluggable expertise, such as
specialized language generation models, will promote a more sophisticated
dialogue.

• By establishing a formal domain language for initial dialogue language, user
interfaces can be quickly developed to support non-programmer dialogue
construction.

7
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• Using the concept of quests provides a higher-level design principle that will
allow for increased interactions with an interlocutor as well as increased flag
captures.

• Continuously capturing and monitoring trust will provide mechanisms for
determining when to increase or decrease quest difficulty.

3.2 Methods and Procedures
To test and validate our technical assumptions, the following methods and procedures were used.
3.2.1 Software and Development Methods
SIENNA followed an agile development approach and used a GitLab CI/CD pipeline to build new
service containers. SIENNA followed the standard GitLab release process as documented here:
https://docs.gitlab.com/ee/user/project/releases/#create-a-release.
The SIENNA release process had the following roles and responsibilities to ensure a consistent
process without compromising the larger continuously operating system.
3.2.1.1 Release Manager

• Create a milestone for the new version
• Assign issues to the milestone
• When all issues in the milestone are closed, a release is created for the version
• Add all issues to the release

notes
3.2.1.2 Developer

• Create an issue for work
performed

• Close issues when finished
• If an issue is closed that

was not assigned to a
milestone, assign it to the
next release version
milestone

Versions followed a semantic versioning
format of: major.minor.patch with
most releases only changing the minor
version.

• Major: Major breaking
changes are introduced.
Large new features
introduced.

Figure 1. GitLab Labels were Used to Categorize
and Prioritize Issues.

https://docs.gitlab.com/ee/user/project/releases/#create-a-release

8
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• Minor: Breaking changes are unlikely. New features introduced.
• Patch: No breaking changes. Usually used for bug fixes.

An issue tracker was used across all program performers for reporting and monitoring issue fixes.
Milestones were used to mark release points and labels (See Figure 1) were used to categorize
and prioritize issues as they were recorded.
The SIENNA build process occurred over three stages:

• Pre-Check: Performs a few pre-checks to ensure build will proceed
successfully.

• Build: Builds all of the SIENNA components, including compiling and
generating the help documents.

• Scans: Performs software scans such as linting.
3.2.2 Technical Methods and Procedures
The SIENNA approach to conversation dialogue was designed around two primary concerns (See
Figure 2), Authoring and Execution.
Authoring focused on creating the tools for subject matter experts to easily create and modify new
dialogue content through the form of quests. Execution dealt with the actual usage of that generated
dialogue during active engagements with an interlocutor.

3.2.3 Authoring
With SIENNA, we set out to build a system that could structure interactions between a human
interlocutor and a bot around the concept of “quests,” and captured key-value pairs of personally
identifying information about interlocutors, called “flags.” To achieve this goal, we constructed a

Figure 2. High-Level Representation of the Technical Approach and Methods
used for SIENNA.

9
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

dynamic quest generation system that takes into account the level of trust we detect in the
interlocutor with the SIENNA bot. The dialogue generator starts with easy quests and increases
the difficulty as a way to slowly reinforce interlocutor engagement, backing off temporarily if the
interlocutor starts to seem suspicious. This technique was chosen to maximize interlocutor
engagement compared to a system that simply assigns quests randomly. In order to get relevant
content for quests, and to ensure they do increase in difficulty, our system was designed around
the inclusion of human quest authors. On that end, we developed authoring tools to ease the
creation, modification and deployment of new dialogue into the system. The following sections
will document the procedures taken to design and develop these components and their underlying
subcomponents.
3.2.4 CervantesDSL
To establish a well-defined content framework for ensuring the stability and consistency of
Cervantes as an authoring tool, we designed a DSL. DSLs are specialized languages crafted to
address the needs and requirements of a specific domain. Using the DSL, domain experts can
author new SIENNA projects by hand using a procedural narrative in any text editor. The following
sections provide an overview of the CervantesDSL. See Appendix B - CervantesDSL for the
complete CervantesDSL specification.
CervantesDSL files are text-based files identified with a .cervantes extension. Each Cervantes file
consists of a series of blocks, which may be defined in any order. There are two kinds of blocks
that make up a Cervantes file: definition blocks and quest blocks. These blocks, as seen in Figure
3, are written in text using a well-defined format that is parsed by a SIENNA developed compiler.

10
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

3.2.4.1 Definition Blocks
Definition blocks set up reusable moves, responses, and behaviors across a whole set of quests,
while each quest is a particular “mission” that the bot uses to attempt to get the interlocutor to
waste time or reveal information while performing.
3.2.4.2 Quest Blocks
A Quest represents a single topic from the bot, and perhaps some number of back-and-forth
interactions discussing that request, ending with the interlocutor ultimately either fulfilling the
request (i.e., by supplying some requested info) or failing to. When the interaction moves on to a
different topic, that means transitioning to a new quest (even if a series of quests are linked together
or conceptually related).
3.2.4.3 DSL Compiler
Once a DSL project has been authored, it must be compiled to runtime matter usable by the bot.
To address this need, we developed a compiler for the CervantesDSL. The compiler turns a
.cervantes source file and included external libraries into a set of runtime files describing a
SIENNA conversational domain.
A Conversational Domain is a set of files that lets SIENNA generate responses to incoming
messages. It represents a particular scenario for which content has been created and a strategy for

Quest "Get Phone Number"

"""Ask for the attacker's phone number and capture it."""

Easy

Captures PHONE_NUMBER_PRIMARY

* Assign when {flag.PHONE_NUMBER_PRIMARY does not exist}

 "Hey, [[could_you]] send me a phone number I can reach you at???"

 #then {track.some = "variable"}

* Reassign

 "Still waiting on that phone number, [[when_youre_free]]."

* Negotiation

 "I'm not going to negotiate with you about a phone number."

* Giveup

 "You know what, never mind. I'm happy to keep using email."

* Question

 "[[Sorry,]] I'd just like to have another way to reach you in case something important
comes up... email can be really flaky[[maybe_emoji_endpunc]]"

* Finish when {flag.PHONE_NUMBER_PRIMARY exists}

 "Good to have a backup way to reach you! [[Thanks.]]"

* Finish when {temp.attacker_says_no_phone_number exists}

 "That's fine, I'll just use your email."

Figure 3. Example CervantesDSL Quest Block.

11
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

the SIENNA-Bot to respond to interactions with an interlocutor. Cervantes is a tool for easily
defining a conversational domain.
The compiler generates the following files:

• conversational_domain_definitions.py: This file configures the SIENNA bot
for the given conversational domain, and is read in by SIENNA at startup.

• quest_definition.json: Defines all the quest content for this scenario and
related materials created in the authoring tool. Read in by the quest manager
module (Quixote).

• state.schema: Defines all variables that might be referenced in this scenario,
both custom and imported. Used by the compiler for validation; not currently
imported at runtime but present if needed for reference.

• {project}.json, .marisa, .meanings, .stats, .grammar: This set of five files is
used by the SIENNA bot to efficiently generate runtime text. All “tokens”
defined or imported in a project are represented here.

• compiled_source.cervantes: The CervantesDSL code which the compiler uses
to generate the other files. In most cases, this will have been generated by the
Cervantes GUI. This is not needed at runtime but is presented for reference
to aid in debugging.

3.2.5 The Cervantes Tool
We used the CervantesDSL as the basis for designing a GUI to ease the creation of quests. We
designed this interface, called Cervantes, with the intent of having an easy way for non-developers
to create quests without having to understand complex formal language semantics.
The procedure for designing Cervantes was to identify all the high-level concepts in the DSL and
then create user friendly editors for each concept. Figure 4 illustrates the resulting Cervantes
functional map. We broke functionality down into two categories: quest authoring and quest
testing and evaluation, described in the following sections.

12
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

3.2.5.1 Quest Authoring
Quest authoring is the most essential component of Cervantes. Cervantes’ quest authoring
functionality provides a subject matter expert with the tools to create dynamic and believable
content quickly and easily for engaging with an interlocutor. Quest creation is broken down into
the following components:

• Quests: Requests made by the SIENNA bot to perform an action
• Goals: The objectives to be obtained by each quest
• Personas: The pattern of life for the SIENNA bot, such as typical message

response window (e.g., between 0900 and 1700), and response rate (e.g.,
within one hour)

• Tokens: Repeatable text blocks to add variability into the dialogue
• Input Extractors: Custom code-based elements for extracting essential

message information
3.2.5.2 Quest Testing and Evaluation
As quests are being created, having the ability to evaluate and test them is critical. To address this
issue, we designed a simulator (an executing SIENNA-Bot) in Cervantes for quick evaluation of
dialogue, extractors and flag captures without the actual sending of messages (they are all
simulated).
Simulator interactions are designed around the concept of Test Cases. Each Test Case is an
established interaction including all necessary conversation context and metadata such as:

Figure 4. Cervantes Functional Map Design.

13
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• Bot Initiated: Defines the originator of the conversation, bot or human
• Use Playbook: Select a playbook for establishing a quest deployment

strategy
• Persona: Select the desired persona for the bot
• Message Modality: The communication mechanism, SMS or Email
• From: Human-readable name for the conversation initiator
• From Email or Phone Number: Email address or phone number for

conversation initiator
• To: Human-readable name for the receiver
• To Email or Phone Number: Email address or phone number for the

message receiver
• Subject: The email subject line (not used for SMS)

Test Cases provide easy methods for:

• Crafting content, such as an email message and response
• Seeing the extracted flags as the conversation unfolds
• Understanding why quests / blocks were selected during the conversation

3.2.6 SIENNA-Bot

The SIENNA chatbot is responsible for working with the generated content to produce coherent
and convincing dialogue. This technology is composed of three main components that execute in
a sequence:

• NLU Modules
• Dialogue Manager
• NLG Modules

The following sections describe the design of each of these components.

Figure 5. SIENNA-Bot Architecture.

14
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

3.2.6.1 NLU Modules
Critical for conducting conversational dialogue is the ability to parse and comprehend the
messages received from the other party. To perform this task, SIENNA uses a series of NLU
modules.
The objective of each NLU module is to translate an incoming message into:

• The conversation moves it performs
• The obligations it places on parties in the conversation
• The updates that it makes to the conversation state

SIENNA NLUs treat conversation moves as a form of speech acts [1]. By following spoken
language understanding parlance, these acts can be conceived in terms of:

• Intents (moves and obligations)
• Slots (state components)

These products are then used by the Dialogue Manager to select the next move.
3.2.6.2 Dialogue Manager
The goal of the dialogue manager is to reason about the best way to respond to a given input based
upon the domain content, the information provided by the NLU module, and the current
conversational state. The Dialogue Manager maintains an internal state of each ongoing
conversation. The goal of the Dialogue Manager is to proceed through a sensible conversation
based around the paradigm of a quest.
3.2.6.3 NLG
Once the Dialogue Manager has determined the next move, it is up to the NLG to construct the
response. This is done using a generative text system that leverages the domain authored content.
The NLG system expands a context-free grammar that defines a set of possible text options and
then uses the information provided by the Dialogue Manger to craft a valid response.
3.2.7 Trust Building
To effectively extract pertinent information from interlocutors, the SIENNA-Bot must be capable
of effective elicitation. To achieve this objective, we leveraged the concept of trust. If the
interlocutor trusts us, they are more likely to answer our questions and requests for personal
information.
Trust is implicit in many online text conversations, and that trust can easily be betrayed through
deception. Every conversation conducted by SIENNA is about deception. The interlocutor is trying
to deceive the bot and gain critical information, while at the same time, the bot is trying to deceive
the interlocutor to keep them engaged. To better understand how deception occurs during a
conversation, our team conducted a study using the game Diplomacy where players negotiate
through chats to forge and break alliances. This study relied on two technical components:

15
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• A Game Engine (Backstabbr1) that lets users input their moves
• A Chat system that allows users to annotate if they are lying

This study led to some interesting insights into the concept of trust building, such as the fact that
humans can detect lies at a rate better than random guessing, but only slightly better. It was also
discovered that certain linguistic features appear to underpin successful deception. For example,
words such as true and honest are likely to be perceived as truthful, yet they are also more likely
to be deceptive. The team then used that information, and the data collected to develop a Long
Short-Term Memory- (LSTM-)based architecture to process both the given message and the
context (conversation history) in which the message was delivered. We expected this model to
perform at a human level of lie detection, which just like humans, resulted in detection that was
slightly better than random. Test set results are shown in Figure 6 and show that the neural model
that integrates past messages and power dynamics approaches human performance.

In SIENNA, trust is a persistent metric for each conversant that is scaled between 0 (no trust,
human is likely to immediately terminate the conversation) and 1 (human is cooperative and likely
to continue the interaction). Various actions influence this trust estimate. For example, trust will
drop for a human who repeatedly ignores an assigned quest. The Dialogue Manager uses trust as
one of several signals when choosing how to deploy quests. For instance, if trust is high, the
Dialogue Manager might continue to press for resolution of a currently assigned quest; whereas if
trust is low, it might give up more easily.

1 https://www.backstabbr.com/

Figure 6. Test Set Results for Both our ACTUAL LIE and
SUSPECTED LIE Tasks.

16
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

By assigning quests a difficulty level, authors can signal how a quest should be used within the
trust management system. For instance, if trust is low, the Dialogue Manager will try to assign
easy quests to build up a rapport and increase trust. If trust has grown higher, the Dialogue Manager
will assign medium and, subsequently, hard quests. This supports an authoring pattern for anti-
scammer domains to convince a bad actor to agree to more and more difficult time-wasting tasks,
as the "sunk cost fallacy" encourages them to believe they are getting closer and closer to closing
a scam.

17
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.0 RESULTS AND DISCUSSION
The following sections discuss the approach taken to validate the methods above, along with a
discussion of the observed results.
4.1 SIENNA Architecture
The SIENNA architecture can be conceptualized as author time and run time (See Figure 7). The
following sections describe the key components that make up the architecture.

