AFRL-RI-RS-TP-2023-001

EDGE OF THE ART IN VULNERABILITY RESEARCH VERSION 5

TWO SIX LABS
MARCH 2023
TECHNICAL PAPER

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441




NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TP-2023-001 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

IS/ IS/
CHAD C. DESTEFANO JAMES S. PERRETTA
Work Unit Manager Deputy Chief

Information Warfare Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.



REPORT DOCUMENTATION PAGE

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
START DATE END DATE
MARCH 2023 TECHNICAL PAPER JANUARY 2021 JUNE 2021

4. TITLE AND SUBTITLE
EDGE OF THE ART IN VULNERABILITY RESEARCH VERSION 5

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
FA8750-19-C-0009 N/A DoD, DARPA
5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER
R2PB
6. AUTHOR(S)

Jared Ziegler, Will Huiras, & Irwin Ong

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Two Six Labs REPORT NUMBER

901 N Stuart Street, Suite 1000
Arlington VA 22203

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S | 11. SPONSOR/MONITOR'S
Air Force Research Laboratory/RIGA DARPA/I120 ACRONYM(S) REPORT NUMBER(S)
525 Brooks Road 675 North Randolph Street
Rome NY 13441-4505 Arlington VA 22203 AFRL/RI, DARPA 120 |AFRL-RI-RS-TP-2023-001

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 36386
Date Cleared: 6/13/2022

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This Edge of the Art report is part of a series that aggregates the most recent advances in vulnerability research (VR), reverse
engineering (RE), and program analysis tools and techniques.

15. SUBJECT TERMS
Vulnerability Research, Reverse Engineering, Program Analysis, Cyber, Fuzzing, Software Security

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER OF PAGES
a. REPORT b. ABSTRACT C. THIS PAGE ABSTRACT
U U U SAR 94
19a. NAME OF RESPONSIBLE PERSON 19b. PHONE NUMBER (Include area
code)
CHAD DESTEFANO N/A

STANDARD FORM 298 (REV. 5/2020)
PREVIOUS EDITION IS OBSOLETE. Prescribed by ANSI Std. Z39.18




¢, two

TECHNOLOGIES

Edge of the Art in Vulnerability
Research

DARPA CHESS Program

VERSION 5.0
JUNE 2021
ACKNOWLEDGEMENT

Authors:
Jared Ziegler, Will Huiras, & Irwin Ong

This material is based upon work supported by the United States Air Force and DARPA under Contract No.
FA8750-19-C-0009.

DISCLAIMER

The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

901 N Stuart Street, Suite 1000
Arlington, VA 22203
(703) 543-9662
info@twosixtech.com
www.twosixtech.com

Approved for Public Release; Distribution Unlimited.



Contents

1

Introduction

2 Static Analysis

2.1 GEARSHIFT . . .
22 Ghidraaas . . . . . . . e
23 McSemaandRemill . . ... ... ...
2.4 Preeny . . . . . e
25 Rizin . . .
2.6 The Software Analysis Workbench (SAW) . . . . . .. .. ... ... ....

Dynamic Analysis

3.1 AUrOra . .. e
3.2 FANS . .
3.3 Frankenstein . . . . . ..
3.4 FuzzGen . . . . . . e
3.5 GhidraDebugger . . . . . . . ..
3.6 InternalBlue . . ... . .. . .. ...
3.7 JMPscare . . . . ..
3.8 KRACE . . . .
3.9 PyPANDA . . .

Approved for Public Release; Distribution Unlimited.

10
13
17
22
26



4 Appendix 74
41 Resources . . . . . ... 74
4.2 ToolsCriteria . . . . . . . . . e 74
4.3 Techniques Criteria . . . . . . . . . . . . 75
4.4 Tool and Technique Categories . . . . . . . ... ... .. ... .. ..... 75
4.5 Static Analysis Technical Overview . . . . . . .. ... ... ... ...... 76

451 Disassembly . . ... . ... 76
4.5.2 Decompilation . ... ... ... 80
4.5.3 Static Vulnerability Discovery . . . . .. . ... ... .. oL 80
4.6 Dynamic Analysis Technical Overview . . . . . ... ... ... ... .... 81
46.1 Debuggers . . .. .. . . ... 81
4.6.2 Dynamic Binary Instrumentation(DBI) . . . . .. ... ... ... .. 82
4.6.3 Dynamic Fuzzing Instrumentation . . . ... ... ... ....... 82
4.6.4 Memory Checking . ... ... ... .. .. .. ... .. ... 82
4.6.5 Dynamic Taint Analysis . . . . ... ... ... .. .. .. .. ... . 83
4.6.6 Symbolic and Concolic Execution. . . . ... ... ... ....... 83

Approved for Public Release; Distribution Unlimited.



Introduction

The DARPA CHESS program seeks to increase the speed and efficiency of software vul-
nerability discovery and remediation by integrating human knowledge into the automated
vulnerability discovery process of current and next generation Cyber Reasoning Systems
(CRS). As with most technological advancements that seek to supplant what was once the
exclusive domain of human expertise, the best and the most convincing way to measure
success is against a human baseline.

Combining Hacker Expertise Can Krush Machine Assisted Target Exploitation (CHECK-
MATE), the CHESS Technical Area 4 (TA4) control team, focuses on providing the CHESS
program with a team of expert hackers with extensive domain experience as a consistent
baseline to measure the TA1 and TA2 performers against.

Vulnerability research is a constantly evolving area of cyber security, making the baseline
for measuring the success of the CHESS program a moving target. The control team
must keep pace with the most recent advancements to remain an effective baseline for
comparison. The CHECKMATE team not only needs to stay on top of the state-of-the-art
research and technology solutions, but also capture key emerging and trending techniques
across all relevant vulnerability classes, tools, and methodologies.

This Edge of the Art report is part of a series that aggregates the most recent advances
in vulnerability research (VR), reverse engineering (RE), and program analysis tools and
techniques that the CHECKMATE team considers when planning for the next CHESS eval-
uation event.

To stay on the Edge of the Art, a new edition of this report will be released every six months
with enhancements in the current state-of-the-art and new tools and techniques emerging
in the cyber security community.

1.1 Scope

The purpose of this Edge of the Art (EotA) report is to document tools and techniques that
have come into existence (or significantly matured) since the last report.

The EotA reports are produced using an “aggregate and filter” approach. The CHECK-

3
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MATE team constantly monitors many different sources in an attempt to aggregate all
known and emerging tools and techniques. This information is then filtered into what the
CHECKMATE team considers worth reporting. The definition of the “edge” is governed by
the filter criteria, which differ across tools and techniques. It is anticipated that these crite-
ria, and therefore the definition of “edge,” will evolve over the life of the CHESS program.

Naturally, this process is imperfect. Some tools or techniques may be overlooked during
the writing of a particular report (potentially to be added in a later edition). Others that are
included may turn out to be of diminished importance. All views expressed are those of
the authors.

Additional information on the scope, organization, and criteria for the EotA report can be
found in the appendix.

Approved for Public Release; Distribution Unlimited.



Static Analysis

Static analysis investigates a binary executable without running it. The most common
forms of static analysis in reverse engineering and vulnerability research begin with disas-
sembling and/or decompiling a binary executable. These transformations utilize several
static program analysis techniques, which also underlie many of the other techniques dis-
cussed in this report. One of the most fundamental forms of static analysis is lifting a
program to an intermediate representation (IR). IRs are used in many of the tools and
techniques discussed throughout this report. Static analysis can be used for reverse en-
gineering compiled programs, statically rewriting and instrumenting a binary executable,
performing static vulnerability discovery on either source or binary code, etc.

A general overview of static analysis can be found in the appendix.

5
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2.1 GEARSHIFT

Reference Link

https://github.com/grimm-co/GEARSHIFT

Target Type

Binary - Ghidra plugin

Host Operating System

Windows, MacOS, Linux

Target Operating System

N/A; any targets Ghidra supports

Host Architecture

Any host architecture Ghidra runs on

Target Architecture

Any target architecture Ghidra supports

Initial Release

17 May 2020

License Type

Open-Source (UIUC)

Maintenance

Maintained by GRIMM, last GitHub commit 22
Feb 2021

Overview

GEARSHIFT is a Ghidra plugin that performs structure recovery on a target binary using
program analysis techniques. The user targets a function that has a structure as an argu-
ment, and the plugin will automatically generate a structure definition based on how the
structure parameter is used. GEARSHIFT also generates C harness code that populates
the function parameters using input from a file and calls the target function, which is useful

for fuzzing code that takes structures as input.

Design and Implementation

GEARSHIFT attempts to recover structures by performing symbolic analysis over the data
dependency graph from Ghidra’s Intermediate Language (IL) [1]. Ghidra lifts operations

Approved for Public Release; Distribution Unlimited.




on all architectures into its own IL, called P-Code. Data dependency establishes that an
instruction will affect the state of a register or memory value which will later be used by
another instruction, so that the latter instruction "depends” on the former. The combination
of all dependencies is the data dependency graph, which Ghidra provides a view of via
P-Code.

In order to recover structures, GEARSHIFT performs a variant of Value Set Analysis to
discover accesses to locations that are at an offset into a struct. The basic idea is that by
discovering the size and offset of accesses, one can infer the size and location of struct
members (figure 2.1).

The plugin takes a function and its parameters as a starting point and performs a depth-
first search of the data dependency graph, recording all loads and stores performed. The
actual symbolic execution is performed by emulating the state of a function for all P-Code
instructions it contains, starting with the function parameters as symbolic variables and
collecting symbolic expressions in a binary expression tree.

In order to track struct usage across function boundaries, GEARSHIFT performs interpro-
cedural analysis. This is important because structs are often accessed in multiple functions
and some member accesses may only be discovered by interprocedural analysis. To do
this, GEARSHIFT uses two types of analysis, forward (in order to both discover loads and
stores in a single function) and backwards (to propagate symbolic definitions as they relate
to function parameters).

void FUN_00100721 {undefinedd *paran_1) void FUN_DBLO7Z1 (S0 *paran_1)
{
vold *pvvarl; 5] #
y 1 = ralloc{g); varl = (51 *)mallec(B8);
¥(vold **)(param_1 + &) = pwvVarl; paran_l-=entry 6 = |
FUN_Bo1o06Ta (paran_1 + 4); FUN_ooroo&fa( (51 *)&paran_l-=entry_£);
FUN Ge1o06Ta(* {undefinedd *)(paran 1 + &));| FUN OOLDOEfalparam l-=eniry 6);
kparam_1 = 2; paran_lL-=entry 0 = 2.
k(undefined =) {param 1 + 1} = 7; paran_L-=entry_1 = "‘a‘;

%

¥{undefinedd *=) (param_1 + 2) = B; paran_lL-=entry 3 = 8;

return; return;

Figure 2.1: Example of Improvement on Decompilation Readability

Once these analyses are performed GEARSHIFT can categorize loads as pointers to ei-
ther a primitive, struct, or array; this information is used to categorize accesses to structs
and recover the locations and sizes of struct members. The authors address the issue
of differentiating structs and arrays by using accesses via indices inside of a loop as the
sign of an array. Once struct interpolation is completed, GEARSHIFT defines the inferred
structs inside Ghidra and automatically applies the new types to all uses of those structs.

In addition to struct discovery, GEARSHIFT generates a fuzzing harness that populates
function parameters based on input. The generated harness is a template that is populated
based on the function chosen as the target for GEARSHIFT and any structures it takes as
input. This capability allows users to see the inferred structs in C as well as serving as a
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good starting point for being able to fuzz a closed-source binary.

Use Cases and Limitations

GEARSHIFT’s basic use case is struct recovery, which is a very common problem in
reverse-engineering, especially in C++ code and firmware or operating system code. The
use of multiple layers of structs is a challenge to reverse engineers and can be extremely
tedious to analyze manually. GEARSHIFT’s analysis starts from a function and its param-
eters and does interprocedural analysis in a way similar to how a human user would. Even
in the case of imperfect recovery, an automated process that provides a partial solution
can save the user a lot of time, especially in the case of large structures.

Automated struct recovery is a challenging topic, and GEARSHIFT focuses on solving
the problem given a few assumptions. GEARSHIFT only attempts to recover structures
that are passed via function parameters, not structs accessed via global variables or con-
structed within the function, which is a conscious design decision that requires the user to
understand the usage pattern. Luckily Ghidra’s "undo” feature makes it a simple thing to
revert the analysis if the results are not as the user intended. This is illustrated in figure
2.2.

[ ] [ ) Structure Editor - SO (test_structs) [CodeBrowser: app:/gearshift/test_structs]

s/ Structure Editor - SO (test_structs) B tdfSxuomBE
Mnemonic DataType Name Comment
int int entry_0 NOT ACCESSED
char char entry_1
char char entry_2 NOT ACCESSED
short short entry_3
longlong longlong entry_4

Search: Vv 4

Byte Offset:

Component Bits:

NameijsO
Descripton:
Categoryi[test_structs/struct
Size:’lﬁi Alignment: ’1— _| Align

Figure 2.2: Example of Improvement on Decompilation Readability

If Ghidra’s automatic analysis is not precise enough and inconsistencies hinder the analy-
sis, GEARSHIFT will warn the user, who will have to adjust types manually. There are also

Approved for Public Release; Distribution Unlimited.



limits to what can be recovered about a structure given a particular section of code, so the
user will still have to be engaged in understanding the target and applying structures where
appropriate. Also, as with pretty much all symbolic analysis there are practical limits on the
amount and complexity of analysis. There is still no silver bullet for reverse-engineering.

Approved for Public Release; Distribution Unlimited.



2.2 Ghidraaas

10

Reference Link

https://github.com/Cisco-Talos/Ghidraaas

Target Type

Binary

Host Operating System

Linux, Windows, macOS

Target Operating System

Linux

Host Architecture

Java Byte Code; Python3

Target Architecture

All architectures supported by Ghidra

Initial Release

09/2019

License Type

Apache-2.0 License

Maintenance

Stable release, last Github commit Dec 2020
by Cisco-Talos

Overview

As described on the project’s Github page, "Ghidraaas is a simple web server that ex-

poses Ghidra analysis through REST APIs.”[2] It is designed to allow users to offload many
generic reverse engineering tasks to a remote machine. Ghidraaas is also used as the
back-end for GhIDA [3], which provides allows the functionality of Ghidra from within IDA
Pro.[4] Ghidraaas provides s REST API that allows interfacing with an instance of Ghidra

running on that server.

