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ABSTRACT 

Many problems involve the exploration of a large 
state space to find a solution - examples of such 
problems include automatic test vector generation for 
digital logic circuits, the traveling salesman problem, 
associative search, and cryptography. In most cases it 
is sufficient to stop the search after the first accept­
able solution is found. This paper discusses some new 
results concerning the negative hypergeometric distri­
bution, and applies this distribution to the analysis of 
"sampling without replacement" search strategies. To 
shorten long run times, a search can be parallelized 
by assigning partitions of the search space to different 
processors. It is shown in this paper that linear aver­
age speedup of a search for a first solution is impossible 
even in the absence of such considerations as commu­
nication, contention, or load balancing, and even un­
der the most favorable partitioning of solutions in the 
search space. 

INTRODUCTION 

A commonly performed operation is that of search­
ing a state space (SS) for a solution. States are se­
lected and tested until an acceptable solution is found. 
Examples ofsuch problems include automatic test vec­
tor generation (ATVG) for digital logic circuits, the 
traveling salesman problem (TSP), associative search, 
and cryptography. 

This work was supported by the Rome Laboratory Chief 
Scientist as a 6.1 Basic Research Entrepreneurial Research 
Project (ERP). 

Depending on the type of problem, the SS may con­
tain exactly one solution, many solutions (although 
the exact number may be unknown), or no solutions. 
In most practical cases it is not necessary to find all 
solutions that may exist in the SS. Instead, the search 
is terminated when the first solution is found. 

Random Search 

For many problems, algorithms or heuristics for 
guiding the search process may not be available, or 
may be so weak that the SS effectively is explored at 
random. This may occur by the fundamental nature 
of the problem or as a consequence of the particular 
data set. For example, in an instance of TSP the cost 
matrix may be such that a depth-first search guided by 
branch-and-bound must explore all or most branches 
of the search tree. Systematic search techniques are 
nonexistent for certain key search problems, where the 
most efficient strategy is simply to search the SS at 
random (Diffie and Hellman 1977). 

ATVG algorithms based on PODEM (Goel 1981) 
use implicit enumeration of values at the primary in­
puts of a circuit-under-test to find required conditions 
for fault activation and error propagation. The frac­
tion of time PO DEM spends in the enumeration phase 
varies with the effectiveness of the heuristics used and 
the specific circuit-under-test, but one study has ob­
served this fraction to be about 95% of the total test 
vector generation time (Wu and Hartmann 1997). 

Parallel Processing 

A uniprocessing ( or scalar) implementation of a 
search technique uses a single computing node to solve 
a problem. Because of the long runtimes for some SS 
search problems, it is natural to consider parallel pro­
cessing (PP) as a means of shortening the time to 
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find a solution. Special-purpose architectures exist to
support efficient PP, such as hypercubes and the Intel
Paragon. More commonly, however, researchers turn
to the low-cost alternative of a network of worksta­
tions, where resources are accessed as needed through
a package such as Parallel Virtual Machine (PVM)
(PHENIX 1994).

There exists a large body of literature concerning
parallel implementations of SS search problems, for
example (Kale and Saletore 1990) and (Janakiram,
Agrawal, and Mehrotra 1988). Many deal specifically
with parallelization of the ATVG problem, such as
(Chandra and Patel 1988), (Arvindam, et al. 1991),
and (Patil and Banerjee 1990).

A goal of any PP implementation is to achieve lin­
ear speedup. This is where a search problem runs k
times faster on k processors than it does on a single
processor. It is well known that many PP barriers
frustrate attempts to achieve linear speedup, includ­
mg:

• interprocess communication
• process creation
• memory management
• contention for shared resources
• load balancing
• additional computation

See, for example, (JaJa 1992) and (Lewis and El­
Rewini 1992).

Most authors state only that sublinear speedup is
caused by these PP barriers, but the impression is
clear that, if they could be eliminated, then linear
speedup would result. In fact, in (Lewis and El-Rewini
1992) the statement is made concerning hypercube ar­
chitectures that, "A trivially parallel application is one
that requires no interprocess communication. Such an
application achieves linear speedup."

When a fixed amount of computation must be per­
formed, as in many numerical applications such as sig­
nal processing, it may be true that elimination of these
PP barriers may result in linear speedup. If only a
first solution is required, however, then the remainder
of the SS and any other solutions that may exist can
be disregarded. It is demonstrated here that linear
average speedup of a random SS search to find a first
solution is not possible, even in the absence of these
PP barriers, and with the most fortunate partitioning
of solutions in the SS.

WAITING TIMES: SAMPLING WITH AND 

WITHOUT REPLACEMENT 

Consider a SS that contains N distinct states,
where exactly M of these states are solution states.

