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1. Introduction 

Directed energy deposition (DED) is a method of metal additive manufacturing 
(AM) by which parts are built layer by layer from 3-D computer-aided design 
models. In laser DED, powder is blown in front of a moving laser, which melts the 
powder, before it solidifies into part of the component being manufactured (Fig. 1). 
AM provides a more direct pathway between the digital model and the 
manufactured part, which allows for more rapid design iterations and testing of 
parts. This further enables more advanced design methods and integrated features 
that would be operationally difficult by way of traditional subtractive 
manufacturing. In addition to being used to produce entire components, DED offers 
advantages through the ability to deposit additional material to existing components 
for the use of repair or cladding. Due to these advantages, DED is being adopted 
for specialized applications in defense and aerospace (DebRoy et al. 2019). 

 

Fig. 1 Schematic of DED process 

While there is great enthusiasm to use AM, process deviations are common, which 
can result in undesired final geometry, poor surface finish, or insufficient 
mechanical performance (Colosimo et al. 2018). Some of these drifts in the 
structure and property of metals fabricated by DED are not caused by stochastic 
process deviations, but by predictable trends. For example, Feenstra et al. (2020) 
observed changes in grain structure of 316L stainless steel with build height. Fine 
grains were observed in the AM structure near the build plate due to high cooling 
rates during building on a cold substrate. As the structure continued to build, heat 
buildup in the part created larger, columnar grains. At some point the grain structure 
was very predictable as the part reached a thermally, steady-state condition. Thus, 
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the deviation in microstructure and mechanical properties can be attributed to the 
local thermal history of the part. Observation of the melt pool during the DED 
process provides a means to measure an instantaneous point in the thermal history 
of a part. These observations can then be mapped in 3-D to the built geometry such 
as what was done in Kriczky et al. (2015). As a result, there is great interest in using 
sensors for in-situ certification of components, as well as responding to process 
deviations in real time, enhancing the performance of AM components, and 
increasing the yield of the AM process (Everton et al. 2016). 

Researchers have sought to predict the value of sensor data using machine learning, 
given process parameters and build plan information. The sensor data is reflective 
of all the nuance and interdependences in the inputs. Using machine learning to 
predict sensor data may elucidate relationships that may not be discoverable with 
simpler statistics (DebRoy et al. 2018). For example, Diehl and Nassar (2020) 
demonstrate that the time between hatches is an important factor in predicting near-
surface void occurrence. While they explain that the time between hatches is a 
function of toolpath and geometry, they cannot fully describe the relationship 
between these input drivers and void formation, due to the simplicity of their model. 
In contrast, Gobert et al. (2019) trained a machine learning algorithm to produce 
synthetic thermal images, given processing data, toolpath information, and 
geometric data as input drivers. While they do not make any conclusions on the 
relationship between sensor data and voids, their work clearly demonstrates the 
relationship between toolpath/geometry and thermal buildup, yielding a better 
understanding of the process. Supervised machine learning is advantageous to 
manage the large amount of data in these problems, and the complexity of the input 
drivers’ interactions (Tapia and Elwany 2014). Supervised machine learning is a 
collection of algorithms that generalize a known relationship from examples, such 
as mapping inputs to outputs, as opposed to unsupervised machine learning, which 
seeks to find unknown patterns from examples (Bishop 2006). A limitation of 
neural nets is that they are general purpose approximators that do not incorporate 
prior knowledge of, for example, AM physics. It has been demonstrated that 
physical limitations can be enforced on neural networks, by detecting physical 
violations in the model’s predictions, and adding a penalty term to their loss 
function (Daw et al. 2021). Daw et al. (2021) demonstrated that using these 
methods, neural nets can achieve results superior to state-of-the-art physics-based 
models and, unlike typical neural nets, do not predict physical inconsistencies. 
Physics-guided neural networks (PGNNs) have been shown to outperform 
traditional neural nets while predicting no physical inconsistencies, but Daw et al. 
only applied 1st-order differential limitations to their models.  
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In this study, DED melt pool width was predicted as a function of input drivers. 
Physical trends in the DED melt pool width were identified in literature, predicted 
via modeling, and experimentally verified. These physical trends are then enforced 
on neural nets as constraints. Huang et al. (2019) developed models that predicted 
a melt pool width increase with each subsequent layer, and that as the wait time 
between layers increased, melt pool width decreased. Akbari and Kovacevic (2019) 
confirm experimentally that melt pool width only increases with increasing layer 
height. Liu et al. (2019) experimentally show that melt pool temperature increases 
with increasing laser power and—below the speed at which balling occurs—
decreases with increasing laser speed. It could be argued that a hotter melt pool 
would be wider than a cooler one. 

The previously described physical trends can be enforced via simple finite 
difference estimates of derivatives; for example, a model can be penalized when it 
predicts a decrease in melt pool width in response to an arbitrarily small increase 
in laser power—everything else held constant. While this work predicts DED melt 
pool width as a function of input drivers, the aim of this study is not to develop a 
framework to predict sensor readings during DED, but to dynamically predict melt 
pool width, such that power and speed can be adjusted, to improve the ability of 
DED to meet geometric tolerances. The ultimate goal is to develop a generalized 
framework for adding physics-based loss functions to advanced manufacturing 
models and demonstrate the benefits thereof. 