4.1.1 Author Time
Within the SIENNA architecture, author time is when content is created for consumption by the
bot. Author time is composed of the following components:

• Cervantes GUI: The web-based front end for content creation
• Cervantes Compiler: The compiler for converting the human authored content

into a format usable by the bot
• Cervantes Projects: A library of user authored content
• Cervantes Libraries: A library of user authored libraries. These include

extractors and variables (described below)
• Conversational Domain: The compiled content consumable by the bot

Figure 7. Detailed SIENNA Architecture Diagram.

18
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

In the initial version of the authoring tools, a command line compiling tool was used. This tool has
since been deprecated and replaced with Cervantes, the GUI based authoring tool.
4.1.2 Run Time
The Run time components are the actual bots that interact with interlocutors, generating dialogue
and extracting flags. The following components exist in Run Time:

• Conversation Simulator: A SIENNA bot designed to interface with Cervantes
for quest testing and debugging

• SIENNA: The actual bot for interacting with a message handling gateway,
such as those developed by the TA1 performers (e.g., SRI developed
NEMESIS2) through which interactions with an attacker / interlocutor occur

• Quixote: The quest manager responsible for maintaining conversation state
and constructing dialogue moves

• Productionist: The component responsible for generating natural language
dialogue that will be delivered to the receiving party, building upon
technologies from Expressionist (4.1.7.4)

• NLU/NLG Modules: Pluggable modules for extracting information from
incoming messages and generating customized dialogue

The following sections discuss each of these components, starting with the overall design and
approach for implementing quests.
4.1.3 Quests and Trust
As stated in hypothesis one (Section 2.0), by keeping an interlocutor engaged, we can occupy their
time enough that they will not have time to phish other individuals.
To test this hypothesis, SIENNA developed the concept of Quests. As stated before, a quest is a
task (or series of linked tasks) that the virtual target (SIENNA-Bot) asks the interlocutor to
complete, as a way of wasting the interlocutor’s time or capturing flags (i.e., collecting personal
info) from the interlocutor. In order to have successful quests, we must first establish trust with the
interlocutor. If they do not believe that we are willing to give them the information they initially
are seeking, they will not participate in our quests as they increase in difficulty.
Any given quest has a difficulty based on how much time or effort we expect the interlocutor to
take to complete. The ideal scenario is to maximize the number and difficulty of the quests the
interlocutor completes during an interaction. Quests that force the interlocutor to take real-world
actions away from their computer are the most difficult and thus desirable.
To determine how to handle human responses to quests, we first identified a number of possible
ways an interlocutor assigned a quest might respond:

● Completing it
o Example: “No problem, here’s that form you asked me to fill out.”

2 Natural Language Engagement of Malicious Entities through a Social Interaction Service

19
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● Pretending to complete it, or saying they’ll do it but never following through
o Example: “I’ve finished the form and I’ll send it later.”
o Example: “I can get that form filled out later tonight, but first...”

● Partially completing it
o Example: “I filled out the first page of the form, but haven’t done the rest.”

● Questioning it
o Example: “Why do you need me to fill out this form?”

● Bargaining about terms
o Example: “I’ll fill out the form, but first you need to send me your bank

account info so I know you’re serious about this.”
● Refusing to do it

o Example: “I’m not filling out this form.”
● Ignoring it

o Example: “Let’s get back to this money transfer I mentioned...”
● Terminating contact

o Example: (no response)
In general, we can place these responses in three categories: Executing the quest, even if only
partially (most ideal); Haggling about the quest’s details; and Refusing the quest (least ideal). We
want to avoid haggling interactions since this involves more complex natural language
understanding and generation requirements: SIENNA would need to parse, comprehend, and reuse
specific details, and risk revealing its identity as a bot. Because of this, we chose a strategy where
we prefer to unassign quests (with a message such as “you know what, never mind about that”) if
interlocutors do not seem immediately compliant.
The best metric for predicting an interlocutor’s response is their trust for the virtual target. An
interlocutor who trusts that the target is a real human (and one likely to fall for their scam) will be
willing to complete more quests, and complete more difficult quests. If trust falls to zero, however,
the interlocutor gives up on the target, possibly because they realize the target is a bot.
We can detect signs of falling trust when interlocutors haggle over or refuse quests; when messages
become much terser; or when the NLU component detects signs of anger, frustration, or impatience
in the interlocutor’s messages. For instance, from a corpus of human scam-baiters, we could often
identify patterns corresponding to indicators of high and low trust by simply looking at words with
positive and negative valence as shown in Table 1 (for more details on our final implementation
of this, see Section 4.1.8). Bolded words have positive or negative valence.

20
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

Table 1. Examples of Attacker Sentences Illustrating Different Levels of Trust.

Attacker Sentences Trust Level

I am glad to receive your response and hereby forward to you an agreement/bond. High Trust

Thanks for your good response to me, anyway I must tell you that I am really comfortable
with you over this my transaction

High Trust

I got your email but I was quite disappointed at the way you talk. Low Trust

I cannot send my picture to you until I am convinced that we are in business. Low Trust

Assigning a quest, or asking for a flag, is a risky act in that it may reduce trust by making the
interlocutor suspicious, or by making it seem less likely to them that their scam target is viable.
This danger increases with the difficulty of the quest or the sensitivity of the flag requested.
However, a quest generator that monitors and reasons over trust can be more considered in how it
assigns quests or asks for information, resulting in a more prolonged engagement with the
interlocutor.
Based on the above, we designed and built our quest management ecosystem to achieve the
following goals:

● Interface with SIENNA and other existing components of ASED
● Allow for authoring a library of human-created quests tagged with difficulty

levels
● Begin a conversation by assigning simple quests to “hook” the interlocutor

and build trust
● Introduce more difficult quests as trust increases, eventually working up to

difficult real-world quests as the interlocutor’s “sunk cost fallacy” makes
them more likely to complete them

● Maintain a basic dialogue about assigned quests:
o Acknowledging an interlocutor’s message that they have started,

completed, or refused a quest
o Prod an interlocutor about an unfinished quest
o Recognize when the conversation manager cannot understand well

enough to reply sensibly and deflect onto a new topic
● Attempt to increase trust if signals are received that trust is declining by:

o speaking in a more compliant/accommodating manner
o unassigning a quest
o assigning easier quests

4.1.4 Quest Validation
There are several possible ways an interlocutor might “complete” a quest:

21
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● Correctly completing the quest as assigned
● Partially completing a quest (e.g., sending a phone number without an area

code)
● Cheating by sending something that appears to be what is requested but isn’t
● Failing by responding with something that clearly isn’t what was requested

In theory, a virtual target should be able to distinguish between these states, but we believe that in
practice this is less important that it seems. An interlocutor who “cheats” or sends a partial response
has still wasted some amount of time, perhaps on a forgery or plausible-seeming false response.
Additionally, from an interlocutor’s perspective there is little motivation to “fail” at an accepted
quest, since a real human (which they perceive the target to be) would detect the failure and reject
the response.
However, some quests with textual responses can still be validated, and this is worth doing when
possible, for verisimilitude (to help maintain trust that the target is a real human). For instance, if
we ask for a phone number, we might check that it has the right number of digits and is in a
plausible area code based on any geographic information the interlocutor has previously divulged.
We can also “fake” verification questions on other kinds of data we aren’t actually analyzing: for
example, if we requested the interlocutor send a photo of themselves, we can plausibly ask if the
photo is really them, without doing any kind of real analysis on the attached file.
4.1.5 Quest Taxonomy
In addition to general stalling or delaying responses, we identify several categories of quests.
4.1.5.1 Trivial Quests
Quests that can be completed with a simple reply; this is basically just a delaying tactic. There are
many possibilities here, but a few include:

● Asking for clarification or more information
● Target pretends they’ve already been contacted by someone similar, asks if

the interlocutor is from the same company/organization
● Target pretends the interlocutor missed a message from them, asks them to

check their spam folder, etc.
● Target asks for a reminder message to follow-up at a later date/time

4.1.5.2 Flag Capturing
Similar to trivial quests but with the goal of capturing flags about the interlocutor.

● Asking the interlocutor to identify their time zone so they know when is good
to email

● Asking the interlocutor to identify their gender so they know what form of
address to use

● Encouraging the interlocutor to click a link so Natural Language Engagement
of Malicious Entities through a Social Interaction Service (NEMESIS) can
capture additional information

22
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.1.5.3 Administrative Hoops
Asking the interlocutor to do annoying time-wasting digital activities to verify their sincerity or
identity.

● Target says they need the interlocutor’s company’s Data Universal Number
System (DUNS) number, provides instructions for signing up for one at Dun
& Bradstreet if they don’t have it. (Can check the provided number has the
right number of digits etc. as a validation step.)

● Pretending to originally be from the same town in the interlocutor’s address,
and asking them vetting questions like “What’s your favorite restaurant
around there?”

4.1.5.4 Switching Modalities
Delays based on switching to a different communication method (which also captures a flag re:
phone number, account name, etc.).

● Requesting texting to verify identity, scheduling this for a certain time, then
a back and forth before returning to prior communication channel

● Asking the interlocutor to install a particular communication app/technology
(Kik, Signal, Pretty Good Privacy [PGP] etc.) and then pretending to have
trouble connecting there, eventually giving up and going back to regular email

4.1.5.5 Document Creation / Forgeries
Getting the target to waste time making fake documents.

● Requesting a formal document outlining the bill/service etc. under discussion,
then after it’s delivered asking it to be redone with particular requirements
“from our office manager” (font size, margins, page dimensions, document
format, etc.)

● If not starting on LinkedIn, asking to see the target’s LinkedIn page (they
might need to make a fake one)

● Expressing passion for a particular charity and asking the interlocutor to make
a small donation as a token of their goodwill, and provide proof (interlocutor
either does this or spends time faking a receipt)

4.1.5.6 Real-World Time Wasters
Getting the interlocutor to step away from their computer to do something more involved. These
are the most “difficult” and thus desirable quests to assign, but also tricky to plausibly justify and
require a high amount of trust.

● Asking for a photo of the interlocutor with a sign showing their name. (This
is a frequent ploy of scam baiters, so may be a red flag to scammers to stop
engaging.)

● Claim the scammer’s internet protocol (IP) is being blocked: can they try
responding from a different physical location?

23
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● Asking for a quick phone call to verify their identity, scheduling this for a
certain time, then send a series of messages asking why they aren’t picking
up, etc., then suggesting the interlocutor move to a new physical location with
better reception (e.g., “try to get by a different cell tower”)

● Asking for a phone call as above but stipulating it must be a landline.
● If the scam involves a pending financial transaction, claiming the target’s

bank can’t transfer money to the interlocutor’s bank: can they set up a new
account at a different bank to receive the funds?

4.1.5.7 Domain-Specific Quests
While many quests are generic and applicable across a variety of scams, those customized to a
particular scam are good for increasing believability and trust. For the domain of a “work from
home” job offer scam, for instance, some domain-specific quests might be:

● Target requests a formal job offer on company letterhead, can quibble with
format/details

● Target asks to see an official website for the hiring firm listing the
interlocutor’s name as an employee, which might inspire the interlocutor to
create a fake website with this info

● If a photo of a check to be cashed is sent (common in this scam), target claims
their bank needs it in a different/rare format like: Thermogravimetric Analysis
(TGA), higher resolution (300 dpi), separate images for check front/back, etc.

● Target needs hard-to-find info about the job for their records, like its Internal
Revenue Service (IRS) Position Classification Code

For the Q1 2021 evaluation at Virginia Tech (VT), we created a library of roughly 60 quests
instantiating many of these ideas. Ten of these were specific to the VT domain, with the others
more reusable. Later, we turned them into a “Default Quests” library in the CervantesDSL.
4.1.6 Author Time: Cervantes GUI
In Section 3.2.4, we covered the details of the DSL developed for capturing and encoding the
human-authored content. Once the DSL was finalized, we used the semantics as the foundation for
building a user-friendly quest authoring tool, Cervantes.

24
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

Our design goal for Cervantes was to create a user-friendly editor and test platform. We achieved
this by creating a modern browser-based user interface that uses design strategies and familiar
design patterns that users can pick up quickly. The core of the tool is written in JQuery and raw
JavaScript along with some imported plugins to support various UI features.
The UI features a core set of functions which are present on the leftmost navigation bar of the
interface (See Figure 8) these are:

• Quest Editor: (Figure 8a) Allows a user to create valid CervantesDSL
content without actually understanding the underlying syntax. This content
can then be used in the Simulator to test how the SIENNA-Bot will interact
with actual interlocutors

• Simulator: (Figure 8c) Allows for the creation of Test Cases which use the
content created in the Quest Editor and allows the user to simulate any number
of moves or different scenarios; including bot-initiated attacks

Figure 8. Cervantes UI.

