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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system mistakenly
attacks an individual's own cells, causing inflammation and organ damage. SLE disproportionately affects
women, particularly women of child-bearing age and non-European ancestries. There are significant
differences in SLE risk and clinical manifestations (heterogeneity) by race/ethnicity. Only a small number of
FDA approved drugs are available to treat SLE. In addition to the clinical heterogeneity, there is significant
genetic heterogeneity related to the >110 known SLE-risk genetic polymorphisms. Genes form networks which
execute specific biological functions. Identifying connections among genes (pathway analysis) may increase
the number of relevant drug targets, resulting in novel therapies. The opportunity exists to leverage these
genetic associations and genomic differences to identify genetically motivated drug repositioning targets. Our
aims are to: 1) Link ancestry-specific and ancestry-shared genomic markers (SNPs, CpG methylation sites,
gene transcript expression) associated with SLE risk in women to specific genes (identify genes); 2) complete
systems biology and pathway analyses on these genes to identify ancestry-specific and ancestry-shared drug
targets (identify/prioritize targets); and 3) identify and prioritize FDA-approved drugs for potential advancement
into lupus clinical trials or preclinical models (identify/prioritize drugs).

2. Keywords

Systemic lupus erythematosus, drug repositioning, genetics, transcriptomics, autoimmune disease, gene
networks, molecular docking, genetic polymorphisms, methylation, systems biology

3. Accomplishments

What were the major goals of the project?

The first 24 months of the project have shown significant progress in all three specific Aims. We believe
we remain on or slightly ahead of schedule relative to the specific aims. There has not been any deviation from
the primary objectives in these aims, but we have taken advantage of new protein databases for the in silico
binding experiments and expanded some analyses using novel methods.

Major accomplishments of the past year built upon the those of the first year of funding. We expanded and
updated the identification and compilation of SLE risk SNPs datasets and linked them to their respective
plausible gene-targets, across multiple ancestries. A key step forward was the re-analysis of a genome-wide
association study for systemic lupus erythematosus in African Americans, complimenting the Immunochip
associations in African Americans. The successful implementation of the programming pipelines for high-
throughput analysis of in silico binding for drug targets with FDA-approved small molecules enabled us to
complete these binding experiments in an ongoing manner throughout the year. We have completed these
binding experiments for all cGenes (genes where the lupus risk allele results in an amino acid change) with
known protein structures. We have identified a priority list of eGenes (genes where the lupus risk allele
correlates with gene expression; an eQTL) and completed a set of in silico binding experiments for sets of
eGenes.

We provide two tables outlining the project’s accomplishments and progress. Table 1 provides a high-level
list of progress and major task completions. Table 2 provides additional detail and relates these
accomplishments to the tasks (Specific aims) and subtasks provided in the project’s original SOW. It includes
estimates of the overall progress for the entire grant period.




Tablel: General list of Major Accomplishments (Months 12-24).

Major Accomplishment/Progress
Category

Descriptor

Manuscripts and Presentations

Four accepted/published manuscripts

Two additional manuscripts in preparation

Two conference posters/presentations

o Lupus 21st Century 2021 Conference (talk) and

o American College of Rheumatology 2022 meeting (poster
and lightning talk)

Data processing and Analytic
Pipelines

Drug target identification and processing for molecular docking

Integration of SMILES identifiers of FDA approved drugs (to
facilitate drug structural similarity analyses)

Expanded summarization of molecular docking results,
summaries include generation of AAG for paired docking
comparisons (e.g., risk versus non-risk protein isoforms for drug
target proteins), cluster analysis of molecular similarity, and
graphical illustrations.

Created Datasets

Expanded and updated SLE risk SNP datasets linked to their
most plausible-implicated gene targets (e.g., gene expression,
eGenes; and protein coding variants cGenes).

African American systemic lupus erythematosus genome-wide
association study results (partially complete)

ZINC 15 (FDA-approved small molecules) IDs linked to public
repositories via identifiers (e.g., SMILES, pubchemID, and
common drug names).

Database of AG and AAG binding energies for ZINC 15
molecules across more than 20 cGene-linked drug targets (2
structures per drug target, corresponding to the risk and non-
risk amino acid linked to the SLE risk SNP) and 5 eQTL-based.

Database of Euclidean similarity distance for more than 1,400
FDA approved drugs and linking these distances to the in silico
binding results for completed targets.

System biology analyses

Additional pathways and system biology analysis for SLE-
associated SNPs in four ancestries/ethnicities and their union
and intersections of genes for druggable pathway identification
(African ancestry, Asian ancestry, European ancestry, and non-
African Hispanic ethnicity). This was the focus of portions of
published papers.

Pathway analysis based on results of Mendelian randomization
studies with atherosclerosis. Manuscript in press at Cell Reports
Medicine




Table 2: Project completion and status (Months 12-24) as related to proposal’s original SOW.

Goals and Milestones as listed in the original SOW.

Progress Report 10-2022 Update.

Specific Aims (specified in proposal) Timeline Completion Status
Specific Aim 1: Identify SLE-risk Genes Months Reporting Period (Months 13-24) Updates
e SNP associations compiled from the African American Immunochip
. L : data.
iglst;zl:plﬁi;‘rjﬁ:t(';yNspl‘sl)E}gsvtosmgrl]e MUEEIRE 1-24 e The African American GWAS study is still in progress and the
resulting SLE-risk SNPs need to be integrated with Immunochip.
Completion Progress ~85%
Subtask 2: Link SLE-risk SNPs to genes via e SLE-risk SNPs linked to relevant gene and protein change based on
eQTL, proximity, transcription factor binding, SLE studies across four (European, African, Asian, and Hispanic)
protein coding, gene-based testing ancestries are underway for the cGenes (completed) and eGenes
3-27 using GTEx and public data (near complete).
e SLE-risk SNPs linked via transcription factor binding sites (tGenes)
being revised and updated with new information
Completion Progress ~80% complete.
Subtask 3: Transcriptomic analysis, differential e Comparative analysis of differentially expressed target genes (i.e.,
expression of genes identified in subtask 2 cGenes, tGenes, eGenes, pGenes) are summarized and discussed
in two manuscripts (first twins paper published in Genes; mendelian
randomization in press in Cell Reports Medicine)
o Differentially expressed genes identified by annotation from DNA
3-30 methylation study in MZ female twins discordant for SLE
summarized in submitted manuscript.
¢ |dentification of genes where SLE-risk allele increases gene
expression, that gene’s expression is increased in lupus patients
within at least one of five relevant tissues or cell types
Completion Progress ~75% complete.
Subtask 4: DNA methylation analyses, ¢ Developing list of appropriate (e.g., T and B-cell sources) datasets
differential methylation of genes identified in for methylation analysis — completed but will expand if new data is
subtask 2 published.

1-24 o Differential methylation analysis in MZ female twins who are
discordant for SLE yielded gene lists which were compared and
contrasted with genes in Subtask 2 (published in Genes).

Completion progress ~100%
Subtask 5: Identify and write potential e Publication of Mendelian randomization paper identifying shared
manuscripts on multi-omic analysis of SLE-risk pathways between systemic lupus erythematosus and coronary
associated variants and genes. artery disease (Cell Reports Medicine, in press — available Nov 4,
2022).
e Publication of manuscript exploring the differential analysis of
6-36 methylation in twins who are discordant for SLE and identifying
pathways and listing relevant drug targets from pathway analysis.
¢ Publication, in collaboration with Timothy Niewold MD, on single-cell
expression quantitative trait loci (€QTL) analysis of SLE-risk loci in
lupus patient monocytes. Focus on select genes of relevance.
Completion Progress - ongoing
Milestone(s) Achieved: Lists of SLE-risk e Ongoing expansion of lists of SLE-risk genes informed by ancestry
associated genes informed by ancestry, and female-sex.
tissue, and female sex 3-30 ¢ Monitoring new published results, modification/integration of African
American GWAS.
Completion progress ~80%
Local IRB/IACUC Approval Completed Completed and annually renewed
Specific Aim 2: For genes and gene lists
discovered in Specific Aim 1, complete Reporting Period (Months 13-24) Updates
systems biology, and pathway analysis
e Drug targets identified via cGenes, eGenes and tGenes
) . . . (transcription factor binding), with a planned expansion and
Subtask 1 Id_entlfy_ Ty R “HaeEes (s continuous updating based on African American GWAS and new
of genes in Aim 1 into one of four Target : . - :
- o . 3-30 literature. Largely complete for European, Hispanic, and Asian
Groups based on functional criteria, including A i d Afri Ameri | hin-based studi
pathway analyses ncestries and African American Immunochip-based studies.
o Identified targets placed in one of the four Target Groups
Completion progress ~90%
Su_btg_sk o [PlfStnilpa CIgiEmets .("e" DEEE)E e Continuous prioritization of targets based on high-quality structures
PITIZS R1ES St 27 QRILT SESTimEmt 2] includes the protein databank (PDB) and now, AlphaFold (available
second RILITE’s scoring algorithm within each 3-30 p AP

group. Targets with highest prioritization will
be assessed for molecular docking (e.g.,

as of July 2021).
e Current effort aligns SLE-risk allele associated with increased gene
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quality protein structures in Protein Data expression and that gene’s gene expression in one of five

Bank). tissues/cell types associated with risk of lupus or subtypes
Completion progress ~60%

Subtask 3: Identify and write potential e See above, multiple publications and annual meeting

manuscripts incorporating systems biology 12-36 presentation/posters.

and drug target prioritization to evaluate ¢ Ongoing task

genetic architecture of SLE. Completion progress ~60%

Milestone(s) Achieved: Lists of prioritized drug e Achieved list of prioritized drug targets for SLE-associations

targets mapping to c-genes (protein-coding changes) and eGenes.
o Identified optimal Protein Data Bank structures and Al-based

6-30 alternative source for missing PDB structures (AlphaFold Al-

predicted structures).
e Requires manual look up and vetting, time consuming.
Completion progress ~40%

Specific Aim 3: Identify and prioritize drugs Reporting Period (Months 13-24) Updates

e Continuous task as list updates

e For current list of genes (Aim 1, 2), completed and summarized
across multiple manuscripts and presentations at national meetings

Completion progress ~60%

Subtask 1: Bioinformatic analysis for gene-
drug and protein-drug interaction using 6-36
STITCH, DrugPath, CLUE, etc.

