
REINFORCEMENT LEARNING AS A REHEARSAL FOR PLANNING IN
AIR BATTLE MANAGEMENT (RLAR)

UNIVERSITY OF SOUTHERN MISSISSIPPI

MARCH 2023

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2023-049

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2023-049 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
JULIE BRICHACEK

/ S /
SHAUN M. RYER, 1LT, USAF
Work Unit Manager Chief

Information Systems Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

1. REPORT DATE

MARCH 2023

2. REPORT TYPE

FINAL TECHNICAL REPORT

3. DATES COVERED

START DATE
JUNE 2020

END DATE
SEPTEMBER 2022

4. TITLE AND SUBTITLE
REINFORCEMENT LEARNING AS A REHEARSAL FOR PLANNING IN AIR BATTLE MANAGEMENT (RLAR)

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-20-1-0105

5c. PROGRAM ELEMENT NUMBER
62788F

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
R310

6. AUTHOR(S)
Bikramjit Banerjee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern Mississippi
2609 W 4th Street, Ste H
Hattiesburg MS 39401-5876

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/ RI

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)

AFRL-RI-RS-TR-2023-049

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project leveraged some of the recent advances in RL to develop planners for real time strategy games, specifically

MicroRTS in lieu of Stratagem program's wargame. One of these advances from the PI’s lab is called reinforcement learning
as a rehearsal (RLaR). Previously, RLaR had only been evaluated in toy benchmark tasks to establish its efficacy in sample
complexity reduction. This project developed RLaR for the actor-critic architecture and applied it for the first time to a complex
domain with incomplete information such as MicroRTS. Another technique applied in this project originated from the recent
successes of multi-agent learning in the complex StarCraft II game, specifically the architecture of multi-stage training that
develop league and league-exploiter policies during intermediate stages for training robust policies.
We trained RLaR against MicroPhantom—the runner-up from recent MicroRTS competitions—and showed its ability to plan

effectively against this opponent but using fewer samples than relevant baselines. Separately, we trained RLaR in self-play
using the 4-stage training scheme and evaluated the trained policy against MentalSeal (champion program) and
MicroPhantom. While the policy once again showed good performance against MicroPhantom, it did not perform competently
against MentalSeal. Based on an earlier preliminary finding that training against MentalSeal is extremely slow, we speculate
that vastly more training time is required than what we could devote to this step during the extended period for this project.

15. SUBJECT TERMS
Artificial intelligence, machine learning, reinforcement learning, real-time strategy, turn-based strategy, wargames, Markov
decision process, partially observable Markov decision process learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER OF PAGES
a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE

U
19a. NAME OF RESPONSIBLE PERSON

SHAUN M. RYER, 1LT, USAF
19b. PHONE NUMBER (Include area code)

N/A
Page 1 of 2 PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)

 Prescribed by ANSI Std. Z39.18

27

Approved for Public Release; Distribution Unlimited.

i

TABLE OF CONTENTS

List of Figures ... ii
List of Tables .. ii
1.0 SUMMARY ... 1

2.0 INTRODUCTION ... 2

2.1 DETAILS OF MICRORTS .. 2

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 4

3.1 BACKGROUND .. 4
3.1.1 Reinforcement Learning ... 4
3.1.2 Reinforcement Learning as a Rehearsal (RLaR) .. 5

3.2 METHODOLOGY .. .6
3.2.1 The Actor Network ... 6
3.2.2 The Critic Network ... 7
3.2.3 Prediction Network for RLaR ... 8
3.2.4 Four Stage Training Framework ... 10

4.0 RESULTS AND DISCUSSION .. 12

4.1 EVALUATION OF RLaR.. 12

4.2 EVALUATION OF 4-STAGE LEARNING FRAMEWORK 16

5.0 CONCLUSIONS.. 19

6.0 References .. 20

APPENDIX A – Publications and Presentations .. 21

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 22

Approved for Public Release; Distribution Unlimited.

ii

LIST OF FIGURES

Figure 1: An 8X8 map of MicroRTS showing various kinds of units and features. This project
focused on maps that are 16X16 or smaller. ... 3

Figure 2: The actor network architecture. ... 6

Figure 3: The critic network architecture. ... 8

Figure 4: The prediction network architecture.. 9

Figure 5: The four-stage training scheme. .. 11

Figure 6: Maps “basesWorkers12X12F” on left, “complexBasesWorkers12X12” on right. White
cells are unobserved, purple cells are observed by both blue and red teams. The learning
agents always assume the role of the blue team, but there is no advantage to either role due to
initial symmetry. The red team is MicroPhantom. ... 12

Figure 7: Maps “FourBasesWorkers12X12” on left, “LetMeOut” on right. 13

Figure 8: Learning curves of RLAlpha (RLAlpha+A2C+SIL) and RLaR (RLaR+A2C+SIL)
against MicroPhantom in the 4 maps of Figures 6, 7. Baseline RL (A2C+SIL) is excluded due
to poor performance. The terminal rewards for win/loss/draw are +1000/-1000/+50. The
initial policy/actor was trained by supervised learning from games between MentalSeal and
MicroPhantom on large set of maps, but performs poorly in (a). ... 14

Figure 9: Plots showing the number of steps that the learner needs before at least one of its units
gets within a distance threshold of 4.0 of the opponent’s base, thereby bringing it within the
radius of the learner’s visibility. ... 16

Figure 10: Accumulated metrics of initial and final policies against MentalSeal playing as Red, in
30 maps (10 games/map, total 300 games). Here, RLaR is Blue. .. 17

Figure 11: Accumulated metrics of initial and final policies against MentalSeal playing as Blue, in
30 maps (10 games/map, total 300 games). Here, RLaR is Red. ... 17

Figure 12: Accumulated metrics of initial and final policies against MicroPhantom playing as Red,
in 30 maps (10 games/map, total 300 games). Here, RLaR is Blue. 17

Figure 13: Accumulated metrics of initial and final policies against MicroPhantom playing as Red,
in 30 maps (10 games/map, total 300 games). Here, RLaR is Red. 18

LIST OF TABLES

Table 1: Performance of trained policies for 3 variants in 4 maps. .. 15

Approved for Public Release; Distribution Unlimited.