25
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• Conversations: (Figure 8d) Allows the user to visit previous conversations
that took place by SIENNA-Bot running through its API or conversations that
took place in the simulator

• Settings: Allows users and administration to change their current settings like
password, team membership, email, username, and allows admins to add new
users to the system, export all content, and create new teams

• Help: Forwards the user to our documentation which can be used as reference
to learn how to use the tool

The Quest Editor utilizes the full set of CervantesDSL features, including Quests, Goals, Tokens,
Variables, Responses, Personas, Inferrers, and Extractors. Each of these features can be found in
the project navigation panel, which appears after opening a project in the Quest Editor. All features
have a custom UI which is tailored for editing and creating that type of content.
The editor allows the user to define any number of Quests that the interlocutor will be presented
with given certain conditions and state maintained by the underlying dialogue manager (Quixote).
Each quest can contain a name, notes, difficulty, goals, triggers and any number of dialogue blocks
(Responses). Each dialogue block can contain conditions in which the quest will be triggered,
effects that take place after it is completed, and any number of say blocks. Conditions can trigger
based on variables or the input text from the interlocutor. Effects can update the conversational
state, set variables, or end the current quest and move on. Say blocks can contain tokens, variables
and bot invocations. For more details on quest authoring, see the Cervantes User Manual.
To improve usability, we use a JQuery plugin Tagify which allows users to have auto complete
for these items after typing @ for Tokens and # for variables.
Cervantes also includes an editor for creating a set of goals. Goals allow the user to define what
concrete objectives they have for the project. Each goal is a free form string which can then be
tagged onto a quest. When a quest is completed, the goal will be marked as complete. The user
can create any number of goals.
Tokens allow the user to view imported tokens from our extensive examples or define expansions
which can be used in say blocks throughout Cervantes. Each token has a name and any number of
expansions. Each expansion can contain text, other tokens, variables, or bot invocations. Each
expansion can have conditions (when this expansion can appear), effects (what happens after this
expansion appears) and a weight which will allow for that expansion to appear more often. When
a token is used in a say block you can click on the tag and see examples of what that token may
appear as, this can also be achieved by clicking the dice icon on the token editor screen.
Variables allow the user to view imported variables from our base libraries or to define custom
state variables that can appear in say blocks, tokens, responses, and can be set in Inferrers or
Extractors. Variables contain a name, description, type and initial value if the variable is not
runtime only.
Responses allow the user to view the built-in dialogue block types or to create new types of
dialogue blocks. Responses with an open lock icon can be edited, but not removed, as they are

26
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

required by the CervantesDSL. Responses contain a name, transition (token), conditions, and any
number of say blocks.
Personas allow the user to create different patterns of life that the SIENNA-Bot will use to respond
to the interlocutor in various ways. Personas can include a name, availability times, time zone,
responding delays, and follow-up settings. After a persona is created it can be used in a test case
to simulate these new patterns of life.
Input allows the user to view the imported Inferrers and Extractors from our base examples as well
as create new ones. Since Inferrers and Extractors use Python code to run, this view features a full-
service inline code editor and highlighter. For this we used Ace, an open-source JavaScript plugin
which is lightweight yet fully featured. An Extractor or Inferrer can contain a name, status, NLG
module requirements, description, and python code. While writing code, the user can click one of
our example interaction buttons which add example code to do the most common interactions with
our API including: setting a variable, checking message content with regex, and getting the value
of a state variable.
The Simulator uses the currently loaded content created in the Quest Editor and test cases to
simulate conversations. A test case contains a from name, from email, to name, to email, subject,
Persona, Playbook and bot-initiated settings. For each project, the user can have any number of
test cases, allowing the user to simulate various patterns of life or different types of attacks. If the
user has defined goals for your project, they can create a playbook for this test case using an
ordered or unordered list of existing goals.
When simulating a test-case, the user can virtually pass time in set increments using the time
settings on the left side of the message screen. The user can view the current time of your
conversation directly above these buttons or reset the current conversation below. When
interacting on the message screen, the user can send text messages of any length. If they wish to
simulate the inclusion of an attachment, they must enter the attachment name including the
extension before sending the message. After the SIENNA-Bot has responded, the user can view
complete state information in the metadata column including the current quest being used, flags,
trust levels NLU, and the Quixote log.
4.1.6.1 Dialogue Construction
Essential to Cervantes is the ability to construct quests. Understanding how the SIENNA-Bot
utilizes the authored content is essential for creating convincing dialogue. When dialogue is
constructed, a specific pattern is followed. Figure 9 illustrates a flowchart of dialogue construction.

27
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

A SIENNA bot can either start (offensive) or respond (defensive) to a conversation. The only
impact this has on dialogue generation is if a canned initial start message is used, or if the content
of the received message is used to craft a response.
Cervantes has a defined set of tokens that are used to facilitate conversation construction. These
tokens: MessageGreeting, MessageInitial, DefaultTransition, and MessageConclusion are
designed to simplify the creation of dynamic content. The flow in Figure 9 shows how these tokens
are combined to construct dialogue. The Cervantes User Manual has a detailed description on how
to utilize these tokens for optimal quest creation.
4.1.6.2 Rights and Roles
Once team performers started using Cervantes it became clear we needed to incorporate better
rights and roles for controlling project access. To achieve this goal, we modeled our rights and
roles based on the same process used by GitLab. In this model, there are three roles: User,
Developer, and Admin. Each role has distinct rights within the interface (See Figure 10).

Figure 9. Dialogue Conversational Flowchart.

28
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

Using this model, a single Cervantes instance can host many teams without concern of exposing
sensitive projects, or having content changed or deleted by non-team members. For details on using
the rights and roles, see the Cervantes User Manual, or the integrated Cervantes help.
4.1.7 SIENNA Bot
SIENNA is a hybrid dialogue system that combines classical symbolic AI techniques with cutting-
edge neural architectures. The SIENNA-Bot is a Python based application built on the Flask
framework. All communications with SIENNA occur via Hyptertext Transfer Protocol (HTTP)
REST calls. SIENNA currently contains two different API interaction sets.

• Complex API is geared towards supporting the larger ASED campaign
infrastructure and interfacing with NEMESIS

• Simple API a basic API currently used between the Cervantes Simulator and the
SIENNA bot

The following sections describe the design and details of the SIENNA bot.
4.1.7.1 Complex API: Interacting with NEMESIS
Our software was just one component of the larger ASED program. As such, it was critical that
we implemented a set of APIs to interact with the other components. The complex API, so called
because it provides much more detail and touch points then the simple API described below, is
illustrated in Figure 11. In this API, there are three primary touch points into SIENNA:

• Reply2: The endpoint responsible for starting conversations and relying to
messages

• Wakeup: Used by the larger system to wake-up the bot and have to check for
messages

Figure 10. Cervantes Project Right and Roles.

29
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

• Sent: Used by the larger system to inform SIENNA that a message has been
delivered

4.1.7.2 Simple API: Interacting with the Simulator
To evaluate content as it is created using the authoring tool, we incorporated a simulator. This
simulator is actually just a single SIENNA bot. However, to perform the desired simulation of
conversations, the full complexity of the complex API was no required, so we developed the simple
API (See Figure 12). This interface uses a much smaller data structure than the complex API and
has slightly different endpoints.

• Begin: Starts a new conversation with the bot
• Continue: resumes a conversations
• Delivered: Informs the bot that a message has been delivered

Figure 11. Complex API Pipeline for Interacting with SIENNA.

30
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.1.7.3 System Engineering (SE)
Essential to the successful operation of SIENNA is a well architected and implemented system.
This section describes the system design considerations and highlights the issues encountered and
how they were overcome during the program.
4.1.7.3.1 Global Bot Blackboard
The first major systems functionality introduced into SIENNA was the ability to support multiple
simultaneous email threads. Because the program-wide objective required the ability to defend
multiple targets against multiple interlocutors, the SIENNA solution must be capable of supporting
the modeling of multiple simultaneous email threads. Because the aim of SIENNA was to model
coordinative behaviors in which bots reason over the content of other threads and carry out
coordinated conversational activity across threads, this design required careful consideration.
SIENNA must explicitly model all ongoing threads in terms of the information that is required for
reasoning. The resulting architecture supported the functionality for modeling multiple
simultaneous threads and maintaining information about each thread in a single global blackboard
state that is accessible to all bots.
However, during the Winter 2020 evaluation, the scale of attacks was far greater than in any of the
previous evaluations. This equated to many more conversations and some conversations
comprising hundreds or thousands of messages. In one instance, frequent messages from an
automated service were falsely identified as an attack which led to SIENNA having to process a
conversation that grew to hundreds of messages. Because the design of state within SIENNA
consisted of reconstructing the global state for each system call, the scaling necessary for the
quantity of messages quickly broke down. To address this issue, we overhauled the SIENNA state
management functionality such that each conversation maintained its own state. This resulted in
much smaller state data objects.

Figure 12. SIENNA Simple API for Interacting with the Simulator.

31
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.1.7.3.2 Scheduled Message Delivery
In the initial proof of concept, email correspondence was modeled as a real-time conversation.
When one party sends a message, the corresponding party immediately responds. This pattern of
life is not indicative of real-world email communications where responses can occur over the
course of hours and days. To address this issue, SIENNA employed a technique where bots exhibit
human behaviors such as not sending emails in the middle of the night or on weekends. The
SIENNA author can specify bot personas: content generation rules for a given email message such
as when the delivery should occur (n hours from x).
4.1.7.3.3 Inactivity System Wakes
The initial SIENNA prototype only responded to received messages. However, this approach does
not properly correspond to actual email behaviors. It is not atypical for one party to send multiple
emails in a row before receiving a response. Because of the “call and response” nature of our
original design, the SIENNA bots did not have the ability to generate and deliver multiple
messages. To address this shortcoming, we incorporated wake-up calls. With this design, each
generated message comes attached with a time at which SIENNA should be woken up. When the
bot is “woken up” for a given thread, it will then reason over the current state and possibly generate
a new message. This design approach allows the bot to pull a silent interlocutor back into the
conversation after a period of inactivity.
4.1.7.3.4 End State Criteria
In the initial design, SIENNA had no concept of ending a conversation. This oversight resulted in
SIENNA continuing to generate and send messages when the interlocutor was clearly finished. To
address this oversight, we incorporated end-state conditions into the bot. These included rules such
as end the conversation after four unanswered questions. We further extended end state detection
to identify words such as “unsubscribe” and “stop” as markers that the interlocutor would like us
to stop communicating with them. The final addition to end state criteria was the incorporation of
an affordance within Cervantes that would mark a dialogue block as the final exchange for the
conversation. This addition addresses the case where the bot is finished conversing (i.e., it has
acquired all of the necessary information) yet the interlocutor still sends messages. In this case,
the bot will just ignore all subsequent messages.
4.1.7.3.5 Offensive Attacks
The initial design of the SIENNA bots was to react and engage with interlocutors. Over the course
of the program, interest grew to also have the bot take an offensive stance where the bot would
initiate a conversation. Due to our design of SIENNA, incorporating the functionality to allow the
bot to either respond or initiate was a straightforward task. The biggest technical hurdle was the
setting and sending of the initial message. The design of the system is such that the incoming
content is used to generate responses. Without having an initial message to react to, we created
and incorporated functionality to mark and select initial messages for dissemination. Once we
made this change to the construction and initiation of conversations, the rest of the conversational
flow was essentially the same as a defensive bot.

32
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.1.7.4 Dialogue Generation
To generate content, the SIENNA team adopted the techniques used for videogame procedural
content generation refined by Dr. James Ryan and his Expressionist tool [2]. This approach uses a
novel authoring scheme for natural language generation that is driven by attribute grammars.
Attribute grammars [3] are a computational formalism that modifies context-free grammars by
introducing tags that are attached to elements within the grammar. These tags are then attached to
the nonterminal symbols in a grammar during text generation. Using this approach, we created an
initial proof of concept bot, the Bored and Lonely bot. The goal of this bot was to counter
impersonation attacks by having the bot evolve into either a needy narcissist or a spiteful colleague
persona.
The needy narcissist persona loves to gossip about coworkers and colleagues in the targeted field.
This bot expresses distastes for recent colleague publications and likes to tell rambling stories
about themselves. Because narcissistic personalities tend to be bad listeners, the bot itself doesn’t
require much knowledge about the content of the dialogue to effectively present as a human. The
spiteful colleague persona bot leverages a narrative conceit to introduce a fictional backstory as a
means of conversation. Because the interlocutor is only pretending to know the subject, using a
fictional story allows the bot to quickly take control of the conversation without having to
understand much of the content.
One of the key benefits of this bot style is that it allowed the SIENNA team to quickly construct a
proof-of-concept bot without having to develop the necessary components for parsing and
comprehending text content. This allowed a more focused approach to the dialogue generation
capabilities and its shortcomings. One of those identified shortcomings was the inability of the
dialogue generator (DG) to maintain any form of state. State within a dialogue generator is the
retaining of specific words or phraseology. For example, if a person always starts off an email
message with the phrase “Hello there,” then it is important that the bot maintains that style to
promote realism. To address this issue, we enhanced SIENNA to incorporate state into the DG. As
a result, once a specific “voice” is determined for a bot, that style of interacting is maintained
throughout the conversation. State is maintained in the DG by using preconditions and effects.
Preconditions are used to determine if a production rule should or should not be used as part of the
current dialogue text. And once a rule is successful, any added effects are used to update the state.
This addition improved upon Expressionist by including the fine-grained authorial control of
production systems [4] while retaining the semantics-to-text power of attribute systems.
The next big revision to the DG system was the refinement of the computational formalism used
for determining conversational strategy. For this change, we implemented the logic to represent a
bot’s total set of conversational strategies as a finite-state machine (FSM) in which each state
represents a distinct conversational strategy (e.g., pretending to struggle with an attachment).
Using this approach, a bot can then transition between various states if certain aspects of the
conversational state holds. For example, if the interlocutor includes a link in their message, the bot
can transition to the struggle with the link state. Each state in the machine (conversational strategy)
is then structured as a partial-order plan [5] where the plan steps correspond to individual
conversation moves that the bot can perform. Before a turn, all available plan steps are scored

33
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

using utility-based action selection. This scoring distribution is then used to determine which step
will be performed. If the selected step is within a different FSM state, a state transition occurs.
The next addition to the DG was the incorporation of custom dialogue generation engines. The
objective here was to explore the ability of using NLU modules that could negotiate or bargain.
The resulting product was a NLG called Specialist. Specialist can generate dialogue based on the
semantics of the input message by quibbling (argue or raise objections to a trivial matter) with the
interlocutor. This model is a Generative Pre-Trained (GPT)-based model. To train the model,
dozens of conversations with requests and quibble-like responses were authored in Expressionist.
These conversations were then used as input into GPT-3 to augment the conversation corpus,
producing over ten-thousand quibble-like responses. We then incorporated the Diplomacy Corpus
to augment the conversational data focused on quibbling. Because the GPT-3 model was too large
to realistically deploy within SIENNA, we retrained with GPT-2 to generate a model capable of
generating quibble-specific responses. With this addition, SIENNA content authors can now
leverage Specialist to provide quibbling as an effective conversational strategy. For example,
consider a situation where an interlocutor quibbles over the details of an assigned quest. Here, the
content author can pass the interlocutor’s quibbled content into Specialist and get back sufficient
dialogue to respond. We then further expanded Specialist to provide dialogue for deflecting and
answering questions.
We developed another NLU within the DG is for the task of classifying discourse-acts,
Comprehensionist. The key benefits of a discourse-act classifier are: a) provides dialogue state
information, and b) provides affordances for the quest author to author content specific to certain
discourse-acts. For example, by detecting that an interlocutor is arguing when responding to a
quest, SIENNA could use that information to either change the direction of the quest, or assign a
new, possibly easier, quest.
Once Comprehensionist was incorporated and proved effective, we explored other areas for
discourse-act classifiers. This resulted in Completionist, a discourse-act classifier capable of
understanding whether the interlocutor is trying to elicit information or elicit an assessment that
falls into one of four categories:

