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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system mistakenly 
attacks an individual’s own cells, causing inflammation and organ damage. SLE disproportionately affects 
women, particularly women of child-bearing age and non-European ancestries. There are significant 
differences in SLE risk and clinical manifestations (heterogeneity) by race/ethnicity. Only a small number of 
FDA approved drugs are available to treat SLE. In addition to the clinical heterogeneity, there is significant 
genetic heterogeneity related to the >110 known SLE-risk genetic polymorphisms. Genes form networks which 
execute specific biological functions. Identifying connections among genes (pathway analysis) may increase 
the number of relevant drug targets, resulting in novel therapies. The opportunity exists to leverage these 
genetic associations and genomic differences to identify genetically motivated drug repositioning targets. Our 
aims are to: 1) Link ancestry-specific and ancestry-shared genomic markers (SNPs, CpG methylation sites, 
gene transcript expression) associated with SLE risk in women to specific genes (identify genes); 2) complete 
systems biology and pathway analyses on these genes to identify ancestry-specific and ancestry-shared drug 
targets (identify/prioritize targets); and 3) identify and prioritize FDA-approved drugs for potential advancement 
into lupus clinical trials or preclinical models (identify/prioritize drugs).  

2. Keywords

Systemic lupus erythematosus, drug repositioning, genetics, transcriptomics, autoimmune disease, gene 
networks, molecular docking, genetic polymorphisms, methylation, systems biology 

3. Accomplishments

What were the major goals of the project? 
The first 24 months of the project have shown significant progress in all three specific Aims.  We believe 

we remain on or slightly ahead of schedule relative to the specific aims. There has not been any deviation from 
the primary objectives in these aims, but we have taken advantage of new protein databases for the in silico 
binding experiments and expanded some analyses using novel methods. 

Major accomplishments of the past year built upon the those of the first year of funding. We expanded and 
updated the identification and compilation of SLE risk SNPs datasets and linked them to their respective 
plausible gene-targets, across multiple ancestries. A key step forward was the re-analysis of a genome-wide 
association study for systemic lupus erythematosus in African Americans, complimenting the Immunochip 
associations in African Americans. The successful implementation of the programming pipelines for high-
throughput analysis of in silico binding for drug targets with FDA-approved small molecules enabled us to 
complete these binding experiments in an ongoing manner throughout the year. We have completed these 
binding experiments for all cGenes (genes where the lupus risk allele results in an amino acid change) with 
known protein structures. We have identified a priority list of eGenes (genes where the lupus risk allele 
correlates with gene expression; an eQTL) and completed a set of in silico binding experiments for sets of 
eGenes. 

We provide two tables outlining the project’s accomplishments and progress. Table 1 provides a high-level 
list of progress and major task completions. Table 2 provides additional detail and relates these 
accomplishments to the tasks (Specific aims) and subtasks provided in the project’s original SOW. It includes 
estimates of the overall progress for the entire grant period. 
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Table1: General list of Major Accomplishments (Months 12-24).  

Major Accomplishment/Progress 
Category 

Descriptor 

Manuscripts and Presentations 

• Four accepted/published manuscripts 

• Two additional manuscripts in preparation  

• Two conference posters/presentations  
o Lupus 21st Century 2021 Conference (talk) and  
o American College of Rheumatology 2022 meeting (poster 

and lightning talk) 

Data processing and Analytic 
Pipelines 

• Drug target identification and processing for molecular docking 

• Integration of SMILES identifiers of FDA approved drugs (to 
facilitate drug structural similarity analyses) 

• Expanded summarization of molecular docking results, 
summaries include generation of ∆∆G for paired docking 
comparisons (e.g., risk versus non-risk protein isoforms for drug 
target proteins), cluster analysis of molecular similarity, and 
graphical illustrations. 

Created Datasets  

• Expanded and updated SLE risk SNP datasets linked to their 
most plausible-implicated gene targets (e.g., gene expression, 
eGenes; and protein coding variants cGenes).  

• African American systemic lupus erythematosus genome-wide 
association study results (partially complete) 

• ZINC 15 (FDA-approved small molecules) IDs linked to public 
repositories via identifiers (e.g., SMILES, pubchemID, and 
common drug names). 

• Database of ∆G and ∆∆G binding energies for ZINC 15 
molecules across more than 20 cGene-linked drug targets (2 
structures per drug target, corresponding to the risk and non-
risk amino acid linked to the SLE risk SNP) and 5 eQTL-based. 

• Database of Euclidean similarity distance for more than 1,400 
FDA approved drugs and linking these distances to the in silico 
binding results for completed targets. 

System biology analyses 

 

• Additional pathways and system biology analysis for SLE-
associated SNPs in four ancestries/ethnicities and their union 
and intersections of genes for druggable pathway identification 
(African ancestry, Asian ancestry, European ancestry, and non-
African Hispanic ethnicity). This was the focus of portions of 
published papers. 

• Pathway analysis based on results of Mendelian randomization 
studies with atherosclerosis. Manuscript in press at Cell Reports 
Medicine 

 



6 

 

Table 2: Project completion and status (Months 12-24) as related to proposal’s original SOW.  

Goals and Milestones as listed in the original SOW. Progress Report 10-2022 Update. 
Completion Status Specific Aims (specified in proposal) Timeline 

Specific Aim 1: Identify SLE-risk Genes Months Reporting Period (Months 13-24) Updates 

Subtask 1: Identify SLE-risk single nucleotide 
polymorphisms (SNPs) in women 

1-24 

• SNP associations compiled from the African American Immunochip 
data.  

• The African American GWAS study is still in progress and the 
resulting SLE-risk SNPs need to be integrated with Immunochip. 

Completion Progress ~85% 

Subtask 2: Link SLE-risk SNPs to genes via 
eQTL, proximity, transcription factor binding, 
protein coding, gene-based testing 

3-27 

• SLE-risk SNPs linked to relevant gene and protein change based on 
SLE studies across four (European, African, Asian, and Hispanic) 
ancestries are underway for the cGenes (completed) and eGenes 
using GTEx and public data (near complete).  

• SLE-risk SNPs linked via transcription factor binding sites (tGenes) 
being revised and updated with new information 

Completion Progress ~80% complete.  

Subtask 3: Transcriptomic analysis, differential 
expression of genes identified in subtask 2 

3-30 

• Comparative analysis of differentially expressed target genes (i.e., 
cGenes, tGenes, eGenes, pGenes) are summarized and discussed 
in two manuscripts (first twins paper published in Genes; mendelian 
randomization in press in Cell Reports Medicine) 

• Differentially expressed genes identified by annotation from DNA 
methylation study in MZ female twins discordant for SLE 
summarized in submitted manuscript. 

• Identification of genes where SLE-risk allele increases gene 
expression, that gene’s expression is increased in lupus patients 
within at least one of five relevant tissues or cell types 

Completion Progress ~75% complete. 

Subtask 4: DNA methylation analyses, 
differential methylation of genes identified in 
subtask 2 

1-24 

• Developing list of appropriate (e.g., T and B-cell sources) datasets 
for methylation analysis – completed but will expand if new data is 
published. 

• Differential methylation analysis in MZ female twins who are 
discordant for SLE yielded gene lists which were compared and 
contrasted with genes in Subtask 2 (published in Genes). 

Completion progress ~100% 

Subtask 5: Identify and write potential 
manuscripts on multi-omic analysis of SLE-risk 
associated variants and genes. 

6-36 

• Publication of Mendelian randomization paper identifying shared 
pathways between systemic lupus erythematosus and coronary 
artery disease (Cell Reports Medicine, in press – available Nov 4, 
2022). 

• Publication of manuscript exploring the differential analysis of 
methylation in twins who are discordant for SLE and identifying 
pathways and listing relevant drug targets from pathway analysis. 

• Publication, in collaboration with Timothy Niewold MD, on single-cell 
expression quantitative trait loci (eQTL) analysis of SLE-risk loci in 
lupus patient monocytes. Focus on select genes of relevance. 

Completion Progress - ongoing  

Milestone(s) Achieved: Lists of SLE-risk 
associated genes informed by ancestry, 
tissue, and female sex 3-30 

• Ongoing expansion of lists of SLE-risk genes informed by ancestry 
and female-sex. 

• Monitoring new published results, modification/integration of African 
American GWAS. 

Completion progress ~80%  

Local IRB/IACUC Approval Completed Completed and annually renewed 

Specific Aim 2: For genes and gene lists 
discovered in Specific Aim 1, complete 
systems biology, and pathway analysis 

 Reporting Period (Months 13-24) Updates 

Subtask 1: Identify drug targets: Process lists 
of genes in Aim 1 into one of four Target 
Groups based on functional criteria, including 
pathway analyses 

3-30 

• Drug targets identified via cGenes, eGenes and tGenes 
(transcription factor binding), with a planned expansion and 
continuous updating based on African American GWAS and new 
literature. Largely complete for European, Hispanic, and Asian 
Ancestries and African American Immunochip-based studies. 

• Identified targets placed in one of the four Target Groups 
Completion progress ~90% 

Subtask 2: Prioritize drug targets (i.e., genes): 
Prioritize genes first by group assignment and 
second RILITE’s scoring algorithm within each 
group. Targets with highest prioritization will 
be assessed for molecular docking (e.g., 

3-30 

• Continuous prioritization of targets based on high-quality structures 
includes the protein databank (PDB) and now, AlphaFold (available 
as of July 2021). 

• Current effort aligns SLE-risk allele associated with increased gene 
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quality protein structures in Protein Data 
Bank). 

expression and that gene’s gene expression in one of five 
tissues/cell types associated with risk of lupus or subtypes 

Completion progress ~60% 

Subtask 3: Identify and write potential 
manuscripts incorporating systems biology 
and drug target prioritization to evaluate 
genetic architecture of SLE. 

12-36 

• See above, multiple publications and annual meeting 
presentation/posters.  

• Ongoing task 
Completion progress ~60% 

Milestone(s) Achieved: Lists of prioritized drug 
targets 

6-30 

• Achieved list of prioritized drug targets for SLE-associations 
mapping to c-genes (protein-coding changes) and eGenes. 

• Identified optimal Protein Data Bank structures and AI-based 
alternative source for missing PDB structures (AlphaFold AI-
predicted structures). 

• Requires manual look up and vetting, time consuming. 
Completion progress ~40% 

Specific Aim 3: Identify and prioritize drugs  Reporting Period (Months 13-24) Updates 

Subtask 1: Bioinformatic analysis for gene-
drug and protein-drug interaction using 
STITCH, DrugPath, CLUE, etc. 

6-36 

• Continuous task as list updates 

• For current list of genes (Aim 1, 2), completed and summarized 
across multiple manuscripts and presentations at national meetings 

Completion progress ~60%  

Subtask 2: Screen libraries of FDA-approved 
small molecules via molecular docking to 
identify drugs or small molecules for selected 
(Aim 2, Subtask 3) SLE drug targets 

6-36 

• Updated python pipeline to annotate binding data of FDA-approved 
small molecules with common-names and common-database 
identifiers (e.g., SMILES, pubChemID) 

• c-Gene complete with existing PDB structures or AlphaFold 
structural information (e.g., those without PDB structures).  

• Exploration of docking sites relative to amino acid change due to 
SLE-risk allele 

• Summarized differential binding between risk and non-risk SLE-
protein structures using metrics developed in year 1.  

• Novel approach not in original grant, using SMILES complete 
various cluster analyses to identify clusters of drugs with similar 
structures and test for enrichment or “hot spots” in similarity space 
where there is an enrichment of cGenes. Expanding to eGenes and 
combining with cGenes. 

Completion Status: ~50% 

Subtask 3: Prioritize drugs from Subtasks 1 
and 2 using CoLTS scoring algorithm 

6-36 

• Identified limitations of CoLTS scoring algorithm for off target 
applications. 

• Modifying and focus on toxicity reports from CoLTS  
Completion Status: ~25% 

Milestone(s) Achieved: Lists of genetically-
informed FDA-approved drugs and small 
molecules, novel to treatment of SLE.  

12-36 
• List of molecular docking results for over 45,000 analyses.  

• Current focus on eGenes, tGenes. 
Completion status: ~50% 

 

What was accomplished under these goals? 
 
Significant Results:  
 Here we summarize key areas of progress. We are at a phase in the project where the synergy across 
aims is important, leveraging results from Aim 1 and 2 to inform Aim 3 and conversely learning from that 
experience to update (e.g., integrating new literature, modified pipelines) Aims 1 and 2.  We start by briefly 
summarizing manuscripts submitted, one published (Genes), one in press (Cell Reports Medicine, Nov 4th 
embargo date), one under review (Nature Genetics), one published in Arthritis Research and Therapy.  These 
manuscripts are listed in the Appendix. We continue by summarizing further progress roughly as proposed in 
the grant. As noted last year, the full list of cGenes, tGenes, eGenes and pGenes is too long to include in this 
report. Below as we summarize new work, we will highlight specific sets of genes (drug targets). The published 
manuscripts provide extensive lists of these genes. We do not repeat descriptions of the ongoing work from the 
first 12 months (e.g., binding experiments) but focus on additional, new results from the reporting period 
(months 13-24). Such descriptions are in the previous year’s report but are also available upon request. 
  

Published work this year. 
 Epigenetics of discordant twins. Last year we summarized the results of the Nucleic Acid-Sensing and 
Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and 
Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting. 
This manuscript was revised, resubmitted, and is now published in Gene (see Appendix) 
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 Pan-autoimmune risk loci. Autoimmune and inflammatory diseases are polygenic disorders of the 
immune system. Many regions of the genome harbor risk alleles for several diseases, but the limited resolution 
of genetic mapping prevents determining if the same allele drives risk for multiple diseases or multiple variants 
within the same region generate distinct risk. If risk alleles are shared across multiple diseases, it suggests 
there may be a shared underlying mechanism. Using a collection of 129,058 cases and controls across six 
diseases, including systemic lupus erythematosus, and a novel methods called Joint Likelihood Mapping, we 
estimate that ~40% of overlapping associations are due to the same allele. We improve fine-mapping 
resolution for shared alleles by nearly two-fold by combining cases and controls across diseases, allowing us 
to identify more eQTLs driven by the shared alleles, hence same gene. The patterns of sharing indicate 
widespread shared mechanisms, but not a single global autoimmune mechanism. The results from this 
research provide an exciting opportunity for our current grant to include a specific focus on these shared loci in 
our binding experiments and the downstream drug repositioning pipeline. If so, lupus can be a leader that 
informs other autoimmune disease research and drug repositioning opportunities. Our paper is again under 
review at Nature Genetics after a positive initial review but with extensive suggestions/requests. (Please see 
Appendix: Genetic mapping across autoimmune diseases reveals shared associations and mechanisms.) 
 
 Singe-cell targeted transcriptomics. In collaboration Timothy Niewold, MD (Hospital for Special 
Surgery), we completed an expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-
classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of 
well-established genetic risk alleles on transcription at single-cell resolution. Single-cell gene expression was 
quantified using qPCR in purified monocyte subpopulations (CD14++CD16- CL and CD14dimCD16+ NCL) from 
SLE patients. A novel analysis method, two-part hurdle mixed model, was used to control for the within-person 
correlations observed while testing for eQTLs between cell types and risk alleles. We observed that the SLE-
risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 
eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large 
differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci 
were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs 
impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in 
NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero for all monocytes 
studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed 
corroborating evidence of this IRF1 expression pattern in public data sets. Thus, we observed that multiple 
SLE-risk allele eQTLs in single monocytes differ greatly between CL and NCL subsets. These data support the 
importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function. 
Please see Appendix for details, Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in 
lupus patient monocytes.) 
 
 Systemic lupus erythematosus and coronary artery 
disease shared loci. We completed and had a new 
manuscript accepted which explored the shared genetic 
associations between systemic lupus erythematosus and 
coronary artery disease (CAD), title: Mendelian 
randomization and pathway analysis demonstrate shared 
genetic associations between systemic lupus 
erythematosus and coronary artery disease (please see 
Appendix for manuscript). In brief, CAD is a leading cause 
of death in patients with systemic lupus erythematosus 
(SLE). Despite clinical evidence supporting an association 
between SLE and CAD, pleiotropy-adjusted genetic 
association studies are limited and focus on only a few 
common risk loci. Here, we identify a net positive causal 
estimate of SLE-associated non-HLA SNPs on CAD by 
traditional Mendelian randomization (MR) approaches. 
Pathway analysis using SNP-to-gene mapping followed by 
unsupervised clustering based on protein-protein 
interactions (PPIs) identifies biological networks composed 
of positive and negative causal sets of genes. In addition, 

Figure 1. Graphical Abstract for Mendelian 

randomization and pathway analysis demonstrate 

shared genetic associations between systemic lupus 

erythematosus and coronary artery disease 
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Figure 2. Pipeline for 

evaluating eGene 

relationships 

we confirm the casual effects of specific SNP-to-gene modules on CAD using only SNP mapping to each PPI-
defined functional gene set as instrumental variables. This PPI-based MR approach elucidates various 
molecular pathways with causal implications between SLE 
and CAD and identifies biological pathways likely 
causative of both pathologies, revealing known and novel 
therapeutic interventions for Q2 managing CAD in SLE. 
For detailed results please see manuscript in Appendix.  
 

Ongoing work this year. 
Development and Implementation of eGENES 

drug-repositioning pipeline. Year 2 of the project 
continued development and implementation of the 
eGENEs analysis for drug repositioning (Figure 2). While 
much of this pipeline built upon the cGENEs pipeline (e.g., 
protein model assessment, in silico binding), there are 
some notable differences that required de novo 
programming implementation. For instance, identification 
of cGENEs was restricted to SLE-associated variants 
located within coding regions of the genome. Thus, only a 
limited number of SNPs met these criteria, mapping to 33 
cGENEs. Contrarily, eGENEs are unrestricted by physical 
location, and thus, any SLE-associated SNP has the 
potential to map to an eGENE. Considering FDR-
associated SLE SNPs from the Immunochip (three 
ancestries: EA, AA, and HA), this provided 1,545 SNPs for 
assessment, not including expansion due to linkage 
disequilibrium (identification of highly correlated SNPs). 
Secondly, while most coding SNPs will map to only a single cGENE; it is common for a single eQTL (SNP 
associated with gene expression) to map to multiple eGENEs. For example, in the GTEx (V8) dataset, there 
are 4,632,457 unique eQTLs (SNPs) mapping to 13,791,909 million unique eQTL-eGENE combinations (each 
eQTL mapping to 1-9 eGENEs). To handle the greater quantity of SLE-SNPs and eGENE mapping, we 
developed and implemented a pipeline to map SLE associations to the GTEx database and to assess direction 
of expression relative to SLE-risk allele. Importantly, we filtered our eGENE list to those where the SLE risk 
allele correlated with increased expression of the eGENE under the hypothesis that it is more biologically 
plausible to inhibit function (by binding), compared to up-regulating function (expression) of a target. From our 
primary list of 1,545 SLE-associated SNPs (ancestry specific SNPs), we first filtered to non-ambiguous SNPs 
and then identified 2,275 unique SNP-EQTLs meeting the aforementioned criteria, mapping to a list of 746 
unique eGENEs within one or more of the relevant tissues available by the GTEx V8 database (Whole Blood, 
fibroblasts, leukocytes, kidney cortex, and sun-exposed skin). For 252 of these eGENEs, we were able to 
assess the relevance of these eGENEs in external, expression datasets of lupus patients. That is, while GTEx 
identified genes with increased expression with SLE risk alleles, we also verified that we observed increased 
expression of these eGENES within lupus patients. We leveraged five GEO datasets (Table 3) which offered 
comparable tissue sources for comparison with the GTEx data. We filtered our eGENE list to those genes that 
had corroborating expression in the lupus patients (increased expression). While this is a stringent filtering 
criterion, we believe this enables the best initial prioritization of potential drug targets. From this comparison 
between GTEx and lupus expression datasets, we were able to  
filter our list of 252 eGENEs (within comparable 
tissues) to 81 highly prioritized drug targets 
(Table 4). Notably, seven of these genes 
exhibited consistent evidence and direction in 
one or more of the GEO-compared tissues 
(Table 5). From these lists (Table 4), we are 
actively identifying high-resolution (PDB) or 
high-confidence (AlphaFold) three-dimensional 
structures for in silico binding. We are also 
expanding our eGENEs search to include SNPs 
from the trans-ancestral meta-analysis and 

Table 3: GEO Datasets for comparison to GTEx eGENE results 

GEO 

accession 

GEO 

Tissue 

SLE 

cases 
Controls 

GTEx Tissue 

Comparison 

GSE39088 
Whole 

blood 
78 64 Whole blood 

GSE45291 
Whole 

blood 
292 20 Whole blood 

GSE50772 PBMC 61 22 
EBV transformed 

lymphocytes 

GSE81622 PBMC 30 25 
EBV transformed 

lymphocytes 

GSE109248 Skin 25 14 
Sun exposed lower 

leg 
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SNPs in linkage disequilibrium from the Immunochip study. 

Table 4. GTEx-identified genes that yielded consistent pattern of expression in SLE-patient datasets (increased 

expression), in one of three relevant tissues. 

SLE Tissue 

(GTEx Tissue) 

eGENES exhibiting increased expression with SLE risk allele in GTEx and increased expression in SLE 

cases in expression studies (GEO) 

Whole Blood 

(Whole Blood) 

CCDC136 DDX42 FDFT1 GLS IL12RB2 LINC01270 MAP3K11 MED28* 

MFN2 MRPS7* OASL PPIL3* PRMT7* PTPRJ RPS6KB1 SIPA1* 

SSBP4* VRK2 

PBMC 

(EBV-

Lymphocytes) 

ARRB2* CTTNBP2NL FAM167A IDUA MED28* MRPS7* PRMT7* RMI2 

SPATS2L TIMM10 

Skin  

(Sun-Exposed 

Skin) 

ALDH2 ARRB2* ATAD3C B3GALT6 C17orf107 C1QTNF4 CAMTA2 CAPG 

CASP10 CBFA2T2 CCDC88B CD38 CD79B CNOT3 COQ9 CTSB 

DCPS EIF6 ELOVL7 ESRP2 EVI5 FAM86B3P FBF1 FUT11 

GRB2 HDLBP ICAM5 ILF3 IRF5 KRI1 LCAT LCE1D 

LCE1E LCE3C LRRFIP2 MAP1LC3A MED28* MRPL45 PDIK1L PPIL3* 

PPP1R14B PRMT7* RAPSN RAVER1 RPP25 RPTOR SIPA1 SLC39A13 

SLC44A2 SMARCA4 SPRR1B SRP68 SSBP4* SYN2 SYNJ2 TIMM29 

TMEM94 TRIM65 TTC21B UVSSA YIPF2 ZC3H3 

*Gene present in more than one tissue

Table 5. Subset of Genes from Table 4. that were identified in more than one tissue. 

GTEx tissue Whole Blood Lymphocytes Sun-Exposed Skin 

SLE tissue Whole Blood PBMC Skin 

G
e

n
e
 

MED28 

PRMT7 

MRPS7 

PPIL3 

SIPA1 

SSBP4 

ARRB2 

Expansion of protein model search to include high quality AI-predicted structures. 
We observed that of the initial 33 cGENEs, nine had high resolution protein 
structures that covered the amino acid region of interest. Thus, we have 
integrated Alphafold’s AI-based predicted structures into our pipeline 
(Figure 3). Alphafold is a new (released July 2021) database comprised of 
over 300,000 protein structures generated using a three-track neural 
network algorithm. Alphafold has released protein models for proteins 
spanning the UNIPROT database (Universal Protein Resource; Corsortia 
of EMBL-EBI, SIB, and PIR host institutions). Alphafold represents a major 
innovation in proteomics and thus, drug-binding studies. This year, we 
began incorporating AlphaFold into our protein model search pipeline with 
additional quality control checks on structures (e.g., quality assessment of 
tertiary structure). So, while experimentally derived structures remain as 
the preferred source, Alphafold provides a unique opportunity to extend the 
scope of drug repositioning, beyond current limitations by the PDB. 
Furthermore, as prediction algorithms continue refinement of tertiary 
structures (e.g., beyond alpha helices and beta sheets), our drug-
repurposing pipelines are readied for their inclusion. For the cGENEs, we 
identified seven additional protein structures (UHRF, ZACN, WDFY4, 
LRRC34, CCL22, ATG16L2, and AGBL2) with suitable tertiary structures. 
However, given that our cGENEs analysis requires the analysis of two 
isoforms (that is, computationally altering a single amino acid in the 
structure), we proceeded with a conservative approach and opted to 
reserve amino-acid alterations for experimentally derived structures. Figure 3. Assessment of protein structures 

from experimentally and predicted sources. 
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Figure 4. cGENE drug binding 
prioritization 

However, given that several of the aforementioned cGENES are also eGENES (e.g., WDFY4, CCL22), we 
proceeded with in silico binding for the single isoform available from Alphafold. As we incorporate Alphafold 
into our eGENEs analyses, we anticipate it could help yield as many as 50% more structures than the PDB, 
alone.  
 
Development of drug-binding prioritization algorithm for cGENES 

Each in silico drug binding experiment yields a dataset of continuous binding 
affinities for 1431 unique FDA-approved small molecules (note: full dataset 
includes binding affinities for multiple conformers per drug). Work over the past 
year has focused on refining the produced drug-binding affinities for each gene 
target. This refinement enables drug prioritization for downstream 
assessments of biological (e.g., IPA; pathways analyses) and clinical (e.g., 
electronic health records) relevance. Within the scope of cGENEs, where we 
compare two isoform binding affinities per cGENE (defined by risk allele 
versus non-risk allele), we derived an algorithm that incorporates generally 
accepted thresholds of binding specificities as well as an assessment of the 
change in binding specificity between isoforms (Figure 4). Within cGENEs, 
this successfully focused our downstream assessments on a refined list of 
drugs, ranging from 0 to 70 drugs per target (Table 6). While our current 
analyses utilized a set of binary thresholds (Figure 5), we are actively exploring 

effects of continuous measures (e.g., isoclines)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Prioritized Drugs per cGENE Target 

cGENE Target Prioritized Drugs (from 1,431) 

CR1 20 

FCGR2A 8 

IFIH1 6 

IRAK1 2 

NT5E 70 

PLAT 10 

QARS 33 

TNFAIP3 24 

TYK2 0 

 
Identifying Relationships among Prioritized Drugs. 
Post prioritization of drugs, a key question is whether any of the drugs relate to one another (within or across 
targets. For example, for the 20 prioritized drugs for CR1, do these represent 20 different mechanisms of 
binding and function, or does any overlap exist among these drugs? While future studies could investigate this 
from a clinical perspective (e.g., investigation of electronic health records for similarity/dissimilarity of outcomes 
associated with drug lists), within the scope of this project, we assessed the drugs from a structural approach. 
Given the inherent link between function and structure, we leveraged the drugs’ molecular structures to identify 
potential relationships (similarities and dissimilarities). We utilized GlobalChem, a python-based software suite 
which uses a natural language algorithm to convert drug’s SMILES (simplified molecular-input line entry 

Figure 5. cGENE drug binding 
prioritization for CR1. X-axis 
depicts binding affinity for risk 
allele (risk isoform) while Y-axis 
depicts the change in binding 
affinity between the risk and non-
risk isoforms. Application of 
prioritization algorithm limits the 
1,431 analyzed drugs to just 20 
(shown in red) for CR1. While 
these criteria represent binary 
thresholds, we are actively 
exploring continuous thresholds 
of prioritization.  
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system) ID into a binary bit representation of the molecule. These numeric encodings can then be analyzed by 
dimensionality reduction methods such as principal component analyses (PCA) to describe the relative 
(structural) relationship among drugs. We applied this method to the 1,431 unique FDA-approved small 
molecules used within this project for in silico binding. GlobalChem then implements k-means clustering on the 
resulting principal components to identify groups of similarity. Optimal separation via k-means was observed 
for 5 clusters (in three-dimensional space).  

The preliminary results from the k-means cluster analysis on the principal components capturing variation due 
to similarity were encouraging. However, different clustering algorithms have different strengths and 
weaknesses, so we compared four hierarchical clustering algorithms (agglomerative and divisive). Specifically, 
in addition to the k-means algorithm, we completed hierarchical clustering on principal components (HCPC), 
density-based spatial clustering of applications with noise (DBSCAN), and random forest clustering. Among 
these four algorithms, we summarize some of the patterns and interpretation of the random forest cluster 
analysis; we are still working through results of the DBSCAN analysis as that too has interesting results.  

We computed an intra-feature random forest cluster (IRFC) analysis based on the first three principal 
components that capture the dominant 3D structural similarity among the 1,431 unique FDA-approved small 
molecules (drugs) (Figure 6). As with any random forest application, this unsupervised ensemble machine 
learning method repeatedly randomly samples from the 1,431 molecules many times to obtain an aggregate 
assignment for each molecule. We selected the IRFC as it can be more robust for complex data structures. 
Using elbow plots and gap statistics, the IRFC analysis identified five dominant clusters, subclustering is 
underway; k-means and HCPC also suggested five clusters, albeit with some variation in membership by 
individual drugs. In Figure 6, the salmon colored cluster is the central bulk of the molecular similarity (currently 
undergoing subcluster analysis), and the remaining four clusters are at the periphery of the PC space.  

We overlaid the drugs that met the above binding parameters (i.e., affinity binding across ZINC library) and 
computed an enrichment analysis (randomization test) overall and relative to each gene (Table 7). For 
example, in CR1, there are 20 drugs meeting the binding experiment parameters and these are highlighted as 
open black circles in Figure 6). We observed a global enrichment of Cluster 3 (green cluster in Figure 6); no 
other clusters exhibited a statistically significant enrichment (P>0.05). Table 7 provides the count and p-value 
of the enrichment analysis for each gene. For example, 6 of 20 drugs that bound to the protein from CR1 were 
in Cluster 3 (P-value=0.0044).  

Table 7. Cluster 3 Enrichment of Drug Binding 

Number Drugs in Cluster 3 

Expected Number of Drugs by chance in Cluster 3 Enrichment P-value Gene No Yes 

CR1 14 6 1.67 0.0044 

FCGR2A 4 3 0.58 0.0156 

IFIH1 4 2 0.50 0.0854 

IRAK1 2 0 0.17 0.8532 

NT5E 52 14 5.66 0.0014 

Figure 6. 
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PLAT 9 1 0.83 0.5866 

QARS 30 3 2.75 0.5344 

TNFAIP3 16 6 1.83 0.0104 

 
We observed an enrichment (hot spot) on the left side of Cluster 3 (green cluster) that was driving the global 
enrichment (Figure 6). We then identified those drugs in proximity (L2-norm distance <0.25 from center of that 
hot spot):  Fesoterodine, UNII-ZP145530CI, Arformoterol, (S)-Metoprolol, and (R)-Metoprolol. We explored 
their relative position in the binding experiment parameter space to determine if altering the parameters might 
provide more drugs of interest. Our interpretation of these results is that the analysis did not suggest 
alternative thresholds for these parameters. We illustrate with CR1 binding plots (Figure 7). 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Importantly, we emphasize that structurally comparable drugs can have widely varying functions, as evidenced 
by enantiomers, where often, one of the optical isomers is inert. Thus, innovatively, we are leveraging the 
structural similarity assessment alongside an in silico functional assessment (as captured by protein binding). 
For instance, we would not necessarily expect that all drugs tightly clustered in the structural assessment will 
be clustered in functional graph (Figure 7); but by comparing the two, we can identify instances where this 
does occur. This could indicate drugs that might show functional similarity, driven by some common structural 
feature. This can be leveraged in future assessments of EHR data (e.g., grouping outcomes across multiple 
drugs) as well as in future drug discovery, where these complementary assessments can help identify specific 
structural features for optimal binding to a given target.  
 
In summary, significant progress has been made in the past year in identifying genes and linking those to 
specific drugs via the binding experiments. Progress has been made in each aim, and we are on or ahead of 
projected progress due to the successful pipeline development. In addition, we have integrated two significant 
additional components: 1) AlphaFold, the newly released AI-predicted protein structure that will significantly 
increase the number of targets explored, and 2) clustering to identify hot spots of binding drugs that allows 
potential expansion of the list of drugs for evaluation. 
 
What opportunities for training and professional development has the project provided? 
 
 Mr. Nolan H. Hamilton completed his one-year training with us and started his graduate training at the 
University of North Carolina Chapel Hill Bioinformatics graduate program. For this grant, Mr. Nolan has 
assisted in the preparation of drug derivatives from the ZINC 15 database as SMILES strings for all of the 
cGenes. He also searched the drug list we identified for links to other autoimmune diseases. This has allowed 

Prioritized 
Drugs Structurally similar drugs 
in Cluster 3 

Arformoterol 

Figure 7.  
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Drs. Ainsworth and Langefeld to mentor him in learning basic concepts of biostatistics, statistical genetics, and 
genetics.  
 We have hired a new staff biostatistician that has replaced Mr. Hamilton, Ekaterina S. Khvatkova (July 1, 
2022, start date). Katya has recently graduated from Wake Forest University, Department of Mathematics and 
Statistics, with a MS in Mathematical Statistics. As the work outlined here is not standard basic biostatistics, 
she has been learning about genetics, proteins, while using her generalized linear mixed models and 
programming skills. She has been leading the programming effort to map eQTLs to genes and check to see 
that the risk allele is associated with increase gene expression and elevated gene expression is associated 
with lupus risk (see above). 
 In the past year, Dr. Langefeld took on a new PhD student, Olamide Arege, an individual with virology 
background from Nigeria who is seeking to do a PhD in bioinformatics. At present Olamide is still 
predominately taking the necessary mathematics and statistical theory classes, but he has participated in 
meetings and is soon to participate in the bioinformatic analyses. Funding for Olamide is from independent 
sources, including Dr. Langefeld’s R&D account. 
 Dr. Langefeld is also mentoring an undergraduate student (Junior) in the new Department of Statistics at 
Wake Forest University, Hanna Vaidya. Hanna has worked with Dr. Langefeld and Ainsworth on the cluster 
analysis of the molecular similarity of drug based on SMILES identifiers. She learned about various hierarchical 
clustering methods and applied them. She programmed the random forest clustering analysis and the 
randomization test for cGene enrichment in the individual clusters. Current plans include teaching her the 
molecular docking analyses and allow her to use parts of the project as her honors thesis.  
 
How were the results disseminated to communities of interest? 
 

 We have published multiple papers and presentations. Please see publication list and Appendix.  
 
What do you plan to do during the next reporting period to accomplish the goals? 
 During the next reporting period (months 25-36), we will build upon the first two years of success by 
continuing progress towards milestones in each Aim. We will continue to use the pipelines developed, updated, 
and optimized in the first 24 months (e.g., summarization of ∆G and ∆∆G from molecular docking); leverage 
drug structural similarity and structural hot spot analysis (novel expansion of Aims); expand the high-
throughput method for FDR-approved drug prioritization (Aim 3). Table 8 outlines planned steps and work for 
the next reporting period. Planned activities are shown by each specific task and subtask as provided in the 
Project’s original SOW.  
 

Table 8. Goals and milestones 
Goals and Milestones as listed in the original SOW. Progress Report 10-2022 Update. 

Planned Activities for next Period (Months 25-36) Specific Aims (specified in proposal) Timeline 

Specific Aim 1: Identify SLE-risk Genes Months  

Subtask 1: Identify SLE-risk single nucleotide polymorphisms 
(SNPs) in women 

1-24 

• Effectively complete except African American GWAS 
study 

• Continue curation of SLE risk SNPs across relevant 
sources of data as they become available.  

Subtask 2: Link SLE-risk SNPs to genes via eQTL, proximity, 
transcription factor binding, protein coding, gene-based testing 

3-27 

• Evaluate gene-linking for SNPs associations uniquely 
within respective races/ethnicities.  

• Evaluate additional links to genes with updated ENCODE 
regulatory information (e.g., ensuring most plausible gene 
link for TFBS SNPs).  