In this work, neural networks were trained, given process parameters and build plan 
information, to predict melt pool width during a DED build, given input drivers of 
speed, power, length, and height. Length and height are geometry dependent and 
may vary over the course of a build, and cause drift in melt pool width. In contrast, 
power and speed are process-specific and can be changed dynamically to adjust the 
melt pool width in response to drift caused by changes in local geometry. 

Traditional neural nets were trained alongside their physics-guided counterparts on 
an unbalanced data set. Advantages of PGNN models over traditional neural nets 
were demonstrated, in terms of model performance, physical consistency, and 
training on unbalanced data. PGNNs were compared against neural nets with 
weighted loss functions, a traditional method of training on unbalanced data. As 
well, it was hypothesized that PGNNs act as physics-regularized neural networks, 
and their performance was compared against neural networks with traditional 
kernel, bias, and activation regularizers. Afterward, the best-performing PGNN was 
validated by inverting it to predict processing parameters that maintain constant 
melt pool width over build height. 
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2. Methods 

2.1 Build Procedure 

A low alloy steel powder with composition provided in Table 1 was procured from 
Carpenter Technology Corp (Reading, Pennsylvannia). Particle size analysis was 
conducted using a Retsch Camsizer X2 (Newtown, Pennsylvannia). The particle 
size distribution is provided in Fig. 2a and shows that the majority of the powder 
particles have a diameter between 40–130 µm with a median particle diameter 
(D50) of 71.5 µm. A Hitachi S4700 (Schaumburg, Illinois) scanning electron 
microscope was used to further examine the particle size and shape of the powder 
(see Fig. 2b). The particles were all fairly spherical with some satellites present on 
the surface of the steel powder. 

Table 1 Elemental composition of steel powder, all units are weight percent 

Al C Cr Cu H N Mn Mo Ni O P S Si Ti V Fe 
0.004 0.278 2.41 0.004 <0.0005 0.003 0.65 0.84 1.04 0.008 0.007 0.002 1.04 0.003 0.11 93.6 

 

 

Fig. 2 Steel powder a) particle size distribution and b) imaged via scanning electron 
microscopy 

Fifteen steel thin walls were fabricated in an RPM 222 powder-based laser DED 
system (RPM Innovations, Inc, Rapid City, SD), with a 2-kW ytterbium laser of 
1070 nm wavelength. Each component was fabricated with a layer height of 102 
µm, and a powder feed rate of 15 g/min. This work used the “open contour,” in 
which each layer is processed a single time, with each layer consisting of a single 
bead of material and deposited in a bidirectional (serpentine) raster pattern.  
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Two sets of thin walls were produced: one in which the power and speed were 
varied (parameter set) and a set in which the thin wall lengths were varied (length 
set). The geometry and processing parameters of all of the thin walls are shown in 
Table 2. Samples for the parameter set were named X-Y where X is the power in 
watts (W) and Y is the travel speed (mm/s) for the deposition head. The 
nomenclature for the length set is as follows: ZL, where Z is the approximate length 
of the wall in millimeters. 

Table 2 Process parameters and lengths associated with each thin wall 

Sample 
name Sample set Power 

(W) 
Speed 

 (mm/s) 
Wall length 

(mm) 
12L Length 600 16.9 12.7 
25L Length 600 16.9 25.4 
50L Length 600 16.9 50.8 

100L Length 600 16.9 101.6 
150L Length 600 16.9 152.4 
25LB Length 600 16.9 25.4 

25L-12H Length 600 16.9 25.4 
650-16 Parameter 650 16.9 25.4 
550-16 Parameter 550 16.9 25.4 
450-16 Parameter 450 16.9 25.4 
350-16 Parameter 350 16.9 25.4 
650-12 Parameter 650 12.7 25.4 
550-12 Parameter 550 12.7 25.4 
450-12 Parameter 450 12.7 25.4 
350-12 Parameter 350 12.7 25.4 

 
The sample 25LB was fabricated to a height of 25.4 mm, with an additional layer 
deposited after a 30-min wait. The modification to 25LB was to study an effect 
separate from this study. Each of the thin walls was built to a height of 25.4 mm, 
with the exception of 25L-12H, which was only built to 12.7 mm. The 
modifications to 25L-12H were done to investigate an effect not addressed in this 
study; however, this additional data was useful to demonstrate the repeatability of 
the results. The data from 25LB and 25H-12H were held out from training due to 
being extremely similar to the data from 25L. The neural nets were trained on 10 
of the data sets shown in Table 2 (the others were held out for validation and 
testing). There were 2510 points in total—one for each of the 251 layers of the 10 
thin walls used for training.  

The best-performing neural net was then used to predict the required combination 
of laser power and contour speeds to produce thin walls 2 ±0.02 mm thick and 
25.4 mm tall. These multiple parameter set (MPS) walls were 25.4 mm long  
(25L MPS) and 63.5 mm long (63L MPS), respectively. The tolerance in the wall 
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thickness reduced the number of unique laser power and contour speed 
combinations to allow easier tool path programming.  