• Yes/No
• Too much information
• Opinion
• Factual

4.1.7.5 NLU Modules
Another critical component for conducting conversational dialogue is the ability to parse and
comprehend the messages received from the other party. To perform this task, SIENNA relied
upon a series of NLU modules. The extent and capabilities of these modules grew throughout the
duration of the program. This section documents that progression.
To provide comprehension of an interlocutor’s messages, we chose an NLU approach that could
leverage the capabilities of Expressionist and the various aspects of the DG. Specifically, the
design included a grammar whose outputs are messages that we imagine an interlocutor would

34
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

send. By reusing a subset of the tags that are part of the bot grammars, the output of the attack
grammar aligned with the tags that also drive the operation of the DG. This in turn allows us to
generate annotated training data for a sequence-to-sequence [6] task using LSTM technology.
Using this approach starts first with translation. A natural language interlocutor message is
translated into a sequence of tags from our grammar. This translation captures the essence of the
message with regard to the core concerns of the dialogue manager. Named entity recognition and
LSTM copy mechanism [7] are used to form special structured tags that map substrings in the
received message into specific recognizable concerns. For example, if an interlocutor references a
colleague, the colleague’s name could be copied from the input sequence and pasted into a
corresponding slot in a special tag dedicated to colleague mentions.
To explore the potential of this design approach, we developed a pipeline that converts message
tokens into word embeddings using the Embeddings from Language Models (ELMo) model [8]
and then concatenated those representations with part-of-speech tags and named entities produced
by applying other off-the-shelf tools to the token sequences. To test and validate our approach, we
used our Expressionist tool to generate training data within the gift card scam domain and then
had the system conduct conversations with itself. Using this approach, we were able to collect
hundreds of thousands of procedural conversations. The transcripts from these conversations were
then automatically annotated for training. The resulting model from this training produced a
workable demo that was highlighted at the ASED August 2019 Workshop in Dayton, Ohio (See
Figure 13).

Figure 13. Gift Card Scam Demo Screenshot Highlighting NLU Technology at ASED

August 2019 Workshop.

The objective of the NLU within SIENNA is to a) understand the pragmatics of what the
interlocutor is saying, and b) extract critical pieces of information from the interlocutor’s

35
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

messages. Working from the knowledge obtained during the workshop, and aligning with these
objectives, we turned our focus from an LSTM-based architecture towards a pre-trained
Transformer model (Bidirectional Encoder Representations from Transformers (BERT), Robustly
Optimized BERT Pretraining Approach (RoBERTa) [9]). We then added extra layers to the model
for handling the primary objectives of our technology (understanding the pragmatics of the
interlocutor’s message and extracting critical pieces of information from the message). With this
change in architecture, we were able to leverage the semantic knowledge captured in the pre-
trained model with a vastly reduced training time by fine-tuning, instead of retraining from scratch.
This technique allowed us to patch models with newly acquired information. To verify the
effectiveness of our patching technique, we generated new content within the gift card scam
domain. For this, we used Expressionist to generate many examples of an interlocutor changing
the denomination, and then fine-tuned the model by training just on this newly acquired data. This
approach added robustness to the model and resulted in a compelling demonstration of a novel
technique for NLU model training.
We also made a change in content processing. Previously we were only processing the interlocutor
message. Now we also process, in tandem, a representation of the recent history of the
conversation. This technique proved especially useful in cases where the content of a message was
ambiguous when divorced from the current conversation context, such as a message response of
just “Ok, Thanks.”
4.1.8 Trustist
As part of managing the dialogue and guiding Interlocutors, it is important that Cervantes is able
to assess the level of trust between the Interlocutor and the bot. If the Interlocutor believes that
they are being led along or are frustrated with the bot, there is a chance that they will be less
receptive to the quests being offered up by Cervantes or might end the conversation entirely.
“Trust” is a complex concept that folds in a large number of different facets of language. A
communication that is entirely antagonistic and full of profanity is likely to indicate that an
Interlocutor is frustrated and lacking in trust of Cervantes, but it is entirely possible that a polite e-
mail might be suffused with anger and frustration, e.g.,
“John,
I’m confused. I thought we agreed that I would have your response by today. Friendly reminder, I
need your response before we can move on. As I’m sure you’re aware, this is very time sensitive.”
Is a message that is dripping with frustration about schedules not being kept. As such, Trustist
needs to be capable of assessing nuanced language and cannot simply rely on simple frequency-
based approaches.
Trustist is built based on RoBERTa, a Transformer based masked LM that has achieved state of
the art performance on a range of natural language processing tasks from the General Language
Understanding Evaluation (GLUE) benchmark. RoBERTa is pretrained on 160 GB of text
composed of the BookCorpus, English Wikipedia, CommonCrawl News, OpenWebText, and
STORIES corpora with a masked LM task. Trustist has been fine-tuned on a number of different
corpora in a two-phase approach.

36
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

As there does not exist a natural language corpus devoted to assessing the level of trust that an
Interlocutor has in their mark, we instead needed to find related natural language tasks and
bootstrap off of them. Sentiment analysis — the assessing of whether a given sentence or document
has a positive (good/happy/nice) or negative (bad/unhappy/mean) sentiment polarity — is a
common task in Natural Language Processing (NLP) that is related to, but distinct from, trust
analysis. However, as a first pass, we believed that it was likely that a message that had negative
sentiment was likely to be indicative of low trust, and conversely, that positive sentiment was
likely to be indicative of high trust. We used a number of different sentiment corpora to finetune
RoBERTa as the input to a logistic regression. After feeding in an utterance, we used the features
of the first separator token (a separator token is added at the beginning “<s>” and ending of the
utterance “</s>”) to be fed into a logistic regression that predicts a value between 0 (negative
sentiment) and 1 (positive sentiment).
The corpora used were:
The Stanford Sentiment Treebank
A collection of 10,662 movie review snippets collected from rottentomatoes.com.
Crowd Flower Twitter US Airline Sentiment
A collection of 11,855 tweets directed at major airlines on Twitter from February 2015.
The Multi-Domain Sentiment Dataset
A collection of 38,548 product reviews from Amazon across a wide range of product types.
The Amazon Product Ratings
A collection of 142.8 million reviews spanning May 1996 - July 2014. For Trustist we used 38,548
reviews from Clothing, Shoes and Jewelry and Grocery and Gourmet foods, so as to not throw off
the balance with the other corpora.
We used these 99,613 instances to fine-tune RoBERTa over two epochs with a linear learning rate
scheduler with 1000 warmup steps. After fine-tuning, we used an evaluation set of 46 messages
chosen from 419eater.com, a website devoted to people who attempt to annoy, frustrate, and
possibly counter scam scammers, most commonly “419” scammers, i.e., the Nigerian prince (and
related) scams. We chose these 46 messages since they exemplified the kinds of messages that we
wanted to be able to assess whether the Interlocutor had trust in the Bot.
Positive examples include:
“I am glad to receive your response and hereby forward to you an agreement/bond binding us in
this transaction.”
“Thanks immensely for your quick response to my proposal, this goes to show that we will work
together for the mutual benefit of both of us.”
and negative examples include:

37
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

“I AM NOT INTERESTED TO DO WITH YOU. I DONT TRUST YOU ANYMORE
MOREOVER YOU DONT HAVE TIME FOR US MAYBE, YOU HAVE MORE THAN THIS
AMOUNT SO WE DECIDED NOT TO DISTURB YOU.”
“How are you today? Hope fine. I'm writing to know if you have received the email i sent to you
on Friday including the tree deposit certificate documents? Sir, please try as much as possible to
respond to me so that we can make a step forward to the smooth transfer of my consignment.”
We also included four baseline systems for sentiment analysis for comparison:

● Google Cloud — https://cloud.google.com/natural-language/docs/sentiment-
tutorial

● MonkeyLearn — https://monkeylearn.com/
● TextBlob — https://textblob.readthedocs.io
● Valence Aware Dictionary and sEntiment Reasoner (VADER)

○ VADER produces two separate values — the amount of positive
sentiment, and the amount of negative sentiment, in testing the
accuracy of the system, we trained three linear classifiers, one with
the positive valence, one with negative valence, and one with the
positive and negative valences

Results for the five models are shown in Table 2.
Table 2. Comparison of Accuracy Against Baseline Systems.

System Accuracy

VADER-Neg Only 56.5%

VADER-Pos Only 60.9%

VADER-Both 63.0%

TextBlob 76.1%

Google Cloud 78.3%

MonkeyLearn 87.0%

Trustist 87.0%

While the other approaches might be suitable for other tasks, Trustist and MonkeyLearn performed
the best on messages similar to the kind that it might be expected to handle, despite having no
training data derived from 419 style messages. Feeling satisfied with the sentiment results from
Trustist, we next fine-tuned it on the Enron Corpus. The Enron Corpus is a dataset consisting of
over 600,000 emails from 158 employees. While there have been some annotation attempts with
the Enron corpus, none were suitable for use in Trustist. Our annotation of the Enron Corpus used
a bootstrapping procedure — starting with the Trustist model as described above, all emails in the

38
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

corpus were scored — any message with a score of less than 0.2 was conditionally marked as
“Untrusting/Frustrated” and any message with a score of greater than 0.8 was conditionally marked
as “Trusting/Pleased.” This resulted in 21,152 marked as “Trusting/Pleased” and 1,666 as
“Untrusting/Frustrated.” Some examples are:
Trusting/Pleased
“Thank you very much for the summary.”
“Jim, thanks for the message. Carrin and I look forward to seeing you there. Jim”
“Wow, there is a God. Thanks. Have a great weekend. Best, Jeff”
“That is WONDERFUL!!!!!!”
“Bill, I am very grateful for everything you and your firm are doing to assist our cause. Good luck
in the appeal. All the best. Jim”
Untrusting/Frustrated
“Thank you for your sarcasm in this matter.”
“NOTHING....WHAT IS YOUR IM??? THIS IS WACK”
“You blew me off! Are you in town? I tried your phone but it's busy. df”
“What is your problem? Why aren't you responding to my emails?”
“Why did you send my message back to me with no reply of your own???”
These sets were then hand-annotated to remove duplicates, obvious spam, and false
positives/negatives resulting in final sizes of 15,857 marked as “Trusting/Pleased” and 1,437 as
“Untrusting/Frustrated”. A final data augmentation step was used to add additional
“Untrusting/Frustrated” messages by adding additional “polite, but frustrated” text such as:
“I thought we agreed”
“Can we get on with it?”
“I was disappointed to hear”
“As I’m sure you’re aware”
to 1,000 neutral messages (0.2 < score < 0.8) from the original corpus and to the 1,437 existing
frustrated messages. The frustrated set was then over-sampled to be balanced with the pleased
dataset, and Trustist was fine-tuned on the resulting 31,714 messages. After fine-tuning for two
epochs, Trustist-Enron was evaluated on the same 419eater messages, resulting in an accuracy of
89.1%.
4.1.9 Comprehensionist
While assessing the level of trust that the Interlocutor has in the Bot is important, a more basic
consideration is understanding the Interlocutor’s messages, so that they can be successfully
responded to. NLU is a very broad field with decades of research, and one subfield is Dialogue
Act Classification, wherein an utterance is tagged as being of a specific kind of act. These might

39
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

range from something straightforward like a Yes/No Question (e.g., “Do you think the 13th will
work for you?”) to more nebulous acts like Rhetorical Question (e.g., “Do you think we have time
for you to mess around?”) or Action-Directive (e.g., “Why don’t you go first”). For SIENNA to
properly guide conversation, it is important to have some idea as to what the Interlocutor is trying
to communicate with the bot. Comprehensionist is a multi-stage NLU system that first analyzes
dialogue acts at a broad level, and then moves to a secondary system for finer distinctions between
types of questions.
One of the most common corpora for dialogue act classification is Switchboard-Discourse
Annotation and Markup System of Labeling (SWBD-DAMSL) which comprises 205,000
utterances with 60 dialogue act tags. While SWBD-DAMSL is one of the largest datasets for
discourse analysis, it is based on spoken, informal language, making it less suitable for the e-mail
domain of SIENNA. Instead, we used the Augmented Multi-party Interaction (AMI) meeting
corpus. The AMI corpus is composed of 100 hours of meeting recordings — some meetings were
naturally occurring, and some were solicited in a scenario where participants had to take on a
design project over the course of a day. While still based on recordings of verbal communication,
the domain of business style meetings led to dialogues that are closer to e-mail communications.
For example,
“Should we maybe make a decision about what features we actually want to include, ’cause we’ve
thrown a lot of features onto the table, but do we actually want to incorporate all of them or have
we missed anything?”
“That would be great. So if you find out from the technology background, that would be good.”
“I mean, if it’s just for one meeting, it’s really not too big. What do we have to demonstrate?”
These utterances are then categorized into 14 different dialogue acts:

● BACKCHANNEL
○ When someone says something in the background that doesn’t interrupt the

speaker
○ Example:

A: “Right away I’m making some kind of assumptions about what
information we’re given here”
B: “MM”
A: “thinking, ’kay trendy probably means something other than just basic,”
B: “YEAH”
A: “something other than just standard…”

● STALL
○ When someone says a filler word or sound at the beginning of speaking
○ Example:

A: “SO UM, we want to do a new remote control.”
● FRAGMENT

○ A filler category for utterances that don’t convey information that are neither
BACKCHANNEL or STALL

40
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● INFORM
o An act where the speaker delivers information
o Example:

A: “THE BUDGET FOR THIS PROJECT IS THREE THOUSAND FIVE
HUNDRED EUROS AND DEADLINE IS AT THE END OF THIS DAY”

● ELICIT-INFORM
○ An act where the speaker requests information
○ Example:

“DO YOU HAVE ANY OTHER INFORMATION FOR US AT THIS
STAGE?”