Subtask 2: Screen libraries of FDA-approved e Updated python pipeline to annotate binding data of FDA-approved
small molecules via molecular docking to small molecules with common-names and common-database
identify drugs or small molecules for selected identifiers (e.g., SMILES, pubChemID)

(Aim 2, Subtask 3) SLE drug targets e c-Gene complete with existing PDB structures or AlphaFold

structural information (e.g., those without PDB structures).

e Exploration of docking sites relative to amino acid change due to
SLE-risk allele

6-36 e Summarized differential binding between risk and non-risk SLE-
protein structures using metrics developed in year 1.

e Novel approach not in original grant, using SMILES complete
various cluster analyses to identify clusters of drugs with similar
structures and test for enrichment or “hot spots” in similarity space
where there is an enrichment of cGenes. Expanding to eGenes and
combining with cGenes.

Completion Status: ~50%

Subtask 3: Prioritize drugs from Subtasks 1 ¢ |dentified limitations of CoLTS scoring algorithm for off target

and 2 using CoLTS scoring algorithm 6-36 applications.
¢ Modifying and focus on toxicity reports from CoLTS
Completion Status: ~25%
Milestone(s) Achieved: Lists of genetically- e List of molecular docking results for over 45,000 analyses.
informed FDA-approved drugs and small 12-36 e Current focus on eGenes, tGenes.
molecules, novel to treatment of SLE. Completion status: ~50%

What was accomplished under these goals?

Significant Results:

Here we summarize key areas of progress. We are at a phase in the project where the synergy across
aims is important, leveraging results from Aim 1 and 2 to inform Aim 3 and conversely learning from that
experience to update (e.g., integrating new literature, modified pipelines) Aims 1 and 2. We start by briefly
summarizing manuscripts submitted, one published (Genes), one in press (Cell Reports Medicine, Nov 4™
embargo date), one under review (Nature Genetics), one published in Arthritis Research and Therapy. These
manuscripts are listed in the Appendix. We continue by summarizing further progress roughly as proposed in
the grant. As noted last year, the full list of cGenes, tGenes, eGenes and pGenes is too long to include in this
report. Below as we summarize new work, we will highlight specific sets of genes (drug targets). The published
manuscripts provide extensive lists of these genes. We do not repeat descriptions of the ongoing work from the
first 12 months (e.g., binding experiments) but focus on additional, new results from the reporting period
(months 13-24). Such descriptions are in the previous year’s report but are also available upon request.

Published work this year.

Epigenetics of discordant twins. Last year we summarized the results of the Nucleic Acid-Sensing and
Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and
Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting.
This manuscript was revised, resubmitted, and is how published in Gene (see Appendix)



Pan-autoimmune risk loci. Autoimmune and inflammatory diseases are polygenic disorders of the
immune system. Many regions of the genome harbor risk alleles for several diseases, but the limited resolution
of genetic mapping prevents determining if the same allele drives risk for multiple diseases or multiple variants
within the same region generate distinct risk. If risk alleles are shared across multiple diseases, it suggests
there may be a shared underlying mechanism. Using a collection of 129,058 cases and controls across six
diseases, including systemic lupus erythematosus, and a novel methods called Joint Likelihood Mapping, we
estimate that ~40% of overlapping associations are due to the same allele. We improve fine-mapping
resolution for shared alleles by nearly two-fold by combining cases and controls across diseases, allowing us
to identify more eQTLs driven by the shared alleles, hence same gene. The patterns of sharing indicate
widespread shared mechanisms, but not a single global autoimmune mechanism. The results from this
research provide an exciting opportunity for our current grant to include a specific focus on these shared loci in
our binding experiments and the downstream drug repositioning pipeline. If so, lupus can be a leader that
informs other autoimmune disease research and drug repositioning opportunities. Our paper is again under
review at Nature Genetics after a positive initial review but with extensive suggestions/requests. (Please see
Appendix: Genetic mapping across autoimmune diseases reveals shared associations and mechanisms.)

Singe-cell targeted transcriptomics. In collaboration Timothy Niewold, MD (Hospital for Special
Surgery), we completed an expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-
classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of
well-established genetic risk alleles on transcription at single-cell resolution. Single-cell gene expression was
quantified using gPCR in purified monocyte subpopulations (CD14**CD16 CL and CD149™CD16* NCL) from
SLE patients. A novel analysis method, two-part hurdle mixed model, was used to control for the within-person
correlations observed while testing for eQTLs between cell types and risk alleles. We observed that the SLE-
risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18
eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large
differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci
were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs
impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in
NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero for all monocytes
studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed
corroborating evidence of this IRF1 expression pattern in public data sets. Thus, we observed that multiple
SLE-risk allele eQTLs in single monocytes differ greatly between CL and NCL subsets. These data support the
importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.
Please see Appendix for details, Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in
lupus patient monocytes.)

~ Systemic lupus erythematosus and coronary artery Figure 1. Graphical Abstract for Mendelian
disease shared loci. We completed and had a new randomization and pathway analysis demonstrate
manuscript accepted which explored the shared genetic shared genetic associations between systemic lupus
associations between systemic lupus erythematosus and erythematosus and coronary artery disease

coronary artery disease (CAD), title: Mendelian
randomization and pathway analysis demonstrate shared Traditional MR
genetic associations between systemic lupus * Selection of SLE IVs
erythematosus and coronary artery disease (please see (o
Appendix for manuscript). In brief, CAD is a leading cause — e
of death in patients with systemic lupus erythematosus

(SLE). Despite clinical evidence supporting an association
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we confirm the casual effects of specific SNP-to-gene modules on CAD using only SNP mapping to each PPI-
defined functional gene set as instrumental variables. This PPI-based MR approach elucidates various

molecular pathways with causal implications between SLE

and CAD and identifies biological pathways likely eGENE SNP A single SNP may be an eQTL for multple
causative of both pathologies, revealing known and novel enetic varint assoited i Only focused on eQTL reationships where the
therapeutic interventions for Q2 managing CAD in SLE. risk allele yields an increase in expression
For detailed results please see manuscript in Appendix. | _| Genea Gene B
Non-Risk Allele % é

Ongoing work this year. Gaatecre g ’—‘ &

. e relationships = -

Development and Implementation of eGENES | Non- Risk Non- fisk

drug-repositioning pipeline. Year 2 of the project Risk Allele (increased Verify gene's

expression is
increased within SLE
cohorts with matched

tissue sample

continued development and implementation of the
eGENEs analysis for drug repositioning (Figure 2). While
much of this pipeline built upon the cGENESs pipeline (e.g.,

frequency with SLE) \

Identify high-resolution/high-

protein model assessment, in silico binding), there are confidence 30 structureof |

some notable differences that required de novo R
programming implementation. For instance, identification cenes proteinproduct a LA

of cGENEs was restricted to SLE-associated variants e e oo o patients
located within coding regions of the genome. Thus, only a

limited number of SNPs met these criteria, mapping to 33 o sico binding analyses

cGENEs. Contrarily, eGENEs are unrestricted by physical J Rhivoh iyt

location, and thus, any SLE-associated SNP has the

potential to map to an eGENE. Considering FDR- Figure 2. Pipeline for
associated SLE SNPs from the Immunochip (three (Tl [ e e evaluating eGene
ancestries: EA, AA, and HA), this provided 1,545 SNPs for : . — relationships
assessment, not including expansion due to linkage o could it fumction

disequilibrium (identification of highly correlated SNPs).
Secondly, while most coding SNPs will map to only a single cGENE; it is common for a single eQTL (SNP
associated with gene expression) to map to multiple eGENEs. For example, in the GTEx (V8) dataset, there
are 4,632,457 unigue eQTLs (SNPs) mapping to 13,791,909 million unique eQTL-eGENE combinations (each
eQTL mapping to 1-9 eGENES). To handle the greater quantity of SLE-SNPs and eGENE mapping, we
developed and implemented a pipeline to map SLE associations to the GTEx database and to assess direction
of expression relative to SLE-risk allele. Importantly, we filtered our eGENE list to those where the SLE risk
allele correlated with increased expression of the eGENE under the hypothesis that it is more biologically
plausible to inhibit function (by binding), compared to up-regulating function (expression) of a target. From our
primary list of 1,545 SLE-associated SNPs (ancestry specific SNPs), we first filtered to non-ambiguous SNPs
and then identified 2,275 unique SNP-EQTLs meeting the aforementioned criteria, mapping to a list of 746
unique eGENESs within one or more of the relevant tissues available by the GTEx V8 database (Whole Blood,
fibroblasts, leukocytes, kidney cortex, and sun-exposed skin). For 252 of these eGENEs, we were able to
assess the relevance of these eGENEs in external, expression datasets of lupus patients. That is, while GTEX
identified genes with increased expression with SLE risk alleles, we also verified that we observed increased
expression of these eGENES within lupus patients. We leveraged five GEO datasets (Table 3) which offered
comparable tissue sources for comparison with the GTEXx data. We filtered our eGENE list to those genes that
had corroborating expression in the lupus patients (increased expression). While this is a stringent filtering
criterion, we believe this enables the best initial prioritization of potential drug targets. From this comparison
between GTEx and lupus expression datasets, we were able to

filter our list of 252 eGENESs (within comparable  Table 3: GEO Datasets for comparison to GTEx eGENE results

tissues) to 81 highly prioritized drug targets GEO GEO SLE GTEXx Tissue
. . Controls .