1

1.0 SUMMARY
This project leveraged some of the recent advances in RL to develop planners for real time strategy
games, specifically MicroRTS in lieu of Stratagem program's wargame. One of these advances
from the PI’s lab is called reinforcement learning as a rehearsal (RLaR). Previously, RLaR had
only been evaluated in toy benchmark tasks to establish its efficacy in sample complexity reduc-
tion. This project developed RLaR for the actor-critic architecture and applied it for the first time
to a complex domain with incomplete information such as MicroRTS. Another technique applied
in this project originated from the recent successes of multi-agent learning in the complex StarCraft
II game, specifically the architecture of multi-stage training that develop league and league-ex-
ploiter policies during intermediate stages for training robust policies.
We trained RLaR against MicroPhantom—the runner-up from recent MicroRTS competitions—
and showed its ability to plan effectively against this opponent but using fewer samples than rele-
vant baselines. Separately, we trained RLaR in self-play using the 4-stage training scheme and
evaluated the trained policy against MentalSeal (champion program) and MicroPhantom. While
the policy once again showed good performance against MicroPhantom, it did not perform com-
petently against MentalSeal. Based on an earlier preliminary finding that training against Mental-
Seal is extremely slow, we speculate that vastly more training time is required than what we could
devote to this step during the extended period for this project.

Approved for Public Release; Distribution Unlimited.

2

2.0 INTRODUCTION
Although this project envisaged the application of reinforcement learning as a rehearsal (RLaR) to
the Stratagem wargame, for various reasons it was restricted to a real time strategy (RTS) game
called MicroRTS (Ontañón, 2013). RTS games belong to the genre of 2-player strategy games
where a player’s goal is to build sufficient economic and military might to destroy the opponent.
A wide array of actions are available to a player, ranging from gathering resources, to building
bases that train and churn out soldiers, to attacking opponent’s units and bases to ultimately destroy
them. For over two decades, RTS games have provided a rich substrate for AI research as they
feature many of its key challenges, viz., complex dynamic environments with incomplete infor-
mation and partial observability (fog-of-war), simultaneous and durative actions with potentially
nondeterministic effects, real-time response, and unfathomably large strategy spaces. Conse-
quently, this project’s focus on the MicroRTS game was considered sufficient as it shares many
of the same challenges with Stratagem.
Reinforcement learning (RL) has been a popular technique for training AI agents for computer
games, including RTS games. Decades of research in this field boosted by the deep learning rev-
olution have culminated in spectacular successes recently, where trained agents have matched and
surpassed human expertise in domains where humans were once considered invulnerable to AI
(Mnih, et al., 2015), (Vinyals, et al., 2019). However, RL remains a data-hungry approach that
requires the agent to conduct a large number of simulations in order to comparatively evaluate a
vast space of strategic alternatives. This is often measured as sample complexity. Despite decades
worth of significant effort devoted toward reducing sample complexity, it still takes hundreds of
millions of samples/simulations to train an RL agent in complex domains such as RTS games. In
this project, we focus on a sample complexity reduction technique called reinforcement learning
as a rehearsal (RLaR), and on the RTS game of MicroRTS to formulate and evaluate it. RLaR has
been formulated in the context of action-value function based RL before (Kraemer & Banerjee,
2016). Here we formulate it for a different RL framework, called actor-critic RL. We show that on
the one hand the actor-critic framework allows RLaR to be much simpler, but on the other hand it
leaves room for a key component of RLaR–a prediction function that relates a learner’s observa-
tions with that of its opponent. This function, when leveraged for exploration, accelerates RL as
our experiments in MicroRTS show. Further experiments provide evidence that RLaR may reduce
actor noise compared to a variant that does not utilize RLaR’s exploration.

2.1 DETAILS OF MICRORTS
The components present in MicroRTS are bases, resources, barracks, worker units, and soldier
units, as illustrated in Figure 1. A game is played between two players (learning agent controls the
blue team), and the winner is determined when a player destroys all its opponent’s units, including
base, barracks and soldiers/units. If neither of the players is able to destroy its opponent’s units
within a given number of steps (3000 for this project), then it is a draw. Both players are given a
worker unit, a base and 5 number of resources initially. Their locations, as well as the locations of
unowned mineable resources, are symmetric to prevent either player from having an initial ad-
vantage. Worker units can harvest resources and build bases and barracks. Barracks produce sol-
dier units of three types: light, heavy and ranged. Light units have less hitpoints whereas heavy
units have high hitpoints, but both can only attack immediately neighboring cells. By contrast,
ranged units can attack from 3 grid cells away. In this project, the learning agent is allowed to
create up to NE = 70 units–a number determined from game traces between MicroPhantom

Approved for Public Release; Distribution Unlimited.