• Gene-based testing, complete, no further work required. 

Subtask 3: Transcriptomic analysis, differential expression of genes 
identified in subtask 2 

3-30 

• Differential expression analysis in five cell types for 
eGenes. Focus in next months on tGenes (transcription 
factor binding site linked genes) for genes not yet 
analyzed from Subtask 2. 

Subtask 4: DNA methylation analyses, differential methylation of 
genes identified in subtask 2 1-24 

• Analysis of differential methylation (in publicly available 
datasets) for genes identified in Subtask 2 complete. 

Subtask 5: Identify and write potential manuscripts on multi-omic 
analysis of SLE-risk associated variants and genes. 6-36 

• Construct additional publications, including mendelian 
randomization and our analysis pipeline and results.  
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Milestone(s) Achieved: Lists of SLE-risk associated genes informed 
by ancestry, tissue, and female sex 

3-30

• Largely completed but will continue generation of SLE-risk
genes by female sex and tissue-specificity; African
American GWAS a task for this cycle.

Local IRB/IACUC Approval Completed 

Specific Aim 2: For genes and gene lists discovered in 
Specific Aim 1, complete systems biology, and pathway 
analysis 

Subtask 1: Identify drug targets: Process lists of genes in Aim 1 into 
one of four Target Groups based on functional criteria, including 
pathway analyses 

3-30

• Continue processing lists from Aim 1 into relevant Target
groups (e.g., SLE risk SNPs from Immunochip study and
African American GWAS).

• Process to be ongoing as literature emerges.

Subtask 2: Prioritize drug targets (i.e., genes): Prioritize genes first 
by group assignment and second RILITE’s scoring algorithm within 
each group. Targets with highest prioritization will be assessed for 
molecular docking (e.g., quality protein structures in Protein Data 
Bank). 3-30

• Continue prioritization and structure identification for
targets from remaining categories (e.g., Groups 1 and 2).

• Complete binding experiments for eGenes and tGenes,
random forest cluster analysis of relative to eGenes and
tGenes.

• Prioritize and identify structures for drug targets based on
transcription factor binding (Group 2).

Subtask 3: Identify and write potential manuscripts incorporating 
systems biology and drug target prioritization to evaluate genetic 
architecture of SLE. 12-36

• As additional groups of targets are identified and
prioritized, prepare manuscript related to target
identification (Aim 2) and drug identification/prioritization
(Aim 3).

Milestone(s) Achieved: Lists of prioritized drug targets 

6-30

• Partial list complete.

• Generate additional lists of prioritized drug targets based
on the four target groups (for analysis in Aim 3).

Specific Aim 3: Identify and prioritize drugs 

Subtask 1: Bioinformatic analysis for gene-drug and protein-drug 
interaction using STITCH, DrugPath, CLUE, etc. 

6-36

• Continue pathways analyses of drug targets to better
delineate biological system implicated in SLE and SLE
subtypes.

• Incorporate existing and continuing analyses into papers.

Subtask 2: Screen libraries of FDA-approved small molecules via 
molecular docking to identify drugs or small molecules for selected 
(Aim 2, Subtask 3) SLE drug targets 

6-36

• Continue in silico binding of FDA-approved small
molecules to identified drug targets. This includes both
new targets (e.g., as identified by tGenes) and newly
available high-quality protein structures (e.g., via PDB or
AlphaFold).

• Explore random forest clustering of SMILES data for hot
spots.

Subtask 3: Prioritize drugs from Subtasks 1 and 2 using CoLTS 
scoring algorithm 6-36

• Continue prioritization and high-throughput prioritization of
drugs identified in Subtask 2.

Milestone(s) Achieved: Lists of genetically informed FDA-approved 
drugs and small molecules, novel to treatment of SLE. 

12-36

• For completed in silico molecular docking experiments,
prioritize drugs based on CoLTS scoring and other
relevant criteria.

• Generate additional lists of prioritized drugs based on
newly analyzed in silico molecular docking and near
neighbor / random forest clustering.

• Lists of prioritized drugs that are prioritized across drug
targets (e.g., multiple targets per drug).

4. Impact

What was the impact on the development of the principal discipline(s) of the project? 

As noted last year, the analytic and programming pipelines we have established that can be applied to other 
studies which are exploring precision medicine therapeutics based on disease-associated risk loci. For 
example, the ZINC 15 database is an established resource of FDA-approved small molecules. The 
development of efficient annotation of ZINC 15 compounds with publicly available datasets (e.g., SMILES 
identifiers, PubChem) enables efficient application of these methods, representing a reduction of preparatory 
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data steps needed. In addition to continuously updating the above, we have generated molecular similarity 
clusters of FDA approved drugs that can be tested for enrichment. Such molecular similarities might inform 
novel molecule/drug development. Importantly, many of the identified drug targets originate from genes that 
are implicated in other diseases (e.g., autoimmune diseases), as we show in our pan-autoimmune manuscript. 
Thus, molecular docking of FDA-approved compounds to these targets will be valuable datasets for similar 
studies in other diseases. Further, these pipelines will enable exploration of precision medicine for other lupus 
phenotypes and other ancestral groups. 
 
What was the impact on other disciplines? 
 
 As reported last year, while developing this grant and completing the gene expression studies, we 
identified two major issues related to single-cell data analyses.  We observed that, as a whole, the field of 
single-cell transcriptomics (and other single-cell omics) were not properly accounting for the correlation that 
exists within an individual/animal/organism. Thus, tests for differential expression, for example, were reporting 
too many false associations. Further, investigators were unintentionally grossly overestimating the statistical 
power of their studies in grants and completing significantly underpowered studies. As described in the listed 
publications below, of the 30 publications in rheumatological journal employing single cell gene expression, 
none of them were explicitly and properly accounting for the within person/animal correlation. There are 
multiple implications related to robustness, reproducibility, and cost-effective science: 1) false associations and 
inferences using single-cell methods will mislead our scientific efforts and fail to replicate, 2) entrenched ideas 
driven by enriched false associations from single-cell data will require significantly more resources to correct, 
3) perceptions on the robustness of single-cell technology will be significantly damaged reducing acceptance of 
valid and robust studies. Motivated by these observations during the preparation of this grant and after award, 
we have published two manuscripts (listed below), are currently writing an invited review paper for the journal 
Rheumatology, and a response for Nature Communications. Dr. Langefeld’s effort on the publications and 
publication costs for the Hierarchicell and review papers were partially supported by this grant (W81XWH-20-1-
0686). This grant is gratefully acknowledged.  
1. Zimmerman KD, Espeland MA, Langefeld CD. A practical solution to pseudoreplication bias in single-cell 

studies. Nat Commun. 2021;12(1):738 
2. Zimmerman KD, Langefeld CD. Hierarchicell: An R-package for estimating power for tests of differential 

expression with single-cell data. BMC Genomics. 2021 May 1;22(1):319. PMCID: PMC8088563. 
During the past year, we have expanded upon this work. As two examples, from several, we collaborated with 
Dr. Timothy Niewold (see publications) to complete analyses that properly account for these correlations. Also, 
we wrote a rebuttal (tentatively accepted, see draft in Appendix) to a submission to “Rising Issues” that 
criticized the mixed model approach – the authors are not statisticians and do not understand the underlying 
mathematics of mixed models (i.e., they are mathematically provably wrong). 
 Dr. Langefeld also collaborated with other autoimmune genetics researchers to document the overlap in 
disease loci across several autoimmune diseases (see Appendix). As such, the work we are doing in this grant 
will potentially affect a broader set to autoimmune diseases. 
3. Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Matthew R 

Lincoln, Noah Connally, Pierre-Paul Axisa, Christiane Gasperi, Mitja Mitrovic, David van Heel, Cisca 
Wijmenga, Sebo Withoff, Iris H Jonkers, Leonid Padyukov, International Multiple Sclerosis Genetics 
Consortium, Stephen S Rich, Robert R Graham, Patrick M Gaffney, Carl D Langefeld, Timothy J Vyse, 
David A Hafler, Sung Chun, Shamil R Sunyaev, Chris Cotsapas. (Under second review, Nature Genetics) 

 
What was the impact on technology transfer? 
Nothing to Report.  
 
What was the impact on society beyond science and technology? 
Nothing to Report.  
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5. Changes/Problems

Changes in approach and reasons for change 

The general approach has not changed, but we have added additional, new resources and tools. 
Specifically, as noted last year, we encountered a limitation in the number of high-quality experimentally 
derived protein structures in the Protein Databank. As of July 2021, AlphaFold was officially released which 
contains neural network derived (predicted) structures. We have included this database in our pipeline, which 
markedly increases our coverage of drug targets to 100%; albeit we are discovering that some of the predicted 
structures need additional refinement (e.g., for tertiary structural features), and we are reaching out to the 
AlphaFold team, using their feedback system to prioritize molecules. We will continue to use experimentally 
derived structures when available; but the inclusion of AlphaFold presents a new opportunity to explore more 
of our identified targets. 

We have also expanded our approach to leverage the structural similarity of the FDA-approved drugs by 
applying a natural-language learning algorithm to the SMILES (simplified molecular-input line-entry system) 
identifiers for the FDA-approved drug. From these data, we can generate structurally informed clusters of FDA-
approved drug. Using several hierarchical clustering techniques, we found that the results from the Random 
Forest clustering algorithm enabled us to identify a potential hot spot within Cluster 3 of drugs that bind to the 
protein product of several cGenes. This is a novel idea that expands upon the immediate binding results and 
provides additional robustness to the binding results and identifies specific scenarios where structural similarity 
might be important to consider for drug development for certain targets. 

Actual or anticipated problems or delays and actions or plans to resolve them 

The Covid-19 pandemic has caused multiple problems, including the restriction from meeting in person and 
the inability to recruit potential interns or PhD students to the lab. For family reasons, Drs. Langefeld and 
Ainsworth are not able to travel during the pandemic; both serve as primary caregivers for elderly relatives. As 
noted last year, the investigators have effectively used Zoom, Microsoft Teams, and WebEx and manuscript 
productivity is consistent and in good quality journals. Assuming the pandemic eases, we anticipate attending 
meetings next year. 

Changes that had a significant impact on expenditures 

Nothing to Report. 

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select 
agents 

Nothing to Report. 

Significant changes in use or care of human subjects 

Nothing to Report. 

Significant changes in use or care of vertebrate animals. 

Nothing to Report. 

Significant changes in use of biohazards and/or select agents 

Nothing to Report. 
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6. Products

Publications, conference papers, and presentations 

Journal publications. 

• Katherine A. Owen1#, Kristy A. Bell1, Andrew Price1, Prathyusha Bachali1, Hannah Ainsworth2,
Miranda C. Marion2, Timothy D. Howard3, Carl D. Langefeld2, Nan Shen4, Jinoos Yazdany5, Maria
Dall’era5, Amrie C. Grammer1 and Peter E. Lipsky1 Mendelian randomization id pathway analysis
demonstrate shared genetic associations between systemic lupus erythematosus and
coronary artery disease. Cell Reports Medicine, In press (online available November 4th).

• Marion MC, Ramos PS, Bachali P, Labonte AC, Zimmerman KD, Ainsworth HC, Heuer SE, Robl RD,
Catalina MD, Kelly JA, Howard TD, Lipsky PE, Grammer AC, Langefeld CD. Nucleic Acid-Sensing
and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus
and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and
Drug Targeting. Genes (Basel). 2021 Nov 26;12(12):1898. PMCID: PMC8701117.

• Ghodke-Puranik Y, Jin Z, Zimmerman KD, Ainsworth HC, Fan W, Jensen MA, Dorschner JM,
Vsetecka DM, Amin S, Makol A, Ernste F, Osborn T, Moder K, Chowdhary V, Langefeld CD,
Niewold TB. Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in lupus
patient monocytes. Arthritis Res Ther. 2021 Nov 30;23(1):290. PMCID: PMC8630910.

• Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Matthew R
Lincoln, Noah Connally, Pierre-Paul Axisa, Christiane Gasperi, Mitja Mitrovic, David van Heel, Cisca
Wijmenga, Sebo Withoff, Iris H Jonkers, Leonid Padyukov, International Multiple Sclerosis Genetics
Consortium, Stephen S Rich, Robert R Graham, Patrick M Gaffney, Carl D Langefeld, Timothy J Vyse,
David A Hafler, Sung Chun, Shamil R Sunyaev, Chris Cotsapas. (Under second review, Nature Genetics)

Books or other non-periodical, one-time publications. 
Nothing to Report. 

Other publications, conference papers, and presentations. 

Katherine Owen (presenter), Jessica Kain, Miranda Marion, Carl D. Langefeld, Amrie C. Grammer, and Peter 
Lipsky. "Assessing the genetic risk for atherosclerosis in SLE" Lupus 21st Century 2022, Tuscon, AZ, 
September 20-23, 2022. Invited talk. 

Katherine A. Owen, Kristy A. Bell, Andrew Price, Prathyusha Bachali, Hannah Ainsworth, Miranda C. Marion, 
Timothy D. Howard, Carl D. Langefeld, Nan Shen, Jinoos Yazdany, Maria Dall’era, Amrie C. Grammer and 
Peter E. Lipsky. Molecular pathways identified from risk alleles demonstrate mechanistic differences in 
systemic lupus erythematosus patients of East Asian and European ancestry. Poster and Lightning talk. 
American College of Rheumatology (ACR) Convergence 2022, Philadelphia, PA, November 10-14, 2022.  

Website(s) or other Internet site(s) 

Nothing to Report. 

Technologies or techniques 

Nothing to report 

Inventions, patent applications, and/or licenses 
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Nothing to Report. 

Other Products 
Other products produced by this work update and expand upon those in the first year and as well as new 
elements. Collectively this includes: 
1. Database of ZINC 15 IDs matched to common database (e.g., pubCHEM) identifiers and common drug

names.
2. Continued refinement of growing database of gene linked SLE risk SNPs by ancestry (e.g., linked to most

plausible functional gene via gene expression or nonsynonymous variants).
3. Growing database of target-specific molecular docking for FDA-approved small molecules. Currently this

dataset will feed into drug prioritization for SLE therapeutics, but since many of the identified drug targets
are relevant in other autoimmune diseases, this could eventually be evaluated in the context of other
diseases. For example, see submitted paper and pan-autoimmune disease genetics (Appendix).

4. Similarity measures using SMILES of FDA-approved drugs and list of drug in proximity to “hot spot” of
enrichment.

7. Participants & Other Collaborating Organizations

What individuals have worked on the project? 

Wake Forest investigative team 

Name: Carl D. Langefeld, Ph.D. 

Project Role: Primary Investigator of project 

Researcher Identifier 
(e.g., ORCID ID): 

0000-0002-4266-6949 

Nearest person month 
worked: 

1.2 months (10% of effort) 

Contribution to Project: 
Provided overall supervision of administrative and scientific 
components of the grant. Major contributor of manuscript preparation 
and presentations. 

Funding Support: 
Dr. Langefeld volunteered time from his institutional protected time to 
enable progress on the grant. 

Name: Timothy D. Howard, Ph.D. 

Project Role: Professor 

Researcher Identifier 
(e.g., ORCID ID): 

0000-0003-2518-4902 

Nearest person month 
worked: 

0.6 calendar months (5% effort) 

Contribution to Project: 
Dr. Howard has contributed to the characterization of function of the 
associated SNPs and has contributed to writing and editing of 
manuscripts. 

Funding Support: 

Name: Hannah C. Ainsworth, Ph.D. 

Project Role: Staff Bioinformatician, promoted to Assistant Professor (tenure track) 
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Researcher Identifier 
(e.g., ORCID ID): 

0000-0003-1185-0695 

Nearest person month 
worked: 

0.6 calendar months (5% effort) 

Contribution to Project: 

Dr. Ainsworth developed the pipeline and completed the mapping of the 
cGenes to proteins. She has assisted in writing and editing 
manuscripts. She has contributed to the characterization of function of 
the associated SNPs. She has applied her dissertation work on DNA 
topology as a weighting mechanism to develop credible sets of high 
priority associated SNP. 

Funding Support: 

Partial support provided by Dr. Langefeld’s personal research and 
development fund and institutional protected time for junior faculty to 
pursue the role of DNA topology on identifying plausibly functional 
variants that might impact gene function, hence targets for protein 
binding experiments. 

 

Name: Tony Reeves, Ph.D. 

Project Role: Associate Professor 

Researcher Identifier 
(e.g., ORCID ID): 

0000-0002-8209-6020 

Nearest person month 
worked: 

0.6 calendar months (5% effort) 

Contribution to Project: 

Dr. Reeves role on this grant is to complete the molecular docking of 
the FDA approved drugs to genes for consideration of drug 
repositioning scoring. He has completed nearly 50% of the cGenes. He 
also served as a mentor for undergraduate research intern who 
contributed to the molecular docking analyses. 

Funding Support:  

 

Name: Miranda C. Marion, MA 

Project Role: Senior Biostatistician 

Researcher Identifier 
(e.g., ORCID ID): 

0000-0003-4487-8010 

Nearest person month 
worked: 

2.4 calendar months (20% effort) 

Contribution to Project: 

Ms. Marion completed statistical association analyses to help identify 
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SUMMARY 

Coronary artery disease (CAD) is a leading cause of death in patients with systemic lupus 

erythematosus (SLE). Despite clinical evidence supporting an association between SLE 

and CAD, pleiotropy-adjusted genetic association studies are limited and focus on only a 

few common risk loci.  Here, we identify a net positive causal estimate of SLE-associated 

non-HLA SNPs on CAD by traditional Mendelian Randomization (MR) approaches. 

Pathway analysis using SNP-to-gene mapping followed by unsupervised clustering 

based on protein-protein interactions (PPI) identifies biological networks composed of 

positive and negative causal sets of genes. In addition, we confirm the casual effects of 

specific SNP-to-gene modules on CAD using only SNPs mapping to each PPI-defined 

functional gene set as instrumental variables. This PPI-based MR approach elucidates 

various molecular pathways with causal implications between SLE and CAD and 

identifies biologic pathways likely causative of both pathologies revealing known and 

novel therapeutic interventions for managing CAD in SLE.  

 

KEY WORDS 

Systemic lupus erythematosus, coronary artery disease, mendelian randomization, lupus, 

genetics, SNPs, targeted therapeutics 
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INTRODUCTION 

Systemic lupus erythematosus (SLE) is a female predominant, autoimmune disease 

characterized by immune dysregulation and multi-organ inflammation that is frequently 

associated with the development of cardiovascular disease (CVD)1,2. SLE exhibits 

hyperactivity of the innate and adaptive immune systems, increased production of 

numerous autoantibodies, and disturbed cytokine balance3. Although CVD is not a 

diagnostic criterion of SLE and was not included in the original descriptions of the disease, 

it is currently the main cause of death in SLE4–6 with coronary artery disease (CAD) 

directly responsible for one-third to one-half of all CVD cases and 30% of deaths7-9. 

Notably, whereas mortality from infections and active disease have decreased in SLE 

patients, CVD-related death rates have not improved10 and the standardized mortality 

ratio related to CVD has actually increased11. Women with SLE have a significantly 

increased risk of stroke and myocardial infarction along with elevated incidence of 

asymptomatic atherosclerosis compared to the general population12,13. Furthermore, 

traditional CVD risk factors, such as cholesterol, blood pressure, and smoking status fail 

to fully account for the overall higher risk of acute CVD events in SLE, although the 

underlying mechanisms remain unknown14–17. This lack of an understanding for the 

increased risk of CVD in SLE has resulted in limited treatment options and the puzzling 

juxtaposition that despite the efficacy of statins and ACEIs/ARBs in treating the general 

population, they appear to have little effect on CVD outcomes in SLE patients5,18. As a 

result, even though SLE has a prevalence of only about 70 per 100,000, it ranks among 

the leading causes of death in young women1, despite the omission of lupus diagnoses 

in almost half of SLE patients’ death certificates19,20.  
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Genetic predisposition imposes important risk factors for both SLE and CVD21–23. 

To date, genetic association studies of SLE patients with and without CVD have been 

limited in size and have detected only a few common genetic risk loci, including IRF8, 

STAT4, IL19, and SRP54-AS122,24,25. Mendelian Randomization (MR) is a causal 

inference method using genotypes as “treatments” when randomized controlled trials are 

not feasible. By measuring and correlating the effect sizes of exposure-associated genetic 

variants in large-scale genetic association studies on traits of interest, a causal effect of 

the exposure on the outcome can be estimated. Here, we report the application of 

multiple, complementary MR methods to identify causal paths from SLE-associated 

variants to CAD using summary statistics from genetic association studies. Using multiple 

MR algorithms, we have identified large sets of SLE causal variants that also impart 

genetic risk for CAD, as well as those that appear to diminish the risk of CAD. Using 

innovative approaches to build molecular pathways from genetic risk factors26, we have 

developed a map of SLE-derived biologic processes with causal implications on CAD that 

may account for the genetic basis of the association between these two apparently 

dissimilar clinical entities and may also provide insights into the shared mechanisms 

underlying each. Understanding the pathogenesis of genetic variants underlying the 

increased CAD risk in SLE can ultimately provide insight into the immune and 

inflammatory components of atherosclerosis, as well as reveal opportunities for targeted 

therapeutics. 

RESULTS 
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Pathway analysis reveals gene networks implicated by genetic variants associated 

with both SLE & CAD 

To explore the shared genetic predispositions for SLE and CAD, we first identified single 

nucleotide polymorphisms (SNPs) associated with each trait in 5 SLE and 1 CAD multi-

ancestral genetic association study27–32. In total, 96 SNPs were associated with both 

conditions (Figure S1A). Notably, the majority of the overlapping SNPs mapped to the 

HLA region of chromosome 6. To identify putative gene(s) influenced by each of the 96 

SNPs associated with both SLE and CAD, we mapped causal SNPs to genes26, 

identifying 189 unique genes encoding 135 proteins in STRINGdb (Figure S1B). Stratified 

linkage disequilibrium score regression (S-LDSC) was then used to validate the biological 

relevance of SNP-predicted gene and protein sets by assessing whether they captured 

more disease heritability than expected by chance with respect to all genes and 

STRINGdb proteins, respectively33. Application of S-LDSC using GWAS summary 

statistics for SLE (GCST00315527), CVD (GCST00428034) and two CAD datasets (CAD-

I, GCST00099835 and CAD-II, GCST00147936) determined that the 189 genes predicted 

by the 96 overlapping SNPs were significantly (p<0.05) enriched for genomic regions 

capturing the genetic heritability of CAD and CVD (Figure S1C). Nearly identical results 

were also obtained using the smaller subset of 135 protein-coding genes (Figure S1C). 

However, application of standard LDSC which was restricted to the use of the relatively 

small, European-only SLE GWAS27, did not reveal a significant level of genetic correlation 

between the diseases (Figure S1D). 

To assess molecular networks encoded by the set of 135 protein encoding genes 

predicted from the overlapping SLE/CAD SNPs, a protein-protein interaction (PPI) 



 6 

network was generated and unsupervised clustering revealed 12 distinct gene clusters 

that were functionally enriched in a diverse range of immunological and cellular categories 

(Figure S1E) many with relevance to SLE and CAD/CVD, including cluster 1 

characterized by canonical pathways for Antigen presentation pathway and B cell 

development, along with Sudden cardiac death and cluster 3 enriched in Atherosclerosis 

signaling and Lupus erythematosus, systemic, amongst others (Table S1). Although the 

molecular pathways associated with SNP-predicted genes suggested a convergence of 

biological processes underlying SLE and CAD, it remained uncertain whether the finding 

of overlapping SNPs implied shared genetic causation. The subsequent studies 

presented here explore this in detail. 

 

MR estimates a positive correlation between effects of SLE-associated non-HLA 

variants on SLE and CAD 

MR methods were employed to estimate the association between effect sizes of relevant 

variants on SLE and CAD. We first applied six MR methods using various sets of SLE-

associated instrumental variables (IVs) to determine whether they tend to confer shared 

(positive) effects on SLE and CAD, noting that this initial approach did not satisfy all 

assumptions for IV-validity or IV-independence and therefore could only provide an 

estimated association (Figure 1A). Initial exploratory analyses employing IVs derived from 

the Immunochip and GWAS studies suggested a net-positive association for non-HLA 

SLE-associated SNPs on CAD (Figure 1B-C). Even when using SLE IVs determined with 

the more stringent significance level and removal of known pleiotropic associations to 

CVD or confounders such as cholesterol, obesity, blood pressure, insulin resistance and 



7 

smoking, the indication of a positive causal relationship between SLE and CAD remained 

(Figure 1C, bottom row). 

To validate the robustness of our estimated associations by satisfying stringent 

requirement for IV selection, we carried out two-sample MR analyses using multi-

ancestral, non-HLA SNPs strongly associated (p<5x10-8) with SLE, excluding SNPs 

weakly associated (p<10-5) with CVD or confounders (Table S2), followed by stringent 

LD-clumping to ensure IV-independence37 (R2=0.001, 100kb window, 1000G EA 

reference population) (Figure 2A). SLE GWAS summary statistics were used for 

exposure27, and multiple CAD GWAS were used for outcome (GCST00519432, CAD-a 

and GCST00519532, CAD-b). Since CAD is causative of myocardial infarction (MI) and 

atherosclerosis is common to CAD and ischemic stroke (IS), MR was carried out using 

summary statistics for 2 additional MI GWAS (GCST00311738, MI-a  and GCST01136539, 

MI-b) and IS (GCST00690640). Summary statistics for cardiomyopathy from the FinnGen

biobank analysis (finn-b-I9_CARDMYO, CM) and atrial fibrillation (GCST00641441, AFib), 

which are not associated with atherosclerosis or CAD, were also included for comparison. 

After LD-clumping, 60 independent SNPs were included in the SLE GWAS and then 

harmonized with each outcome-GWAS pair before use as IVs for SLE exposure (Table 

S9). Between 43-56 harmonized IVs for SLE-exposure were then tested using 16 MR 

methods, some of which account for additional IV-invalidity, pleiotropy, or heterogeneity, 

to estimate causal relationships with the various atherosclerotic and cardiac conditions. 

The majority of MR methods resulted in significant (p<0.05) positive causal estimates of 

SLE-associated variants on CAD-a, and both MI GWAS, but not for cardiomyopathy or 

Afib (Figure 2B, Figure S2A, Table S3). Directional pleiotropy was only detected between 
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the SLE and CAD-b GWAS by the MR-Egger intercept test (Figure S2A), indicating 

potential bias in the causal estimates based upon effect sizes using these summary 

statistics. Overall, IVW, weighted median, penalized weighted median, maximum 

likelihood, RAPS and PRESSO were significant in 4 out of 5 outcome GWAS (Figure 

2B). These results establish a positive causal effect of SLE on CAD and suggest that the 

increased CVD-risk associated with SLE is likely to involve atherosclerosis rather than 

other aspects of cardiac pathology. 

To eliminate the possibility that the positive causal estimate of SLE on CAD is 

bidirectional and therefore unlikely to represent a true causal relationship, MR was also 

carried out in the reverse direction, with CAD or MI as exposure and SLE as the outcome. 

Importantly, none of the 14 methods yielded a significant positive causal estimate of CAD 

or MI on SLE. Of interest, however, significant (p<0.05) negative causal estimates of CAD 

and MI on SLE were observed for approximately half of the 14 MR methods tested (Figure 

S2B, Table S3).  

To understand the pathways underlying the positive causal estimates of SLE on 

CAD in greater detail, all SLE-associated SNPs included as putative IVs before 

harmonization with each GWAS were mapped to genes. Consistent with satisfying the 

exclusion restriction criteria and independence assumption with respect to traits imposing 

significant CVD-risk, S-LDSC results demonstrated that the 284 genes and 160 predicted 

proteins captured a significant portion of SLE heritability (p-values = 3.46x10-5 and 3x10-

5, respectively), but not that of CVD or CAD (Figure 2C). 

Proteins predicted from the SLE IVs were then integrated into connectivity 

networks in STRINGdb (Figure 2D). Cluster annotations were dominated by processes 



9 

commonly dysregulated in SLE as expected, including canonical pathways for Systemic 

lupus erythematosus in B cell signaling, Th1 pathway and Th2 pathway, as well as GO 

terms for Regulation of immune response (GO:0050776) and Negative regulation of B 

cell activation (GO:0050869) (Table S4). Interestingly, disease associations were 

enriched in various autoimmune diseases (Lupus erythematosus, systemic, Aicardi 

goutiere’s syndrome and Hashimoto’s disease), along with cardiovascular dysfunction, 

such as Arterial embolism and thrombosis, Hypertension, Plaque, atherosclerotic and 

Ischemic heart disease (Table S4). 

Single-SNP MR identifies gene networks implicated by SLE-associated variants 

with positive and negative causal estimates on CAD 

We next employed single-SNP MR (SSMR) to identify specific SLE-associated variants 

with positive or negative estimates on CAD. SSMR applied to SLE-associated SNPs, 

including those in the HLA region, reveal that the majority of negative causal SNPs are 

located on the short arm of chromosome 6; all but one were tightly packed around the 

HLA region, spanning chr6:28014374-33683352 (Figure S3). When excluding the short-

arm of chromosome 6 and SNPs associated with CVD or confounders, SSMR identified 

80 and 96 SLE-associated variants with significant (p<0.05) positive (Figure 3A, top 25) 

and negative (Figure 3B, top 25) causal estimates on CAD, respectively (Figure S4, Table 

S3). The majority of positive-causal SNPs were distributed on chromosomes 1, 2 and 4, 

whereas over 50% of negative causal SNPs were on chromosomes 7, 11 and 17 (Figure 

3C, E).  
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Non-HLA SLE variants with either significant positive or negative causal estimates 

on CAD were separately mapped to 236 (Figure 3D) and 244 predicted genes (Figure 

3F), respectively, for clustering and pathway analysis. Positive SNP-predicted gene 

clusters were enriched in the canonical pathway for Antigen presentation and functional 

categories for MHC class I, as well as epigenetic processes, transcription, and 

endocytosis (Figure 3E,Table S5), whereas negative SNP-predicted gene clusters were 

dominated by processes related to cell death (Pyroptosis (GO:0070269), cluster 2; 

Regulation of oxidative stress-induced cell death (GO:1903201), cluster 6) and protein 

degradation (Proteasome, cluster 6 and Autophagy, cluster 8; Figure 3F, Table S5). 

Finally, gene sets predicted by both positive and negative causal SNPs captured a 

significant portion of SLE heritability, but not that of CAD or CVD, consistent with their 

selection as IVs for SLE (Figure 3G-H).  

Pathway analysis of HLA region variants associated with SLE-risk and protective  

of CAD 

Risk haplotypes in the HLA region heavily contribute to susceptibility for SLE42 and CAD43. 

However, accurate genotyping of HLA alleles and corresponding GWAS effect size 

estimates are notoriously unreliable44. Additionally, the complex genetic architecture of 

this region makes mapping HLA variants to genes especially challenging given the 

extensive LD and high density of genes in this region. Nonetheless, an examination of 

the HLA area (chr6:28.5–33.5 Mb) revealed 30 SNPs significantly (p<10-6) associated 

with both SLE and CAD in their respective GWAS. While these SNPs are not 

independently associated variants, all 30 SNPs had positive effect sizes for SLE but were 
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negative for CAD (Figure S5A), possibly reflecting the extensive LD in this region. 

Connectivity mapping and clustering of the 69 protein-encoding genes predicted from 

these 30 SNPs revealed 6 distinct clusters dominated by processes dysregulated in SLE, 

including the functional categories for MHC class I and MHC class II in clusters 1 and 6, 

along with canonical pathways for TH1 and TH2 activation, B cell development, Notch 

signaling as well as gene ontogeny (GO) terms for Interferon-gamma mediated signaling 

pathway (GO:0060334) (Figure S5B-C). Other pathways of interest involving 

Complement system abnormalities, LXR/RXR activation, and 21-hydroxylase deficiency 

were predicted by cluster 3 (Figure S5C).  

 

PPI-based MR predicts specific sets of SLE-associated variants and gene pathways 

causal of CAD 

To obtain a more comprehensive view of the possible impact of SLE-derived molecular 

pathways on atherosclerosis, we mapped SLE-associated, non-HLA Immunochip SNPs 

with net positive causal estimates on CAD by MR to genes and pathways regardless of 

their associations with CVD-related traits. In total, 838 SNPs predicted 2,336 putative 

genes and 1,501 proteins that collectively captured a significant amount of SLE, but not 

CAD or CVD, heritability (Figure 4A); these 1,501 proteins clustered into 46 distinct 

clusters based on PPI connectivity (Figure 4B). We then grouped SLE-associated SNPs 

mapping to genes in each of the 46 PPI-based clusters for use as SLE-IVs to estimate 

cluster-specific associations with atherosclerotic traits. Initial application of MR-IVW to 

these 46 subsets of SLE SNP-derived IVs yielded 16 and 9 significant (p<0.05) positive 

and negative causal estimates, respectively (Figure 4B-C, Figure S6A) for CAD. 
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Additional MR methods, including mode and median based methods, MR-Egger, MR-

RAPS, MR-PRESSO, and maximum likelihood, were carried out for further validation of 

the PPI-based MR-IVW causal estimates (Table S3). Clusters were grouped into tiers 

with respect to consistency across the various MR methods, with tier 1 clusters yielding 

significant positive or negative causal estimates by almost all (at least 14/16) MR-

methods and tier 2 clusters yielding significant positive or negative causal estimates by 

MR-IVW or at least 7 MR-methods (Figure 4B-C). Finally, when examined individually, 20 

of the 46 clusters specifically captured SLE heritability by PPI-based S-LDSC, many with 

significant causal estimates on CAD by PPI-based MR (Figure 4D and Table S6).  

In an effort to support these results by expanding the size of the network, we added 

914 multi-ancestral, non-HLA SNPs associated with SLE on the Phenoscanner database 

to the analysis. Overall, 1,708 unique SNPs predicted 3,272 putative genes and 1,972 

proteins that collectively captured a significant amount of SLE heritability, but not that of 

CAD or CVD (Figure 5A) and clustered into 67 distinct sets of protein-coding genes 

(Figure 5B). PPI-based MR-IVW using these 67 clusters of SLE SNPs as IVs yielded 24 

and 11 significant (p<0.05) positive and negative causal estimates on CAD, respectively 

(Figure 5C-D, Figure S6B), many of which captured SLE heritability, but not that of CAD 

or CVD by PPI-based S-LDSC (Figure 5E and Table S6).  

           To ensure that the majority of predicted causal clusters are not a result of random 

chance or multiple-hypothesis testing, simulations were carried out to estimate the false 

discovery rate. Results from these simulations, which account for both LD and pleiotropy, 

indicate that SLE-derived and PPI-clustered modules, as opposed to randomly generated 

SNP-to-gene modules, demonstrate a higher rate of significant causal estimates on CAD 
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(Figure S7). Furthermore, to assess the reproducibility of the cluster-specific causal 

estimates, PPI-based MR was repeated using CVD-related GWAS datasets on the MR-

base platform45. The PPI-based MR-IVW causal estimates were highly consistent using 

summary statistics from 2 CAD and 2 MI GWAS on MR-base, but not cardiomyopathy or 

AFib (Table S7), suggesting that the stratified causal estimates on CAD are associated 

with the atherosclerotic component of CVD. Together, these results support the 

conclusion that the PPI-based MR results are atherosclerosis-specific and unlikely trivial 

results of random chance or multiple hypothesis testing.   