Design and Implementation

Ghidraaas is most simply described as a wrapper around Ghidra. It consists of a web
server providing a REST API. The web server is written in Python 3. Ghidraaas uses
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11

Ghidra Headless Analyzer to analyze the submitted sample submitted by the user. The
tool automates some of the more routine tasks associated with binary analysis. Additional
tasks can be added to the file flask_api . py by defining a new @app.route () and providing
new scripts for Ghidra to run on a given binary. While the provided scripts are written in
Python3, Ghidraaas can interface with Ghidra using any supported scripting language.
(Ghidra supports Java and Python by default.) Out of the box, Ghidraaas provides the
following APIs (figure 2.3):

Ghidraaas generic APls:

+ apifanalyze _sample/ Submit a sample for the analysis

+ apifget_functions_list/<sha256= Request the list of functions

= apifget functions_list detailed/=sha256> Request the list of functions with additional
details

apifget_decompiled function/=sha256>/<offset> Request to decompile a function

apifanalysis_terminated/=sha256> Remove the #.gpr file and =.rep project folder related
to the sample.

GhIDA specific APIs:
* apisida_plugin_checkin/ Sample check-in
* apifida_plugin_get_decompiled_function/ Decompile function

» apisida_plugin_checkout/ Sample check-out.

Figure 2.3: Default APIs available with Ghidraaas [2]

Ghidraaas includes a test . py script that, with very little modification, can produce useful
results. Figures 2.4 and 2.5 show the output of two such modifications.

~feode/Ghidraaas /tests
i

2ad75af5ba?bcfu32c10164635da0d3482e6563853852eabaThdi?188eThED

oneTable
eTable

1 @=101abaL
] exlpldesl

_start
_libe_esu_fini

1 #=101048L - chk_fail
[+] @xl0la58L F
[+] ex1p11f8L = _ libc_csu_imit

Figure 2.4: A simple script to list functions and their resolved names
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=/cade/Ghidrasas tests
pile 1c, py Bx181165L

undefinedsd mainiwvoid)

" Llong in_F5_OFFSET;
uint lecal_14;
long local_1@;

_stack_chik_faill );

return @;

Figure 2.5: A simple script to request the decompilation of a function

Use Cases and Limitations

Ghidraaas does not attempt to be a substitute for a deep dive into a binary with Ghidra.
Rather, it provides an interface for building custom analyses and applications that can
easily make use of Ghidra’s considerable capabilities. For example, here are a few ideas
for useful applications that could be built using Ghidraaas:

+ Search for I/O functions, e.g. read/write for easier input tracing

* Scan strings for:

— DLL names with known hijack locations
— Known vulnerable functions (e.g. strcat)

* Find loops with regex for human examination

» Compare the decompilation of multiple versions of binaries to help narrow down
searches for N-day bugs

Approved for Public Release; Distribution Unlimited.



2.3 McSema and Remill
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Reference Link

https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/remill

Target Type

Binary (Binary Ninja Plugin)

Host Operating System

Windows, MacOS, Linux

Target Operating System

Windows, Linux

Host Architecture

x86, x64

Target Architecture

X86, x64, AArch64, SPARCv8+ (SPARC32),
SPARCV9 (SPARC64), AArch32 (in develop-
ment)

Initial Release

Jan 2015 (McSema) Dec 2017 (Remill)

License Type

Open-Source (McSema = GNU GPL 3.0,
Remill = Apache 2.0)

Maintenance

Maintained by TrailOfBits

Overview

McSema is a binary lifting framework [5]. The goal of a binary lifting framework is to take,

as an input, compiled binary code (typically an executable or library file) and produce a
higher level, semantically equivalent, representation of that code. Remill is the library Mc-
Sema uses to perform the translation from binary code to an intermediate representation
(IR), specifically LLVM IR bitcode [6]. Once in bitcode form, this output can be fed into
numerous other tools in the LLVM ecosystem. Since the LLVM compiler framework analy-
sis and optimization passes operate over LLVM IR, the output of McSema (and any valid
modifications) can be fed into Clang to produce updated binary code for any architecture
for which a LLVM backend (i.e., the translator between LLVM IR and machine code) exists.

Approved for Public Release; Distribution Unlimited.
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The result is the ability to take compiled code, decompile it, modify the decompiled code,
then recompile the updated code for numerous target architectures.

Design and Implementation

McSema’s architecture has two distinct components: instruction boundary isolation and
instruction lifting. Instruction boundary isolation describes the process of taking a chunk
of binary code and dividing that code into discrete instructions. For some architectures,
like x86 and amd64, this can be a difficult task due to characteristics of the architecture’s
instruction set (e.g. embedding data in code segments and variable-length instruction
encodings). McSema offloads this by relying on other tools for decoding instructions and
generating control flow graphs (and the basic blocks that make up those graphs). Currently,
it relies on IDA Pro for this functionality. However, some work has been done to support
using Binary Ninja[7] and Dyninst for this purpose.

McSema depends on Remill for performing instruction lifting. Remill is a library that sup-
ports translating machine instructions to LLVM IR bitcode. Once McSema obtains a stream
of bytes for a single machine instruction, it passes the stream of bytes to Remill to lift into
LLVM IR bitcode. Remill creates its own internal data structure representation as illustrated
by figure 2.6.

;; mov eax, 1
(X86 804b7a3 5 (BYTES b8 01 00 00 00)

MOV_GPRv_IMMv_32
(WRITE_OP (REG_32 EAX))
(READ_OP (IMM_32 0x1)))

Figure 2.6: String representation of a decoded MOV x86 instruction

Each of these data structures is then mapped to a template that implements the semantics
of that instruction (figure 2.7).

template <typename D, typename 5>
DEF_SEM(MOV, D dst, const S src) {

WriteZExt(dst, Read(src));
return memory;

}

Figure 2.7: Remill semantics for the MOV x86 instruction

For each decoded instruction, Remill creates a new function. The implementation of the
semantics of the decoded instruction are placed inside this function. The CFG data from
McSema is used to group these functions into basic blocks. Similar to a symbolic execution
engine, each basic block tracks modifications to three values: state, program counter, and
memory. The state structure tracks things like register values, the program counter tracks
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execution in the program, and memory tracks updates to program memory. Each basic
block contains templated code for handling operations common to all basic blocks, such
as making values in the State structure available for use in the function (e.g. assigning
register values to local variables) and updating the program’s view of memory after the
instructions in the basic block are executed (figure 2.8).

// Instructions will be lifted into clones of this function.
Memory *_ remill_basic_block(State &state, addr_t curr_pc, Memory xmemory) {

auto &EAX = state.gpr.rax.dword;
auto &EBX = state.gpr.rbx.dword;
auto &ESP = state.gpr.rsp.dword;

auto &SS_BASE = zero;

// Lifted code will be placed here in clones versions of this function.
return memory;

Figure 2.8: Remil basic block template

The result of this process is a function representing a single basic block taken from the de-
coded program. Each decoded instruction that exists within the basic block is represented
by a function call in the newly created basic block function. Each of these function calls
encode the semantics of the instruction to which they correspond.

The LLVM IR bitcode produced by Remill has a few notable differences from the LLVM
IR bitcode that would be produced for the same source code by one of LLVM’s many
frontends. One significant difference is how Remill handles memory accesses and some
control transfer operations. In both cases, Remill utilizes a set of functions, referred to
as “intrinsics.” For example, when lifting a memory read, Remill will produce a call to
__remill _read_memory_x (depending on the size of the read) instead of a call to LLVM
IR’s generic “load” instruction. Since these intrinsics can be defined by developers, they
provide additional flexibility for generating accurate bitcode. Alternatively, these intrinsics
can be defaulted to LLVM'’s store/load instructions. This is also the case with some control
transfer mechanisms. For example, the implementation of handling interrupts (the seman-
tics of which are architecture-dependent) is performed inside of intrinsic calls.

The LLVM IR bitcode produced by Remill also contains code that depends on the exis-
tence of a runtime environment. For example, Remill tracks changes to program state
(e.g. register values) in the State structure. Examples of the use of this structure can be
seen in the template function code for both Remill basic blocks and machine instructions.

Approved for Public Release; Distribution Unlimited.
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As one would expect, the State structure didn’t exist in the original binary, nor does it exist
in the program’s memory when executed. Instead, the structure is maintained by a runtime
environment added by Remill.

Upon completion of the lifting process, the product is a semantically equivalent, but highly
inefficient, representation of the original machine code. This inefficiency can be signifi-
cantly reduced by the aggressive application of optimization passes, which substantially
reduces the size of the bitcode.

Use Cases and Limitations

An advantage of using LLVM IR as a higher level representation is that there is a large
ecosystem of existing tools that operate on LLVM IR bitcode. Since McSema produces
LLVM IR bitcode, this ecosystem, which was once limited to developers with source code
access, becomes available for use with blackbox binaries as well. This ecosystem in-
cludes symbolic execution tools like KLEE [8][9] and SymCC [10][11], static analysis tools
like Sys [12][13], and fuzzing frameworks like libfuzzer [14]. Additionally, the entire LLVM
framework is available to use on the generated code. Specifically, the bitcode produced by
McSema can be fed into both the middle (optimizations) and back ends (code generation)
of LLVM.

The major limitation of McSema is its reliance on other tools for performing instruction
boundary isolation and CFG generation. The only officially supported tool is IDA Pro,
which can be prohibitively expensive. While some support exists for Dynist, which is free
and open source, this support is unofficial and, as such, not guaranteed to continue to
work with each new release of McSema.

Depending on the use case, Remill’s emphasis on recompilability may make consumption
of the generated bitcode more difficult. Many state changes that occur in a compiled binary
end up being represented as loads and stores into a runtime-managed data structure. This
results in a very verbose IR that can be difficult to read if you are not interested in modeling
machine-level state changes.
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2.4 Preeny
Reference Link https://github.com/zardus/preeny
Target Type Binary
Host Operating System Linux (debian, Arch, or Fedora-based)
Partial OSX support
Target Operating System Linux
Host Architecture x86 (32, 64)
Target Architecture x86 (32, 64)
Initial Release August 2016
License Type Open-Source (BSD)
Maintenance Last updated April 2021
Overview

Preeny is a binary analysis aid for disabling inconvenient program behaviors. CTF chal-
lenges often contain non-essential code that make binary analysis difficult. Two motivating
examples are the C system calls alarm() and fork(). Occasionally, players will connect
to CTF servers, move on something else, and leave their connection open. To prune these
connections, binaries set timers via alarm () that upon expiration, close the dead connec-
tion. While this behavior protects binaries on the server, it disrupts analysis after users
copy them onto their own local systems. To mitigate this, Preeny simply hooks the call to
alarm(), and returns 0 as if no call was ever made. Second, CTF binaries may contain
calls to fork () for various purposes. Unfortunately this disrupts dynamic reconnaissance
without careful debugger management. GDB advises:

Put a call to sleep in the code which the child process executes after the fork. It
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may be useful to sleep only if a certain environment variable is set, or a certain
file exists, so that the delay need not occur when you don’t want to run GDB on
the child. While the child is sleeping, use the ps program to get its process ID.
Then tell GDB (a new invocation of GDB if you are also debugging the parent
process) to attach to the child process (see Attach). From that point on you can
debug the child process just like any other process which you attached to. [15]

Preeny provides a greatly simplified solution. As with alarm(), Preeny hooks the fork()
call and returns 0 as if the child process succeeded.

In addition to circumventing problematic syscalls, Preeny also offers functions for aiding
general dynamic analysis. Scripts exist for binary patching, stack canary dumping, and
RNG control.

Design and Implementation

For syscall disabling, Preeny hooks calls through the LD_PRELOAD environment variable.
For example:

LD_PRELOAD=x86_64-1linux-gnu/dealarm.so ~/alarmedBinary

Accomplishing this in code is straightforward:

Listing 2.1: Dealarm.c
unsigned int alarm(unsigned int seconds)

{

preeny_info(”alarm blocked\n”);
return O;

}

More advanced scripts are ad-hoc, such as setcanary.c[16]:

Listing 2.2: setcanary.c

#ifdef _ x86_64_

#define TONUMBER strtoull

#fdefine INSN_LOAD "mov %0, %rax;”
#define INSN WRITE "movqg %rax , %fs:0x28;”
#define REG "Yorax”

and patch.c[17]:

# tests/hello
Hello world!
# cat hello.p
[hello]
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address=0x4005c4
content='4141414141"

[world]

address=0x4005ca

content='6161616161"

# PATCH="hello.p" LD_PRELOAD=x86_64-linux-gnu/patch.so tests/hello
—--- section hello in file hello.p specifies 5-byte patch at 0x4005c4
--- section world in file hello.p specifies 5-byte patch at 0x4005ca
AAAAA aaaaal

Use Cases and Limitations

Preeny supports the following operations:
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Name
dealarm
defork
deptrace
derand
desigact
desock
desock_dup
ensock
desrand
detime
desleep

mallocwatch

writeout

patch

startstop

crazyrealloc

deuid
eofkiller

getcanary

setcanary

setstdin

nowrite

20

Summary
Disables alarm()
Disables fork()
Disables ptrace()
Disables rand() and random()
Disables sigaction()
Channels socket communication to the console
Channels socket communication to the console (simpler method)
The opposite of desock -- like an LD_PRELOAD version of socat!
Does tricky things with srand() to control randomness.
Makes time() always return the same value.
Makes sleep() and usleep() do nothing.
When ltrace is inconvenient, mallocwatch provides info on heap operations.

Some binaries write() to fd 0, expecting it to be a two-way socket. This makes that work (by
redirecting to fd 1).

Patches programs at load time.
Sends SIGSTOP to itself on startup, to suspend the process.

ensures that whatever is being reallocated is always moved to a new location in memory, thus
free()ing the old.

Change the UID and effective UID of a process
Exit on EOF on several read functions
Dumps the canary on program startup (x86 and amd64 only at the moment).

Overwrites the canary with a user-provided one on program startup (amd64-only at the
moment).