3

(Richoux, 2020) and MentalSealPO—the top two players in the MicroRTS competition (Ontañón,
Barriga, Silva, Moraes, & Lelis, 2018). More details about these champion programs can be found
via https://sites.google.com/site/micrortsaicompetition. We also limit
the map sizes to 16×16 in order to restrict training time. Actions available to a unit include “noop”,
“attack”, and 4 directions each of “move”, “harvest”, “return”, and “produce”, leading to NA = 18
action types. Actions “attack” and “produce” are further qualified by which location to attack and
what type of unit to produce. Considering NT = 7 types of units and up to 10 hitpoints, these choices
lead to a state space of maximum size (7 ∗ 10)70+70 ∗ � 256

70+70� ≈ 10333, assuming both players are
allowed up to 70 units. The learner’s observation space is of maximum size (7 ∗ 10)70 ∗ �128

70 � ≈
10166, assuming about half of the grid space is available to locate its units. Its action space is of
maximum size 1870 ≈ 1087, conservatively assuming only one attack location and one produce type
per unit. This leads to a strategy (mapping from observations to actions) space that is truly unfath-
omable.

Figure 1: An 8X8 map of MicroRTS showing various kinds of units and

features. This project focused on maps that are 16×16 or smaller.

https://sites.google.com/site/micrortsaicompetition

Approved for Public Release; Distribution Unlimited.

4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 BACKGROUND
3.1.1 Reinforcement Learning
Reinforcement learning problems are modeled as Markov Decision Processes or MDPs (Sutton &
Barto, 1998). An MDP is given by the tuple <S, A, R, P>, where S is the set of environmental
states that an agent can occupy at any given time, A is the set of actions from which it can select
one at a given state, R : S × A → ℜ is the reward function, i.e., R(s, a) specifies the reward from
the environment that the agent gets for executing action a ∈ A in state s ∈ S; P : S × A × S → [0,
1] is the state transition probability function, i.e., P(s, a, s’) specifies the probability of the next
state in the Markov chain being s’ following the agent’s selection of action a in state s. The agent’s
goal is to learn a policy π : S → A that maximizes the sum of current and future rewards from any
state s, given by,

Vπ(s0) =EP[R(s0, π(s0)) + γ.R(s1, π(s1))+ γ2.R(s2 , π(s2)) + γ3.R(s3 , π(s3)) + . . .]
(1)

where s0, s1, s2, . . . are successive samplings from the distribution P following the Markov chain
with policy π, and γ ∈ (0, 1) is a discount factor.
In this project we consider policy search methods (Sutton, McAllester, Singh, & Mansour, 2000)
that explicitly maintain a policy πθ(a|s) denoting the probability of taking action a in state s, with
the distribution being parametrized by θ. In this project we use a policy gradient method—belong-
ing to the class of policy search methods—where πθ(a|s) is differentiable w.r.t θ.
One popular policy gradient technique, called Advantage Actor-Critic (A2C), uses two function
approximations. One function approximation represents the actor, viz. πθ(a|s) responsible for se-
lecting an action given a state, as stated above. The other function approximation represents the
critic, viz., Vπφ(s) which gives the value of the state s under the actor policy π (in essence it cri-
tiques the actor’s performance), and is parametrized by φ. Normally θ is improved by policy gra-
dient, optimizing

𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃 ,𝑎𝑎~𝜋𝜋𝜃𝜃𝐴𝐴(𝑠𝑠, 𝑎𝑎)

(2)

where 𝑑𝑑𝜋𝜋𝜃𝜃(𝑠𝑠) = ∑ 𝛾𝛾𝑡𝑡𝑃𝑃𝑃𝑃(𝑠𝑠𝑡𝑡 = 𝑠𝑠 | 𝑠𝑠0, 𝜋𝜋𝜃𝜃)∞
𝑡𝑡=0 is the discounted state distribution that results from

following policy πθ, and A(s, a) is called the advantage function that represents how much better
(or worse) the value of taking action a in state s is compared to the average value from state s. A
simple yet good estimate of the advantage function is the temporal difference (TD) error (Sutton,
McAllester, Singh, & Mansour, 2000) given by

ATD(s, a) = rsa + γ.Vπφ(s’) − Vπφ(s)
(3)

where rsa ∼ R(s, a) and s’ ∼ P(s, a, .). This estimate only depends on the reward and states from
the actual trajectories and the critic itself. While the mean squared TD errors (from Eq. (3)) is used
as the loss function for updating the parameters φ of the critic network, the actor network’s param-
eters θ are updated using the gradient (Williams, 1992)

Approved for Public Release; Distribution Unlimited.

5

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃 ,𝑎𝑎~𝜋𝜋𝜃𝜃∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝐴𝐴𝑇𝑇𝑇𝑇(𝑠𝑠, 𝑎𝑎)

(4)
In order to encourage exploration, an exploration bonus is added to the objective J(θ) whereby
the entropy of the policy πθ is also maximized, precluding the policy from settling into determin-
istic actions that could foreclose exploration. This gives a more complete expression for θ up-
date:

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃 [𝐸𝐸𝑎𝑎~𝜋𝜋𝜃𝜃∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝐴𝐴𝑇𝑇𝑇𝑇(𝑠𝑠, 𝑎𝑎) − 𝛽𝛽∇𝜃𝜃 � 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠). 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)
𝑎𝑎

]

(5)
where β is the entropy bonus (regularization) weight.

When the MDP is partially observable (POMDP), the state is not directly observed. Instead, the
agent receives an observation, ω, that is (perhaps noisily) correlated with the hidden state. A
common technique is to simply replace the states in the above equations with observations, or a
history of past observations, as a sufficient statistic for the hidden state. In training neural net-
works πθ and Vπ

φ, history is accommodated via recurrence, e.g., using LSTM (Hochreiter &
Schmidhuber, 1997). In this project, we use a variation of A2C, called A2C with self-imitation
learning (A2C+SIL) (Oh, Guo, Singh, & Lee, 2018), where apart from the A2C loss functions a
SIL loss function is added where advantages corresponding only to positive experiences are
used. In other words, states where advantages are negative are zeroed out, thus simulating a
learner’s desire to recreate positive experiences from its past. This approach has been shown to
be effective for hard exploration tasks.