(Table 4). Notably, seven of these genes accession  Tissue  cases Comparison
exhibited consistent evidence and direction in GSE39088 \é\llho(;e 78 64 Whole blood
one or more of the GEO-compared tissues W(r)lol
(Table 5). From these lists (Table 4), we are GSE45291 blo;’ de 292 20 Whole blood
a_ctlvely |d_ent|fy|ng high-resolution (RDB) or EBV transformed
high-confidence (AlphaFold) three-dimensional ~ GSES0772  PBMC 61 22 lymphocytes
structures for in silico binding. We are also EBV transformed

. . GSE81622 PBMC 30 25
expanding our eGENESs search to include SNPs lymphocytes
from the trans-ancestral meta-analysis and GSE109248  Skin o5 14 Iil;” exposed lower
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SNPs in linkage disequilibrium from the Immunochip study.

Table 4. GTEXx-identified genes that yielded consistent pattern of expression in SLE-patient datasets (increased

expression), in one of three relevant tissues.

SLE Tissue

(GTEX Tissue) cases in expression studies (GEO)

eGENES exhibiting increased expression with SLE risk allele in GTEx and increased expression in SLE

CCDC136 DDX42 FDFT1 GLS IL12RB2  LINC01270 MAP3K11  MED28*
Whole Blood MFN2 MRPS7* OASL PPIL3* PRMT7* PTPRJ  RPS6KBL  SIPAL*
(Whole Blood)
SSBP4* VRK2
PBMC ARRB2*  CTTNBP2NL FAMI67A IDUA MED28* MRPST7* PRMT7* RMI2
(EBV-
Lymphocytes) ~ SPATS2L TIMM10
ALDH2 ARRB2* ATAD3C  B3GALT6  C170rfl07 C1QTNF4  CAMTA2 CAPG
CASP10 CBFA2T2  CCDC88B CD38 CD79B CNOT3 COoQ9 CTSB
DCPS EIF6 ELOVL7 ESRP2 EVIS FAM86B3P FBF1 FUT11
Skin GRB2 HDLBP ICAMS ILF3 IRF5 KRI1 LCAT LCE1D
(Sun-Exposed
Skin) LCELE LCE3C LRRFIP2  MAPILC3A  MED28* MRPL45 PDIK1L PPIL3*
PPP1R14B PRMT7* RAPSN RAVER1 RPP25 RPTOR SIPA1 SLC39A13
SLC44A2 SMARCA4 SPRR1B SRP68 SSBP4* SYN2 SYNJ2 TIMM29
TMEM94 TRIM65 TTC21B UVSSA YIPF2 ZC3H3

*Gene present in more than one tissue

Table 5. Subset of Genes from Table 4. that were identified in more than one tissue.

GTEx tissue Whole Blood Lymphocytes Sun-Exposed Skin
SLE tissue Whole Blood PBMC Skin

MED28
PRMT7
MRPS7
PPIL3

SIPA1

SSBP4
ARRB2

Gene

Expansion of protein model search to include high quality Al-predicted structures.

We observed that of the initial 33 cGENESs, nine had high resolution protein
structures that covered the amino acid region of interest. Thus, we have
integrated Alphafold’s Al-based predicted structures into our pipeline
(Figure 3). Alphafold is a new (released July 2021) database comprised of
over 300,000 protein structures generated using a three-track neural
network algorithm. Alphafold has released protein models for proteins
spanning the UNIPROT database (Universal Protein Resource; Corsortia
of EMBL-EBI, SIB, and PIR host institutions). Alphafold represents a major
innovation in proteomics and thus, drug-binding studies. This year, we
began incorporating AlphaFold into our protein model search pipeline with
additional quality control checks on structures (e.g., quality assessment of
tertiary structure). So, while experimentally derived structures remain as
the preferred source, Alphafold provides a unique opportunity to extend the
scope of drug repositioning, beyond current limitations by the PDB.
Furthermore, as prediction algorithms continue refinement of tertiary
structures (e.g., beyond alpha helices and beta sheets), our drug-
repurposing pipelines are readied for their inclusion. For the cGENEs, we
identified seven additional protein structures (UHRF, ZACN, WDFY4,
LRRC34, CCL22, ATG16L2, and AGBL?2) with suitable tertiary structures.
However, given that our cGENEs analysis requires the analysis of two
isoforms (that is, computationally altering a single amino acid in the
structure), we proceeded with a conservative approach and opted to
reserve amino-acid alterations for experimentally derived structures.

Selected Protein for in silico binding.
(cGENE or eGENE protein product)

Experimental
Structure Search PRO

=3 p) -]
B " 4 4
TEIN DATA BANK
Is a structure available with 2A resolution via:
« NMR Structure (preferred)
¢ X-Ray Crystallography

No Yes

Predicted Structure Search
AlphaFold

emsL-esi i () DeepMind
Does the predicted protein
model have high-confidence

(>90%) tertiary structures?

No Yes

Continue periodic
checks for updated
experimental or
predicted structures

Proceed with
in silico binding

Figure 3. Assessment of protein structures
from experimentally and predicted sources.




However, given that several of the aforementioned cGENES are also eGENES (e.g., WDFY4, CCL22), we
proceeded with in silico binding for the single isoform available from Alphafold. As we incorporate Alphafold
into our eGENESs analyses, we anticipate it could help yield as many as 50% more structures than the PDB,
alone.

Development of drug-binding prioritization algorithm for cGENES
o ‘ Each in silico drug binding experiment yields a dataset of continuous binding
Remove Drugs with Risk-lsoform affiniy >-4 affinities for 1431 unique FDA-approved small molecules (note: full dataset
includes binding affinities for multiple conformers per drug). Work over the past
Remove Drugs with nonRisk-soform affinity <-7 ~ year has focused on refining the produced drug-binding affinities for each gene
Good binders to nonRisk isoform . . e . h
target. This refinement enables drug prioritization for downstream

{

Remove Drugs with cl hange in affinity < 0 assessments of biological (e.g., IPA; pathways analyses) and clinical (e.g.,
No change or battor affinft to no-iek isofomm electronic health records) relevance. Within the scope of cGENEs, where we
. compare two isoform binding affinities per cGENE (defined by risk allele

Remove Drugs with change in affinity < 1 . . . .
Threshold signifying ‘bettered binding'toriskisoform | versus non-risk allele), we derived an algorithm that incorporates generally

accepted thresholds of binding specificities as well as an assessment of the

Filtered list of Drugs for cGENE Targets change in binding specificity between isoforms (Figure 4). Within cGENEs,
- — this successfully focused our downstream assessments on a refined list of
Figure 4. cGENE drug binding drugs, ranging from 0 to 70 drugs per target (Table 6). While our current
prioritization - . . . .
analyses utilized a set of binary thresholds (Figure 5), we are actively exploring

effects of continuous measures (e.g., isoclines)

CR1: Affinity Binding across ZINC Library
risk-threshold < -4; non-risk threshold > -7; Change Affinity > 1

4 e® o Figure 5. cGENE drug binding
° % o prioritization for CR1. X-axis

° ° ® depicts binding affinity for risk
allele (risk isoform) while Y-axis
depicts the change in binding
affinity between the risk and non-
risk isoforms. Application of
prioritization algorithm limits the
1,431 analyzed drugs to just 20
(shown in red) for CR1. While
these criteria represent binary
thresholds, we are actively
exploring continuous thresholds
1 = = - of prioritization.

AG (Risk Allele)

Table 6: Prioritized Drugs per cGENE Target

AAG (Change in Affinity)
! =)

cGENE Target Prioritized Drugs (from 1,431)

CR1 20
FCGR2A 8
IFIH1 6
IRAK1L 2
NT5E 70
PLAT 10
QARS 33
TNFAIP3 24
TYK2 0

Identifying Relationships among Prioritized Drugs.
Post prioritization of drugs, a key question is whether any of the drugs relate to one another (within or across
targets. For example, for the 20 prioritized drugs for CR1, do these represent 20 different mechanisms of
binding and function, or does any overlap exist among these drugs? While future studies could investigate this
from a clinical perspective (e.g., investigation of electronic health records for similarity/dissimilarity of outcomes
associated with drug lists), within the scope of this project, we assessed the drugs from a structural approach.
Given the inherent link between function and structure, we leveraged the drugs’ molecular structures to identify
potential relationships (similarities and dissimilarities). We utilized GlobalChem, a python-based software suite
which uses a natural language algorithm to convert drug’s SMILES (simplified molecular-input line entry
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system) ID into a binary bit representation of the molecule. These numeric encodings can then be analyzed by
dimensionality reduction methods such as principal component analyses (PCA) to describe the relative
(structural) relationship among drugs. We applied this method to the 1,431 unique FDA-approved small
molecules used within this project for in silico binding. GlobalChem then implements k-means clustering on the
resulting principal components to identify groups of similarity. Optimal separation via k-means was observed
for 5 clusters (in three-dimensional space).