2.2 Sensing Setup and Analysis 

A coaxial Xiris XVC-1000 grayscale welding camera (Burlington, Ontario, 
Canada) was used to record the fabrication process, with a framerate of 
55 frames/second and an approximate resolution of 24 microns/pixel. The XVC-
1000 was equipped with a high dynamic range (140+ dB) complementary metal 
oxide semiconductor sensor and UV + IR cut filter. A representative image of the 
melt pool during the DED process is provided in Fig. 3. A Gaussian mixture model 
with two mixtures was used to determine the grayscale threshold between the melt 
pool and the surrounding region and the grayscale threshold for the laser spot 
region. Both thresholds were manually verified. That is, all pixels with intensities 
below the laser spot size threshold were removed from randomly sampled images 
and it was confirmed they only contained the laser spot. Likewise, all pixels with 
intensities below the melt pool threshold were removed from randomly sampled 
images and it was confirmed they only contained the melt pool and the laser spot. 
The presence of the laser spot size was used to manually register the data. 

 

Fig. 3 Characteristic image of melt pool during processing; melt pool (gray) and laser spot 
region (gray-white) shown. Image shown is of the native resolution of the weld camera. 

Each image was transformed from an 8-bit grayscale image of the melt pool to a 
Boolean image, where 1 corresponds to regions that are part of the melt pool, and 
0 corresponds to those that are not. For every column of the melt pool, the width of 
the melt pool was recorded. Of these recorded values, the 90th percentile was 
recorded as the width associated with the frame. This was to remove outliers, such 
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as regions of the melt pool that were ejecting material at the instant the image was 
recorded, an example of which is shown in Fig. 4. 

 

Fig. 4 (a) Ejecta from the lower side of the melt pool makes the melt pool appear artificially 
wider, when a simple grayscale threshold is used. (b) Boolean transform of the melt pool 
image. 

The width measurement process is shown in Fig. 5. Figure 4a shows the width of 
the melt pool at each image column. Note the peak associated with the ejecta. 
Figure 5b shows the positive values in Fig. 5a sorted, with the 90th percentile 
highlighted by a dotted line. The measured width of this melt pool is 1.54 mm. 
Visually, this value is closer to the width of the melt pool demonstrating the 
robustness of the 90th percentile method to remove spatter-induced outliers. 
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Fig. 5 (a) Width of melt pool on a column-wise basis, for the melt pool image shown in 
Fig. 4b, every positive number in (a), sorted 

The presence or lack of the laser spot could be determined using the gray value 
threshold. A script was used to determine the position of the camera during each 
frame as follows: frames in which the laser spot was not present correspond to when 
the laser was off, before or after layers. Between these “laser-off” frames, frames 
were equally spaced between the start and stop points on the thin wall. The first set 
of consecutive frames in which the laser was on correspond to the first layer; the 
second set of consecutive frames in which the laser was on correspond to the second 
layer, and so forth. After frames were associated to layers, the median width of all 
frames associated with a layer was considered the characteristic width associated 
with that layer. While the serpentine build path did affect melt pool width near 
turnaround points, that is, the melt pool was qualitatively confirmed to bulge at the 
beginning of each layer, this affects a relatively small portion of each layer. Because 
this bulging occurs in far less than half of the layer, it does not affect the median 
width of any layers and therefore does not affect our analysis.  

2.3 Machine Learning 

Single-layer fully connected neural networks were used to regress from input 
drivers: power (P), speed (S), wall length (L), and build height (H) to an output of 
melt pool width (W). The structure of this network is shown in Fig. 6. In this work, 
the structure of the network is held constant. Various physics-based and non-
physics-based loss functions are used to train the network. 
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Fig. 6 Structure of the neural network that predicted melt width from input drivers 

All neural networks were implemented using the Keras package (Chollet 2015) and 
Tensorflow backend. The activation function for the hidden layer was the 
hyperbolic tangent function (tanh), and activation for the output layer was linear. 
The learning rate was set to 0.0001, batch size was set to 50, and the Adam 
algorithm (Diederik and Kingma 2014) was used for training. No maximum 
number of epochs was chosen; instead, testing and validation data were held out. 
The network was trained until the network performance on the validation data did 
not improve for 100 epochs. Unless otherwise specified, the loss function used was 
the mean squared error (MSE). All other training values were left to Keras default. 
To determine the ideal number of hidden neurons in the hidden layer, neural nets 
with hidden layer sizes 10, 25, 50, 100, and 200 were trained on the training data, 
and the performance of the validation data was used to estimate optimal network 
architecture. 

There were 251 data points along the build direction (251 layers/sample) and a 
significantly smaller number of powers (5), speeds (2), and wall lengths (5). To 
prevent the neural networks from learning to interpolate along the H axis (along the 
build height), each thin wall’s data was either included in only the train, validation, 
or testing data set. As each thin wall’s data must be only found in the training, 
validation, or testing data, and never more than one of them, the entirety of the data 
from sample 450-12 was held out for testing and the data from samples 50L and 
450-16 were held out for validation. The division of data used for training, 
validation, and testing is shown in Table 3. 
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Table 3 Identification of experiments used for training, validation, and testing 

Training Validation Testing 
12L 50L 450-12 
25L 450-16 . . . 

100L . . . . . . 
150L . . . . . . 

650-16 . . . . . . 
550-16 . . . . . . 
350-16 . . . . . . 
650-12 . . . . . . 
550-12 . . . . . . 
350-12 . . . . . . 