Sets user defined STDIN data instead of real one, overriding read , fread, fgetc, getc
and getchar calls. Read here for more info

Forces open() to open files in readonly mode. Downgrading from readwrite or writeonly mode,
and taking care of append, mktemp and other write-related flags as well

Figure 2.9: Supported Functions

While Preeny was specifically designed for CTF binary analysis, many capabilities are
useful for real-world analysis. Targets often contain similar, non-essential code. Preeny
offers quick solutions for spinning up binary exploration. While Preeny is ideal for CTF
binary analysis, it is important to note that Preeny is not suited for known-malicious or
completely-unknown binary analysis. For example, preloading desock on a malicious bi-
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nary does not guarantee that it will be unable to open a channel, cause damage, or carry
out other undesired behaviors.
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Reference Link

https://github.com/rizinorg/rizin

Target Type

Binary

Host Operating System

Linux

Target Operating System

Linux, Win, iOS, MacOS, Android, *BSD, So-
laris, QNX, Haiku, FirefoxOS

Host Architecture

x86_64

Target Architecture

x86_64, 1386, ARM, MIPS, PowerPC, SPARC,
RISC-V, SH, m68k, m680x, AVR, XAP, Sys-
tem Z, XCore, CR16, HPPA, ARC, Blackfin,
Z80, H8/300, V810, V850, CRIS, XAP, PIC,
LM32, 8051, 6502, 4004, i8080, Propeller,
Tricore, CHIP-8, LH5801, T8200, GameBoy,
SNES, SPC700, MSP430, Xtensa, NIOS II,
TMS320 (c54x, c55x, c55+, ¢66), Hexagon,
DCPU16, LANAI, MCORE, mcs96, RSP,
SuperH-4, VAX, AMD Am29000

Initial Release

22 Jan 2021

License Type

Open-Source (LGPL-3.0)

Maintenance

Regular commits and releases with a large de-
veloper community (approximately 60 contrib-
utors).
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Overview

Rizin is a command-line driven, open source reverse engineering (RE) platform. Itincludes
a disassembler, hex editor, debugger, binary analysis features, patching features, and an
extensible plugin architecture. As a fork of radare2 [18], Rizin shares many of the same
features and interfaces. A subset of the radare2 contributors created Rizin in December
2020 as a response to disagreements with the technical direction of the project and some
of the content in the codebase [19]. Work to date has focused on reimplementing features
to improve testability and stability, as well as code refactoring to support maintenance[20].
Rizin also has a GUI version, called Cutter, which additionally includes a plugin that in-
terfaces with the Ghidra decompiler[21]. Cutter’s back-end was changed from radare2 to
Rizin, as much of the core Cutter team has joined the project.

Design and Implementation

Rizin is primarily written in C and is built using the Meson build system. During evaluation,
we found the Meson build process to be straightforward and surprisingly quick compared
to an autotools build of radare2.

Like radare2, Rizin exposes features as command line tools to allow ease of scripting tasks
[22]. Supported commands are:

* rz-ax - expression evaluation for converting between data types

* rz-find - search for string and byte sequences

* rz-run - initialize an emulation environment for debugging a program
* rz-bin - extract and output properties of binary files

* rz-diff - perform binary diffing

* rz-asm - assembler/disassembler

* rz-gg - construct basic blocks for injection into binaries

* rg-hash - compute hashes over files or sections of files

As a fork, Rizin’s architecture is mostly similar to radare2’s. One major distinction is the
degree Rizin has been streamlined. To date, approximately 70 commands have been re-
moved or consolidated from radare2 [23]. Additional changes include major work in the
Java bytecode plugin, Lua 5.4 support, command parsing (figure 2.10), and reimplemen-
tation of saving and restoring projects.

Approved for Public Release; Distribution Unlimited.



(Ent argc, clar HHaDEY, Char seavp);

VaT
WaT

§ VAT

Rl

§ WAT

VT

HL s
F VAT

Lot

§ WAT

arg

; ACE

Enir ik
B

BV
B
B
BTy

EoOvabs
movabs -
oy guord
moy guard |
povabs I,
gov  guord |
BV duied [
oy dword
mow byt [

]
BTV dwcipd [

BV -

, B
oy byte |
B -

coge

Figure 2.10: Rizin disassembly output of a program’s main() function
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Use Cases and Limitations

Rizin offers multiple options for scripting and integration with a focus on composability.
Aside from the traditional Rizin shell environment, it's possible to create scripts using the
individual command line tools, or integrate Rizin features into other programs using the
rz-pipe project (also maintained by Rizinorg) [24]. As in radare2, rz-pipe provides a sim-
ple API to execute Rizin commands from other programs written in Python, Go, Haskell,
OCaml, Rust, and Ruby. Rather than expose the backend API, rz-pipe accepts standard
commands as they would be run in the Rizin environment, and the output is returned to
the caller.

While not strictly a limitation, Rizin’s inherent similarities to radare2 has its drawbacks.
Users that are already familiar with radare2 commands will find Rizin easy to pick up. On
the other hand, unfamiliar users should expect a steep learning curve. Because of this,
at this stage in Rizin’s development, the similarities to radare2 are a hindrance to wider
adoption. So far, the new features do not offer a compelling reason for RE analysts to
switch to Rizin. For upcoming releases, the developers are predominantly focused on
bug fixes and code refactoring to support future enhancements and ease developer pain
[25]. This focus on back-end improvements, addressing needed maintenance, and unit
testing should yield stability and security benefits that may make it a better long term choice
over radare2. Along with a stated emphasis on inclusivity and welcoming new developers,
these changes may also encourage a larger base of regular contributors to the project than
radare2. Hopefully once this tech debt has been addressed, more prominent user-facing
changes will be made to the project, although the roadmap to 1.0 release has not been
established as of this writing.

The only major user feature to differentiate it from radare2 is the completely rewritten,
stable project support (compared to radare2’s buggy implementation) that makes saving
and loading the current project state painless. Project metadata and modifications are de-
scribed using JSON files. This makes it straightforward for multiple analysts to collaborate
on a project by committing project directories in git and merging their changes. A new API
for developing and parsing user commands, called newshell, has been implemented to
address longstanding inconsistencies in command parsing [26].
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Reference Link

https://saw.galois.com/

Target Type

C (via LLVM Bitcode)
Java (via Java Bytecode)

Cryptol (a domain-specific language related to
SAW)

Host Operating System Linux
Windows
macOS

Target Operating System N/A

Host Architecture N/A

Target Architecture N/A

Initial Release 04/2015

License Type

Open Source BSD 3-Clause "New” or "Re-
vised” License

Maintenance

Galois, Inc., on Github

Overview

The Software Analysis Workbench (SAW) is a tool intended to carry out formal verifica-
tion of code (primarily Java and C) [27]. It provides a specification language (Cryptol) for
creating verification properties to be proved as well as a scripting language for building
up proofs of larger and more complex systems. Verification is carried out by constraint
solvers (SAT/SMT), resulting in a potentially high level of automation.
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Design and Implementation

SAW uses Cryptol, a domain-specific language for cryptography, as a specification lan-
guage for describing properties of the code under analysis. Cryptol is a purely functional,
lazily evaluated language with a strict type system that makes it compact and amenable
to automated analysis. Here is a Cryptol implementation of the SHA-1 hash algorithm:

Listing 2.3: Cryptol example
f : ([8], [32], [32], [32]) -> [32]
f , X, ¥, z) =

t

if (0 <= 1) && (t <= ) then (x && y) * (~x && z)

| (20 <= 1) && (t <= 39) then x * y * z

| (40 <= 1) && (t <= ) then (x && y) " (x && z) " (y && z)
| (60 <= 1) && (t <= ) then x Ay A z

else error "f: t out of range”

SAW derives most of its verification power from external Boolean satisfiability (SAT) and
satisfiability modulo theory (SMT) solvers. Properties amenable to solving by SAW are of
two general forms:

* Find an input (or inputs) that meet some condition

» Show that some condition is met for all inputs
Some useful examples of properties specified in Cryptol (and therefore in SAW) are [28]:

 Function reversal: Find an input x that results in an output y

* Proof of inversion: Show that for all inputs x, g(f(x)) == x

* Proof of injectivity: Show that for all inputs x and y, x |=y implies f(x) != f(y)
* Collision detection: Find inputs x and y where f(x) == f(y) and x =y

 Equivalence checking: Show that for all inputs x, f(x) == g(x)

SAW can be used to prove these and other properties. It does so by first symbolically
executing the program in question. This generates a logical representation (Boolean vari-
ables, ands, nots, etc.) of the entire functionality of the program, which can then be passed
to a SAT/SMT solver. These highly optimized tools are able to automatically solve many
problems of surprising complexity over the entire input space of the program, resulting in
an automated approach that provides confidence far exceeding any number of individual
test cases.

Crucially, SAW extends this solving capability to other languages as well. Using a frame-
work known as Crucible, SAW can also symbolically execute programs written in C and
Java (the former by compiling to LLVM bitcode and the latter by compiling to Java byte-
code.) This allows the analyst to prove properties about “real” software implementations,
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potentially even highly optimized and difficult to read ones, in much the same way they
would native Cryptol code.

In addition to proving user-defined properties, the symbolic execution process also gener-
ates additional proof obligations that must be met that can sometimes detect flaws such
as out of bounds memory references.

As a compact example, consider this simple C program, assert-null.c, from the SAW ex-
ample repository. [29]:

Listing 2.4: assert-null.c

int f(int *x
return (
}

To analyze this with SAW, first compile to LLVM bitcode:

)
X == (int )0);

Listing 2.5: LLVM bitcode generation

[lvm -c -emit-llvm assert-null.c

To confirm that this function returns 0 if a pointer is passed and 1 if null is passed, the
following SAW script, assert-null.saw, can be used:

Listing 2.6: assert-null.saw

let f speci = do {
p <- llvm_alloc (llvm_int 32);
[lvm_execute_func [p];
llvm_return (llvm_term {{ 0 : [32] }});

1

let f_spec2 = do {
[lvm_execute_func [llvm_null];
llvm_return (llvm_term {{ 1 : [32] }});

1

m <- llvm_load_module “assert-null.bc”;
llvm_verify m ”f” [] false f_spec1 abc;
[lvm_verify m ”f” [] false f_spec2 abc;

To run the prover, execute the following:

Listing 2.7: SAW prover invocation

saw assert-null.saw
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Use Cases and Limitations

Despite its name, the Software Analysis Workbench may not be appropriate for all anal-
ysis tasks. Its primary use case is cryptographic verification. There may be vulnerability
research use cases, but its ability to find bugs depends on how well a program’s intended
functionality can be specified and, crucially, on whether the target is amenable to analysis
by symbolic execution and SAT/SMT solving.

SAW has been used primarily to verify cryptographic implementations (including libgcrypt,
Bouncy Castle, and Amazon s2n) which, while sometimes large and complex, have the
advantage that their intended functionality is mostly well-specified. Other software may
be difficult to verify, especially if it isn’t well understood by the analyst and therefore the
intended functionality isn’t known. That said, it is possible to create partial specifications,
such as specifying a range of return values and placing bounds on memory regions to
ensure those bounds are respected.

Symbolic execution also has its limitations. Cryptographic algorithms tend to be highly
structured, always-terminating, and composed of bounded looping constructs. These are
useful properties for preventing the “path explosion” issue that can occur with more gen-
eral programs. This means that symbolic execution may not be able to process certain
functions, even for example small ones containing loops with an input data-dependent
number of iterations. SAW does provide constructs for scaling to larger programs, such
as breaking proofs down by function and building upon other proofs. In addition, there is
the capability to carry out more complicated analysis, such as manually applying rewrite
rules, in a similar style to interactive theorem provers, to crack particularly difficult prob-
lems. However, the rewrite capability is not well documented and is for advanced users
only.

Finally, SAT/SMT solving is also limited. The Boolean satisfiability problem, the theory
underlying all of these solvers, is in general NP-Complete, meaning that there are prob-
lem instances that cannot be solved in a tractable amount of time using known methods.
Fortunately (and in part due to hard work by the SAT solver community), some classes of
real-world problems, such as certain questions applied to cryptographic software, happen
to be easily solvable by these tools. However, many real-world programs and real-world
questions remain out of reach.
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Dynamic Analysis

Whereas static analysis examines a binary without running it, dynamic analysis observes a
binary as it executes. Dynamic analysis allows the inspection of actual runtime information
about program state, including register and memory values. However, it cannot provide
code coverage guarantees. Both approaches provide valuable insights into a program.
Dynamic analysis techniques range from empirical observations of program execution to
crafted instrumentation approaches that support a wide range of analyses.

A general overview of dynamic analysis can be found in the appendix.
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Reference Link

https://github.com/RUB-SysSec/aurora

Target Type

Binary (Source code may be used to enrich re-
sults)

Host Operating System Linux
Target Operating System Linux

Host Architecture x86 64
Target Architecture x86_64
Initial Release 12 Aug 2020

License Type

Open-Source (AGPL-3.0)

Maintenance

Academic release, last Github commit Aug
2020 by @mrphrazer

Overview

Aurora is an automated root-cause analysis tool that attempts to determine the location and

context that leads to a crash [30]. Starting with a single crashing input, it generates a popu-

lation of crashing and non-crashing inputs. It then uses dynamic binary instrumentation to

record detailed state information on the execution of each input. It derives Boolean predi-

cates from the state information. Finally, it applies statistical analysis to determine which
predicates best distinguish crashing from non-crashing inputs. Aurora is implemented in
three components that can be built for a Linux system and is also available as a Docker

container.
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Design and Implementation

Aurora has three primary components: a modified AFL for crash exploration (figure 3.1),
an Intel Pin[31] tracer, and a Rust-based root cause analysis (RCA) component. The crash
explorer generates and saves both crashing and non-crashing inputs. The tracer is used
to trace each input and save dynamic execution information such as register values to
use as the basis for predicates. Finally the RCA component generates and evaluates the
predicates to determine their ability to distinguish crashes and presents a ranked list of
predicates for a user to review.

In order to do effective statistical analysis, Aurora requires a diverse but similar set of
inputs. The inputs must be diverse enough to reveal measurable differences, but similar
enough that they explore states close enough to the root cause. To achieve this, authors
modified a version of AFLs "crash exploration” mode so that it saves both crashing and
non-crashing inputs. Crashing inputs are saved for additional mutation, but non-crashing
inputs are not mutated further, generating a population of inputs with behavior clustered
around the original crash.

peruvian were-rabbit 2.52b (mruby_fuzz)

overall results

9 days, @ hrs, 29 min, 54 sec
3 days, @ hrs, @ min, 1 sec
3 days, & hrs, & min, 49 sec
3 days, @ hrs, 3 min, 5 sec
cycle progress map coverage
312 (B5.65%)
g (0.08%)
stage progress findi ngs in dE‘Fth
havoc 127
924/1536 (68.16%) 132 :
=L 56 . 8k unigue)
15 (13 unique}
path geometry
nfa, nfa, nfa 12
nfa, nfa, nf/a T48
nfa, nfa, nfa 32
nfa, nfa, nfa 947
nfa, nfa, nfa .
497/307k, 821/281k 106. 0%k
20,.51%/68.9k, nfa
38%

Figure 3.1: Modified AFL version used for crash exploration

Given the set of crashing and non-crashing inputs, the next step is to collect details of an
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input’s behavior in the form of control-flow edges and minimum and maximum values for
registers and memory writes. Aurora implements a custom Pin tracer to record this infor-
mation for every input. This collects the values of several expressions for each instruction
executed in the target binary; this information is used as the basis of predicates which can
be used in the next step: explanation synthesis.

The RCA component of Aurora is the most interesting contribution as its statistical analysis
approach allows it to present boolean predicates for bug conditions, even in the case where
there is no data dependency between the root cause and the crash. Most approaches
before Aurora used techniques like backward slicing to follow data dependencies to a root
cause of a value that leads to the observed bug condition, but some types of bugs are
resistant to this type of analysis. Aurora’s approach is to generate many predicates for
each instruction, rank their ability to predict a crash, and then rank the best predicates
from each instruction to present a list of simple boolean predicates to a human analyst to
review.