3.1.2 Reinforcement Learning as a Rehearsal (RLaR)
RLaR (Kraemer & Banerjee, 2016) was designed for partially observable settings where a training
stage could be distinguished from an execution stage where the learned policy is applied/evaluated.
Furthermore, it was formulated in context of Q-learning (Watkins & Dayan, 1992), where an ac-
tion-value function called Q-function is learned. It is related to the value function as follows:

Vπ(ω) = maxa Qπ(ω, a).
Qπ(ω, a) represents the long term value from following action a upon receiving observation ω, and
the policy π thereafter. A Q-learning agent learns the optimal Q-values, Q∗(ω, a) ∀ω, a, and then
constructs the optimal policy

π∗(ω) = arg maxa Q∗(ω, a).
RLaR allows a learner to observe the hidden state (s that includes system state as well as oppo-
nent’s observations and actions) in addition to its observation (ω), but only during the training
stage as if to practice/rehearse. A RLaR agent learns an augmented Qfunction, Q∗(s, ω, a), as well
as an auxiliary predictor function (essentially a conditional probability distribution) P(s|ω), during
the training/rehearsal stage. During the execution stage, the agent can construct a policy that no
longer relies on hidden features, as

𝜋𝜋∗(𝜔𝜔) = 𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎 ∑ 𝑄𝑄∗(𝑠𝑠, 𝜔𝜔, 𝑎𝑎)𝑃𝑃(𝑠𝑠|𝜔𝜔).𝑠𝑠

Approved for Public Release; Distribution Unlimited.

6

This approach has been shown to expedite RL in simple 2-agent tasks (Kraemer & Banerjee, 2016),
as well as in a larger swarm foraging task (Nguyen & Banerjee, 2022) more recently. In this pro-
ject, we formulate RLaR within the actor-critic framework instead of Q-learning, and evaluate its
effectiveness in a game with a large strategy space viz., MicroRTS.

3.2 METHODOLOGY

We develop the actor-critic architecture for RLaR using deep neural networks. The architectures
of these networks are described next. Despite the existence of an OpenAI Gym framework
(Huang, Ontañón, Bamford, & Grela, 2021) for RL in MicroRTS, we develop our own frame-
work to gain the ability to (a) pass the hidden state to the RLaR agent, and (b) select any oppo-
nent of our choice (specifically, MicroPhantom and MentalSeal) instead of the fixed set of sim-
pler opponents in (Huang, Ontañón, Bamford, & Grela, 2021).
3.2.1 The Actor Network
The architecture of the actor network, πθ, is shown in Figure 2, and is used for all versions of RL
studied here. Its input is the learner’s observation at step t, ωt, consisting of the following compo-
nents

Scalar Features: Binary encoding of scalar features, e.g., time, score, resource;
Own Entities: Sparse encoding of its own units (their types, locations, health and re-
source);
Other Entities: Similar sparse encoding of other visible units either owned by the oppo-
nent, or unowned (e.g., harvestable resources);
Map: A 16×16 grid encoding of all visible units with their types.

Figure 2: The actor network architecture.

Approved for Public Release; Distribution Unlimited.

7

The actor’s output specifies the learner’s action at step t, at. This is sampled from 3 soft-max prob-
ability distributions to yield the following:

Action Index: For each of up to NE (=70 in our experiments) units that the learner owns,
one of (NA=) 18 indices that encode noop, attack, and 4 directions each of move, harvest,
return, and produce;
Produce Type Index: If the produce action is selected for any of up to NE units, the type
index (from a set of NT = 7 possible types) of what that unit will produce;
Attack Location Index: If the attack action is selected for any of up to NE units, the target
location of the attack from a set of NL (= 162 = 256) possible locations.

The soft-max layers are also provided with masks that reduce the support of the distributions, by
deactivating elements that are invalid. Examples include movement directions that are blocked/oc-
cupied, harvest directions that do not contain resources, return directions that do not contain any
self-base, produce types that are disallowed or require more resources than the agent/unit pos-
sesses, attack locations that are invisible or do not contain opponent units, etc. These masks allow
the distributions to be learned rapidly despite the large strategy space, and are computable from ωt
and the information available from the unit type table provided at the beginning of the game. Sim-
ilar invalid action masks are also used in (Huang, Ontañón, Bamford, & Grela, 2021).
3.2.2 The Critic Network

Let st = (ω1:t, a1:t−1) be the observation-action history of the learner, and s−t = (ω−1:t, a−1:t−1) be
that of the opponent. Normally the opponent’s observations are not available to a learner, hence
for baseline RL the critic network learns the function Vφ(st) as described in Section 3.1.1. A distinct
feature of RLaR is that both the learner and opponent’s observations are available to the learner
during the training stage, and accommodated in its critic, Vπ

φ(st , s−
t). Following (Kraemer &

Banerjee, 2016), s−
t can be marginalized out to compute a policy as

𝜋𝜋 ∗ = 𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑎𝑎𝑚𝑚𝜋𝜋 � 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡
−

, 𝜋𝜋)𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡
−),

Approved for Public Release; Distribution Unlimited.