The preliminary results from the k-means cluster analysis on the principal components capturing variation due
to similarity were encouraging. However, different clustering algorithms have different strengths and
weaknesses, so we compared four hierarchical clustering algorithms (agglomerative and divisive). Specifically,
in addition to the k-means algorithm, we completed hierarchical clustering on principal components (HCPC),
density-based spatial clustering of applications with noise (DBSCAN), and random forest clustering. Among
these four algorithms, we summarize some of the patterns and interpretation of the random forest cluster
analysis; we are still working through results of the DBSCAN analysis as that too has interesting results.

We computed an intra-feature random forest cluster (IRFC) analysis based on the first three principal
components that capture the dominant 3D structural similarity among the 1,431 unique FDA-approved small
molecules (drugs) (Figure 6). As with any random forest application, this unsupervised ensemble machine
learning method repeatedly randomly samples from the 1,431 molecules many times to obtain an aggregate
assignment for each molecule. We selected the IRFC as it can be more robust for complex data structures.
Using elbow plots and gap statistics, the IRFC analysis identified five dominant clusters, subclustering is
underway; k-means and HCPC also suggested five clusters, albeit with some variation in membership by
individual drugs. In Figure 6, the salmon colored cluster is the central bulk of the molecular similarity (currently
undergoing subcluster analysis), and the remaining four clusters are at the periphery of the PC space.

Figure 6.
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We overlaid the drugs that met the above binding parameters (i.e., affinity binding across ZINC library) and
computed an enrichment analysis (randomization test) overall and relative to each gene (Table 7). For
example, in CR1, there are 20 drugs meeting the binding experiment parameters and these are highlighted as
open black circles in Figure 6). We observed a global enrichment of Cluster 3 (green cluster in Figure 6); no
other clusters exhibited a statistically significant enrichment (P>0.05). Table 7 provides the count and p-value
of the enrichment analysis for each gene. For example, 6 of 20 drugs that bound to the protein from CR1 were
in Cluster 3 (P-value=0.0044).

Table 7. Cluster 3 Enrichment of Drug Binding
Number Drugs in Cluster 3

Gene No Yes Expected Number of Drugs by chance in Cluster 3  Enrichment P-value
CR1 14 6 1.67 0.0044
FCGR2A 4 3 0.58 0.0156
IFIH1 4 2 0.50 0.0854
IRAK1 2 0 0.17 0.8532
NT5E 52 14 5.66 0.0014
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PLAT 9 1 0.83 0.5866
QARS 30 3 2.75 0.5344
TNFAIP3 16 6 1.83 0.0104

We observed an enrichment (hot spot) on the left side of Cluster 3 (green cluster) that was driving the global
enrichment (Figure 6). We then identified those drugs in proximity (L.-norm distance <0.25 from center of that
hot spot): Fesoterodine, UNII-ZP145530CI, Arformoterol, (S)-Metoprolol, and (R)-Metoprolol. We explored
their relative position in the binding experiment parameter space to determine if altering the parameters might
provide more drugs of interest. Our interpretation of these results is that the analysis did not suggest
alternative thresholds for these parameters. We illustrate with CR1 binding plots (Figure 7).

Figure 7. | cRr1: Affinity Binding across ZINC Library
risk-threshold < -4; non-risk threshold > -7; Change Affinity > 1
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Importantly, we emphasize that structurally comparable drugs can have widely varying functions, as evidenced
by enantiomers, where often, one of the optical isomers is inert. Thus, innovatively, we are leveraging the
structural similarity assessment alongside an in silico functional assessment (as captured by protein binding).
For instance, we would not necessarily expect that all drugs tightly clustered in the structural assessment will
be clustered in functional graph (Figure 7); but by comparing the two, we can identify instances where this
does occur. This could indicate drugs that might show functional similarity, driven by some common structural
feature. This can be leveraged in future assessments of EHR data (e.g., grouping outcomes across multiple
drugs) as well as in future drug discovery, where these complementary assessments can help identify specific
structural features for optimal binding to a given target.

In summary, significant progress has been made in the past year in identifying genes and linking those to
specific drugs via the binding experiments. Progress has been made in each aim, and we are on or ahead of
projected progress due to the successful pipeline development. In addition, we have integrated two significant
additional components: 1) AlphaFold, the newly released Al-predicted protein structure that will significantly
increase the number of targets explored, and 2) clustering to identify hot spots of binding drugs that allows
potential expansion of the list of drugs for evaluation.

What opportunities for training and professional development has the project provided?

Mr. Nolan H. Hamilton completed his one-year training with us and started his graduate training at the
University of North Carolina Chapel Hill Bioinformatics graduate program. For this grant, Mr. Nolan has
assisted in the preparation of drug derivatives from the ZINC 15 database as SMILES strings for all of the
cGenes. He also searched the drug list we identified for links to other autoimmune diseases. This has allowed
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Drs. Ainsworth and Langefeld to mentor him in learning basic concepts of biostatistics, statistical genetics, and
genetics.

We have hired a new staff biostatistician that has replaced Mr. Hamilton, Ekaterina S. Khvatkova (July 1,
2022, start date). Katya has recently graduated from Wake Forest University, Department of Mathematics and
Statistics, with a MS in Mathematical Statistics. As the work outlined here is not standard basic biostatistics,
she has been learning about genetics, proteins, while using her generalized linear mixed models and
programming skills. She has been leading the programming effort to map eQTLs to genes and check to see
that the risk allele is associated with increase gene expression and elevated gene expression is associated
with lupus risk (see above).

In the past year, Dr. Langefeld took on a new PhD student, Olamide Arege, an individual with virology
background from Nigeria who is seeking to do a PhD in bioinformatics. At present Olamide is still
predominately taking the necessary mathematics and statistical theory classes, but he has participated in
meetings and is soon to participate in the bioinformatic analyses. Funding for Olamide is from independent
sources, including Dr. Langefeld’s R&D account.

Dr. Langefeld is also mentoring an undergraduate student (Junior) in the new Department of Statistics at
Wake Forest University, Hanna Vaidya. Hanna has worked with Dr. Langefeld and Ainsworth on the cluster
analysis of the molecular similarity of drug based on SMILES identifiers. She learned about various hierarchical
clustering methods and applied them. She programmed the random forest clustering analysis and the
randomization test for cGene enrichment in the individual clusters. Current plans include teaching her the
molecular docking analyses and allow her to use parts of the project as her honors thesis.

How were the results disseminated to communities of interest?

We have published multiple papers and presentations. Please see publication list and Appendix.

What do you plan to do during the next reporting period to accomplish the goals?

During the next reporting period (months 25-36), we will build upon the first two years of success by
continuing progress towards milestones in each Aim. We will continue to use the pipelines developed, updated,
and optimized in the first 24 months (e.g., summarization of AG and AAG from molecular docking); leverage
drug structural similarity and structural hot spot analysis (novel expansion of Aims); expand the high-
throughput method for FDR-approved drug prioritization (Aim 3). Table 8 outlines planned steps and work for
the next reporting period. Planned activities are shown by each specific task and subtask as provided in the
Project’s original SOW.

Table 8. Goals and milestones

Goals and Milestones as listed in the original SOW. Progress Report 10-2022 Update.
Specific Aims (specified in proposal) Timeline | Planned Activities for next Period (Months 25-36)
Specific Aim 1: Identify SLE-risk Genes Months

Effectively complete except African American GWAS

study
Subtask 1: Identify SLE-risk single nucleotide polymorphisms 1-24

(SNPs) in women e Continue curation of SLE risk SNPs across relevant
sources of data as they become available.

Subtask 2: Link SLE-risk SNPs to genes via eQTL, proximity, Evaluate gene-linking for SNPs associations uniquely
transcription factor binding, protein coding, gene-based testing within respective races/ethnicities.

Evaluate additional links to genes with updated ENCODE
3-27 regulatory information (e.g., ensuring most plausible gene
link for TFBS SNPs).

¢ Gene-based testing, complete, no further work required.

Subtask 3: Transcriptomic analysis, differential expression of genes Differential expression analysis in five cell types for
identified in subtask 2 eGenes. Focus in next months on tGenes (transcription
3-30 factor binding site linked genes) for genes not yet
analyzed from Subtask 2.

Subtask 4: DNA methylation analyses, differential methylation of Analysis of differential methylation (in publicly available
genes identified in subtask 2 1-24 datasets) for genes identified in Subtask 2 complete.