Aurora generates three types of predicates: control-flow predicates, register and memory
predicates, and flag predicates (from the flags register on x86/x64 architectures)(figure
3.2). The scoring of each predicate is done by averaging the percentage of correct pre-
dictions for crashing and non-crashing inputs, where a "perfect predicate” would correctly
classify an input as crashing or non-crashing 100% of the time. Ties between predicates
are broken by execution order, where predicates executed earlier in the program (as ob-
served across all inputs) are favored as they are more likely to be the root cause.

Predicate Type Predicates
Control-Flow has_edge to, always_taken
Register and Memory r < ¢ for register and memory values r and constant c,

is_heap ptr(r), is_stack ptr(r)

Flags Carry flag, Zero flag, Overflow flag

Figure 3.2: Aurora Predicates

The output of Aurora is a ranked text file of predicates, where the authors’ goal is to suggest
locations (instruction addresses or lines in source code if debug symbols are available) and
conditions that suggest where crashing and non-crashing behaviors diverge (figure 3.3).
The output is functional, but not focused on aesthetics. Aurora’s approach requires a hu-
man analyst to interpret and assess the suggestions, but this is a fundamental assumption
that makes it possible to present a list of informed suggestions automatically rather than
putting full responsibility on the automated analysis, which would lead to an unacceptable
false-positive rate.
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055555555b443 -—

(discriminator 2)

85) //mrb_irep_free at state.c:145

ep_free at state.c:146

_irep_free at state.c:147

1144 (discriminator 3)

dword ptr [r nk
mov dword p s (path rank:
k: ©.9070002

138751 624
239973) //mrl

Figure 3.3: Root cause output excerpt with true root cause highlighted

Use Cases and Limitations

The nature of Aurora’s analysis is that it synthesizes explanations for software bugs based
on concrete observations and observed ability for a particular predicate to classify inputs
into either crashing or non-crashing categories. This approach allows Aurora to infer root
cause analysis of bug types without a priori knowledge of bug categories or behaviors.
This flexibility comes at the cost of precision and speed, where other approaches might be
able to directly detect a root cause. This suggests that the ideal use for Aurora is to provide
supplemental data in the form of automatically generated starting points to human review-
ers trying to understand the root cause of bugs found by automated fuzzing in continuous
integration or continuous fuzzing frameworks such as Google’s ClusterFuzz.

Bug Classes Aurora can detect:

type confusion

use-after-free

uninitialized version

heap buffer overflow

null pointer deref

stack-based buffer overflow

Given Aurora uses statistical analysis, it has the limitation that it is bound to report some
predicates that are not related to bug condition. While the authors have used heuristics
to reduce known false-positive patterns, it isn't perfect, and some bug patterns may not
be simple enough to express in boolean predicates. In their experimental evaluation, they
noted that some bugs were identified by the top-ranked predicate, while others required
tens of predicates to be reviewed before finding the true root cause. That being said, it's
unknown how much manual effort was involved in fixing the reference bugs used in the
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authors’ experiment, but they contend that the automated nature of Aurora would suggest
it ends up saving developer time in most cases.

Aurora also relies on a fuzzer to create a diverse set of realistic inputs, which means it is
only as good as the population the fuzzer can generate. The authors note that in the case
of crashes found by grammar-based fuzzers, AFLs default mutation was often insufficient.
It may also take a long time to generate a sufficiently large population of inputs for the
statistical analysis to be effective, and the tracing and statistical analysis can also require
large amounts of CPU time and RAM. Even with an extremely capable experimental setup,
the authors noted that in their experiments Aurora ran for up to 17 hours using the timeout
settings they chose. This seems like a long time, but the authors suggest this process
should be fully automated as part of a fuzzing pipeline. Finally, Aurora was published
to GitHub as a proof-of-concept for an academic paper, though the code has not seen
updates or maintenance for several months at the time of this writing.

Approved for Public Release; Distribution Unlimited.



3.2 FANS

36

Reference Link

https://github.com/iromise/fans

Target Type Binary

Host Operating System Linux
Target Operating System Android
Host Architecture ARM (64-bit)
Target Architecture Python 3
Initial Release 09/2020

License Type

Open-source (no specified license)

Maintenance

last updated 2020

Overview

FANS (Fuzzing Android Native Services) is a generation-based fuzzing tool for fuzzing
Android native system services. To create inputs, FANS analyzes Android Remote Pro-
cedure Call (RPC) interfaces, and extracts corresponding semantic models. From these
models, FANS then generates inputs to test target services. [32][33].

Design and Implementation

FANS is primarily built around how Android applications communicate with system ser-
vices. To communicate with system services, Android applications query the Android Ser-
vice Manager, to which all services are registered. In turn, the Service Manager provides
remote procedure call (RPC) interfaces as an API. Services will then use the onTransact
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function for processing application requests. These requests are referred to as "transac-
tions”.

FANS consists of four primary components which extend the transaction functionality:

The

Interface collector
Interface model extractor
Dependency inferrer

Fuzzer engine

se steps are shown in the figure 3.4.

4 Interface \ / Interface \ ( Dependency \ / Fuzzer \

Collector Model Extractor Inferer Engine
SOU rce onTransact
‘ Compile Fuzzer Manager
& P push corpus
I Source Q-0 | _pushiuzzer
readint3.

> Transaction pull logs

data  pid Dependency Graph

status_t XXX::onTransact(...)

return

& IMediaExtractor-
Service

@ IMediaExtractorService reply BAD_VALUE ERROR IMediaExtractor

IMediaExtractor

fetch corpus.

store logs

IDataSource

Abstract Syntax Tree

IDataSource v
C Datab: Crash L
\ / \ / \ Dependency Graph ~ / \erus atabase ras ”g/
l [

Figure 3.4: FANS design[32]

A more detailed explanation of this process is as follows:

1.

The interface collector, collector. py, scans for the onTransact function in every C++
source file found in the compilation commands of the Android Open Source Project
(AOSP). This way, both the interfaces generated from the Android Interface Definition
Language files and also the interfaces initially written in C++ will be included in the
model extraction.

The interface model extractor process will use the Clang compiler to convert the rel-
evant C++ files to LLVM IR. It then uses the generated AST to identify the types of
transactions based on the switch statement in the onTransact functions. Transaction
inputs are extracted by analyzing the sequential reading of information from the data
parcel, which is an argument to onTransact. E.g. data.readInt32(). Transaction
outputs are extracted by analyzing the serialization of information in reply.

The dependency inferer will analyze the AST, discover dependencies between multi-
level interfaces via the serialization of interfaces with writeStrongBinder and the
deserialization of interfaces with readStrongBinder. Additionally, variable inter- and
intra-transaction dependencies are inferred as well.
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4. The fuzzer engine consists of two main parts, the fuzzer binary and the fuzzer man-
ager. The fuzzer binaries are pushed directly onto the phones with adb and synced
with the fuzzer manager. Transactions are randomly generated, checking for con-
straints on the transaction variables, checking if any dependent transactions are nec-
essary, and then generating the variables themselves. Output is aggregated from
ANRs, tombstones, and logcat. The Organization of aggregated output is shown in
figure 3.5.

XA XK XK -KX-KX-XX-XX

—— Device Serial # the device serial
— 0 # how many times has this device been flashed
— anr # Application Not Responding logs
— fuzzer log # fuzzer logs related with fuzzer itself
— logcat # logcat logs generated by the smartphone
— tombstones # tombstones generated by the smartphone

—— anr
— fuzzer log
—— logcat

— tombstones

—— anr
— fuzzer log

—— logcat

— tombstones

— device manager.log # logs generated by the manager
—— Device Serial

Figure 3.5: FANS output.

Use Cases and Limitations

The primary use case of FANS is to have broad, scalable fuzzing of system services in
the native environment, With the primary appeal being that fuzzing input is injected intelli-
gently in the same manner as a potential adversary. The transaction generation method
is novel, where fuzzers like BinderCracker generate input based on previously recorded
transactions, the transactions generated by FANS use statically inferred grammar. This
increases diversity and coverage by using infrequently used transactions and formats.

The primary target of FANS is the standard services that can be found in the Android Open
Source Project (AOSP). This does not necessarily include vendor and hardware services.
Additionally, due to the nature of fuzzing the system services, the phones are automatically
reflashed when needed, slowing down the number of executions per second. Additionally
there is a decent amount of overhead in setting up the environment for FANS. For example,
AOSP must be compiled twice, once with address sanitization.
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Reference Link

https://github.com/seemoo-lab/frankenstein

Target Type

Binary - Broadcom Bluetooth processors

Host Operating System

Linux

Target Operating System

Broadcom proprietary OS built on ThreadX

Host Architecture

Python 3.6 and above

Target Architecture

ARM (32-bit) (generally)

Initial Release

09/2019

License Type

Open-Source

Maintenance

Maintained by Seemoo Lab

Overview

Frankenstein is a suite of tools for emulating and fuzzing Broadcom Bluetooth firmware [34].

It uses a complementary tool, InternalBlue, to collect firmware. Frankenstein patches the

firmware, compiles ancillary files, and links all of these into a single, static ELF file. Sub-

sequent instrumentation and QEMU emulation enables coverage based fuzzing. There
are a variety of prepackaged, ancillary files and tools that enable fuzzing, emulation, and
heap sanitization. A user with domain specific Bluetooth and coprocessor knowledge can
efficiently write fuzzing harnesses in C that directly invoke code segments of the virtual

chip.
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Design and Implementation

Frankenstein collects firmware using the InternalBlue tool. Once collected, the firmware
consists of segments that must first be reassembled. This firmware is designed to run on
a bare-metal ARM 32 processor and must first be augmented to allow execution as a user
space process. This is done through an ancillary C file that defines the entry point to the
application. This can be seen in figure 3.6:

r | ] e
i ALY ;
KW : ROM.bin ! i L]
[ | umitstate |SREHVERR | <bicor ' : [
¥MIO1 : FMIOL . bim . Link < ] . FM101 .
¥MIOZ : HH10Z.-Bin i E KH102 g
................. . T
L Enilry m Starti)
'l.: ......................................

Figure 3.6: Components of the Frankenstein Emulation Process [35]

Frankenstein aids the user generating a mapping between function addresses and sym-
bols. It uses this information to generate a linking file, symbols.1d, which allows the user
to write test applications that link against the firmware. Frankenstein suggests the use of
another tool, Polypyus [36], to discover differences between existing and new firmware
in order to ease symbol creation. Once generated, the user can write custom, powerful
test applications. There are a variety of prepackaged tools such as execute for testing
non-interactable execution and hci_attach for full firmware, live fuzzing. Both of these
tools can be used to target specific portions of the firmware. There is a prepackaged ap-
plication 1mp_fuzz for fuzzing the Bluetooth link manager. The code below, hci_test.c,
demonstrates the ease with which test applications can be written. (Figure 3.7):
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void hei idle Loop() {
while{1) {

bcs_tick():
contextswitchl);
check_and_handle_timers (18
contextswiteh():
hei_rx_poll(l);
contextswitch():

r

void _start() |
patch_codel();
idle loop = hci idle loop:

printi n"):
Nl rx_fTad iH
hei_tx_fd I
print( n"):

int rnd = open("/dev/urar ; O_RODOMLY) ;
acl fd rrd :

ing fd = rnd;

page_fd = rnd;

le fd = rnd;

fistill do not

printi{ n"):
patch_jump(rm_getBBConnectedACLUsage, retd);
print{ ")

cont{);

Figure 3.7: Fuzzing Harness for HCI Testing

The Frankenstein tool suite is a Django web application running on localhost that organizes
work as projects. The web application helps generate build files, though compilation is
accomplished independently from the command line. To use Frankenstein, a user must
create or leverage an existing project, then load the appropriate binary segments and
symbol data. A variety of existing Bluetooth projects and firmware come prepackaged
with the tool, seen in Figure 3.8:
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Figure 3.8: Project Creation Page of Frankenstein

The projects themselves map to folders on disk containing data files. Several existing
sample projects are included with Frankenstein, as shown in Figure 3.9.

Figure 3.9: Existing Project Demonstrating Various Components
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Using the web interface the user can specify segments, as shown in Figure 3.10.

Figure 3.10: Loading Binary Segments into Frankenstein Project

Users may also specify symbols (Figure 3.11) and compiler flags (Figure 3.12).

'

Figure 3.11: Adding Symbol Addresses to a Frankenstein Project
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Figure 3.12: Specifying Compiler Flags for Generating the Frankenstein Emulator

The user must then invoke the compiler on the host withmake -C /projects/<Project Name>.
The resulting files are then visible and can be executed through the web application (Figure
3.13).

Figure 3.13: Components of Compiled Frankenstein Projects

The output, registers, and coverage metrics are displayed on the same page, seen in
Figure 3.14.
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gciotp_control_1_reg + 8x Mbc - udf #@xod - ExiE

Segment_0x0

Figure 3.14: Code Coverage Metrics of Frankenstein Emulator

Use Cases and Limitations

Frankenstein enables emulation of Broadcom Bluetooth firmware as virtual processors.
The host operating system can register the emulated device as a Bluetooth processor, as
shown in Figure 3.15, granting full stack fuzzing down to the hardware.
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$ hciconfig
hcid: Type: Primary Bus: UART
BD Address: 20:73:5B:17:69:31 ACL MTU: 1840:20 SCO0 MTU: 64:1

UP RUNNING
RX bytes:864 acl:@ sco:0 events:6@ errors:@
TX bytes:3273 acl:@ sco:® commands:6@ errors:@

Figure 3.15: Emulated Bluetooth Co-processor Registered to Operating System

The firmware is patched to allow remote excitation of transmission routines granting the
user direct interaction with the firmware. Further, introducing symbols allows for flexible
test application development. The prepackaged tools hci_attach and 1mp_fuzz allows a
user to send arbitrary packets to the Bluetooth co-processor through a UART[37] interface
or by simulating over-the-air traffic, as seen in Figure 3.16.

£ cat Sdev/
e=BEPts /
exBBAttaching Primary controller to /fdev/pts/8
Switched line discipline from @ to 15
Device index B attached
r=ExR24ea5 dynamic memi

@x@c)HCI Event (Direct Write)@d48abfS5684cra5fE8ce25adl

Figure 3.16: Feeding Random Input to Frankenstein Fuzzing Harness

Unfortunately, this powerful emulation capability requires substantial domain specific Blue-
tooth and Broadcom knowledge. Generating symbols for the firmware also requires re-
verse engineering skills or leveraging a diffing tool. A working understanding of Bluetooth
HCI tooling and QEMU emulation is necessary for sanity checking running firmware. Most
importantly, this knowledge is necessary to differentiate bugs in Frankenstein from those
in the emulated firmware. An example bug is show in Figure 3.17.
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Figure 3.17: Invalid Instruction Encountered during Coprocessor Emulation

Collecting binary segments requires use of the tool InternalBlue and reintroducing sym-
bols to segments that have not been previously examined requires reverse engineering or
diffing existing binaries. Finally, writing test cases requires understanding control flow of
the Broadcom operating system to properly handle fuzzing target functions while appropri-
ately managing context switches and timers. That said, Frankenstein and its dependency
InternalBlue are the most readily available tools for carrying out this type of analysis.