8

using the learned auxiliary distribu-
tion 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋). However, the ac-
tor-critic framework’s clean separa-
tion of the policy from the value
function makes this unnecessary.
Since only the actor is needed after
the training stage, and the critic is
discarded, the accommodation of s−

t
in V is immaterial as long as the ac-
tor network is independent of s−

t.
Thus, for actor-critic training a sim-
pler strategy is to exclude s−

t alto-
gether from the actor network, i.e.,
πθ(a | st) instead of πθ(a | st, s−

t). This
obviates the need for marginaliza-
tion in the actor and allows us to use
the actor network from Section 3.2.1
for all methods. Notice that s−

t still
impacts the actor updates since V is
needed in equation (4) via equation

(3). This strategy is followed in AlphaStar (Vinyals, et al., 2019), hence we call this approach
RLAlpha and include it as a baseline in our experimental study. Both RLAlpha and RLaR use the
critic network architecture shown in Figure 3. While NA, NT are small and are converted to one-
hot representation, NL is large and is therefore embedded. The critic for baseline RL simply omits
ω−

t and a−
t in its input and is not shown separately. In contrast with the standard practice of com-

bining the actor and critic networks to enable shared layers, we separate these networks such that
the critics of the RL variants can be built incrementally without touching the actor.
3.2.3 Prediction Network for RLaR

Although the auxiliary distribution 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) was shown to be unnecessary for actor-critic in

Sec. 3.2.2, there are still good reasons to learn it. An important feature of RLaR (as explained in
(Kraemer & Banerjee, 2016)) is a principled incentive for exploration,

𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋 − � 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋)
𝑠𝑠𝑡𝑡

−

(6)

that seeks to reduce the entropy of the prediction 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋). Ideally, if 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) is 1 then
st is perfectly predictive of s−

t under the current policy π, and the RLaR agent is truly independent
of s−

t. While RLAlpha does not have any incentive for this exploration, we can still endow RLaR
with this capability for the following potential benefits:

• πexplore may reduce noise in actor updates. Consider two situations where the learner ob-
serves st in both, but the opponent observes s−

t,1 in one, and s−
t,2 in another. While the

critic can distinguish these situations being privy to s−
t,1 and s−

t,2, the actor cannot. If
Vπ

φ(st, s−
t,1) ≠ Vπ

φ (st, s−
t,2), then the resulting updates will appear as noise to the actor.

However, if 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) = 1 then (st, s−

t) ≡ st under π, and the above situation will not

Figure 3: The critic network architecture.

Approved for Public Release; Distribution Unlimited.

9

materialize. Thus, πexplore may push the actor toward generating situations where the up-
dates are more stable.

• In the context of MicroRTS (and RTS games in general), πexplore may encourage spying.
In the partially observable setting of MicroRTS, a player can observe the set union of
what its units can observe depending on their locations. Therefore, with strategically lo-
cated units (a.k.a spies), a learner could make ω−

t ⊂ ωt, which would also minimize the
entropy of 𝑃𝑃(𝜔𝜔𝑡𝑡

− | 𝜔𝜔𝑡𝑡 , 𝜋𝜋). While spying may not be a worthwhile goal in and of itself,
choosing actions with the knowledge of the opponent’s configuration may be more desir-
able than without. Specifically, the success of the learned policy may be less dependent
on the opponent’s strategy, and more robust against other strategies.

Consequently, we seek to minimize the entropy of the distribution 𝑃𝑃(𝜔𝜔𝑡𝑡
− | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1), which

reflects the objective of equation (6) more closely than P(s − t |st, π) in the context of Mi-
croRTS. In particular, the condition (ω1:t, π1:t−1) subsumes (st, π) as the action history embedded
in st is sampled from the policy history π1:t−1. Although MicroRTS allows the opponent’s ac-
tions a−

t−1 to be observed partly/wholly as a part of ωt with sufficient proximity, we focus on
the prediction of ω−

t alone, rather than s−
t in order to restrict the size of the prediction network.

To capture the conditional distribution 𝑃𝑃(𝜔𝜔𝑡𝑡
− | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1), we use a probabilistic auto-en-

coder (shown in Figure 4) similar to (Sohn, Lee, & Yan, 2015), albeit with an additional ob-
jective. In particular, an encoder network learns a latent representation of ω−

t notated by latent
variable Z, thus capturing the distribution 𝑃𝑃(𝑍𝑍 | 𝜔𝜔𝑡𝑡

−, 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). A decoder network is then
tasked with reconstructing ω−

t given inputs Z and ω1:t, π1:t−1, thus inferring the distribution
𝑃𝑃(𝜔𝜔𝑡𝑡

− | 𝑍𝑍, 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). Unlike (Sohn, Lee, & Yan, 2015), we do not use this auto-encoder as
a generative model; yet we perform standard optimization of the variational evidence lower
bound (ELBO) by minimizing the latent and reconstruction losses to update the predictor net-
work, since it allows the latent variables to be distributed as 𝑃𝑃(𝑍𝑍 | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). Our objective,
in addition to the ELBO, is to minimize the entropy of this distribution. In order to serve as the
exploration component (equation (6)), the gradients resulting from this entropy loss are only
used to update the actor network, not the predictor network itself. The predictor update is solely
based on the ELBO.

Figure 4: The prediction network architecture.

Approved for Public Release; Distribution Unlimited.

10

3.2.4 Four Stage Training Framework
As another important component of this project, we create a four-stage training framework for
training red and blue agents using self-play, and evaluate their performance against the champion
programs, MentalSeal and MicroPhantom, that are not used for training. The four stages are de-
scribed next and illustrated in Figure 5.