Subtask 5: Identify and write potential manuscripts on multi-omic Construct additional publications, including mendelian
analysis of SLE-risk associated variants and genes. 6-36 randomization and our analysis pipeline and results.
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Milestone(s) Achieved: Lists of SLE-risk associated genes informed
by ancestry, tissue, and female sex

Largely completed but will continue generation of SLE-risk
genes by female sex and tissue-specificity; African

3-30 > -
American GWAS a task for this cycle.
Local IRB/IACUC Approval Completed
Specific Aim 2: For genes and gene lists discovered in
Specific Aim 1, complete systems biology, and pathway
analysis
e Continue processing lists from Aim 1 into relevant Target
Subtask 1: Identify drug targets: Process lists of genes in Aim 1 into groups (e.g., SLE risk SNPs from Immunochip study and
one of four Target Groups based on functional criteria, including 3-30 African American GWAS).
IR EENEE e Process to be ongoing as literature emerges.
Subtask 2: Prioritize drug targets (i.e., genes): Prioritize genes first e Continue prioritization and structure identification for
by group assignment and second RILITE'’s scoring algorithm within targets from remaining categories (e.g., Groups 1 and 2).
each group. Targets with highest prioritization will be assessed for
molecular docking (e.g., quality protein structures in Protein Data e Complete binding experiments for eGenes and tGenes,
Bank). 3.30 random forest cluster analysis of relative to eGenes and
tGenes.
e Prioritize and identify structures for drug targets based on
transcription factor binding (Group 2).
Subtask 3: Identify and write potential manuscripts incorporating ¢ As additional groups of targets are identified and
systems biology and drug target prioritization to evaluate genetic prioritized, prepare manuscript related to target
architecture of SLE. 12-36 identification (Aim 2) and drug identification/prioritization
(Aim 3).
Milestone(s) Achieved: Lists of prioritized drug targets e Partial list complete.
6-30 e Generate additional lists of prioritized drug targets based
on the four target groups (for analysis in Aim 3).
Specific Aim 3: Identify and prioritize drugs
e Continue pathways analyses of drug targets to better
delineate biological system implicated in SLE and SLE
Subtask 1: Bioinformatic analysis for gene-drug and protein-drug 6-36 subtypes.
interaction using STITCH, DrugPath, CLUE, etc.
¢ Incorporate existing and continuing analyses into papers.
Subtask 2: Screen libraries of FDA-approved small molecules via ¢ Continue in silico binding of FDA-approved small
molecular docking to identify drugs or small molecules for selected molecules to identified drug targets. This includes both
(Aim 2, Subtask 3) SLE drug targets new targets (e.g., as identified by tGenes) and newly
available high-quality protein structures (e.g., via PDB or
6-36 AlphaFold).
e Explore random forest clustering of SMILES data for hot
spots.
Subtask 3: Prioritize drugs from Subtasks 1 and 2 using CoLTS e Continue prioritization and high-throughput prioritization of
scoring algorithm 6-36 drugs identified in Subtask 2.
Milestone(s) Achieved: Lists of genetically informed FDA-approved e For completed in silico molecular docking experiments,
drugs and small molecules, novel to treatment of SLE. prioritize drugs based on CoLTS scoring and other
relevant criteria.
e Generate additional lists of prioritized drugs based on
12-36 newly analyzed in silico molecular docking and near

neighbor / random forest clustering.

Lists of prioritized drugs that are prioritized across drug
targets (e.g., multiple targets per drug).

4. Impact

What was the impact on the development of the principal discipline(s) of the project?

As noted last year, the analytic and programming pipelines we have established that can be applied to other

studies which are exploring precision medicine therapeutics based on disease-associated risk loci. For
example, the ZINC 15 database is an established resource of FDA-approved small molecules. The
development of efficient annotation of ZINC 15 compounds with publicly available datasets (e.g., SMILES

identifiers, PubChem) enables efficient application of these methods, representing a reduction of preparatory




data steps needed. In addition to continuously updating the above, we have generated molecular similarity
clusters of FDA approved drugs that can be tested for enrichment. Such molecular similarities might inform
novel molecule/drug development. Importantly, many of the identified drug targets originate from genes that
are implicated in other diseases (e.g., autoimmune diseases), as we show in our pan-autoimmune manuscript.
Thus, molecular docking of FDA-approved compounds to these targets will be valuable datasets for similar
studies in other diseases. Further, these pipelines will enable exploration of precision medicine for other lupus
phenotypes and other ancestral groups.

What was the impact on other disciplines?

As reported last year, while developing this grant and completing the gene expression studies, we
identified two major issues related to single-cell data analyses. We observed that, as a whole, the field of
single-cell transcriptomics (and other single-cell omics) were not properly accounting for the correlation that
exists within an individual/animal/organism. Thus, tests for differential expression, for example, were reporting
too many false associations. Further, investigators were unintentionally grossly overestimating the statistical
power of their studies in grants and completing significantly underpowered studies. As described in the listed
publications below, of the 30 publications in rheumatological journal employing single cell gene expression,
none of them were explicitly and properly accounting for the within person/animal correlation. There are
multiple implications related to robustness, reproducibility, and cost-effective science: 1) false associations and
inferences using single-cell methods will mislead our scientific efforts and fail to replicate, 2) entrenched ideas
driven by enriched false associations from single-cell data will require significantly more resources to correct,
3) perceptions on the robustness of single-cell technology will be significantly damaged reducing acceptance of
valid and robust studies. Motivated by these observations during the preparation of this grant and after award,
we have published two manuscripts (listed below), are currently writing an invited review paper for the journal
Rheumatology, and a response for Nature Communications. Dr. Langefeld’s effort on the publications and
publication costs for the Hierarchicell and review papers were partially supported by this grant (W81XWH-20-1-
0686). This grant is gratefully acknowledged.

1. Zimmerman KD, Espeland MA, Langefeld CD. A practical solution to pseudoreplication bias in single-cell
studies. Nat Commun. 2021;12(1):738

2. Zimmerman KD, Langefeld CD. Hierarchicell: An R-package for estimating power for tests of differential
expression with single-cell data. BMC Genomics. 2021 May 1;22(1):319. PMCID: PMC8088563.

During the past year, we have expanded upon this work. As two examples, from several, we collaborated with

Dr. Timothy Niewold (see publications) to complete analyses that properly account for these correlations. Also,

we wrote a rebuttal (tentatively accepted, see draft in Appendix) to a submission to “Rising Issues” that

criticized the mixed model approach — the authors are not statisticians and do not understand the underlying
mathematics of mixed models (i.e., they are mathematically provably wrong).

Dr. Langefeld also collaborated with other autoimmune genetics researchers to document the overlap in
disease loci across several autoimmune diseases (see Appendix). As such, the work we are doing in this grant
will potentially affect a broader set to autoimmune diseases.

3. Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Matthew R
Lincoln, Noah Connally, Pierre-Paul Axisa, Christiane Gasperi, Mitja Mitrovic, David van Heel, Cisca
Wijmenga, Sebo Withoff, Iris H Jonkers, Leonid Padyukov, International Multiple Sclerosis Genetics
Consortium, Stephen S Rich, Robert R Graham, Patrick M Gaffney, Carl D Langefeld, Timothy J Vyse,
David A Hafler, Sung Chun, Shamil R Sunyaev, Chris Cotsapas. (Under second review, Nature Genetics)

What was the impact on technoloqy transfer?
Nothing to Report.

What was the impact on society beyond science and technology?
Nothing to Report.
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5. Changes/Problems

Changes in approach and reasons for change

The general approach has not changed, but we have added additional, new resources and tools.
Specifically, as noted last year, we encountered a limitation in the number of high-quality experimentally
derived protein structures in the Protein Databank. As of July 2021, AlphaFold was officially released which
contains neural network derived (predicted) structures. We have included this database in our pipeline, which
markedly increases our coverage of drug targets to 100%; albeit we are discovering that some of the predicted
structures need additional refinement (e.g., for tertiary structural features), and we are reaching out to the
AlphaFold team, using their feedback system to prioritize molecules. We will continue to use experimentally
derived structures when available; but the inclusion of AlphaFold presents a new opportunity to explore more
of our identified targets.

We have also expanded our approach to leverage the structural similarity of the FDA-approved drugs by
applying a natural-language learning algorithm to the SMILES (simplified molecular-input line-entry system)
identifiers for the FDA-approved drug. From these data, we can generate structurally informed clusters of FDA-
approved drug. Using several hierarchical clustering techniques, we found that the results from the Random
Forest clustering algorithm enabled us to identify a potential hot spot within Cluster 3 of drugs that bind to the
protein product of several cGenes. This is a novel idea that expands upon the immediate binding results and
provides additional robustness to the binding results and identifies specific scenarios where structural similarity
might be important to consider for drug development for certain targets.

Actual or anticipated problems or delays and actions or plans to resolve them

The Covid-19 pandemic has caused multiple problems, including the restriction from meeting in person and
the inability to recruit potential interns or PhD students to the lab. For family reasons, Drs. Langefeld and
Ainsworth are not able to travel during the pandemic; both serve as primary caregivers for elderly relatives. As
noted last year, the investigators have effectively used Zoom, Microsoft Teams, and WebEx and manuscript
productivity is consistent and in good quality journals. Assuming the pandemic eases, we anticipate attending
meetings next year.

Changes that had a significant impact on expenditures

Nothing to Report.

Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select
agents

Nothing to Report.

Significant changes in use or care of human subjects

Nothing to Report.

Significant changes in use or care of vertebrate animals.

Nothing to Report.

Significant changes in use of biohazards and/or select agents

Nothing to Report.
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6. Products

Publications, conference papers, and presentations

Journal publications.

Katherine A. Owen®, Kristy A. Bell', Andrew Price!, Prathyusha Bachali!, Hannah Ainsworth?,
Miranda C. Marion?, Timothy D. Howard?®, Carl D. Langefeld?, Nan Shen*, Jinoos Yazdany®, Maria
Dall'era®, Amrie C. Grammer! and Peter E. Lipsky! Mendelian randomization id pathway analysis
demonstrate shared genetic associations between systemic lupus erythematosus and

coronary artery disease. Cell Reports Medicine, In press (online available November 4th).

Marion MC, Ramos PS, Bachali P, Labonte AC, Zimmerman KD, Ainsworth HC, Heuer SE, Robl RD,
Catalina MD, Kelly JA, Howard TD, Lipsky PE, Grammer AC, Langefeld CD. Nucleic Acid-Sensing
and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus
and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and
Drug Targeting. Genes (Basel). 2021 Nov 26;12(12):1898. PMCID: PMC8701117.