 
Because there are eight experiments in the parameter set and five in the length set, 
two sets of data were held out from the parameter set for validation and testing, 
while only one set of data was held out for validation. Still, there are twice as many 
variable parameter set experiments as there are variable length set experiments used 
for training. As a result of this imbalance, the parameter set will comprise a majority 
of the training data’s contribution to the loss function. The training data was batch-
normalized, and the same transformation was applied to the validation and test data 
sets; that is, input drivers had the following transformation applied before being 
inputted into the network: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑃𝑃 − 𝜇𝜇𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑆𝑆 − 𝜇𝜇𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝐿𝐿 − 𝜇𝜇𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜎𝜎𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝐻𝐻 − 𝜇𝜇𝐻𝐻𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝜎𝜎𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 

 

where 𝜇𝜇𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜇𝜇𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜇𝜇𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝜇𝜇𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the corresponding averages for the 
Power, Speed, Length, and Height of the training data, respectively, and 𝜎𝜎𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 
𝜎𝜎𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝜎𝜎𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛, 𝜎𝜎𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡are their respective standard deviations.  

2.4 PGNNs 

A similar approach to Daw et al. (2021) was followed, adding an additional 
component to the loss function that quantifies physical inconsistencies in a model’s 
prediction by defining various metrics, which should be nonpositive on a physical 
basis. Daw et al. defined 1st-order derivatives of their input drivers and regressor 
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target, which must be positive or negative due to the laws of physics. Here, this 
work was expanded: 1st-order differential constraints were defined and enforced 
on a neural network. As well, 2nd-order constraints were developed and were 
estimated using a finite difference method. 

The physical contribution to the loss function is denoted λPHY*Loss.PHY(Ŷ), where 
λPHY is the hyper-parameter that determines the relative importance of minimizing 
physical inconsistences, versus minimizing prediction error. For this work, λPHY 
was set equal to 1, to demonstrate that no tuning was performed to any particular 
data set. The physical component of the loss function does not rely on accurate 
predicted values but requires that predicted values obey physical limitations. 
Therefore, neural network predictions were sampled to evaluate the physical 
contribution to the loss function. Specifically, 160,000 samples of input drivers 
were used, spanning every combination of: 1) 20 equally spaced values of power 
from 350 to 650 W, 2) 20 equally spaced values of speed from 12.7 to 16.9 mm/s, 
3) 20 equally spaced values of wall length from 0.5 to 6, and 4) 20 equally spaced 
values of build height from 0 to 25.4 mm. These input driver sets do not correspond 
to any real manufactured component and are only added to enforce the physics-
based constraints. 

It can be predicted and experimentally verified that within the regime of typical 
processing parameters, some changes in melt pool width should not be expected 
with particular changes in input drivers. For example, increasing the laser power 
should not result in a decrease in melt pool width, all other input drivers held 
constant. That is, for any two values of power, Pi and Pi+1, where Pi < Pi+1, the 
following value should be nonpositive:  

𝜟𝜟𝑷𝑷[i, S, L, H] = W� [𝑃𝑃𝑖𝑖, S, L, H] - W� [𝑃𝑃𝑖𝑖+1, S, L, H] ≤ 0  

Similar relationships can be presented for the other three input drivers, within the 
regime of typical processing parameters and with all other input drivers held 
constant. When laser speed is increased, melt pool width should not increase. For 
any two values of speed, Si and Si+1, where Si < Si+1, the following value should be 
nonpositive: (note that the subscripts are reversed): 

𝜟𝜟𝑺𝑺[P, j, L, H] = W� [P, 𝑆𝑆𝑗𝑗+1, L, H] - W� [P, 𝑆𝑆𝑗𝑗, L, H] ≤ 0 

As well, it could be hypothesized that some melt pool widening is due to thermal 
buildup. After heat is applied in Layer i, it has a finite amount of time to dissipate 
before Layer i+1 is processed. As a result, if that amount of time is higher, when 
the wall length is increased, the melt pool width should not increase: 

𝜟𝜟𝑳𝑳[P, S, k, H] = W� [P, S, 𝐿𝐿𝑘𝑘+1, H] - W� [P, S, 𝐿𝐿𝑘𝑘, H] ≤ 0 
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Similarly, when build height is increased, the melt pool width should not decrease.  

𝜟𝜟𝑯𝑯[P, S , L, l] = W� [P, S, L, 𝐻𝐻𝑙𝑙] - W� [P, S, L, 𝐻𝐻𝑙𝑙+1] ≤ 0 

Every possible consecutive pair of width predictions in the unlabeled data set can 
be evaluated. For each of them, all positive occurrences are added up. This can be 
expressed as the loss contribution:  

 Loss. PHY1�Ŷ� =  ∑ ∑ ∑ ∑ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝑷𝑷[I, 𝑆𝑆𝑗𝑗 , 𝐿𝐿𝑘𝑘, 𝐻𝐻𝑙𝑙])
𝒏𝒏𝑷𝑷−𝟏𝟏
𝒊𝒊=𝟏𝟏

𝒏𝒏𝑺𝑺
𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳
𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯
𝒍𝒍=𝟏𝟏 +

∑ ∑ ∑ ∑ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝑺𝑺[𝑃𝑃𝑖𝑖, j, 𝐿𝐿𝑘𝑘, 𝐻𝐻𝑙𝑙])
𝒏𝒏𝑷𝑷
𝒊𝒊=𝟏𝟏

𝒏𝒏𝑺𝑺−𝟏𝟏
𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳
𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯
𝒍𝒍=𝟏𝟏 +

∑ ∑ ∑ ∑ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝑳𝑳[𝑃𝑃𝑖𝑖, 𝑆𝑆𝑗𝑗, k, 𝐻𝐻𝑙𝑙])
𝒏𝒏𝑷𝑷
𝒊𝒊=𝟏𝟏

𝒏𝒏𝑺𝑺
𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳−𝟏𝟏
𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯
𝒍𝒍=𝟏𝟏 +
∑ ∑ ∑ ∑ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝑯𝑯[𝑃𝑃𝑖𝑖, 𝑆𝑆𝑗𝑗, 𝐿𝐿𝑘𝑘, k])𝒏𝒏𝑷𝑷

𝒊𝒊=𝟏𝟏  𝒏𝒏𝑺𝑺
𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳
𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯−𝟏𝟏
𝒍𝒍=𝟏𝟏  

where ReLU is the rectified linear unit function: ReLU(x) = max(0,x).  