SLE-derived clusters in all positive and negative causal tiers were annotated using 

multiple functional and cellular composition tools (Figure 5B, Table S8). These results 

show that a wide range of SNP-predicted biological functions known to be involved in SLE 

pathogenesis have causal implications on CAD by MR, such as Neutrophil degranulation 

(clusters 2 and 43), Th1 and Th2 activation, and/or Th17 activation (clusters 3, 5, 8, and 

9), Interferon signaling (cluster 8), Leukocyte extravasation signaling (cluster 12), 

Leukocyte trans-endothelial migration (cluster 28) and Leukocyte adhesion to endothelial 

cells (cluster 2). In addition to immune-related pathways, many of these positive causal 

clusters were enriched in disease phenotypes associated with cardiovascular disease, 

including Th1 cell activation and proliferation in atherosclerosis (cluster 9) and Lipid and 

atherosclerosis (cluster 12). Interestingly, several clusters were enriched in autonomic 

nervous system control related to cardiac function (Cardiac muscle contraction, clusters 

13 and 33) or Neuroinflammation (cluster 60) (Figure 5B, Table S8). 

In contrast, SLE-derived clusters with negative causal estimates on CAD were 

enriched for oxidative stress (cluster 10), nitric oxide (clusters 24, 40, and 64), and HDL 
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cholesterol (clusters 24 and 50) (Figure 5B, Table S8). Pathway enrichment was further 

reflected in assigned functional categories, with ROS protection (clusters 24 and 45), NR 

transcription (cluster 40) and ubiquitylation and SUMOylation (cluster 64) dominating 

clusters with protective estimates on CAD (Figure 5B). These results are highly consistent 

with the enrichments associated with negative causal variants in our single-SNP MR and 

HLA-specific pathway analyses. 

PPI-based MR stratifies SNPs, genes, and networks underlying the positive and 

negative causal effects of SLE on CAD 

To further validate the causal effects of the 67 SNP-to-gene modules identified by 

PPI-based MR (Figure 6A), we carried out additional MR analyses with respect to PPI-

based MR cluster-groupings after accounting for pleiotropy and LD. Causal estimates of 

SLE on CAD with IVs derived from clusters meeting the tier 1 or the tier 1 and 2 criteria, 

as well as those that surpassed the MR-IVW p-value < 0.00075 threshold were universally 

more positive, significant, and consistent than those based upon all SNPs (Figure 6B-C, 

Table S3). Similarly, negative causal estimates for SLE on CAD were obtained using IVs 

meeting the negative tier 1 and MR-IVW p-value < 0.00075 thresholds from the 67-cluster 

network. In contrast, IVs derived from clusters with insignificant causal estimates 

generally failed to reach significance in either direction. While these trends were observed 

using summary statistics from both the SLE GWAS and SLE Immunochip, causal 

estimates were more significant using the SLE Immunochip, consistent with its larger 

sample size. Importantly, these results demonstrate that PPI-based MR can be used to 
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identify independent IVs satisfying MR assumptions that underly both positive and 

negative causal effects of SLE on CAD. 

Pathway analysis facilitates drug prediction 

Pathways associated with positive causal clusters were used to facilitate identification of 

new therapeutic interventions for managing the unique inflammatory environment 

contributing to CAD in SLE (Figure 7A). Canonical pathways related to immune function 

in clusters 2, 3, 5 and 8 predicted drugs targeting T and B cells and inflammatory 

cytokines, including daratumumab (CD38), belimumab (TNFSF13), elotuzumab 

(SLAMF7), abatacept (CD80/86), iberdimide (IKZF1/IKZF3) and sarliumab (IL6R). 

Broader analysis of pathway categories also suggested the utility of targeting interferon 

signaling with anifrolumab (cluster 8), as well as anti-platelet/coagulant therapy to 

combat dyslipidemia (cluster 5)46. Additional noteworthy targets include PCSK9 (cluster 

5), a protease involved in the degradation and recycling of the LDL receptor targeted by 

alirocumab and evolocumab, and oxidated LDL molecules (cluster 5) targeted by 

orticumab (Figure 7B). 

DISCUSSION 

Although genetic association studies have been successful in mapping disease loci in 

both immune and cardiovascular diseases, the genetic and molecular basis for the 

increased CAD predisposition in SLE patients has remained largely unexplained. 

Considering the limited data on CAD in SLE, we developed an approach that utilized 

GWAS summary statistics for both diseases to identify and interpret various sets of SLE-

associated variants with causal implications on CAD. New findings suggest the causal 
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relationship with SLE appears to be focused on the atherosclerotic process, evidenced 

by positive estimates with CAD, MI and ischemic stroke, but not other cardiac conditions, 

such as cardiomyopathy or AFib. Furthermore, we developed and carried out PPI-based 

MR approach to identify specific sets of SLE variants mapping to biologically relevant 

gene sets with causal implications on CAD. By coupling various MR methods with network 

modeling and variant interpretation, we not only provided substantial evidence of shared 

genetic risk but also identified the putative molecular pathways involved in the 

development of CAD in SLE. Moreover, a number of the immune and inflammatory 

pathways identified in these analyses could well contribute to the pathogenesis of CAD 

even in the absence of SLE or other recognized autoimmune conditions. This points to 

the larger implication that CAD itself is a heterogeneous condition and subpopulations, 

such as those driven by SLE-associated processes, might require potentially distinct 

treatment strategies, at least partially motivated by unique genetic predispositions. 

Causal inference using traditional MR methods rely on strict assumptions for 

independent IVs, however given the extensive pleiotropy underlying complex traits such 

as SLE and CVD, efforts to satisfy these assumptions can result in biasing the analyses 

by excluding previously established associations. Furthermore, the exclusion of SNPs 

associated with CVD-related traits results in the loss of relevant molecular information. 

While the use of SLE IVs that are also associated with CVD or confounders in traditional 

MR disqualifies the causal estimates from representing an effect on CAD directly through 

SLE, these SNPs can be just as important with respect to understanding the relevant 

biological pathways underlying CAD in SLE. Similarly, stringent LD-clumping to obtain an 

independent set of IVs not only reduces the statistical power of MR47, but also can omit 
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additional SNPs, genes, and pathways underlying CAD in SLE. Due to our rigorous efforts 

to satisfy the assumptions and account for LD in the traditional MR analyses, while also 

employing numerous MR methods that account for IV-invalidity, pleiotropy, or 

heterogeneity, these results may give overly-conservative estimates of the causal effects 

and underlying mechanisms as a result of over-pruning. 

    To overcome these limitations of traditional MR, we developed and employed a 

PPI-based MR approach using networks comprehensively derived from large sets of SLE-

associated SNPs, regardless of their associations with CVD-related traits. By generating 

cluster-specific associations between effect sizes on SLE and CAD, biologically relevant 

SNP-to-gene modules can be categorized as having shared (positive estimates) or 

opposing (negative estimates) effects on SLE and CAD. Traditional MR using 

independent, SLE-specific IVs mapping to positive and negative clusters, separately, 

confirmed that the groups of causal clusters are representative of positive and negative 

causal effects on CAD through SLE, respectively. We believe that our PPI-based MR 

approach is particularly beneficial in cases when the exposure is complex and 

heterogeneous, such as SLE which embodies a diverse range of molecular and 

pathophysiological mechanisms that we expect to impose unique casual effects on CAD. 

Genetic variants are typically mapped to genes with respect to genomic location, 

identifying genes containing and/or nearby the SNPs of interest. Additionally, more recent 

advances have given rise to identification of trans-acting genomic regions that can 

epigenetically and/or transcriptionally influence genes at distant locations. This is 

especially important for complex, polygenic traits, such as SLE and CAD, of which most 

associated variants are non-coding. Here, we link SNPs to genes via amino acid changes 
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in encoded proteins, proximity, expression quantitative trait loci (eQTL) predictions, and 

regulatory elements in an effort to be as comprehensive as possible. Our subsequent 

PPI-based clustering elucidated a broad range of biologically relevant molecular networks 

within the diverse set of implicated genes and importantly served to filter out noise. 

Furthermore, our PPI-based MR approach served to highlight SNP-to-gene modules 

contributing most to the causal effects of SLE on CAD. Together, these results 

demonstrate how SLE genetics can be used to identify both known and novel loci and 

pathways with causal implications on CAD.  

            Numerous biologically relevant SNP-to-gene modules were determined to have 

positive causal effects on CAD through SLE by MR, spanning inflammatory factors, 

adaptive and innate immunity, intracellular signaling, cell differentiation, microRNA and 

mRNA processing, mitochondrial function, and more. A wide range of enrichments 

amongst positive causal clusters have been hypothesized and/or demonstrated to 

contribute to CVD in SLE patients, including glucocorticoids, neutrophil cell death 

(NETosis) and degranulation, TNF-like weak inducer of apoptosis (TWEAK) signaling, 

canonical and alternative complement pathways, Th1 differentiation, lipid and lipoprotein 

metabolism among others. 

Considering the drastically increased prevalence and mortality of CAD in SLE, the 

considerable portion of SLE-associated risk variants with negative causal effects on CAD 

was unexpected and suggested that numerous variants contributing to SLE have 

atheroprotective effects. Further SNP-to-gene mapping and detailed pathway analyses 

revealed that these variants are involved in various processes, predominantly related to 

oxidative stress and cholesterol homeostasis, whose atheroprotective effects have been 
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found to be impaired in certain disease-related contexts, such as SLE. For example, the 

enzyme responsible for maintaining cholesterol homeostasis though lipoprotein lipase 

synthesis, cholesterol 27-hydroxylase, has been shown to be decreased in human 

monocytes and aortic endothelial cells of SLE patients, and is thought to impair the 

protective mechanism of efflux of cellular cholesterol48. Cyp27a1 is the gene that encodes 

the cholesterol 27-hydroxylase and is an LXR target activated by oxysterols as well as a 

target of RXR and PPAR in human macrophages49. LXR activation has additional 

proatherogenic and atheroprotective effects, as LXR activation in the liver promotes 

atherosclerosis via excess lipogenesis, whereas LXR activation in macrophages and 

dendritic cells has anti-inflammatory effects, linking lipid metabolism, immune cell 

function, and inflammation50.  

Our approach also has the advantage of identifying “actionable” points of 

therapeutic intervention with the potential to impact the inflammatory environment 

associated with CAD in SLE. This is especially important given that CAD risk in SLE 

cannot be fully accounted for by the increased prevalence of traditional atherosclerotic 

risk factors. SLE subjects therefore may derive particular benefit from treatments that 

mitigate inflammatory intermediates such as type I interferons with anifrolumab. Our 

findings also highlight additional putative targets, including PCSK9 involved in LDL 

receptor recycling. Inhibitors of PCSK9 activity, such as alirocumab and evolocumab are 

FDA approved to treat hyperlipidemia and may prove to be effective in controlling 

atherosclerosis in chronic inflammatory conditions51. Finally, recent reports also support 

targeting oxidized LDL molecules (anti-oxLDL, orticumab) for the prevention of 

cardiovascular events in SLE52. 
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Limitations of the Study 

Limitations of this study include those related to the data integrated in our pipeline. 

First, SLE genetic association studies have been restricted in size and scope, yielding 

limited power and genomic coverage, especially considering the extensive heterogeneity 

and polygenicity of lupus. To maximize both power and scope, we used the largest 

genetic association study for SLE, which is limited to Immunochip SNPs, the largest SLE 

GWAS, as well as SLE-associated SNPs pooled from the Phenoscanner platform. 

However, most genetic association studies, including the multi-ancestral data used in this 

study, are heavily biased towards European ancestries. This is especially problematic 

given the increased CVD morbidity and mortality in SLE patients of African-ancestry53 in 

addition to the ancestry-dependent disparities observed in both SLE and CAD. It is also 

of note, that certain risk factors leading to distinct phenotypic outcomes such as CAD are 

likely to be impacted by environmental factors that cannot be accounted for by genetics 

alone. This is important with respect to the higher disease burden observed in African 

ancestry patients, where barriers to treatment (such as delayed diagnosis and/or limited 

access to a specialist) may contribute to elevated mortality in this population and further 

underscores the importance of generating large datasets with diverse patient populations. 

In addition, the ability to map genetic variants to implicated genes is limited to known 

SNP-to-gene relationships included in Ensembl’s variant effect predictor (VEP), 

Genotype-Tissue Expression (GTEx), and Human ACtive Enhancer to interpret 

Regulatory variants (HACER) databases. Although putative causal pathways associated 

with the HLA region are intriguing, mapping of the SNPs within the HLA region to genes 
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is challenging because of the extensive LD across the region. Additionally, genes 

included in our PPI networks and clusters are limited to protein-coding genes and 

interactions included in STRINGdb. This is a potential shortcoming of our pipeline 

especially considering the large number of non-coding genes implicated in our SNP-to-

gene predictions in addition to the growing evidence highlighting the contributions of non-

coding long RNAs and microRNAs in both SLE and CAD54,55. Similarly, the ability to 

annotate gene clusters functionally is limited and potentially biased by the data underlying 

the numerous enrichment platforms used in our pathway analyses. IPA, EnrichR, which 

pools a myriad of public databases, and cell and functional analytic tools were all utilized 

to obtain orthogonal and reproducible annotations. Ultimately, however, our robust SNP-

to-gene mapping approach, which included multiple sources of information in combination 

with biologically informed clustering employing numerous sources of annotation, enabled 

comprehensive analysis of both small and large sets of genetic variants to specific 

pathways with excellent reproducibility. 

In summary, we have employed various approaches to clearly identify shared 

genetic risk factors for SLE and CAD. These results have provided new information about 

common molecular pathways in SLE and CAD, as well as the genetic and molecular 

information to consider novel therapeutic interventions in these conditions. 
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MAIN FIGURE LEGENDS 

Figure 1. MR demonstrates a positive association of effect sizes of SLE-associated 

non-HLA SNPs on SLE and CAD. A) Graphical depiction of the 2-stage approach for an 

initial exploratory analysis using expanded groups of SNPs as IVs followed by a 

confirmatory analysis using highly curated IVs. B-C) Forest plots of 6 MR causal 

estimates (beta ± standard error). For results, grey indicates insignificant (p> 0.05), red, 

positive causal estimates determined by each MR method. B) Immunochip-derived SLE-

associated non-HLA SNPs were used as IVs for SLE; summary statistics from both the 

SLE Immunochip study (left panel) and SLE GWAS (right panel) were used for the 
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exposure; summary statistics from the CAD GWAS were used for the outcome. C) 

Additional MR analyses using SNPs associated (p<10-6) with SLE in the Immunochip and 

GWAS study (row 1 and 2) or Phenoscanner reaching genome-wide significance (p 

<5x10-8, row 3) were used as IVs; summary statistics for the exposure and outcome are 

indicated. MR analyses excluding the entire short-arm of chromosome 6 and excluding 

only the extended HLA region (chr6:27-34Mb, left columns). Right columns show MR 

analyses using the same sets of SNPs excluding pleiotropic SNPs associated (p<10-5) 

with either CAD- directly or CVD-related confounders, included on the Phenoscanner 

platform.  

Figure 2. MR demonstrates a net positive-causal effect of SLE-associated non-HLA 

SNPs on CAD. A) MR diagram for testing the causal effects of SLE on CAD with respect 

to instrument relevance to the exposure, exclusion from the outcomes (i.e. CAD, MI, IS) 

and independence from confounding factors. LD-clumping (R2<0.001) was used to obtain 

independent IVs. B) Forest plots of MR causal estimates (beta ± standard error) for SLE 

on CAD (CAD-a, CAD-b), MI (MI-a, MI-b), IS, cardiomyopathy (CM) and atrial fibrillation 

(AFib) GWAS using 16 MR methods. Missing PRESSO-OC estimates indicate 

insignificant global tests for horizontal pleiotropy. For results, grey indicates insignificant 

(p> 0.05), red, positive causal (p<0.05), and blue, negative causal (p<0.05) estimates 

determined by each MR method. Numbers within forest plots indicate the SNPs used as 

IVs after harmonization. C) Application of S-LDSC using summary statistics for SLE, CVD 

and CAD GWAS to estimate the heritability (coefficient ± standard error) of the 284 SNP-

predicted genes (top panel) and 160 SNP-predicted proteins from STRINGdb (lower 

panel). Bar color indicates coefficient significance. D) Cluster metastructures for the 160 
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putative protein-coding genes are based on PPI networks. Functional and cell-type 

enrichments for each cluster were determined using BIG-C (black labels) and I-scope 

(red labels), respectively. Black labels over colored shadings represent shared functional 

annotations for the clusters they surround.  

Figure 3. Analysis of SLE-associated SNP-predicted genes with causal effects on 

CAD by single-SNP MR. A-B) Forest plots (beta ± standard error) of the top 25 (by 

absolute value of causal estimates) positive (A) and negative (B) causal non-HLA SNPs 

identified by single-SNP MR (SSMR) using the Wald ratio method. C and E) Pie charts 

illustrating the chromosomal distribution of 80 positive (C) and 96 negative (E) causal SLE 

SNPs on CAD. D and F) Cluster metastructures for the 200 (D) 184 (F) predicted genes 

from positive and negative causal SNPs identified by single-SNP MR. Functional and cell-

type enrichments for each cluster were determined using BIG-C (black labels) and I-

scope (red labels), respectively. Bold black labels over colored shadings represent shared 

functional annotations for the clusters they surround. (G-H) S-LDSC using summary 

statistics for SLE, CVD and CAD GWAS to estimate the heritability (coefficient ± standard 

error) of genes (open bars) and SNP-predicted proteins (hashed bars) predicted by 

positive (G) and negative (H) causal SNPs determined by SSMR. Bar color indicates 

coefficient significance.  

Figure 4. SLE-derived gene network with causal implications on CAD and PPI-

based MR. A) S-LDSC using summary statistics for SLE, CVD and CAD GWAS to 

estimate the heritability (coefficient ± standard error) of the 2,336 genes (open bars) and 

1,501 proteins (hashed bars) predicted by 838 Immunochip SNPs associated with SLE. 
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Bar color indicates coefficient significance. (B) Functional and cell-type enrichments for 

cluster metastructures were determined using BIG-C (black labels) and I-scope (red 

labels), respectively. Bold black labels over colored shadings represent shared BIG-C 

functional annotations for the clusters they surround. Node size is proportional to the 

number of SNPs (height) mapping to the genes in each cluster (width). For node color, 

red and blue indicate significant positive or negative estimates, respectively for 14/16 MR 

methods used (tier 1); light red and light blue, significant positive or negative estimates 

by MR-IVW or at least 7/16 MR-methods (tier 2); grey, insignificant. Thickness of the 

yellow border is roughly proportional to the negative log of the MR-IVW p-value. Green 

border indicates clusters with -log(MR-IVW p-value) > 3. C) Forest plots from PPI-based 

MR showing estimates (beta ± standard error) calculated by MR-IVW for select positive 

and negative clusters. D) PPI-based S-LDSC (coefficient ± standard error) using GWAS 

summary statistics for SLE, CVD and CAD. Bar color indicates coefficient significance. 

Figure 5. Comprehensive PPI-based MR predicts sets of SLE associated variants 

and pathways causal of CAD. A) S-LDSC using GWAS summary statistics for SLE, 

CVD and CAD to estimate the heritability (coefficient ± standard error) of the 3,272 genes 

(open bars) and 1,972 protein-coding genes (hashed bars) predicted by 1,708 combined 

Immunochip and Phenoscanner-derived SNPs. Bar color indicates coefficient 

significance. (B) Functional and cell-type enrichments for cluster metastructures were 

determined using BIG-C (black labels) and I-scope (red labels), respectively. Bold black 

labels over colored shadings represent shared BIG-C functional annotations for the 

clusters they surround. Node size is proportional to the number of SNPs (height) mapping 

to the genes in each cluster (width). For node color, red and blue indicate significant 
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positive or negative estimates, respectively for 14/16 MR methods used (tier 1); light red 

and light blue, significant positive or negative estimates by MR-IVW or at least 7/16 MR-

methods (tier 2); purple, mixed estimates; grey, insignificant. Thickness of the yellow 

border is roughly proportional to the negative log of the MR-IVW p-value. Green border 

indicates clusters with a negative log of the MR-IVW p-value > 3. C-D) Forest plots from 

PPI-based MR showing estimates (beta ± standard error) calculated by 16 MR methods 

for select (C) positive and (D) negative clusters. The number of SNPs used as IVs for 

each cluster are indicated in the plots. E) PPI-based S-LDSC (coefficient ± standard error) 

using GWAS summary statistics for SLE, CVD and CAD. Bar color indicates coefficient 

significance. 

Figure 6. PPI-based MR identifies SLE SNPs with positive and negative causal 

effects on CAD. A) Workflow depicting PPI-based MR. B-C) PPI-based MR validation. 

Forest plots (beta ± standard error) from 16 MR methods using summary statistics from 

the SLE GWAS (B) or SLE Immunochip (C) as the exposure and CAD GWAS as the 

outcome. SLE-associated non-HLA SNPs mapping to positive and negative clusters, 

separately (by tier) and together (“All SNPs”) were used as IVs after excluding CVD and 

confounder-associated SNPs followed by stringent LD-clumping (R2=0.001) and 

harmonization. The number of SNPs used as IVs for each SNP set are indicated in the 

plots. For results, grey indicates insignificant (p > 0.05); dark red, positive (p < 0.00075); 

red, positive (p <0.05); dark blue, negative (p < 0.00075); blue, negative (p <0.05) by each 

MR method. 
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Figure 7. Genes and molecular pathways associated with positive causal clusters 

identify therapeutic interventions for managing CAD in SLE. A) All tier 1 and a 

selection of tier 2 clusters were functionally annotated using BIG-C, IPA and the EnrichR 

database. Select drugs acting on direct gene targets or on any of the associated pathways 

(italics) are listed. B) Venn diagram summarizing therapies that might uniquely impact 

SLE or CAD and those that may target pathways common to both diseases.     
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studies are referenced. 

 Original software code and documentation have been deposited on figshare 

(www.figshare.com;  doi.org/10.6084/m9.figshare.21225251) and is publicly 

available as of the date of publication. 

 Any additional information required to reanalyze the data reported in this report is 

available from the Lead Contact upon request. 

Experimental models and subject details 

http://www.figshare.com/
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This study did not use any experimental models or enroll human subjects. 

 

METHOD DETAILS 

Identification of SLE- and CAD-associated SNPs and overlap 

SNPs associated with each disease were obtained from previous GWAS and Immunochip 

studies. For CAD, we used a comprehensive multi-ancestral meta-analysis of GWAS32. 

For SLE, we included results of multiple GWAS and Immunochip studies to account for 

as many ancestries as possible27–31. In total, 7,222 and 16,163 unique SNPs were 

significantly (p<10-6) associated with SLE and CAD, respectively, and were employed in 

these studies. A full list of the SNPs, chromosome locations, positions and sources used 

are detailed in Table S9.  

 

Identification of SNP-predicted genes 

Expression quantitative trait loci (eQTLs) were identified using GTEx56 version 6.8 

(GTEXportal.org) and mapped to their associated eQTL expression genes (E-Genes). To 

find SNPs in enhancers and promoters, and their associated transcription factors and 

downstream target genes (T- Genes), we queried the atlas of Human Active Enhancers 

to interpret Regulatory variants57 (HACER, http://bioinfo.vanderbilt.edu/AE/HACER). To 

find SNPs in exons of protein-coding genes (C-Genes) and include proximal genes (P-

Genes, within 5kb), we queried the human Ensembl genome browser’s variant effect 

predictor58 (VEP, ensembl.org/info/docs/tools/vep, GRCh38.p12).   

 

Network analysis and visualization  
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Protein-protein interaction (PPI) networks of SNP-predicted protein-coding genes were 

generated by STRING59 (https://string-db.org, version 11.0b), and resulting networks 

were imported into Cytoscape60 (version 3.6.1) for visualization and partitioned with 

MCODE via the clusterMaker261 (version 1.2.1) plugin. Metastructures are based on PPI 

networks. For all metastructures, node gradient shading is proportional to intra-cluster 

connectivity, cluster size indicates number of genes per cluster and edge weight indicates 

inter-cluster connections. 

Functional gene set analysis 

Predicted genes were examined using Biologically Informed Gene Clustering (BIG-C; 

version 4.4.). BIG-C is a custom functional clustering tool developed to annotate the 

biological meaning of large lists of genes and has been previously described62–64. I-Scope 

is a custom clustering tool used to identify immune cell types in large gene datasets65. 

The Ingenuity Pathway Analysis (IPA; https://www.qiagenbioinformatics.com) platform 

and EnrichR66 (https://maayanlab.cloud/Enrichr/) web server provided additional 

molecular pathway enrichment analysis. 

Drug candidate identification 

Drug candidates were identified using LINCS84, STITCH85 (v5.0), IPA and literature 

mining. Each of the database tools includes either a programmatic method of matching 

existing therapeutics to their targets or else is a list of drugs and targets for achieving the 

same end. 
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QUANTIFICATION AND STATISTICAL ANAYSIS 

Linkage Disequilibrium Score Regression (LDSC) Genetic Correlations 

LDSC87 was used to estimate genome-wide genetic correlations between traits using 

GWAS summary statistics. Pre-processed summary statistics from SLE, CAD and CVD 

GWAS were obtained from the Broad webpage 

(https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). Using the LDSC 

software provided on github (https:// github.com/bulik/ldsc) and reference data on the 

Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), including European 

LD scores 'eur_w_ld_chr' or 'weights_hm3_no_hla' as weights for analyses excluding the 

HLA region. Using standard parameters, the "ldsc.py" (with the "--rg" flag) script was used 

to generate genome-wide genetic correlation estimates between SLE and CVD or CAD. 

Stratified Linkage Disequilibrium Score Regression (S-LDSC)

S-LDSC33 was used to obtain gene-set specific disease-heritability estimates using

GWAS summary statistics. Pre-processed summary statistics from SLE, CAD and CVD 

GWAS were obtained from Broad webpage 

(https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). Using the S-LDSC 

software provided on github (https:// github.com/bulik/ldsc) and reference data on the 

Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), annotation and LD 

score files were generated for each SNP-predicted gene- and protein- set, separately. 

Using standard parameters, the “make_annot.py” and “ldsc.py” (with the “--l2” flag) 

scripts were first used to generate the gene-set-specific annotation and LD files, then 
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the “ldsc.py” (with the “‐ ‐ h2-cts” flag) script was used to generate stratified heritability 

scores for each GWAS. 

Selection of valid, independent instrumental variables for traditional MR analysis

Traditional MR methods, such as MR-IVW, operate under three strict assumptions for 

instrumental variable (IV) validity: 1) the relevance assumption, 2) the exclusion 

restriction criteria assumption, and 3) the independence assumption. To satisfy the 

relevance assumption, SNPs significantly (genome-wide significance p-value < 5x10-8) 

associated with SLE27,28,74–81,29,67–73 were obtained from the Phenoscanner database 

(www.phenoscanner.medschl.cam.ac.uk)(82,83) (Table S9). To satisfy the exclusion 

restriction criteria and independence assumptions, 89,336 SNPs weakly associated (p-

value < 1x10-5) with CVD and confounders including cholesterol, obesity, blood 

pressure, insulin resistance, smoking, age-related diseases, and many more, were 

excluded from being IVs for SLE-exposure (see Table S2 for the full list of excluded 

traits). HLA-region SNPs were conservatively removed from MR analyses by excluding 

the short-arm of chromosome 6. Stringent LD clumping37 was employed using the 

clump data (R2=0.001, 100kb window, 1000G EA reference population) function to 

generate an independent set of 60 SLE-IVs harmonized for each GWAS.  

Mendelian Randomization (MR) 

MR was used to test for causal relationships between SLE and CAD using the MR-Base45 

(https://www.mrbase.org) TwoSampleMR45 package in R 

(https://github.com/MRCIEU/TwoSampleMR). Various sets of SLE-associated genetic 
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variants used as instrumental variables (IVs) and summary statistics for SLE-exposure 

were manually imported into R and summary statistics were carried out for MR-base 

compatibility using the ‘format data’ command. All effect sizes and standard errors were 

obtained from the exposure summary statistics used in each analysis, regardless of the 

study in which each IV was associated with the exposure. Given the availability of well-

powered CAD/MI GWAS on MR-Base, IVs for CAD and MI were directly obtained from 

each exposure GWAS using the ‘extract instruments’ command for the bidirectional 

analyses. Data from the SLE and all CVD-related GWAS studies used in our MR analyses 

are publicly available and also accessible through the MR-Base software, which was used 

to obtain the outcome summary statistics via the ‘extract outcome data’ command. The 

‘allele harmonization’ command was used to ensure the effect estimates of the exposure 

and outcome are based on matching alleles, excluding SNPs with completely 

mismatching alleles from the MR analysis or reversing the effect and non-effect alleles 

along with the effect estimates when applicable. Because of the allele harmonization step 

and because some SNPs are absent from the available summary statistics, a small 

proportion of SNPs used as IVs are absent from the final MR calculations. Up to sixteen 

individual MR methods were carried out through the TwoSampleMR package, including 

inverse variance weighted (IVW), simple mode, weighted mode, simple median, weighted 

median (WMedian), MR-Egger, MR-PRESSO (raw and outlier-corrected), MR-RAPS, 

and two sample maximum likelihood (ML). The ‘MR report’ function was used to generate 

a summary containing heterogeneity and directional pleiotropy tests and scatterplots 

(Figure S2). MR-IVW and MR-Egger heterogeneity test results (Q-value) indicate whether 

significant heterogeneity was detected, which does not necessarily indicate biased causal 



33 

estimates. MR-Egger intercept indicate whether significant directional horizontal 

pleiotropy was detected, which usually indicates biased causal estimates. For single-SNP 

MR, the ‘MR single-SNP’ function was also carried out using the Wald Ratio method. Full 

details of all MR results are included in Table S2 and a summary of all the main findings 

are included in Table S10. 

PPI-based MR 

SLE-associated variants from the Immunochip31 and Phenoscanner database82,83 were 

linked to their most likely genes, and the genes used to generate PPI-informed gene 

clusters. The SLE-associated SNPs mapping to genes in each of PPI-based clusters were 

then extracted to “reverse engineer” subsets of SNPs that could be used separately as 

SLE-IVs for MR to independently estimate the causal effects of each PPI-informed SNP-

to-Gene module on CAD. Up to sixteen MR methods were carried out for each SNP-to-

gene module through the TwoSampleMR package.  

In additional analyses (related to Figure 6) using the combined Immunochip and 

Phenoscanner SNP dataset, filtering eliminated SNPs weakly associated (p-value < 1x10-

5) with CVD and confounders including cholesterol, obesity, blood pressure, insulin

resistance, smoking, age-related diseases, and many more (Table S2). HLA-region SNPs 

were conservatively removed from MR analyses by excluding the short-arm of 

chromosome 6. Stringent LD clumping37 was employed using the clump_data (R2=0.001, 

100kb window, 1000G EA reference population) function to generate an independent set 

of SLE-IVs. Various analyses were performed using independent, valid IVs derived from 

‘All SNPs’, SNPs mapping to ‘Insignificant’ clusters, ‘Positive Tier 1’ clusters, ‘Positive 
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Tier 1 and Tier 2’ clusters, ‘Positive MR-IVW p-value<0.00075’ clusters, ‘Negative MR-

IVW p-value<0.00075’ clusters, ‘Negative Tier 1’ clusters, and ‘Negative Tier 1 and Tier 

2’ clusters. 

 

Monte Carlo Simulations for expected MR results using random sets of 

Immunochip-derived SNP-to-Gene modules 

Monte Carlo Simulations were implemented and performed to estimate the false 

discovery rate with respect to significant PPI-based MR causal estimates. 120,026 

Immunochip SNPs included in the SLE summary statistics were mapped to putative 

genes using the VEP, including regulatory effects, to generate an Immunochip SNP-to-

Gene library with 67,211 unique SNPs mapping to 7,602 STRINGdb proteins. In each 

simulation, a random set of 3 to 152 SNP-predicted proteins were selected from the 7,602 

proteins and used to extract up to 400 Immunochip SNPs. MR-IVW was then performed 

for SLE on CAD using harmonized, non-HLA SNPs (via removal of the entire short-arm 

of chromosome 6) from the simulated set of Immunochip SNPs as IVs. By using our 

Immunochip derived SNP-to-Gene dictionary for random selection of protein clusters and 

associated SNPs to generate random sets of IVs, our simulations account for both a high 

degree of LD and pleiotropy, especially considering the major influence of loci associated 

with diabetes in development of the Immunochip. 

Supplemental Table Legends 

Table S1. Canonical pathway and disease phenotype enrichments for network 

analysis of SNP-predicted genes overlapping SLE and CAD. Related to Figure 1 and 
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S1. Gene set enrichments for each cluster were determined using IPA and the EnrichR 

library database. P-values from Fisher’s exact test measures the significance of overlap 

between genes in each cluster and genes within an annotation.  

Table S2. List of all included SLE and excluded CVD/confounder-associated traits 

from the Phenoscanner database for use as SLE-IVs in MR analyses. Related to 

Figure 2. 

 

Table S3. Full MR results. Related to Figures 2, 3, 4, 5, and 6. 

 

Table S4. Pathway analysis of SLE IVs determined to be causal of CAD by 

traditional MR. Related to Figure 2. Gene set enrichments for each cluster were 

determined using IPA and the EnrichR library database. P-values from Fisher’s exact test 

measures the significance of overlap between genes in each cluster and genes within an 

annotation. 

 

Table S5. Canonical pathway and disease phenotype enrichments for network 

analysis of positive and negative causal SNP-predicted genes determined by 

single-SNP MR. Related to Figure 3. P-values from Fisher’s exact test that measures the 

significance of overlap between genes in each cluster and genes within an annotation 

 

Table S6. PPI-based S-LDSC results for the 46 and 67 PPI-based of genes clusters 

derived from SLE-associated SNPs. Related to Figure 4. 
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Table S7. Validation of PPI-based MR-IVW results for 46 and 67 SLE-derived 

clusters on CAD. Related to Figures 4, 5, 6 and S6. MR-IVW results for SLE on CVD-

related summary statistics available on the MR-base platform, including two CAD GWAS, 

two MI GWAS, Ischemic Stroke, Cardiomyopathy, and Atrial Fibrillation.  

 

Table S8. Pathway analysis of positive and negative-casual Tier 1 and Tier 2 SLE-

derived SNP-predicted protein clusters with significant (p-value<0.05) causal 

estimates on CAD by PPI-based MR for the comprehensive 67-cluster network. 

Related to Figure 5. 

 

Table S9. Lists of SNPs, chromosome locations, p-values and sources (where 

available). Related to Figures 1, S1, 2, 3, 4 and 5. 

 

Table S10. Summary of major findings. Related to STAR Methods. 

 

   

 

 

 

 

 

 

 



 37 

REFERNCES 

1.  Yen EY, Singh RR. (2018). Brief Report: Lupus—An Unrecognized Leading 

Cause of Death in Young Females: A Population-Based Study Using Nationwide 

Death Certificates, 2000–2015. Arthritis Rheumatol. 70(8):1251–5.  

2.  Liu Y, Kaplan MJ. (2018). Cardiovascular disease in systemic lupus 

erythematosus: An update. Curr Opin Rheumatol. 30(5):441–8.  

3.  Gupta S, Kaplan MJ. (2021). Bite of the wolf: innate immune responses propagate 

autoimmunity in lupus. J. Clin. Inves. 131(3): e144918.  

4.  Thomas G, Mancini J, Jourde-Chiche N, Sarlon G, Amoura Z, Harlé JR, Jougla E, 

Chiche, L. (2014). Mortality associated with systemic lupus erythematosus in 

France assessed by multiple-cause-of-death analysis. Arthritis Rheumatol. 

66(9):2503–11.  

5.  Teixeira V, Tam LS. (2018). Novel Insights in Systemic Lupus Erythematosus and 

Atherosclerosis. Front. Med. 4:262. 

6.  Moe SR, Haukeland H, Molberg Ø, Lerang K. (2021). Long-term outcome in 

systemic lupus erythematosus; knowledge from population-based cohorts. J. Clin. 

Med. 10(19):4306. doi: 10.3390/jcm10194306. 

7.  Katz G, Smilowitz NR, Blazer A, Clancy R, Buyon JP, Berger JS. (2019). 

Systemic Lupus Erythematosus Is Associated With Increased Prevalence of 

Atherosclerotic Cardiovascular Disease in Hospitalized Patients. Mayo. Clin. Proc. 