Ghodke-Puranik Y, Jin Z, Zimmerman KD, Ainsworth HC, Fan W, Jensen MA, Dorschner JM,
Vsetecka DM, Amin S, Makol A, Ernste F, Osborn T, Moder K, Chowdhary V, Langefeld CD,
Niewold TB. Single-cell expression quantitative trait loci (€QTL) analysis of SLE-risk loci in lupus
patient monocytes. Arthritis Res Ther. 2021 Nov 30;23(1):290. PMCID: PMC8630910.

Genetic mapping across autoimmune diseases reveals shared associations and mechanisms. Matthew R
Lincoln, Noah Connally, Pierre-Paul Axisa, Christiane Gasperi, Mitja Mitrovic, David van Heel, Cisca
Wijmenga, Sebo Withoff, Iris H Jonkers, Leonid Padyukov, International Multiple Sclerosis Genetics
Consortium, Stephen S Rich, Robert R Graham, Patrick M Gaffney, Carl D Langefeld, Timothy J Vyse,
David A Hafler, Sung Chun, Shamil R Sunyaev, Chris Cotsapas. (Under second review, Nature Genetics)

Books or other non-periodical, one-time publications.

Nothing to Report.

Other publications, conference papers, and presentations.

Katherine Owen (presenter), Jessica Kain, Miranda Marion, Carl D. Langefeld, Amrie C. Grammer, and Peter
Lipsky. "Assessing the genetic risk for atherosclerosis in SLE" Lupus 21st Century 2022, Tuscon, AZ,
September 20-23, 2022. Invited talk.

Katherine A. Owen, Kristy A. Bell, Andrew Price, Prathyusha Bachali, Hannah Ainsworth, Miranda C. Marion,
Timothy D. Howard, Carl D. Langefeld, Nan Shen, Jinoos Yazdany, Maria Dall’era, Amrie C. Grammer and
Peter E. Lipsky. Molecular pathways identified from risk alleles demonstrate mechanistic differences in
systemic lupus erythematosus patients of East Asian and European ancestry. Poster and Lightning talk.
American College of Rheumatology (ACR) Convergence 2022, Philadelphia, PA, November 10-14, 2022.

Website(s) or other Internet site(s)

Nothing to Report.

Technologies or technigues

Nothing to report

Inventions, patent applications, and/or licenses
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Nothing to Report.

Other Products

Other products produced by this work update and expand upon those in the first year and as well as new

elements. Collectively this includes:

1. Database of ZINC 15 IDs matched to common database (e.g., pubCHEM) identifiers and common drug
names.

2. Continued refinement of growing database of gene linked SLE risk SNPs by ancestry (e.g., linked to most
plausible functional gene via gene expression or nonsynonymous variants).

3. Growing database of target-specific molecular docking for FDA-approved small molecules. Currently this
dataset will feed into drug prioritization for SLE therapeutics, but since many of the identified drug targets
are relevant in other autoimmune diseases, this could eventually be evaluated in the context of other
diseases. For example, see submitted paper and pan-autoimmune disease genetics (Appendix).

4. Similarity measures using SMILES of FDA-approved drugs and list of drug in proximity to “hot spot” of
enrichment.

7. Participants & Other Collaborating Organizations

What individuals have worked on the project?

Wake Forest investigative team

Name: Carl D. Langefeld, Ph.D.

Project Role: Primary Investigator of project

Researcher Identifier

(e.g., ORCID ID): 0000-0002-4266-6949

Nearest person month

0,
worked: 1.2 months (10% of effort)

Provided overall supervision of administrative and scientific
components of the grant. Major contributor of manuscript preparation
and presentations.

Contribution to Project:

Dr. Langefeld volunteered time from his institutional protected time to

Funding Support: enable progress on the grant.

Name: Timothy D. Howard, Ph.D.

Project Role: Professor

Researcher Identifier

(e.g., ORCID ID): 0000-0003-2518-4902

Nearest person month

) 0.6 calendar months (5% effort)
worked:

Dr. Howard has contributed to the characterization of function of the
associated SNPs and has contributed to writing and editing of
manuscripts.

Contribution to Project:

Funding Support:

Name:

Hannah C. Ainsworth, Ph.D.

Project Role:

Staff Bioinformatician, promoted to Assistant Professor (tenure track)

19



Researcher ldentifier
(e.g., ORCID ID):

0000-0003-1185-0695

Nearest person month
worked:

0.6 calendar months (5% effort)

Contribution to Project:

Dr. Ainsworth developed the pipeline and completed the mapping of the
cGenes to proteins. She has assisted in writing and editing
manuscripts. She has contributed to the characterization of function of
the associated SNPs. She has applied her dissertation work on DNA
topology as a weighting mechanism to develop credible sets of high
priority associated SNP.

Funding Support:

Partial support provided by Dr. Langefeld’s personal research and
development fund and institutional protected time for junior faculty to
pursue the role of DNA topology on identifying plausibly functional
variants that might impact gene function, hence targets for protein
binding experiments.

Name:

Tony Reeves, Ph.D.

Project Role:

Associate Professor

Researcher ldentifier
(e.g., ORCID ID):

0000-0002-8209-6020

Nearest person month
worked:

0.6 calendar months (5% effort)
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SUMMARY

Coronary artery disease (CAD) is a leading cause of death in patients with systemic lupus
erythematosus (SLE). Despite clinical evidence supporting an association between SLE
and CAD, pleiotropy-adjusted genetic association studies are limited and focus on only a
few common risk loci. Here, we identify a net positive causal estimate of SLE-associated
non-HLA SNPs on CAD by traditional Mendelian Randomization (MR) approaches.
Pathway analysis using SNP-to-gene mapping followed by unsupervised clustering
based on protein-protein interactions (PPI) identifies biological networks composed of
positive and negative causal sets of genes. In addition, we confirm the casual effects of
specific SNP-to-gene modules on CAD using only SNPs mapping to each PPI-defined
functional gene set as instrumental variables. This PPIl-based MR approach elucidates
various molecular pathways with causal implications between SLE and CAD and
identifies biologic pathways likely causative of both pathologies revealing known and

novel therapeutic interventions for managing CAD in SLE.

KEY WORDS
Systemic lupus erythematosus, coronary artery disease, mendelian randomization, lupus,

genetics, SNPs, targeted therapeutics



INTRODUCTION

Systemic lupus erythematosus (SLE) is a female predominant, autoimmune disease
characterized by immune dysregulation and multi-organ inflammation that is frequently
associated with the development of cardiovascular disease (CVD)2. SLE exhibits
hyperactivity of the innate and adaptive immune systems, increased production of
numerous autoantibodies, and disturbed cytokine balance3. Although CVD is not a
diagnostic criterion of SLE and was not included in the original descriptions of the disease,
it is currently the main cause of death in SLE*® with coronary artery disease (CAD)
directly responsible for one-third to one-half of all CVD cases and 30% of deaths’®.
Notably, whereas mortality from infections and active disease have decreased in SLE
patients, CVD-related death rates have not improved!® and the standardized mortality
ratio related to CVD has actually increased!. Women with SLE have a significantly
increased risk of stroke and myocardial infarction along with elevated incidence of
asymptomatic atherosclerosis compared to the general population'?13, Furthermore,
traditional CVD risk factors, such as cholesterol, blood pressure, and smoking status fail
to fully account for the overall higher risk of acute CVD events in SLE, although the
underlying mechanisms remain unknown!4-1’. This lack of an understanding for the
increased risk of CVD in SLE has resulted in limited treatment options and the puzzling
juxtaposition that despite the efficacy of statins and ACEIs/ARBSs in treating the general
population, they appear to have little effect on CVD outcomes in SLE patients®>!8. As a
result, even though SLE has a prevalence of only about 70 per 100,000, it ranks among
the leading causes of death in young women?, despite the omission of lupus diagnoses

in almost half of SLE patients’ death certificates%2,



Genetic predisposition imposes important risk factors for both SLE and CVD?1-23,
To date, genetic association studies of SLE patients with and without CVD have been
limited in size and have detected only a few common genetic risk loci, including IRFS8,
STAT4, IL19, and SRP54-AS1%%22425 Mendelian Randomization (MR) is a causal
inference method using genotypes as “treatments” when randomized controlled trials are
not feasible. By measuring and correlating the effect sizes of exposure-associated genetic
variants in large-scale genetic association studies on traits of interest, a causal effect of
the exposure on the outcome can be estimated. Here, we report the application of
multiple, complementary MR methods to identify causal paths from SLE-associated
variants to CAD using summary statistics from genetic association studies. Using multiple
MR algorithms, we have identified large sets of SLE causal variants that also impart
genetic risk for CAD, as well as those that appear to diminish the risk of CAD. Using
innovative approaches to build molecular pathways from genetic risk factors?6, we have
developed a map of SLE-derived biologic processes with causal implications on CAD that
may account for the genetic basis of the association between these two apparently
dissimilar clinical entities and may also provide insights into the shared mechanisms
underlying each. Understanding the pathogenesis of genetic variants underlying the
increased CAD risk in SLE can ultimately provide insight into the immune and
inflammatory components of atherosclerosis, as well as reveal opportunities for targeted

therapeutics.