In this paper it is assumed that M?: 1, N » M, and
state selection is random and equiprobable.

In a sampling with replacement (SWR) strategy,
a state may be selected again even if it has already
been tested. A sampling without replacement (SWOR)
strategy selects only distinct states.

The geometric distribution, which is derived from
the negative binomial (Feller 1957), is the probability
mass function (pmf) for the waiting time to find a first
solution using SWR:

Pr{first solution is found on step n, for SWR}
=pqn-1 

(1) 

where p = M/N and q = 1 - p. Define a random
variable (rv) G that is the number of the SWR step
on which the first solution is found. The expected
value of G is

EG= ! = N

P M 
(2)

The probability distributions that apply to SWOR­
based search SWOR are far less well known than those
for the case of SWR. A distribution that corresponds
to the negative binomial, but for SWOR, is known
as the negative hypergeometric, inverse hypergeomet­
ric, or hypergeometric waiting-time. (Matuszewski
1962), (Guenther 1983), and (Johnson, Kotz, and
Kemp 1992). There are many alternative forms for
the negative hypergeometric distribution - the sim­
plest form is given by (Matuszewski 1962):
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Pr{rth solution is found on step n, for SWOR}
(n-l)(N-n) r-

\
Z,

)
-r for r ::Sn ::SN - M + r (3)

Setting r = 1 in Eqn (3) yields a pmf that corre­
sponds to the geometric distribution, but for SWOR:

Pr{first solution is found on step n, for SWOR}
(N-n) 

= (Z)1 for 1:::; n:::; N - M + 1 (4)

= h(n,N,M)

(Being a pmf, h(n,N,M) = 0 for n < 1 or n > N­
M+ 1.)

We will refer to the pmf given by Eqn (4) as the
Negative Hypergeometric with r = 1 (NH1) distribu­
tion. Note that for M = 1 the NHl pmf degenerates to
a uniform distribution (Feller 1957) and (Janakiram,
Agrawal, and Mehrotra 1988).
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The following two equations relating to the NHl 
distribution are believed to be new results. Eqn ( 4) 
can be written in recursive form as 

{ 

N-M-n+2 X h(n - 1 N M)N-n+l ' ' 
h(n, N, M) = for 2 $ n $ N - M + 1 

"% for n = 1 
(5) 

Eqn (5) provides a great savings in computation and 
programming convenience in our analyses. 

The cumulative distribution function ( cdf) for the 
NHl distribution is given by 

- (
N

At) H(n, N, M) - 1 -
(i) 

for 1 $ n $ N - M + 1 

(6) 
(Being a cdf, H(n, N, M) = 0 for n < 1, and is 1 for 
n2:N-M+l.) 

Define a rv H that is the number of the SWOR 
step on which the first solution is found. The expected 
value of His 

EH
= 

N+l 
M+l (7) 

(This result is well known for M = 1.) The variance 
of His 

V H =
M(N - M)(N + 1) 
(M + 1)2(M +2) (8) 

Eqns (7) and (8) are special cases of the moments of 
the negative hypergeometric distribution as given in 
(Matuszewski 1962). 

Comparison of SWR and SWOR 

It is obvious that, on the average, a SS search strat­
egy that uses SWOR will find a first solution faster 
than a SWR-based search. However, the relevant lit­
erature seems to deal exclusively with analyses based 
on SWR. This may be justified in terms of simplicity of 
presentation as in (Janakiram, Agrawal, and Mehro­
tra 1988), or for fault tolerance as in (Quisquater and 
Desmedt 1991). 

It is noted in the latter reference that a SWR-based 
search takes an average of only twice as long as a 
SWOR-based search. Let us quantify this ratio more 
precisely. For given values of N and M, the ratio of 
EC to EH is obtained from Eqns (2) and (3): 

Average search speedup of SWOR over SWR 
EC N M + 1 NM+ N 

(9) = EH = M x N + 1 = NM+ M 

For M « N the speedup using SWOR is approxi­
mately M_Jl. For M = 1 the speedup approaches 2 as

noted elsewhere. A speedup of at least 10% is achieved 
for M < 10. 

Design of SS Search Strategies 

Clearly, if solutions are plentiful, then it does not 
matter whether SWOR or SWR is used. An addi­
tional design consideration is the overhead needed for 
a SWOR search. In some cases memory requirements 
may be excessive, or the computation required to sam­
ple only distinct states may be even greater than that 
required to actually test the states. It is assumed in 
this paper, however, that M is relatively small, and 
that the SS is explored randomly using SWOR. 
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SPEEDUP USING PARALLEL 
PROCESSING 

Again, consider a SS that consists of N states and 
contains M solutions. Assume that k processors in 
parallel are to be used to find a first solution. The SS 
is partitioned at random into k non-overlapping sets, 
each of which is explored at random by SWOR by one 
processor. We consider only cases where k evenly di­
vides N, so each partition contains exactly N / k states. 
Each processor explores its partition of the SS at the 
same, constant rate. Significantly, we disregard all of 
the PP barriers mentioned in the introduction, and 
show that this optimistic scenario fails to achieve lin­
ear average speedup even under the most favorable
distribution of solutions. 