Minor Bugs While using the tool a variety of minor bugs were encountered. First, the tool
needed more dependencies than listed - pip modules ans2html, unicorn, and capstone.
The tool by default sets up a server on localhost but can be modified for remote use if
desired. To do so, edit the file frankensteinWebUl/settings to change:

ALLOWED_HOSTS=["127.0.0.1", <host name or public facing IP>]
Then run: python3 manage.py runserver 0.0.0.0:8000

Another bug involved deleting symbols and segments. If there was no item to delete, it
instead deletes the entire submenu. Finally, the tool doesn’t properly render in Firefox
as the showModal function is not supported, as shown in Figure 3.18. Therefore, it is
recommended to use a different browser than Firefox.
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Figure 3.18: Rendering Errors in Frankenstein Project
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Reference Link

https://github.com/HexHive/FuzzGen

Target Type Library source code
Host Operating System Linux

Target Operating System Linux

Host Architecture x86 64

Target Architecture

LLVM Bitcode

Initial Release

November 2019

License Type

Apache 2.0 (Open Source)

Maintenance

Last commit November 2020

Overview

FuzzGen[38] automates the creation of LibFuzzer[14] test harnesses for shared and static
linked libraries. It shares similarities with other automatic driver/harness generation work.
[39][40][41][42][43] FuzzGen scales the fuzz test harness generation in three distinct steps.

FuzzGen has been tested on the Android Open Source Project (AOSP) and with Debian
source repository packages, and it found 17 previously undisclosed vulnerabilities. Fuz-
zGen’s performance was measured with code coverage as a proxy for efficacy, and the
auto-generated fuzz test harnesses were compared against human built test harnesses.
An overall observation was that FuzzGen created more fuzz test harnesses in a shorter
amount of time than the humans, and the code coverage of the auto-generated test har-

nesses was usually, but not always, greater than that of the human generated ones.
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Design and Implementation

FuzzGen generates a representation of binaries using a library. To do this, it performs a
whole-system analysis to identify all code in the system that uses the fuzz target’s external
interface, and it generates a control flow graph (CFG) for these binaries. The fact that
FuzzGen makes use of all available information from the system about how a library is
used is significant because it means that the tool can build a more complete understanding
of how to interact with the library. FuzzGen is built on top of LLVM and relies on having
access to source code, so it has insight into primitive and complex data types and knows
where and how they are initialized and used. FuzzGen prunes a binary’s CFG to remove
basic blocks (BB) to create a graph that only has one target library function call per node.
It also encapsulates the data dependency between the function calls. FuzzGen calls the
resulting graph an Abstract APl Dependence Graph (A2DG). This graph, in essence, is a
topological ordering that describes how to initialize data types and how to sequence the
target library API calls. This mimics how a human would analyze how to set up a fuzzing
harness after manual analysis.

To make use of the whole-system analysis, FuzzGen coalesces A2DGs from different
binaries by merging common nodes (i.e., same function call with the same data types).
This process is done starting from the root node of each graph. If a node is merged
then its descendants are also migrated from one graph into the merge destination graph.
Migrated nodes can also be merged later and topological ordering is maintained while
merging nodes between graphs. If there are no common nodes, then the two A2DGs are
kept separate. The coalesced A2DG builds a more complete picture of how to interact
with a library’s interface as it was intended.

FuzzGen creates fuzz test harness stubs using the coalesced A2DG. It first flattens the
A2DG by creating a direct acyclic graph (DAG) and grouping nodes topologically by hier-
archical level in the graph. While traversing the graph, FuzzGen randomly selects a node
from a single group of nodes, and it ties the nodes together using the data dependency
information encoded in the A2DG nodes. Fuzzing stub headers and linking information
are also extracted from the A2DG.

Use Cases and Limitations

FuzzGen is currently limited to source-code based analysis, and it works best when it has a
corpus of programs that interface with the fuzz target. These programs must be compiled
into LLVM bitcode. The intuition that drove the creation of FuzzGen seems reasonable.
Each stage in the FuzzGen workflow is essentially how a human would perform the work
when investigating a single binary.

It is likely that there is a version of the tool that works as was claimed in the paper; however,
the version that is publicly available on GitHub.com[38] seems to be brittle. Tooling to cre-
ate the FuzzGen components could be more reliable, and the results in the paper could
be made more easily reproducible. For example, the paper claims that the tool has been
successfully used on Debian source packages (but AOSP is a first tier target); however,
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the project maintainers say that using FuzzGen on Debian source is "an exercise left to the
reader” because FuzzGen is ”... research-quality code that requires some hand holding
and very specific LLVM and system versions to compile (and likely a complete rewrite for
production).” Currently, it may not be worth the time investment to make the FuzzGen tool-
ing and to get FuzzGen to work on code outside of the AOSP. That said, it may be possible
to get FuzzGen to work on other projects that build from source such as Buildroot or Yocto
Project. It may also be possible to extend FuzzGen for binary-only fuzzing; however, it
will suffer from the imprecision of missing or incorrect data type recovery and incomplete
control flow graph recovery.
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3.5 Ghidra Debugger

Reference Link https://github.com/NationalSecurityAgency/ghidrg

Target Type Binary

Host Operating System Windows, Linux

Target Operating System Windows, Linux

Host Architecture x86 (32, 64)

Target Architecture x86 (32, 64)

Initial Release 05/2021

License Type Open-Source

Maintenance Maintained by the National Security Agency
Overview

Since late 2020, Ghidra’s native debugger has been available from the Ghidra repository
[44]. As of May 2021, the debugger tool is now included in the Ghidra 10.0 Beta release.

Design and Implementation

The Ghidra debugger is a front-end for external debuggers, allowing users to drive de-
bugging sessions directly from Ghidra. Ghidra debugger currently supports user-mode
Windows applications on 64-bit hosts via dbgeng.dll/WinDbg and 32-bit applications via
WoWe64. Additionally it supports Linux applications on amd64/x86_64 hosts via GDB, in-
cluding 32-bit i686/x86 applications [45]. Ghidra debugger works by connecting to the
local gdb or dbgeng.dll agent over Ghidra Asynchronous Debugging Protocol (GADP).
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A review of the Ghidra interface is as follows:

Objects The Objects panel allows the user to interact with the connected debugger. Figure
3.19 displays a hierarchy that describes all the objects in a program’s execution. In addition,
the objects panel is where the user will enter common debugging commands such as "step
over” and "resume”.

oo X

» HLFLEEE e | 2 (& (&

Objects

¥ O Session

- e
- e
Te
L

Awvailable
Breakpoints
Inferiors
© 1- process 182295 - fhomefvaerial/test
* @ Breakpoints
Environment
Memory
Modules
Threads
¥ = [1.1:182295] test stopped at Oxlx0000T7T7T4ody in __pthread_clockjoin_sx
¥ @& Stack
F O B0 ORTFIIded? in __pthread_clockjoin_ex ()
¥ O [1.2:187536] test stopped at Ox0w0D005555555552 e in mythread
vy e

|
|
|
L)

* 8 8 0

Stack
O #0 05555555552 in mythread ()

[1.
Ye
[

-
* #1 O FEFFFFF93609 in start_thread ()
-

O &2 07 7eba2f3 in clone ()

3:187537] test stopped at Owlx00005555555552 e in mythread
Stack

O #00x55555555521e in mythread ()

O &1 Ow7FFFF93609 in start_thread ()

3
O g2 0x7f7eba2s3 in clone ()

Filter:

Figure 3.19: The objects panel

Dynamic listing Similar to Ghidra’s static listing, the dynamic listing displays the target’s
memory. However, the dynamic listing will update with the memory contents of the execut-
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ing program when debugging certain triggers cause debugging to pause. Just like during
static analysis with Ghidra, the user may patch instructions in the dynamic listing after the
program has been loaded in. Also, memory regions that have not been read yet will be
greyed out (figure 3.20).

B RIP: echo DB EH B eop -y X
echo (.text)
L8 L L
00400028 66 c7 44 MOy word ptr [FSP + Oxcl,0x21
24 Do 21 00
0040002f 8 2d 00 CALL 00400061
oo oo
child
0400034 48 83 ec 10 SLE RSP, 0x10
0400038 c7 04 24 MoV dword ptr [FSF], Ox2cE57942
42 79 65 Zc
0040003F c7 44 24 MOy dword ptr [RSF + 0xd], 0x726T5720
o4 20 57
6f 72
00400047 c7 44 24 MOy dword ptr [RSF + 0xB], 0x21645¢
08 Gc 64
21 00
0040004 e8 Od 00 CALL 00400081
oo o0
00400054 00 [ Qoh
004000z% 00 PP Qch
00400056 00 P @oh
00400057 00 [ Qoh
0o4000z2 00 PP Qch
00400059 00 [ @oh
004000%a 00 [ Qoh
0o40e0sh oo PP Qch
0040005c 00 [ @oh
a040RASd G6 27 fah
< J

.q’

Figure 3.20: The dynamic listing panel

Conveniently, the static listing panel is synchronized with the dynamic listing panel when
running the debugger. Selecting a location, current instruction, or breakpoint in one panel
will update the other and vice versa. This additionally applies to the decompile pane (figure

3.21).
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[ Bynamic- &P, 1 - process 249737 -_home vaerial test 2021.07.15-11.35.54-7DT naf Fa =3 - % L@ x|
thomenaerialtest toxt
T :1 Bd Idi! % T i a] undefineds mythread(void)
555555555232 b8 00 08 wov EAX, 0x0
% 00 ¢
555555555237 ¢8 a4 fe L 555555555068 pthread t plarl;
523c b8 60 00 oV L0x0 sleen(1);
o 00 Varl = pthread_self();
s2a1 e . printf(*Thread (x14) has conpleted.\n®,pvarl);
5 5242 €3 RET ) E o
555555555243 3 77 3h g
555555555244 0 » oFh
59555 le # £h
5 fi Ah
5 shoou
5 ash o
5 ? aon
- v
e 7y
s BE = &l
00101211 48 83 ec 10 SUB 5P, 010 L
00101215 48 89 74 T8 MOV quord ptr [REP + local_16].RDI
90191219 bf 01 99 v £01,0x1
0 o0
9019121 8 ed fo caLL sleep
£
90191223 o8 c8 fo cALL pthread_sel®
£ 11 D
0101228 48 89 <6 MoV RST,R
00191220 48 84 30 LeA 01, [5_Thread_(%1d)_has_conpleted. 00102004]
d2 od 00 00
90101232 b8 00 00 Mov £, 0x0
0 oo
00101237 o8 ad fe caLL printf =
ff ff
010123 b8 09 00 wov EAX, 0x0
0 o0
20101241 €9 LEAVE
20101242 3 #ET
v
=% — e I | €5 becomplle mythread * [ 2% Modules « | & Regsters = | O Breakpoints % | I Interpreter » |

Figure 3.21: The dynamic listing, static listing, and decompile panes when selecting the return instruction
and displaying a breakpoint on the printf call

Memory regions Different memory regions and their details can be found in the regions
pane. These regions generally consist of pages allocated for the stack, the heap, etc.
Details about these regions include when the region was created or destroyed as well as
its location in memory, size, and permissions (figure 3.22).

B regons B x|

Name §| Lifespan Start End Length ‘ Read |Wr’n:e ‘ Execute ‘Volatile
Jhometvaerialftest [0x555... [3..+92) 555555554008 555555554 FFF ax1008 (] ] ] O
/homefvaerialftest [0x555... [3.+09) 555555555000 555555555FFF 0x1000 [} () &) @]
/homefvaerialitest [0x555... [3.+59) 555555556000 555555556 FFF 0x1000 () [} ™ ]
Jhomesvaerialftest [0x555... [3..+89) 555555557008 555555558 FFF ax2008 ] ] ] O
Jusr/lib/x86_64-linux-gnu/l... [3.+09) FFFff7fcfeas TEFFFTfCfFFf ax1080 ] o ] g
Jusr/lib/x86_64-linux-gnu... [3.+09) 7FFffIfdesoe THEFFTFF2FFF Bx23000 [} o e} ]
Jusr/librxB86_64-linux-gnuil... [3.+09) EARRRRARELLLS TFFFFIffafff 2x8000 [ o e ]
Jusr/lib/x86_64-linux-gnu/l... [3.+90) FFFFF7ffcean TEFFFTFFdFFf 8x2000 ] o ] @]
77 [0x7fFF7fe000-0x7fFF7... [3.+99) PARRR AR L L TFFffiffefff 0x1000 [} (&) ™ ]
[stack] [0x7ffffffde000-0x.. [3.+92) 7ffffffdenon TFFfffffefff 8%21000 (&) [} &) =]
[vdsa] [Ox7ffff7fcd000-0x..  [3.+99) FEfFffifcdees IFfFFfifcefff 2x2008 ] (] (] O
[vsyscall] [OxFFFffE000... [3..+00) FHEFFfTFffoeeons FAEFFFFFFieoefff 0x1000 () (&) ™ @]
[wvar] [0x7ffff7fc9000-0%7... [3..+92) 7ffff7fconee TFfffifecfff 0x4000 [} [} e} ]
Filter: &
—lﬂ Regions IE Stack x 1 B console x 1} Watches x J

Figure 3.22: The Regions pane

Threads Ghidra’s debugger allows navigating thread contexts, viewing their state, and
stepping back and forth through the execution of those threads. Traces can also be saved
and loaded into the debugger (figure 3.23).
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ez Ls[w [[5]x

@ [5432] 2020.12.16-12.51.14-EST|

&|Created

|Destroyed

State

| Comment v_
0 STOPPED GUI main loop ]
1 STOPPED Server
2 6 TERMINATED Handler 1 121
59 TERMINATED Handler 2
[3]
Filter: B S [4]

Figure 3.23: The threads panel

Traces The Ghidra debugger offers a "time travel” functionality by recording traces and be-

ing able to rewind execution through these recorded traces. This functionality is available
in the trace pane (figure 3.24).