Additionally, there are constraints on the 2nd derivatives of the input drivers with 
respect to melt pool width. The thermal gradients in DED are larger near the 
beginning of the build and decrease as the build progresses, and changes in melt 
pool width are a function of changes in temperature (Feenstra et al. 2020). 
Therefore, the rate at which the melt pool width increases per change in build height 
should be nonpositive. This was experimentally verified by the results presented 
here and that of Akbari and Kovacevic (2019). The finite difference approximations 
of this value can be calculated as a function of 𝜟𝜟𝑯𝑯 (the negative change in melt pool 
width with respect to height) in a similar construction as prior: 

𝜟𝜟𝟐𝟐𝑯𝑯[P, S, L, l] = 𝜟𝜟𝑯𝑯[𝑃𝑃, S, L, 𝐻𝐻𝑙𝑙] -𝜟𝜟𝑯𝑯[𝑃𝑃, S, L, 𝐻𝐻𝑙𝑙+1] ≤ 0 

As well, it can be argued that if melt pool widening is due to thermal buildup, this 
effect will be most pronounced in smaller samples and will decrease as the wall 
length increases due to a longer time between laser exposures for the longer wall; 
such results were experimentally verified in this work. As the melt pool width is 
expected to decrease with increasing wall length, the second derivative of melt pool 
width with respect to wall length could be argued to be positive. That is, the 
function of melt pool width with respect to wall length is a monotonically 
decreasing function that approaches some lower bound. In this case, the finite 
different approximation of the opposite of the second derivative of melt pool width 
with respect to wall length is expected to be nonpositive: 

𝜟𝜟𝟐𝟐𝑳𝑳[P, S, k, H] = 𝜟𝜟𝑳𝑳[𝑃𝑃, S, 𝐿𝐿𝑘𝑘, 𝐻𝐻] - 𝜟𝜟𝑳𝑳[𝑃𝑃, S, 𝐿𝐿𝑘𝑘+1, 𝐻𝐻] ≤ 0  

These contributions can be added to the previous loss contribution to yield a 
physics-based loss contribution that enforces all of the constraints discussed. 
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Loss.PHY2�Ŷ� = Loss.PHY1�Ŷ� + � ���𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝟐𝟐𝑯𝑯[𝑃𝑃𝑖𝑖, 𝑆𝑆𝑗𝑗, 𝐿𝐿𝑘𝑘, l])
𝒏𝒏𝑷𝑷

𝒊𝒊=𝟏𝟏

𝒏𝒏𝑺𝑺

𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳

𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯−𝟐𝟐

𝒍𝒍=𝟏𝟏

+  ����𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹(𝜟𝜟𝟐𝟐𝑳𝑳[𝑃𝑃𝑖𝑖, 𝑆𝑆𝑗𝑗, 𝑘𝑘, 𝐻𝐻𝑙𝑙])
𝒏𝒏𝑷𝑷

𝒊𝒊=𝟏𝟏

𝒏𝒏𝑺𝑺

𝒋𝒋=𝟏𝟏

𝒏𝒏𝑳𝑳−𝟐𝟐

𝒌𝒌=𝟏𝟏

𝒏𝒏𝑯𝑯

𝒍𝒍=𝟏𝟏

 

Otherwise, identical neural nets were trained using 1) MSE, 2) MSE + Loss.PHY1, 
and 3) MSE +  Loss.PHY2. The results of the training were analyzed to include test 
performance and the presence of physical inconsistences in the network 
predictions. The neural nets with loss functions MSE + Loss.PHY1 (PGNN1) and 
MSE + Loss.PHY2 (PGNN2) trained for more epochs before training terminated. 
For another direct comparison of PGNNs against traditional neural nets, a neural 
net with loss function MSE (NN2) was trained for the same number of epochs as 
the best-performing PGNN. As well, PGNNs are compared against traditional 
methods for regularization and training on unbalanced data. The best-performing 
PGNN was then inverted to produce parameter sets (power and speed) with the aim 
of maintaining a constant melt pool width over a build.  

3. Results and Discussion 

3.1 Width Measurements 

Melt pool width was measured as a function of height for the thin walls with 
variable length and constant power and speed (see Fig. 7). In general, the melt pool 
width increased with increasing height. This was reported elsewhere in the 
literature (Akbari and Kovacevic 2019) and is due to thermal buildup resulting in 
an increase in the amount of material captured by the melt pool and/or a decrease 
of the viscosity of the melt, which encourages spreading. Other effects in DED also 
contribute to the variable melt pool width, independent of the thermal environment, 
such as the spacing between the nozzle and deposition being smaller than ideal, 
resulting in the initial layers being narrower due to the high thermal gradient 
induced by a cold substrate than at steady state where deposition is deeper into 
previous layers slowing down the cooling rate and resulting in heat buildup (thus 
wider melt pool widths). Over the course of the build, the melt pool width 
approaches a steady state. Identifying specific athermal effects, which increase the 
melt pool width with increasing build height, is beyond the scope of this report.  
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Fig. 7 Melt pool width vs. height, (a) decreasing the wall length increased the melt pool 
width. For each label, the number before the L is the approximate sample length in 
millimeters. (b) The three 25.4-mm-long samples overlaid (black – 25L, red – 25LB, and blue 
– 25L-12H). A large degree of repeatability is observed. 

