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1.0 SUMMARY 
This project leveraged some of the recent advances in RL to develop planners for real time strategy 
games, specifically MicroRTS in lieu of Stratagem program's wargame. One of these advances 
from the PI’s lab is called reinforcement learning as a rehearsal (RLaR). Previously, RLaR had 
only been evaluated in toy benchmark tasks to establish its efficacy in sample complexity reduc-
tion. This project developed RLaR for the actor-critic architecture and applied it for the first time 
to a complex domain with incomplete information such as MicroRTS. Another technique applied 
in this project originated from the recent successes of multi-agent learning in the complex StarCraft 
II game, specifically the architecture of multi-stage training that develop league and league-ex-
ploiter policies during intermediate stages for training robust policies.  
We trained RLaR against MicroPhantom—the runner-up from recent MicroRTS competitions—
and showed its ability to plan effectively against this opponent but using fewer samples than rele-
vant baselines. Separately, we trained RLaR in self-play using the 4-stage training scheme and 
evaluated the trained policy against MentalSeal (champion program) and MicroPhantom. While 
the policy once again showed good performance against MicroPhantom, it did not perform com-
petently against MentalSeal. Based on an earlier preliminary finding that training against Mental-
Seal is extremely slow, we speculate that vastly more training time is required than what we could 
devote to this step during the extended period for this project.  
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2.0 INTRODUCTION 
Although this project envisaged the application of reinforcement learning as a rehearsal (RLaR) to 
the Stratagem wargame, for various reasons it was restricted to a real time strategy (RTS) game 
called MicroRTS (Ontañón, 2013). RTS games belong to the genre of 2-player strategy games 
where a player’s goal is to build sufficient economic and military might to destroy the opponent. 
A wide array of actions are available to a player, ranging from gathering resources, to building 
bases that train and churn out soldiers, to attacking opponent’s units and bases to ultimately destroy 
them. For over two decades, RTS games have provided a rich substrate for AI research as they 
feature many of its key challenges, viz., complex dynamic environments with incomplete infor-
mation and partial observability (fog-of-war), simultaneous and durative actions with potentially 
nondeterministic effects, real-time response, and unfathomably large strategy spaces. Conse-
quently, this project’s focus on the MicroRTS game was considered sufficient as it shares many 
of the same challenges with Stratagem.  
Reinforcement learning (RL) has been a popular technique for training AI agents for computer 
games, including RTS games. Decades of research in this field boosted by the deep learning rev-
olution have culminated in spectacular successes recently, where trained agents have matched and 
surpassed human expertise in domains where humans were once considered invulnerable to AI 
(Mnih, et al., 2015), (Vinyals, et al., 2019). However, RL remains a data-hungry approach that 
requires the agent to conduct a large number of simulations in order to comparatively evaluate a 
vast space of strategic alternatives. This is often measured as sample complexity. Despite decades 
worth of significant effort devoted toward reducing sample complexity, it still takes hundreds of 
millions of samples/simulations to train an RL agent in complex domains such as RTS games. In 
this project, we focus on a sample complexity reduction technique called reinforcement learning 
as a rehearsal (RLaR), and on the RTS game of MicroRTS to formulate and evaluate it. RLaR has 
been formulated in the context of action-value function based RL before (Kraemer & Banerjee, 
2016). Here we formulate it for a different RL framework, called actor-critic RL. We show that on 
the one hand the actor-critic framework allows RLaR to be much simpler, but on the other hand it 
leaves room for a key component of RLaR–a prediction function that relates a learner’s observa-
tions with that of its opponent. This function, when leveraged for exploration, accelerates RL as 
our experiments in MicroRTS show. Further experiments provide evidence that RLaR may reduce 
actor noise compared to a variant that does not utilize RLaR’s exploration. 

2.1 DETAILS OF MICRORTS 
The components present in MicroRTS are bases, resources, barracks, worker units, and soldier 
units, as illustrated in Figure 1. A game is played between two players (learning agent controls the 
blue team), and the winner is determined when a player destroys all its opponent’s units, including 
base, barracks and soldiers/units. If neither of the players is able to destroy its opponent’s units 
within a given number of steps (3000 for this project), then it is a draw. Both players are given a 
worker unit, a base and 5 number of resources initially. Their locations, as well as the locations of 
unowned mineable resources, are symmetric to prevent either player from having an initial ad-
vantage. Worker units can harvest resources and build bases and barracks. Barracks produce sol-
dier units of three types: light, heavy and ranged. Light units have less hitpoints whereas heavy 
units have high hitpoints, but both can only attack immediately neighboring cells. By contrast, 
ranged units can attack from 3 grid cells away. In this project, the learning agent is allowed to 
create up to NE = 70 units–a number determined from game traces between MicroPhantom 
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(Richoux, 2020) and MentalSealPO—the top two players in the MicroRTS competition (Ontañón, 
Barriga, Silva, Moraes, & Lelis, 2018). More details about these champion programs can be found 
via https://sites.google.com/site/micrortsaicompetition. We also limit 
the map sizes to 16×16 in order to restrict training time. Actions available to a unit include “noop”, 
“attack”, and 4 directions each of “move”, “harvest”, “return”, and “produce”, leading to NA = 18 
action types. Actions “attack” and “produce” are further qualified by which location to attack and 
what type of unit to produce. Considering NT = 7 types of units and up to 10 hitpoints, these choices 
lead to a state space of maximum size (7 ∗ 10)70+70 ∗ � 256