Stage-I: In this stage, two RLaR agents are trained against each other, and the learned
policies are saved when their performance against the other exceeds a certain threshold.
These saved policies, called league policies, form two pools: the red league and the blue
league. League policies tend to master certain skills but are usually not robust against a
wide range of strategies.
Stage-II: In this stage, the red (blue) agent is paired (randomly in different episodes)
with policies from blue (red) league, and the learned policies are saved periodically when
the performance against the league opponent exceeds a certain threshold. This creates
two new pools of policies that are explicitly optimized to defeat the league policies cre-
ated in Stage-II, and are called red/blue league exploiters.
Stage-III: In this stage, the league exploiters created in the previous stage are made ro-
bust by further training them against many random pairings from league policies. This
allows the league exploiters to master counter-skills to a wide range of league policy
skills.
Stage-IV: In this final stage, a red (blue) RLaR agent is trained against the combined
pool of red league exploiters (blue league exploiters) and blue (red) league policies. In
each episode, a policy is randomly selected from this combined pool and paired against
the RLaR agent. The outputs of this stage are the final red and blue agents that have been
trained against a range of different opponents with various skills and counter-skills.

Approved for Public Release; Distribution Unlimited.

11

Figure 5: The four-stage training scheme.

Approved for Public Release; Distribution Unlimited.

12

4.0 RESULTS AND DISCUSSION
We conduct two sets of experiments to verify the efficacy of (1) RLaR and (2) the four-stage
training framework in MicroRTS.

4.1 EVALUATION OF RLaR
We experiment with the three methods discussed in Section 3, viz., baseline RL, RLAlpha, and
RLaR. For baseline RL, we use the advantage actor-critic (A2C) algorithm described in Section
3.1.1, modified with self-imitation learning (Oh, Guo, Singh, & Lee, 2018), A2C+SIL. Both RLAl-
pha and RLaR are built on top of A2C+SIL, thus sharing this common baseline. We train each
variant in four different maps, shown in Figure 6 and Figure 7.

Figure 6: Maps “basesWorkers12X12F” on left, “complexBasesWorkers12X12” on right.
White cells are unobserved, purple cells are observed by both blue and red teams. The
learning agents always assume the role of the blue team, but there is no advantage to

either role due to initial symmetry. The red team is MicroPhantom.
We selected these maps to incorporate variety of difficulty. For instance, the map “bases-
Workers12x12F” (Figure 6 left) has the resources (bright green cells) in (relatively) opposite and
non-corner locations, compared to other maps. The map “FourBasesWorkers12x12” (Figure 7 left)
contains more initial bases and resources than other maps. Finally, the map “LetMeOut” (Figure
7 right) has a very different layout than other maps, where the players are walled (dark green cells)
off, with doorways initially blocked by resources (although the blue agent had cleared one doorway
by the time the screenshot was taken).
Games are capped at a maximum of 3000 steps. We use a sparse reward scheme, with 0 reward
for any intermediate step, and non-zero rewards only for terminal steps: +1000 for a win, −1000
for a loss, 50+score for a draw (i.e., when a game does not complete within 3000 steps), where

Approved for Public Release; Distribution Unlimited.

13

score is the learner’s MicroRTS assigned terminal score that reflects the strength/weakness of its
final position in the absence of a clear winner. 50 bonus points are added for drawn games in order

Figure 7: Maps “FourBasesWorkers12X12” on left, “LetMeOut” on right.
to avoid 0 returns for the entire trajectory when score = 0. The rest of the parameters are set as
follows:

• γ = 0.999

• β = 0.005

• Actor learning rate = 5×10−5

• Critic learning rate = 5×10−4

The learning curves corresponding to the 4 maps are shown in Figure 8, over a series of 5500
games. Each curve is averaged over 6 independent trials, with half standard deviation bands shown
in corresponding colors. The initial policy/actor for all versions were trained by supervised learn-
ing from a set of games played between MicroPhantom and MentalSeal. This results in positive
initial performance of all variants, as seen in Figure 8 (b-d), although the trained initial policy was
practically useless in (a). The learning curves demonstrate a superior learning rate for RLaR, and
also serve as an ablation for the predictor network as that is the only difference between RLAlpha
and RLaR. Also note that a total reward approaching +1000 indicates that the agent has learned to
almost always defeat MicroPhantom. Videos of trained RLaR policy against MicroPhantom are
posted at https://tinyurl.com/y3xhb9nt. Baseline RL is not shown in Figure 8 as its
performance is poor in comparison with RLAlpha and RLaR. In particular, starting with the trained
initial policy, baseline RL essentially unlearns it, dropping the total reward to -1000 (even in maps
(b-d)) before improving it again. Essentially, baseline RL is unable to leverage the initial policy at
all, requiring more time to learn. We show the performance of the learned policy at the end of 5500

https://tinyurl.com/y3xhb9nt

Approved for Public Release; Distribution Unlimited.

14

games for all three variants in Table 1. Table 1 clearly demonstrates the futility of single agent
(baseline A2C+SIL) RL in the face of a large strategy space. Although the centralized (i.e., joint)

Figure 8: Learning curves of RLAlpha (RLAlpha+A2C+SIL) and RLaR RLaR+A2C+SIL)
against MicroPhantom in the 4 maps of Figures 6, 7. Baseline RL (A2C+SIL) is excluded
due to poor performance. The terminal rewards for win/loss/draw are +1000/-1000/+50.

The initial policy/actor was trained by supervised learning from games between MentalSeal
and MicroPhantom on large set of maps, but performs poorly in (a).

critic of RLAlpha brings it closer to RLaR, Table 1 also demonstrates the scope for further im-
provement in terms of a principled exploration component that is unique to RLaR.

Approved for Public Release; Distribution Unlimited.

15

Table 1: Performance of trained policies for 3 variants in 4 maps.

