
Page 1 of 2 PREVIOUS EDITION IS OBSOLETE. STANDARD FORM 298 (REV. 5/2020)
Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE

MARCH 2023

2. REPORT TYPE

TECHNICAL PAPER

3. DATES COVERED

START DATE
JANUARY 1996

END DATE
APRIL 1997

4. TITLE AND SUBTITLE
 Design and Analysis of Parallel Search Strategies to Find a First Solution

5a. CONTRACT NUMBER

IN-HOUSE

5b. GRANT NUMBER

N/A

5c. PROGRAM ELEMENT NUMBER

0602702F

5d. PROJECT NUMBER

2338
5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)
 Warren H. Debany Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RIG
525 Brooks Road
Rome NY 13441-4505

8.PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RIG
525 Brooks Road
Rome NY 13441-4505

10.SPONSOR/MONITOR'S
ACRONYM(S)

AFRL/RI

11.SPONSOR/MONITOR'S REPORT
NUMBER(S)

AFRL-RI-RS-TP-2023-002

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA Case Number: RL/PA #97-209
DATE CLEARED: 10 April 1997

13. SUPPLEMENTARY NOTES
Published in the proceedings of the 1997 Summer Computer Simulation Conference (SCSC), Washington D.C. 13-17 July 1997.
This technical paper was written under the in-house work unit "Testability Measurement and Design-For-Testability" at the Rome
Laboratory, now Air Force Research Laboratory. This is a work of the United States Government and is not subject to copyright
protection in the United States.
14. ABSTRACT

Many problems involve the exploration of a large state space to find a solution - examples of such problems include automatic test
vector generation for digital logic circuits, the traveling salesman problem, associative search, and cryptography. In most cases it is
sufficient to stop the search after the first acceptable solution is found. This paper discusses some new results concerning the
negative hypergeometric distribution and applies this distribution to the analysis of "sampling without replacement" search strategies.
To shorten long run times, a search can be parallelized by assigning partitions of the search space to different processors. It is
shown in this paper that linear average speedup of a search for a first solution is impossible even in the absence of such
considerations as communication, contention, or load balancing, and even under the most favorable partitioning of solutions in the
search space.

15. SUBJECT TERMS

Parallel processing, speedup, sampling with replacement, sampling without replacement, negative hypergeometric distribution

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER OF PAGES

a. REPORT
U

b. ABSTRACT
U

C. THIS PAGE
U

19a. NAME OF RESPONSIBLE PERSON
WARREN H. DEBANY, JR.

19b. PHONE NUMBER (Include area code)
N/A

7

01 7B

DESIGN AND ANALYSIS OF PARALLEL RANDOM SEARCH

STRATEGIES TO FIND A FIRST SOLUTION

Warren H. Debany Jr., Ph.D., P.E.
Rome Laboratory /ERDA

525 Brooks Rd.
Rome NY 13441-4505

e-mail: debanyw@rl.af.mil

KEY WORDS

Parallel processing, speedup, sampling with re­
placement, sampling without replacement, negative
hypergeometric distribution.

ABSTRACT

Many problems involve the exploration of a large
state space to find a solution - examples of such
problems include automatic test vector generation for
digital logic circuits, the traveling salesman problem,
associative search, and cryptography. In most cases it
is sufficient to stop the search after the first accept­
able solution is found. This paper discusses some new
results concerning the negative hypergeometric distri­
bution, and applies this distribution to the analysis of
"sampling without replacement" search strategies. To
shorten long run times, a search can be parallelized
by assigning partitions of the search space to different
processors. It is shown in this paper that linear aver­
age speedup of a search for a first solution is impossible
even in the absence of such considerations as commu­
nication, contention, or load balancing, and even un­
der the most favorable partitioning of solutions in the
search space.

INTRODUCTION

A commonly performed operation is that of search­
ing a state space (SS) for a solution. States are se­
lected and tested until an acceptable solution is found.
Examples ofsuch problems include automatic test vec­
tor generation (ATVG) for digital logic circuits, the
traveling salesman problem (TSP), associative search,
and cryptography.