70+70� ≈ 10333, assuming both players are 
allowed up to 70 units. The learner’s observation space is of maximum size (7 ∗ 10)70 ∗  �128

70 � ≈ 
10166, assuming about half of the grid space is available to locate its units. Its action space is of 
maximum size 1870 ≈ 1087, conservatively assuming only one attack location and one produce type 
per unit. This leads to a strategy (mapping from observations to actions) space that is truly unfath-
omable. 
 

 
Figure 1: An 8X8 map of MicroRTS showing various kinds of units and  

features. This project focused on maps that are 16×16 or smaller. 
  

https://sites.google.com/site/micrortsaicompetition
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 BACKGROUND 
3.1.1 Reinforcement Learning 
Reinforcement learning problems are modeled as Markov Decision Processes or MDPs (Sutton & 
Barto, 1998). An MDP is given by the tuple <S, A, R, P>, where S is the set of environmental 
states that an agent can occupy at any given time, A is the set of actions from which it can select 
one at a given state, R : S × A → ℜ is the reward function, i.e., R(s, a) specifies the reward from 
the environment that the agent gets for executing action a ∈ A in state s ∈ S; P : S × A × S → [0, 
1] is the state transition probability function, i.e., P(s, a, s’) specifies the probability of the next 
state in the Markov chain being s’ following the agent’s selection of action a in state s. The agent’s 
goal is to learn a policy π : S → A that maximizes the sum of current and future rewards from any 
state s, given by,  

Vπ(s0) =EP[ R(s0, π(s0 )) + γ.R(s1, π(s1))+ γ2.R(s2 , π(s2)) + γ3.R(s3 , π(s3)) + . . . ] 
(1) 

where s0, s1, s2, . . . are successive samplings from the distribution P following the Markov chain 
with policy π, and γ ∈ (0, 1) is a discount factor.  
In this project we consider policy search methods (Sutton, McAllester, Singh, & Mansour, 2000) 
that explicitly maintain a policy πθ(a|s) denoting the probability of taking action a in state s, with 
the distribution being parametrized by θ. In this project we use a policy gradient method—belong-
ing to the class of policy search methods—where πθ(a|s) is differentiable w.r.t θ. 
One popular policy gradient technique, called Advantage Actor-Critic (A2C), uses two function 
approximations. One function approximation represents the actor, viz. πθ(a|s) responsible for se-
lecting an action given a state, as stated above. The other function approximation represents the 
critic, viz., Vπφ(s) which gives the value of the state s under the actor policy π (in essence it cri-
tiques the actor’s performance), and is parametrized by φ. Normally θ is improved by policy gra-
dient, optimizing  

𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃 ,𝑎𝑎~𝜋𝜋𝜃𝜃𝐴𝐴(𝑠𝑠, 𝑎𝑎) 

(2) 

where 𝑑𝑑𝜋𝜋𝜃𝜃(𝑠𝑠)  =  ∑ 𝛾𝛾𝑡𝑡𝑃𝑃𝑃𝑃(𝑠𝑠𝑡𝑡 = 𝑠𝑠 | 𝑠𝑠0, 𝜋𝜋𝜃𝜃)∞
𝑡𝑡=0  is the discounted state distribution that results from 

following policy πθ, and A(s, a) is called the advantage function that represents how much better 
(or worse) the value of taking action a in state s is compared to the average value from state s. A 
simple yet good estimate of the advantage function is the temporal difference (TD) error (Sutton, 
McAllester, Singh, & Mansour, 2000) given by  

ATD(s, a) = rsa + γ.Vπφ(s’) − Vπφ(s) 
(3) 

where rsa ∼ R(s, a) and s’ ∼ P(s, a, .). This estimate only depends on the reward and states from 
the actual trajectories and the critic itself. While the mean squared TD errors (from Eq. (3)) is used 
as the loss function for updating the parameters φ of the critic network, the actor network’s param-
eters θ are updated using the gradient (Williams, 1992)  
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∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃 ,𝑎𝑎~𝜋𝜋𝜃𝜃∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝐴𝐴𝑇𝑇𝑇𝑇(𝑠𝑠, 𝑎𝑎) 