For walls with smaller lengths, the rate of the change in melt pool width increased 
faster with increasing layer height, and the melt pool width increased to an overall 
larger size, confirming trends found in literature. 

Samples 25L, 25LB, and 25L-12H had identical processing conditions except for 
the variation in height or the addition of a layer after a delay. The width and height 
relationships are plotted in Fig. 7b. Note, the final layer (layer added after a wait) 
for sample 25LB is not pictured in Fig. 7b.  

Melt pool width versus height of 25.4-mm length thin walls of variable power and 
speed can be found in Fig. 8. The trends found in literature are reproduced here: at 
any given height, samples fabricated at a higher power have wider melt pools, and 
samples fabricated at slower speeds have wider melt pools.  
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Fig. 8 Melt pool width vs. height, variable power/speed data set. Increasing power and 
reducing speed are observed to increase melt pool width. For each sample label, the first 
number is the power in watts, and the second number is the approximate speed in 
millimeters/second. 

3.2 Machine Learning: PGNNs as Regularizers 

Before neural networks were trained to predict melt pool width, optimal hidden 
layer size should be determined. The hidden layer size was varied, and the network 
was trained until validation loss did not decrease with a patience of 100. The results 
are in Table 4. 

Table 4 Validation loss as a function of network size 

Hidden layer size Validation loss 
10 0.1806 
25 0.0254 
50 0.0176 

100 0.0221 
200 0.0273 

 
Because the network with a single hidden layer size of 50 performed the best on 
the validation data, this architecture was used to explore each loss function. As this 
network has a single hidden layer of size 50, 4 input neurons, and 1 output neuron, 
it has 250 weights and 51 biases, for 301 learnable parameters in total, therefore, 
this model is underparameterized, as it has 2510 training data points. New networks 
were initialized before each loss function was used. It should be noted that while 
hidden layer size has been tuned here for a traditional neural network (NN1), it 
cannot be assumed that this is the optimal network size for PGNNs. As the network 
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size is the same for each of them, and the physics-based constraints must be 
encoded into the network, there is less network capacity available to learn the 
relationship between input drivers and melt pool width. Therefore, performance of 
PGNNs here are lower bounds. The result of each network’s test data can be found 
in Table 5. 

Table 5 Results and number of training epochs for each model 

Model Loss Test R-square Epochs Training method 
NN1 MSE 0.866 967 Patience 

PGNN1 MSE + Loss.PHY1 0.951 2571 Patience 
PGNN2 MSE + Loss.PHY2 0.986 3486 Patience 

NN2 MSE 0.901 3486 Same epochs as PGNN2 
NN-R MSE + Regularizers 0.912 1462 Patience 

 
It is clear that the physics-guided neural nets (PGNN1 and PGNN2) outperformed 
the non-physics-guided neural net (NN1), and that the PGNNs trained for more 
epochs before the loss of the validation data increased. Adding the additional 
physics-based constraint to the loss in PGNN2 furthered these trends, training 
longer than and outperforming PGNN1. The performances of each network are 
further discussed in detail. The test predictions for NN1, from sample 450-12, are 
shown in Fig. 9. 

 

Fig. 9 Test target vs. prediction of NN1 

It is immediately clear that NN1 predicted trends that are not physically expected. 
The melt pool width decreased temporarily at greater build height, which is not 
consistent with experimental data or expected from processing physics. In addition, 
the predicted rate at which the melt pool widened increased above 15-mm build 



 

17 

height where experimentally the melt pool width has leveled off. NN1 predicts the 
target melt pool width in the test data with a root mean square error of 0.0793 mm. 

Because NN1 was outperformed by models that trained for more epochs, another 
comparison is to train a traditional neural net for 3486 epochs, as much as model 
PGNN2. The resulting model, NN2, fits the test data with an R² of 0.901, shown in 
Fig. 10, and outperforms NN1, but underperforms compared to both of the PGNNs. 

 

Fig. 10 Test target vs. prediction of NN2 

While NN2 trained longer and outperformed NN1, it still produced predictions that 
are not consistent with the physical limitations that were previously described: it 
predicts decreases in melt pool width with increasing height and it predicts that the 
rate of melt pool widening increases with increasing height. However, NN2, trained 
for 3486 epochs, outperforms NN1, trained for 967 epochs. This suggests that the 
training may have halted too early.  