This work was supported by the Rome Laboratory Chief
Scientist as a 6.1 Basic Research Entrepreneurial Research
Project (ERP).

Depending on the type of problem, the SS may con­
tain exactly one solution, many solutions (although
the exact number may be unknown), or no solutions.
In most practical cases it is not necessary to find all
solutions that may exist in the SS. Instead, the search
is terminated when the first solution is found.

Random Search

For many problems, algorithms or heuristics for
guiding the search process may not be available, or
may be so weak that the SS effectively is explored at
random. This may occur by the fundamental nature
of the problem or as a consequence of the particular
data set. For example, in an instance of TSP the cost
matrix may be such that a depth-first search guided by
branch-and-bound must explore all or most branches
of the search tree. Systematic search techniques are
nonexistent for certain key search problems, where the
most efficient strategy is simply to search the SS at
random (Diffie and Hellman 1977).

ATVG algorithms based on PODEM (Goel 1981)
use implicit enumeration of values at the primary in­
puts of a circuit-under-test to find required conditions
for fault activation and error propagation. The frac­
tion of time PO DEM spends in the enumeration phase
varies with the effectiveness of the heuristics used and
the specific circuit-under-test, but one study has ob­
served this fraction to be about 95% of the total test
vector generation time (Wu and Hartmann 1997).

Parallel Processing

A uniprocessing (or scalar) implementation of a
search technique uses a single computing node to solve
a problem. Because of the long runtimes for some SS
search problems, it is natural to consider parallel pro­
cessing (PP) as a means of shortening the time to

599

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

find a solution. Special-purpose architectures exist to
support efficient PP, such as hypercubes and the Intel
Paragon. More commonly, however, researchers turn
to the low-cost alternative of a network of worksta­
tions, where resources are accessed as needed through
a package such as Parallel Virtual Machine (PVM)
(PHENIX 1994).

There exists a large body of literature concerning
parallel implementations of SS search problems, for
example (Kale and Saletore 1990) and (Janakiram,
Agrawal, and Mehrotra 1988). Many deal specifically
with parallelization of the ATVG problem, such as
(Chandra and Patel 1988), (Arvindam, et al. 1991),
and (Patil and Banerjee 1990).

A goal of any PP implementation is to achieve lin­
ear speedup. This is where a search problem runs k
times faster on k processors than it does on a single
processor. It is well known that many PP barriers
frustrate attempts to achieve linear speedup, includ­
mg:

• interprocess communication
• process creation
• memory management
• contention for shared resources
• load balancing
• additional computation

See, for example, (JaJa 1992) and (Lewis and El­
Rewini 1992).

Most authors state only that sublinear speedup is
caused by these PP barriers, but the impression is
clear that, if they could be eliminated, then linear
speedup would result. In fact, in (Lewis and El-Rewini
1992) the statement is made concerning hypercube ar­
chitectures that, "A trivially parallel application is one
that requires no interprocess communication. Such an
application achieves linear speedup."

When a fixed amount of computation must be per­
formed, as in many numerical applications such as sig­
nal processing, it may be true that elimination of these
PP barriers may result in linear speedup. If only a
first solution is required, however, then the remainder
of the SS and any other solutions that may exist can
be disregarded. It is demonstrated here that linear
average speedup of a random SS search to find a first
solution is not possible, even in the absence of these
PP barriers, and with the most fortunate partitioning
of solutions in the SS.

WAITING TIMES: SAMPLING WITH AND

WITHOUT REPLACEMENT

Consider a SS that contains N distinct states,
where exactly M of these states are solution states.

In this paper it is assumed that M?: 1, N » M, and
state selection is random and equiprobable.

In a sampling with replacement (SWR) strategy,
a state may be selected again even if it has already
been tested. A sampling without replacement (SWOR)
strategy selects only distinct states.