Fle Edit Debugger Propect Toals Help
LEEEE LIRS
;I'ﬂd Chest

Active Project: test

v L est
v L7 Mew Traces

&) 1 - process 104304 - _nome_vaenal_test 2021.00.15-09.44.00-FOT

test

Filter:

[Tre-e‘q"rew | Talle View |

Running Tools

#

Lw.:rkirm-:r L

b& eted local fike 1 - process 21670 - _home vaenal_test 2021.07.15-11.01 00-PDT

Figure 3.24: The Ghidra project window displaying saved traces

P-code debugging The Ghidra debugger also includes a Pcode stepper. (Pcode is Ghidra’s
intermediate representation of machine instructions used in decompilation and other anal-
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yses.) The Pcode stepper provides a means of executing instructions at the Pcode level
and displaying details of the machine state (figure 3.25). This could be useful for debug-
ging new architectures that are built using Ghidra’s SLEIGH specification language.

L~ Pcode Stepper - 0:.10-7 Pz L3 | X |

0 CF = INT_LESS RSP, 64:8 .. |Unique P |Bytes value Type Repr
1 OF = INT_SBORROW RSP, 64:8 + §Ul2c00:8 bs 00 00 0O... 0xb8
2 RSP = INT_SUB RSP, 64:8 — $Ul2cB0:1 00 0x0
3 SF = INT_SLESS RSP, 0:8 $U12d00:l 00 0x0
4 7F = INT_EQUAL RSP, 0:8
5
&
7
8

$ULZ2c00:8 = INT_AND RSF, 255:8
$ULZ2cB0:1 = POPCOUNT $U12c00:8
$U12d00:1 = INT_AND $U12c80:1, 1:1
FF = INT_EQUAL $Ul2do0:1, 0:1

)
tt

Filter:

Figure 3.25: Ghidra Pcode Stepper Window

Use Cases and Limitations

Most of the Ghidra debuggers limitations stem from its relative newness. Many bugs exist,
such as crashing when switching between traces. The tool is also somewhat unintuitive
to use by those used to terminology used in other debuggers. For example, watchpoints
are also classified as READ breakpoints. In addition, breakpoints can only be added after
the target program has been mapped to memory. Another drawback is lack of support
for foreign architectures. With some extra work, users may mitigate this by telling Ghidra
to execute IN-VM and connect to an instance of gdb-multiarch. Additionally, there is no
tracing for some architectures including, but not limited to, MIPS, PowerPC, and ARM [45].
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Reference Link

https://github.com/seemoo-lab/internalblue

Target Type

Binary - Broadcom Bluetooth processors

Host Operating System

Linux; Android 6-11 (jailoroken); iOS 12-14
(jailbroken); macOS (High Sierra -BigSur)

Target Operating System

Broadcom proprietary OS

Host Architecture

Python 3.6 and above

Target Architecture

N/A but generally targets ARM (32)

Initial Release

01/2018

License Type

Open-Source

Maintenance

Maintained by Seemoo Lab

Overview

Internal Blue is a python tool that enables reverse engineering and vulnerability analysis
of Broadcom Bluetooth processors. It is a "Swiss Army Knife” of capabilities. Of its many
operations it can: send and monitor host to Bluetooth communication (HCI); establish
Bluetooth connections; inject Bluetooth protocol packets (LMP, LCP); and invoke a variety

of proprietary processor commands.

Design and Implementation

Internal Blue is designed to interface with peripheral Broadcom Bluetooth chips on a variety
of host operating systems [46]. The tool itself is a python framework that can invoke a
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variety of capabilities from its own command line interface. A subsection of capabilities
can be seen in figure 3.26:
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Figure 3.26: Internal Blue Command Line Interface and Options

The tool can run on a variety of host operating systems including Linux and MacOS. For
these operating systems it uses BlueZ sockets on Linux and undocumented I0OBluetooth
API on MacOS. It can target handsets directly as well, though each may require unique
setups whose capabilities vary by privilege and device instrumentation. Internal Blue uses
Android Debug Bridge to interrogate a rooted Android device with an instrumented Blue-
tooth stack. It targets rooted iOS devices using a special daemon installed onto the device.
In either method, the tool makes the handset listen on a TCP socket on which the user can
monitor, or inject a variety of Bluetooth protocols into the Bluetooth processor.

Use Cases and Limitations

Internal Blue’s main limitation is less associated with the tool itself, than with the high
degree of prerequisite knowledge required for reverse engineering Bluetooth processors.

To leverage InternalBlue’s most interesting capabilities, users must first modify the soft-
ware under test to install instrumentation, a non-trivial process. For example, on Android,
the entire Bluetooth stack must be recompiled with instrumentation, patched if it is par-
ticularly recent, and re-flashed onto the device. While documentation the Internal Blue
distribution includes documentation that describes the relevant steps, it is nonetheless
complicated for the uninitiated.

Fortunately, it may be the case that a researcher uses or can acquire a host device that
shares a similar Bluetooth co-processor as the target. If so, the researcher can use Internal
Blue on their host rather than instrument the target device itself. For Linux and BlueZ,
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Internal Blue works out of the box.

Three complicating factors include the Host Controller Interface (HCI) protocol, Link Man-
agement Protocol (LMP), and Link Controller Protocol (LCP). Fortunately, Internal Blue
abstracts the required knowledge of these protocols for Broadcom chipsets. Complex and
proprietary capabilities are simplified into commands directly accessible to the user.

These capabilities include: reading and writing RAM and ROM as shown in figure 3.27,
patching 4 bytes of data at a specified addresses, reading entire memory spaces, adding
debugging breakpoints, and many more. Researchers can also inject Bluetooth traffic to
send data to connected peripherals.

Internal Blue’s novelty is that it greatly lowers the barrier to entry for researching Bluetooth
processors. Further benefits include simple installation, high robustness, and a responsive
development team.

[> dumpmem

[[#] Update '/root/memdump.bin'? [yes/no]

(/] Refresh internal memory image: Received Data: complete
] Memory dump saved in '/root/memdump.bin®!

> exit

%] Shutdown complete.

[root@pid-3:~# >xxd -1 18 /root/memdump.bin
00000000: 0004 2000 bde2 0008 3dol

Figure 3.27: Reading ROM from Bluetooth Coprocessor
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3.7 JMPscare

Reference Link https://github.com/fgsect/JMPscare

Target Type Binary

Host Operating System Linux

Target Operating System Linux

Host Architecture x86 (64)

Target Architecture x86 (64); ARM(32); MIPS (32)

Initial Release 02/2021

License Type Open-source (MIT License)

Maintenance Not currently maintained - Last updated
02/2021

Overview

JMPscare assists fuzzing closed-source binaries by taking fuzz results and identifying
interesting branches which are never taken. Such branches would otherwise prevent the
fuzzer from exploring deeper into that part of the program. By identifying these branches,
the human can then modify the target or harness to force exploration beyond the existing
frontier of explored basic blocks.

Design and Implementation

Presented at NDSS 2021 Binary Analysis Research (BAR) Workshop, JMPscare is com-
posed of three main components:
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1. Collecting traces from emulated executions of the fuzz target. The primary mecha-
nism currently is unicornafl.

2. Analyzes these traces using a standalone JMPscare tool

3. Using the output of the standalone JMPscare tool to annotate conditional branches
in the disassembly view of Binary Ninja and enable users to quickly patch the binary
to enable the fuzzer to make faster progress over “roadblock” conditionals [47] (figure

3.28).

Figure 3.28: JMPscare Binary Ninja plugin identifying a “roadblock” 4-byte comparison [48]

Use Cases and Limitations

JMPscare is suited for use on targets of sufficient size to preclude easy manual analysis of
fuzzer progress. In closed source fuzzing, it is often difficult to introspect fuzzer behavior
using tools like Lighthouse alone. JMPscare should ideally enable the human-in-the-loop
to identify high-value frontiers beyond which are completely unexplored basic blocks, as
shown in figure 3.29.

[ ] Covered BB
[ ] Missed BB

| Frontier

Vi

Hero Branch

_

Figure 3.29: JMPscare’s goal in identifying interesting basic blocks [47]
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JMPscare is still partly in the proof of concept stage. Its “Potential New Coverage (PNC)
Analysis” is ARM only; the authors flatly state it is at PoC level currently. Other limitations
include the fact that it does not yet work with gemu-mode. Lastly, run-time jumps are not
resolved by JMPscare static analysis and instead a human assigns a placeholder weight.
This is not a scalable bandaid for reachability analysis.

JMPscare has not had any commits to its repo since NDSS 2021 [49]. If this represents
only a brief hiatus and active development resumes, it could become a more oft-used tech-
nique to ensure fuzzers aren’t becoming stuck on roadblock conditionals that are difficult
to solve a very common problem with off-the-shelf fuzzing approaches.
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Reference Link

https://github.com/sslab-gatech/krace

Target Type Linux Kernel
Host Operating System Linux
Target Operating System Linux

Host Architecture N/A

Target Architecture N/A

Initial Release 05/2020

License Type

Open-Source

Maintenance

Not currently maintained - last updated 2020

Overview

KRACE is a coverage guided kernel file system fuzzer that reasons about concurrency to
find data races. More specifically, KRACE uses a novel alias coverage metric (in addition to
standard branch coverage) to track threaded memory access instructions that may cause

concurrency bugs.

Design and Implementation

Like many other fuzzers, KRACE has two distinct steps: instrumenting and fuzzing. (See

figure 3.30).
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Figure 3.30: KRACE's architecture and components [50]

For the instrumentation step, KRACE instruments memory access instructions in a spec-
ified file system module along with that module’s associated journaling (error correcting)
module. This is carried out through kernel annotations, an LLVM [51] instrumentation
pass, and the KRACE library compiled in the kernel itself. KRACE also provides coverage
tracking and logging.

For the fuzzing step, KRACE first creates an execution environment consisting of multiple
VM instances running inside QEMU. Each instance has a private memory mapping for
test cases to be executed and uses the Plan 9 Filesystem Protocol (9P) [52] for sharing
file system images and execution logs. Coverage bitmaps are stored in globally shared
memory that is accessible to the host and all VM instances. This is illustrated in figure
3.31 and 3.32.
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Figure 3.31: KRACE’s implementation of the QEMU fuzzing executor [50]
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ivshmem-mapped memory

| 4 MB | -> header

| 4 MB | -> cov _cfg edge

| 4 MB | -> cov_dfg edge

| 4 MB | -> cov_alias inst

|240 MB | -> (reserved)

————————— (256 MB) header

| 2 MB | -> metadata (userspace: mount options, etc)
| 48 MB | -> bytecode (userspace: program to interpret)
| 12 MB | -> strace (userspace: syscall logs)

| 2 MB | -> rtinfo (kernel : runtime info)

| 64 MB | -> rtrace (kernel : racing access logs)
————————— (128 MB) instance

Figure 3.32: Inter-VM shared memory, pass/dart/dart_common.h [53]

After the execution environment is set, KRACE uses branch coverage to track sequen-
tial execution paths, and alias coverage to track multiple sequences of memory access
instructions in concurrent threads. During runtime, each memory address is mapped to
its last write operation. When another thread reads from that same memory address, that
ordered pair is recorded as new alias coverage.

The seed input for KRACE is multi-threaded sequences of filesystem related syscalls. The
input arguments to each syscall are generated and tracked using a specification, where
basic dependencies are maintained, e.g., closing on a previously opened file descriptor.
KRACE will then mutate the seed by adding new syscalls, reordering syscalls, and modi-
fying arguments. To produce a new seeds, KRACE will merge two seeds together while
preserving the order for syscalls relative to their respective original seed (figure 3.33).
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Seed 1 Combined Seed

mekdie (|p=1], 0777 creatal |p-1], Q7771 = <fdl>
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nkdie [ Jp=21, 0T}
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eend|lp=21, @ BATH..., O0777) = «<fdi>
= fayne (<fd5»)

faync (<fdZ>)

Seed 2 thread F\
shuttling rotation:

Figure 3.33: Merging two seeds of multi-threaded syscalls. Threads are marked by a shade of greyscale
(50]

Given that KRACE operates in the concurrent dimension, thread scheduling may also be
used as a form of input. Rather than hooking the scheduler, delay injection is used. Before
execution, random integers are generated and mapped in kernel space. The instrumented
code around each memory access fetches one of the integers and delays for that number
of memory accesses observed in other threads across the entire system.

Whenever a new seed is discovered, KRACE performs the data race checking process
in separate threads, when resources are available. This is more efficient than checking
during execution, as the analysis is costly. This data race check is performed in three
steps.

First involves finding the race candidates to check. This is done during runtime via the
memory access hooks. A pair of memory operations is a data race candidate if, at runtime,
they access the same memory location, they are issued from different contexts, and at least
one of them is a write operation [50]. To remove any false negatives, a lockset analysis
is performed. This checks to make sure no two contexts hold the same lock when they
perform a memory operation.

Finally, KRACE recursively performs a happens-before analysis [53] to help filter out false
positives. It does this by ensuring that parallel instructions involved in a race candidate
are able to happen safely. KRACE performs this check by hooking kernel synchronization
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interfaces dynamically.

Use Cases and Limitations

KRACE'’s primary use case is to find data races in ext4, btrfs, and xfs filesystem imple-
mentations. Additionally, it can find data races in the virtual file system layer.

In comparison to other fuzzers, KRACE has a significantly slower execution speed, though
it compensates with superior coverage. According to the paper, it outperforms Syzkaller
[54] in the coverage metric. [50]

While KRACE does not offer deterministic replay, it provides a full stack trace, conflicting
source code lines, and the callback graph in its report. This is similar to other tools such
as Razzer [55].

The main limitation of KRACE is that there is no documentation for building or running the
project. The lack of documentation also means any missing dependencies will need to
be resolved iteratively while attempting to build. Additionally, when cloning the repository,
several of the submodules fail to initialize properly.

Some missing dependencies include, but are not limited to:

sparse

cmake>=3.13
* texinfo

* cgce

* libattr1-dev

* libcap-ng

* nlohmann-json-dev
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Reference Link

https://panda.re/

Target Type

Binary

Host Operating System

Windows (under WSL), macOS, Linux

Target Operating System

Windows; macOS; Linux; BSD; etc. (anything
that QEMU can emulate)

Host Architecture

x86 (32, 64) receives first-class support. Oth-
ers that run QEMU, LLVM11and Python3 may
work.

Target Architecture

Whole system or application binary-only anal-
ysis: x86 (32, 64); arm (32, 64); ppc (32, 64);
mips (32, 64); etc. (anything that QEMU can
emulate)

Initial Release

02/2021 (for the Python bindings)

License Type

Open-Source (GPLv2)

Maintenance

MIT Lincoln Laboratory, New York University,
and Northeastern University

Overview

PyPANDA was presented at the NDSS BAR 2021 workshop. it integrates stages of PANDA’s
whole-system dynamic analysis [56] into Python. It provides Python bindings to a whole-
system analysis framework and provides syntactic sugar for ancillary tasks that would
normally have to be performed external to the analysis framework. This allows for more
unified analysis workflows than with separate tools.

Approved for Public Release; Distribution Unlimited.