94(8):1436.  

8.  Lopez EO, Ballard BD, Jan A. (2021). Cardiovascular Disease. (2021).  In 

StatPearls [Internet], editorial board. (StatPearls Publishing). PMID: 30571040; 



 38 

Bookshelf ID: NBK535419. 

9.  Petri M, Perez-Gutthann S, Spence D, Hochberg MC. (1992). Risk factors for 

coronary artery disease in patients with systemic lupus erythematosus. Am. J. 

Med. 93(5):513–9.  

10.  Moghaddam B, Marozoff S, Li L, Sayre EC, Zubieta JAA. (2022). All-cause and 

cause-specific mortality in systemic lupus erythematosus: a population-based 

study. Rheumatology. 61(1):367. 

11.  Bernatsky S, Boivin JF, Joseph L, Manzi S, Ginzler E, Gladman DD, Urowitz M, 

Fortin PR, Petri M, Barr S, et al. (2006). Mortality in systemic lupus 

erythematosus. Arthritis. Rheum. 54(8):2550–7.  

12.  Wu GC, Liu HR, Leng RX, Li XP, Li XM, Pan HF, Ye D-Q. (2016). Subclinical 

atherosclerosis in patients with systemic lupus erythematosus: A systemic review 

and meta-analysis. Autoimmun. Rev. 15(1):22–37.  

13.  Yazdany J, Pooley N, Langham J, Nicholson L, Langham S, Embleton N, Wang 

X, Desta B, Barut V, Hammond E. (2020). Original research: Systemic lupus 

erythematosus; stroke and myocardial infarction risk: a systematic review and 

meta-analysis. RMD Open. 6(2): e001247. 

14.  Magder LS, Petri M. (2012). Incidence of and Risk Factors for Adverse 

Cardiovascular Events Among Patients With Systemic Lupus Erythematosus. Am. 

J. Epidemiol. 176(8):708.  

15.  Petri MA, Barr E, Magder LS. (2019). Development of a systemic lupus 

erythematosus cardiovascular risk equation. Lupus Sci. Med. 6(1): e000346. 

16.  Levinson DJ, Abugroun A, Daoud H, Abdel-Rahman M. (2020). Coronary artery 



 39 

disease (CAD) risk factor analysis in an age-stratified hospital population with 

systemic lupus erythematosus (SLE). Int. J. Cardiol. Hypertens. 7: 100056. 

17.  Ajeganova S, Hafström I, Frostegård J. (2021). Patients with SLE have higher risk 

of cardiovascular events and mortality in comparison with controls with the same 

levels of traditional risk factors and intima-media measures, which is related to 

accumulated disease damage and antiphospholipid syndrome: a case–control 

study over 10 years. Lupus Sci. Med. [Internet]. 8(1): e000454. 

18.  Bakshi J, Segura BT, Wincup C, Rahman A. Unmet Needs in the Pathogenesis 

and Treatment of Systemic Lupus Erythematosus. Clin. Rev. Allergy Immunol. 

55(3):352–67.  

19.  Calvo-Alén J, Alarcón GS, Campbell R, Fernández M, Reveille JD, Cooper GS. 

(2005). Lack of recording of systemic lupus erythematosus in the death 

certificates of lupus patients. Rheumatology. 44(9):1186–9.  

20.  Falasinnu T, Rossides M, Chaichian Y, Simard JF. (2018). Do Death Certificates 

Underestimate the Burden of Rare Diseases? The Example of Systemic Lupus 

Erythematosus Mortality, Sweden, 2001-2013. Public Health Rep. 133(4):481–8.  

21.  Ashley EA, Hershberger RE, Caleshu C, Ellinor PT, Garcia JGN, Herrington DM, 

Ho CY, Jhonson JA, Kittner SJ, Macrae CA, et al. (2012). Genetics and 

cardiovascular disease: a policy statement from the American Heart Association. 

Circulation. 126(1):142–57.  

22.  Leonard D, Svenungsson E, Dahlqvist J, Alexsson A, Ärlestig L, Taylor KE, 

Sandlin JK, Bengtsson C, Frolund M, Jonsen A, et al. Novel gene variants 

associated with cardiovascular disease in systemic lupus erythematosus and 



40 

rheumatoid arthritis. Ann. Rheum. Dis. 77(7):1063–9. 

23. Ramirez GA. (2018). Genetics in systemic lupus erythematosus: entering the

borough of cardiovascular risk. Ann. Transl. Med. 6(Suppl 1):S14.

24. Svenungsson E, Gustafsson J, Leonard D, Sandling J, Gunnarsson I, Nordmark

G, Jonsen A, Bengtsson AA, Sturfelt G, Rantapaa-Dahlqvist A, et al. (2010). A

STAT4 risk allele is associated with ischaemic cerebrovascular events and anti-

phospholipid antibodies in systemic lupus erythematosus. Ann. Rheum. Dis.

69(5):834–40.

25. Leonard D, Svenungsson E, Sandling JK, Berggren O, Jönsen A, Bengtsson C,

Wang C, Jensen-Urstad K, Granstam S-O, Bengtsston  AA, et al. (2013).

Coronary heart disease in systemic lupus erythematosus is associated with

interferon regulatory factor-8 gene variants. Circ. Cardiovasc. Genet. 6(3):255–63.

26. Owen KA, Price A, Ainsworth H, Aidukaitis BN, Bachali P, Catalina MD, Dittman

JM, Howard TD, Kingsmore KM, Labonte AC, et al. (2021). Analysis of Trans-

Ancestral SLE Risk Loci Identifies Unique Biologic Networks and Drug Targets in

African and European Ancestries. Am J Hum Genet. 107(5):864–81.

27. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P,

Behrens TW, Martin J, Fairfax BP, Knight JC, Chen L, Replogle J, et al. (2015).

Genetic association analyses implicate aberrant regulation of innate and adaptive

immunity genes in the pathogenesis of systemic lupus erythematosus. Nat.

Genet. 47(12):1457-64.

28. Lessard CJ, Sajuthi S, Zhao J, Kim K, Ice JA, Li H, Ainsworth H, Rasmussen A,

Kelly JA, Marion M, et al. (2016). Identification of a Systemic Lupus



 41 

Erythematosus Risk Locus Spanning ATG16L2, FCHSD2, and P2RY2 in 

Koreans. Arthritis Rheumatol. 68(5):1197–209.  

29.  Morris DL, Sheng Y, Zhang Y, Wang Y-F, Zhu Z, Tombleson P, Chen L, 

Cunninghame Graham DS, Bentham J, Roberts AL, et al. (2016). Genome-wide 

association meta-analysis in Chinese and European individuals identifies ten new 

loci associated with systemic lupus erythematosus. Nat. Genet . 48(8):940–6.  

30.  Sun C, Molineros JE, Looger LL, Zhou X-J, Kim K, Okada Y, Ma J, Qi Y-Y, 

Howard XK, Motghare P, et al. (2016). High-density genotyping of immune-related 

loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 

48(3):323–30.  

31.  Langefeld CD, Ainsworth HC, Graham DSC, Kelly JA, Comeau ME, Marion MC, 

Howard TD, Ramos PS, Croker JA, Morris DL, et al. (2017). Transancestral 

mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 

8.:16021.  

32.  Van Der Harst P, Verweij N. (2018). Identification of 64 novel genetic loci provides 

an expanded view on the genetic architecture of coronary artery disease. Circ. 

Res. 122(3):433–43.  

33.  Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, 

Xu H, Zanh C, Farh K, et al. (2015). Partitioning heritability by functional 

annotation using genome-wide association summary statistics. Nat. Genet. 

47(11):1228–35. . 

34.  Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, 

Surendran P, Liu C, Cook JP, et al. (2017). Genome-wide association analysis 



 42 

identifies novel blood pressure loci and offers biological insights into 

cardiovascular risk. Nat. Genet. 49(3):403–15.  

35.  Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, 

Stewart AFR, Barbalic M, Gieger C, et al. (2011). Large-scale association 

analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. 

Genet. 43(4):333–40.  

36.  Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, Waite LL, Freitag 

DF, Fauman EB, Salfati EL, et al. (2017). Fifteen new risk loci for coronary artery 

disease highlight arterial-wall-specific mechanisms. Nat. Genet. 49(7):1113–9.  

37.  Marees AT, de Kluiver H, Stringer S, Vorspan F, Curis E, Marie-Claire C, Derks 

EM. (2018).  A tutorial on conducting genome‐wide association studies: Quality 

control and statistical analysis. Int. J. Methods Psychiatr. Res. 27(2): e1608. 

38.  Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, Saleheen D, 

Kyriakou T, Nelson CP, Hopewell JC, et al. (2015). A comprehensive 1000 

Genomes-based genome-wide association meta-analysis of coronary artery 

disease. Nat. Genet. 47(10):1121-30. 

39.  Hartiala JA, Han Y, Jia Q, Hilser JR, Huang P, Gukasyan J, Schwartzman WS, 

Cai Z, Biswas S, Tregouet D-A, et al. (2021). Genome-wide analysis identifies 

novel susceptibility loci for myocardial infarction. Eur. Heart J. 42(9):919–33.  

40.  Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-

Jacobs L, Giese A-K, van der Laan SW, Gretarsdottir S,  et al. (2018). 

Multiancestry genome-wide association study of 520,000 subjects identifies 32 

loci associated with stroke and stroke subtypes. Nat. Genet. 50(4):524-537. 



 43 

41.  Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, 

Herron TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, et al. (2018). Biobank-

driven genomic discovery yields new insight into atrial fibrillation biology. Nat. 

Genet. 50(9):1234–9. 

42.  Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K, Arana C, Liang C, 

Zhang B, Dozmorov I, et al. (2016).  Regulatory polymorphisms modulate the 

expression of HLA class II molecules and promote autoimmunity. Elife. 5: e12089. 

43.  Davies RW, Wells GA, Stewart AFR, Erdmann J, Shah SH, Ferguson JF, Hall AS, 

Anand SS, Burnett MS, Epstein SE, et al. (2012). A genome-wide association 

study for coronary artery disease identifies a novel susceptibility locus in the 

major histocompatibility complex. Circ. Cardiovasc. Genet. 5(2):217–25.  

44.  Trowsdale J, Knight JC. (2013). Major histocompatibility complex genomics and 

human disease. Annu. Rev. Genomics Hum. Genet. 14:301–23. 

45.  Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, 

Burgess S, Bowden J, Langdon R, et al. (2018). The MR-Base platform supports 

systematic causal inference across the human phenome. Elife. 7: e34408. 

46.  Piranavan P, Perl A. (2020). Management of cardiovascular disease in patients 

with systemic lupus erythematosus. Expert. Opin. Pharmacother. 21(13):1617.  

47.  Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. (2017). Mendelian 

randomization with fine-mapped genetic data: Choosing from large numbers of 

correlated instrumental variables. Genet. Epidemiol. 41(8):714–25.  

48.  Reiss AB, Anwar K, Merrill JT, Chan ESL, Awadallah NW, Cronstein BN, Belmont 

HM, Belilos E, Rosenblum G, Belostocki K, et al. (2010). Plasma from systemic 



44 

lupus patients compromises cholesterol homeostasis: a potential mechanism 

linking autoimmunity to atherosclerotic cardiovascular disease. Rheumatol. Int. 

30(5):591–8.  

49. Quinn CM, Jessup W, Wong J, Kritharides L, Brown AJ. (2005). Expression and

regulation of sterol 27-hydroxylase (CYP27A1) in human macrophages: a role for

RXR and PPARgamma ligands. Biochem. J. 385(Pt 3):823–30.

50. Bilotta MT, Petillo S, Santoni A, Cippitelli M. (2020). Liver X Receptors:

Regulators of Cholesterol Metabolism, Inflammation, Autoimmunity, and Cancer.

Front. Immunol. 11:584303.

51. Liu A, Rahman M, Hafström I, Ajeganova S, Frostegård J. (2020). Proprotein

convertase subtilisin kexin 9 is associated with disease activity and is implicated

in immune activation in systemic lupus erythematosus. Lupus. 29(8):825–35.

52. Yao Mattisson I, Rattik S, Björkbacka H, Ljungcrantz I, Terrinoni M, Lebens M,

Holmgren J, Fredrikson GN, Gullstrand B, Bengtsson AA, et al. (2021). Immune

responses against oxidized LDL as possible targets for prevention of

atherosclerosis in systemic lupus erythematosus. Vascul. Pharmacol.

140:106863.

53. Barnado A, Carroll RJ, Casey C, Wheless L, Denny JC, Crofford LJ. (2018).

Phenome-wide association study identifies marked increased in burden of

comorbidities in African Americans with systemic lupus erythematosus. Arthritis

Res. Ther. 20(1):69..

54. Esteller M. (2011). Non-coding RNAs in human disease. Nat. Rev. Genet.

12(12):861–74.



 45 

55.  Hrdlickova B, de Almeida RC, Borek Z, Withoff S. (2014). Genetic variation in the 

non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in 

disease. Biochim Biophys Acta. 1842(10):1910–22.  

56.  The GTEx Consortium (2013). The Genotype-Tissue Expression (GTEx) project. 

Nat. Gen. 45(6):580-585. 

57.  Wang J, Dai X, Berry LD, Cogan JD, Liu Q, Shyr Y. (2019). HACER: An atlas of 

human active enhancers to interpret regulatory variants. Nucleic Acids Res. 

47(D1):D106–12.  

58.  McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, 

Cunningham F. (2016). The Ensembl Variant Effect Predictor. Genome Biol. 

17:122. 

59.  Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, 

Legeay M, Fang T, Bork P, et al. (2021). The STRING database in 2021: 

customizable protein-protein networks, and functional characterization of user-

uploaded gene/measurement sets. Nucleic Acids Res. 49(D1):D605–12.  

60.  Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 

Schwikowski B, Ideker T. (2003). Cytoscape: A software Environment for 

integrated models of biomolecular interaction networks. Genome Res. 

13(11):2498–504.  

61.  Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, 

Ferrin TE. (2011). clusterMaker: a multi-algorithm clustering plugin for Cytoscape. 

BMC Bioinformatics. 12:436. 

62.  Labonte AC, Kegerreis B, Geraci NS, Bachali P, Madamanchi S, Robl R, Catalina 



 46 

MD, Lipsky PE, Grammer AC. (2018). Identification of alterations in macrophage 

activation associated with disease activity in systemic lupus erythematosus. PLoS 

One. 13(12): e0208132.  

63.  Catalina MD, Bachali P, Geraci NS, Grammer AC, Lipsky PE. (2019). Gene 

expression analysis delineates the potential roles of multiple interferons in 

systemic lupus erythematosus. Commun. Biol. 2019 Dec;2(1).  

64.  Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. (2019). The 

pathogenesis of systemic lupus erythematosus: Harnessing big data to 

understand the molecular basis of lupus. J. Autoimmun. 110:102359.  

65.  Ren J, Catalina MD, Eden K, Liao X, Read KA, Luo X, McMillan RP, Hulver MW, 

Jarpe M, Bachali P, Grammer AC, et al. (2019). Selective histone deacetylase 6 

inhibition normalizes b cell activation and germinal center formation in a model of 

systemic lupus erythematosus. Front. Immunol. 10:2512.  

66.  Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles G V, Clark NR, Ma'ayan A. 

(2013).Enrichr: interactive and collaborative HTML5 gene list enrichment analysis 

tool. BMC Bioinformatics. 14:128.  

67.  Yang W, Shen N, Ye DQ, Liu Q, Zhang Y, Qian XX, Hirankarn N, Ying D, Pan H-

F, Mok CC, et al. (2010). Genome-wide association study in Asian populations 

identifies variants in ETS1 and WDFY4 associated with systemic lupus 

erythematosus. PLoS Genet. 6(2): e1000841.  

68.  Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, Jacob CO, 

Alarcon-Riquelme ME, Tsao BP, Harley JB, et al. (2011). Differential genetic 

associations for systemic lupus erythematosus based on anti-dsDNA 



 47 

autoantibody production. PLoS Genet. 7(3): e1001323. 

69.  Yang J, Yang W, Hirankarn N, Ye DQ, Zhang Y, Pan HF, Mok CC, Chan TM, 

Wong RWS, Mok MY, et al. (2011). ELF1 is associated with systemic lupus 

erythematosus in Asian populations. Hum. Mol. Genet. 20(3):601–7.  

70.  Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. (2012). Genome-wide pathway 

analysis of genome-wide association studies on systemic lupus erythematosus 

and rheumatoid arthritis. Mol. Biol. Rep. 39(12):10627–35. 

71.  Okada Y, Shimane K, Kochi Y, Tahira T, Suzuki A, Higasa K, Takahashi A, Horita 

T, Atsumi T, Ishii T, et al. (2012). A genome-wide association study identified 

AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. 

PLoS Genet. 8(1): e1002455. 

72.  Yang W, Tang H, Zhang Y, Tang X, Zhang J, Sun L, Yang J, Cui Y, Zhang L, 

Hirankarn N, et al. (2013). Meta-analysis followed by replication identifies loci in or 

near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic 

lupus erythematosus in Asians. Am. J. Hum. Genet. 92(1):41–51.  

73.  Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME, Tsao BP, Criswell LA, 

Kimberly RP, Harley JB, Sivils KL, Vyse TJ, Gaffnet PM, et al. (2014). GWAS 

identifies novel SLE susceptibility genes and explains the association of the HLA 

region. Genes Immun. 15(6):347–54.  

74.  Alarcón-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, 

Sánchez-Rodríguez E, Ainsworth HC, Ortiz-Tello P, Comeau ME, Rasmussen A, 

et al. (2016). Genome-Wide Association Study in an Amerindian Ancestry 

Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role 



48 

of European Admixture. Arthritis Rheumatol. 68(4):932–43. 

75. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT,

Chung SA, Ferreira RC, Pant PVK, et al. (2008). Association of systemic lupus

erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med.

358(9):900–9.

76. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP,

Guiducci C, Parkin M, Gates C, Plenge RM, et al. (2008). Genetic variants near

TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet.

40(9):1059–61.

77. Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser

KL, Tsao BP, Vyse TJ, Langefeld CD, Nath S, et al. (2008). Genome-wide

association scan in women with systemic lupus erythematosus identifies

susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet.

40(2):204–10.

78. Kozyrev S V., Abelson AK, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E,

Gunnarsson I, Svenungsson E, Sturfelt G, Jonsen A, et al. (2008). Functional

variants in the B-cell gene BANK1 are associated with systemic lupus

erythematosus. Nat. Genet. 40(2):211–6.

79. Oishi T, Iida A, Otsubo S, Kamatani Y, Usami M, Takei T, Uchida K, Tsuchiya K,

Saito S, Ohnisi Y, et al. (2008). A functional SNP in the NKX2.5-binding site of

ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus

in Japanese population. J. Hum. Genet. 53(2):151–62.

80. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, Ortmann W, Kosoy



49 

R, Ferreira RC, Nordmark G, et al. (2009). A large-scale replication study 

identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic 

lupus erythematosus. Nat. Genet. 41(11):1228–33.  

81. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, Xu J-H, Cai Z-M, Huang W,

Zhao G-P, et al. (2009). Genome-wide association study in a Chinese Han

population identifies nine new susceptibility loci for systemic lupus erythematosus.

Nat. Genet. 41(11):1234–7.

82. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS,

Freitag D, Burgess S, Danesh J, et al. (2016). PhenoScanner: a database of

human genotype-phenotype associations. Bioinformatics. 32(20):3207–9.

83. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J,

Butterworth AS, Staley JR. (2019). PhenoScanner V2: an expanded tool for

searching human genotype-phenotype associations. Bioinformatics. 35(22):4851–

3.

84. Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E, Torre D, Wang Z,

Dohlman, Silverstein MC, Lachmann A, et al. (2018). The Library of Integrated

Network-Based Cellular Signatures NIH Program: System-Level Cataloging of

Human Cells Response to Perturbations. Cell Syst. 6(1):13–24.

85. Kuhn M, Szklarczyk D, Franceschini A, Campillos M, Von Mering C, Jensen LJ,

Beyer A, Bork P. (2010). STITCH 2: an interaction network database for small

molecules and proteins. Nucleic Acids Res. 38(Database issue):D552-6.

86. Demirci FY, Wang X, Kelly JA, Morris DL, Barmada MM, Feingold E. Kao AH,

Sivils KL, Bernatsky S, Pineau C, et al. (2016). Identification of a new



 50 

susceptibility locus for systemic lupus erythematosus on chromosome 12 in 

individuals of European ancestry. Arthritis Rheumatol. 68(1)174-83. 

87.  Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, ReproGen 

Consortium, Psychiatric Genomic Consortium, Genetic Consortium for Anorexia 

Nervosa of the Wellcome Trust Case Control Consortium, et al. (2015). An atlas 

of genetic correlations across human diseases and traits. Nat. Genet. (47) 1236-

41.    

 

 



 

TABLE FOR AUTHOR TO COMPLETE 

Please upload the completed table as a separate document. Please do not add subheadings to the key resources 
table. If you wish to make an entry that does not fall into one of the subheadings below, please contact your handling 
editor. Any subheadings not relevant to your study can be skipped. (NOTE: For authors publishing in Cell 
Genomics, Cell Reports Medicine, Current Biology, and Med, please note that references within the KRT should be in 
numbered style rather than Harvard.) 

 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data   

GTEX v.6.8 The Genotype-
Tissue 
Expression 
(GTEx) Project 

GTEXportal.org 

Pre-processed summary statistics  The Broad 
Institute 

https://alkesgroup.broadinstitute.org/LD
SCORE/all_sumstats/ 

UK Biobank Biobank UK https://www.ukbiobank.ac.uk/ 

Cardiomyopathy GWAS FinnGen 
Biobank 

Finn-a-I9_CARDMYO; 
https://www.finngen.fi/fi 

MR-Base Hemani et al., 
2018 

https://www.mrbase.org 

Phenoscanner Staley et al., 
2016; Kamat et 
al., 2019 

www.phenoscanner.medschl.cam.ac.u
k 

Software and algorithms   

Bioconductor (R) Open source https://www.bioconductor.org 

Ingenuity pathway analysis (IPA) Qiagen https://www.qiagenbioinformatics.com 

S-LDSC Finucane et al., 
2015 

https:// github.com/bulik/ldsc 

LDSC Bulik-Sullivan 
et al., 2015 

https:// github.com/bulik/ldsc 

Cytoscape v.3.9.1 Shannon et al., 
2003 

https://cytoscape.org 

Clustermaker2 v.1.2.1 Morris et al., 
2011 

https://apps.cytoscape.org 

TwoSample MR Hemani et al., 
2018 

https://github.com/MRCIEU/TwoSampl
eMR 

PPI-based MR This 
manuscript 

http://doi.org/10.6084/m9.figshare.2122
5251 

Other  

Human Active Enhancers to interpret 
Regulatory variants (HACER) 

Wang et al., 
2019 

http://bioinfo.vanderbilt.edu/AE/HACER 

Variant Effect Predictor (VEP) McLaren et al., 
2016 

ensembl.org/info/docs/tools/vep 

Search Tool for the Retrieval of 
Interacting Genes/proteins (STRING) v. 
11.0b  

Szklarczyk et 
al., 2021 

https://string-db.org 

EnrichR Chen et al., 
2013 

https://maayanlab.cloud/Enrichr/ 

Search Tool for Interacting Chemicals 
(STITCH) 

Kuhn et al., 
2009 

http://stitch.embl.de 

Key Resource Table



 

Library of Integrated Network-based 
Cellular Signatures (LINCS) 

Keenan et al., 
2018 

http://www.lincs.hms.harvard.edu/db/ 

 



Figure 1 Click here to access/download;Figure;JulyCAD Figure 1.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458874&guid=bb994d00-8696-40d6-aef0-99c7e3185c84&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458874&guid=bb994d00-8696-40d6-aef0-99c7e3185c84&scheme=1


Figure 2 Click here to access/download;Figure;JulyCAD Figure 2.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458875&guid=9d107f66-1827-48b2-96a1-b70d96574452&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458875&guid=9d107f66-1827-48b2-96a1-b70d96574452&scheme=1


Figure 3 Click here to access/download;Figure;JulyCAD Figure 3.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458876&guid=5505e821-1165-491c-9f0d-77915087541b&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458876&guid=5505e821-1165-491c-9f0d-77915087541b&scheme=1


Figure 4 Click here to access/download;Figure;JulyCAD Figure 4.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458877&guid=04325444-c733-49d6-b116-eed6bb80ad2a&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458877&guid=04325444-c733-49d6-b116-eed6bb80ad2a&scheme=1


Figure 5 Click here to access/download;Figure;JulyCAD Figure 5.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458878&guid=070ffce6-58e7-4de3-8f44-9a86fc04ac72&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458878&guid=070ffce6-58e7-4de3-8f44-9a86fc04ac72&scheme=1


Figure 6 Click here to access/download;Figure;JulyCAD Figure 6.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458888&guid=4dacf84e-6522-4f8e-92b3-363ee5af277d&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458888&guid=4dacf84e-6522-4f8e-92b3-363ee5af277d&scheme=1


Figure 7 Click here to access/download;Figure;JulyCAD Figure 7.tif

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458879&guid=73e84a9f-8d2b-43cb-98a5-5d077dfc7442&scheme=1
https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458879&guid=73e84a9f-8d2b-43cb-98a5-5d077dfc7442&scheme=1


Supplemental Figures and Legends 

 

Figure S1. Analysis of SNP-predicted genes associated with both SLE and CAD. Related to Figures 1 and 2. A) 
Venn diagram of overlap between multi-ancestral SLE- and CAD-associated (p<10-6) SNPs. B) Venn diagram of 
overlap between SNP-predicted genes derived from regulatory elements (T-Genes), eQTL analysis (E-Genes), 
coding regions (C-Genes), and proximity within 5kb (P-Genes). C) Application of S-LDSC using summary statistics 
for SLE, CVD, and CAD GWAS to estimate the heritability of the 189 SNP-predicted genes (top panel) and 135 
SNP-predicted proteins (lower panel) from STRINGdb. Bar color indicates coefficient significance. D) Application 
of LDSC to estimate the genetic correlation between SLE and CAD or CVD. E) PPI network consisting of 135 
putative protein-coding genes. Functional and cell-type enrichments for each cluster were determined using BIG-C 
(black labels) and I-scope (red labels), respectively. Black labels over colored shadings represent shared BIG-C 
functional annotations for the clusters they surround. 

Supplemental Text and Figures





Figure S2. Bidirectional MR summaries between SLE and CAD. Related to Figure 2 and Table S3. Scatter plots 
showing GWAS effect size estimates on the exposure (x-axis) and outcome (y-axis) with each dot representing a 
SNP and lines representing MR-estimates of SLE on CAD, MI and IS (A) and in the reverse direction, with CAD or 
MI as exposure and SLE as the outcome (B). MR-IVW and MR-Egger heterogeneity test results (Q-value) indicate 
whether significant heterogeneity was detected (asterisks, p<0.05), which does not necessarily indicate biased causal 
estimates. MR-Egger intercept indicates whether significant (asterisks, p<0.05) directional horizontal pleiotropy was 
detected, which usually indicates biased causal estimates. N.s., not significant.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



Figure S3. SLE-associated SNPs on chromosome 6 account for the majority of negative causal effects on CAD 
by SSMR. Related to Figure 3. A-B) Forest plots (beta ± standard error) of the top 25 (by absolute value of causal 
estimates) positive (A) and negative (B) causal SNPs identified by SSMR using the Wald-ratio method. C-D) Pie 
charts illustrating the distribution of 119 positive (C) and 234 negative (D) causal SLE SNPs on CAD. E-F) Cluster 
metastructures for the 498 (E) 557 (F) predicted genes from positive and negative causal SNPs identified by single-
SNP MR. Metastructures are based on PPI networks, clustered using MCODE and visualized in Cytoscape. Node 
gradient shading is proportional to intra-cluster connectivity, cluster size indicates number of genes per cluster and 
edge weight indicates inter-cluster connections. Functional and cell-type enrichments for each cluster were 
determined using BIG-C (black labels) and I-scope (red labels), respectively. Bold black labels over colored 
shadings represent shared functional annotations for the clusters they surround. 



Figure S4. MR analyses for positive and negative causal SNPs determined by SSMR. Related to Figure 3 and 
Table S3. A) Forest plots (beta ± standard error) of the 80 positive (A) and 96 negative (B) causal non-HLA SNPs 
identified by SSMR using the Wald ratio method, ordered by absolute value of causal estimates. 



 

Figure S5. Analysis of HLA SNP-predicted genes associated with both SLE and CAD.  Related to Figure 3. A) 
Forest plot showing GWAS effect sizes ± standard error for 30 HLA SNPs significantly (p<10-6) associated with 
both SLE (red) and CAD (blue). B) PPI network consisting of 69 putative protein-coding genes predicted from the 
30 HLA SNPs. Functional and cell-type enrichments for each cluster were determined using BIG-C (black labels) 
and I-scope (red labels), respectively. Black labels over colored shadings represent shared functional annotations for 
the clusters they surround. C) Gene set enrichments for each cluster were determined using IPA and EnrichR. P-
values are from Fisher’s exact test that measures the significance of overlap between analysis-ready genes in each 
cluster and genes within an annotation, with red shading proportional to significance of each enrichment.   

 





Figure S6. Positive and negative causal estimates for PPI-based clusters using MR-IVW. Related to Figures 4 
and 5. (A-B) PPI-based MR-IVW (beta ± standard error) using these the 46 (A) and 67 (B) clusters of SLE SNP-
derived IVs in CAD, MI, IS, cardiomyopathy, and atrial fibrillation GWAS. For results, grey indicates insignificant 
(p > 0.05), dark red and red, positive causal at p < 0.00075 and p < 0.05, respectively; dark blue and blue, negative 
causal p < 0.00075 and p < 0.05, respectively by IVW. 

 
 
 
 
 



 
 
 

Figure S7. Expected vs. observed MR-IVW casual estimates corresponding to random vs. PPI-based SNP-to-
gene modules. Related to Figure 5. A) Schematic illustrating the Monte Carlo Simulations for expected MR results 
using random sets of Immunochip-derived SNP-to-Gene modules.  B-D) Histograms representing the proportion of 
insignificant (p>0.05, gray), positive causal (p<0.05, red), negative causal (p<0.05, blue), positive causal 
(p<0.00075, dark red), and negative causal (p<0.00075, dark blue) results with respect to number of SNPs used as 
IVs for SLE-exposure on CAD corresponding to (B) the 46 SLE-derived clusters and (C) the comprehensive 67 
SLE-derived clusters and (D) over 50,000 random sets of Immunochip-derived SNP-to-Gene modules. 



Figure Analysis Purpose Main findings 

1 

MR-multiple 
methods 

Exploratory analyses using an 
expanded SNP repertoire from multiple 
sources to examine estimated 
associations between SLE and CAD. 

Results suggest a net-positive association 
for SLE on CAD. Provide justification to 
confirm estimated association.   

2 

MR-multiple 
methods, S-LDSC, 
pathway analysis 

Confirmatory analyses using highly 
curated IVs, S-LDSC to determine 
heritability and pathway analysis to 
examine pathways underlying SLE and 
causal of CAD. 

Majority of MR methods show positive 
causal estimate on CAD and MI, 
predicted genes capture SLE heritability 
and pathways reflect immune and CVD 
dysfunction. 

3 

SSMR, S-LDSC, 
pathway analysis 

Orthogonal MR approach to identify 
single SLE SNPs with positive or 
negative estimates on CAD.  

SSMR identifies positive and negative 
causal SNPs that capture significant SLE 
heritability and predict a number of 
underlying causal and protective 
pathways.  

4 

PPI-based MR, S-
LDSC, pathway 
analysis 

Development of PPI-based MR (also 
outlined in the graphical abstract). 

PPI-based MR identifies 46 groups of 
SNPs for use as IVs based on cluster 
membership.  Application of MR-IVW 
identifies clusters with positive and 
negative causal estimates.  

5 

PPI-based MR, S-
LDSC, pathways 
analysis 

PPI-based MR using a larger, 
comprehensive network. 

Identification of 67 SNP sets as IVs. 
Application of MR-IVW identifies clusters 
with positive and negative causal 
estimates. 

6 

MR-IVW PPI-based MR IV validation after 
accounting for pleiotropy and LD.  

Application of LD clumping to cluster-
derived SNPs followed by MR-IVW to 
confirm clusters with positive and 
negative causal estimates. 

7 

Drug matching Identify new therapeutic interventions. Pathways linked to positive causal 
clusters predict novel therapies for 
managing the inflammatory environment 
contributing to CAD in SLE. 

 
Table S10. Summary of major findings. Related to STAR Methods. 

 



Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

CAD Supplementary Data Tables_SEPT26FINAL-2.xlsx

https://www.editorialmanager.com/cr-medicine/download.aspx?id=1458894&guid=b84ae048-5334-49c0-ac3a-a6a294feb6e1&scheme=1


genes
G C A T

T A C G

G C A T

Article

Nucleic Acid-Sensing and Interferon-Inducible Pathways Show
Differential Methylation in MZ Twins Discordant for Lupus
and Overexpression in Independent Lupus Samples:
Implications for Pathogenic Mechanism and Drug Targeting

Miranda C. Marion 1,2 , Paula S. Ramos 3 , Prathyusha Bachali 4, Adam C. Labonte 4, Kip D. Zimmerman 2,
Hannah C. Ainsworth 1,2, Sarah E. Heuer 4,5 , Robert D. Robl 4, Michelle D. Catalina 4, Jennifer A. Kelly 6,
Timothy D. Howard 7, Peter E. Lipsky 4, Amrie C. Grammer 4 and Carl D. Langefeld 1,2,*

����������
�������

Citation: Marion, M.C.; Ramos, P.S.;

Bachali, P.; Labonte, A.C.;

Zimmerman, K.D.; Ainsworth, H.C.;

Heuer, S.E.; Robl, R.D.;

Catalina, M.D.; Kelly, J.A.; et al.

Nucleic Acid-Sensing and

Interferon-Inducible Pathways Show

Differential Methylation in MZ Twins

Discordant for Lupus and

Overexpression in Independent

Lupus Samples: Implications for

Pathogenic Mechanism and Drug

Targeting. Genes 2021, 12, 1898.

https://doi.org/10.3390/

genes12121898

Academic Editors: F. Yesim Demirci

and Timothy B. Niewold

Received: 29 October 2021

Accepted: 25 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of
Medicine, Winston-Salem, NC 27157, USA; mimarion@wakehealth.edu (M.C.M.);
hainswor@wakehealth.edu (H.C.A.)

2 Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
kdzimmer@wakehealth.edu

3 Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina,
Charleston, SC 29425, USA; ramosp@musc.edu

4 AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA;
prathyusha.bachali@ampelbiosolutions.com (P.B.); adam.labonte@ampelbiosolutions.com (A.C.L.);
sarah.heuer@tufts.edu (S.E.H.); robert.robl@ampel.org (R.D.R.); michellecatalina@ampel.org (M.D.C.);
peterlipsky@ampelbiosolutions.com (P.E.L.); amriegrammer@ampelbiosolutions.com (A.C.G.)