RESULTS



Pathway analysis reveals gene networks implicated by genetic variants associated
with both SLE & CAD
To explore the shared genetic predispositions for SLE and CAD, we first identified single
nucleotide polymorphisms (SNPs) associated with each trait in 5 SLE and 1 CAD multi-
ancestral genetic association study?’-32. In total, 96 SNPs were associated with both
conditions (Figure S1A). Notably, the majority of the overlapping SNPs mapped to the
HLA region of chromosome 6. To identify putative gene(s) influenced by each of the 96
SNPs associated with both SLE and CAD, we mapped causal SNPs to genes?S,
identifying 189 unique genes encoding 135 proteins in STRINGdb (Figure S1B). Stratified
linkage disequilibrium score regression (S-LDSC) was then used to validate the biological
relevance of SNP-predicted gene and protein sets by assessing whether they captured
more disease heritability than expected by chance with respect to all genes and
STRINGdb proteins, respectively33. Application of S-LDSC using GWAS summary
statistics for SLE (GCST00315527), CVD (GCST0042803%4) and two CAD datasets (CAD-
|, GCST0009983% and CAD-Il, GCST0014793%) determined that the 189 genes predicted
by the 96 overlapping SNPs were significantly (p<0.05) enriched for genomic regions
capturing the genetic heritability of CAD and CVD (Figure S1C). Nearly identical results
were also obtained using the smaller subset of 135 protein-coding genes (Figure S1C).
However, application of standard LDSC which was restricted to the use of the relatively
small, European-only SLE GWAS?’, did not reveal a significant level of genetic correlation
between the diseases (Figure S1D).

To assess molecular networks encoded by the set of 135 protein encoding genes

predicted from the overlapping SLE/CAD SNPs, a protein-protein interaction (PPI)



network was generated and unsupervised clustering revealed 12 distinct gene clusters
that were functionally enriched in a diverse range of immunological and cellular categories
(Figure S1E) many with relevance to SLE and CAD/CVD, including cluster 1
characterized by canonical pathways for Antigen presentation pathway and B cell
development, along with Sudden cardiac death and cluster 3 enriched in Atherosclerosis
signaling and Lupus erythematosus, systemic, amongst others (Table S1). Although the
molecular pathways associated with SNP-predicted genes suggested a convergence of
biological processes underlying SLE and CAD, it remained uncertain whether the finding
of overlapping SNPs implied shared genetic causation. The subsequent studies

presented here explore this in detail.

MR estimates a positive correlation between effects of SLE-associated non-HLA
variants on SLE and CAD

MR methods were employed to estimate the association between effect sizes of relevant
variants on SLE and CAD. We first applied six MR methods using various sets of SLE-
associated instrumental variables (IVs) to determine whether they tend to confer shared
(positive) effects on SLE and CAD, noting that this initial approach did not satisfy all
assumptions for IV-validity or IV-independence and therefore could only provide an
estimated association (Figure 1A). Initial exploratory analyses employing IVs derived from
the Immunochip and GWAS studies suggested a net-positive association for non-HLA
SLE-associated SNPs on CAD (Figure 1B-C). Even when using SLE IVs determined with
the more stringent significance level and removal of known pleiotropic associations to

CVD or confounders such as cholesterol, obesity, blood pressure, insulin resistance and



smoking, the indication of a positive causal relationship between SLE and CAD remained
(Figure 1C, bottom row).

To validate the robustness of our estimated associations by satisfying stringent
requirement for IV selection, we carried out two-sample MR analyses using multi-
ancestral, non-HLA SNPs strongly associated (p<5x10%®) with SLE, excluding SNPs
weakly associated (p<10°) with CVD or confounders (Table S2), followed by stringent
LD-clumping to ensure IV-independence®’ (R?=0.001, 100kb window, 1000G EA
reference population) (Figure 2A). SLE GWAS summary statistics were used for
exposure?’, and multiple CAD GWAS were used for outcome (GCST0051943%2, CAD-a
and GCST005195%2, CAD-b). Since CAD is causative of myocardial infarction (MI) and
atherosclerosis is common to CAD and ischemic stroke (I1S), MR was carried out using
summary statistics for 2 additional M| GWAS (GCST003117%8, Ml-a and GCST011365%,
MI-b) and IS (GCST0069064%). Summary statistics for cardiomyopathy from the FinnGen
biobank analysis (finn-b-19_ CARDMYO, CM) and atrial fibrillation (GCST006414%, AFib),
which are not associated with atherosclerosis or CAD, were also included for comparison.
After LD-clumping, 60 independent SNPs were included in the SLE GWAS and then
harmonized with each outcome-GWAS pair before use as IVs for SLE exposure (Table
S9). Between 43-56 harmonized IVs for SLE-exposure were then tested using 16 MR
methods, some of which account for additional IV-invalidity, pleiotropy, or heterogeneity,
to estimate causal relationships with the various atherosclerotic and cardiac conditions.
The majority of MR methods resulted in significant (p<0.05) positive causal estimates of
SLE-associated variants on CAD-a, and both MI GWAS, but not for cardiomyopathy or

Afib (Figure 2B, Figure S2A, Table S3). Directional pleiotropy was only detected between



the SLE and CAD-b GWAS by the MR-Egger intercept test (Figure S2A), indicating
potential bias in the causal estimates based upon effect sizes using these summary
statistics. Overall, IVW, weighted median, penalized weighted median, maximum
likelihood, RAPS and PRESSO were significant in 4 out of 5 outcome GWAS (Figure
2B). These results establish a positive causal effect of SLE on CAD and suggest that the
increased CVD-risk associated with SLE is likely to involve atherosclerosis rather than
other aspects of cardiac pathology.

To eliminate the possibility that the positive causal estimate of SLE on CAD is
bidirectional and therefore unlikely to represent a true causal relationship, MR was also
carried out in the reverse direction, with CAD or Ml as exposure and SLE as the outcome.
Importantly, none of the 14 methods yielded a significant positive causal estimate of CAD
or Ml on SLE. Of interest, however, significant (p<0.05) negative causal estimates of CAD
and Ml on SLE were observed for approximately half of the 14 MR methods tested (Figure
S2B, Table S3).

To understand the pathways underlying the positive causal estimates of SLE on
CAD in greater detail, all SLE-associated SNPs included as putative Vs before
harmonization with each GWAS were mapped to genes. Consistent with satisfying the
exclusion restriction criteria and independence assumption with respect to traits imposing
significant CVD-risk, S-LDSC results demonstrated that the 284 genes and 160 predicted
proteins captured a significant portion of SLE heritability (p-values = 3.46x10° and 3x10"
5, respectively), but not that of CVD or CAD (Figure 2C).

Proteins predicted from the SLE IVs were then integrated into connectivity

networks in STRINGdb (Figure 2D). Cluster annotations were dominated by processes



commonly dysregulated in SLE as expected, including canonical pathways for Systemic
lupus erythematosus in B cell signaling, Thl pathway and Th2 pathway, as well as GO
terms for Regulation of immune response (GO:0050776) and Negative regulation of B
cell activation (GO:0050869) (Table S4). Interestingly, disease associations were
enriched in various autoimmune diseases (Lupus erythematosus, systemic, Aicardi
goutiere’s syndrome and Hashimoto’s disease), along with cardiovascular dysfunction,
such as Arterial embolism and thrombosis, Hypertension, Plague, atherosclerotic and

Ischemic heart disease (Table S4).

Single-SNP MR identifies gene networks implicated by SLE-associated variants
with positive and negative causal estimates on CAD

We next employed single-SNP MR (SSMR) to identify specific SLE-associated variants
with positive or negative estimates on CAD. SSMR applied to SLE-associated SNPs,
including those in the HLA region, reveal that the majority of negative causal SNPs are
located on the short arm of chromosome 6; all but one were tightly packed around the
HLA region, spanning chr6:28014374-33683352 (Figure S3). When excluding the short-
arm of chromosome 6 and SNPs associated with CVD or confounders, SSMR identified
80 and 96 SLE-associated variants with significant (p<0.05) positive (Figure 3A, top 25)
and negative (Figure 3B, top 25) causal estimates on CAD, respectively (Figure S4, Table
S3). The majority of positive-causal SNPs were distributed on chromosomes 1, 2 and 4,
whereas over 50% of negative causal SNPs were on chromosomes 7, 11 and 17 (Figure

3C, E).



Non-HLA SLE variants with either significant positive or negative causal estimates
on CAD were separately mapped to 236 (Figure 3D) and 244 predicted genes (Figure
3F), respectively, for clustering and pathway analysis. Positive SNP-predicted gene
clusters were enriched in the canonical pathway for Antigen presentation and functional
categories for MHC class |, as well as epigenetic processes, transcription, and
endocytosis (Figure 3E,Table S5), whereas negative SNP-predicted gene clusters were
dominated by processes related to cell death (Pyroptosis (GO:0070269), cluster 2;
Regulation of oxidative stress-induced cell death (G0O:1903201), cluster 6) and protein
degradation (Proteasome, cluster 6 and Autophagy, cluster 8; Figure 3F, Table S5).
Finally, gene sets predicted by both positive and negative causal SNPs captured a
significant portion of SLE heritability, but not that of CAD or CVD, consistent with their

selection as IVs for SLE (Figure 3G-H).