The geometric distribution, which is derived from
the negative binomial (Feller 1957), is the probability
mass function (pmf) for the waiting time to find a first
solution using SWR:

Pr{first solution is found on step n, for SWR}
=pqn-1

(1)

where p = M/N and q = 1 - p. Define a random
variable (rv) G that is the number of the SWR step
on which the first solution is found. The expected
value of G is

EG= ! = N

P M
(2)

The probability distributions that apply to SWOR­
based search SWOR are far less well known than those
for the case of SWR. A distribution that corresponds
to the negative binomial, but for SWOR, is known
as the negative hypergeometric, inverse hypergeomet­
ric, or hypergeometric waiting-time. (Matuszewski
1962), (Guenther 1983), and (Johnson, Kotz, and
Kemp 1992). There are many alternative forms for
the negative hypergeometric distribution - the sim­
plest form is given by (Matuszewski 1962):

600

Pr{rth solution is found on step n, for SWOR}
(n-l)(N-n) r-

\
Z,

)
-r for r ::Sn ::SN - M + r (3)

Setting r = 1 in Eqn (3) yields a pmf that corre­
sponds to the geometric distribution, but for SWOR:

Pr{first solution is found on step n, for SWOR}
(N-n)

= (Z)1 for 1:::; n:::; N - M + 1 (4)

= h(n,N,M)

(Being a pmf, h(n,N,M) = 0 for n < 1 or n > N­
M+ 1.)

We will refer to the pmf given by Eqn (4) as the
Negative Hypergeometric with r = 1 (NH1) distribu­
tion. Note that for M = 1 the NHl pmf degenerates to
a uniform distribution (Feller 1957) and (Janakiram,
Agrawal, and Mehrotra 1988).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The following two equations relating to the NHl
distribution are believed to be new results. Eqn (4)
can be written in recursive form as

{

N-M-n+2 X h(n - 1 N M)N-n+l ' '
h(n, N, M) = for 2 $ n $ N - M + 1

"% for n = 1
(5)

Eqn (5) provides a great savings in computation and
programming convenience in our analyses.

The cumulative distribution function (cdf) for the
NHl distribution is given by

- (
N

At) H(n, N, M) - 1 -
(i)

for 1 $ n $ N - M + 1

(6)
(Being a cdf, H(n, N, M) = 0 for n < 1, and is 1 for
n2:N-M+l.)

Define a rv H that is the number of the SWOR
step on which the first solution is found. The expected
value of His

EH
=

N+l
M+l (7)

(This result is well known for M = 1.) The variance
of His

V H =
M(N - M)(N + 1)
(M + 1)2(M +2) (8)

Eqns (7) and (8) are special cases of the moments of
the negative hypergeometric distribution as given in
(Matuszewski 1962).

Comparison of SWR and SWOR

It is obvious that, on the average, a SS search strat­
egy that uses SWOR will find a first solution faster
than a SWR-based search. However, the relevant lit­
erature seems to deal exclusively with analyses based
on SWR. This may be justified in terms of simplicity of
presentation as in (Janakiram, Agrawal, and Mehro­
tra 1988), or for fault tolerance as in (Quisquater and
Desmedt 1991).

It is noted in the latter reference that a SWR-based
search takes an average of only twice as long as a
SWOR-based search. Let us quantify this ratio more
precisely. For given values of N and M, the ratio of
EC to EH is obtained from Eqns (2) and (3):

Average search speedup of SWOR over SWR
EC N M + 1 NM+ N

(9) = EH = M x N + 1 = NM+ M

For M « N the speedup using SWOR is approxi­
mately M_Jl. For M = 1 the speedup approaches 2 as

noted elsewhere. A speedup of at least 10% is achieved
for M < 10.

Design of SS Search Strategies

Clearly, if solutions are plentiful, then it does not
matter whether SWOR or SWR is used. An addi­
tional design consideration is the overhead needed for
a SWOR search. In some cases memory requirements
may be excessive, or the computation required to sam­
ple only distinct states may be even greater than that
required to actually test the states. It is assumed in
this paper, however, that M is relatively small, and
that the SS is explored randomly using SWOR.

601

SPEEDUP USING PARALLEL
PROCESSING

Again, consider a SS that consists of N states and
contains M solutions. Assume that k processors in
parallel are to be used to find a first solution. The SS
is partitioned at random into k non-overlapping sets,
each of which is explored at random by SWOR by one
processor. We consider only cases where k evenly di­
vides N, so each partition contains exactly N / k states.
Each processor explores its partition of the SS at the
same, constant rate. Significantly, we disregard all of
the PP barriers mentioned in the introduction, and
show that this optimistic scenario fails to achieve lin­
ear average speedup even under the most favorable
distribution of solutions.