(4) 
In order to encourage exploration, an exploration bonus is added to the objective J(θ) whereby 
the entropy of the policy πθ is also maximized, precluding the policy from settling into determin-
istic actions that could foreclose exploration. This gives a more complete expression for θ up-
date:  

∇𝜃𝜃𝐽𝐽(𝜃𝜃) = 𝐸𝐸𝑠𝑠~𝑑𝑑𝜋𝜋𝜃𝜃  [ 𝐸𝐸𝑎𝑎~𝜋𝜋𝜃𝜃∇𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)𝐴𝐴𝑇𝑇𝑇𝑇(𝑠𝑠, 𝑎𝑎)  −  𝛽𝛽∇𝜃𝜃 � 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠). 𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)
𝑎𝑎

 ] 

(5) 
where β is the entropy bonus (regularization) weight.  
 
When the MDP is partially observable (POMDP), the state is not directly observed. Instead, the 
agent receives an observation, ω, that is (perhaps noisily) correlated with the hidden state. A 
common technique is to simply replace the states in the above equations with observations, or a 
history of past observations, as a sufficient statistic for the hidden state. In training neural net-
works πθ and Vπ

φ, history is accommodated via recurrence, e.g., using LSTM (Hochreiter & 
Schmidhuber, 1997). In this project, we use a variation of A2C, called A2C with self-imitation 
learning (A2C+SIL) (Oh, Guo, Singh, & Lee, 2018), where apart from the A2C loss functions a 
SIL loss function is added where advantages corresponding only to positive experiences are 
used. In other words, states where advantages are negative are zeroed out, thus simulating a 
learner’s desire to recreate positive experiences from its past. This approach has been shown to 
be effective for hard exploration tasks. 
 
3.1.2 Reinforcement Learning as a Rehearsal (RLaR) 
RLaR (Kraemer & Banerjee, 2016) was designed for partially observable settings where a training 
stage could be distinguished from an execution stage where the learned policy is applied/evaluated. 
Furthermore, it was formulated in context of Q-learning (Watkins & Dayan, 1992), where an ac-
tion-value function called Q-function is learned. It is related to the value function as follows:  

Vπ(ω) = maxa Qπ(ω, a). 
Qπ(ω, a) represents the long term value from following action a upon receiving observation ω, and 
the policy π thereafter. A Q-learning agent learns the optimal Q-values, Q∗(ω, a) ∀ω, a, and then 
constructs the optimal policy  

π∗(ω) = arg maxa Q∗(ω, a). 
RLaR allows a learner to observe the hidden state (s that includes system state as well as oppo-
nent’s observations and actions) in addition to its observation (ω), but only during the training 
stage as if to practice/rehearse. A RLaR agent learns an augmented Qfunction, Q∗(s, ω, a), as well 
as an auxiliary predictor function (essentially a conditional probability distribution) P(s|ω), during 
the training/rehearsal stage. During the execution stage, the agent can construct a policy that no 
longer relies on hidden features, as 

𝜋𝜋∗(𝜔𝜔)  =  𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑎𝑎𝑚𝑚𝑎𝑎 ∑ 𝑄𝑄∗(𝑠𝑠, 𝜔𝜔, 𝑎𝑎)𝑃𝑃(𝑠𝑠|𝜔𝜔).𝑠𝑠   
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This approach has been shown to expedite RL in simple 2-agent tasks (Kraemer & Banerjee, 2016), 
as well as in a larger swarm foraging task (Nguyen & Banerjee, 2022) more recently. In this pro-
ject, we formulate RLaR within the actor-critic framework instead of Q-learning, and evaluate its 
effectiveness in a game with a large strategy space viz., MicroRTS. 

3.2 METHODOLOGY 

We develop the actor-critic architecture for RLaR using deep neural networks. The architectures 
of these networks are described next. Despite the existence of an OpenAI Gym framework 
(Huang, Ontañón, Bamford, & Grela, 2021) for RL in MicroRTS, we develop our own frame-
work to gain the ability to (a) pass the hidden state to the RLaR agent, and (b) select any oppo-
nent of our choice (specifically, MicroPhantom and MentalSeal) instead of the fixed set of sim-
pler opponents in (Huang, Ontañón, Bamford, & Grela, 2021). 
3.2.1 The Actor Network 
The architecture of the actor network, πθ, is shown in Figure 2, and is used for all versions of RL 
studied here. Its input is the learner’s observation at step t, ωt, consisting of the following compo-
nents  

Scalar Features: Binary encoding of scalar features, e.g., time, score, resource; 
Own Entities: Sparse encoding of its own units (their types, locations, health and re-
source);  
Other Entities: Similar sparse encoding of other visible units either owned by the oppo-
nent, or unowned (e.g., harvestable resources);  
Map: A 16×16 grid encoding of all visible units with their types.  
 