● SUGGEST
○ An act where the speaker expresses an intention relating to another

individual or group
○ Example:

“MAYBE THERE ARE A FEW THINGS THAT WE CAN CLARIFY
BEFORE WE GET ON”

● OFFER
○ An act where the speaker expresses their intention
○ Example:

“AND THEN I NEED TO SEE WHETHER THAT WOULD
SELL IN THE MARKET PLACE”

● ELICIT-OFFER-OR-SUGGESTION
○ An act where the speakers expresses a desire for others to OFFER or

SUGGEST
○ Example:

“HAVE WE MISSED ANYTHING?”
● ASSESS

○ An act where the speaker expresses an evaluation of something the
group is discussing

○ Example:
“THAT WOULD BE GREAT.”

● ELICIT-ASSESSMENT
○ An act where the speaker asks someone else to ASSESS.
○ Example:

“ DO WE ACTUALLY WANT TO INCORPORATE ALL OF THEM?”
● BE-POSITIVE

○ An act intended to make an individual or the group happier
○ Example:

“THANKS!”

41
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● BE-NEGATIVE
○ An act intended to make an individual or the group feel worse.
○ Example:

“WELL THAT JUST RUINS EVERYTHING”
● OTHER

○ An act that does not fall into the above categories
Comprehensionist is a RoBERTa-based model, similar to Trustist. Similar to Trustist,
Comprehensionist has a logistic activation function to produce a binary prediction,
Comprehensionist has a Softmax activation to predict between the thirteen dialogue act
classifications. We trained Comprehensionist for two epochs with a linear learning rate scheduler
with a warmup of 0.3 epochs to a maximum learning rate of 1e-3.
The accuracy rates by class are shown in Table 3.

Table 3. Accuracy Rate by Class

CLASS ACCURACY RATE

INFORM 73%

ELICIT-INFORM 67%

FRAGMENT 48%

ASSESS 77%

STALL 58%

BACKCHANNEL 36%

ELICIT-ASSESSMENT 23%

BE-POSITIVE 42%

BE-NEGATIVE 0%

OFFER 48%

OTHER 45%

ELICIT-OFFER-OR-SUGGESTION 1%

SUGGEST 73%

While the performance for some of the categories is dismal (BE-NEGATIVE and ELICIT-
OFFER), the major categories of INFORM, ASSESS, ELICIT-INFORM are handled quite well.
We note that ELICIT-ASSESSMENT is also quite poor, but that is usually of lesser concern.
ELICIT-ASSESSMENT is often misclassified as ELICIT-INFORM (25% of the time), and both

42
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

of those are handled by Completionist, which is discussed below. Similarly, ELICIT-OFFER is
classified as a different elicitation 62% of the time.
While these coarse annotations are useful, further refinement is required, specifically for ELICIT-
ASSESSMENT and ELICIT-INFORM. If the Interlocutor is requesting information from the bot,
and the bot is unable to respond in an intelligible way, it is likely to raise suspicion. For example,

I: When can you get me that information?
B: No

I: What is your birthday?
B: Oh, I’m not sure about that.

I: Will you be able to respond by the end of the week?
B: I don’t feel comfortable giving out that information.

In each of these examples the Interlocutor is asking a specific kind of question, and the bot is
responding to a different kind. Completionist is a secondary system in Comprehensionist that is
utilized when Comprehensionist predicts one of these ELICIT-* acts. Completionist has
distinctions for four types of elicitations:

● Yes/No
○ The simplest type of ELICIT, a question that can be answered with either a

yes or no
● Factual

○ A request for information grounded in fact, such as a specific date, location,
etc. that cannot be answered with a yes or no

● Opinion
○ A request for the opinion of the Bot that is not necessarily grounded

in a factual or yes/no answer
● Too Much Information (TMI)

○ A request that might be one of the above categories, but that would be
damaging to a human if they answered factually (request for revealing
personal information, social security number, credit card information, etc.)

The SWBD-DAMSL corpus makes a distinction between Yes/No and Wh-Questions (Who, What,
Where, When, Why, How), however there is no distinction between types of Wh questions.
Furthermore, to the best of our knowledge, there is no corpus that makes a distinction between
problematic questions that request revealing information and those that are acceptable, at least in
an open dialogue domain. (There does exist the AntiScam dataset [End-to-End Trainable Non-
Collaborative Dialogue System] that poses a role-playing scenario where someone pretends to be
an Amazon customer service representative that tries to get the target to reveal information, but
that is a very limited domain.) Given the paucity of data, we instead used a novel technique that
leverages the capabilities of large LMs.

43
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

GPT-2, GPT-3, and other related models represent a leap in the scale of pre-trained LM with
billions of parameters and training datasets consisting of gigabytes of textual data. Auto-regressive
text generation is a common usage for these LMs (Specialist in Section 3.2.5 utilizes this mode),
but they are useful in other modes of use as well. A LM is a probability distribution over sequences
of words — Pr(w0, w1, w2, … , wn) — most commonly factored via the chain-rule of probability
into a sequence of conditional probability distributions — Pr(w0) Pr(w1|w0) Pr(w2|w0, w1) … Pr(wn|
w0, w1, w2, … , wn-1). While it is this latter factorization that is commonly used for text generation,
we utilize the fact that the LM provides a probability for a sequence of words for use as a classifier.
Completionist predicts the type of elicitation via the use of probe phrases. It maximizes the
probability of the utterance given the probe Pr(utterance | probe), which via Bayes’ Theorem is
Pr(utterance | probe) = Pr(probe | utterance) Pr(utterance) / Pr(probe)
However, since our utterance does not change with the choice of probes, this is proportional to

Pr(utterance | probe) ∝ Pr(probe | utterance)/ Pr(probe)
So, Completionist wants to find the probe(s) that maximize Pr(probe | utterance)/ Pr(probe).
However, given that these probes must be general enough to cover a wide range of elicitations,
they are not particularly specific, especially the Factual and Opinion prompts. While “Next
Thursday” might be a high-quality probe for “When can you fill out the information for me?” it
would be a terrible probe for “What information do you need from me?” As such, the classifier
selects the label that has the highest average posterior probability. The probes were constructed
via a mixture of hand authoring and automated discovery, and are as follows:

● Yes/No Question Responses
○ “Yes.”
○ “No.”

● Factual Question Responses
○ “I don't know”
○ “I'm not sure”

● Opinion Responses
○ “Let me tell you what I think.”
○ “I don't have any thoughts”

● TMI Responses
○ “That's too personal”
○ “I am not comfortable sharing that information.”
○ “I'm not sure I understand”
○ “I don't know”
○ “Why do you need that information?”
○ “I don't feel comfortable giving you”

44
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

Some of these probes were authored by us, but some were generated using the same LM that is
used in the classification. At each step of generation, the LM is sampled, but the token’s probability
is modified by how well the probe handles a set of labeled elicitations.

● Yes/No Answerable Questions
○ "So do you think things are proceeding well?"
○ "Are you working tomorrow?"
○ "Can you believe this?"
○ "Could you resend it, please?"
○ "Is Sasha the guy to talk to on this?"
○ "Any news on the spread products for the west?"
○ "Have you bought your Padre tickets?"
○ "Is online trading for firm only?"
○ "Are you married?"
○ "Have you any food preferences?"
○ "Are you going to any of it?"
○ "Can these be confirmed under this GISB?"
○ "Has anyone seen this file?"
○ "Do I have a Login ID and Password?"
○ "Have you seen the picture?"

● Factual-based Questions
○ "What is your parents address?"
○ "What are your food preferences?"
○ "Who do I need to call?"
○ "When are you going to get around to this?"
○ "Who is the action person on this?"
○ "What is your availability for these dates?"
○ "What days are you available?"

● Opinion-based Questions
○ "Any suggestions?"
○ "Any thoughts?"
○ "Would you like to change anything?"
○ "What is your impression?"
○ "Do you agree with PGE, or would you like these deals confirmed?"
○ "What do you think about selling JDSU and buying SDLI?"
○ "If there are some things missing, please let me know."

● TMI Questions

45
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ "What is your Login ID and Password?"
○ "What's your mothers' maiden name?"
○ "I'm going to need your credit card information."
○ "I need your social security number."
○ "I need you to tell me your bank information."

The generation algorithm attempts to make sure that the generated prompts are scored highly for
their intended label, and poorly for the rest.
4.1.10 Specialist
Specialist is a large LM text generation system. While most utterances that originate from the bot
are based on human authored grammars, there are times when Cervantes hands off generation
control to Specialist, which generates text according to a number of different profiles.
Specialist is based on the 347 million Parameter Dialogue Generative Pre-Trained Transformer
(DialoGPT) [10]. DialoGPT is a variant of GPT-2 that has been trained on 147 million
conversation-like threads from Reddit, that achieved state-of-the-art results in information driven
conversations as part of the Dialogue System Technology Challenges (DSTC) 7 track (Grounded
response generation task at DSTC7 Galley et al., 2019). However, while e-mail is a form of
dialogue, it is not quite Reddit in terms of tone and formalisms, so DialoGPT required further fine-
tuning for use in Specialist. To better ground Specialist in the domain of e-mail, we used the Enron
Corpus. Specifically, any e-mail thread between Enron personnel that lasts more than one turn
(i.e., that has at least a response to an initial e-mail) was used to fine-tune the DialoGPT model.
While this produced a fine generic e-mail-like chatbot, one of the key aspects of Specialist is the
ability to take on multiple conversational personas, including the following:

● Chit-chat: A jovial personality that just wants to chat with the Interlocutor
● Quibble: A cantankerous personality that wants to argue over every small

point
● Question: A personality that wants to question everything that the

Interlocutor says
● Deflect: A personality that tries to avoid answering any questions

While chit-chat is a relatively common domain for natural language corpora (PersonaChat is
composed of 8,939 conversations), there are not a lot of datasets devoted to quibbling, questioning,
and deflecting. For quibbling we used a mixture of existing corpora and human curated generated
text, and for questioning and deflecting we used human curated generated text.
For quibbling, we leveraged the CraigslistBargains3 dataset [11] . This dataset consists of 6682
conversations between play acting participants who were given real postings from Craigslist and
had to take on the role of either seller or buyer and negotiate the sale/purchase of the item in the
listing. In addition to this dataset, we also generated pyrite (aka fools’ gold) data; data that is
generated by a powerful LM that could seemingly have come from a human. While GPT-2 and

3 https://paperswithcode.com/dataset/craigslistbargains

46
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

associated LMs are very capable text generators, they generally require fine-tuning to adapt to a
specific style or mode of generation; however, GPT-3, the follow-on system to GPT-2, is capable
of adapting in a few-shot scenario where it is given a few prompts and then it tries to generate new
text in the same style. To generate data that would match the style of what we want, we first
authored a small number of exemplar conversation snippets. Examples are the following:

I: “I'd like to move along to discussing payment details now, if you don't mind.”
B: “Uhhh what's the rush? Not sure why you're so eager to hurry things along. I
mean I need some time to think this over.”
——
I: “I'm attaching the files you requested.”
B: “I spent half an hour trying to open those attachments and they don't seem to be
valid files. Is this a joke?? I'm starting to think you're not really serious.”
——
I: “Please sign these documents and return them to me at your earliest
convenience.”
B: “OK wow, that's a lot of paperwork! ������� Sorry it'll be a minute before I have
time to get to this. Please let me know if you really need ALL of this filled out or of
there are any parts I can skip. Thanks.”

GPT-3 is provided as input 4 such examples, and then given a prompt (one of the Interlocutor
utterances) to generate a new response. For instance, following from the above examples, when
given the prompt:

"I really need you to get back to me on potential meeting times."
GPT-3 produced the following response:

“Uhhh I really need more information before I can answer that! Can you give me an idea
of what your company does? And what would be included in the meeting? I'm just not sure
I can commit to something without knowing more.”

Which is very much the kind of quibbling over small details response that is desired. In the first
stage of generation, this process of sampling 5 snippets (4 as examples, 1 as the prompt) was done
to produce 1000 new responses. These 1000 responses were then curated by a human for quality
assurance purposes, resulting in 963 acceptable responses. These 963 responses were then used to
generate longer snippets — going from conversation pairs (I, B) to conversation quads (I, B, I, B)
— 30,000 such quads in total. The resulting 120,000 lines were used as training for a much smaller
LM that was used to guide the Enron fine-tuned DialoGPT.
Instead of fine-tuning a version of DialoGPT for each response style, we instead turned to the
Generative Discriminator Guided Sequence Generation (GeDi) approach [12]. GeDi operates by
using a small LM to guide the generation of a much larger LM by modifying the predicted token
probabilities. The smaller LM (or set of LMs) is then trained with desired attributes and then
Bayes’ theorem is applied to produce a factor that is then multiplied by the predicted probabilities
from the larger LM.

47
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

For instance, given an LM that is trained with positive and negative responses, when given the
prompt:
“The party was __”
The positive LM might have the response of - 0.09 amazing, 0.01 awful, and the negative LM
might have the response of 0.01 amazing, 0.09 awful. Bayes’ theorem states:

Pr(A | B) = Pr(B | A) Pr(A) / Pr(B)
So, if we wanted to get the probability of a given token being positive, we would calculate

Pr(positive | word) = Pr(word | positive) Pr(positive) / Pr(word)
— we do not care about the Pr(positive) since that is independent of the word and as such cannot
affect the choice of word, so we instead have:

Pr(positive | word) ∝ Pr(word | positive) / Pr(word)
To get the Pr(word) we sum over all classes — in this case positive and negative — to get the final
result:

 Pr(positive | word) ∝ Pr(word | positive) / (Pr(word | positive) + Pr(word | negative))
Which is then multiplied by the probability of the word as predicted by the large LM.
 Pr(word | context) = PrL(word | context) PrS(positive | word, context)w
Where PrL is the probability as predicted by the large LM, PrS by the small LM, and w is a weight
applied to the probability from the guide LM (w = 0 means no guiding, higher w means more
aggressive guiding). This allows the small LM to affect the large LM, but it still has many of the
desired properties of the large LM — coherent text, good grammar, better long-term memory. In
the case of Specialist it has a small LM (117M parameters) which we then used to guide a 345M
parameter DialoGPT model, resulting in a model that is capable of taking on different response
styles while still maintaining high quality text generation. The small LM was trained on the
conversations from the four response styles each with a special tag added at the beginning of the
conversational thread to denote the style. For example,

<deflect>I have personally worked on the project and I am positive it is 100% compatible.
You should not have a problem.<end>Yeah, well why is it that emails don't get through to
my actual email address?<end>

The small model is trained for three epochs with a linear learning rate scheduler with a warmup
period of 0.3 epochs to a maximum learning rate of 0.003.
4.2 Performance Evaluation
To evaluate the effectiveness of the technology, the government conducted six evaluations over
the course of the program. These evaluations tested all three technical areas working together. The
TA2 components were assessed on Verified Flag Accuracy and Message Quality.