Following standard conventions in the PP litera­
ture, such as (JaJa 1992), the comparison metric is the
mean time to find a first solution. Define the average

speedup achieved by a search that uses k processors as

S(k N M)
=

Average time using 1 processor
(O) ' ' A . .

k
l verage time usmg processors

where linear speedup would have S(k, N, M) = k. De­
fine the average efficiency as

E(k, N, M)
= S(k, N, M)

(11)
k

where E(k, N, M) = I for linear speedup.
We consider three cases:
Case 1: All M solutions are in a single partition

out of k
Case 2: All possible distributions of M solutions

to k partitions
Case 3: Random distribution of M solutions

to k partitions
Case 1

The most fortunate (albeit unlikely) case for PP
speedup is where all M of the solutions in the SS are

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1

0.8

0.6

0.4

0.2

1

0.B

0.6

o.,

0.2

[""89
•

-

•

200 400 600 800 1000

k = 1, 2, 4, a, 16, 32, 64, 128, 256, 512, 1024.

Figure 1. Efficiency for N = 1,024 and
M = 1.

""'

9

•

•
'

200 400 600 800 1000
k .. 1, a, 4, 8, 16, 32, 64. ., 1:28, lSt:, 512, 10:24

Figure 2. Efficiency when all solutions are
in single partition (Case 1) for N = 1,024
and M = 16.

contained in the same partition, perhaps even to the
point of saturation. The analysis is based on Eqn (7),
which is the mean of the NHl distribution.

Consider when N / k 2:'. M. From Eqn (10) we have

Note that this speedup does not depend on the value
of M. From Eqn (11) we have

E(k, N, M) = Zt! (12)

E(k, N, M) is nearly 1 for small k, but, for any k > 1,
the average efficiency is strictly less than 1.

An important special case is when M = l. The be­
havior of Eqn (12) is shown in Figure 1 for N = 1,024.
Note that, in the extreme case of massive parallelism
where N = k (i.e., every processor needs to test only a
single state), we find that E(N, N, 1) approaches 1/2!

Now, consider when N/k � M. A single partition
is saturated with solutions, so the PP search always

terminates in one step. Then

�

S(k N M) - .M±!.. = li.±1..
, , - 1 M+l

which is constant with respect to k. At the point
where N / k = M (a single partition contains all M
solutions), from Eqn (12) we have

S(N N M) _ N+1 ~ M
M' ' - N+N/M ~ M+l

Then, as k increases, the efficiency continues to drop
below �

1
because the speedup is constant, yet more

processors are being used.
Figure 2 shows how the efficiency function behaves

for N = 1,024 and M = 16, with the vertical bar at
the saturation point k = 64, where N / k = M.

Thus, it is seen that, even when all M solutions
end up in a single partition, the average efficiency is
still always less than 1 for k > 1.

Case 2

The first case represented the best situation for PP
speedup. We now generalize the discussion to deter­
mine how the efficiency function behaves for all possi­
ble distributions of M solutions to k partitions .

Consider the case where k = 4 and M = 6. Three
possible distributions of solutions are {2, 1, 0, 3},
{1, 3, 0, 2}, and {3, 2, 0, 1}; we group these cases as a
single canonicalized partition set {3, 2, 1, 0} and report
an overall occurrence frequency for it.

For a value of N, we wish to determine the average
speedup and efficiency for each possible partition set
for given values of M and k. Denote a partition set as
P = {M1,M2, ... M,.} where M1 +M2 + . . . +M1o = M.
We find the expected number of steps for any one of
the processors to find a first solution by using the in­
dividual processor's NHl cdfs to calculate an overall
cdf, converting that cdf to an overall pmf, and sum­
ming terms to find the expected value. (Conceptually
the individual cdfs are given by Eqn (6), but compu­
tationally it is more convenient to use the recursive
form given in Eqn (5).) For a given solution partition
P we obtain the following overall pmf:

Pr{ any processor finds a first solution on step n}

= ii [1- H(n - 1, �, M;)]
1:l

-g [1 - H (n, ; , Mi)]

= h'(n, N, P)

Then the expected number of steps for any processor

602

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Table 1. All possible partitions of solu­
tions for N = 500, M = 5, and k = 5.