 
Figure 2: The actor network architecture. 
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The actor’s output specifies the learner’s action at step t, at. This is sampled from 3 soft-max prob-
ability distributions to yield the following:  

Action Index: For each of up to NE (=70 in our experiments) units that the learner owns, 
one of (NA=) 18 indices that encode noop, attack, and 4 directions each of move, harvest, 
return, and produce; 
Produce Type Index: If the produce action is selected for any of up to NE units, the type 
index (from a set of NT = 7 possible types) of what that unit will produce;  
Attack Location Index: If the attack action is selected for any of up to NE units, the target 
location of the attack from a set of NL (= 162 = 256) possible locations.  

The soft-max layers are also provided with masks that reduce the support of the distributions, by 
deactivating elements that are invalid. Examples include movement directions that are blocked/oc-
cupied, harvest directions that do not contain resources, return directions that do not contain any 
self-base, produce types that are disallowed or require more resources than the agent/unit pos-
sesses, attack locations that are invisible or do not contain opponent units, etc. These masks allow 
the distributions to be learned rapidly despite the large strategy space, and are computable from ωt 
and the information available from the unit type table provided at the beginning of the game. Sim-
ilar invalid action masks are also used in (Huang, Ontañón, Bamford, & Grela, 2021). 
3.2.2 The Critic Network 

Let st = (ω1:t, a1:t−1) be the observation-action history of the learner, and s−t = (ω−1:t, a−1:t−1) be 
that of the opponent. Normally the opponent’s observations are not available to a learner, hence 
for baseline RL the critic network learns the function Vφ(st) as described in Section 3.1.1. A distinct 
feature of RLaR is that both the learner and opponent’s observations are available to the learner 
during the training stage, and accommodated in its critic, Vπ

φ(st , s−
t). Following (Kraemer & 

Banerjee, 2016), s−
t can be marginalized out to compute a policy as  

𝜋𝜋 ∗ =  𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑎𝑎𝑚𝑚𝜋𝜋  � 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡
−

, 𝜋𝜋)𝑉𝑉𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑠𝑠𝑡𝑡
−), 
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using the learned auxiliary distribu-
tion 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋). However, the ac-
tor-critic framework’s clean separa-
tion of the policy from the value 
function makes this unnecessary. 
Since only the actor is needed after 
the training stage, and the critic is 
discarded, the accommodation of s−

t 
in V is immaterial as long as the ac-
tor network is independent of s−

t. 
Thus, for actor-critic training a sim-
pler strategy is to exclude s−

t alto-
gether from the actor network, i.e., 
πθ(a | st) instead of πθ(a | st, s−

t ). This 
obviates the need for marginaliza-
tion in the actor and allows us to use 
the actor network from Section 3.2.1 
for all methods. Notice that s−

t still 
impacts the actor updates since V is 
needed in equation (4) via equation 

(3). This strategy is followed in AlphaStar (Vinyals, et al., 2019), hence we call this approach 
RLAlpha and include it as a baseline in our experimental study. Both RLAlpha and RLaR use the 
critic network architecture shown in Figure 3. While NA, NT are small and are converted to one-
hot representation, NL is large and is therefore embedded. The critic for baseline RL simply omits 
ω−

t and a−
t in its input and is not shown separately. In contrast with the standard practice of com-

bining the actor and critic networks to enable shared layers, we separate these networks such that 
the critics of the RL variants can be built incrementally without touching the actor. 
3.2.3 Prediction Network for RLaR 

Although the auxiliary distribution 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) was shown to be unnecessary for actor-critic in 

Sec. 3.2.2, there are still good reasons to learn it. An important feature of RLaR (as explained in 
(Kraemer & Banerjee, 2016)) is a principled incentive for exploration,  

𝜋𝜋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑃𝑃𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋  −  � 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋)
𝑠𝑠𝑡𝑡

−

 

(6) 

that seeks to reduce the entropy of the prediction 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋). Ideally, if 𝑃𝑃(𝑠𝑠𝑡𝑡

− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) is 1 then 
st is perfectly predictive of s−

t under the current policy π, and the RLaR agent is truly independent 
of s−

t. While RLAlpha does not have any incentive for this exploration, we can still endow RLaR 
with this capability for the following potential benefits:  

• πexplore may reduce noise in actor updates. Consider two situations where the learner ob-
serves st in both, but the opponent observes s−

t,1 in one, and s−
t,2 in another. While the 

critic can distinguish these situations being privy to s−
t,1 and s−

t,2, the actor cannot. If 
Vπ

φ(st, s−
t,1 ) ≠ Vπ

φ (st, s−
t,2), then the resulting updates will appear as noise to the actor. 