5 The Jackson Laboratory, Tufts Graduate School of Biomedical Sciences, Bar Harbor, ME 04609, USA
6 Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation,

Oklahoma City, OK 73104, USA; Jennifer-Kelly@omrf.org
7 Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;

tdhoward@wakehealth.edu
* Correspondence: clangefe@wakehealth.edu

Abstract: Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory
disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic
factors are a significant contributor to SLE risk and may be informative for identifying pathogenic
mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background,
we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole
blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE.
Results were replicated on the same array in four cell types from a set of four Danish female MZ
twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated
in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There
were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood,
including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to
the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression
in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of
disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential
methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in
independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing
pathway and the type I interferon pathway. The DM-DE genes were also informatically queried
for potential gene–drug interactions, yielding a list of 41 drugs including a known SLE therapy.
The DM-DE genes delineate two important biologic pathways that are not only reflective of the
heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source,
type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell-
and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the
nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for
therapeutic intervention.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic and severe systemic autoimmune
disease characterized by the over-production of autoantibodies and heterogeneous clinical
manifestations. With more than 100 risk loci identified, a genetic etiology for SLE is
unequivocal [1–8]. In fact, the cumulative effect of these risk loci is substantial; the odds
ratio (OR) for SLE in individuals of European ancestry is 30 when comparing individuals
with the highest 10% of risk allele genetic load (i.e., polygenetic risk score—the weighted
count of the number of risk alleles) to individuals in the lowest 10% of genetic load [6].
Despite the strong genetic contribution to risk, the concordance rate between monozygotic
(MZ) twins ranges between 24–35%, suggesting that much of the risk remains unexplained
and highlighting the potential importance of epigenetic and environmental factors in SLE
susceptibility [9].

There is compelling evidence that epigenetic mechanisms, such as 5’ Cytosine methy-
lation, are involved in the pathogenesis of SLE. For example, promoter demethylation at
multiple genes in T cells treated with DNA demethylating agents are sufficient to cause
lupus in animal models [10]. In recent years, several studies have investigated DNA methy-
lation in SLE patients on a genome-wide scale. The earliest of these genome-wide studies
interrogated 27,578 CpG sites in 12 SLE patients and 12 healthy controls using the Illumina
Infinium HumanMethylation27 Beadchip, and identified 336 differentially methylated
genes, the majority of which were hypomethylated in the cases relative to the controls [11].
Subsequent studies have examined genome-wide methylation in larger samples of SLE
patients using the HumanMethylation450 Beadchip (>485,000 CpG sites) in a number of cell
types, including naïve CD4+ T cells [12–16], memory and regulatory T cells [17], CD19+ B
cells [17], CD14+ monocytes [14,17], granulocytes [14], neutrophils [18], and whole blood or
peripheral blood mononuclear cells (PBMC) [19–25]. Differential methylation has not only
been observed when comparing SLE patients to healthy controls, but similar patterns have
been identified in SLE patients with nephritis [12,19,22], skin involvement [13], specific
antibodies [20], and pediatric SLE [26]. The primary and consistent finding across all these
studies has been hypomethylation of interferon-regulated genes across various cell types
in cases, regardless of SLE disease activity [27].

The analysis of phenotypically discordant MZ twins represents the ideal design by
which to assess the role of epigenetic variation in disease etiology and trait heritability
while controlling for genetic background [28] and has revealed the existence of differentially
methylated regions associated with several autoimmune diseases, including SLE [29], type
1 diabetes [30], psoriasis [31], and ulcerative colitis [32]. To date, the only previously
published twin methylation study in SLE that exclusively used MZ twins quantified DNA
methylation in white blood cells from 15 discordant MZ twin pairs at 1505 CpG sites
in 807 genes using the Illumina GoldenGate Methylation Cancer Panel I [29]. Here, we
performed a genome-wide analysis of DNA methylation in a discovery cohort of MZ twins
discordant for SLE. The discovery cohort consisted of three twin pairs of European descent,
and methylation was measured in whole blood using Illumina’s HumanMethylation450
Beadchip. The two strongest associated signals were validated using pyrosequencing.
Findings from the discovery cohort were replicated in an independent set of MZ twins
from Denmark. We then evaluated gene expression data from multiple cell types and
kidney biopsies from 10 independent SLE cohorts to identify genes proximal to CpGs
exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting
differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) for pathway
analyses. Together, the methylation, gene expression, and pathway analyses uncovered
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two separable yet complimentary molecular pathways of lupus pathogenesis, shedding
light on potential drug repositioning opportunities and novel therapeutic targets for SLE.

2. Materials and Methods
2.1. Discovery Cohort

Genomic DNA was extracted from peripheral blood of three female MZ twin pairs of
European ancestry discordant for SLE enrolled in the Lupus Family Registry and Repository
(LFRR) [33]. All cases met ACR classification criteria for SLE [34].

2.2. Replication Cohort

An SLE study of 15 twin pairs from Denmark, assayed on the HumanMethylation450
Beadchip, in monocytes, CD4+ T cells, CD19+ B cells, and granulocytes, was published in
2018 by Ulff-Moller et al. [14]. These data were downloaded from the Gene Expression Om-
nibus (GEO, accession no. GSE110607), and all available female MZ twin pairs discordant
for SLE were retained for analysis (4 twin pairs). The publication states that of these four
female MZ twin pairs discordant for SLE, two of the non-SLE twins had other autoimmune
diseases, including Sjogren’s syndrome, systemic sclerosis, autoimmune thyroiditis, and
primary biliary cirrhosis. However, this clinical information was not available in GEO.

2.3. Genome-Wide DNA Methylation Assay and Array Validation in LFRR Twins

Genomic DNA (1µg) from each individual was treated with sodium bisulfite using
the EZ 96-DNA methylation kit (Zymo Research, Irvine, CA, USA), following the man-
ufacturer’s standard protocol. Genome-wide DNA methylation was assessed using the
Illumina Infinium HumanMethylation450 BeadChip (Illumina, Inc., San Diego, CA, USA),
which interrogates over 485,500 CpG sites that cover 99% of RefSeq genes (including the
promoter, 5’UTR, first exon, gene body, and 3’UTR), as well as 96% of CpG islands and
island shores. Arrays were processed using the manufacturer’s standard protocol, with
both members of each twin pair being hybridized to the same row on the microarray to
minimize batch effects. GenomeStudio software (Illumina, Inc.) was used to perform
initial quality control and to calculate the relative methylation level of each interrogated
cytosine, which is reported as a β-value given by the ratio of the normalized signal from
the methylated probe to the sum of the normalized signals of the methylated and unmethy-
lated probes. This β-value for each CpG site ranges from 0 (unmethylated) to 1 (fully
methylated). CpG loci with a stringent detection p-value > 1.0 × 10−5 in any of the samples
were excluded (n = 2118 probes) to control for poor-quality assays. Validation of the array
data in the LFRR twins was performed by pyrosequencing two of the most significant
CpGs probes: cg13304609 (in IFI44L) and cg23570810 (in IFITM1). The correlations between
the methylation proportions from the array and pyrosequencing for these two probes were
r2 = 0.98 and r2 = 0.99, respectively.

2.4. Collection of Gene Expression Experiments from SLE Patient Datasets

Raw data were downloaded from 10 publicly available gene expression datasets (Sup-
plemental Table S1). Only datasets from female lupus patients were analyzed. Active SLE
was defined as a Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) > 6 [35].
This has become the standard threshold for disease activity in recent clinical trials of SLE.

2.5. Data Analysis

To identify differentially methylated genes between unaffected and SLE-affected
twins, a paired t-test on the probe-specific β-values was computed separately for the
discovery and replication twin datasets. For the discovery set, CpG sites meeting (1) the
Benjamini–Hochberg False Discovery Rate (FDR) [36] threshold PFDR < 0.05 (equivalent to
p < 1.06 × 10−7) and (2) a mean DNA methylation difference of (∆β) > |0.085| were con-
sidered statistically significant; the mean methylation difference threshold was obtained by
maximizing the area under the receiver operator characteristic curve (AUC) as a function of
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the β-value (described below). The genes related to the differentially methylated CpG sites
(as annotated by Illumina for the HumanMethylation450) were queried in the Interferome
online database to identify interferon-regulated genes [37]. In addition, significant CpG
sites were investigated for evidence of association between DNA methylation pattern and
gene expression (mQTL) using the iMETHYL genome browser [38]. These results are based
on 100 healthy subjects with RNA-seq data and DNA methylation data in CD4T cells,
monocytes, and PBMC.

Statistical analysis of the expression data was completed using the following R
packages available from Bioconductor: GEOquery, affy, affycoretools, simpleaffy, gcrma,
LIMMA, and GSVA. Non-normalized arrays were first inspected for visual artifacts and
poor RNA hybridization using Affymetrix QC plots. Principal component (PC) plots were
generated for all cell types in each experiment to identify outliers. After removing outliers,
the datasets were normalized using the gcrma package (available in Bioconductor [39],
www.bioconductor.org) resulting in log2 intensity values for the R expression set objects
(denoted E-sets); an E-set combines several information types in a single structured object:
an expression value matrix, phenotypic metadata corresponding to individual samples
(phenoData), annotation data describing each feature (probeset) of a microarray platform
(featureData), as well as other separate metadata matrices describing the experimental
protocol and array platform design. To increase the probability of identifying differen-
tially expressed genes (DE genes), the analyses were completed using normalized datasets
prepared using both the native Affymetrix chip definition file (CDF), as well as custom
BrainArray Entrez CDFs. Illumina CDFs were used for GSE49454.

The CDF-annotated E-sets were filtered to remove probes with very low intensity
values by computing the mean log2 values for each probe across all samples and removing
those in the lower half of the range of mean values from the expression set (E-set). Probes
missing gene annotation data were also discarded. GCRMA normalized expression values
were variance-corrected using local empirical Bayesian shrinkage before calculation of
differential expression using the ebayes function in the Bioconductor limma package [40].
The resulting p-values were adjusted for multiple hypothesis testing using Benjamini–
Hochberg False Discovery Rate (FDR) [36]. Significant Affymetrix and BrainArray probes
within each study were merged and filtered to retain DE probes with a PFDR < 0.2. This
list was filtered to retain only the most significant probe per gene.

To identify DM-DE genes, we used a logistic regression model (expression fold change
as a binary outcome > 0 versus < 0) to determine cell-type specific thresholds for the
difference in the β-value that maximized the area under the ROC curve (AUC) predicting
increased differential expression (Figure 1A, Supplemental Figure S1). These thresholds
were determined by calculating the area under the receiver operating characteristic curve
(AUC) across points at regular intervals between 0 and −0.15 and selecting the values
that maximized the AUC. Primary inferences are based on thresholds, which included a
logFC in expression > 0 and a mean difference in β < −0.085, −0.055, −0.08, and −0.055
in whole blood, monocytes, B cells, and T cells, respectively. Figure 1A displays these
thresholds as vertical bars. For clarity, genes with differential methylation p-values greater
than 0.0001 and a mean DNA methylation difference of (∆β) > |0.025| have been removed
from Figure 1A.

www.bioconductor.org
www.bioconductor.org
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Figure 1. Hypomethylated genes showing differential expression in independent SLE cohorts. (A) 
Specific thresholds for the difference in the β-value (from the discordant twin methylation experi-
ment in whole blood) that maximize the area under the ROC curve predicting increased differential 
expression in the independent SLE whole blood experiments (GSE39088, GSE49454), monocytes 
(GSE38351), B-cells (GSE10325, GSE4588), and T cells (GSE10325, GSE51997) are shown as vertical 
bars. Genes with differential methylation p-values greater than 0.0001 and a mean DNA methylation 
difference of (Δβ) > |0.025| have been removed from the plots. (B) Heatmap of 43 genes hypometh-
ylated in the discordant twin data (𝛥β < −0.085) and differentially expressed between controls and 

Figure 1. Hypomethylated genes showing differential expression in independent SLE cohorts.
(A) Specific thresholds for the difference in the β-value (from the discordant twin methylation
experiment in whole blood) that maximize the area under the ROC curve predicting increased
differential expression in the independent SLE whole blood experiments (GSE39088, GSE49454),
monocytes (GSE38351), B-cells (GSE10325, GSE4588), and T cells (GSE10325, GSE51997) are shown
as vertical bars. Genes with differential methylation p-values greater than 0.0001 and a mean DNA
methylation difference of (∆β) > |0.025| have been removed from the plots. (B) Heatmap of 43 genes
hypomethylated in the discordant twin data (∆β < −0.085) and differentially expressed between
controls and active (SLEDAI ≥ 6) or inactive (SLEDAI < 6) lupus patients from two whole blood
experiments, monocytes, B cells, and T cells. Hierarchical clustering was performed across rows with
Euclidean distance metric and complete linkage. Blue/red gradient represents the log fold change
values in lupus patients compared to controls.
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The DM-DE genes were analyzed in a pathway analysis using the MCODE [41]
clustering algorithm and STRING networking scores [42].

Protein–drug interaction networks were generated for each DM-DE gene individually
via STITCH [43], Ingenuity Pathway Analysis (IPA) (Qiagen Bioinformatics: ingenuity.com),
and the Drug–Gene Interaction database [44]. Drugs were denoted as (1) known utility
in lupus therapy, (2) FDA-approved compound, (3) currently involved in a clinical trial
(not necessarily SLE), and (4) generally regarded as safe (GRAS) compounds. Using a
hypothesis-driven ranking of the therapeutic potential for SLE applications of specific
drugs or compounds, the combined lupus treatment scoring (CoLTS) scores (range −16 to
+11) were calculated [45].

3. Results
3.1. Characteristics of the MZ Twins

The LFRR MZ twins were all females of European ancestry, and the SLE-diagnosed
twins exhibited a range of SLE clinical conditions (Supplemental Table S2). The Danish
MZ twins were also all females of European ancestry. Clinical characteristics such as
number of ACR criteria, SLEDAI score, autoantibodies, and medications are described in
Ulff-Moller et. al., but were not available in GEO [14].

3.2. Identification of Differentially Methylated Regions in Twins Discordant for SLE

Of the 485,577 CpG sites passing quality control metrics, 59 sites in 33 genes met both a
PFDR < 0.05 (equivalent to a non-FDR p < 1.06 × 10−7) and a mean DNA methylation differ-
ence of (∆β) > |0.085| (Table 1). Only two of these significant CpG sites showed increased
methylation in the affected twins (hypermethylation), while the remaining 57 exhibited
lower methylation (hypomethylation). Of the 33 genes represented in Table 1, 22 are
regulated at some level by type I interferons (as defined by Interferome [37]). Eleven
genes are novel to our study and have not been previously reported as SLE-related in
a genome-wide methylation study, five of which are unrelated to the typical interferon
signature (LY6G5C, CXCR1, ATOH8, CACNA1D, MECOM). Lymphocyte antigen 6 complex,
locus G5C (LY6G5C), is located within the major histocompatibility complex class III region
and codes for a protein associated with the cell membrane by a glycosylphosphatidylinosi-
tol linkage and involved in signal transduction [46]. Chemokine (C-X-C motif) receptor
1 (CXCR1) encodes for a protein that is a receptor for interleukin 8. Genetic and expression
variation in CXCR1 have been correlated with infections (e.g., active tuberculosis, hepatitis
B, Candida albicans) and modestly with SLE [6,47–50]. Atonal bHLH transcription factor
8 (ATOH8), calcium voltage-gated channel subunit alpha1 D (CACNA1D), and MDS1, and
EVI1 complex locus (MECOM) do not have known links to autoimmune disease or infec-
tions. Given the gender bias in SLE, it is interesting to note that none of the differentially
methylated probes meeting our significance criteria were located on the X chromosome.

We next examined the 59 differentially methylated CpGs from the discovery cohort
(Table 1) in the Danish twin replication cohort. Even with the probable dampening effect
generated by two of the Danish non-SLE twins having other autoimmune diseases, we
observed very high concordance in the direction of the ∆β values. Specifically, 55 (93%),
54 (92%), 52 (88%), and 54 (92%) of the 59 differentially methylated CpG sites in the
LFRR twins were concordant in the Danish twins’ monocytes, CD4+ T cells, CD19+ B
cells, and granulocytes, respectively. Furthermore, 35, 26, 32, and 33 of the 59 CpG sites
were statistically significant (p-value < 0.05) and directionally concordant in the monocyte,
CD4+ T cell, CD19+ B cell, and granulocyte expression datasets, respectively; only one
of these was statistically significant in the opposite direction (p-value < 0.05; Additional
File 1). Thus, the Danish twin data strongly corroborated the global pattern of methylation
observed in the LFRR twin data.
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Table 1. Differentially methylated probes from three monozygotic twin pairs discordant for SLE.

CpG * Chr Pos (bp) † Gene
∆β

p-Value Interferon-
Regulated ‡

Relation to
CpG ††Pair1 Pair2 Pair3 Mean

cg13304609 1 79085162 IFI44L −0.24 −0.27 −0.37 −0.29 1.58 × 10−14 IRG
cg06872964 1 79085250 IFI44L −0.26 −0.21 −0.24 1.05 × 10−71 IRG
cg03607951 1 79085586 IFI44L −0.27 −0.3 −0.21 −0.26 7.23 × 10−22 IRG
cg17515347 1 159047163 AIM2 −0.09 −0.11 −0.07 −0.09 3.01 × 10−12 IRG
cg08272268 1 200380059 ZNF281 −0.08 −0.07 −0.11 −0.09 4.33 × 10−15 S_Shore
cg01028142 2 7004578 CMPK2 −0.22 −0.36 −0.43 −0.33 7.98 × 10−8 IRG N_Shore
cg10959651 2 7018020 RSAD2 −0.13 −0.1 −0.16 −0.13 3.14 × 10−14 IRG
cg10549986 2 7018153 RSAD2 −0.08 −0.09 −0.1 −0.09 1.95 × 10−91 IRG
cg14126601 2 37384708 EIF2AK2 −0.08 −0.1 −0.12 −0.1 5.55 × 10−16 IRG S_Shore
cg26337070 2 85999873 ATOH8 −0.06 −0.12 −0.11 −0.1 7.55 × 10−9

cg04781494 2 202047246 CASP10 −0.07 −0.13 −0.08 −0.09 8.39 × 10−8 IRG
cg15768138 2 219030752 CXCR1 −0.09 −0.12 −0.11 −0.11 7.38 × 10−27

cg13411554 3 53700276 CACNA1D −0.06 −0.12 −0.09 −0.09 8.66 × 10−8

cg22930808 3 122281881 PARP9-
DTX3L −0.36 −0.34 −0.4 −0.37 6.74 × 10−126 IRG N_Shore

cg08122652 3 122281939 PARP9-
DTX3L −0.34 −0.31 −0.51 −0.38 1.11 × 10−9 IRG N_Shore

cg00959259 3 122281975 PARP9-
DTX3L −0.37 −0.3 −0.34 −0.34 1.32 × 10−56 IRG N_Shore

cg06981309 3 146260954 PLSCR1 −0.24 −0.28 −0.21 −0.24 6.41 × 10−31 IRG N_Shore
cg02556393 3 168866705 MECOM −0.08 −0.09 −0.1 −0.09 3.14 × 10−95 N_Shore
cg07809027 4 15007205 CPEB2 −0.07 −0.1 −0.12 −0.1 2.08 × 10−14 S_Shore
cg02215171 4 89379156 HERC5 −0.08 −0.09 −0.11 −0.09 4.48 × 10−18 IRG S_Shore
cg17786255 4 108814389 SGMS2 −0.07 −0.09 −0.11 −0.09 2.01 × 10−16 IRG
cg21873524 4 190942744 −0.1 −0.1 −0.12 −0.11 1.03 × 10−55 Island
cg24740632 5 134486678 −0.11 −0.12 −0.14 −0.12 2.26 × 10−60

cg06012695 6 28770593 −0.1 −0.13 −0.11 3.59 × 10−16

cg25138053 6 31368016 −0.11 −0.09 −0.07 −0.09 3.67 × 10−15 S_Shore
cg22708150 6 31649619 LY6G5C −0.12 −0.14 −0.17 −0.14 1.05 × 10−19 N_Shore
cg07292773 6 156718177 0.07 0.1 0.11 0.1 2.22 × 10−17 Island
cg12013713 7 139760671 PARP12 −0.12 −0.14 −0.09 −0.12 1.44 × 10−16 IRG N_Shore
cg20190772 8 48572496 KIAA0146 −0.08 −0.07 −0.13 −0.09 1.40 × 10−8

cg14864167 8 66751182 PDE7A −0.25 −0.35 −0.45 −0.35 1.21 × 10−9 N_Shelf
cg06102678 8 81491328 −0.08 −0.12 −0.07 −0.09 1.00 × 10−8 Island
cg12110437 8 144098888 LY6E −0.16 −0.17 −0.27 −0.2 3.14 × 10−9 IRG N_Shore
cg17555806 10 74448117 −0.08 −0.12 −0.07 −0.09 1.51 × 10−8 N_Shelf
cg02314339 10 91020653 −0.08 −0.14 −0.11 −0.11 1.72 × 10−8

cg06188083 10 91093005 IFIT3 −0.29 −0.16 −0.31 −0.25 6.18 × 10−8 IRG
cg05552874 10 91153143 IFIT1 −0.2 −0.28 −0.3 −0.26 6.01 × 10−16 IRG
cg14910175 10 131840954 −0.07 −0.11 −0.08 −0.09 1.56 × 10−11 N_Shelf
cg10552523 11 313478 IFITM1 −0.14 −0.12 −0.14 −0.13 5.90 × 10−115 IRG N_Shelf
cg20566897 11 313527 IFITM1 −0.11 −0.11 −0.09 −0.1 7.00 × 10−62 IRG N_Shelf
cg23570810 11 315102 IFITM1 −0.24 −0.25 −0.34 −0.27 1.43 × 10−18 IRG N_Shore
cg03038262 11 315262 IFITM1 −0.24 −0.22 −0.29 −0.25 4.41 × 10−40 IRG N_Shore
cg20045320 11 319555 −0.19 −0.13 −0.2 −0.18 4.85 × 10−17 S_Shore
cg17990365 11 319718 IFITM3 −0.16 −0.15 −0.15 −0.16 8.78 × 10−295 IRG S_Shore
cg08926253 11 614761 IRF7 −0.15 −0.14 −0.23 −0.17 2.01 × 10−9 IRG Island
cg12461141 11 5710654 TRIM22 −0.1 −0.08 −0.12 −0.1 6.35 × 10−25 IRG
cg23571857 17 6658898 XAF1 −0.07 −0.13 −0.11 −0.1 1.46 × 10−8 IRG
cg04927537 17 76976091 LGALS3BP −0.14 −0.11 −0.2 −0.15 2.77 × 10−10 IRG
cg25178683 17 76976267 LGALS3BP −0.15 −0.11 −0.21 −0.16 2.01 × 10−8 IRG
cg16503797 18 19476805 −0.08 −0.12 −0.08 −0.09 5.39 × 10−12 N_Shore
cg15871086 18 56526595 −0.07 −0.11 −0.08 −0.09 2.08 × 10−11 N_Shelf
cg23352030 20 62198469 PRIC285 0.13 0.19 0.11 0.14 2.36 × 10−11 Island
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Table 1. Cont.

CpG * Chr Pos (bp) † Gene
∆β

p-Value Interferon-
Regulated ‡

Relation to
CpG ††Pair1 Pair2 Pair3 Mean

cg16785077 21 42791867 MX1 −0.11 −0.09 −0.12 −0.11 8.45 × 10−27 IRG N_Shore
cg22862003 21 42797588 MX1 −0.31 −0.25 −0.35 −0.31 1.62 × 10−25 IRG N_Shore
cg26312951 21 42797847 MX1 −0.26 −0.17 −0.2 −0.21 6.28 × 10−15 IRG N_Shore
cg21549285 21 42799141 MX1 −0.5 −0.35 −0.57 −0.47 6.59 × 10−13 IRG S_Shore
cg05543864 22 24979755 GGT1 −0.08 −0.08 −0.1 −0.09 1.44 × 10−45

cg20098015 22 50971140 ODF3B −0.19 −0.22 −0.21 −0.21 9.88 × 10−83 IRG S_Shore
cg05523603 22 50973101 −0.17 −0.23 −0.27 −0.22 5.51 × 10−14 S_Shelf
cg02247863 22 50983415 −0.07 −0.1 −0.11 −0.09 2.51 × 10−13 N_Shore

* CpGs meeting the PFDR < 0.05 threshold (equivalent to p < 1.06 × 10−7) and having |∆β| > 0.085. † Positions are from Build 37. ‡ IRG as
defined by Interferome [37]. †† Island: CpG sites > 200 bp, with GC content > 55% and observed to expected ratio > 0.6. N_shore: 0–2
kb upstream from island; S-shore 0–2 kb downstream from island; N_shelf 2–4 kb upstream from island; S_shelf 2–4 kb downstream
from island.

We also sought to determine if the dominating presence of the interferon signature
might have masked more modest signals from other individual (non-IFN) loci. After
regressing out the mean β-value (methylation value) for the most significant CpG site in
each interferon-regulated gene in Table 1 (as defined by Interferome [37]), no additional
CpG sites across the genome met an FDR threshold of significance (PFDR > 0.05).

We considered the genomic context of the CpG sites showing aberrant methylation in
the LFRR MZ twins. Here, a CpG island was defined as a cluster of CpG sites of greater
than 200 bp, with GC content >55%, and the observed-to-expected (under mathematical in-
dependence of the Gs and Cs) ratio >0.6 [51]. Interestingly, out of 59 CpG sites differentially
methylated, the majority (54%, n = 32) were located in a CpG shore (0–2 kb from island) or
shelf (2–4 kb from island), whereas only 8% (n = 5) were located in a CpG island (Table 1).
This is in contrast to the composition of the 450k chip in which about one third of the CpG
sites reside in islands (Supplemental Figure S2). Notably, the only two hypermethylated
CpG sites (relative to the unaffected twin) meeting our significance thresholds reside in
CpG islands.

3.3. Hypomethylated Genes Are Overexpressed in Independent Cohorts

Methylation at CpG sites influences gene expression. Thus, linking differential methy-
lation to changes in gene expression by showing that the same genes were associated with
SLE in both types of experiments (even in independent samples) would provide further evi-
dence of the importance of these genes and could identify potential actionable mechanisms.

Genes harboring a CpG site with ∆β < −0.085 and p < 0.01 (for differential methyla-
tion) were tested for differential expression in whole blood from two independent cohorts,
each comparing SLE patients to healthy controls (GSE39088 and GSE49454) (Table 2).
Relative to controls, overexpression was observed in both active and inactive SLE pa-
tients within almost all of these genes, and the level of expression was highly correlated
within the gene expression experiments (experiment 1, r = 0.95; experiment 2, r = 0.99).
IFI44L, RADS2, and IFIT1 showed the highest fold changes and comparable increases
in expression in active and inactive SLE patients; IFI44L is noteworthy as it has been
reported to be predictive of SLE status relative to healthy controls and other autoimmune
diseases [52]. Cohorts with expression data derived from monocytes (GSE38351), CD19+,
and CD20+ B cells (GSE10325, GSE4588), and CD4+ T cells (GSE10325, GSE51997) reflected
a consistent pattern of increased expression in genes meeting the mean (methylation)
∆β threshold of −0.085 (Figure 1B). Upon extending ∆β to <−0.055, the statistically ap-
propriate threshold for detecting differential expression in monocytes and T cells in our
dataset (see Methods), an additional 54 hypomethylated genes were evaluated in the gene
expression datasets (Supplemental Table S3). Overall, the pattern of differential expression
of hypomethylated genes was very similar across the cell subtypes examined (Figure 1B,
Supplemental Table S3). Thus, the differential expression results in independent cohorts in
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multiple cell types provide a multi-omic, independent pseudo-replication, and translational
interpretation of the methylation results (Table 2).

Hierarchical clustering (Euclidean distance, complete linkage) of the DM-DE genes
using the log fold change (LFC) identified a cluster of nine genes with markedly higher
LFC (Figure 1B). This cluster shows a consistent pattern across whole blood, monocytes,
B cells, and T cells, as well as in both active and inactive SLE disease. In fact, the LFC
remained largely consistent between active and inactive disease across all DM-DE genes.
Exceptions to this pattern include FK506 binding protein 5 (FKBP5), parvin beta (PARVB),
and strawberry notch homolog 2 (SBNO2) in whole blood, where there is upregulation
in active patients and non-significant change in inactive patients. This pattern was not
replicated in any of the individual cell types.

Table 2. Differential expression of hypomethylated genes in whole blood from two independent SLE cohorts.

Active SLE § Inactive SLE §

CpG * Chr Pos (bp) † Gene Mean ∆β
Methylation

p-Value
Interferon-

Regulated ‡
Log FC
Expt 1

Log FC
Expt 2

Log FC
Expt 1

Log FC
Expt 2

cg16526047 1 949893 ISG15 −0.11 1.28 × 10−4 IRG 3.1 2.77 2.74 2.59
cg05696877 1 79088769 IFI44L −0.3 6.60 × 10−6 IRG 3.98 3.8 3.64 3.4
cg01079652 1 79118191 IFI44 −0.34 5.34 × 10−4 IRG 3.54 2.53 3.7 2.33
cg17515347 1 159047163 AIM2 −0.09 3.01 × 10−12 IRG 1.39 0.86 1.08 0.49
cg01028142 2 7004578 CMPK2 −0.33 7.98 × 10−8 IRG 2.76 1.5 2.43 1.51
cg10959651 2 7018020 RSAD2 −0.13 3.14 × 10−14 IRG 4.04 3.32 3.76 3.04
cg14126601 2 37384708 EIF2AK2 −0.1 5.55 × 10−16 IRG 1.47 2.02 1.08 1.68
cg15768138 2 219030752 CXCR1 −0.11 7.38 × 10−27 0.43 0.96 0.38 0.66

cg08122652 3 122281939 PARP9-
DTX3L −0.38 1.11 × 10−9 IRG 1.36 1.56 1.07 1.55

cg06981309 3 146260954 PLSCR1 −0.24 6.41 × 10−31 IRG 1.77 1.25 1.38 1.07
cg02694620 3 172109284 FNDC3B −0.11 3.80 × 10−3 0.57 0.82 0.41 0.52
cg15065340 3 195632915 TNK2 −0.16 4.04 × 10−3 0.22 0.31 0.2 0.25
cg07809027 4 15007205 CPEB2 −0.1 2.08 × 10−14 0.66 0.52 0.42 0.45
cg02215171 4 89379156 HERC5 −0.09 4.48 × 10−18 IRG 2.62 2.48 2.14 2.36
cg05883128 4 169239131 DDX60 −0.25 2.13 × 10−5 IRG 1.24 1.38 1.06 1.46
cg08099136 6 32811251 PSMB8 −0.11 1.43 × 10−4 IRG −0.39 −0.13 NS NS
cg00052684 6 35694245 FKBP5 −0.16 1.65 × 10−3 1.11 0.71 NS NS
cg05994974 7 139761087 PARP12 −0.15 6.89 × 10−5 IRG 1.52 1.57 1.14 1.25
cg14864167 8 66751182 PDE7A −0.35 1.21 × 10−9 −1.24 −0.41 −0.82 −0.23
cg12110437 8 144098888 LY6E −0.2 3.14 × 10−9 IRG 2.66 1.92 2.43 1.7
cg03848588 9 32525008 DDX58 −0.1 4.34 × 10−4 IRG 1.48 1.3 1.32 1.07
cg06188083 10 91093005 IFIT3 −0.25 6.18 × 10−8 IRG 2.25 3.15 2.3 2.87
cg05552874 10 91153143 IFIT1 −0.26 6.01 × 10−16 IRG 3.39 2.94 3.42 2.81
cg23570810 11 315102 IFITM1 −0.27 1.43 × 10−18 IRG 1 1.03 1.03 0.81
cg17990365 11 319718 IFITM3 −0.16 8.78 × 10−295 IRG 0.92 2.23 0.71 2.13
cg08926253 11 614761 IRF7 −0.17 2.01 × 10−9 IRG 1.84 1.79 1.4 1.37
cg08577913 11 4415193 TRIM21 −0.1 1.74 × 10−3 IRG 0.56 0.93 0.28 0.75
cg12461141 11 5710654 TRIM22 −0.1 6.35 × 10−25 IRG 1.14 1 0.99 1.05
cg26811705 11 118781408 BCL9L −0.09 1.64 × 10−3 −0.6 −0.35 −0.41 −0.32
cg19347790 12 81332050 LIN7A −0.09 1.87 × 10−4 0.93 0.99 1.24 0.61
cg25800166 12 113375896 OAS3 −0.13 5.36 × 10−5 IRG 2.52 2.69 0.73 2.35
cg19371652 12 113415883 OAS2 −0.11 2.24 × 10−5 IRG 1.48 1.56 1.64 1.53
cg03753191 13 43566902 EPSTI1 −0.1 9.23 × 10−5 IRG 2.65 2.26 2.71 2.02
cg00246969 13 99159656 STK24 −0.11 6.26 × 10−6 0.81 0.32 0.66 0.36
cg07839457 16 57023022 NLRC5 −0.23 6.10 × 10−6 IRG 0.7 0.23 0.53 0.27
cg23571857 17 6658898 XAF1 −0.1 1.46 × 10−8 IRG 2.85 1.96 2.35 1.68
cg23378941 17 64361956 PRKCA −0.11 6.89 × 10−5 IRG −1.11 −0.3 NS NS
cg25178683 17 76976267 LGALS3BP −0.16 2.0 × 10−8 IRG 1.16 1.21 0.72 1.05
cg07573872 19 1126342 SBNO2 −0.15 2.77 × 10−3 IRG 0.38 0.58 NS NS
cg07839313 19 17514600 BST2 −0.12 3.48 × 10−3 IRG 1.24 0.49 1.17 0.41
cg21549285 21 42799141 MX1 −0.47 6.59 × 10−13 IRG 2.12 2 1.86 1.79
cg19460508 22 44422195 PARVB −0.1 1.64 × 10−3 0.54 0.39 NS NS
cg20098015 22 50971140 ODF3B −0.21 9.88 × 10−83 IRG 1.61 0.61 1.36 0.47

Differential gene expression values come from GSE39088 (Expt 1) and GSE49454 (Expt 2) in whole blood of lupus patients compared with
controls. * CpGs with p < 0.01 and |∆β| > 0.085. † Positions are from Build 37. ‡ As defined by Interferome [37]. § Active disease is defined
as ≥6 on the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) [35].
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Although only one of the three affected MZ twins in the discovery cohort had renal
involvement, almost all of the genes mapping to differentially methylated CpG sites showed
overexpression in both the kidney glomerulus and tubulointerstitium from independent
lupus nephritis patients (Table 3). In the glomerulus, 28 genes were overexpressed, 2 were
under expressed, and 14 were not significantly differentially expressed in lupus nephritis
samples compared to healthy controls. In the tubulointerstitium, 27 were overexpressed,
5 under expressed, and 12 not significantly differentially expressed. IFI44L, MX1, and IFI44
showed the highest levels of overexpression across the two tissues. The fold change was
correlated between the two tissues (r = 0.66, p < 0.0001).

Significant DNA methylation sites were further investigated for evidence of associa-
tion between DNA methylation at a specific CpG site and gene expression (eQTM) using
the iMETHYL genome browser with data on 100 healthy Japanese subjects with RNA-seq
data and DNA methylation data in CD4T cells, monocytes, and PBMC [38] (Supplemental
Table S4). Most of the CpGs from Table 1 that are identified in iMETHYL are eQTMs for
the gene in which they reside. In contrast, some are eQTMs for additional genes of interest.
For example, cg17515347 is in physical proximity to AIM1, which has an important role
in T cell regulation in autoimmune diseases. However, this CpG site is also an eQTM for
five other genes in CD4+ T cells (TAGLN2, SLAMF8, DUSP23, PHYIN1 FCRL6), several of
which have established autoimmune disease connections. Transgelin-2 may help regulate
activation and migration of B cells in lymph node follicles, exhibits increased expression in
B cells from lymph nodes in SLE patients, and appears important in host defense [53,54].
SLAM family member 8 (SLAMF8) is a member of the SLAM family of genes of which
several members have been associated with multiple autoimmune diseases [55]. FcR-like 6
(FCRL6), a receptor that binds to major histocompatibility complex (MHC) class II HLA-
DR, is expressed in B cells and has a tyrosine-based immunoregulatory function [56,57].
Dual-specificity protein phosphate 23 (DUSP23) expression is reportedly higher in CD4+ T
cells from SLE patients compared to healthy controls [58]. Thus, DNA methylation in these
regions, and potentially others, may have a complex and multifaceted impact on autoim-
munity. Annotation of cg20098015 on chromosome 22 is linked to Outer Dense Fiber of
Sperm Tails 3 (ODF3B). However, this CpG is an eQTM for SCO2 homolog, mitochondrial
and SCO cytochrome oxidase deficient homolog 2 (SCO2), and thymidine phosphorylase
(TYMP), both involved in mitochondrial functions.