48
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.3 Verified Flag Accuracy
One of the primary goals of the bot is the ability to extract pertinent information about the
interlocutor. This information, termed flags, could then be used to establish a pattern and possibly
identify the interlocutor. As such, it is essential that the flags extracted by the bots are accurate.
To measure flag accuracy, the evaluators used a set of established flags during the
communications, and then compared the number of extracted flags per bot with the expected result.
If the extracted flag matched the expected result, such as Country matches United States, then the
extraction was classified as true. If the flag did not match, the result was classified as false. Figure
14 shows the SIENNA results over the course of the program. Overall, the flag capturing was
strong with an average positive flag extract at 77% over the program.

A noteworthy result is a slight dip in accuracy during the Fall of 2021. This dip correlates with a
focus re-direct from the government where we were asked to turn our focus on Cervantes. Because
there were no code changes to the bot, it took ample debugging to indicate why the results
decreased in accuracy. After further investigation, we discovered a bug that affected flag
extraction. After fixing this issue in the Summer of 2022, our results increased up to 90%.

SIENNA relies upon two simultaneous methods for flag extraction, human authored code-based
extractors (authored using Cervantes) and ML algorithms. Given the results observed during the
evolutions, we feel this approach is highly effective. Having the ability to allow the authors create,
modify and customize extractors allows for a more fine-grained approach to flag extraction that
could overcome some of the domain-specific edge cases missed by generic extractors.
Within the SIENNA library, there are currently 92 human authored flags usable for any future
quest.

Figure 14. Evaluation Flag Accuracy Over Time.

49
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.3.1 Message Quality
Another metric gathered during the evaluation was message quality. The evaluators used a ranking
of:

Good: The response is understandable, consistent, and in context with the rest of
the conversation

OK: The response is somewhat consistent and in context with the rest of the
conversation

Bad: The response is somewhat out of context, fails to take into account previous
turns of conversation, responds inappropriately or in a malicious manner.

Using this scale, the SIENNA results exhibited an expected pattern (See Figure 15). During the
initial Spring 2021 evaluation the results trended more towards Good or Ok, with the overall results
around 42-43%. These results were indicative to the early state of the procedural content at the
time of this evaluation. In fact, this is illustrated further in the Fall of 2021 results where the content
library was more fleshed out and in-line with the objectives of the experiment. In that case, the
message quality increased significantly, from a 42% to 75% on Good messages. During the
Summer of 2022, again our message quality decreased, and this again correlates to our redirection
away from bots and quest content to the development of Cervantes. Further influencing the drop
in quality was the change in content from the Fall of 2021 to the Summer of 2022. The human
authored content for the earlier evaluation was crafted in the voice of a student and written from
their life perspective, talking about classes, course load, etc. In the final evaluation, the phishing
content switched to generic messages such as asking about ordering flowers for Mother’s Day. In
this case our existing domain content was too generic to offer up intelligent responses. As a result,
the responses did not align well with the original message.
Overall, when the content material was crafted to match the domain, SIENNA performed quite
well. When the content was outside the norm of the domain, the results dropped. This is not a
surprising result given the current approach and state of our technology.

50
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.4 SIENNA-Bot Stress Testing
One of the government requests was to determine the number of simultaneous conversations a
SIENNA-Bot could conduct. One of the benefits of conducting email conversations is that the
conversations unfold over the course of hours and days. This lengthened timescale reduces the
load on response time and bandwidth. After an evaluation of SIENNA, we determined that the
most likely area for a performance degradation would be in the message queueing component.
When SIENNA receives a message and/or a response, the follow up message is queued and the
reply is sent on a scheduled basis, specific to the bot persona. If this queue gets backed up, message
responses could slip.
To perform this evaluation, we built a test harness that was capable of conducting a large number
of simultaneous conversations and recording the performance times. Figure 16 shows the
architecture of the stress testing harness. A single SIENNA bot was used during the testing. This
bot was responsible for constructing the response and replying to the message. The bot executed
outside of the test harness, replicating an actual operational environment.
Within the test harness, we built a conversation scheduler that would spawn the necessary
conversation threads and submit them to SIENNA. The harness would also receive the message
replies, simulate a desired wait time and then post a response to the bot, closing the conversation
loop. By increasing the number of conversation threads, the number of simultaneous conversations
could easily be simulated.

Figure 15. Evaluation Message Quality.

51
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

We tested SIENNA by conducting 1,000 simultaneous conversations with two to three messages
per conversation. The results of this test were very promising. The time for SIENNA to generate
a response was on the order of 1.5 seconds. We then stressed the system in an extremely tight
“non-human” loop of 0.5-1.0 second response. With this test, SIENNA easily processed
approximately 52,000 messages without a delay.
In Phase 2, the Government wanted testing aimed at confirmation that the bot could handle 60,000
messages. After testing, we are confident that at human response rates, SIENNA would easily
handle that load.
The data in Figure 17 shows the response-rate for the BBN-hosted SIENNA instance while stress-
tested by 300 independent, concurrent, scripted conversations. The rough sine wave implies an
average maximum response rate of about three responses per second (~260k per day), though a
conversation could wait upwards of 120 seconds for a response under these conditions.

Figure 16. SIENNA Stress Test Harness.

Figure 17. Stress Test Results.

52
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

4.5 Content Generation
As described in Section 4.3.1, content is critical to an effective SIENNA bot. As part of the
evaluations, our team developed a content library for the first set of evaluations. This content was
originally written in a text editor using the DSL, and then the content was eventually ported into a
Cervantes project.
The final product consists of over 50 quests. Figure 18 shows a breakdown of the quest types that
compose the Libra library. For a detailed list of quests, see Appendix E.

Additionally, a few other quest domains were created:

• Car Warranty: A simple set of offensive quests trying to collect information
in the context of renewing a car warranty

• COVID library: A defensive set of quests designed to steal COVID research
• Court Summons: (created by another ASED performer) Offensive quest

library trying to steal personal information via a fake court summons

Figure 18. SIENNA Developed Quest Types.

53
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

5.0 CONCLUSIONS
The 2022 Data Breach Investigations Report (DBIR) [13]
indicates that 82% of all breaches involve the human element.
Compounding that, additional attack vectors such as stolen
credentials and malware are often the second step, after the
initial social engineering attack. And while awareness in
phishing techniques is continually increasing, with more users
avoiding clicking on embedded links (See Figure 19), the DBIR
reports that the success rate of phishing attacks is still quite
successful.
The DARPA SIENNA research presented in this report details
methods for countering phishing by using bots to engage with
an interlocutor and then keep them busy while at the same time
trying to extract valuable information that could help identify
and further prevent them from performing future attacks. In our
research we developed a technique that expanded upon
generative language generation as used in the video game industry. This technique, which is more
authorial based than a traditional bot, allows for the crafting of detailed and in some instances
highly targeted text that would lead an interlocutor into believing they are in fact communicating
with another human.
Based upon a few evaluations conducted during this program, we have successfully demonstrated
that our technique is capable of engaging with an interlocutor and capturing valuable flags in the
process.
SIENNA is a Distribution Statement A Request (DISTAR)-approved software artifact under
DARPA. Included with this software is both the bot for interacting both offensively and
defensively with an interlocutor as well as Cervantes, our generative text authoring tool designed
specifically for non-technical content creators.
For more information about our work refer to the following publications produced under this effort
found in Appendix A.

Figure 19. Phishing Email
Report Rate by Click

Status (n=295,825, 679)
Source: 2022 DBIR

54
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

6.0 RECOMMENDATIONS
Our principal recommendations for the further development of SIENNA are:

• Multi-Lingual Support. To be an effective tool for countering phishing and
spear phishing attacks, SIENNA must be capable of communicating in
languages beyond English. The design and approach of the content creation
can easily support non-English dialogue. However, work must be done to get
the NLU modules and the specialized NLG modules capable of
comprehending and responding to other languages.

• Human-in-the-Loop. During engagement with an interlocutor, instances can
arise where the bot might not have the best response. In these cases, having a
human intervene to ensure the target isn’t lost is essential. Incorporating the
ability to alert a human to the need to intervene as well as updating the internal
SIENNA state based on the human dialogue is essential.

• Group Bot Interaction. SIENNA currently uses singular bots, or personas,
with a target, and when multiple bots have the same target, they act
independent of one another. Implementing the ability for multiple bot
personas to work in concert on a single target would greatly expand the
believability, sophistication, and strategic resources of SIENNA. This may be
in the form of one bot “asking” another bot, or “forwarding” a target’s
question to another bot persona for better responses and inquiry.
Combinatorial personas would give an order of magnitude more flexibility to
how SIENNA responds to a single target, creating new quest paths of inquiry
and extraction, to greatly improve its chances of furthering multiple bot goals
simultaneously. Additionally, it would reduce the chance of two bots
competing with one another on a single target.

• Leverage External Information When Available. The digital age has shown
nothing is truly private. Social media continues to have a strong presence in
multiple facets. SIENNA’s method of collecting information is through direct
interactions with a target. There exist many possibilities for extracting more
information from external digital sources, such as social media or public
records, to obtain more than a target has given. Collecting external
information may be done through high confidence information, such as names
and numbers in email signatures, to cross reference to external sources to
build out more complete target portfolios. Additionally, once external
information has been identified, it may be periodically pulled to keep target
portfolios up to date and reduce stale information after bot(s) and the target
have ended their conversation(s).

• Improved Cross-Platform Switching. SIENNA is based on a singular service
with one point of interaction for all bot-target conversation. Future
implementations could expand to have SIENNA recognize other instances of
SIENNA and share discovered target information prior to engaging with a
target. This would help SIENNA populate a target portfolio before contacting
a target from their own instance, based on other SIENNA instances’ prior

55
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

conversations. Similarly, SIENNA may be expanded to employ multiple
helper type services, websites, or portals, to use in quests against a target. The
helpers would lend credibility to the bot, while also gaining more information
that would otherwise be suspect if asked directly, e.g., redirecting a target to
a website that requires registration using personal information.

56
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

7.0 REFERENCES
[1] J. R. Searle and J. R. Searle, Speech acts: An essay in the philosophy of language, vol. 626.
Cambridge University Press, 1969.
[2] J. Ryan, E. Seither, M. Mateas, and N. Wardrip-Fruin, “Expressionist: An Authoring Tool
for In-Game Text Generation,” presented at the International Conference on Interactive Digital
Storytelling, 2016, pp. 221–233.
[3] D. E. Knuth, “Semantics of Context-Free Languages,” Mathematical systems theory, vol.
2, no. 2, pp. 127–145, 1968.
[4] R. Davis and J. King, “An Overview of Production Systems,” 1975.
[5] X. Nguyen and S. Kambhampati, “Reviving Partial Order Planning,” presented at the
IJCAI, 2001, vol. 1, pp. 459–464.
[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” Advances in neural information processing systems, vol. 27, 2014.
[7] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM) network,” Physica D: Nonlinear Phenomena, vol. 404, p. 132306, 2020.
[8] K. Clark, M.-T. Luong, C. D. Manning, and Q. V. Le, “Semi-Supervised Sequence
Modeling with Cross-View Training,” arXiv preprint arXiv:1809.08370, 2018.
[9] Y. Liu et al., “Roberta: A Robustly Optimized BERT Pretraining Approach,” arXiv
preprint arXiv:1907.11692, 2019.
[10] Y. Zhang et al., “Dialogpt: Large-Scale Generative Pre-Training for Conversational
Response Generation,” arXiv preprint arXiv:1911.00536, 2019.
[11] H. He, D. Chen, A. Balakrishnan, and P. Liang, “Decoupling Strategy and Generation in
Negotiation Dialogues,” arXiv preprint arXiv:1808.09637, 2018.
[12] B. Krause et al., “Gedi: Generative Discriminator Guided Sequence Generation,” arXiv
preprint arXiv:2009.06367, 2020.
[13] S. Mansfield-Devine, “Verizon: Data Breach Investigations Report,” 2022.