Maps RL(A2C+SIL) RLAlpha RLaR

basesWorkers12X12F -998.7 ± 2.0 -515.9 ± 164.9 -249.7 ± 161.0

complexBasesWorkers12X12 591.9 ± 73.1 943.6 ± 18.5 977.8 ± 8.9

FourBasesWorkers12X12 254.8 ± 118.9 916.5 ± 26.4 949.4 ± 11.5

LetMeOut 125.5 ± 290.7 933 ± 12.5 979.6 ± 4.1

In order to further evaluate the impact of RLaR’s characteristic exploration, we conduct a second
experiment. In this experiment, we note the number of steps in a game that it takes the learner to
get close enough to the opponent’s base, i.e., for any of its units to get within a distance threshold
of the opponent’s base. When there are multiple opponent bases, we take the centroid of their
locations. This can be viewed as a rough measure of how quickly the learner deploys spies.

Approved for Public Release; Distribution Unlimited.

16

Figure 9: Plots showing the number of steps that the learner needs before at least one of its
units gets within a distance threshold of 4.0 of the opponent’s base, thereby bringing it

within the radius of the learner’s visibility.
The results are shown in Figure 9 for a distance threshold of 4.0–sufficient to bring it within the
observable radius. The first observation is that this measure does not correlate accurately with
learning performance (Figure 8), as early spying can end in failure while late spying can still end
in victory. Neither is it a measure of the effectiveness of spying, as observing the opponent’s base
does not mean all of the opponent’s units are also visible. However, another observation from
Figure 9 is that while the trend is expected to be decreasing with continued learning, this does not
occur reliably with RLAlpha. Particularly in Figure 9 (b) and (d), we notice spikes where the
learner appears to be regressing in terms of this measure. RLaR, by contrast, achieves a steadier
acceleration toward proximity. As proximity is a reliable predictor of the opponent’s observation
in MicroRTS, we speculate that this is a direct result of RLaR’s use of predictor based exploration.

4.2 EVALUATION OF 4-STAGE LEARNING FRAMEWORK
In Figures 10--13, we show the comparative performances of RLaR’s initial policy and the policy
from the 4-th/final stage, against MentalSeal and MicroPhantom, playing either roles 0 (blue) or 1
(red).

Approved for Public Release; Distribution Unlimited.

17

Figure 10: Accumulated metrics of initial and final policies against MentalSeal playing as
Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Blue.

Figure 11: Accumulated metrics of initial and final policies against MentalSeal playing as
Blue, in 30 maps (10 games/map, total 300 games). Here, RLaR is Red.

Figure 12: Accumulated metrics of initial and final policies against MicroPhantom playing
as Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Blue.

Approved for Public Release; Distribution Unlimited.

18

Figure 13: Accumulated metrics of initial and final policies against MicroPhantom playing
as Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Red.

As the 4-stage training in Figure 5 indicates, the opponents MentalSeal or MicroPhantom were
never used in training the policies at any stage. Despite this, the trained policy beat MicroPhantom
in many games that were being drawn initially (Figure 12, Figure 13). However, the policy’s per-
formance against MentalSeal (Figure 10, Figure 11) remains unimpressive. In particular, the final
policy wins 12-14 matches whereas the initial policy lost almost all matches.
We encountered a couple of challenges that may have precluded more impressive results w.r.t.
MentalSeal. One was unforeseen, where the criterion for selecting league policies to be saved pe-
riodically in Stage-I did not fire evenly for Red and Blue. Instead, many more Blue League policies
were collected (> 40) compared to only a limited number (8) of Red League policies. To mitigate
the effect of this unevenness on subsequent stages, we had to ignore most of the Blue League
policies and use the top 8 of the Blue League policies to match 8 Red League policies, in Stages
II-IV. Another challenge was foreseeable from our general experience throughout the project: slow
training. As a result, each of Stages I-III had to be limited to 1000-1500 matches in order to allow
the GPUs to be used for testing and debugging of subsequent stages. We believe, with more train-
ing time in these earlier stages, the trained Red and Blue policies would have performed better
against MentalSeal.
Although the neural network policy mines fewer resources compared to MentalSeal (about half as
much), it utilizes almost all of it, more so in the trained version than the initial policy. By constrast,
MentalSeal underutilizes a significant amount, ≈ 16%, of mined resources. This contrast is starker
against MicroPhantom, which acquires even more resources than MentalSeal, but leaves a larger
percentage underutilized, > 40%. In terms of troop generation, the 4 stage training leads to the
creation of more units of Ranged type compared to the initial policy, but not quite as many as
MentalSeal. MentalSeal’s utilization of a much larger number of Light and Ranged troops, com-
pared to RLaR, may be the cornerstone of its superior performance. When compared against Mi-
croPhantom this intuition is reinforced as it never produces any Ranged troops and performs poorly
against the trained RLaR policy. However, it does produce more light troops than the RLaR policy.

Approved for Public Release; Distribution Unlimited.