Following standard conventions in the PP litera­
ture, such as (JaJa 1992), the comparison metric is the 
mean time to find a first solution. Define the average

speedup achieved by a search that uses k processors as 

S(k N M) 
=

Average time using 1 processor 
( O) ' ' A . . 

k 
l verage time usmg processors 

where linear speedup would have S(k, N, M) = k. De­
fine the average efficiency as 

E(k, N, M) 
= S(k, N, M) 

(11) 
k 

where E(k, N, M) = I for linear speedup. 
We consider three cases: 
Case 1: All M solutions are in a single partition 

out of k 
Case 2: All possible distributions of M solutions 

to k partitions 
Case 3: Random distribution of M solutions 

to k partitions 
Case 1 

The most fortunate (albeit unlikely) case for PP 
speedup is where all M of the solutions in the SS are 
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Figure 1. Efficiency for N = 1,024 and 
M = 1. 
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Figure 2. Efficiency when all solutions are 
in single partition (Case 1) for N = 1,024
and M = 16. 

contained in the same partition, perhaps even to the 
point of saturation. The analysis is based on Eqn (7),
which is the mean of the NHl distribution. 

Consider when N / k 2:'. M. From Eqn ( 10) we have

Note that this speedup does not depend on the value 
of M. From Eqn (11) we have

E(k, N, M) = Zt! (12)

E(k, N, M) is nearly 1 for small k, but, for any k > 1, 
the average efficiency is strictly less than 1.

An important special case is when M = l. The be­
havior of Eqn (12) is shown in Figure 1 for N = 1,024.
Note that, in the extreme case of massive parallelism 
where N = k (i.e., every processor needs to test only a
single state), we find that E(N, N, 1) approaches 1/2!

Now, consider when N/k � M. A single partition
is saturated with solutions, so the PP search always 

terminates in one step. Then 

�

S(k N M) - .M±!.. = li.±1.. 
, , - 1 M+l 

which is constant with respect to k. At the point 
where N / k = M ( a single partition contains all M
solutions), from Eqn (12) we have 

S( N N M) _ N+1 ~ M
M' ' - N+N/M ~ M+l 

Then, as k increases, the efficiency continues to drop 
below �

1 
because the speedup is constant, yet more 

processors are being used. 
Figure 2 shows how the efficiency function behaves 

for N = 1,024 and M = 16, with the vertical bar at
the saturation point k = 64, where N / k = M.

Thus, it is seen that, even when all M solutions 
end up in a single partition, the average efficiency is 
still always less than 1 for k > 1.

Case 2 

The first case represented the best situation for PP 
speedup. We now generalize the discussion to deter­
mine how the efficiency function behaves for all possi­
ble distributions of M solutions to k partitions .

Consider the case where k = 4 and M = 6. Three
possible distributions of solutions are {2, 1, 0, 3},
{1, 3, 0, 2}, and {3, 2, 0, 1}; we group these cases as a
single canonicalized partition set {3, 2, 1, 0} and report
an overall occurrence frequency for it. 

For a value of N, we wish to determine the average 
speedup and efficiency for each possible partition set 
for given values of M and k. Denote a partition set as
P = {M1,M2, ... M,.} where M1 +M2 + . . .  +M1o = M. 
We find the expected number of steps for any one of
the processors to find a first solution by using the in­
dividual processor's NHl cdfs to calculate an overall 
cdf, converting that cdf to an overall pmf, and sum­
ming terms to find the expected value. (Conceptually 
the individual cdfs are given by Eqn (6), but compu­
tationally it is more convenient to use the recursive 
form given in Eqn (5).) For a given solution partition 
P we obtain the following overall pmf:

Pr{ any processor finds a first solution on step n}

= ii [1- H(n - 1, �, M;)]
1:l 

-g [ 1 - H ( n, ; , Mi)]

= h'(n, N, P) 

Then the expected number of steps for any processor 

602 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Table 1. All possible partitions of solu­
tions for N = 500, M = 5, and k = 5. 