57
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

8.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS
AMI Augmented Multi-party Interaction
API Application Programming Interface
ASED Active Social Engineering Defense
BBN Raytheon BBN Technologies
BERT Bidirectional Encoder Representations from Transformers
CI/CD Continuous Integration/Continuous Development
COVID Corona Virus Disease
DARPA Defense Advanced Research Project Administration
DBIR Data Breach Investigations Report
DG Dialogue Generator
DialoGPT Dialogue Generative Pre-Trained Transformer
DISTAR Distribution Statement A Request
DSL Domain-Specific Language
DSTC Dialogue System Technology Challenges
DUNS Data Universal Number System
ELMo Embeddings from Language Models
FSM Finite-State Machine
GeDi Generative Discriminator Guided Sequence Generation
GLUE General Language Understanding Evaluation
GPT Generative Pre-Trained
GUI Graphical User Interface
HTTP Hyptertext Transfer Protocol
IP Internet Protocol
IRS Internal Revenue Service
LM Language Model
LSTM Long-Short-Term Memory
ML Machine Learning
NEMESIS Natural Language Engagement of Malicious Entities through a

Social Interaction Service
NLG Natural Language Generation

58
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

NLP Natural Language Processing
NLU Natural Language Understanding
PGP Pretty Good Privacy
RESTful Representational State Transfer
RoBERTa Robustly Optimized BERT Pretraining Approach
SE System Engineering
SIENNA Strategies for Investigating and Eliciting Information from Nuanced

Attackers
SWBD-DAMSL Switchboard-Discourse Annotation and Markup System of Labeling
TA Technical Area
TGA Thermogravimetric Analysis
TMI Too Much Information
UI User Interface
VADER Valence Aware Dictionary and sEntiment Reasoner
VT Virginia Tech

59
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

 APPENDIX A - Papers and Publications
A Chatbot for Engaging Spearphishers in the Gift Card Scam
James Ryan, Jordan Hashemi, Adam Summerville, William Ferguson
International Conference of the Association for Computational Linguistics (ACL), 2020

How to Tame Your Data: Data Augmentation for Dialog State Tracking
James Ryan, Jordan Hashemi, Adam Summerville, William Ferguson
International Conference of the Association for Computational Linguistics (ACL), 2020

It Takes Two to Lie: One to Lie, and One to Listen
Denis Peskov, Benny Cheng, Ahmed Elgohary, Joe Barrow, Cristian Danescu-Niculescu-Mizil,
Jordan Boyd-Graber
International Conference of the Association for Computational Linguistics (ACL), 2020

60
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

 APPENDIX B - CERVANTES DOMAIN SPECIFIC LANGUAGE (DSL)
To establish a well-defined content framework for ensuring the stability and consistency of
Cervantes as an authoring tool, we created a DSL. Using the DSL, domain experts could hand
author new SIENNA projects using a procedural narrative in any text editor. The following
sections detail the semantics of the CervantesDSL.

Figure B.1. Example CervantesDSL Content Block.

B.1 General
Cervantes ignores spaces and line breaks and is case-insensitive for reserved words. Note that
Symbol names are case-sensitive: “Greeting” and “greeting” can be different symbols.
Anything after # on a line is a comment. Wrap strings with " or Python-style triple quotes """: this
is useful if you need to include quote characters in a string, e.g., """Not to be a "drag," but..."""

Quest "Capture Time Zone"

"""Try to get the attacker's time zone"""

captures location_time_zone

* Assign when {flag.location_time_zone does not exist} {flag.city does not exist}

 "[[can I ask]] what time zone you're in so I know not to email you at weird hours? ;)"

 "I like to know when generally people are available: [[could you]] tell me what time zone
you're in?"

 "what time zone are you based in? Don't want to message you at wildly inappropriate hours!"

 "your messages say you're in Australian Central Time, is that right?? I suspect it's not.
:)"

 then {quests.current.soliciting = "timezone"}

*

 "Sorry, [[could you]] say what that is in relation to GMT? Like GMT+6 or whatever?"

 "Just to clarify, what is that in UTC/GMT time, i.e. GMT-4?"

 "Hmm, can you say that in relation to GMT time? Like Boston is GMT-5 for instance. Thanks,
just don't want to get it wrong!"

* Refuse * No

 "OK, but if I email you in the middle of your night it's on you!"

 "That's okay, I was just curious about what times would be good to contact you."

 "Never mind about the time zone, then."

* Finish when {flag.location_time_zone exists}

 "{flag.location_time_zone}, got it."

 "Great! Always good to know where folks are."

 "Cool, nice to know [[whether or not]] it's your morning or night or whatever when we're
chatting."

61
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

By design, any number of Cervantes source files can be combined when compiling, which might
be useful for organization or multiple collaborators. A group of one or more Cervantes files
together is called a “project.”
A typical .cervantes file(s) will consist of a series of blocks, which may be defined in any order.
There are two kinds of blocks: definition blocks and quest blocks. Definition blocks set up reusable
moves, responses, and behaviors across a whole set of quests, while each quest is a particular
“mission” that the bot attempts to get the interlocutor to waste time or reveal information while
performing.
For each block, the syntax listed here obeys the following conventions:

● [param] indicates an optional parameter
● [param…] indicates multiple of these parameters are allowed
● bold indicates literal text
● italics indicates example text
● A / (slash) separates multiple options in a block

B.2 Definition Blocks
B.2.1 Project Block
This begins your project definition section and defines a name for the project (used in internal
diagnostic messages only). You can only have one Project name block across a set of Cervantes
files being compiled.
Syntax:
Project “Project Name”
Example:
Project “Test Study November 2020”
B.2.2 NLU Module Definition
SIENNA will attempt to load each of the defined nlu models before starting up your project. This
corresponds to the nlu_models array defined in CONVERSATIONAL_DOMAINS.

Syntax:
nluModels “modelName(s)”...
Example:
nluModels “trustist” “quibblist” “comprehensionist”
B.2.3 Variable Initialization
Sets up the initial value for a new state variable (see State Schema below). If you use an
uninitialized variable in a Condition, the compiler will warn you, since this can cause a runtime
crash in SIENNA. You don’t have to initialize the pre-existing variables in the state schema,

62
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

although if you try to use one and the compiler warns you about it, you can add an Initialization
line to remove the warning.
Syntax:
Initialize {state.variable} to/as [“]initial value[”] / optional type [“optional description of
variable”]
Examples:
Initialize {config.starting_temperature} to 98.6
Initialize {player_name} to “Anonymous”
The four supported variable types at present are string, number, boolean, and check; these are
inferred from the given starting value (wrap strings in quote marks). “Check” is a variable where
we don’t care what the value is, just whether it exists in the state or not. Define these by setting
the value to check if you want the variable to initially not exist (default), or active check if you
want the scenario to start with it already active. This supports an authoring pattern of using the
conditions “x exists” or “x does not exist” to gate content (i.e., a kind of variable called a “flag” in
some other systems, though that term is overloaded here).
Initialize {end_game_flag} as check
Initialize {need_tutorial} as active check
Non-check variables can also be defined with “optional [type]” instead of an initial value. This
indicates that the variable does not exist at the start of the scenario, but might come into existence
later with the given type. This effectively makes them like a check variable except if they do exist,
they also have a value. This is useful to signal variables to the compiler that SIENNA might add
to the state if a certain anticipated condition becomes true, or to establish a namespace for possible
captured flags.
Initialize {player_job} as optional string
Initialize {flag.attacker.age} as optional number
Defining all possible variables that might intersect with your scenario lets the compiler add smart
checks catching typos in variable references and checking logic in conditions/effects.
B.2.4 Default Fallback Text
Defines the fallback text(s) for Quixote’s built-in move types:

● Assign is the text printed when assigning a new quest (although Default is
pointless here since every Quest needs an Assign move)

● Reassign is the text used to reassign the quest if the interlocutor seems to be
ignoring it

● Giveup is the text used if trust is low and the interlocutor is ignoring the
quest

● Finish is the text that acknowledges completing the quest

63
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● Custom is for quest-specific situations (Default is unnecessary)
● Followup is the text used to try to restart the conversation if the interlocutor doesn’t

respond after a certain amount of time.
No Defaults need to be defined. Quixote will fall back to its own internal defaults, although these
may or may not be appropriate for your domain. If there are multiple quoted texts for a move type,
they will be selected between at random each time that default text needs to be printed.
Response/FinishResponse NewMoveName [condition(s) or ConditionList(s)...] [:] [transition
TransitionName] [weight int] “quoted text(s)”... [effect(s)...]
Defines a new move type for this project.

● A FinishResponse ends the current quest; a Response keeps it going.
○ FinishResponse is equivalent to adding the effect then {end quest}

● The conditions should be the state in which this move response is appropriate. See
the Conditions section below for details on that format.

● Conditions are processed in the order defined, which is useful for short-circuit
evaluation, e.g., {x exists} {x > 5}

● The optional weight can set a number between 1-99 which ranks the priority of this
type of response. If multiple response types match, those with higher weight
numbers will match over lower ones. The default is 0.

Syntax:
Default MoveName [:] “quoted text(s)”...
Example:
FinishResponse Refuse when {nlu.refusal exists}: “That’s okay, I guess we can skip that.”
B.2.5 Conditions
Defines an ordered list of one or more conditions which you can refer to elsewhere with just the
identifier. Useful if you have a complex set of conditions you want to reuse in multiple places. See
“Conditions and Effects” below for more about the format of individual conditions.
Syntax:
ConditionList “unique identifier” condition(s)...
Example:
ConditionList “redheaded girl” {target.hair exists} {target.hair.color == “red”} {target.gender
!= “male”}
B.2.6 Bait
A kind of ConditionList that, when attached to a quest’s Assign move, will make that quest be
immediately assigned if the conditions in the list are all true, abandoning any in-progress quest. If
no quest is in progress a quest with the bait condition will be the next selected. This is useful to

64
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

opportunistically respond to signals in the interlocutor’s input that we have content for, like
dithering around with file attachments being in the wrong format, etc.
Syntax:
Bait “unique identifier” condition(s)...
Example:
Bait “in Ohio” {attacker_state exists} {attacker_state == “OH”}
Quest “Ohio Chat” * Assign when {in Ohio} “How do you like the buckeye state?”
B.2.7 Symbol
This defines a symbol name, which when printed in text wrapped in [[double brackets]] will
expand to one of the quoted texts given at random.
Certain symbol names have an existing meaning for Quixote, and if you create them, you can
control specific behaviors in your exported project. If you don’t define any of these, sensible
defaults will be created for you.

● MessageGreeting: This will be printed before the body of a message.
● MessageConclusion: This will be printed after the body of a message (usually used for a

sign-off and a signature block).
● MessageInitial: This will be printed between MessageGreeting and the body of the first

message in a conversation, useful for the bot to introduce itself or provide other initial
context.

● MessageFallback: This will be printed if, for some reason, a regular Quixote message
could not be generated. This might happen if all valid expansion paths contain
contradictory conditions, e.g., a signature block with two options for first and last name
in the case where neither has been defined. For a testing environment, you might want the
Fallback message to be an explicit alert like “(Could not produce a response.)”, whereas
in a production environment, you might want the message to stay in character, like “I’m
sorry, could you try rephrasing that?”

● DefaultTransition: This text will be printed between the FinishResponse message of one
quest and the Assign message of the next. You can define more specific transitions for
individual quests (see “transition” below).

Syntax:
Symbol “unique identifier with spaces” “quoted text(s)”...
Symbol UniqueIdentifierNoSpaces “quoted text(s)”...
Example:
Symbol MessageGreeting “Hello,\n\n” “Hey there--” “Greetings,\n\n
Symbol “my custom symbol” “this is the one possible expansion for my custom symbol”

65
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

B.2.8 Persona
Defines behavior for when this bot should respond to messages. The first SchedulePersona defined
will be the default. You can switch between them with an effect like then
{session.schedule_persona = "CaffeinatedStudent"}

● time range is two clock times separated by and. Clock times can be written in most
common formats: 10am, 3:45 p.m., 14:00, etc.

● duration is a length of time like 30 minutes or 6 hours 10 minutes. You can specify
days, hours, or minutes in any combination. You an abbreviate these as d, h, m, like 6d
14h 30m.

● duration range is two durations separated by to, like 10 minutes to 2 hours 45 minutes.
● The bot will respond to messages received within the “available between” hours, after a

random time within “duration range.” If the “follows up after” time passes without
receiving a response, the Followup move will be triggered.

○ Note that since times are randomly permuted for more believable behavior, the
bot might sometimes reply a little bit after its cut-off point.

● The bot will attempt to follow up the number of times in provided in the “at most”…
“time(s)” clause before giving up. If a message is responded to, this counter is reset. If 0,
the bot will only reply to messages directly and never attempt to send a follow-up later.
Each followup will be spaced out by the “follows up after” duration.

● If no schedule persona is defined, the default behavior will be to respond between 9am
and 5pm after a couple of hours, and followup after 48 hours, one time.

Syntax:
Persona PersonaName [Available between time range] [UTC timezone] [Response after
duration range] [Follows up after duration] [, at most integer time(s)]
Example:
SchedulePersona CaffeinatedStudent
Available between 10:45am and 11:59pm UTC -7
Responds after 4 minutes to 22 minutes
Follows up after 4 hours, at most 1 time
B.2.9 Goal
Define a goal name that can be assigned within a quest.
Syntax:
Goal “Goal Name”
B.3 Quest Blocks
A Quest represents a single “ask” from the bot, and perhaps some number of back-and-forth
interactions discussing that request, ending with the interlocutor ultimately either fulfilling the
request (i.e., by supplying some requested info) or failing to. When we move on to a different
topic, that means transitioning to a new quest (even if a series of quests are linked together or
conceptually related).

66
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

A Quest block begins with the word Quest, followed by the quest name in quotes. A second
optional quoted string immediately following the quest name is a comment purely for the benefit
of the author. A quest must define the move *Assign and generally defines other moves too. A
project must have at least one quest to be valid, and a project is recommended to additionally have
at least one repeatable quest as a fallback so it never runs out of content.
Quest "Email Client Trouble"
"""Pretend we’re having trouble with our email client."""
* Assign “Your message seems to be corrupted somehow...”
Quest parameters can appear in any order. As with other reserved words, they are case-insensitive.

● Easy, Medium, or Hard:
○ Indicate the difficulty level of the quest based on trust: Hard quests will

only be assigned when trust is quite high, easy quests only when trust is
fairly low. We will always pick quests from the most difficult category
available.

○ If no difficulty is set, the quest will be available at any time regardless of
trust.

● Repeatable
○ Indicates this quest can be repeated (default false). This is equivalent to setting all

the quest’s * Assign moves to be repeatable.
● Priority Low, Normal [default], or High

○ Indicates that all else being equal, a quest should be more or less likely to match.
The weight is adjusted so any “High” quests will match before any “Normal”
quests, and any “Low” quests will only match after every nonrepeatable “Normal”
quest has been assigned. Useful for creating repeatable fallbacks in a difficulty
category (e.g., all the regular quests are Normal, and the fallback quests are Low.)