More of the network updates pertained to patterns that extend to the validation data 
(and likely all data), as opposed to pertaining to patterns that only applied to the 
training data because the PGNNs trained for more epochs before the validation loss 
increased. This is entirely expected, because part of the loss function in the PGNNs 
corresponded to the physics-based trends applied to all the data. Since the network 
was required to obey these physics-based trends when updating its model weights, 
it trained for longer before it produced poor predictions for the validation data. 
Training a normal neural network for longer did not re-create these improvements, 
as the later model updates did not necessarily correspond to patterns that exist in 
nontraining data. Results from PGNN1 can be found in Fig. 11.  
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Fig. 11 Test target vs. prediction of PGNN1 

Since the network was penalized for predicting a decrease in melt pool width as a 
function of height, it did not make any such predictions. However, as there was no 
penalty for predicting increases in the rate at which melt pool width increased with 
increasing height, this model predicted such an increase, above 20 mm in build 
height. Given the processing physics, there is no known mechanism that would 
cause rapid heat buildup or otherwise cause melt pool width increases at larger 
heights. PGNN1 outperformed non-physics-guided models. 

Results from PGNN2, which was trained with a loss function that penalizes all 
physical inconsistencies discussed, can be found in Fig. 12. PGNN2 produced 
predictions that perform with an R2 of 0.986 on the test data and no physical 
inconsistencies were predicted by this model. This model demonstrated the ability 
for physics-guided models to be rapidly trained to produce results both high in 
accuracy and respecting physical limitations.  
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Fig. 12 Test target vs. prediction of PGNN2 

It can be argued that physics-guided loss functions act as regularizers: they bias the 
model to solutions obeying physical rules. While additional regularizers were not 
employed in this work, Daw et al. (2021) show that PGNNs with traditional 
regularizers outperform standard neural networks with traditional regularizers. In 
this work, PGNNs without other regularizers are compared against a neural network 
with traditional regularizers. Another neural network, NN-R, with kernel 
regularizers (L1 = 10–5, L2 = 10–4), bias regularizers (L2 = 10–4), and activity 
regularizers (L1 = 10–5), was trained. These regularizer values were taken from the 
Keras page on layer regularizers to demonstrate they were not tuned to any data set 
(Chollet 2015). The testing results of NN-R are shown in Fig. 13. 

 

Fig. 13 Test target of NN-R 
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While NN-R performed better (R-square = 0.912) than the other neural networks, 
it was outperformed by both PGNNs and predicted both types of physical 
inconsistency. Conceptually, it can be argued that the physics-guided loss functions 
offer regularization that cannot be replaced by kernel/bias/activation regularization. 
Increasing the latter runs the risk of underfitting, biasing the model away from 
solutions that have large parameters or many nonzero parameters, which may 
actually be characteristic of the underlying function the model is trying to learn. 
However, there is no such risk of underfitting with a physics-based loss function as 
physics-based loss functions bias the model against learning physically impossible 
functions. 

3.3 Machine Learning: PGNNs for Unbalanced Data 

All of the test results were of sample 450-12, which is within the variable parameter 
set of samples. There were five samples in the variable length set, three of which 
were used to train the model. There were eight samples in the variable parameter, 
six of which were used to train the model. As there were twice as many variable 
power/speed samples than variable length samples, it could be argued that the 
model learned to better approximate the variable parameter set than the variable 
length set because the variable parameter set’s data will comprise a majority of the 
training data’s contribution to the loss function. The experiment was repeated, but 
with only 450-16 used for validation, and 50L and 450-12 used for testing, so that 
the testing performance can display model accuracy on both variable length and 
variable parameter data. The new division of data used for training, validation, and 
testing is shown in Table 6. 

Table 6 Split of training, validation, and testing data in experiments 

Training Validation Testing 
12L 450-16 450-12 
25L . . . 50L 

100L . . . . . . 
150L . . . . . . 

650-16 . . . . . . 
550-16 . . . . . . 
350-16 . . . . . . 
650-12 . . . . . . 
550-12 . . . . . . 
350-12 . . . . . . 

 
The neural nets trained were NN1 (standard method), NN2 (trained for as many 
epochs as PGNN2), PGNN1 (trained with 1st derivative physics loss contributions), 
and PGNN2 (trained with both 1st and 2nd derivative physics loss contributions). 
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An additional neural net, NN-W, in which the variable length samples were 
weighted as twice as important as the variable power/speed samples, was trained. 
This is a common strategy for training on unbalanced data. Testing data from 
samples 50L and 450-12 are both presented in Table 7.  

Table 7 Results and number of training epochs for each model 

Model Loss R-square 
50L 

R-square 
450-12 Epochs Training method 

NN1 MSE 0.439 0.884 1134 Patience 
PGNN1 MSE + Loss.PHY1 0.950 0.962 3177 Patience 
PGNN2 MSE + Loss.PHY2 0.972 0.991 3948 Patience 

NN2 MSE –21.139 0.904 3948 Same epochs as PGNN2 
NN-W Weighted MSE 0.493 0.846 843 Patience 

 
Similar trends were recorded for sample 450-12, as with the previous batch of 
models. However, traditional neural networks did not fit well to the data from 
sample 50L. Training NN2 for longer than NN1 did not result in increased 
performance on 50L, likely due to the model fitting more closely to variable 
power/speed samples than the variable length samples. Both PGNN models 
performed better than traditional neural nets on both samples. However, the PGNNs 
performed particularly better on 50L, compared to their traditional counterparts, as 
the physics-based contribution to their loss function forced them to fit to an 
underlying distribution of widths. NN1 and NN2 are more prone to predicting more 
effectively where there is more training data provided because they do not have 
access to the physics-based prior knowledge that the PGNNs do. PGNNs performed 
superior to weighted loss functions (NN-W), when working with unbalanced data, 
which is useful when sparse data sets are added to existing large ones. This may be 
because there are many more sets of model parameters that have low MSE errors 
for a given small data set than there are sets of model parameters that meet the 
physical constraints of the distribution that the data set came from. 