However, if 𝑃𝑃(𝑠𝑠𝑡𝑡
− | 𝑠𝑠𝑡𝑡 , 𝜋𝜋) = 1 then (st, s−

t) ≡ st under π, and the above situation will not 

Figure 3: The critic network architecture. 
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materialize. Thus, πexplore may push the actor toward generating situations where the up-
dates are more stable.  

• In the context of MicroRTS (and RTS games in general), πexplore may encourage spying. 
In the partially observable setting of MicroRTS, a player can observe the set union of 
what its units can observe depending on their locations. Therefore, with strategically lo-
cated units (a.k.a spies), a learner could make ω−

t ⊂ ωt, which would also minimize the 
entropy of 𝑃𝑃(𝜔𝜔𝑡𝑡

− | 𝜔𝜔𝑡𝑡 , 𝜋𝜋). While spying may not be a worthwhile goal in and of itself, 
choosing actions with the knowledge of the opponent’s configuration may be more desir-
able than without. Specifically, the success of the learned policy may be less dependent 
on the opponent’s strategy, and more robust against other strategies.  

Consequently, we seek to minimize the entropy of the distribution 𝑃𝑃(𝜔𝜔𝑡𝑡
− | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1), which 

reflects the objective of equation (6) more closely than P(s − t |st, π) in the context of Mi-
croRTS. In particular, the condition (ω1:t, π1:t−1) subsumes (st, π) as the action history embedded 
in st is sampled from the policy history π1:t−1. Although MicroRTS allows the opponent’s ac-
tions a−

t−1 to be observed partly/wholly as a part of ωt with sufficient proximity, we focus on 
the prediction of ω−

t alone, rather than s−
t in order to restrict the size of the prediction network. 

To capture the conditional distribution 𝑃𝑃(𝜔𝜔𝑡𝑡
− | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1), we use a probabilistic auto-en-

coder (shown in Figure 4) similar to (Sohn, Lee, & Yan, 2015), albeit with an additional ob-
jective. In particular, an encoder network learns a latent representation of ω−

t notated by latent 
variable Z, thus capturing the distribution 𝑃𝑃(𝑍𝑍 | 𝜔𝜔𝑡𝑡

−, 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). A decoder network is then 
tasked with reconstructing ω−

t given inputs Z and ω1:t, π1:t−1, thus inferring the distribution 
𝑃𝑃(𝜔𝜔𝑡𝑡

− | 𝑍𝑍, 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). Unlike (Sohn, Lee, & Yan, 2015), we do not use this auto-encoder as 
a generative model; yet we perform standard optimization of the variational evidence lower 
bound (ELBO) by minimizing the latent and reconstruction losses to update the predictor net-
work, since it allows the latent variables to be distributed as 𝑃𝑃(𝑍𝑍 | 𝜔𝜔1:𝑡𝑡 , 𝜋𝜋1:𝑡𝑡−1). Our objective, 
in addition to the ELBO, is to minimize the entropy of this distribution. In order to serve as the 
exploration component (equation (6)), the gradients resulting from this entropy loss are only 
used to update the actor network, not the predictor network itself. The predictor update is solely 
based on the ELBO. 
 

 
Figure 4: The prediction network architecture. 
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3.2.4 Four Stage Training Framework 
As another important component of this project, we create a four-stage training framework for 
training red and blue agents using self-play, and evaluate their performance against the champion 
programs, MentalSeal and MicroPhantom, that are not used for training. The four stages are de-
scribed next and illustrated in Figure 5. 

Stage-I: In this stage, two RLaR agents are trained against each other, and the learned 
policies are saved when their performance against the other exceeds a certain threshold. 
These saved policies, called league policies, form two pools: the red league and the blue 
league. League policies tend to master certain skills but are usually not robust against a 
wide range of strategies. 
Stage-II: In this stage, the red (blue) agent is paired (randomly in different episodes) 
with policies from blue (red) league, and the learned policies are saved periodically when 
the performance against the league opponent exceeds a certain threshold. This creates 
two new pools of policies that are explicitly optimized to defeat the league policies cre-
ated in Stage-II, and are called red/blue league exploiters.  
Stage-III: In this stage, the league exploiters created in the previous stage are made ro-
bust by further training them against many random pairings from league policies. This 
allows the league exploiters to master counter-skills to a wide range of league policy 
skills. 
Stage-IV: In this final stage, a red (blue) RLaR agent is trained against the combined 
pool of red league exploiters (blue league exploiters) and blue (red) league policies. In 
each episode, a policy is randomly selected from this combined pool and paired against 
the RLaR agent. The outputs of this stage are the final red and blue agents that have been 
trained against a range of different opponents with various skills and counter-skills. 
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Figure 5: The four-stage training scheme. 
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4.0  RESULTS AND DISCUSSION 
We conduct two sets of experiments to verify the efficacy of (1) RLaR and (2) the four-stage 
training framework in MicroRTS. 