○ Note: this does not overrule any other class consideration, so a Low priority Bait
quest will still take precedence over a High priority non-Bait quest.

● Captures: optional list of 1 or more flags captured. Flags should be single words
separated by spaces.

○ captures ACCOUNT_NUMBER BANK_NAME
○ Note that this does nothing by itself: you’ll have to set up the flag capturing NLU

by hand within information_extraction.py. It’s just helpful metadata.
Flags should sync up transition SymbolName

○ An expansion of one of the texts in the given symbol will be used to transition
between a FinishResponse in a previous quest and the Assign/Reassign move in
this quest. If no transition is defined for a quest, a symbol named
DefaultTransition is used; if none is defined in your source file, one will be
created upon export.

● achieves “DefinedGoal”...

67
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ List one or more defined goals that this quest achieves.
● Test [optional number]

○ Makes this quest come up first, regardless of trust.
○ If the release flag is set, Cervantes will halt with an error if any

quests have a Test parameter.
○ If the optional number is given, it sets a priority, starting with lowest

(i.e., Test 1 will be triggered before Test 2). This is useful for demos
expecting a chain of quests in a certain order.

○ If multiple quests have a Test param without a number, they will be
prioritized by the order they appear in the source file.

● Disable
Turns off a particular quest (equivalent to commenting it out).
B.4 Quest Moves
* [MoveType] [condition(s) or ConditionList(s)...] [repeatable] [:] [transition TransitionName]
“quoted text(s)”... [effect(s)...]
Defines the response for any specific move while this quest is running. The quoted text will be the
response to the move. If you have multiple quoted texts, they will be selected from at random. You
can use Productionist [[expansions]] in quoted texts: any that don’t exist in your template project
file will be created as starred nonterminals which can be filled in using Expressionist.

● Each move in a quest can only be triggered once per quest, unless
“repeatable” is set. If the user response matches an already seen move for
this quest, the system will fall back to *Refuse/*Giveup (if there are no
Finish conditions that match) or a *Finish with no conditions.

● An *Assign or *Reassign move can specify a defined TransitionType to
control what text will be printed between the FinishResponse of the previous
quest and this move.
○ Quest “URL Followup”

* Assign when {temp.url exists} transition Unfortunately
 “that link still doesn’t work.”

● You can also define multiple move names in a row if the response should be
the same. When doing this, any conditions given will apply to all the move
names.
○ *Yes *No *Refuse “I guess the answer doesn’t really matter.”

● You can omit the move name to create a custom response. This is useful for
creating quick one-off responses that don’t need whole reusable move type
definitions.
○ * when {temp.surface.exclamation_mark} “There’s no need to get

upset!”

68
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ * “I’m not sure I understand.”
● Just an asterisk with no condition will be a fallback, used if anything

matches other than the defined quest moves. (Note that the default behavior
for not understanding is to fall back to Giveup or Reassign based on trust,
but this is useful if you want a wildcard response that doesn’t end the quest.)
○ * “I’m afraid I don’t understand.”

B.5 Conditions and Effects
Each condition or effect can appear alone or in a group. The general format is a type identifier
followed by an expression in curly braces. You can reference a ConditionList by writing its
identifier in curly braces. An inline list of conditions or effects only needs the type identifier before
the first item in the list.
B.6 Condition Types

● when {Productionist runtime expression}
○ These should be in the standard Productionist runtime expression format.
○ when {flag.street does not exist}
○ when {x = True} {y = True} {z = True}

● when {ConditionList Name}
○ Equivalent to pasting all the conditions defined in the given

ConditionList here.
● before {Quest Name}

○ This quest can only be assigned if the given quest has never been
assigned.

● after {Quest Name}
○ This quest can only be assigned after the given quest has been

assigned, but not immediately after. This is useful to create a quest
that’s reopening a previous subject.

● next after {Quest Name}
○ This quest can only be assigned immediately after the given quest,

useful for chaining steps in a multi-part quest. Note that this
condition will not pass if the user explicitly Refused to do the parent
quest.

● maybe after {Quest Name}
o This quest has a 50% chance of being assigned immediately after the

given quest, useful for nondeterministic direct follow-ups to a quest
like nitpicking with the response some of the time.

If multiple responses of the same type match, the earliest defined in the code will be the one
selected. This means you should put more specific matches first. If you want a more specific match
to show up only some of the time, you might also add a temp.chance condition (see below).

69
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

● # Ensure a state-specific response matches before a country-specific
response.
* Finish when {flag.state == ‘FL’} “...”
* Finish when {country == ‘US’} “...”

B.7 Effects
Effects make a change in the system state. When effects are part of a move response definition,
they will run after that move has been selected and its text generated.

● then {Productionist runtime expression}
○ * Assign: “Let’s play a game.” then {status.game = ‘begun’}

● then {continue quest}
○ If this move type is a FinishResponse that would normally end the quest,

instead keep it running. The word “quest” can be omitted.
○ *Refuse: “I really won’t take no for an answer.” then {continue}

● then {end quest}
○ If this move type is a Response that would normally continue the quest,

instead end it. The word “quest” can be omitted.
○ *Question: “I said no questions! Moving on…” then {end quest}

70
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

 APPENDIX C - Symbol Name Conventions
This is a schema for naming nonterminal symbols within an Expressionist template to keep them
organized and consistent. The schema works like a contract so the author can have confidence
that using a symbol in a particular place will expand to text with predictable qualities.

● Symbols should use internal spaces and punctuation when appropriate,
ideally looking like a normal English phrase that might be one of the
expansions. If the usage is ambiguous they should try to clearly indicate
when and how the symbol should be used.
○ Bad: [[Id]] (does this mean ID or “I’d”? If the latter, I would or I

could?)
○ Better: [[I would]]
○ Bad: [[ht_name]] (what’s “ht” short for? Are there trailing/leading

words?)
○ Better: [[the random hotel name]] -> “the Marriott”, “the Quality

Inn”
● Begin with a capital letter if the symbol expands to text that begins a

sentence.
○ [[Greetings]] -> “Hello”

● Begin with a lowercase letter if the symbol text can be used in the middle
of a sentence.
○ [[thanks]] -> “thank you”
○ Note that you can use {+} right before a letter to change the casing,

which is useful if you want to start a sentence with a random phrase.)
■ {+}[[thanks]]!
■ In general you should go from lower to upper case, because the

opposite can produce weirdnesses around “I”, like: {-}[[I could]] -
> “i could”

● End with a comma if the symbol ends a clause and a new phrase can begin
next.
○ [[Anyway,]] -> “By the way”, “In other news,”, “Hey--”

● End with a period if the symbol concludes a sentence.
○ [[Greetings.]] -> “Hey there!”
○ (Note that these rules all stack, as in the example above.)

● Begin with an underscore if the symbol is designed for internal use by
another symbol and shouldn’t be directly invoked in dialogue (unless the
author is doing so intentionally).
○ [[_greeting when scared]]

● Begin with “random” if the symbol selects between a set of named
alternatives.

71
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ [[random company]] -> “Chevron”
● Begin with “maybe” if the symbol sometimes prints text and sometimes

prints nothing.
○ [[maybe smiley]] -> “=)”, “”

● Begin or end with a dash if the symbol’s expansions should have a
leading/trailing space.
○ Unfortunately it didn’t work[[-maybe apology]].

● Begin with “your” or “my” for expansions related to the listener or
speaker (bot):
○ [[your first name]] -> “{attacker.name.first},” “buddy”

72
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

 APPENDIX D - State Schema
The global state uses a hierarchy of keys:

● global.*
○ Anything under this header will be available in all conversations

across the running system, not just this one: useful for cross-bot
coordination.

○ For the BBN SIENNA eval, have defined two variables, one of
which is expected to exist and be set to True at startup (the other
should not exist)
■ global.domain.vt
■ global.domain.sri

● temp.*
○ Anything stored here will be erased at the end of the current round of

dialogue generation.
○ temp.nlu_acts.* Results of natural language understanding

operations
○ temp.nlu_calculated.* Results of calculated NLU acts based on

combinations of lower-level signals.
○ temp.phrases.*

■ temp.phrases.topics A list of topics that were referenced in this
message.

○ temp.surface.* Documenting surface-level features of NLU, like
“does it have a question mark”

○ temp.chance.p10, .p25, .p50, .p75, .p90 If these are true, a
random chance of that percentage value is true on this turn.

○ temp.has_date A date was just mentioned (stored in last.date.*)
● last.*

○ The most recent item of each type mentioned. Note that this may not mean
this was mentioned in the most recent message: to look for a signal like
that, use a temp.* variable which is cleared at the end of each turn.

○ last.browser
○ last.email
○ last.linkedin_username
○ last.url
○ last.date.year, .month, .day, .day_of_week, .date, delta.days, .time
○ last.address.full, .full_street, .street_number, .street_name,

.street_type, .street_direction, .floor, .apt_number, .city, .state,

.province, .country, .postal_code

73
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ last.dollar_amount
● bots.*

○ Functions to get information from or invoke a language generation bot.
● flag.*

○ Info about flags captured from the interlocutor.
● last_attachment.*

○ Info about the most recent attachment in an interlocutor message.
● last_link.*

○ Info about the most recent link in an interlocutor message
● request.*

○ SIENNA detected the human has asked for something.
○ request.connect_on_linkedin
○ request.pivot_to_sms

● date.*
○ Info about the date of the most recent message.
○ date.date = “10/06/20”
○ date.day = 1-7
○ date.day_of_week
○ date.month
○ date.year

● quests.*
○ Info about the state of quests.
○ quests.current.* Info about the current quest; cleared when a new

one is assigned.
■ quests.current.ID id of current quest
■ quests.current.counter number of turns since this quest

was assigned
■ quests.current.moves_played array with the names of all

quest-specific moves played since this quest began.
■ quests.current.last_move the most recent move played.
■ quests.current.soliciting a string with a type of info we

have asked for: valid options are “image”, “document”, “url”.
Useful for distinguishing solicited vs unsolicited information.

○ quests.previous Array of all previously assigned quests.
● session.*

○ Info about the current session.
○ session.earliest_time, session.latest_time

74
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

○ session.schedule_persona
● debug.*

○ Info for demo interface.
There are also a bunch of Productionist-only state items that aren’t part of the actual state object
but can be used in dialogue as if they are. These are created in conversationalist.py
_get_temporary_production_state_overrides.

● me.*
○ Info about the bot’s persona.
○ me.name.first, me.name.last, me.name.full
○ It’s safer not to use these variables directly, but (if you’re using the

default discourse_library) to use the expansions [[my first name]],
[[my last name]], and [[my full name]]. These will print a sensible
default if a value happens to be unset.

● you.*
○ Info about the interlocutor.
○ you.name.first, you.name.last

● last.*
○ Info about the most recently sent interlocutor message.
○ last.media_type
○ last.when

■ .year, .month, .day, .day_name, .weekday, .weekend,
.morning, .afternoon, .evening, .overnight, .hour

● messages_sent.me, messages_sent.them
● rng.coinflip
● control.*

○ Info about timing and message format.

75
Distribution A. Approved for public release; distribution unlimited

AFRL-2023-1059; Cleared 2 Mar 2023

 APPENDIX E - QUEST LIBRARY

	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures
	3.1 Assumptions
	3.2 Methods and Procedures
	3.2.1 Software and Development Methods
	3.2.1.1 Release Manager
	3.2.1.2 Developer

	3.2.2 Technical Methods and Procedures
	3.2.3 Authoring
	3.2.4 CervantesDSL
	3.2.4.1 Definition Blocks
	3.2.4.2 Quest Blocks
	3.2.4.3 DSL Compiler

	3.2.5 The Cervantes Tool
	3.2.5.1 Quest Authoring
	3.2.5.2 Quest Testing and Evaluation

	3.2.6 SIENNA-Bot
	3.2.6.1 NLU Modules
	3.2.6.2 Dialogue Manager
	3.2.6.3 NLG

	3.2.7 Trust Building

	4.0 Results and Discussion
	4.1 SIENNA Architecture
	4.1.1 Author Time
	4.1.2 Run Time
	4.1.3 Quests and Trust
	4.1.4 Quest Validation
	4.1.5 Quest Taxonomy
	4.1.5.1 Trivial Quests
	4.1.5.2 Flag Capturing
	4.1.5.3 Administrative Hoops
	4.1.5.4 Switching Modalities
	4.1.5.5 Document Creation / Forgeries
	4.1.5.6 Real-World Time Wasters
	4.1.5.7 Domain-Specific Quests

	4.1.6 Author Time: Cervantes GUI
	4.1.6.1 Dialogue Construction
	4.1.6.2 Rights and Roles

	4.1.7 SIENNA Bot
	4.1.7.1 Complex API: Interacting with NEMESIS
	4.1.7.2 Simple API: Interacting with the Simulator
	4.1.7.3 System Engineering (SE)
	4.1.7.3.1 Global Bot Blackboard
	4.1.7.3.2 Scheduled Message Delivery
	4.1.7.3.3 Inactivity System Wakes
	4.1.7.3.4 End State Criteria
	4.1.7.3.5 Offensive Attacks

	4.1.7.4 Dialogue Generation
	4.1.7.5 NLU Modules

	4.1.8 Trustist
	4.1.9 Comprehensionist
	4.1.10 Specialist

	4.2 Performance Evaluation
	4.3 Verified Flag Accuracy
	4.3.1 Message Quality

	4.4 SIENNA-Bot Stress Testing
	4.5 Content Generation

	5.0 Conclusions
	6.0 Recommendations
	7.0 references
	8.0 List of Symbols, Abbreviations, and Acronyms
	Appendix A - Papers and Publications
	Appendix B - Cervantes Domain Specific Language (DSL)
	B.4 Quest Moves

	APPENDIX C - Symbol Name Conventions
	APPENDIX D - State Schema
	Appendix E - Quest Library

		2023-03-23T07:53:09-0400
	ANDERSON.TIMOTHY.RAY.1230210728

		2023-03-23T11:17:02-0400
	MURDOCK.WILLIAM.P.1048742161

		2023-03-23T14:59:01-0400
	CARTER.LOUISE.ANN.1230249128