3.4. Pathway Analysis of DM-DE Genes

Pathway, clustering, and networking analyses were completed to elucidate patterns
among the DM-DE genes. Ingenuity Pathway Analysis (IPA) identified two primary
canonical pathways: (1) interferon signaling and (2) pattern recognition receptor (PRR)
(Figure 2A). The overlap p-value, which tests for independence between known targets
of each transcription regulator in a pathway and the list of genes provided, shows very
strong association for these two pathways. Other significant pathways of note include
the activation of interferon regulatory factors (IRFs) by pattern recognition receptors,
retinoic acid-inducible gene I protein (RIG-I)-like receptors in innate immunity, and NF-κB
activation by viruses. Figure 2B illustrates the IFN signaling pathway determined by
IPA. Notably, in this pathway all of the DM-DE genes are downstream, and none were
identified as upstream signaling molecules. IPA also identified 39 upstream regulators
(|Z-score| ≥ 2) of the DM-DE genes that showed differential expression between SLE
cases and controls in whole blood (Figure 2C).
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 Figure 2. Pathway analyses of hypomethylated genes showing differential expression in independent

SLE cohorts. (A) List and statistical significance of the overlap of the IPA canonical pathways com-
prised of hypomethylated genes showing differential expression in whole blood of independent SLE
patients. (B) IPA canonical IFN signaling of hypomethylated genes showing differential expression
(increased expression in SLE cases in red) in whole blood of independent SLE patients. (C) Activation
Z-scores of genes predicted as upstream regulators of genes hypomethylated in the discordant twin
data (∆β < −0.085) and differentially expressed in whole blood between independent SLE cases
and controls. A positive (negative) Z-score indicates that a regulator has significantly more (fewer)
activated predictions than inhibited predictions.
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Table 3. Differential expression of hypomethylated genes in kidney biopsies from independent SLE patients with
lupus nephritis.

CpG * Chr Pos (bp) † Gene Mean ∆β
Methylation

p-Value
Interferon-

Regulated ‡
Log FC

Glomerulus
Log FC Tubu-
lointerstitium

cg16526047 1 949893 ISG15 ‖ −0.11 1.28 × 10−4 IRG 3.32 4.7
cg05696877 1 79088769 IFI44L ∆ −0.3 6.60 × 10−6 IRG 5.14 5.94
cg01079652 1 79118191 IFI44 ‖ −0.34 5.34 × 10−4 IRG 3.94 4.76
cg17515347 1 159047163 AIM2 −0.09 3.01 × 10−12 IRG 0.58 NS
cg01028142 2 7004578 CMPK2 ∆ −0.33 7.98 × 10−8 IRG NS NS
cg10959651 2 7018020 RSAD2 −0.13 3.14 × 10−14 IRG 4.31 3.36
cg14126601 2 37384708 EIF2AK2 ∆ −0.1 5.55 × 10−16 IRG 1.54 1.72
cg15768138 2 219030752 CXCR1 −0.11 7.38 × 10−27 0.68 −0.17
cg08122652 3 122281939 PARP9-DTX3L ∆ −0.38 1.11 × 10−9 IRG NS NS
cg06981309 3 146260954 PLSCR1 ∆ −0.24 6.41 × 10−31 IRG 1.92 2.07
cg02694620 3 172109284 FNDC3B −0.11 3.80 × 10−3 NS 0.47
cg15065340 3 195632915 TNK2 ‖ −0.16 4.04 × 10−3 0.38 −0.4
cg07809027 4 15007205 CPEB2 −0.1 2.08 × 10−14 NS NS
cg02215171 4 89379156 HERC5 ¶ −0.09 4.48 × 10−18 IRG 3.16 1.96
cg05883128 4 169239131 DDX60 −0.25 2.13 × 10−5 IRG 1.11 2.31
cg08099136 6 32811251 PSMB8 −0.11 1.43 × 10−4 IRG 0.76 2.51
cg00052684 6 35694245 FKBP5 § −0.16 1.65 × 10−3 −1.27 −2.77
cg05994974 7 139761087 PARP12 ‖ −0.15 6.89 × 10−5 IRG 2.26 1.86
cg14864167 8 66751182 PDE7A −0.35 1.21 × 10−9 NS NS
cg12110437 8 144098888 LY6E ♦ −0.2 3.14 × 10−9 IRG 1.28 1.23
cg03848588 9 32525008 DDX58 ♦ −0.1 4.34 × 10−4 IRG 2.89 2.59
cg06188083 10 91093005 IFIT3 ♦ −0.25 6.18 × 10−8 IRG 2.59 3.14
cg05552874 10 91153143 IFIT1 ♦ −0.26 6.01 × 10−16 IRG 2.24 2.77
cg23570810 11 315102 IFITM1 −0.27 1.43 × 10−18 IRG 2.24 3.29
cg17990365 11 319718 IFITM3 −0.16 8.78 × 10−295 IRG 2.24 2
cg08926253 11 614761 IRF7 ‖ −0.17 2.01 × 10−9 IRG 2.8 1
cg08577913 11 4415193 TRIM21 −0.1 1.74 × 10−3 IRG 1.35 0.77
cg12461141 11 5710654 TRIM22 −0.1 6.35 × 10−25 IRG 1.73 2.86
cg26811705 11 118781408 BCL9L −0.09 1.64 × 10−3 NS NS
cg19347790 12 81332050 LIN7A −0.09 1.87 × 10−4 NS −0.57
cg25800166 12 113375896 OAS3 −0.13 5.36 × 10−5 IRG 3.77 1.1
cg19371652 12 113415883 OAS2 −0.11 2.24 × 10−5 IRG 4.86 1.74
cg03753191 13 43566902 EPSTI1 ¶ −0.1 9.23 × 10−5 IRG NS NS
cg00246969 13 99159656 STK24 −0.11 6.26 × 10−6 NS 0.28
cg07839457 16 57023022 NLRC5 −0.23 6.10 × 10−6 IRG NS NS
cg23571857 17 6658898 XAF1 −0.1 1.46 × 10−8 IRG 3.14 3.05
cg23378941 17 64361956 PRKCA −0.11 6.89 × 10−5 IRG −0.48 −0.08
cg25178683 17 76976267 LGALS3BP −0.16 2.0 × 10−8 IRG 0.57 1.49
cg07573872 19 1126342 SBNO2 −0.15 2.77 × 10−3 IRG NS NS
cg07839313 19 17514600 BST2 ‖ −0.12 3.48 × 10−3 IRG NS 2.91
cg21549285 21 42799141 MX1 ∆ −0.47 6.59 × 10−13 IRG 4.05 4.64
cg19460508 22 44422195 PARVB −0.1 1.64 × 10−3 0.28 NS
cg20098015 22 50971140 ODF3B −0.21 9.88 × 10−83 IRG NS NS

Differential gene expression values come from GSE32591: kidney glomerulus and tubulointerstitium WHO class 3/4 lupus nephritis versus
control samples. NS indicates not significant FDR p-value > 0.2). * CpGs with p < 0.01 and ∆β < −0.085. † Positions are from Build 37.
‡ As defined by Interferome [37]. § SLE patients show decreased expression in both kidney tissues. ‖ Hypomethylation of this gene at the
same CpG site has been reported in SLE patients with renal involvement [12]. ¶ Hypomethylation of this gene at a different CpG site has
been reported in SLE patients with renal involvement [12]. ∆ Hypomethylation of this gene at the same CpG site has been reported in SLE
patients with and without renal involvement [12]. ♦ Hypomethylation of this gene at a different CpG site has been reported in SLE patients
with renal involvement [12].

The DM-DE genes were further analyzed in an additional pathway analysis using the
MCODE clustering algorithm and STRING networking scores. Two distinct yet related
clusters emerged (Figure 3). As expected, there was an enrichment of genes in the IFN-
inducible/pattern recognition receptor pathway. As visually represented by the colors of
the nodes and node outlines in Figure 3, all genes in this cluster were upregulated in both
active and inactive SLE patients; all of these except PARP9 were overexpressed in both
kidney tissues.
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Figure 3. MCODE clustering of hypomethylated genes showing differential expression in indepen-
dent SLE cohorts. A network scoring degree cutoff of 2, node score cutoff of 0.2, k-Core of 2, and a
max depth of 100 were applied. Node color indicates log2(FC) direction and node size is inversely
scaled with ∆β (larger nodes are more strongly hypomethylated). Edge weight is scaled by STRING
protein–protein connectivity score. All upregulated genes present in clusters were also upregulated
in inactive SLE WB samples. †, upregulated in kidney glomerulus, WHO class 3/4. ‡, upregulated in
kidney tubulointerstitium, WHO class 3/4.

The second cluster was comprised of genes involved in the nucleic acid-sensing
pathway, a primary antiviral defense in vertebrates as well as a mechanism to respond
to intracellular nucleic acids of cellular origin. There were strong links among the genes
in these two clusters as this nucleic acid response of the innate immune system results in
the production of type 1 interferon (i.e., INF-α and INF-β) and expression of interferon
stimulated genes [59]. These hypomethylated genes showed increased expression in both
active and inactive SLE patients; the lone exception observed was the reduced expression
of PRKCA in active SLE patients. As in the IFN-inducible/pattern recognition receptor
pathway, the majority of these nucleic acid-sensing pathway genes were expressed in both
kidney tissues. The gene DEAD H-box helicase 58 (DDX58), which encodes for retinoic
acid-inducible gene I (RIG-I) [60], was the central node and exhibited the strongest and
most numerous links to other genes within the cluster.

3.5. Potential Drug Targets

The DM-DE genes were analyzed for potential gene–drug interactions (Table 4). As
evidence of its potential utility, this approach identified methotrexate, a lupus therapy,
targeting EPSTI1. Twelve of the DM-DE genes are linked to drugs that are currently in
ongoing clinical trials, primarily trials related to cancer (Table 4). The drug target analysis
also identified 24 additional FDA-approved drugs linked to genes associated with the
nucleic acid-sensing or the interferon-inducible pathways. These drugs could merit careful
consideration for future clinical trials in SLE.
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Table 4. Predicted drugs targeting hypomethylated genes and associated pathways with ∆β < −0.085.

CpG * Chr Pos(bp) † Gene Mean ∆β p-Value STITCH [43] IPA ‡ DGIdb [44]

cg16526047 1 949893 ISG15 −0.11 1.28 × 10−4 Irinotecan F

cg10959651 2 7018020 RSAD2 −0.13 3.14 × 10−14 Fludarabine F

cg14126601 2 37384708 EIF2AK2 −0.1 5.55 × 10−16 Indirubin derivative
E804

cg15768138 2 219030752 CXCR1 −0.11 7.38 × 10−27 Reparixin D Reparixin D SCH-527123,
Ketoprofen F

cg06981309 3 146260954 PLSCR1 −0.24 6.41 × 10−31 Wogonin G

cg15065340 3 195632915 TNK2 −0.16 4.04 × 10−3 Dasatinib−1 F Osimertinib F,
VemurafenibF Debromohymenialdisine

cg08099136 6 32811251 PSMB8 −0.11 1.43 × 10−4
Carfilzomib4 F,
Oprozomib D,
Bortezomib6 F

Carfilzomib4 F Carfilzomib4 F,

cg00052684 6 35694245 FKBP5 −0.16 1.65 × 10−3
Rapamycin/
Sirolimus2 F,

Tacrolimus5 F

Venlafaxine F,
Clomipramine F

cg14864167 8 66751182 PDE7A −0.35 1.21 × 10−9 Ketotifen F,
Dyphylline F

cg12110437 8 144098888 LY6E −0.2 3.14 × 10−9 DLYE5953AD

cg06188083 10 91093005 IFIT3 −0.25 6.18 × 10−8 Imidazoles D

cg08926253 11 614761 IRF7 −0.17 2.01 × 10−9 Hesperidin D

cg03753191 13 43566902 EPSTI1 −0.1 9.23 × 10−5

Methotrexate F T,
Vinblastine F,

Doxorubicin F,
Cisplatin F

cg00246969 13 99159656 STK24 −0.11 6.26 × 10−6 Staurosporine D

cg23378941 17 64361956 PRKCA −0.11 6.89 × 10−5 Staurosporine D Aprinocarsen

Midostaurin F,
Enzastaurin D,
Quercetin D G,
Aprinocarsen,

Ruboxistaurin D,
Ingenol Mebutate FW,

Bryostatin D,
Sotrastaurin Acetate D,

Tamoxifen2 F

cg07839313 19 17514600 BST2 −0.12 3.48 × 10−3 Resveratrol6 D G

cg21549285 21 42799141 MX1 −0.47 6.59 × 10−13 Mitomycin C F,
Colchicine F

cg19460508 22 44422195 PARVB −0.1 1.64 × 10−3 Lovastatin3 F Bortezomib6 F

* CpGs with p < 1 × 10−3 and ∆β < −0.085. † Positions are from Build 37. ‡ Qiagen Bioinformatics: ingenuity.com F FDA approved.
D Ongoing clinical trial or DiD G GRAS. T Known utility in lupus therapy. FW Ingenol mebutate is FDA-approved in the US but withdrawn
in the EU. Numbers in superscript are CoLTS scores and range from −16 to +11.

4. Discussion

Environmental challenges coupled with genetic susceptibility are often hypothesized
to cause the innate and adaptive immune system to become chronically active, causing
failure to recognize subsequent autoimmune disease [61]. Aging and environmental expo-
sures such as smoking, chemicals, diet, and viral pathogens predictably trigger methylation
or demethylation at CpG sites. Altered methylation of a CpG site changes the accessibility
of transcriptional elements to specific regions, which leads to regulation of gene expression.
The relationship between DNA methylation and gene expression is complex, including
being influenced by specific tissues/cells [62–64]. However, in general, DNA methylation
in promoter regions is often inversely correlated with gene expression. The above paradigm
is consistent with the results of this multi-omic study, which has demonstrated that genes
involved in the nucleic acid-sensing and interferon-inducible pathways were observed to
be hypomethylated in SLE-affected MZ twins and upregulated in independent SLE cohorts.
Despite the clear biological importance of tissue-specific methylation and gene expression,
here, the high concordance of hypomethylated genes in whole blood with increased gene
expression across a variety of tissues from multiple independent cohorts suggests a high
fidelity of the DNA methylation-gene expression relationship at these loci.
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Every epigenome-wide study of SLE to date, including this one, has identified hy-
pomethylation of multiple type I IFN-related genes. While there is no doubt that stimulation
of the type I IFN pathway is important in SLE, the mechanism by which this stimulation
occurs will be unique for each SLE patient. Interferon induction occurs due to activation of
one of several types of pattern recognition receptors, which are programmed to respond to
double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), or single-stranded RNA
(ssRNA). The type of nucleic acid (NA) present will depend on the species and cell type
producing the NA. Furthermore, the NA may leak into the cytosome where its recognition
is again specific to the receptor activated. In our study, bioinformatic analysis identified
the NA-sensing pathway, with DEAD/H-Box helicase 58 (DDX58) as the central node
(Figure 3). DDX58 encodes for retinoic acid-inducible gene I (RIG-I), which recognizes
ssRNA. In contrast to Toll-like receptors (TLRs), which recognize NAs in the endosome,
RIG-I-like receptors (RLRs) interact with mitochondrial antiviral signaling protein (MAVS)
in the cytosol [65]. MAVS subsequently phosphorylates interferon regulatory factors 3
(IRF3) to stimulate type 1 IFN expression. The NA-sensing pathway generated by our
analysis also included absent in melanoma 2 (AIM2), a cytosolic dsDNA-sensing protein
that activates the inflammasome, further emphasizing the plausible role of this pathway in
initiating lupus inflammation [66,67].

The cascade of functional consequences resulting from genetic variation and unique
environmental exposures will differ for each individual SLE patient. While some SLE
patients (10–30%) will present no IFN signature [68], others will overexpress IFN through
one of the several mechanisms described above. The DM-SE gene list we prioritized may
be a useful tool in grouping SLE patients into DA receptor groups, or “endotypes” as
they have been termed by Mustelin et al. [68] Therapies targeting helicases such as RIG-I,
MAVS, or AIM2 could prove useful for SLE. One such inhibitor of RIG-I, enhancer of zeste
homolog 2 (EZH2), has been shown to play an epigenetic role in SLE and was proposed as a
therapeutic target by Tsou et al. [60]. Network analyses and public database queries of our
DM-DE genes yielded a list of genes whose products predict gene–drug interactions. The
resulting list includes methotrexate, a drug used for the treatment of lupus. The remaining
gene–drug interactions we identified merit thorough scrutiny as they could be candidates
for future trials.

Three recent studies have observed aberrant methylation of IFN genes in SLE patients
with renal involvement [12,19,22]. A summary of the literature (Additional File 2) shows
our study’s consistencies with these published findings. While hypomethylation of these
genes has been confirmed in CD4+ T cells and peripheral blood, no SLE study to date has
examined genome-wide DNA methylation in kidney biopsies. By considering differential
gene expression derived from the micro-dissected glomerulus and tubulointerstitium
kidneys in an independent cohort of SLE patients, in conjunction with the significance
of aberrant methylation in the MZ twin data, this study corroborates many of the loci
previously published as being hypomethylated in lupus nephritis patients.

The lack of any differentially methylated genes on the X chromosome is noteworthy
given the 9:1 female to male gender bias in SLE. This result is not fully explained by the fact
that older female MZ twins show a strong tendency for the same X chromosome to be inacti-
vated [69,70] as the lack of differentially methylated sites on the X chromosome in this study
is consistent with previous studies of unrelated individuals [11,15,17–21,23,52]. Jeffries
et al., using the Illumina Infinium Human Methylation27 array, did observe differential
methylation of CpGs in PCTK1, ARAF, RRAGB, and SNX12 on the X chromosome [11], but
no studies utilizing the more recent arrays replicate these findings. In our MZ twin study,
CpG sites associated with SNX12 had a minimum p-value = 0.02 (change in β = −0.04),
but none of the other three genes had p-values < 0.05. Thus, to date, methylation patterns
among genes located on the X chromosome do not appear to explain a substantial portion
of the risk of SLE.

Within this study, the genomic locations of hypomethylated CpG sites were highly
skewed toward CpG shores (0–2 kb from island) and shelves (2–4 kb from island) instead
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of islands. Here, only 5 of 59 CpG sites were in a CpG island, despite nearly one third
of the CpG sites on the Illumina HumanMethylation450 BeadChip being in a CpG island
(Supplemental Figure S2). Our findings are consistent with those of Yeung et al., who
demonstrated that most CpG sites hypomethylated in their lupus patients, when compared
to controls, were located in CpG shores [21]. These data corroborate the hypothesis that
CpG islands tend to have lower methylation rates than less dense CpG regions (e.g., shores
and shelves) and that lower density allows for greater methylation autonomy in response
to the environment, leading to increases in potential functional significance of the shores
and shelves.

There are several limitations of this multi-omics study. One limitation was the modest
sample size, as a larger sample would provide the potential to identify additional differen-
tially methylated regions and pathways. However, it is important to recognize the power
and value of a discordant MZ twin study design to reduce confounding based on genetic
and environmental background. Further, the modest sample size does not negate the
positive findings. There were only three discordant MZ twin pairs in the discovery cohort,
but we replicated these results in an independent cohort of four MZ twin pairs. Given the
number of samples, we were unable to construct and adjust for the full cell composition of
the peripheral blood samples as the limited degrees of freedom precluded the robust use
of deconvolution methods. Adjusting for latent methylation components in our analysis,
while dampening the associations slightly, still identified the same IFN signature. Further,
the collective results are supported by larger, independent case–control studies (described
in Additional File 2), and we have shown that our methylation results correlate with gene
expression in multiple cell types and tissues in independent SLE case–control studies; many
were also identified as eQTMs in a Japanese cohort of 100 healthy individuals. We recognize
that our cross-sectional study design (i.e., discovery, replication) cannot separate causality
from response to disease, but the consistency of differentially methylated regions with the
differentially expressed genes from independent gene expression studies is informative
and helps identify epigenetically modified genes and pathways that are important in SLE.

5. Conclusions

The intersection of hypomethylated genes from MZ twins and upregulated genes from
multiple independent cohorts and cell types were attributed to two distinct but integrated
biologic pathways: the nucleic acid-sensing pathway and the IFN-inducing pathway. The
source, type, and location of nucleic acids found in an SLE patient determine how and by
which receptor the NA is recognized, and ultimately which IRF is stimulated. A multi-
omics approach could allow classification of patients into different endotypes and possible
treatment groups. Informatically linking the DM-DE genes to drug therapies identified a
list of compounds that could be critically evaluated as potential candidates for future trials,
either broadly for SLE or for individuals with specific hypomethylation signatures.
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calculated at regular intervals between 0 and −0.15 in four cell types; Figure S2: Proportions of
significantly associated CpGs (as defined in Table 1) located in islands, shores, shelves, and other
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Abstract 

Background:  We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-clas‑
sical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-estab‑
lished genetic risk alleles on transcription at single-cell resolution.

Methods:  Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations 
(CD14++CD16− CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the 
within-person correlations observed, and eQTLs were compared between cell types and risk alleles.

Results:  The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There 
were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differ‑
ences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated 
with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same 
transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression 
demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individu‑
als, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 
expression pattern in public data sets.

Conclusions:  We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and 
NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE 
patient monocyte function.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Systemic lupus erythematosus (SLE) is a poorly under-
stood autoimmune syndrome driven by the interplay of 
genetic and environmental influences, which lead to a 
break in immunologic self-tolerance. Genetic studies in 
SLE have been successful in identifying more than 100 

SLE susceptibility loci [1, 2]. Most of the genetic poly-
morphisms associated with SLE are not coding-change 
variants [3, 4]. They are either located in non-coding 
regulatory regions near the 5′ and 3′ regions of genes, in 
DNAse hyper-sensitivity sites, or are in perfect LD with 
DNAse hypersensitivity sites. This suggests modulation 
of transcription as a likely mechanism by which many 
SLE-risk loci impact immune system biology [2], and 
data from many complex diseases support this idea [5]. 
Importantly, there is substantial variation in the pattern 
of DNAse hyper-sensitivity among different human cell 
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types, supporting the idea that polymorphisms can tune 
gene expression in a highly cell-specific manner [5]. Thus, 
examining multiple cell types will be critical in determin-
ing the function of SLE-risk loci, as it is likely that the 
regulatory influence of these polymorphisms vary across 
cell types.

Transcriptomic studies in SLE using whole blood, 
peripheral mononuclear cells, or whole tissue are con-
founded by variations in the numbers and types of cells 
found within different samples and between individuals. 
In such studies, the relative proportion of contributing 
cell subsets can influence gene expression profile based 
on the unique gene signature related to their functions 
[6, 7], making it more difficult to interpret the biological 
significance of the observed differential gene expression. 
For example, it is impossible to determine if the differ-
ence in gene expression is shared homogeneously in all 
cells, or if the observed difference in gene expression is 
primarily driven by divergent gene expression in one par-
ticular cell subset, or if the difference arises solely due 
to a difference in proportions of specific cell types [8]. 
Similarly, an impact of the risk locus on gene expression 
in a minor cell subset may not be observed within a bulk 
cell data set. The situation could be even more complex, 
as each of these possibilities could be present in vary-
ing proportional degrees across samples within a given 
study. While de-convolution methods can be used, it is 
easy to envision scenarios in which de-convolution would 
be of limited use (e.g., the same transcript is simultane-
ously up- and down-regulated in different cell types, to 
varying degrees) [9, 10]. An additional strength of single-
cell gene expression studies is that correlations between 
transcripts represent within-cell correlations, while co-
expression in mixed cell bulk samples could represent 
some within cell correlations, but also could be the result 
of complex relationships between cells of different types.

While most of the confirmed SLE-risk loci are located 
in or near genes with immune system function, for the 
vast majority, we do not understand their impact on cell 
biology and immune responses nor their influence on 
various immune cell subsets. For risk loci near genes of 
unknown molecular function, it is difficult to identify the 
relevant biological pathway and cell type(s) when consid-
ering functional follow-up experiments. This is a major 
challenge in SLE genetics as many risk loci have been 
definitively implicated in SLE pathogenesis, but their 
molecular function is poorly understood [2]. When con-
sidering using gene expression data in eQTL studies, the 
above advantages of single-cell gene expression data from 
purified cell populations are intriguing and would suggest 
that single-cell expression studies would more accurately 
indicate the biological impact of risk loci. Our group and 
others have previously studied gene expression in sorted 

immune cell populations as well as at single-cell level in 
SLE patients and found striking between-individual dif-
ferences in gene expression between immune cell sub-
sets and within the same immune cell types [1, 7, 9]. In 
this study, we use single-cell gene expression data from 
two important SLE monocyte subsets and perform a 
single-cell eQTL analysis. We selected seven SNPs from 
six established SLE risk loci and 90 target genes for this 
analysis. We observed many eQTLs that met statistical 
significance after adjusting for the within-individual cor-
relation by modeling the individual as a random effect in 
a linear model and applying multiple testing correction. 
These results demonstrate the efficiency of single-cell 
eQTL approach to effectively detect the biological impact 
of risk loci. The associated eQTL transcripts largely dif-
fered between the two closely related monocyte sub-
sets, making the case that risk locus function differently 
depending upon cell type. We also observed a great deal 
of diversity in the transcript lists associated with each 
risk SNP.

Methods
Patients and samples
Whole blood samples from 15 Female SLE patients ful-
filling the American College of Rheumatology criteria for 
the diagnosis of SLE [11, 12] and five age-sex matched 
healthy controls were procured from the Mayo Clinic, 
Rochester, MN. Exclusion criteria included pregnancy, 
active acute infection, chronic infection (e.g., hepatitis C, 
HIV, etc.), and current intravenous therapy (e.g., meth-
ylprednisolone or cyclophosphamide). The institutional 
review board approved the study and all patients pro-
vided informed consent. The patient data were used for 
all eQTL analyses, and the control data were only used in 
the comparison of IRF1 expression. The control set was 
too small to analyze separately for eQTLs, and combining 
patient and control cells together for eQTL analysis could 
result in confounding due to the expected differences in 
gene expression between patients and controls. Control 
data were only used in the IRF1 expression analysis.

Purification of classical (CD14++CD16−) and non‑classical 
(CD14dimCD16+) monocytes
As previously described [9], CD14++CD16−classical 
(CL) monocytes and CD14dimCD16+ non-classical 
(NCL) monocytes were isolated from peripheral blood 
and purified using magnetic separation. Briefly, CL 
monocytes were first purified by negative selection 
using a modified Human Pan-Monocyte Isolation pro-
tocol (Miltenyi) with addition of anti-CD16-biotin 
(Miltenyi) into the biotin-antibody cocktail. The purity 
was further increased using subsequent CD14 posi-
tive selection (Miltenyi). NCL monocytes were purified 
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similarly with addition of anti-CD14-biotin (Miltenyi) 
to the antibody cocktail for negative selection followed 
by CD16 microbeads (Miltenyi) for positive selection. 
Flow cytometry analysis showed that of the CL and 
NCL populations obtained, each contained > 95% of 
each desired cell type (Supplemental Fig. 1).

C1 single‑cell capture
Single-cells from each bulk monocyte subset were iso-
lated using Fluidigm C1 Single-Cell Auto Prep System. 
Purified CL monocytes were stained with Molecular 
Probes™ CellTracker™ Green CMFDA Dye (Life Tech-
nologies), while NCL monocytes were unstained before 
loading to C1 Single-Cell Auto Prep Array Integrated 
Fluidic Circuits (IFCs). CL and NCL monocytes were 
then sequentially loaded onto the C1 Integrated Fluidic 
Circuit (IFC). CL vs. NCL monocyte lineage of individ-
ual cells was determined by direct visualization using 
fluorescent microscopy, and at the same time, empty 
wells and wells that contained more than one cell were 
marked to exclude from later analysis. The IFCs were 
then examined using fluorescent microscopy, and the 
captured cells were identified as CL (stained) or NCL 
(not stained). Wells that contained more than one cell 
were also noted to exclude from later analysis. We cap-
tured 470 CL and 394 NCL cells from the SLE patients 
in total, averaging between 50 to 60 single cells per 
patient across both monocyte subsets, after excluding 
doublets and fragments. These results represent a 60% 
capture site efficiency.

Single cell PCR gene expression
A total of 90-target genes, relevant to monocyte func-
tion, that included major cytokines and pathway proteins 
involved in inflammation were selected for pre-amplifica-
tion in the IFCs using the Fluidigm C1 Single-Cell Auto 
Prep System according to the manufacturer’s protocol. 
qPCR-based gene expression assay of the target gene 
pre-amplified cDNAs were carried out using 96.96 IFCs 
on the BioMark HD System (Fluidigm) as described in 
the protocol. Raw data was analyzed using the Fluidigm 
Real-Time PCR Analysis software (v. 4.1.2) and quality 
check was performed by inspecting melt curves, amplifi-
cation curves. A failure score was calculated for each cell 
as described previously [9, 13]. Cells with failure score 
(total CT value) greater than two standard deviations 
above the mean were excluded from downstream analy-
sis. The limit of detection CT values was set at 28 [10]; 
CT values greater than or equal to 28 were considered 
non-detected and were assigned a value of zero for analy-
sis. Gene expression values were calculated by subtract-
ing the threshold cycle value for each gene for each cell 

from the number of cycles in the PCR reaction. In this 
way, higher numbers represent greater gene expression, 
and lower numbers indicate less expression.

Genotyping
Seven lupus risk single nucleotide polymorphisms 
(SNPs) in six gene loci, IRF5, IRF7, ITGAM, PTPN22, 
SPP1, and TNFAIP3 were genotyped for eQTL analysis. 
We selected well-established lupus risk polymorphisms 
from the literature which we thought may have function 
in monocytes [2]. The polymorphisms studied were as 
follows: IRF5 (rs10488631), IRF7 (rs1061502), ITGAM 
(rs1143679, rs1143689), PTPN22 (rs2476601), SPP1 
(rs9138), and TNFAIP3 (rs2230926). Genotyping was 
performed using PCR allelic discrimination assays on a 
BioMark HD System (Fluidigm). The observed genotype 
frequencies of the studied SNPs did not deviate signifi-
cantly from Hardy–Weinberg equilibrium.

Statistical analysis
For the initial univariate analysis, gene expression data 
was separated in to three genotype categories for each 
bi-allelic SNP for each patient (homozygous minor allele, 
heterozygous, and homozygous major allele). Data in CL 
and NCL populations were separately analyzed, using 
non-parametric analyses (Mann-Whitney U). Even 
when considering eQTL associations that surpassed a 
Bonferroni correction for the number of comparisons 
(P = 8 × 10−5), this was found to be too permissive with 
respect to type I error (Supplemental Fig.  2) [14]. This 
was due to distributional properties of the data that dem-
onstrated patterns of normal expression mixed with vary-
ing degrees of dropout data and significant within-person 
correlation in transcript values. To deal with these prop-
erties, data was reanalyzed for eQTL associations uti-
lizing four separate approaches [15]. The first approach 
used a tweedie mixed-effects model [16] to simultane-
ously account for the dropout and the person-specific 
heterogeneity. Gene expression was modeled as the out-
come and genotypes were modeled as predictors along 
with a random effect for individual. The second approach 
used a logistic mixed-effects model [17], where all non-
zero gene expression values were assigned as ones and 
modeled as a binary outcome to compare the proportion 
of genes turned “on” or “off” for each SNP. Genes where 
the average proportion turned “on” exceeded 98% were 
dropped. The third approach also computed a mixed-
effects model with just the non-zero gene expression 
values, assuming an underlying Gaussian distribution. 
Lastly, the proportion of genes turned “on” or “off” was 
computed within each individual and a simple analysis of 
variance was computed where the proportion was mod-
eled as the outcome and the genotype as the predictor. 
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A Benjamini-Hochberg false discovery rate was used to 
control for multiple comparisons and results meeting an 
FDR < 0.1 were retained [18]. As shown in Table  1, the 
logistic and proportional models provided the strongest 
ability to detect eQTLs (12 and 9 eQTLs respectively), 
followed by Gaussian (3 eQTLs), and tweedie (1 eQTL) 
models. eQTL lists were compared among risk alleles 
and between cell types to understand the degree to which 
effects were shared between cells types and the degree to 
which SLE-risk loci coordinately regulated the same tran-
scripts. eQTLs were considered shared if they met the 
significance cutoff in both monocyte subsets and were in 
the same direction of association. These patterns of shar-
ing are represented using Venn diagrams.

Analyses to detect modules of gene co-expression in 
the single-cell data were completed in each cell type 
separately (CL and NCL). Using the intersection of 
genes (common across all individuals), we built a pair-
wise gene-by-gene correlation matrix for each indi-
vidual and each cell type. Each correlation matrix was 
averaged into a single correlation matrix to find a mean 
correlation across all individuals while removing the 
inter-individual differences. The mean correlation was 
then used to compute eigenvectors and eigenvalues and 
build a principal component analysis. From there, each 
individual cell was projected on to that principal com-
ponent space and observed for differences by individ-
ual. Gene sets were retained if the absolute value of the 
individual loadings associated with highly explanatory 
principal components were greater than 0.7.

Results
Unique eQTL associations between CL and NCL monocytes
Using the four different analysis methods to query the 
data resulted in a total of 25 eQTL associations meet-
ing a FDR < 0.1 (Table  1, Fig.  1). Interestingly, these 
largely differed between the two related monocyte 
subsets. There were 18 eQTLs exclusive to NCL cells, 
5 eQTLs exclusive to CL cells, and one shared eQTL 
(Fig. 1, p = 0.0007 for a difference between the observed
degree of sharing and a model in which 50% of eQTLs 
are shared between cell types). The SLE-associated 
SNPs demonstrated more eQTLs in NCLs compared 
to CLs (p = 0.0004). For a given SNP, the eQTL associ-
ated transcripts largely differed between cell types, with 
only one transcript-eQTL shared between CL and NCL 
cells (SPP1 rs9138 with the IRF1 transcript). The great-
est number of eQTLs was observed with the SPP1 and 
TNFAIP3 loci (7 and 8 eQTLs respectively). We included 
two missense SNPs in the ITGAM locus that have been 
shown evidence for independent biological function 
[19], and these two SNPs in the same locus were associ-
ated with different transcripts. These data indicate that 

the same risk allele had a different biological impact 
between the two monocyte subsets. This is striking given 
that the two monocyte subsets would largely be more 
closely related, than to B cells or T cells. These data sug-
gest the importance of studying risk alleles within very 
specific cellular subsets to understand their biologi-
cal roles. The different analysis methods used to detect 
eQTLs performed differently in the single-cell data, with 
logistic and proportional models detecting the greatest 
number of eQTLs (Table 1).