Partition Set Freq. Speedup
{2,l,1,1,0} 0.384 4.872
{2,2,1,0,0} 0.288 4.882
{3, 1,1,0,0} 0.192 4.892
{3,2,0,0,0} 0.064 4.901
{l, 1, 1, 1, 1} 0.038 4.863
{4,1,0,0,0} 0.032 4.921
{5,0,0,0,0} 0.002 4.960

to find a first solution is given by
N/k

EHp = L nh'(n, N, P)
n=l

Efficiency
0.974
0.976
0.978
0.980
0.973
0.984
0.992

(13)

Analytically, Eqn (13) is messy unless all M; = 1, so
the series is summed directly.

Table 1 shows the results for N = 500, M = 5, and
k = 5, where there are seven possible canonical par­
titions of five solutions to five processors. The table
shows the partition sets, frequencies (assuming uni­
formly random distribution of solutions), and the ex­
pected speedup and efficiency based on the EHp given
by Eqn (13) compared to the EH of the unpartitioned
case given by Eqn (7).

The greatest efficiency is observed in the least likely
case, i.e., when all solutions are in a single partition
(our Case 1). The smallest efficiency is observed when
the solutions are evenly partitioned among the k pro­
cessors. The average efficiency could be obtained an­
alytically by weighting the individual efficiencies by
their probabilities of occurrence, but in the next sub­
section we give empirical results based on simulation.

Case 3

Now we find the efficiency that is expected when
M solutions are randomly distributed among k pro­
cessors. These data were obtained from simulations
that model the random search process. (The value
N = 180 was chosen for this example because it is
evenly divisible by many values of k.) Figure 3 shows
how the efficiency decreases as a function of k.

This case is the most realistic as a predictor of the
efficiency of a single instance of a SS search. It should
be noted that results vary widely from experiment to
experiment. For the unpartitioned search in this ex­
ample, with a mean value of 30.2 steps, the variance
of the NHl distribution is given by Eqn (8) as 628.5;
thus, the standard deviation of the number of steps
to find the first solution is approximately 83% of the
mean. The PP results vary similarly; fork = 5 the ob-

0.8

0.6

o.,

0.2

\
'-

'Ii,

•

•
•

•

Figure 3. Efficiency for random distribu­
tions of solutions to k partitions (Case 3)
for N = 180 and M = 5, based on 10,000
experiments.

•

served standard deviation was 78% of the mean. Thus,
wide variability in actual speedup is guaranteed.

Design of SS Search Strategy

These results indicate that a parallel SS search has
near-linear speedup only when k is small compared to
N. If the SS is very large, as in a random test of 56-bit
keys (Diffie and Hellman, 1977), then efficiency will be
close to 1 regardless of the number of processors used.
For problems with smaller state spaces, however, mas­
sively parallel implementations consisting of hundreds
or thousands of processors may have efficiencies much
less than 1.

In the latter case, the algorithm designer must de­
cide whether decreasing iatency or increasing through­

put is more critical. For a single instance of a search
problem, PP will find a solution (on the average)
faster than a uniprocessor will. However, when many
individual search problems are to be solved, better
throughput would result from partitioning complete
searches to the available processors, rather than par­
titioning the search spaces. In ATVG, for example,
it has been noted that fault list parallelism provides
better speedup than other forms of parallelism; see,
for example, (Chandra and Patel 1988).

CONCLUSIONS

This paper has presented a framework for the de­
sign and analysis of random state space search strate­
gies. In contrast to the well-known theory of sam­
pling with replacement, the corresponding probability
distributions that apply to sampling without replace-

603

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ment are relatively unknown to algorithm designers.
This paper discusses properties of the negative hyper­
geometric distribution, which is suitable for analyzing
the performance of searches based on sampling with­
out replacement.