71

PANDA is a whole-system dynamic analysis framework. It is built on top of different tech-
nologies; however, it is powered by QEMU at its core. PANDA benefits from the flexibility
of the QEMU emulator to dynamically analyze whole systems or a userspace application
across multiple architectures. PANDA is packaged with a library of built-in analyzers and it
has a C++ API (and now Python) for users to extend and customize PANDA’s capabilities.
PANDA differentiates itself from other dynamic analysis engines in that recorded concrete
executions can be later replayed deterministically. This is important when analyzing bina-
ries that interact with hardware, as hardware internal state machines and system external
interactions affect hardware determinism.

Design and Implementation

PyPANDA provides Python bindings for the underlying PANDA architecture-neutral exten-
sible dynamic analysis framework. The PANDA framework, simplistically, is the QEMU
emulation engine with some additional hook points and data capture capabilities for an
analyst to record and deterministically reconstruct a system state for offline analysis. Py-
PANDA (either as a plugin or as a standalone script) simplifies and tightens the analysis
ideation and implementation loop while keeping the Python interpreter overhead to a min-
imum.

PyPANDA has some syntactic sugar to allow an analyst to programmatically interact with
the guest system, interact with the underlying QEMU framework itself (e.g., monitor/in-
strumentation functions and virtual machine states), and replace GDB hooks with native
Python callback functions. This is what the PANDA maintenance team calls a "unified
analysis.”

Py PARNDA
Y
EE
T
&
b
T

war

Gueast dr
{Python thread)

Figure 3.34: PyPANDA'’s Unified Analysis [56]
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Some additional features of the underlying PANDA framework that are worth mentioning
are the deterministic replay of a previously recorded execution, lifting QEMU TCG instruc-
tions to LLVM instructions, and a library of existing plugins (e.g., "timeless” debugging).
The determinism is especially useful for whole system analysis where hardware states
may affect the overall system behavior (e.g., network packets), and the LLVM lifting and
the Python bindings makes it possible to re-use existing LLVM IR analysis tools and to
interface with other analysis tools with a Python interface.

Use Cases and Limitations

Deterministic Record-Replay

Other tools may be more suitable for application-level dynamic analysis, but PANDA’s de-
terministic record and replay serves an important, niche role in dynamic analysis of binaries
that interact with hardware. The determinism gives researchers a consistent baseline to
check a system’s security properties. To put it in terms of software engineering, PANDA
makes it easier to understand transient and race condition behaviors once the behavior is
recorded.

Timeless Debugging

Hand-in-hand with PANDA'’s deterministic record-replay is a capability called reverse (a.k.a.,
timeless) debugging. PANDA uses VM snapshots—each as large as the VM’s memory—to
enable reverse debugging. For reverse instruction stepping, PANDA restore’s the VM'’s
last snapshot and executes until it reaches the desired instruction. This seems like a
PANDA design tradeoff in reducing engineering complexity at the expense of storage
space. PANDA'’s reverse debugging seems to re-use QEMU’s GDB interface. This dif-
fers from QIRA’s approach of logging execution trace transactions—tracer specific—to a log
file that is later ingested into a database back-end. It also differs from RR’s approach of
limiting traces to user-space transactions, system call inputs and outputs, and processor
specific instructions (e.g., rdtsc, number of instructions executed, etc.). All of the above-
mentioned approaches differ from GDB’s in-memory trace logging for reversible debug-
ging, which limits the utility of GDB reverse debugging in vulnerability research. Again,
PANDA'’s whole-system deterministic replay capabilities differentiates its timeless debug-
ging offering from the rest, and it also borrows some ideas from rr's GDB interface.

It may be interesting to investigate how to combine PANDA with rr’'s compactness or QIRA’s
user interface to make it even more approachable. PANDA can already analyze interac-
tions between two processes on the same emulated machine. It would be interesting to
see if (Py)PANDA can be used to analyze system-to-system interactions (e.g., an HCI
device, a sensor, and a controller system).

As of April 2021, PyPANDA is unable to instantiate two Panda objects at the same time
because each Python Panda object is a full instance of a Panda (C-implementation) that
is loaded with a guest architecture specific shared object. Because of this, attempting
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to instantiate more than one object causes some Panda internal data structures to be
instantiated more than once resulting in a fatal error. The PyPANDA maintainers looked
at potentially segregating multiple Pandas into different namespaces; however, attempts
to use dimopen have not been fruitful.

Non-Intel architectures and non-PANDA generic platforms are not as well supported be-
cause of the level of effort in wrapping all possible non-deterministic devices for PANDA’s
deterministic record-replay. This upfront manual effort may be alleviated if more people
contribute the to project and if tooling or documentation is made available.

It should also come as no surprise that PANDA’s record-replay functionality is separate
from QEMU’s record-replay, and they do not mix well together. Additionally, controlling
the QEMU guest machine clock rate with QEMU’s icount and other similar command-line
arguments has the unfortunate side-effect of making a PANDA recording not replay-able.

The PyPANDA maintainers estimate a runtime overhead of well-engineered Python plugins
at 110 per cent that of a native C-compiled plugin. They have suggested ways of mitigating
the problem, but writing a PANDA native plugin may be worth the effort if performance is
an issue.

PyPANDA relies on QEMU, which is a great basis for system-level emulation of generic
devices. However, for custom or proprietary systems, there is an upfront cost of identifying
all emulated hardware components needed for the analysis target. This is referred to as
the "re-hosting” problem. Using generic devices, if they work, is a time saver. The time
cost to partially or to fully emulate hardware for an analysis would need to be evaluated
against the potential payoff or the potential re-usability of the emulated device.
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Appendix

This appendix provides additional background information on the Edge of the Art project as
well as more in-depth discussion of vulnerability research technologies. This information
gives context to the rest of the document, can provide useful information to those new to
the field, and should remain largely the same from one EotA edition to the next.

4.1 Resources

Staying current with the ongoing advancements of such a fast-moving field requires con-
stant engagement with the cyber security community. The contents of this report are drawn
from four specific areas of engagement:

* Social Media - Participating in social media platforms, including online forums and
chat applications, to identify key influencers, build relationships, and identify new re-
search directions.

» Online Code Repositories - Monitoring code repositories for new tools and deciding
when a tool has reached a baseline level of maturity for our team to evaluate and
include in our toolset.

» Top Security Conferences - Attending a selected set of top cyber security confer-
ences that focus on VR, RE, and program analysis to provide a formal venue for
learning and exchanging new techniques.

« Academic Literature - Surveying academic literature frequently to ensure complete
coverage of novel algorithms and approaches driven by academic research.

4.2 Tools Criteria

The following criteria govern which tools are included in this report:

* Year Released — “Cutting edge” has an obvious temporal component, but it is less
obvious where the cut-off should lie. Every tool in this report has been introduced
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within the last five years (i.e., first released in 2016 or later). Those released earlier
are included either because they have significantly matured since their initial release
and now contain notable features or have otherwise recently become of increased
interest to the community.

 Capability — New tool capabilities, and how they compare to the current state-of-the-
art, are a primary consideration for inclusion in this report. The novel aspect of a new
tool capability is dependent on the category of tool, and each section of this report
starts with an introduction that lays out its specific considerations.

» Theory and Approach — Tools which offer novel ideas, approaches, or new research
are important even when the tools have poor implementations or do not necessarily
outperform the current state-of-the-art.

 Usability — In contrast with Theory and Approach, Usability considers tools which
may not represent groundbreaking research, but enable the user to harness existing
capabilities more effectively.

» Current State-of-the-Art — The line between edge-of-the-art and state-of-the-art is
hazy. There is rarely a single moment where a tool or technique definitively transitions
from one category to another. In some cases, including a tool that one might consider
state-of-the-art is necessary to compare to the edge-of-the-art. In other cases, the
tool has new capabilities which keep it on the edge-of-the-art.

4.3 Techniques Criteria

Most techniques are implemented by at least one tool and are documented in that tool’s
description.

Workflows — One area of techniques that is complementary to (rather than implemented
by) tools is that of workflows. This includes techniques that define effective strategies to
better leverage existing tools or improve the performance of teams of analysts.

4.4 Tool and Technique Categories

There are many ways to categorize the tooling and techniques used for vulnerability dis-
covery and exploitation. Cyber Reasoning Systems (CRS) tend to view the problem as
a combination of analytical techniques, such as dynamic analysis, static analysis, and
fuzzing. These analytical techniques are a bit too broad to use as tool categories because
each technique summarizes a set of actions that are performed by different tools. Some
tools may utilize multiple analytical techniques and thus fall in multiple categories. Alterna-
tively, existing tool categorizations, like the Black Hat Arsenal tool repository, are both too
specific (e.g., “ics_scada”), or include categories that are irrelevant to VR, RE, and exploit
development (e.g., “phishing”).
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The CHECKMATE team has adopted a tool categorization that encompasses the VR and
exploit development process followed by most researchers. Broadly, this process involves
three overarching steps: 1) find points of interest (Pol) that may contain a vulnerability; 2)
verify the existence of a vulnerability at each Pol; and 3) build an input that triggers the
vulnerability to generate a specific effect (e.g., crash, info leak, code execution, etc.). As
part of this process, the researcher will typically engage in six types of activities: Compre-
hension, Translation, Instrumentation, Analysis, Fuzzing, and Exploitation. These activity
classes form the basis for the tool categorization used in this report.

4.5 Static Analysis Technical Overview

4.5.1 Disassembly

An assembler converts a program from assembly language to machine code, and a dis-
assembler performs the reverse: it converts machine code to assembly language. Since
there is often a one-to-one correspondence between machine instructions and assembly
instructions, this translation is much less complicated than decompilation. However, dis-
assembly can pose challenges, especially with architectures like x86 which have variable
length instructions. When overlapping sequences of bytes could themselves be valid in-
structions, one cannot just disassemble an instruction at random. Several approaches to
disassembly address this challenge, including linear sweep (which disassembles instruc-
tions in the order they appear starting from the first instruction) and recursive descent
(which disassembles instructions in the order of their control flow) [57]. Many popular
disassemblers including IDA Pro [4] and Binary Ninja [58] use the latter technique.

Disassembling machine code is often the first step in binary analysis. There are currently
a variety of disassemblers available, ranging from simple command line utilities to pro-
prietary platforms with capabilities far beyond basic disassembly. A simple example is
objdump [59], a standard tool on Linux operating systems, which given a target binary, will
output its disassembly. Tools like debuggers often rely on more sophisticated disassembly
frameworks like Capstone [60] which has features complementary to its core disassembler
and is designed to be used via an API. The disassembly framework Miasm [61], which is
a tool included in the second version of this report, can be used similarly to Capstone.

In contrast to frameworks, disassembly platforms are designed primarily for humans to
analyze disassembled code through a graphical user interface (GUI). These are often so-
phisticated user applications which offer a significant range of features beyond disassem-
bling code. For example, many of these applications have built-in APIs that can be used
as frameworks for custom, automated analyses. Several of these tools were discussed in
the first version of this report: IDA Pro [4], Ghidra [62] and Binary Ninja [58].

Reassembleable Disassembly The disassembly techniques discussed until this point are
only concerned with moving from machine code to assembly, however reassembly (au-
tomatically reassembling disassembled code) has recently become an area of academic
interest, in part to support static instrumentation. A 2015 paper, Reassembleable Dissas-
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sembling [63], claims that at the time “no existing tool is able to disassemble executable
binaries into assembly code that can be correctly assembled back in a fully automated
manner, even for simple programs. Actually, in many cases, the resulting disassembled
code is far from a state that an assembler accepts, which is hard to fix even by manual ef-
fort. This has become a severe obstacle [63, p. 1].” The paper presented a tool that could
disassemble a binary using a set of rules that made the resulting disassembly relocatable,
which they assert is the “key” to reassembling [63, p. 1]. Since 2015, this technique has
been improved, notably by the creators of angr who built a reassembling tool called Ram-
blr [64]. More recently, the tool DDisasm [65] was introduced. (DDisasm was discussed
in the first version of this report.)

Static Binary Rewriting and Static Instrumentation Binary rewriting modifies a binary executable
without needing to change the source code and recompile. One use case is for binary in-
strumentation, which is often thought of as a dynamic technique. While many dynamic
binary instrumentation (DBI) techniques exist, there are also methods for statically instru-
menting binaries. Many of these rely on reassembling or relinking the binary. Retrowrite
[57], a tool designed to statically instrument binaries for dynamic analysis like fuzzing and
memory checking, also uses a reassembleable disassembly technique that builds on pre-
vious research. The tool LIEF [66], discussed in the first version of this report, allows the
user to statically hook into a binary, or statically modify it in a variety of ways.

Intermediate Representation (IR) An intermediate representation is a form of the program
that is in-between both its source language and target architecture representations. IRs
may be expressed using a variety of formats. However, most often they take the form of
a parseable Intermediate Language (IL), defined by a formal grammar. IRs are designed
to enable analyses and operations that would be more difficult to perform on the original
representation by converting it to a common form that is architecture agnostic. Different
IRs have different attributes and features, depending on their intended use. For example,
some transform machine code to make it human readable, others layer on additional op-
erations making the resulting representation less readable but amenable to analyses and
optimizations.

Intermediate Representations are commonly used in compilers; a familiar example be-
ing LLVM [67], the IR used in the Clang compiler [68]. LLVM is helpful as an example
not just because it is well known, but because it demonstrates the range of features a
well-designed IR can offer. The instruction set and type system for LLVM is language in-
dependent, which means there are no high-level types and attributes. This allows LLVM to
be ported to many architectures. Although the type system is low-level, by providing type
information, LLVM enables a target program to be optimized through various analyses [51].
Unlike machine code however, LLVM is designed to be human readable [51].

LLVM uses a technique called Single Static Assignment (SSA), a form common in compi-
lation and decompilation in which each variable is only assigned a value once. SSA form
enables analysis such as variable recovery but by its nature maps one instruction to many
and generates output not intended for human consumption.
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These traits are not specific to LLVM but are attributes of many IRs discussed in this re-
port. Clang’s compiler works by translating source code languages to LLVM, perform-
ing optimizations in this form, and then translating the LLVM bitcode to many possible
architectures[69]. The Ghidra decompiler does something similar but in reverse: a binary
program is first lifted (converted to a higher-level representation) to an IR called P-Code
[44], on which Ghidra can perform analyses and then decompile by converting the program
to pseudo source code. Therefore, Ghidra can decompile anything it can lift to P-Code, be-
cause decompilation is performed on a language agnostic IR and not the original machine
language [70].

Ghidra uses SSA form in its decompilation. However, unlike LLVM, P-Code is not in SSA
form by default [70]. Other IRs also have an SSA and non-SSA form, for instance, Binary
Ninja’s IRs offer the ability to toggle between non-SSA and SSA form [58].

SSA demonstrates one of the trade-offs that inform IR design. The developers of Binary
Ninja created the charts in Figure 24 and Figure 25 to show the tension between different
features of IRs.