Degree of eQTL transcript sharing between SLE‑risk alleles
Next, we assessed whether different SNPs modulated 
the same transcripts (transcript sharing), as this could 
indicate different risk alleles converging on similar 
biological pathways. There were no transcripts shared 
among SNPs in CL cells (Fig.  2). In NCLs, two tran-
scripts were common between two SNPs (TNFA, 
TYK2), and one transcript was common to three SNPs 

Table 1  List of significant eQTL associations detected by 
the various statistical methods in classical and non-classical 
monocytes at < 0.1 FDR

Gene (SNP rsID) Associated 
transcript

Method Monocyte subset

ITGAM (rs1143679) TLR7 Logistic Classical

ITGAM (rs1143683) JAK1 Logistic Classical

TNFAIP3 (rs2230926) IRF8 Proportion Classical

SPP1 (rs9138) ARG1 Logistic Classical

SPP1 (rs9138) IRF1 Logistic Classical

SPP1 (rs9138) IRF4 Logistic Classical

IRF5 (rs10488631) IRF1 Logistic Non-classical

IRF7 (rs1061502) IRF1 Logistic Non-classical

ITGAM (rs1143679) ARG1 Gaussian Non-classical

ITGAM (rs1143679) TCF4 Logistic Non-classical

ITGAM (rs1143683) IL1B Gaussian Non-classical

ITGAM (rs1143683) TNFA Gaussian Non-classical

TNFAIP3 (rs2230926) CD274 Logistic Non-classical

TNFAIP3 (rs2230926) FCER1G Proportion Non-classical

TNFAIP3 (rs2230926) IL7R Proportion Non-classical

TNFAIP3 (rs2230926) STAT1 Proportion Non-classical

TNFAIP3 (rs2230926) STAT2 Tweedie Non-classical

TNFAIP3 (rs2230926) TNFA Logistic Non-classical

TNFAIP3 (rs2230926) TYK2 Proportion Non-classical

PTPN22 (rs2476601) IL5 Logistic Non-classical

SPP1 (rs9138) IFIT5 Proportion Non-classical

SPP1 (rs9138) IL1A Proportion Non-classical

SPP1 (rs9138) IRF1 Logistic Non-classical

SPP1 (rs9138) TLR3 Proportion Non-classical

SPP1 (rs9138) TYK2 Proportion Non-classical
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(IRF1). Interestingly, in the NCL cells SNPs in IRFs 
(IRF5 and IRF7) are associated with IRF1 expression. 
It is also notable that IRF1 was the one eQTL that was 
shared between CL and NCL cells in the analyses above. 
Thus, while genetic variation in IRF1 has not been asso-
ciated with SLE, these analyses support the idea that 

IRF1 expression is modulated by SLE genetic risk fac-
tors in monocyte lineage cells.

On/off pattern of gene expression
Interestingly, the IRF1 transcript demonstrated a highly 
binary expressed/not expressed pattern for all cells 

Fig. 1  Venn diagram showing unique and shared eQTL associated transcripts between CL and NCL for each lupus risk SNP. Numbers indicate the 
number of transcripts associated with each SNP, with the numbers inside the overlap indicating transcript associations which are shared across the 
two monocyte subsets and those outside the overlap indicating unique SNP-transcript associations for each monocyte subset. The orange circle 
represents CL monocytes and the green circle represents NCL monocytes. Each lupus risk SNP is represented with different color

Fig. 2  Comparison of eQTL lists for the different SLE-risk SNPs in two monocyte subsets. Venn diagram showing unique and shared eQTL transcripts 
associated with each risk allele for A CL and B NCL monocytes. The circles indicated by each color to represent one lupus risk SNP. Numbers in each 
area of the diagram represent the number of transcripts significantly associated with that risk allele, either separately or overlapping between risk 
alleles.
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from a given individual, such that either all of the indi-
vidual’s cells did not express the gene or the majority 
of cells showed IRF1 expression (Fig. 3). This was true 
of both the CL and NCL monocytes from the same 
person. This pattern was restricted to patients and not 
observed in the controls in our study. We have seen this 
pattern in other single-cell qPCR studies of other dis-
eases [20]. For example in a study of rheumatoid arthri-
tis monocytes, we observed that JAK1 expression fit this 
pattern, in patients only and not in controls [20]. JAK1 
did not fit this pattern in the present study of lupus 
patients, suggesting that this pattern of gene expres-
sion may be specific to the disease state. We searched 
public databases for other precedents of this on/off pat-
tern of gene expression using Bio Turing browser ver-
sion 2.5.3 [21]. We found a similar pattern for IRF1 in 
monocytes from a single-cell RNA sequencing study 
examining patients with myeloma [22] (Supplemen-
tal Fig.  3). While our PCR data have a wider dynamic 
range of values than the public RNA-seq data, the on/
off pattern appears similar between these two studies. 
This suggests that examining gene expression patterns 
in an individual is important, as this type of pattern is 
likely to be lost when individuals are pooled for analy-
sis. The strength of the pattern in our data compared to 
RNA-seq data sets may indicate that these patterns are 
more efficiently detected in single cell qPCR data than 
in single cell RNA-seq data.

Modular co‑expression analysis of the single‑cell data
The principal component analyses revealed much higher 
overlap of cells when correcting for inter-individual dif-
ferences than not (Fig. 4). For classical cells, the first prin-
cipal component explained 39.5% of the variance and the 
second principal component explained only 3.05% of the 
variance. Similarly, in non-classical cells, the first princi-
pal component explained 35.6% of the variance and the 
second principal component explained only 3.49% of the 
variance (Fig. 4). Thirty-two genes were associated with 
lower principal component 1 scores across both of the 
cell types (|loadings|> 0.7) (Table 2). Sixteen genes were 
associated with lower principal component 1 scores in 
non-classical cells (Table  2). Of those, 15 were shared 
in both cell types and only one (IFNG) was unique to 
NCLs, demonstrating a core set of co-expressed genes 
that are in common across both cell types (Table  2). In 
the CL cells, there were 16 additional genes that were co-
expressed, supporting a larger co-expression network in 
this cell type.

Discussion
In this study, we document a number of eQTLs associ-
ated with common autoimmune risk alleles for SLE in 
human monocytes, at a single-cell resolution. We stud-
ied patients, which may have increased our ability to 
detect eQTLs associated with these alleles, as the other 
requisite genetic background for SLE is also present in 

Fig. 3  IRF1 expression in CL and NCL monocytes in each individual separately. Gene expression values for IRF1 are shown, with the cells from 
each individual in the study in a separate column. CL monocytes are shown in blue and NCLs in green, with each dot representing one cell. The 
genotypes under each column represent the SPP1 rs9138 genotype in each person
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these individuals. The degree of difference in eQTL lists 
between monocyte subsets was striking, as these two 
cell types are more closely related to each other than 
other common immune cell types such as T cells and 
B cells. These data suggest that highly cell-type specific 
patterns of eQTLs are present in immune cells. There-
fore, choosing the right cell types and including multi-
ple cell types will be critical when studying risk alleles 
in immune mediated diseases. Screening of single-cell 
eQTL data [23] across multiple cell types would be an 
important strategy to decide upon which cell type to 
study in functional experiments, and our data support 
the limitations of gene annotation and presumed func-
tions when considering the biological impact of the risk 
allele. One example of this would be the large number of 
trans associations we observe, which could not be pre-
dicted based upon the sequence location of the risk vari-
ant (e.g. SPP1(rs9138) associated with IRF1 and TYK2 
transcripts).

It is interesting that we observed more eQTLs in 
the NCLs as compared to the CLs, as the cell num-
bers were similar between the two cell subsets and this 
is not related to statistical power. It could suggest that 
these risk alleles mediate their risk of disease to a greater 
degree via the NCL lineage as compared to the CL lin-
eage. The structure of shared transcript modulation 

Fig. 4  Principal component analyses of classical and non-classical cells. Each cell is a dot, and data are shown after adjusting for the inter-individual 
differences by averaging gene-gene correlation matrices across each individual and subsequently projecting cells onto to the principal component 
space. Cells are color-coded and circled by 95% confidence ellipses by subject identifiers. Large overlap demonstrates the removal of the 
individual-specific heterogeneity

Table 2  Co-expression networks, genes associated with lower 
principal component 1 scores (|loadings|> 0.7). These gene sets 
represent a set of co-expressed genes that explain the most 
variance in each dataset. A large portion of the genes are shared; 
however, classical cells demonstrate a much larger co-expression 
network

Classical Shared Non-classical

CCR6 CCR2 IFNG

ITGAE CCR5

CD36 IDO1

CD86 IFIH1

FCER1G IFIT3

GMCSF IL23A

IFIT2 STAT3

IFNB1 STAT5

IL15 TLR3

IL2 IL12B

LILRA4 TRAF6

PRDM1 FLT3

STAT6 CTLA4

TLR8 CXCR7

TICAM1 CD80

TYK2

VCAN
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shown in Fig.  2 provides a map of the interactions 
between risk alleles at the biological level, and these 
data suggest greater coordination between risk alleles in 
NCL monocytes at least with respect to the variants and 
transcripts that we studied. Interestingly, while the num-
ber of eQTLs observed in CL cells was fewer, the co-
expression network observed in this cell type contained 
a larger number of transcripts. This taken together with 
the analysis above would suggest that a fewer number of 
risk alleles are operative in CL cells but that these alleles 
result in a larger number of co-expressed transcripts. 
This finding should be tested in an RNA-seq experi-
ment, as this conclusion is limited by the fact that we 
tested a prescribed set of transcripts in this study. Our 
data also support the overall importance of the SPP1 and 
TNFAIP3 risk alleles with respect to gene transcription 
in both CL and NCL monocytes. These data support 
the idea that different risk alleles will have their greatest 
effects in specific cell types, which will not be predict-
able from the magnitude of the effect size in case-con-
trol genetic association. The SPP1 risk variant has been 
linked to innate immune system cytokine production in 
SLE previously [24], while TNFAIP3 variants have been 
associated with differential TNFAIP3 function in mono-
cyte lineage cells [25].

The on-off pattern of gene expression observed with 
IRF1 is striking, and in comparison with public RNA-
seq data sets it seems that the qPCR approach we have 
used illustrates this pattern more dramatically. This 
could be due to the more quantitative nature of PCR 
vs. shotgun sequencing. Biologically, this could relate 
to a strong transcriptional repressor, and it is interest-
ing that we have observed this phenomenon in disease 
but not in controls, and in multiple disease states and 
with different transcripts [20]. This could indicate that 
the on/off gene expression pattern is related to either 
medication or to the underlying disease process. In our 
study, the IRF1 transcript which was expressed in an 
on/off pattern was an eQTL. This could suggest genetic 
variation as a cause of the on/off pattern, although it 
is a trans-eQTL and thus would not represent a sim-
ple impact upon a cis-regulatory element. We have 
observed trans-eQTLs in this study despite measuring 
some of the transcripts for the annotated cis-gene vari-
ants being studied. We did not include each transcript 
in the region of the SNPs studied, and thus, we did not 
emphasize cis-eQTLs, but instead focused on mono-
cyte-relevant transcripts that result from pathway acti-
vation events in the cell.

There are some limitations of this study. We have 
studied limited number of target genes and well-
established SLE risk alleles; however, future stud-
ies are needed to include additional risk alleles and 

more diverse transcripts related to SLE pathogenesis. 
This will help in identifying additional eQTLs and in 
delineating the effect of risk variants in different cell 
types through cis or trans transcript regulation. Sec-
ond, it is will be interesting to follow up the surpris-
ing on/off gene expression pattern in other disease 
states, larger control samples, and across different 
cell types. We expect that this should be done using 
single cell qPCR along with single cell RNA-seq, and 
the qPCR method may be more sensitive to detect 
this pattern.

Conclusions
Studying single-cell eQTLs in SLE patient immune 
cells has allowed for novel insights which could not 
be achieved using previous mixed immune cell gene 
expression methods. These data support the impor-
tance of the SPP1 and TNFAIP3 risk variants and the 
IRF1 transcript in SLE patient monocyte function. 
This approach would be of great utility to detect dif-
ferential transcription related to SLE-risk loci across 
multiple primary human cell types. This approach 
addresses a major frontier in complex autoimmune 
disease genetics, allowing us to understand how the 
function of a given risk allele varies by cell type in 
humans.
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Bars show the median, error bars show the interquartile range. Data from 
public database as reported in Haradhvala, N.J., et al., Cancer Research, 
2019.
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 30 
Abstract 31 
Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic 32 
loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents 33 
determining if the same allele is responsible, indicating a shared underlying mechanism. Using a 34 
collection of 129,058 cases and controls across six diseases, we show that ~40% of overlapping 35 
associations are due to the same allele. We improve fine-mapping resolution for shared alleles two-fold 36 
by combining cases and controls across diseases, allowing us to identify more eQTLs driven by the 37 
shared alleles. The patterns of sharing indicate widespread shared mechanisms, but not a single global 38 
autoimmune mechanism. Our approach can be applied to any set of traits, and is particularly valuable as 39 
sample collections become depleted. 40 
 41 
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 44 
Autoimmune and inflammatory diseases are a heterogeneous group of disorders, where activation of 45 
both the adaptive and innate immune system coupled with loss of self-tolerance leads to target tissue 46 
destruction1. These diseases are heritable, and genome-wide association studies (GWAS) have identified 47 
hundreds of susceptibility loci, confirming their polygenic nature2,3. Like other complex disease risk traits, 48 
heritability is strongly enriched in gene regulatory regions active in specific cell populations4–6, suggesting 49 
risk is mediated to a large extent by altering gene expression in specific cell types under specific 50 
conditions. These diseases are also comorbid7,8, with dual diagnoses being more frequent in individuals 51 



than expected by chance, and multiple diseases aggregating in families9. We and others have shown 52 
that many genetic loci harbor risk variants for multiple autoimmune diseases10–12, suggesting that 53 
comorbidity may be due to shared genetic liability and, hence, shared mechanisms of disease. In 54 
particular, a previous survey of five chronic inflammatory conditions found widespread sharing of risk 55 
effects, indicating the presence of such shared pathways11. 56 

57 
Instances of pleiotropy, where the same variant influences risk to more than one disease, would by 58 
definition point to a shared molecular effect, and thus a shared mechanism. The limited resolution of 59 
genetic mapping has made it difficult to distinguish such cases from situations where distinct genetic 60 
variants in the same locus mediate risk to different diseases. This limited resolution restricts our ability to 61 
uncover shared pathogenic mechanisms, understand why modulating some immune functions can 62 
increase risk to one disease whilst decreasing risk to others, or make inferences about the origins of 63 
these diseases and their different prevalence rates around the world. Several methods have been 64 
developed to leverage pleiotropy to look for shared associations; when applied to autoimmune and 65 
inflammatory diseases, these methods have shown substantial sharing, which mirrors the overall shared 66 
heritability of these diseases13–16. 67 

68 
An important driver of the limited resolution of genetic mapping is disease cohort sample size17. Currently 69 
available disease cohorts, most of which have been extensively studied already, are the result of 70 
decades-long international recruitment efforts. Meaningful increases in sample size are thus difficult to 71 
envision in the immediate future. An alternative way to increase sample size, and thus genetic mapping 72 
resolution, would be to jointly analyze cohorts across diseases. Previous studies have not taken this 73 
opportunity to explicitly increase fine-mapping resolution through pleiotropy, which we pursue here. In 74 
conventional meta-analyses of cohorts with the same disease, we assume that any associations are 75 
shared across strata. Most pleiotropy mapping methods also assume that effects are shared across 76 
diseases18; however, it is unclear whether this approach will work at loci that contain multiple associations 77 
that vary across diseases (e.g. IL2RA). We cannot make this assumption across diseases. It is thus 78 
crucial to ensure that the same allele drives risk to two or more diseases, rather than separate alleles in 79 
the same genomic locus. 80 

81 
Here, we first show substantial genome-wide shared heritability between autoimmune and inflammatory 82 
diseases. We then look at 224 instances where genetic associations to multiple diseases occur in the 83 
same genomic region, and show that 41.5% of these observed associations are due to pleiotropic 84 
variants, with the remainder being due to different alleles in the region. When we combine cases and 85 
controls across diseases to map each shared association, we increase fine-mapping resolution two-fold 86 
on average. This increase in resolution is meaningful, as it reveals new instances where a shared disease 87 
risk effect is pleiotropic with an immune cell subtype eQTL. Comorbidity is widespread between diseases 88 
of all organ systems, and sample sizes are limited, so this strategy is widely applicable beyond the 89 
immune-mediated diseases. Thus, this approach to careful dissection of shared effects can reveal 90 
mechanisms that are common across diseases and pinpoint key genes driving shared biology. 91 

92 
Results 93 
Autoimmune and inflammatory diseases share heritability 94 
We first assessed the evidence for genome-wide shared heritability between 17 autoimmune and 95 
inflammatory diseases from GWAS summary data. After quality control, we used LD score regression19 96 
to estimate heritability (hg2) for each trait (Supplementary Fig. 2a). We found that 11/17 diseases had 97 
sufficient heritability captured by common variants to make these comparisons meaningful (Z-score > 98 
4)20, so we restricted our analysis to this subset. We then calculated the proportion of shared heritability99 
between each pair of diseases, again using LD score regression, which is robust to sample overlaps 100 
between cohorts20. We found a broad pattern of shared heritability (Fig. 1), with the strongest overlaps 101 
between atopic dermatitis, asthma and allergic traits (0.51 ≤ rg ≤ 0.91), which may represent a shared 102 



basis for atopic inflammatory disease. We saw a strong correlation between systemic sclerosis and 103 
systemic lupus erythematosus, which were also correlated with primary biliary cirrhosis (0.42 ≤ rg ≤ 0.86). 104 
In line with our previous findings10,21, these results indicate that autoimmune and inflammatory diseases 105 
share a substantial portion of genetic risk factors, even when accounting for the major histocompatibility 106 
locus (MHC), where overlapping haplotypes confer risk to different autoimmune and inflammatory 107 
diseases22. Overall, this suggests that some mechanisms are common between sets of diseases, but we 108 
find no evidence of universal sharing indicative of a large core autoimmune susceptibility component10,21. 109 

110 
[Fig. 1: Joint analysis of shared autoimmune disease risk alleles improves fine-mapping two-fold.] 111 

112 
Autoimmune diseases share genetic associations 113 
While this shared heritability gives an overall impression of the relationship between diseases, it cannot 114 
identify specific genetic risk factors—and thus, genes and pathways—shared between diseases. To 115 
compare samples from different collections genotyped at different centers, it was important to minimize 116 
batch effects by ensuring all samples were profiled on the same platform. We therefore chose six 117 
autoimmune and inflammatory diseases with large numbers of samples genotyped on the ImmunoChip23 118 
(celiac disease, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, systemic lupus 119 
erythematosus and type 1 diabetes; Supplementary Fig.1). This targeted array interrogates variants in 120 
188 known risk loci to saturation, representing only 1.9% of the genome but capturing 38-86% of risk loci 121 
that have been identified in the six diseases (Supplementary Fig. 2a). Using partitioned LD score 122 
regression, we confirmed that ImmunoChip regions account for 27.6% (MS) to 46.3% (CeD) of the 123 
estimated heritability for five of the six diseases for which GWAS data was available (Supplementary Fig. 124 
3b). After quality control, removal of population outliers, resolution of duplicate and related samples, and 125 
imputation to the 1,000 Genomes reference haplotypes, we analyzed a total of 104,302 SNPs in 188 126 
non-MHC genomic regions for association with disease in 82,630 cases and 104,573 controls 127 
(Supplementary Fig. 1). 128 

129 
We first identified associations across the 188 loci in each disease independently by assembling cases 130 
and controls into homogeneous population strata and meta-analyzing across these groups. As multiple 131 
independent associations at a locus have been described in all diseases, we used stepwise logistic 132 
regression followed by fixed-effects meta-analysis to allow for such effects. Results from fixed-effects 133 
and random-effects models were not meaningfully different (Supplementary Fig. 4). An orthogonal 134 
backward selection analysis with GCTA24 recapitulated at least 90% of our findings (Supplementary Fig. 135 
5). We found 197 independent associations in 123 different ImmunoChip loci at genome-wide 136 
significance (P < 5 x 10-8), and 361 associations at 166 loci with suggestive association evidence (P < 137 
10-5, Supplementary Fig. 2b). Overall, we find some level of support for essentially all known genome-138 
wide significant effects in the ImmunoChip regions. 139 

140 
We found substantial evidence for multiple independent associations within loci, with 7% (RA) to 30% 141 
(IBD) of loci exhibiting more than one independent effect (Supplementary Fig. 2c). This included three 142 
instances of associations that have not been reported before (Supplementary Fig. 6). In celiac disease, 143 
we found suggestive unconditioned associations at two loci: a variant intronic to ANKS1A on chromosome 144 
6 (rs12206298; P = 4.1 × 10-7), and a variant intronic to CTSH on chromosome 15 (rs3784539; P = 1.3 × 145 
10-5). After conditional association, both these associations passed the genome-wide significance146 
threshold (P = 4.9 × 10-8 and 1.1 × 10-8 respectively). We found evidence of a second, independent effect 147 
in each locus (rs4713844, P = 9.9 × 10-8; and rs7181033, P = 8.7 × 10-5). Similarly, in IBD, we found that 148 
a suggestive association in the CLEC16A locus on chromosome 16 (rs7201325, P = 1.4 × 10-7) reached 149 
genome-wide significance after conditioning (P = 1.1 × 10-10), with evidence of a secondary, independent 150 
effect (rs55773334, P = 7.6 × 10-5). The presence of multiple masked independent effects highlights the 151 
need to look carefully at suggestive associations. 152 

153 



Having ensured we were capturing most of the known associations in ImmunoChip loci for each of the 154 
six diseases, we looked for shared effects across diseases, i.e. whether the same variant mediates risk 155 
to more than one disease. We found 218 overlapping conditionally independent associations at 98 loci 156 
(a lead variant associated to one disease at P < 10-5, and a lead variant for another disease P < 10-4; 157 
both lead variants being in LD r2 > 0.5 with at least one common SNP). Using joint likelihood mapping 158 
(JLIM), we found evidence of a shared effect in 90/218 (41.3%) such overlaps, involving a total of 56 159 
conditionally independent shared effects spanning 52 unique loci (Fig. 1b). Of these, 42 effects were 160 
shared between two diseases, nine between three, and five between four diseases (Fig. 1c). Unlike 161 
previous reports, which could not distinguish between shared and distinct associations with multiple 162 
diseases in a locus, these observations indicate that many mechanisms are shared between autoimmune 163 
and inflammatory diseases. 164 

165 
We found three loci where multiple conditionally independent associations for one disease were shared. 166 
In the STAT4 locus, we found two independent effects each for RA and SLE were shared (Supplementary 167 
Fig. 7a). In the CD28-CTLA4 locus, one T1D risk association near CD28 is shared with CeD, whereas 168 
another, an intronic variant in CTLA4 is shared with RA (Supplementary Fig. 7b). In the TYK2 locus, one 169 
RA risk association is shared with SLE, IBD, and T1D; a second association, localizing to ICAM3, is 170 
shared with SLE alone (Supplementary Fig. 7c). Cumulatively, these examples demonstrate that disease-171 
associated alleles in the same locus can have different consequences, and that careful comparisons 172 
across diseases can distinguish each effect. 173 

174 
Shared associations improve fine-mapping resolution 175 
We next assessed if joint analysis across diseases could improve fine-mapping resolution. For each of 176 
the 56 shared associations, we assembled conditionally independent association data across all disease 177 
cohorts sharing that association, and combined them with fixed-effects, inverse variance-weighted meta-178 
analysis. In a subset of loci, we saw an unexpected decrease in significance and increase in 179 
heterogeneity in the meta-analysis; we found these to be shared associations with opposite effects, where 180 
an allele increases risk for one disease and decreases it for the other (Supplementary Figs. 8-16). In five 181 
of these nine cases, variants with opposing effects were shared between MS and IBD. After inverting the 182 
association statistics to account for these effects, our meta-analysis resulted in higher significance for 183 
122/131 (93.1%) associations across all 52 loci harboring a shared effect, demonstrating the potential to 184 
bolster association findings with our approach. 185 

186 
To establish if this increase in sample size provides a meaningful increase in fine-mapping resolution, we 187 
used FINEMAP25 to calculate posterior inclusion probabilities for SNPs at each of the 56 shared effects, 188 
both in individual diseases and in the cross-disease meta-analysis. We then calculated 95% credible sets 189 
for each disease, both before and after cross-disease meta-analysis. We found a substantial decrease 190 
in the mean credible interval size, from 36.6 (s.d. 46.8) to 16.5 (s.d. 20.0), representing an improvement 191 
of 55% (Fig. 1e). We saw resolution improvement across the spectrum of initial association evidence, 192 
with the largest gains where an effect had relatively weak evidence of association in a disease: for 193 
associations below genome-wide significance in a single disease, our resolution increased from a mean 194 
of 50.8 SNPs to 18.0 SNPs after cross-disease meta-analysis; for associations already above genome-195 
wide significance in a single disease, we saw improvement from a mean of 21.8 SNPs to 14.9 SNPs. 196 
This is exemplified by a shared association in the C1orf106 locus on chromosome 1, where credible 197 
intervals of 28, 8, and 11 SNPs for CeD, IBD and MS respectively are reduced to eight variants in very 198 
tight linkage disequilibrium (minimum r2 = 0.976) on cross-disease meta-analysis (Fig. 2). In this case, 199 
there are genome-wide significant associations in each disease independently, but increasing sample 200 
size from symmetric equivalent 19,026 (CeD), 53,312 (IBD), 35,618 (MS) to a cross-disease meta-201 
analysis 93,001 (symmetric equivalent) increases the resolution for both CeD and MS, identifying a core 202 
risk haplotype within C1orf106. As the eight variants in this haplotype are in near-perfect LD, we may 203 
have reached the limit of fine-mapping resolution at this locus using samples of a single ancestry. 204 



205 
[Fig. 2: A shared effect on chromosome 1 can be fine-mapped to eight variants across celiac disease, 206 
inflammatory bowel disease, and multiple sclerosis.] 207 

208 
Shared associations indicate common mechanisms 209 
The ultimate promise of increasing fine-mapping resolution is to increase the interpretability of association 210 
signals. We and others have shown that disease risk associations are enriched in non-coding regions 211 
with gene regulatory potential4,5,26,27. We have used the JLIM approach to show that autoimmune disease 212 
associations are sometimes shared with expression quantitative trait locus (eQTL) signals28, indicating 213 
the risk allele also influences gene expression. However, most associations are not shared with an eQTL, 214 
nor are they attributable to coding variants. To assess if this is due to limitations in fine-mapping 215 
resolution, we looked for shared associations between the 56 shared effects we discovered and cis-216 
eQTLs for nearby genes in naïve T cells, monocytes and neutrophils in the BLUEPRINT29 dataset. We 217 
found 137 shared effects between each of 131 shared conditionally independent association signals in a 218 
single disease and eQTLs for nearby genes. We then looked for shared effects between the better-219 
powered cross-disease meta-analysis data in each of the 52 loci, and can attribute 19 new disease/eQTL 220 
effects to the underlying diseases (Fig. 3; Supplementary Table 6). Most of the implicated eQTLs are 221 
present in only one of the three cell types we interrogated, with T cells providing the largest number. We 222 
also exclude 13/137 disease/eQTL shared effects as no longer relevant because we do not find evidence 223 
of shared association between the cross-disease meta-analysis and eQTL data. Our gains primarily occur 224 
in cases where the cross-disease meta-analysis reduces the credible interval size (Fig. 3c), indicating 225 
that this gain of resolution drives these new observations. 226 

227 
The direction of shared eQTL effects indicate whether we should expect increases or decreases in 228 
expression for those genes to increase disease risk. We reasoned that we might also see the same 229 
direction of effect between cases and controls, where the risk state is magnified. We therefore looked at 230 
single cell RNA-seq data derived from T cells collected from a cohort of MS patients and healthy 231 
controls30. After quality control, we were able to detect twelve genes that were targets of eQTLs shared 232 
with MS risk signals in our analysis. We found a significant pattern of correlation (P = 0.018): when a 233 
disease risk allele increased expression of a target gene, we saw higher expression in cases than in 234 
controls, and when it decreased expression we saw lower levels in cases than in controls (Fig. 3d). This 235 
suggests that shared associations that drive risk-altering changes to gene regulation do in fact alter 236 
disease risk, and our results are uncovering pathogenic mechanisms. 237 

238 
[Fig. 3: The increased resolution of fine-mapping shared associations across diseases allows 239 
identification of more disease-eQTL overlaps.] 240 

241 
The relative direction of the disease and eQTL associations can also suggest specific mechanistic 242 
hypotheses. This is exemplified by an association in the RGS1 locus, shared between celiac disease and 243 
MS (Fig. 4). RGS1 encodes a regulator of G-protein mediated signaling active in immune cell populations. 244 
We had previously reported a shared association between an RGS1 eQTL in macrophages and both MS 245 
and CeD risk. We now show that the effect is shared between the two diseases; this better fine-mapped 246 
shared effect also overlaps with RGS1 eQTLs in multiple cell populations, not just macrophages. The 247 
cross-disease meta-analysis reduces the credible interval to 10 variants overlapping the promoter region 248 
of RGS1. The lead credible interval variant overlaps a region of accessible chromatin within an active 249 
enhancer immediately upstream of the RGS1 promoter. Further, this variant lies in a predicted binding 250 
site for ZNF263, and position-weight matrix analysis suggests the minor allele abrogates binding31. 251 

252 
[Fig. 4: Jointly analyzing an association shared between multiple sclerosis and celiac disease improves 253 
fine-mapping resolution and identifies a shared eQTL for RGS1.] 254 

255 



Discussion 256 
We have quantified the shared heritability between autoimmune and inflammatory diseases, and 257 
demonstrated that we can leverage this to identify genetic variants that alter risk to multiple diseases. In 258 
previous work, Ellinghaus et al. looked for shared effects between five chronic inflammatory diseases, of 259 
which only the subsets of IBD are in common with our work11. We observe, as they did, widespread 260 
sharing between diseases. Uniquely, we then meta-analyze across diseases and show this significantly 261 
increases fine-mapping resolution, compared to considering each disease in isolation: the number of 262 
effects where a single variant explains 95% of the posterior probability of association increases from 13 263 
to 20 (a 54% increase); for 50% of the posterior probability, we see an increase from 31 to 54 (74%). 264 
Furthermore, we see an increase in the number of eQTLs, with evidence of sharing an effect with disease 265 
risk, from 137 to 143 (4.4%). Thus, in terms of identifying causal variants and functional interpretation, 266 
meta-analyzing across diseases meaningfully increases our ability to interpret genetic associations. This 267 
sets the stage for variant-to-function efforts to uncover key pathogenic mechanisms, as we provide high-268 
value targets relevant to multiple diseases. 269 

270 
This approach can be applied to any set of traits sharing associations; we therefore suggest this is a 271 
fruitful avenue to maximize the interpretability of existing genetic studies of human complex traits, 272 
especially as shared mechanisms are applicable to multiple conditions. It is particularly valuable as 273 
sample collections, particularly of diseases that are difficult to diagnose or not especially common in the 274 
population, become depleted. Disease cohorts are often genotyped on different platforms, and the 275 
majority of common variants imputed. This can introduce a substantial bias, if cohorts of samples with 276 
different diseases have differential genome coverage. We have avoided this in our study by using a 277 
common platform, at the expense of not covering the entire genome. These technical hurdles will diminish 278 
as genotyping platforms coalesce around a standard set of variants, and as the community shifts to 279 
whole-genome sequencing rather than genotyping. We note that biological interpretation of genetic 280 
associations, shared or otherwise, is dependent on access to molecular and cellular phenotype studies 281 
such as eQTLs, which require profiling a wide array of tissues or cell types under diverse stimuli in order 282 
to identify the consequences of disease-associated variants. The BLUEPRINT dataset, which we used 283 
here, covers three very different blood cell types, but dozens more exist, in which the variants we have 284 
identified could act. This context specificity may be one reason we cannot always assign a cognate eQTL 285 
to each well-resolved association32. 286 

287 
In terms of understanding the common mechanisms in autoimmunity, we and others have reported that 288 
many loci harbor associations to multiple autoimmune diseases. However, these approaches have relied 289 
on simple proximity of variants to infer that the underlying mechanisms must be shared. We have 290 
quantified the shared heritability between autoimmune and inflammatory diseases, and shown that a 291 
substantial proportion of shared loci harbor pleiotropic effects influencing risk to multiple diseases, which 292 
represent shared mechanisms. Many loci, however, harbor multiple independent effects, indicative of 293 
distinct mechanisms driving risk to different diseases; this is consistent either with the same underlying 294 
genes being influenced in different contexts to induce risk for different diseases, or with different genes 295 
which happen to be encoded near each other. Previous studies by us and others were not designed with 296 
this resolution10, and could only identify loci harboring potentially different effects to multiple diseases. 297 

298 
Our results reveal complex patterns of shared heritability between autoimmune diseases. In particular, 299 
we find many opposite effects shared between IBD and MS, where the same allele increases risk for one 300 
disease but decreases risk for the other. This is reminiscent of the differential outcomes of anti-TNFα 301 
therapies, which are beneficial in IBD but exacerbate MS symptoms33, as initially suggested by dissection 302 
of risk effects impacting the TNF receptor 134. Further, it suggests that some disease mechanisms may 303 
have an optimum state, and either hypermorphism or hypomorphism are deleterious, as previously 304 
suggested15. However, these two diseases also have the largest number of cases in our analysis. We 305 
therefore cannot completely exclude the possibility that opposing effects are widespread but we lack 306 



power to detect them. Overall, we see no evidence for a substantial component of risk shared across all 307 
six diseases, which would be indicative of a pan-autoimmunity mechanism. Our benchmarking suggests 308 
this is not due to a lack of power to detect shared effects28, and our results strongly support independent 309 
effects in most loci. As our results argue against a single, shared autoimmune mechanism, they also 310 
dispute a single evolutionary origin for autoimmune and inflammatory diseases, which would have 311 
resulted in a set of risk alleles driving broad autoimmunity16. 312 

313 
Methods 314 
Shared heritability analysis 315 
We downloaded complete summary statistics for all autoimmune and inflammatory disease GWAS 316 
available in the NHGRI-EBI GWAS catalog35. We focused on European ancestry studies with at least 317 
2,000 subjects for which signed summary statistics were available. Where multiple studies were available 318 
for a given trait, we chose the study with the largest cohort size. By applying these filters, we obtained 319 
GWAS statistics for atopic dermatitis (AtD)36, allergic traits (All)37, asthma (Ast)38, celiac disease (CeD)39, 320 
eosinophilic granulomatosis with polyangiitis (EGPA)40, selective IgA deficiency (sIgAD)41, inflammatory 321 
bowel disease (IBD)3, latent autoimmune diabetes in adults (LADA)42, primary biliary cirrhosis (PBC)43, 322 
primary sclerosing cholangitis (PSC)44, psoriatic arthritis (PsA)45, systemic lupus erythematosus (SLE)46, 323 
systemic sclerosis (SSc)47, and vitiligo (Vit)48. IBD summary statistics also included results for Crohn’s 324 
disease (CD) and ulcerative colitis (UC); as expected, these exhibited high correlation as they share 325 
some, but not all of their genetic architecture (data not shown). We downloaded summary statistics for326 
psoriasis (Ps)49 from dbGaP and summary statistics for rheumatoid arthritis (RA)50 from GRASP. We 327 
obtained multiple sclerosis (MS) summary statistics from the International MS Genetics Consortium2. 328 
Sources and accession numbers for included studies are documented in Supplementary Table 2. 329 

330 
We first removed indels and single nucleotide polymorphisms (SNPs) inconsistent with the 1,000 331 
Genomes Project (Phase 3) reference panel51. We next filtered for strand-unambiguous biallelic SNPs 332 
with minor allele frequency (MAF) > 0.01 in the 1,000 Genomes European (EUR) reference subjects. 333 
Following Bulik-Sullivan et al.20, we removed variants with INFO < 0.9 where this information was 334 
available. As INFO scores were not available for most datasets, we uniformly filtered on SNPs present in 335 
the HapMap 352 reference panel. Where differing effective sample sizes were provided for each variant, 336 
we removed SNPs genotyped in fewer than two-thirds of the 90th percentile population size. 337 

338 
After quality control, we used linkage disequilibrium (LD) score regression19 to estimate heritability (hg2) 339 
for each trait from summary statistics, using the 1,000 Genomes EUR individuals as reference. As 340 
recommended by the developers20, we excluded traits with heritability Z-scores < 4 from further analysis. 341 
We next used LD score regression to calculate correlations (rg) among all pairs of the remaining traits. 342 