4.1 EVALUATION OF RLaR 
We experiment with the three methods discussed in Section 3, viz., baseline RL, RLAlpha, and 
RLaR. For baseline RL, we use the advantage actor-critic (A2C) algorithm described in Section 
3.1.1, modified with self-imitation learning (Oh, Guo, Singh, & Lee, 2018), A2C+SIL. Both RLAl-
pha and RLaR are built on top of A2C+SIL, thus sharing this common baseline. We train each 
variant in four different maps, shown in Figure 6 and Figure 7.  

Figure 6: Maps “basesWorkers12X12F” on left, “complexBasesWorkers12X12” on right. 
White cells are unobserved, purple cells are observed by both blue and red teams. The 
learning agents always assume the role of the blue team, but there is no advantage to  

either role due to initial symmetry. The red team is MicroPhantom. 
We selected these maps to incorporate variety of difficulty. For instance, the map “bases-
Workers12x12F” (Figure 6 left) has the resources (bright green cells) in (relatively) opposite and 
non-corner locations, compared to other maps. The map “FourBasesWorkers12x12” (Figure 7 left) 
contains more initial bases and resources than other maps. Finally, the map “LetMeOut” (Figure 
7 right) has a very different layout than other maps, where the players are walled (dark green cells) 
off, with doorways initially blocked by resources (although the blue agent had cleared one doorway 
by the time the screenshot was taken). 
Games are capped at a maximum of 3000 steps. We use a sparse reward scheme, with 0 reward 
for any intermediate step, and non-zero rewards only for terminal steps: +1000 for a win, −1000 
for a loss, 50+score for a draw (i.e., when a game does not complete within 3000 steps), where 
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score is the learner’s MicroRTS assigned terminal score that reflects the strength/weakness of its 
final position in the absence of a clear winner. 50 bonus points are added for drawn games in order 

Figure 7: Maps “FourBasesWorkers12X12” on left, “LetMeOut” on right. 
to avoid 0 returns for the entire trajectory when score = 0. The rest of the parameters are set as 
follows: 

• γ = 0.999

• β = 0.005

• Actor learning rate = 5×10−5

• Critic learning rate = 5×10−4

The learning curves corresponding to the 4 maps are shown in Figure 8, over a series of 5500 
games. Each curve is averaged over 6 independent trials, with half standard deviation bands shown 
in corresponding colors. The initial policy/actor for all versions were trained by supervised learn-
ing from a set of games played between MicroPhantom and MentalSeal. This results in positive 
initial performance of all variants, as seen in Figure 8 (b-d), although the trained initial policy was 
practically useless in (a). The learning curves demonstrate a superior learning rate for RLaR, and 
also serve as an ablation for the predictor network as that is the only difference between RLAlpha 
and RLaR. Also note that a total reward approaching +1000 indicates that the agent has learned to 
almost always defeat MicroPhantom. Videos of trained RLaR policy against MicroPhantom are 
posted at https://tinyurl.com/y3xhb9nt. Baseline RL is not shown in Figure 8 as its
performance is poor in comparison with RLAlpha and RLaR. In particular, starting with the trained 
initial policy, baseline RL essentially unlearns it, dropping the total reward to -1000 (even in maps 
(b-d)) before improving it again. Essentially, baseline RL is unable to leverage the initial policy at 
all, requiring more time to learn. We show the performance of the learned policy at the end of 5500 

https://tinyurl.com/y3xhb9nt
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games for all three variants in Table 1. Table 1 clearly demonstrates the futility of single agent 
(baseline A2C+SIL) RL in the face of a large strategy space. Although the centralized (i.e., joint)  

Figure 8: Learning curves of RLAlpha (RLAlpha+A2C+SIL) and RLaR RLaR+A2C+SIL) 
against MicroPhantom in the 4 maps of Figures 6, 7. Baseline RL (A2C+SIL) is excluded 
due to poor performance. The terminal rewards for win/loss/draw are +1000/-1000/+50. 