19

5.0 CONCLUSIONS
We have developed a principled formulation of reinforcement learning as a rehearsal (RLaR) for
the first time within the actor-critic framework. We have shown how a key component of RLaR,
a prediction function that correlates the opponent’s observations to the learner’s own observa-
tions, can be constructed within a deep learning pipeline. Although the formulation is in the con-
text of MicroRTS, it can be easily extended to other RTS games, e.g., StarCraft, and potentially
to the Stratagem wargame. We have experimentally validated two of the benefits of RLaR com-
pared to a variant that has all the same features as RLaR except the prediction function. Con-
sistent with previous findings on RLaR in smaller strategy spaces, we have shown that RLaR im-
proves learning speed even in a domain with a large strategy space such as MicroRTS. A second
experiment has shown that RLaR achieves visibility of the opponent’s base more predictably as
learning progresses. We speculate that this might be indirect evidence of noise reduction in actor
updates–a second benefit of our approach–and at least partly responsible for improved learning
rate of RLaR.
Reward shaping (Ng, Harada, & Russell, 1999) is a well-established technique in RL where do-
main/prior knowledge is often used to supplement the reward function, in order to shape and ac-
celerate learning. It is conceivable that a shaping function that rewards a learner for observing
more of the opponent’s units and penalizes it for observing less, could achieve similar learning
speedup as RLaR in this project, because that is a known effect of reward shaping. Additionally,
it might also achieve similar noise reduction, since the effect of such shaping on the actor in
terms of the generated trajectories is likely to be similar. Further experiments can be conducted
in the future to evaluate these intuitions. In contrast with this potentially alternative approach, we
have relied on a simple (sparse) reward scheme in this project, and avoided explicit domain-spe-
cific reward engineering. More importantly, our approach is more general than reward shaping,
as shaping functions can vary from domain to domain, but entropy minimization of the predic-
tion function is a general principle that does not need domain-specific engineering, and can bene-
fit domains well beyond RTS games.
We have also conducted the 4-stage training of RLaR policies and evaluated the initial and final
policies against MentalSeal and MicroPhantom. Although these sophisticated opponents were
not used for training in this experiment, the trained policy was able to beat MicroPhantom in a
large set of games. However, its performance against MentalSeal remains unimpressive. As this
final part of the project was conducted during the 3 month extension, and as the training was
slow, we were unable to run the earlier stages (Stage I-III) long enough. This may have handi-
capped the final product, which is why we recommend that these stages be run for longer than
the 1000-1500 episodes that we managed to run, possibly ~10,000 episodes each. Apart from
raw number of wins/losses, we have also observed qualitative differences in how the RLaR pol-
icy utilizes resources and soldiers compared to MentalSeal and MicroPhantom.
A large part of this project was conducted as a major coding project with an eye toward partici-
pation in the MicroRTS competition. As a result, only one thesis and one paper resulted from it.
Unfortunately, the competition was discontinued in 2022—the year we had targeted. In hind-
sight, had we not set out sights on the competition, we could have focused more on the science
possibly leading to more publications.

Approved for Public Release; Distribution Unlimited.

20

6.0 REFERENCES

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9,
1735–1780.

Huang, S., Ontañón, S., Bamford, C., & Grela, L. (2021). {Gym-µRTS: Toward Affordable Full
Game Real-time Strategy Games Research with Deep Reinforcement Learning}. 2021
IEEE Conference on Games (CoG). Retrieved from https://arxiv.org/abs/2105.13807

Kraemer, L., & Banerjee, B. (2016). Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190, 82–94.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., . . . Hassabis, D.
(2015, February). Human-level control through deep reinforcement learning. Nature, 518,
529-33. doi:10.1038/nature14236

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. Proc. 16th International Conf. on Machine
Learning (pp. 278–287). Morgan Kaufmann.

Nguyen, T., & Banerjee, B. (2022). Reinforcement Learning as a Rehearsal for Swarm Foraging.
Swarm Intelligence, 16, 29–58.

Oh, J., Guo, Y., Singh, S., & Lee, H. (2018). Self-Imitation Learning. ICML.
Ontañón, S. (2013). The Combinatorial Multi-Armed Bandit Problem and its Application to

Real-Time Strategy Games. Proceedings of the Ninth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE) (pp. 58–64). Boston: AAAI.

Ontañón, S., Barriga, N. A., Silva, C. R., Moraes, R. O., & Lelis, L. H. (2018, March). The First
microRTS Artificial Intelligence Competition. AI Magazine, 39, 75-83.
doi:10.1609/aimag.v39i1.2777

Richoux, F. (2020). MicroPhantom: Playing MicroRTS under uncertainty and chaos. 2020 IEEE
Conference on Games (CoG), (pp. 670-677). doi:10.1109/CoG47356.2020.9231653

Sohn, K., Lee, H., & Yan, X. (2015). Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28.

Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation. Advances in Neural Information
Processing Systems 12 (pp. 1057–1063). MIT Press.

Sutton, R., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.
Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., . . . Silver, D.

(2019, November). Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575. doi:10.1038/s41586-019-1724-z

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 3, 279-292.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8, 229–256.

Approved for Public Release; Distribution Unlimited.

21

APPENDIX A – PUBLICATIONS AND PRESENTATIONS

Presentation
The PI participated in the “Autonomy, Command & Control PI Meeting” (AC2 AFRL PI Meet-
ing) held virtually between Mar-15 and Mar-18, 2021. The PI presented the work done up to that
point on Mar-15-2021 during the morning session. The title of the talk was also “Reinforcement
Learning as a Rehearsal for Planning in Air Battle Management.”

Publication
A paper developed under this project is under review (second round, first round decision was
“major revision required”) for publication in the IEEE Transactions on Games journal. It has not
been published yet.

Approved for Public Release; Distribution Unlimited.

22

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

A2C Advantage Actor Critic
LSTM Long short-term memory
RL Reinforcement Learning
RLaR Reinforcement Learning as a Rehearsal
RTS Real Time Strategy (Games)
SIL Self-imitation learning

	Table of Contents
	List of Figures
	List of Tables
	1.0 SUMMARY
	2.0 INTRODUCTION
	2.1 DETAILS OF MICRORTS

	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 BACKGROUND
	3.1.1 Reinforcement Learning
	3.1.2 Reinforcement Learning as a Rehearsal (RLaR)

	3.2 METHODOLOGY
	3.2.1 The Actor Network
	3.2.2 The Critic Network
	3.2.3 Prediction Network for RLaR
	3.2.4 Four Stage Training Framework

	4.0 RESULTS AND DISCUSSION
	4.1 EVALUATION OF RLaR
	4.2 EVALUATION OF 4-STAGE LEARNING FRAMEWORK

	5.0 CONCLUSIONS
	6.0 References
	APPENDIX A – Publications and Presentations
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