343 
ImmunoChip datasets 344 
We obtained raw ImmunoChip genotypes for six autoimmune and inflammatory diseases (Supplementary 345 
Fig. 1; Supplementary Table 2), including CeD53, IBD54, MS55, RA56, SLE57,58 and type 1 diabetes (T1D)59. 346 
Each of the participating disease consortia provided data, including two separate SLE consortia (OMRF 347 
and Genentech). For the CeD and SLE datasets, we used GenomeStudio to call genotypes from intensity 348 
files. 349 

350 
After resolving conflicting SNP nomenclature and allelic encoding across datasets, we lifted these over 351 
from GRCh36 (hg18) to GRCh37 (hg19). We excluded SNPs that could not be mapped unambiguously 352 
to the newer assembly. 353 

354 
All datasets consisted of multiple strata, typically divided by country of origin (Supplementary Table 3). 355 
We therefore divided datasets into country-level strata and performed quality control independently within 356 



each stratum. As one of the T1D datasets consisted of affected sibling pairs, we processed this 357 
separately. 358 

359 
Genotype quality control 360 
Quality control and association analysis are discussed in detail in the Supplementary Materials and here 361 
in brief. We used PLINK60 to perform initial quality control. Within each stratum, we first removed 362 
individuals missing >10% of genotypes, and SNPs that were missing in >5% of individuals. We then 363 
assessed the remaining samples for sex inconsistencies. Where X chromosome genotypes were 364 
available, we calculated X chromosome homozygosity for each individual. We then used Mclust61 to 365 
divide samples into male and female clusters assuming a Gaussian mixture model with two components. 366 
Inferred sex was used where these were not specified in the original datasets. Individuals were removed 367 
if their recorded sex differed from the model-inferred sex. 368 

369 
We focused our analysis on individuals of European descent. To identify population outliers, we merged 370 
our genotype data with reference data from the 1,000 Genomes Project51 and performed principal 371 
component analysis62. We removed samples with a smaller Euclidean distance to the EAS or AFR 372 
centroids than to the EUR centroid. We then repeated principal component analysis and removed 373 
samples with a smaller Euclidean distance to the SAS centroid than to the EUR centroid. At each step, 374 
samples that did not correspond to an identifiable reference population were removed empirically. 375 

376 
After removing population outliers, we removed SNPs exhibiting deviation from Hardy-Weinberg 377 
equilibrium expectation (P < 10-8). We next identified and removed subjects with extreme homozygosity. 378 
We used PLINK to calculate inbreeding coefficients (F) for each individual. Within each stratum, we 379 
removed individuals with F > 2.5 s.d. from the stratum mean. We next applied a second, more stringent 380 
filter for missing values, removing individuals with >1% missing data and SNPs missing in >1% of 381 
individuals. 382 

383 
We then identified close relatives (π" > 0.185) and duplicates (𝜋$  > 0.90) within each disease dataset.384 
Duplicates were removed from further analysis. Relatives were excluded from a second Hardy-Weinberg 385 
equilibrium assessment, where we filtered SNPs that violated Hardy-Weinberg equilibrium at P < 10-5. 386 
We included relatives to provide additional chromosomes for phasing and imputation; we removed these 387 
before association testing. After quality control, we excluded strata with fewer than 150 remaining cases 388 
or controls. 389 

390 
A total of 168,928 subjects were available for analysis after quality control. After identifying and removing 391 
control samples that were shared among studies, we were left with 129,058 unique individuals. The 392 
numbers of subjects supplied and analyzed are indicated in Supplementary Fig. 1. More detail on the 393 
numbers of subjects per stratum are given in Supplementary Table 3. A detailed accounting of all subjects 394 
(Supplementary Table 4) and SNPs (Supplementary Table 5) can also be found in the Supplementary 395 
Data. 396 

397 
Imputation and association analysis 398 
Before imputation, we removed indels, rare SNPs (MAF < 0.05) and SNPs that were missing differentially 399 
between cases and controls (P < 10-5). We then used SHAPEIT263 to remove SNPs that were inconsistent 400 
with the 1,000 Genomes (Phase 3) reference haplotypes and to phase remaining SNPs. We used 401 
IMPUTE264 to impute reference SNPs that were not genotyped, and to fill in sporadically missing 402 
genotypes. A subset of genotyped SNPs could not be reliably imputed from the reference haplotypes 403 
(concord_type0 < 0.75 despite info_type0 > 0.8). As these were either mis-mapped or unreliably 404 
genotyped, we excluded these SNPs and performed a second round of imputation as above. 405 

406 



We removed imputed SNPs if they did not have two alleles present, if they were imputed with INFO < 407 
0.75, or if they had MAF < 0.05. We also removed variants that violated Hardy-Weinberg equilibrium at 408 
P < 0.001, and those that exhibited differential missingness between cases and controls at P < 0.01. 409 
 410 
We used SNPTEST65 to perform logistic regression of imputed genotype dosages against phenotype in 411 
each stratum, incorporating the first two principal components as covariates into an additive model. We 412 
then combined association statistics into a fixed-effects, inverse variance-weighted meta-analysis66 for 413 
each disease. The extended MHC (6:28-34 Mb, GRCh37 coordinates) was excluded from analysis. 414 
 415 
To allow for multiple independent effects at a given locus, we used iterative stepwise conditional logistic 416 
regression. For each iteration after the first, we repeated logistic regression in each stratum, this time 417 
conditioning on all previously identified meta-analysis lead SNPs with P < 0.0001. Results were again 418 
combined in a fixed-effects meta-analysis. We restricted our search for lead variants to SNPs present in 419 
all strata, with I2 < 50 and r2 < 0.9 to all previous lead SNPs. Where such a lead SNP could be identified, 420 
we added this to the list of conditioning variants and proceeded with another round of association testing. 421 
We continued conditioning until we detected three independent signals or no variants with P < 0.0001 422 
remained. 423 
 424 
Our iterative conditioning approach produced a set of independent associations for each trait at each 425 
ImmunoChip locus. To identify conditionally independent association signals at each locus, we iterated 426 
over the set of lead variants, this time conditioning on the all-but-one variant. For this analysis, we again 427 
required SNPs to be present in all strata, with I2 < 50. We validated our forward selection results using a 428 
reverse selection method implemented in GCTA. As this analysis produced results nearly identical to our 429 
reverse selection model (Supplementary Fig. 5), we used the reverse stepwise conditioning results in 430 
subsequent analyses. 431 
 432 
Identification of shared genetic effects 433 
We used Joint Likelihood Mapping (JLIM)28 to identify genetic effects that are shared across multiple 434 
diseases at each ImmunoChip locus. The method relies on permutation of genotype-level data, so we 435 
restricted our analysis to diseases with data available for large numbers of samples. We wished to 436 
analyze trait pairs exhibiting at least moderate strength of association; we therefore identified pairs of 437 
traits at each locus with lead variants significant at P1 < 0.00001 and P2 < 0.0001. To ensure a moderate 438 
degree of linkage disequilibrium between assessed traits, we identified the set of variants with r2 ≥ 0.5 to 439 
each lead variant; trait pairs were assessed for a common underlying genetic effect where these sets 440 
shared at least one variant. To this initial set of candidates, we added additional trait pairs that appeared 441 
similar based on their Manhattan plots. 442 
 443 
For each analyzed trait pair, we identified and removed shared controls before JLIM analysis. We then 444 
applied JLIM in both directions, using each trait alternately as the primary and secondary trait. We set 445 
the analysis window to be the maximal coordinates of the union of the r2 ≥ 0.5 windows; resolution was 446 
set to the default r2 = 0.8. Linkage disequilibrium in the primary trait was estimated from 1,000 Genomes 447 
reference data; for the secondary trait, we estimated this directly from best-guess genotypes. 448 
 449 
We estimated JLIM significance by permutation. For each permutation, we shuffled phenotype labels 450 
independently in each disease stratum and repeated logistic regression and meta-analysis as above. A 451 
minimum of 10,000 permutations were performed for each trait pair. 452 
 453 
To identify clusters of traits sharing a common genetic effect, we analyzed pairwise JLIM results as 454 
graphs. Edges were defined between traits where JLIM was significant at P < 0.05. Maximal connected 455 
undirected subgraphs were then identified at each locus. For subgraphs of size greater than two, we 456 



repeated JLIM for each ordered pair of traits in the subgraph, this time using a common analysis window 457 
defined by the union of the r2 ≥ 0.5 windows for all traits in the subgraph. 458 

459 
We validated our results by comparing with coloc2 (Supplementary Table 1). We identified a single false 460 
positive (the SOCS1 locus) and removed this from our analysis. 461 

462 
Fine-mapping of susceptibility loci 463 
For each cluster of traits sharing a common genetic effect, we combined data by meta-analysis. Duplicate 464 
samples were identified and removed from each cluster. We then repeated logistic regression and meta-465 
analysis as described above. We used the I2 statistic to assess variants for heterogeneity. Within each 466 
disease, variants were excluded if I2 ≥ 50, or if they were present in fewer than half of the constituent 467 
strata. To be included in fine-mapping analysis, variants were required to have survived filtering in all 468 
diseases of a given cluster. 469 

470 
Trait pairs with opposing effect directions were identified by linear regression. For each pair, we regressed 471 
SNP Z scores for the first trait against corresponding Z scores for the second trait. We considered trait 472 
pairs to have opposing effect directions when their slope term was negative and statistically significant. 473 
For such trait pairs, we reversed the direction of the effect for one trait and repeated meta-analysis. 474 
Opposing trait pairs were confirmed by comparing heterogeneity statistics before and after reversal. 475 

476 
For each shared effect cluster, we used FINEMAP25 to estimate posterior inclusion probabilities for each 477 
variant within our shared effect clusters. SNP correlation matrices were calculated from genotypes for 478 
each trait. We assumed a single causal variant at each locus and performed an exhaustive search. We 479 
quantified fine-mapping improvement by comparing the number of SNPs in 95% credible intervals for 480 
individual disease traits, and for meta-analyzed clusters. 481 

482 
Expression quantitative trait locus (eQTL) data 483 
We obtained and quantitated raw RNA-sequencing reads from three human immune cell types from the 484 
BLUEPRINT consortium29: neutrophils (CD66b+ CD16+; 196 individuals), monocytes (CD14+ CD16-; 485 
193 individuals), and naïve CD4 T cells (CD4+ CD45RA+; 169 individuals). Subjects in this study were 486 
ascertained to be free of disease and were representative of the United Kingdom population. We used 487 
the GTEx Analysis V8 pipeline (https://gtexportal.org)67 to align FASTQ files, filter for quality control and 488 
quantitate gene expression. Briefly, we used STAR v2.5.3a to align reads to GRCh38. We quantitated 489 
expression to the gene level with RNA-SeQC v1.1.9, using the GENCODE 26 gene model. We included 490 
genes with expression values >0.1 TPM and ≥6 reads in at least 20% of samples; we then normalized 491 
counts using the trimmed mean of M-values (TMM) method implemented in edgeR68. We then normalized 492 
expression across samples using an inverse normal transformation. We retained all samples for analysis 493 
as none had fewer than the minimum 10 million reads. 494 

495 
We obtained genotype data for all individuals with available gene expression data; a total of 7,008,524 496 
variants were available. Whole-genome sequencing, alignment, variant calling and quality control were 497 
performed previously29. All SNPs were biallelic. We removed indels and SNPs with MAF < 0.05 or that 498 
violated Hardy-Weinberg equilibrium at P < 0.00001. There were no heterozygosity outliers, defined as 499 
samples with heterozygosity > 5 standard deviations from the sample mean. Similarly, there were no 500 
cryptic relatives (𝜋$ > 0.1875) or population outliers (>4 standard deviations in the first four PCs). A total 501 
of 4,853,096 variants were available for analysis in 197 subjects. 502 

503 
Identification of shared susceptibility-eQTL loci 504 
We used JLIM to identify shared eQTL–disease susceptibility loci. Disease susceptibility summary 505 
statistics were lifted over to GRCh38 coordinates. For each shared effect, we assessed all genes with 506 
transcription start site within 1 Mb of any susceptibility lead SNP. We regressed normalized expression 507 



values for these genes against genotype in a linear model, assuming an additive model of inheritance. 508 
We used covariates to adjust for age, sex the first 5 principal components and 30 PEER factors69. The 509 
same covariates were used to generate permutation data for JLIM. 510 

511 
To allow for multiple independent eQTLs within a given locus, we performed conditional cis-eQTL 512 
analyses. For eQTL with P < 0.001, we repeated linear regression modelling, this time conditioning on 513 
the lead SNP from the first model. We continued adding lead variants to our model until either (a) the 514 
lead variant P ≥ 0.001 or (b) three conditioning SNPs had been included. To identify conditionally 515 
independent eQTL signals, we again iterated on the set of lead variants, this time conditioning on the all-516 
but-one variant. 517 

518 
After identifying conditionally independent eQTL signals for each gene, we used JLIM to assess for a 519 
common underlying genetic effect between disease susceptibility loci and eQTLs. We lifted summary 520 
statistics for susceptibility loci over to GRCh38 and used these as primary traits. Expression QTLs were 521 
used as secondary traits. For each primary trait, the JLIM analysis window was chosen to be the union 522 
of all SNPs ±100 kb from the lead SNP. We estimated significance by permuting eQTL expression values 523 
100,000 times for each trait. Within a given cluster of disease associations, we used the Benjamini-524 
Hochberg procedure to correct P-values for the number of genes and cell types assessed. 525 

526 
Single sell RNA-seq quality control 527 
We obtained raw sequencing data from a previously-published single cell RNA-seq (scRNA-seq) study 528 
of multiple sclerosis30. Sample collection and data preparation are described in detail in the original 529 
publication. Briefly, peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells were 530 
obtained from 6 healthy donors and 5 new-onset multiple sclerosis patients. For each donor, single cell 531 
suspensions were prepared for analysis using the 10x Genomics platform. We used unique molecular 532 
identifier (UMI) count matrices as described30. We filtered extreme outliers by excluding droplets with (a) 533 
<1000 UMI counts or <500 unique genes detected, or (b) >15,000 UMI counts or >5,000 genes detected. 534 
To exclude low-quality cells and potential doublets from our analysis, we examined the distributions of 535 
UMI counts and number of detected genes per cell. As distributions of these parameters varied across 536 
emulsions, we quantile-normalized log10-transformed UMI counts and log10-transformed number of 537 
detected genes per cell. Using quantile-normalized values and the percentage of counts mapping to 538 
mitochondrial genes, we excluded low-quality cells with <2,000 UMI counts, <900 genes detected, or 539 
>12.5% counts mapping to mitochondrial genes. We also excluded doublets with >8,000 UMI counts or540 
<2000 genes detected. 541 

542 
Dimensionality reduction and clustering. For cells passing quality control, we normalized UMI counts543 
using a count per million approach, dividing each count by the total number of counts per cell. We then 544 
multiplied normalized counts by 10,000 and added a pseudo count of 1 before log-transformation. We 545 
then applied a variance-stabilizing transformation (VST) to account for variation in gene expression levels 546 
across the dataset, and used genes with stabilized variance >1 and stabilized mean expression >10^-3^ 547 
as input for principal component analysis (PCA). Genes mapping to the T cell receptor (TCR), the B cell 548 
receptor (BCR) and the Y chromosome were excluded from PCA. We computed the first 50 principal 549 
components (PCs) using a partial singular value decomposition method, based on the implicitly restarted 550 
Lanczos bidiagonalization algorithm (IRLBA), as implemented in the Seurat package70. 551 

552 
To correct for systematic differences across samples we applied Harmony integration71 to the first 50 PC 553 
loadings. We then retained the first 30 harmony-corrected PCs, and used PC loadings as input for 554 
visualization using UMAP (minimum distance = 0.5, spread = 10), and clustering by applying the Louvain 555 
algorithm to a shared nearest neighbors (SNN) graph (resolution = 0.01), as implemented in Seurat. This 556 
low-resolution clustering separated T and NK cells from B cells and monocytes. We then selected T and 557 
NK cells and re-applied the same pipeline to the raw UMI counts to obtain a dedicated UMAP visualization 558 



and clusters of T cells (SNN k = 20 and Louvain resolution = 0.5), enabling us to distinguish between 559 
different T cell sub-populations. Using normalized log-transformed UMI counts, we computed the area 560 
under a receiver operating curve (auROC) to define diferentially expressed genes between each cluster 561 
pairs. Manual inspection of gene markers enabled us to define several sub-populations (by order of 562 
abundance): central memory CD4 T cells (cluster 0: CD4, CXCR5, LTB, KLRB1), naïve CD4 T cells 563 
(cluster 1: TCF7, CCR7, LEF1, CD4, STAB1, TSHZ2, NPM1, SELL), central memory CD8 T cells 1 564 
(cluster 2: CCL5, CD8A, GZMA, NKG7, GLNY, CD8A), naïve CD8 T cells (cluster 3: TCF7, NELL2, SELL, 565 
CCR7, LEF1, CD8A, CD8B), effector CD8 T cells 1 (cluster 4: CCL4, CCL5, GZMA, CST7, PRF1, CD8A, 566 
CD8B), natural killer cells (cluster 5: KLRG1, NKG7, PRF1, KLRB1, GZMK), regulatory T cells (cluster 6: 567 
FOXP3, IL10RA, TIGIT, CD4), gamma-delta T cells (cluster 7: TRDC, KLRB1, GLNY, KLRC1, CCL5, 568 
GZMA, PRF1), T follicular helper CD4 T cells (cluster 8: FAU, FTH1, VIM, CD4), megakaryocytes (cluster 569 
9: NRGN, PPBP, TUBB1, SPARC), type I interferon activated CD4 T cells (cluster 10: MX1, ISG15, IRF7, 570 
XAF1, IFI6), central memory CD8 T cells 2 (cluster 11: ZNF683, CD7, KLRC3, LEF1, CD8A, CD8B), 571 
central memory CD8 T cells 3 (cluster 12: TCF7, CD27, GZMK, CD8B). 572 
 573 
Pseudo-bulk analysis. We used cluster assignments to sum UMI counts across cell types, disease 574 
status, tissue and donor. For each cell type in the blood compartment (PBMCs), we used a negative 575 
binomial distribution with a local fit, as implemented in DESeq272 to model gene expression and test 576 
differences between cases and controls, while controlling for sex as a covariate. We used shrinkage to 577 
account for log2-fold change inflation on genes with low counts and used shrunken log2-fold change for 578 
subsequent analyses. We focused on cluster 0 for validation of T cell eQTL predictions as this cluster 579 
was most abundant. 580 
 581 
 582 
Resource availability 583 
Data availability. This paper analyzes existing, publicly available data. These accession numbers for the 584 
datasets are listed in Supplementary Table 2. 585 
 586 
Code availability. Code used in this analysis is available on GitHub 587 
(https://github.com/cotsapaslab/CrossDiseaseImmunochip). 588 
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Figure Legends 631 
 632 
Fig. 1: Joint analysis of shared autoimmune disease risk alleles improves fine-mapping two-fold. 633 
(a) We find broad genome-wide correlation between association statistics for susceptibility to thirteen 634 
autoimmune and inflammatory diseases for which genome-wide association data were available (allergy, 635 
All; asthma, Ast; atopic dermatitis, AtD; celiac disease, CeD; inflammatory bowel disease, IBD; multiple 636 
sclerosis, MS; primary biliary cirrhosis, PBC; rheumatoid arthritis, RA; systemic lupus erythematosus, 637 
SLE; systemic sclerosis, SSc; and vitiligo, Vit). Alleles were not available for type 1 diabetes (T1D). (b) 638 
This correlation is reflected in many loci harboring risk alleles to more than one of six diseases with 639 
available ImmunoChip data (lower triangle). Of these 218 pairs of associations, 90 are driven by the same 640 
underlying allele (upper triangle). (c) Risk alleles are mostly shared between two diseases (42 cases), 641 
with nine shared between three, and five between four diseases. (d) Nine shared alleles have opposite 642 
effect directions, increasing risk of one disease and decreasing risk of another. This is most frequent 643 
between MS and IBD. (e) Combining cases and controls across diseases increases fine-mapping 644 
resolution for these shared associations. We assess resolution as the number of variants required to 645 
explain 95% of the posterior probability of association. This credible interval decreases by 55% when 646 
combining samples across diseases (pink) compared to using only samples for one disease (orange). 647 
Associations that are not shared across diseases have similar credible interval distributions in individual 648 
diseases (teal). Outlying values (triangles) are winsorized; sizes of these credible intervals are indicated. 649 
 650 
Fig. 2: A shared effect on chromosome 1 can be fine-mapped to eight variants across celiac 651 
disease, inflammatory bowel disease, and multiple sclerosis. (a) Overlapping associations in celiac 652 
disease, inflammatory bowel disease and multiple sclerosis on chromosome 1, with 95% credible 653 
intervals varying both in number of variants and physical span. (b) For each pair of diseases, the strength 654 
of association (vertical axis) for the first trait decays in a linear fashion as a function of r2 to the lead SNP 655 
in the second trait, consistent with a shared causal variant. (c) Meta-analyzing across the three diseases 656 
gives a stronger association signal, which can be fine-mapped to a narrow interval within C1orf106. (d) 657 
We find strong pairwise evidence that the association is shared between all three diseases; JLIM is 658 
asymmetric, so we run comparisons in both directions. 659 
 660 



Fig.3: The increased resolution of fine-mapping shared associations across diseases allows 661 
identification of more disease-eQTL overlaps. (a) We looked for shared effects between disease 662 
associations and expression QTLs in loci harboring shared disease effects. When considering each 663 
disease separately, we find 137 significant disease—eQTL overlaps across monocytes, neutrophils and 664 
T cells from the BLUEPRINT consortium (left panel). When comparing eQTLs to cross-disease meta-665 
analyses, we find new overlaps (blue, middle panel) and no longer find evidence for some eQTLs (red, 666 
middle panel), for a grand total of 143 disease-eQTL overlaps (4.4% net discovery increase, right panel). 667 
(b) Some of the shared eQTL effects can be detected in multiple tissues, but most are restricted to a 668 
single cell type, indicating substantial effect specificity. (c) We find new eQTL shared effects in loci where 669 
the cross-disease meta-analysis decreases the credible interval substantially, suggesting this resolution 670 
drives new discoveries. Disease associations where an eQTL is lost after meta-analysis also have smaller 671 
credible intervals, suggesting these may have been false positive findings due to lack of resolution in 672 
individual disease datasets. (d) The effects of risk-increasing shared alleles on gene expression is 673 
mirrored in expression differences between multiple sclerosis cases and controls. This suggests that risk 674 
states imparted due to small changes in gene expression persist during active disease, and provide 675 
validation that our eQTL discoveries are relevant to pathogenesis. 676 
 677 
Fig. 4: Jointly analyzing an association shared between multiple sclerosis and celiac disease 678 
improves fine-mapping resolution and identifies a shared eQTL for RGS1. (a) Overlapping 679 
associations for the two diseases are due to a shared effect (JLIM P  = 5 × 10-5 for CeD as primary trait; 680 
P < 5 × 10-5 for MS as primary trait). Meta-analyzing across the two diseases increases the overall 681 
significance and produces a narrower credible interval (credible interval variants for each panel are in 682 
dark grey; the physical span of the credible interval is shaded grey). The credible interval focuses on the 683 
intergenic region proximal to RGS1. (b) This shared association is also shared with an eQTL for RGS1 684 
in naïve CD4 T cells (JLIM P = 0.015). (c) The lead disease-associated variant lies in a region of 685 
accessible chromatin in naïve CD4 T cells and total T cells. This is marked with H3K27ac in total T cells 686 
and with H3K4me1 in naïve CD4 T cells, suggesting this is an active, primed enhancer element. (d) The 687 
RGS1 eQTL lead variant predicts the disease association P value, further indicating this is a shared 688 
effect. (e) Disease and eQTL association effects are negatively correlated, indicating that disease risk is 689 
associated with lower RGS1 expression. (f) RGS1 is expressed at lower levels in T cells obtained from 690 
MS patients compared to healthy controls, confirming this risk effect direction. 691 
 692 
 693 
Supplementary Figure Legends 694 
 695 
Supplementary Fig. 1: Methods overview. (a) Schematic overview of cross-disease fine-mapping. We 696 
used joint likelihood mapping (JLIM) to identify susceptibility loci that are likely to share a common 697 
underlying causal variant across multiple autoimmune diseases (left panels). At such loci, we performed 698 
cross-disease meta-analysis, combining data for co-localized diseases into a fixed-effects model (middle 699 
panel, top). We then performed statistical fine-mapping; SNPs contained within the 95% credible interval 700 
are shown as filled black circles in this schematic. In general, cross-disease fine-mapping produced 701 
smaller credible intervals, in this schematic represented as a single causal variant. We next used JLIM 702 
to assess each susceptibility locus for overlap with cis-eQTLs in the BLUEPRINT dataset of naïve CD4 703 
T cells, monocytes and neutrophils. In this schematic, the meta-analysis signal overlaps with an eQTL 704 
signal (lower middle panel). At such overlaps, we expect the disease susceptibility signal to decay as a 705 
linear function of correlation to the eQTL lead variant. We also expect a linear correlation between 706 
corresponding effect sizes for susceptibility and eQTL gene expression (right panels). (b) Overview of 707 
the number of subjects assessed and which passed quality control. 708 
 709 
 710 



Supplementary Fig. 2: ImmunoChip covers a significant fraction of GWAS loci for six autoimmune 711 
diseases. (a) Between 38.5% (MS) and 85.7% (CeD) of previously identified, non-MHC GWAS 712 
susceptibility loci for CeD, IBD, MS, RA, SLE and T1D fall within high-density ImmunoChip regions. (b) 713 
The total number of conditionally independent associations declines as a function of P-value threshold, 714 
with 495 independent effects identified at P < 0.0001 and 202 independent effects identified at P < 5 × 715 
10-8. At all thresholds, the largest number of effects are identified for IBD, the largest dataset. (c) The 716 
majority of associated loci exhibit a single genetic effect at all thresholds. At P < 5 × 10-8, up to 13.6% of 717 
associated loci in IBD exhibit more than one effect; at the lowest threshold, multiple effects are seen at 718 
between 7.3% (RA) and 30.1% (IBD) of associated loci. 719 
 720 
Supplementary Fig. 3: Heritability of immune-mediated disorders is enriched in ImmunoChip 721 
regions. We used LD score regression to estimate heritabilities (hg2) for 17 immune-mediated disorders 722 
for which GWAS summary statistics were available. We excluded traits with heritability Z-scores < 4 723 
(indicated in pink) from further analysis. (a) Heritability estimates for the remaining 11 traits (observed 724 
scale) are highly variable, ranging from 0.068 (All) to 0.47 (SLE). While heritability is sensitive to 725 
population and method of estimation, we see that several estimates are smaller than expected, reflecting 726 
the influence of genomic control correction used in the original association studies. As this downward 727 
bias affects both numerator and denominator equally20, it does not influence genetic correlation analysis. 728 
(b) Using partitioned LD score regression6 to measure the proportion of heritability that can be attributed 729 
to ImmunoChip regions (~2% of the genome), we see broad patterns of enrichment, ranging from 16.8% 730 
(Vit) to 46.3% (CeD). AtD, atopic dermatitis; All, allergy; Ast, asthma; CeD, celiac disease; EGPA, 731 
eosinophilic granulomatosis with polyangiitis; IBD, inflammatory bowel disease; sIgAD, selective IgA 732 
deficiency; LADA, latent autoimmune diabetes in adults; MS, multiple sclerosis; PBC, primary biliary 733 
cirrhosis; Ps, psoriasis; PsA, psoriatic arthritis; PSC, primary sclerosing cholangitis; RA, rheumatoid 734 
arthritis; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; Vit, vitiligo. 735 
 736 
Supplementary Fig. 4: Fixed-effects and random-effects meta-analysis produced similar results. 737 
We conducted both fixed-effects and random-effects meta-analysis. We observe differences in effect 738 
size estimates for only a handful of variants, all are from one locus and all for SLE (highlighted in red). 739 
The effects are in the same direction, but magnitude is generally smaller in the fixed-effect analysis.  740 
 741 
Supplementary Fig. 5: Backward selection with GCTA recapitulates at least 90% of results 742 
obtained with JLIM. We reanalyzed all shared traits identified through forward conditional logistic 743 
regression with a reverse selection model implemented in GCTA. Most effects in our analysis were in 744 
tight linkage disequilibrium (r2 ≥0.8) with a GCTA lead variant (120/134, 89.6%). Of these, 117 GCTA 745 
associations were identical. 746 
 747 
Supplementary Fig. 6: Previously unreported ImmunoChip associations. Using conditional logistic 748 
regression to allow for multiple associated variants at a single locus, we identified three genome-wide 749 
significant associations (two for CeD, one for IBD) that were not reported in the respective publications. 750 
(a) Unconditional testing at the ANKS1A locus on chromosome 6 produced evidence of association that 751 
did not reach genome-wide significance in our analysis. Conditional testing produced genome-wide 752 
significance for a single variant within ANKS1A (rs12206298; P = 4.9 × 10-8), and suggestive evidence 753 
for a second effect (rs4713844; P = 9.9 × 10-8) in the region. Published summary statistics (lines, top 754 
panel) were also significant. The region may have been excluded from the initial publication as it is within 755 
the extended MHC. (b) Unconditional testing at the ADAMTS7—MORF4L1—CTSH locus on 756 
chromosome 15 in CeD did not reach genome-wide significance. Conditional testing revealed genome-757 
wide significance for a variant in CTSH (rs3784539; P = 1.1 × 10-8) and suggestive evidence for a second 758 
effect in MORF4L1 (rs7181033, P = 8.7 × 10-5). (c) Unconditional testing at the CLEC16A locus on 759 
chromosome 16 in IBD did not reach genome-wide significance. Conditional testing produced evidence 760 



for a single effect in CLEC16A (rs7201325, P = 1.1 × 10-10) and modest evidence for a second effect near 761 
RP11-396B14.2 (rs55773334, P = 7.6 × 10-5). 762 
 763 
Supplementary Fig. 7: Distinct conditional associations are shared with distinct sets of diseases. 764 
At three loci, multiple conditionally independent associations for a single disease are shared. (a) At the 765 
STAT4 locus, two independent effects are each shared between RA and SLE. (b) At the CD28-CTLA4 766 
locus, the second independent association in T1D near CD28 is shared with CeD and the third 767 
independent association within CTLA4 is shared with RA. (c) At the TYK2 locus, the first independent 768 
association of RA is shared with SLE, IBD and T1D, while the second association in RA (near ICAM3) is 769 
shared with SLE. 770 
 771 
Supplementary Fig. 8: An association signal near TNFRSF9, PARK7 and ERRFI1 exhibits 772 
opposing effects in CeD and IBD. (a) Meta-analysis of CeD and IBD association data (third panel) 773 
reduces significance (points) and increases heterogeneity (lines, Cochran’s Q) of the association signal. 774 
(b) Regression of Z scores for CeD against corresponding Z scores for IBD reveals an inverse linear 775 
relationship, suggesting opposing directions of effect in the two diseases. After reversing effects for CeD 776 
and repeating meta-analysis (a, fourth panel), significance increases and heterogeneity decreases, 777 
confirming that the effects in CeD and IBD are opposed at this locus. 778 
 779 
Supplementary Fig. 9: An association signal near PLEK exhibits opposing effects in CeD and MS. 780 
(a) Meta-analysis of CeD and MS association data (third panel) reduces significance (points) and 781 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for 782 
CeD against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing 783 
directions of effect in the two diseases. After reversing effects for CeD and repeating meta-analysis (a, 784 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in CeD and 785 
MS are opposed at this locus. 786 
 787 
Supplementary Fig. 10: An association signal near IL12A exhibits opposing effects in MS and 788 
SLE. (a) Meta-analysis of MS and SLE association data (third panel) reduces significance (points) and 789 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for MS 790 
against corresponding Z scores for SLE reveals an inverse linear relationship, suggesting opposing 791 
directions of effect in the two diseases. After reversing effects for MS and repeating meta-analysis (a, 792 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in MS and 793 
SLE are opposed at this locus. 794 
 795 
Supplementary Fig. 11: An association signal near ERAP2 exhibits opposing effects in IBD and 796 
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and 797 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD 798 
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing 799 
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a, 800 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and 801 
MS are opposed at this locus. 802 
 803 
Supplementary Fig. 12: An association signal near TNFSF8 exhibits opposing effects in IBD and 804 
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and 805 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD 806 
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing 807 
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a, 808 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and 809 
MS are opposed at this locus. 810 
 811 



Supplementary Fig. 13: An association signal near ZNF365 exhibits opposing effects in IBD and 812 
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and813 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD 814 
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing 815 
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a, 816 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and 817 
MS are opposed at this locus. 818 

819 
Supplementary Fig. 14: An association signal near LTBR exhibits opposing effects in MS and T1D.820 
(a) Meta-analysis of MS and T1D association data (third panel) reduces significance (points) and821 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for MS 822 
against corresponding Z scores for T1D reveals an inverse linear relationship, suggesting opposing 823 
directions of effect in the two diseases. After reversing effects for MS and repeating meta-analysis (a, 824 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in MS and 825 
T1D are opposed at this locus. 826 

827 
Supplementary Fig. 15: An association signal near CLEC2D, CLECL1 and CD69 exhibits opposing 828 
effects in IBD and MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces829 
significance (points) and increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) 830 
Regression of Z scores for IBD against corresponding Z scores for MS reveals an inverse linear 831 
relationship, suggesting opposing directions of effect in the two diseases. After reversing effects for IBD 832 
and repeating meta-analysis (a, fourth panel), significance increases and heterogeneity decreases, 833 
confirming that the effects in IBD and MS are opposed at this locus. 834 

835 
Supplementary Fig. 16: An association signal near STAT3 exhibits opposing effects in IBD and 836 
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and837 
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD 838 
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing 839 
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a, 840 
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and 841 
MS are opposed at this locus. 842 

843 
Supplementary Table Legends 844 

845 
Supplementary Table 1: Posterior probabilities of colocalization from coloc2. 846 

847 
Supplementary Table 2: GWAS and ImmunoChip studies used in the analysis. Sources for datasets848 
used in this study. Databases and accession numbers are provided for publicly available datasets. For 849 
datasets not available in public datasets, contact details for relevant consortia are provided. NHGRI-EBI, 850 
NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/); dbGAP, Database of Genotypes and 851 
Phenotypes (https://www.ncbi.nlm.nih.gov/gap/); GRASP, Genome-Wide Repository of Associations 852 
Between SNPs and Phenotypes (https://grasp.nhlbi.nih.gov/Overview.aspx); IBDGC, NIDDK 853 
Inflammatory Bowel Disease Genetics Consortium (https://ibdgc.uchicago.edu/); IMSGC, International 854 
MS Genetics Consortium (https://imsgc.net); RACI, Rheumatoid Arthritis Consortium International) 855 

856 
Supplementary Table 3: Subjects by disease, stratum and phenotype class. Case and control857 
counts are provided for each disease and stratum, before and after quality control filtering. 858 

859 
Supplementary Table 4: Subject quality control. Inclusion status for each subject. For each subject860 
failing quality control, the failed step is indicated. 861 

862 



Supplementary Table 5: SNP quality control. Inclusion status for each SNP. For each SNP failing 863 
quality control, the failed step is indicated. 864 
 865 
Supplementary Table 6: eQTLs identified at disease level and after cross-disease meta-analysis. 866 
Shared disease susceptibility—eQTL associations are indicated. Conditioning SNPs for the eQTL data 867 
are indicated where appropriate. Where an eQTL is identified at the disease level and also in cross 868 
disease meta-analysis, this is indicated as “Stable eQTL.” eQTLs that are newly identified after cross 869 
disease meta-analysis are labelled “New eQTL.”  870 
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