The initial policy/actor was trained by supervised learning from games between MentalSeal 
and MicroPhantom on large set of maps, but performs poorly in (a). 

critic of RLAlpha brings it closer to RLaR, Table 1 also demonstrates the scope for further im-
provement in terms of a principled exploration component that is unique to RLaR. 
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Table 1: Performance of trained policies for 3 variants in 4 maps. 

Maps RL(A2C+SIL) RLAlpha RLaR 

basesWorkers12X12F -998.7 ± 2.0 -515.9 ± 164.9 -249.7 ± 161.0

complexBasesWorkers12X12 591.9 ± 73.1 943.6 ± 18.5 977.8 ± 8.9 

FourBasesWorkers12X12 254.8 ± 118.9 916.5 ± 26.4 949.4 ± 11.5 

LetMeOut 125.5 ± 290.7 933 ± 12.5 979.6 ± 4.1 

In order to further evaluate the impact of RLaR’s characteristic exploration, we conduct a second 
experiment. In this experiment, we note the number of steps in a game that it takes the learner to 
get close enough to the opponent’s base, i.e., for any of its units to get within a distance threshold 
of the opponent’s base. When there are multiple opponent bases, we take the centroid of their 
locations. This can be viewed as a rough measure of how quickly the learner deploys spies.  
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Figure 9: Plots showing the number of steps that the learner needs before at least one of its 
units gets within a distance threshold of 4.0 of the opponent’s base, thereby bringing it 

within the radius of the learner’s visibility. 
The results are shown in Figure 9 for a distance threshold of 4.0–sufficient to bring it within the 
observable radius. The first observation is that this measure does not correlate accurately with 
learning performance (Figure 8), as early spying can end in failure while late spying can still end 
in victory. Neither is it a measure of the effectiveness of spying, as observing the opponent’s base 
does not mean all of the opponent’s units are also visible. However, another observation from 
Figure 9 is that while the trend is expected to be decreasing with continued learning, this does not 
occur reliably with RLAlpha. Particularly in Figure 9 (b) and (d), we notice spikes where the 
learner appears to be regressing in terms of this measure. RLaR, by contrast, achieves a steadier 
acceleration toward proximity. As proximity is a reliable predictor of the opponent’s observation 
in MicroRTS, we speculate that this is a direct result of RLaR’s use of predictor based exploration. 

4.2 EVALUATION OF 4-STAGE LEARNING FRAMEWORK 
In Figures 10--13, we show the comparative performances of RLaR’s initial policy and the policy 
from the 4-th/final stage, against MentalSeal and MicroPhantom, playing either roles 0 (blue) or 1 
(red). 



Approved for Public Release; Distribution Unlimited. 

17 

Figure 10: Accumulated metrics of initial and final policies against MentalSeal playing as 
Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Blue. 

Figure 11: Accumulated metrics of initial and final policies against MentalSeal playing as 
Blue, in 30 maps (10 games/map, total 300 games). Here, RLaR is Red. 

Figure 12: Accumulated metrics of initial and final policies against MicroPhantom playing 
as Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Blue. 
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Figure 13: Accumulated metrics of initial and final policies against MicroPhantom playing 
as Red, in 30 maps (10 games/map, total 300 games). Here, RLaR is Red. 