Verbose < > Concise (readable)
Simplified instruction set < > Explicit instructions
Easy to parse < > Easy to lift

Figure 4.1: Tradeoffs of IRs, Pt. 1 [71, p. 29] The double arrows imply that emphasizing one makes the
other more difficult.

Intermediate Representations, each with their own mix of features, are used extensively
throughout the tools in this report. Decompilers such as IDA Pro, Ghidra and Binary Ninja
(which has developed a decompiler that is not yet released) each have their own IRs.
These are used not just for decompilation, but also exposed via APIs that allow the user to
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Figure 4.2: Tradeoffs of IRs, Pt. 2 [71, p. 30] The double arrows imply that emphasizing one makes the
other more difficult.

utilize it for their own analyses. IDA Pro only recently documented their API [72], whereas
the public release of Ghidra’s P-Code included an API. However, out of these three plat-
forms, Binary Ninja’s IRs are designed with the greatest degree of user capability. They
offer three levels of IRs each with an optional SSA-form and a feature-heavy API [73].
Their third level serves as a decompilation level.

Other IR frameworks discussed in the second version of this report can be used in the
same manner, but each offer their own set of features. Binary Analysis Platform (BAP) [74]
is a framework designed for program analysis which is built around the BAP Intermediate
Language (BIL), which has a formally defined grammar [74]. Miasm has an expression-
based IR that facilitates tracking memory and registry values. Miasm also has a JIT engine
for emulation and has built in support for symbolic execution [61].

Certain IRs are tailored for specific use cases. For example, Fuzzilli, a fuzzer which tar-
gets Javascript JIT engines, uses a custom IR called FuzzIL. Seeds are constructed and
mutated in FuzzIL then translated into Javascript before being fed into the engine [75].
This approach has the benefit of being able to theoretically explore all possible patterns
given enough computing power, unlike a JIT fuzzer working from hardcoded Javascript
samples.

In contrast some tools in this report use existing IRs rather than creating their own. The
symbolic execution tool angr uses Vex, which is the IR implemented by the memory debug-
ger Valgrind [76]. WIinAFL, a version of the AFL fuzzer for the Windows operating system,
uses DynamoRIO, a dynamic binary instrumentation engine with its own IR [77].

The variety of IRs discussed thus far show the versatility of IRs and their applications. They
can be used for decompilation, semantic analysis, emulation, symbolic execution, fuzzing
seed generation, and more. The abundance of intermediate representations offers a range
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of choices and satisfies differing use cases, but also results in compatibility issues. GTIRB
[78], which is discussed in the previous version of this report, is an IR designed to convert
between different IRs. It is also the IR used in DDisasm.

4.5.2 Decompilation

A disassembler translates a program’s machine code into assembly language instructions,
whereas a decompiler converts a program’s machine code into pseudo-code resembling
a high-level language, such as C or C++. The goal of both is to transform a compiled
program into a more human readable form, but the output of a decompiler is far closer to
the original source code. It is significantly more difficult to create a semantically faithful
representation of the underlying binary instructions in high-level pseudo-code.

Whereas compiler theory has been a popular area of computer science for decades, its
reverse has received far less attention. In 1994 Christina Ciafuentes published her PhD
thesis on the subject, Reverse Compilation Techniques [79]. This work went on to inform
the development of multiple decompilers, including Hex-Rays, the decompiler of choice for
over a decade. This tool is part of IDA Pro, a disassembler which has been commercially
available since 1996, however Hex-Rays was not released until 2005 [80]. Until recently,
it was one of the few decompilers available, and the most technically sophisticated.

As of 2019, the United States National Security Agency (NSA) released Ghidra, a disas-
sembler and decompiler with comparable performance to IDA Pro [81]. In March 2020,
Vector35 released a decompiler for their tool, Binary Ninja. Binary Ninja not only exposes
its IRs to the user, but makes them a fundamental part of its design, with this new de-
compilation acting as a third layer in their three-tiered IR system. Their decompilation is
available in both SSA and non SSA form.

4.5.3 Static Vulnerability Discovery

There are a number of tools and techniques intended to statically discover vulnerabilities.
Many are designed for source code, including tools such as Coverity [82], CodeSonar
[83], and CodeQL [84]. These use a number of static analysis algorithms to find possible
vulnerabilities and common vulnerability patterns in a code base. Additionally, there are
program analysis techniques designed to statically identify vulnerabilities in binary code,
such as graph-based vulnerability discovery and value-set analysis (VSA) [76, p. 5].

Static Program Analysis Disassembly and decompilation, as well as static vulnerability dis-
covery methods, are predicated on several program analysis techniques. One of the most
basic forms of static analysis is pattern matching, simply scanning through code to find
known vulnerabilities (e.g., using the C library function gets()). However, many of these
techniques rely on far more sophisticated forms of program analysis, some of which are
as follows:

Control Flow Recovery: A binary program can be broken into basic blocks separated by
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branches: a basic block is a sequence of instructions that contains no jumps, except at
the entry and exit. A control flow graph (CFG) models a program as a graph in which the
basic blocks of the program are represented as nodes, and the jumps, or branches, are
represented as edges. A CFG is instrumental to many forms of static program analysis
and vulnerability discovery. Recovering one is done by disassembling the program and
identifying the basic blocks and the jumps between them (both direct and indirect) [76, p.
4].

Variable and Type Information Recovery: Variable and type information is used by the
compiler but is not present in final binary executable form (unless the binary is compiled to
explicitly include this information for debugging purposes). Therefore, it is often necessary
to recover this information when analyzing a binary [57]. One attribute of many IRs is that
their lifters will recover variable and type information and include it in the IR form. This is
also necessary for decomplication.

» Function Identification: Function information is also often left out of the final binary
form of a computer program, and it is also necessary in various forms of analysis.
Methods have been developed to identify distinct functions within a binary [57].

 Value Set Analysis (VSA): VSA is a form of static analysis which attempts to track
values and references throughout a binary [76]. This analysis has a variety of uses,
including identifying indirect jumps or find vulnerabilities such as out of bound ac-
cesses.

» Graph-based vulnerability discovery: This form applies graph analysis to a CFG
to identify vulnerabilities [76].

* Symbolic Execution: Symbolic execution replaces program inputs with symbolic
values, and then symbolically executes over the program. Symbolic execution be
done either entirely statically or in conjunction with dynamic analysis. See page in
the dynamic analysis section for a more in-depth discussion.

 Abstract Interpretation, data-flow analysis, etc.: There are many types of formal
static analysis which apply mathematical approaches to program analysis. These in-
clude abstract interpretation and data-flow analysis. The tools BAP has implemented
support these forms of analysis [85].

4.6 Dynamic Analysis Technical Overview

4.6.1 Debuggers

Among other uses, interactive debuggers can pause a program during execution and step
through one instruction at a time, to inspect the current state of registers and memory at
a specific point and see the upcoming instructions. Debuggers can be used to reverse
engineering a program to determine how it operates, to inspect a crash found by a fuzzer,
or to debug an exploit. Like many dynamic analysis tools, debuggers utilize both static
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and dynamic techniques (e.g., the popular debugger GDB uses a disassembler and the
tracing utility ptrace [86]) to implement its functionality.

Recordable, replayable debugging is one of the most powerful additions to modern debug-
ging. This allows a user to record a program execution and then replay while debugging
the process. In addition to forward debugger actions like step and continue, replayable
debugging allows the user to step backwards and continue backwards, etc. TTD, a tool
discussed in a previous edition, allows for replayable debugging from within the Windows
debugger Windbg [87]. The tool rr [88], which was discussed in the first version of this
report, enables recordable replayable debugging on Linux.

4.6.2 Dynamic Binary Instrumentation (DBI)

DBI, which underlies many dynamic binary analysis techniques, entails modifying the bi-
nary, either before or during execution, often by hooking into the binary at specific points
and injecting code. DBI frameworks implement custom instrumentation which the user
can access through an API to perform dynamic analysis. These include Intel Pin [31] and
DynamoRIO [89], which underlie many of the tools discussed in these reports. Both can be
used to drive the Windows fuzzer WinAFL [77], and the dynamic binary analysis tool Triton
is built around Intel Pin [90]. DBI frameworks are implemented in a variety of ways. Intel
Pin works by intercepting instructions before they are executed and recompiling them into
a similar, but Intel Pin-controlled instruction, which is then executed [31]. It is analogous
to Just-In-Time (JIT) compilers. DynamoRIO operates similarly in that it sits in between
the application and the kernel, like a “process virtual machine,” to observe and manipulate
each instruction prior to execution [89]. Other DBI options are less granular and intrusive
and rely on hooking into the program through dynamically loaded libraries (e.g., this is how
the tool Frida [91] operates).

4.6.3 Dynamic Fuzzing Instrumentation

Although fuzzing is discussed at length in the next section, fuzzing often requires dynamic
binary instrumentation to enable input to easily and quickly be fed to the program. This
can be done with various tools (Frida, Qiling, etc.) that allow the user to hook into the
binary at the point of input and redirect it. The binary may also calculate checksums, or
other functionality that can inhibit fuzzing; these tools can hook into the binary and redirect
execution around the problematic code. The fuzzer Frizzer, reviewed in a previous edition
of this report, uses Frida to instrument it.

4.6.4 Memory Checking

Memory checking, whether to find memory bugs or analyze them is a valuable form of
dynamic analysis in vulnerability research. To do this, a program is instrumented such
that if a memory error is triggered during runtime (e.g., an out of bounds access, null
dereference, or segmentation fault) it will be recorded, along with additional contextual
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information. Several tools exist to do this, such as Valgrind [92], Dr. Memory (a part of
the DynamoRIO framework) and LLVM’s Sanitizer Suite which includes Address Sanitizer
(ASAN) [67].

4.6.5 Dynamic Taint Analysis

Dynamic taint analysis is a form of dynamic binary analysis in which data within a program
(often some kind of input) are “tainted” such that their flow throughout the program can be
traced. This can be done on the byte or bit-level with a tradeoff between the fidelity of the
analysis and the time and memory resources required. Dynamic taint analysis is often built
on top of dynamic binary instrumentation to hook into data transfer instructions to check
whether the source memory or register value is tainted and then taint the subsequent
destination (or conversely, remove a taint from a destination if the source lacks a taint).
Dynamic taint analysis is not only useful for tracking values throughout a program, but
also identifying instructions not affected by user input, which can be used for concolic
execution. Triton is one tool that implements dynamic taint analysis.

4.6.6 Symbolic and Concolic Execution

Symbolic analysis is a method of program analysis which abstracts a program’s inputs
to be symbolic values. A symbolic execution engine “executes” the program with these
symbolic values, and records the constraints placed on them for each possible path they
could take. Subsequently, a constraint solver takes these constraints for a specific path
and attempts to find a value which satisfies them. Consider a program which takes an
input as an integer and exits if it is less than 10. That input would be assigned a symbolic
value, a, and then the symbolic execution engine would record a constraint of a < 10 for
the path that reached that exit call. Then a constraint solver would find a value for a that
satisfied the path constraints, a < 10.

Symbolic execution can be performed “dynamically,” and this is called dynamic symbolic
execution, or DSE. However, throughout literature on symbolic execution there are gener-
ally two competing definitions of DSE. The first kind of DSE refers to any form of symbolic
execution which “explores programs and generates formulas on a per-path basis [93]".
This does not mean that only one path is followed, just that a distinct formula is generated
for each path. When a branch condition is reached, and both branches are feasible, exe-
cution will “fork” and follow both possible paths [93, p. 3]. In the paper (State of) The Art
of War: Offensive Techniques in Binary Analysis [76], Shoshitaishvili et al. describe this
kind of DSE:

“Dynamic symbolic execution, a subset of symbolic execution, is a dynamic technique in
the sense that it executes a program in an emulated environment. However, this exe-
cution occurs in the abstract domain of symbolic variables. ... “Unlike fuzzing, dynamic
symbolic execution has an extremely high semantic insight into the target application: such
techniques can reason about how to trigger specific desired program states by using the
accumulated path constraints to retroactively produce a proper input to the application
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when one of the paths being executed has triggered a condition in which the analysis is
interested. This makes it an extremely powerful tool in identifying bugs in software and,
as a result, dynamic symbolic execution is a very active area of research. [76, p. 6]”

Symbolic execution can be combined with concrete execution in a variety of ways and this
is often referred to by the portmanteau “concolic” execution. “Concolic” is another term
with competing definitions but is often used as a synonym for DSE. Concolic execution can
refer to the kind of DSE described in the previous excerpt, in which symbolic (not concrete)
inputs are used, and all possible paths are explored, but the program execution will switch
between concrete and symbolic emulation, depending on whether the instruction handles
symbolic values [76].

The other common definition of DSE and concolic execution refers solely to symbolic ex-
ecution which is “driven by a specific concrete execution [94, p. 6].” A program will be
executed both concretely and symbolically using a chosen concrete input, and the sym-
bolic execution will only follow the specific path taken by the concrete input [95], [94, p.
5-6]. After doing this, additional paths can be explored by negating one (or more) of the
collected branch conditions for the path of the concrete input, and then solve for the new
path with these negated conditions using an SMT solver in order to generate a new in-
put [94, p. 6]. This kind of DSE or concolic execution is often used in symbolic assisted
fuzzing, also known as hybrid fuzzing, which use symbolic techniques to gain semantic
insight while fuzzing a program. QSYM [96] (a fuzzer discussed in the first version of this
report) is an example of hybrid fuzzing.

There are many tools for symbolic execution, including Triton and Miasm. The tool angr [76]
(discussed in the first version of this report) is one of the most popular, publicly available
tools, and uses emulation to perform symbolic execution.

While symbolic execution does provide powerful insights into program semantics, it is
greatly limited by space and time complexity issues. Path explosion is one of the chal-
lenges in symbolic execution: unbounded loops might result in exponentially many new
paths. Symbolic execution is also hindered by the memory needed to store a growing
number of path constraints. It is also difficult to apply to real world systems, because
system calls and library calls can be hard to manage with symbolic values, among other
environmental concerns [94]. Additionally, constraint solving is often a difficult and time-
consuming task. As such, symbolic execution is in many cases not a feasible option or
must be constrained to a small area of the program.

Constraint Solving Symbolic execution relies on the ability to solve for the collected path
constraints, which is a challenging problem. These constraints can be modeled by satis-
fiability modulo theories (SMT) which generalize the Boolean satisfiability problem (SAT).
SAT is an NP-complete problem which looks for a set of values which will satisfy the given
Boolean formula. An SMT formula models a SAT problem with more complex logic that in-
volves constructs like inequalities or arrays, whereas a SAT formula is limited to the realm
of Boolean logic. While SAT solvers perform well on some problems, because SAT is
NP-complete, some problem instances remain out of reach, limiting their scalability.
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