3.4 Model Verification 

To validate the model further, an experiment was conducted. Two thin walls were 
built: a 25.4-mm-long sample (25L MPS) and a 63.5-mm-long sample (63L MPS). 
The power and speed were varied by layer such that the predicted wall width would 
be 2 ±0.02 mm. The same width measurement algorithm used on the previous set 
of samples was applied to the in-situ monitoring videos from these builds. The 
width versus build height of sample 25L MPS is displayed in Fig. 14. The melt pool 
width for sample 25L MPS underpredicted the target width initially but then 
overshoots. The steady state width was 2.05 mm, 2.5% larger than the target value.  
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Fig. 14 Melt pool width vs. build height for sample 25L MPS. Compared to sample 350-12, 
sample 25L MPS had significantly less height deviation and quickly reached a steady state of 
2.05-mm melt pool width. 

Similar trends were seen in the melt pool width for sample 63L MPS compared to 
sample 50L (seen in Fig. 15): a slight undershoot in the beginning, followed by an 
overshoot, and then a plateau that was above the target width. The melt pool width 
stabilized at 2.1 mm, 5% higher than the target.  

 

Fig. 15 Height vs. width curves for samples 50L and 63L MPS 

The melt pool width is not just a function of the power, speed, and geometry of that 
layer, but also affected by thermal buildup from the residual heat retained in the 
layers processed before the current layer. Here, the power was increased during the 
first portion of the build, increasing the amount of heat built up for subsequent 
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layers. As a result, the melt pool may have been wider than the model predicts. 
Future models could be improved by taking inputs from all previous layers.  

It should be stressed that while this work uses finite difference approximations of 
inequalities of 1st- and 2nd-order derivatives as constraints on neural networks, any 
equation can be enforced as a constraint, including but not limited to, equalities or 
inequalities comprised of multivariate differential equations and multivariate 
integrals. As long as a finite difference can be calculated, such an equation can be 
transformed into a constraint on a neural network. 

4. Conclusions and Future Work 

This work demonstrated the ability of machine learning to predict DED melt pool 
width given relevant input drivers based on specific process parameters and 
geometry of a printed part. PGNNs were shown to outperform traditional neural 
networks, with a limitation that the mathematical descriptions of physical laws must 
be identified. This work identified trends in DED melt pool width, justified by 
modeling, experimental results, and physical reasoning, and enforces those trends 
as constraints on neural networks. The following conclusions were drawn:  

• PGNNs are able to model the interdependences between process input 
drivers (power and speed) and geometric input drivers (built height and wall 
length) to DED melt pool width. 

• This has implications for driving down cost and process time, 
postprocessing cost and time, as well as opening up the use of DED for 
broader applications. 

• Neural networks often produce predictions not consistent with known 
physics, such as melt pool width decreasing as a function of build height. 

• PGNNs are constructed to predict things that are physically consistent. 

• Adding additional physics-based terms not only improved compliance with 
known physics but also improved performance. 

• PGNNs act as regularized NNs, at no increased prediction cost and at 
minimal extra training cost as they bias the network away from physically 
unsound solutions, as opposed to traditional regularization that bias the 
model away from solutions that have large weights or many non-zero 
weights. 

• PGNNs are superior to train on unbalanced data than traditional neural 
networks with weighted loss functions.  
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Because physics-guided loss functions restrict the family of functions that the 
network can represent to functions that do not predict physical inconsistencies, the 
network is provided incentive to make weight/bias updates that are extensible to 
the validation data. As a result, PGNNs can train for more epochs before patience-
based training terminates. It is demonstrated that the increased performance is not 
merely a result of longer training, as a traditional neural network trained for the 
same number of epochs as a PGNN will still underperform compared to the PGNN. 
It should be noted that physics-guided loss functions can be employed on any loss-
supervised model, not just neural networks. 

In this work, length and height of a thin wall are the geometric input drivers. In 
practice, more complex representations of local geometry may be employed, with 
similar physics-based constraints applied. PGNNs may have applications in any 
materials science or AM problem where physics-based insights exist. For example, 
it could be hypothesized that cooling rates may be partially predicted from process 
parameters and geometric information, as evidenced by the relationship between 
wall width and process parameter and wall length. Understanding the relationships 
between cooling rates, process parameters, and geometry may allow the prediction 
of final microstructure: phase and grain size. As a result, constraints may be placed 
on microstructure trends as a function of process parameters and geometric 
information. These constraints may be enforced on machine learning models, using 
the methods described, to predict these properties with higher accuracy and without 
predicting physical inconsistencies. Ongoing work seeks to apply these methods to 
predict properties such as microstructure, as well as to apply this work to arbitrary 
geometries.  
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List of Symbols, Abbreviations, and Acronyms 

3-D  three-dimensional 

AM  additive manufacturing 

ARL  Army Research Laboratory 

DED  directed energy deposition 

DEVCOM  US Army Combat Capabilities Development Command 

H  build height 

IR  infrared 

L  wall length 

MPS  multiple parameter set 

MSE  mean squared error 

NN  neural network 

P  power 

PGNN  physics-guided neural network 

ReLU  rectified linear unit 

S  speed 

UV  ultraviolet 

W  melt pool width 
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