As the 4-stage training in Figure 5 indicates, the opponents MentalSeal or MicroPhantom were 
never used in training the policies at any stage. Despite this, the trained policy beat MicroPhantom 
in many games that were being drawn initially (Figure 12, Figure 13). However, the policy’s per-
formance against MentalSeal (Figure 10, Figure 11) remains unimpressive. In particular, the final 
policy wins 12-14 matches whereas the initial policy lost almost all matches.  
We encountered a couple of challenges that may have precluded more impressive results w.r.t. 
MentalSeal. One was unforeseen, where the criterion for selecting league policies to be saved pe-
riodically in Stage-I did not fire evenly for Red and Blue. Instead, many more Blue League policies 
were collected (> 40) compared to only a limited number (8) of Red League policies. To mitigate 
the effect of this unevenness on subsequent stages, we had to ignore most of the Blue League 
policies and use the top 8 of the Blue League policies to match 8 Red League policies, in Stages 
II-IV. Another challenge was foreseeable from our general experience throughout the project: slow
training. As a result, each of Stages I-III had to be limited to 1000-1500 matches in order to allow
the GPUs to be used for testing and debugging of subsequent stages. We believe, with more train-
ing time in these earlier stages, the trained Red and Blue policies would have performed better
against MentalSeal.
Although the neural network policy mines fewer resources compared to MentalSeal (about half as 
much), it utilizes almost all of it, more so in the trained version than the initial policy. By constrast, 
MentalSeal underutilizes a significant amount, ≈ 16%, of mined resources. This contrast is starker 
against MicroPhantom, which acquires even more resources than MentalSeal, but leaves a larger 
percentage underutilized, > 40%. In terms of troop generation, the 4 stage training leads to the 
creation of more units of Ranged type compared to the initial policy, but not quite as many as 
MentalSeal. MentalSeal’s utilization of a much larger number of Light and Ranged troops, com-
pared to RLaR, may be the cornerstone of its superior performance. When compared against Mi-
croPhantom this intuition is reinforced as it never produces any Ranged troops and performs poorly 
against the trained RLaR policy. However, it does produce more light troops than the RLaR policy. 
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5.0  CONCLUSIONS 
We have developed a principled formulation of reinforcement learning as a rehearsal (RLaR) for 
the first time within the actor-critic framework. We have shown how a key component of RLaR, 
a prediction function that correlates the opponent’s observations to the learner’s own observa-
tions, can be constructed within a deep learning pipeline. Although the formulation is in the con-
text of MicroRTS, it can be easily extended to other RTS games, e.g., StarCraft, and potentially 
to the Stratagem wargame. We have experimentally validated two of the benefits of RLaR com-
pared to a variant that has all the same features as RLaR except the prediction function. Con-
sistent with previous findings on RLaR in smaller strategy spaces, we have shown that RLaR im-
proves learning speed even in a domain with a large strategy space such as MicroRTS. A second 
experiment has shown that RLaR achieves visibility of the opponent’s base more predictably as 
learning progresses. We speculate that this might be indirect evidence of noise reduction in actor 
updates–a second benefit of our approach–and at least partly responsible for improved learning 
rate of RLaR. 
Reward shaping (Ng, Harada, & Russell, 1999) is a well-established technique in RL where do-
main/prior knowledge is often used to supplement the reward function, in order to shape and ac-
celerate learning. It is conceivable that a shaping function that rewards a learner for observing 
more of the opponent’s units and penalizes it for observing less, could achieve similar learning 
speedup as RLaR in this project, because that is a known effect of reward shaping. Additionally, 
it might also achieve similar noise reduction, since the effect of such shaping on the actor in 
terms of the generated trajectories is likely to be similar. Further experiments can be conducted 
in the future to evaluate these intuitions. In contrast with this potentially alternative approach, we 
have relied on a simple (sparse) reward scheme in this project, and avoided explicit domain-spe-
cific reward engineering. More importantly, our approach is more general than reward shaping, 
as shaping functions can vary from domain to domain, but entropy minimization of the predic-
tion function is a general principle that does not need domain-specific engineering, and can bene-
fit domains well beyond RTS games. 
We have also conducted the 4-stage training of RLaR policies and evaluated the initial and final 
policies against MentalSeal and MicroPhantom. Although these sophisticated opponents were 
not used for training in this experiment, the trained policy was able to beat MicroPhantom in a 
large set of games. However, its performance against MentalSeal remains unimpressive. As this 
final part of the project was conducted during the 3 month extension, and as the training was 
slow, we were unable to run the earlier stages (Stage I-III) long enough. This may have handi-
capped the final product, which is why we recommend that these stages be run for longer than 
the 1000-1500 episodes that we managed to run, possibly ~10,000 episodes each. Apart from 
raw number of wins/losses, we have also observed qualitative differences in how the RLaR pol-
icy utilizes resources and soldiers compared to MentalSeal and MicroPhantom.  
A large part of this project was conducted as a major coding project with an eye toward partici-
pation in the MicroRTS competition. As a result, only one thesis and one paper resulted from it. 
Unfortunately, the competition was discontinued in 2022—the year we had targeted. In hind-
sight, had we not set out sights on the competition, we could have focused more on the science 
possibly leading to more publications. 
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APPENDIX A – PUBLICATIONS AND PRESENTATIONS 

Presentation 
The PI participated in the “Autonomy, Command & Control PI Meeting” (AC2 AFRL PI Meet-
ing) held virtually between Mar-15 and Mar-18, 2021. The PI presented the work done up to that 
point on Mar-15-2021 during the morning session. The title of the talk was also “Reinforcement 
Learning as a Rehearsal for Planning in Air Battle Management.” 

Publication 
A paper developed under this project is under review (second round, first round decision was 
“major revision required”) for publication in the IEEE Transactions on Games journal. It has not 
been published yet. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

A2C Advantage Actor Critic 
LSTM Long short-term memory 
RL Reinforcement Learning 
RLaR Reinforcement Learning as a Rehearsal 
RTS Real Time Strategy (Games) 
SIL Self-imitation learning 
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