We have established that sampling without replace­
ment is clearly superior to sampling with replacement
when there are relatively few solution states. If there
are more than about 10 solutions in a large state space,
then the improvement in performance will be less than
10% by using sampling without replacement.

For a sampling without replacement strategy, we
have derived average efficiencies gained by using k par­
allel processors for several scenarios for the distribu­
tion of solutions. Even in the most optimistic case,
where all solutions are in the search space searched
by a single processor, it is shown that the average ef­
ficiency is always less than 1. For a problem with a
single solution the average efficiency of a massively
parallel implementation may be as low as 1/2.

It is demonstrated here that, even in the absence of
the well-known parallel processing barriers, linear av­
erage speedup of a random search space search to find
a first solution is not possible. This is shown to be
a consequence of the laws of probability, rather than
a deficiency in the implementation. This result is not
necessarily negative - it means that many of the pub­
lished results that achieved at best slightly sublinear
speedup may, in fact, have achieved the theoretical
maximum limit.

ACKNOWLEDGMENT

The author wishes to thank Prof. Kishan G.
Mehrotra (Syracuse University) for his help in pro­
viding information about the negative hypergeometric
distribution function.

REFERENCES

Arvindam, S.; V. Kumar; V.N. Rao; and V. Singh.
1991. "Automatic Test Pattern Generation on Paral­
lel Processors." Parallel Computing (Elsevier Science
Pub.), vol. 17: 1323-1342.

Chandra, S. and J .H. Patel. 1988. "Test Generation
in a Parallel Processing Environment." In Proc. IEEE
Int. Conf. on Computer Design {ICCD): 11-14.

Diffie, W. and M.E. Hellman. 1977. "Exhaustive
Cryptoanalysis of the NBS Encryption Standard."
IEEE Computer. (Jun.): 74-84.

Feller, W. 1957. An Introduction to Probability Theory
and Its Applications (Vol. 1). J. Wiley & Sons, NY.

Goel, P. 1981. "An Implicit Enumeration Algorithm
to Generate Tests for Combinational Logic Circuits."
IEEE Trans. on Computers (Mar.): 215-222.

Guenther, W.C. 1983. "Hypergeometric Distribu­
tions." In Encyclopedia of Statistical Sciences, Vol
3 (Editors: S. Kotz and N.L. Johnson). J. Wiley &
Sons, NY.

JaJa, J. 1992. An Introduction to Parallel Algorithms.
Addison-Wesley, Reading, MA.

Janakiram, V.K.; D.P. Agrawal; and R. Mehrotra.
1988. "A Randomized Parallel Backtracking Algo­
rithm." IEEE Trans. on Computers (Dec.): 1665-
1676.

Johnson, N.L.; S. Kotz; and A.W. Kemp. 1992. Uni­
variate Discrete Distributions. J. Wiley & Sons, NY.

Kale, L.V. and V.A. Saletore. 1990. "Parallel State­
Space Search for a First Solution with Consistent
Linear Speedups." Int. J. of Parallel Programming
(Plenum Pub. Corp.), vol. 19, no. 4: 251-293.

Lewis, T.G. and H. El-Rewini. 1992. Introduction to

Parallel Computing. Prentice Hall, Englewood Cliffs,
NJ.

Matuszewski, T.I. 1962. "Some Properties of Pascal
Distribution for Finite Populations." J. of the Amer.
Statistical Assoc., vol. 57: 172-174. (See also correc­
tion, p. 919.)

Patil, S. and P. Banerjee. 1990. "A Parallel Branch
and Bound Algorithm for Test Generation." In Proc.
ACM/IEEE Design Automation Conf. {DAG): 339-
344.

PHENIX. 1994. "Interprocess Communication
Using PVM." http://utherl.phy.ornl.gov/offline
/code_develop/pvm/pvm.html.

Quisquater, J-J. and Y.G. Desmedt. "Chinese Lotto
as an Exhaustive Code-Breaking Machine." IEEE
Computer (Nov.): 14-22.

Wu, C-H. and C.R.P. Hartmann. 1997. "Delay Fault
and Stuck-At Fault Test Generation Using Multipro­
cessing." Rome Laboratory Tech. Report (in publica­
tion).

604

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