Partition Set Freq. Speedup 
{2,l,1,1,0} 0.384 4.872 
{2,2,1,0,0} 0.288 4.882 
{3, 1,1,0,0} 0.192 4.892 
{3,2,0,0,0} 0.064 4.901 
{l, 1, 1, 1, 1} 0.038 4.863 
{4,1,0,0,0} 0.032 4.921 
{5,0,0,0,0} 0.002 4.960 

to find a first solution is given by 
N/k 

EHp = L nh'(n, N, P)
n=l 

Efficiency 
0.974 
0.976 
0.978 
0.980 
0.973 
0.984 
0.992 

(13) 

Analytically, Eqn (13) is messy unless all M; = 1, so 
the series is summed directly. 

Table 1 shows the results for N = 500, M = 5, and 
k = 5, where there are seven possible canonical par­
titions of five solutions to five processors. The table 
shows the partition sets, frequencies (assuming uni­
formly random distribution of solutions), and the ex­
pected speedup and efficiency based on the EHp given 
by Eqn (13) compared to the EH of the unpartitioned 
case given by Eqn (7). 

The greatest efficiency is observed in the least likely 
case, i.e., when all solutions are in a single partition 
(our Case 1). The smallest efficiency is observed when 
the solutions are evenly partitioned among the k pro­
cessors. The average efficiency could be obtained an­
alytically by weighting the individual efficiencies by 
their probabilities of occurrence, but in the next sub­
section we give empirical results based on simulation. 

Case 3 

Now we find the efficiency that is expected when 
M solutions are randomly distributed among k pro­
cessors. These data were obtained from simulations 
that model the random search process. (The value 
N = 180 was chosen for this example because it is 
evenly divisible by many values of k.) Figure 3 shows 
how the efficiency decreases as a function of k. 

This case is the most realistic as a predictor of the 
efficiency of a single instance of a SS search. It should 
be noted that results vary widely from experiment to 
experiment. For the unpartitioned search in this ex­
ample, with a mean value of 30.2 steps, the variance 
of the NHl distribution is given by Eqn (8) as 628.5; 
thus, the standard deviation of the number of steps 
to find the first solution is approximately 83% of the 
mean. The PP results vary similarly; fork = 5 the ob-
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• 

Figure 3. Efficiency for random distribu­
tions of solutions to k partitions (Case 3) 
for N = 180 and M = 5, based on 10,000 
experiments. 

• 

served standard deviation was 78% of the mean. Thus, 
wide variability in actual speedup is guaranteed. 

Design of SS Search Strategy 

These results indicate that a parallel SS search has 
near-linear speedup only when k is small compared to 
N. If the SS is very large, as in a random test of 56-bit
keys (Diffie and Hellman, 1977), then efficiency will be
close to 1 regardless of the number of processors used.
For problems with smaller state spaces, however, mas­
sively parallel implementations consisting of hundreds
or thousands of processors may have efficiencies much
less than 1.

In the latter case, the algorithm designer must de­
cide whether decreasing iatency or increasing through­

put is more critical. For a single instance of a search 
problem, PP will find a solution (on the average) 
faster than a uniprocessor will. However, when many 
individual search problems are to be solved, better 
throughput would result from partitioning complete 
searches to the available processors, rather than par­
titioning the search spaces. In ATVG, for example, 
it has been noted that fault list parallelism provides 
better speedup than other forms of parallelism; see, 
for example, (Chandra and Patel 1988). 

CONCLUSIONS 

This paper has presented a framework for the de­
sign and analysis of random state space search strate­
gies. In contrast to the well-known theory of sam­
pling with replacement, the corresponding probability 
distributions that apply to sampling without replace-
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ment are relatively unknown to algorithm designers. 
This paper discusses properties of the negative hyper­
geometric distribution, which is suitable for analyzing 
the performance of searches based on sampling with­
out replacement. 

We have established that sampling without replace­
ment is clearly superior to sampling with replacement 
when there are relatively few solution states. If there 
are more than about 10 solutions in a large state space, 
then the improvement in performance will be less than 
10% by using sampling without replacement. 

For a sampling without replacement strategy, we 
have derived average efficiencies gained by using k par­
allel processors for several scenarios for the distribu­
tion of solutions. Even in the most optimistic case, 
where all solutions are in the search space searched 
by a single processor, it is shown that the average ef­
ficiency is always less than 1. For a problem with a 
single solution the average efficiency of a massively 
parallel implementation may be as low as 1/2. 

It is demonstrated here that, even in the absence of 
the well-known parallel processing barriers, linear av­
erage speedup of a random search space search to find 
a first solution is not possible. This is shown to be 
a consequence of the laws of probability, rather than 
a deficiency in the implementation. This result is not 
necessarily negative - it means that many of the pub­
lished results that achieved at best slightly sublinear 
speedup may, in fact, have achieved the theoretical 
maximum limit. 
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