Pathway analysis of HLA region variants associated with SLE-risk and protective
of CAD

Risk haplotypes in the HLA region heavily contribute to susceptibility for SLE*? and CAD*.
However, accurate genotyping of HLA alleles and corresponding GWAS effect size
estimates are notoriously unreliable*4. Additionally, the complex genetic architecture of
this region makes mapping HLA variants to genes especially challenging given the
extensive LD and high density of genes in this region. Nonetheless, an examination of
the HLA area (chr6:28.5-33.5 Mb) revealed 30 SNPs significantly (p<10°) associated
with both SLE and CAD in their respective GWAS. While these SNPs are not

independently associated variants, all 30 SNPs had positive effect sizes for SLE but were
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negative for CAD (Figure S5A), possibly reflecting the extensive LD in this region.
Connectivity mapping and clustering of the 69 protein-encoding genes predicted from
these 30 SNPs revealed 6 distinct clusters dominated by processes dysregulated in SLE,
including the functional categories for MHC class | and MHC class Il in clusters 1 and 6,
along with canonical pathways for TH1 and TH2 activation, B cell development, Notch
signaling as well as gene ontogeny (GO) terms for Interferon-gamma mediated signaling
pathway (GO:0060334) (Figure S5B-C). Other pathways of interest involving
Complement system abnormalities, LXR/RXR activation, and 21-hydroxylase deficiency

were predicted by cluster 3 (Figure S5C).

PPl-based MR predicts specific sets of SLE-associated variants and gene pathways
causal of CAD

To obtain a more comprehensive view of the possible impact of SLE-derived molecular
pathways on atherosclerosis, we mapped SLE-associated, non-HLA Immunochip SNPs
with net positive causal estimates on CAD by MR to genes and pathways regardless of
their associations with CVD-related traits. In total, 838 SNPs predicted 2,336 putative
genes and 1,501 proteins that collectively captured a significant amount of SLE, but not
CAD or CVD, heritability (Figure 4A); these 1,501 proteins clustered into 46 distinct
clusters based on PPI connectivity (Figure 4B). We then grouped SLE-associated SNPs
mapping to genes in each of the 46 PPI-based clusters for use as SLE-IVs to estimate
cluster-specific associations with atherosclerotic traits. Initial application of MR-IVW to
these 46 subsets of SLE SNP-derived IVs yielded 16 and 9 significant (p<0.05) positive

and negative causal estimates, respectively (Figure 4B-C, Figure S6A) for CAD.
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Additional MR methods, including mode and median based methods, MR-Egger, MR-
RAPS, MR-PRESSO, and maximum likelihood, were carried out for further validation of
the PPl-based MR-IVW causal estimates (Table S3). Clusters were grouped into tiers
with respect to consistency across the various MR methods, with tier 1 clusters yielding
significant positive or negative causal estimates by almost all (at least 14/16) MR-
methods and tier 2 clusters yielding significant positive or negative causal estimates by
MR-IVW or at least 7 MR-methods (Figure 4B-C). Finally, when examined individually, 20
of the 46 clusters specifically captured SLE heritability by PPI-based S-LDSC, many with
significant causal estimates on CAD by PPI-based MR (Figure 4D and Table S6).

In an effort to support these results by expanding the size of the network, we added
914 multi-ancestral, non-HLA SNPs associated with SLE on the Phenoscanner database
to the analysis. Overall, 1,708 unique SNPs predicted 3,272 putative genes and 1,972
proteins that collectively captured a significant amount of SLE heritability, but not that of
CAD or CVD (Figure 5A) and clustered into 67 distinct sets of protein-coding genes
(Figure 5B). PPI-based MR-IVW using these 67 clusters of SLE SNPs as IVs yielded 24
and 11 significant (p<0.05) positive and negative causal estimates on CAD, respectively
(Figure 5C-D, Figure S6B), many of which captured SLE heritability, but not that of CAD
or CVD by PPI-based S-LDSC (Figure 5E and Table S6).

To ensure that the majority of predicted causal clusters are not a result of random
chance or multiple-hypothesis testing, simulations were carried out to estimate the false
discovery rate. Results from these simulations, which account for both LD and pleiotropy,
indicate that SLE-derived and PPI-clustered modules, as opposed to randomly generated

SNP-to-gene modules, demonstrate a higher rate of significant causal estimates on CAD
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(Figure S7). Furthermore, to assess the reproducibility of the cluster-specific causal
estimates, PPI-based MR was repeated using CVD-related GWAS datasets on the MR-
base platform#. The PPI-based MR-IVW causal estimates were highly consistent using
summary statistics from 2 CAD and 2 Ml GWAS on MR-base, but not cardiomyopathy or
AFib (Table S7), suggesting that the stratified causal estimates on CAD are associated
with the atherosclerotic component of CVD. Together, these results support the
conclusion that the PPI-based MR results are atherosclerosis-specific and unlikely trivial
results of random chance or multiple hypothesis testing.

SLE-derived clusters in all positive and negative causal tiers were annotated using
multiple functional and cellular composition tools (Figure 5B, Table S8). These results
show that a wide range of SNP-predicted biological functions known to be involved in SLE
pathogenesis have causal implications on CAD by MR, such as Neutrophil degranulation
(clusters 2 and 43), Thl and Th2 activation, and/or Th17 activation (clusters 3, 5, 8, and
9), Interferon signaling (cluster 8), Leukocyte extravasation signaling (cluster 12),
Leukocyte trans-endothelial migration (cluster 28) and Leukocyte adhesion to endothelial
cells (cluster 2). In addition to immune-related pathways, many of these positive causal
clusters were enriched in disease phenotypes associated with cardiovascular disease,
including Th1l cell activation and proliferation in atherosclerosis (cluster 9) and Lipid and
atherosclerosis (cluster 12). Interestingly, several clusters were enriched in autonomic
nervous system control related to cardiac function (Cardiac muscle contraction, clusters
13 and 33) or Neuroinflammation (cluster 60) (Figure 5B, Table S8).

In contrast, SLE-derived clusters with negative causal estimates on CAD were

enriched for oxidative stress (cluster 10), nitric oxide (clusters 24, 40, and 64), and HDL
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cholesterol (clusters 24 and 50) (Figure 5B, Table S8). Pathway enrichment was further
reflected in assigned functional categories, with ROS protection (clusters 24 and 45), NR
transcription (cluster 40) and ubiquitylation and SUMOylation (cluster 64) dominating
clusters with protective estimates on CAD (Figure 5B). These results are highly consistent
with the enrichments associated with negative causal variants in our single-SNP MR and

HLA-specific pathway analyses.

PPl-based MR stratifies SNPs, genes, and networks underlying the positive and
negative causal effects of SLE on CAD

To further validate the causal effects of the 67 SNP-to-gene modules identified by
PPIl-based MR (Figure 6A), we carried out additional MR analyses with respect to PPI-
based MR cluster-groupings after accounting for pleiotropy and LD. Causal estimates of
SLE on CAD with 1Vs derived from clusters meeting the tier 1 or the tier 1 and 2 criteria,
as well as those that surpassed the MR-IVW p-value < 0.00075 threshold were universally
more positive, significant, and consistent than those based upon all SNPs (Figure 6B-C,
Table S3). Similarly, negative causal estimates for SLE on CAD were obtained using 1Vs
meeting the negative tier 1 and MR-IVW p-value < 0.00075 thresholds from the 67-cluster
network. In contrast, IVs derived from clusters with insignificant causal estimates
generally failed to reach significance in either direction. While these trends were observed
using summary statistics from both the SLE GWAS and SLE Immunochip, causal
estimates were more significant using the SLE Immunochip, consistent with its larger

sample size. Importantly, these results demonstrate that PPI-based MR can be used to
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identify independent IVs satisfying MR assumptions that underly both positive and

negative causal effects of SLE on CAD.

Pathway analysis facilitates drug prediction

Pathways associated with positive causal clusters were used to facilitate identification of
new therapeutic interventions for managing the unique inflammatory environment
contributing to CAD in SLE (Figure 7A). Canonical pathways related to immune function
in clusters 2, 3, 5 and 8 predicted drugs targeting T and B cells and inflammatory
cytokines, including daratumumab (CD38), belimumab (TNFSF13), elotuzumab
(SLAMF7), abatacept (CD80/86), iberdimide (IKZF1/IKZF3) and sarliumab (IL6R).
Broader analysis of pathway categories also suggested the utility of targeting interferon
signaling with anifrolumab (cluster 8), as well as anti-platelet/coagulant therapy to
combat dyslipidemia (cluster 5)*6. Additional noteworthy targets include PCSK9 (cluster
5), a protease involved in the degradation and recycling of the LDL receptor targeted by
alirocumab and evolocumab, and oxidated LDL molecules (cluster 5) targeted by

orticumab (Figure 7B).

DISCUSSION

Although genetic association studies have been successful in mapping disease loci in
both immune and cardiovascular diseases, the genetic and molecular basis for the
increased CAD predisposition in SLE patients has remained largely unexplained.
Considering the limited data on CAD in SLE, we developed an approach that utilized
GWAS summary statistics for both diseases to identify and interpret various sets of SLE-

associated variants with causal implications on CAD. New findings suggest the causal
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relationship with SLE appears to be focused on the atherosclerotic process, evidenced
by positive estimates with CAD, MI and ischemic stroke, but not other cardiac conditions,
such as cardiomyopathy or AFib. Furthermore, we developed and carried out PPI-based
MR approach to identify specific sets of SLE variants mapping to biologically relevant
gene sets with causal implications on CAD. By coupling various MR methods with network
modeling and variant interpretation, we not only provided substantial evidence of shared
genetic risk but also identified the putative molecular pathways involved in the
development of CAD in SLE. Moreover, a number of the immune and inflammatory
pathways identified in these analyses could well contribute to the pathogenesis of CAD
even in the absence of SLE or other recognized autoimmune conditions. This points to
the larger implication that CAD itself is a heterogeneous condition and subpopulations,
such as those driven by SLE-associated processes, might require potentially distinct
treatment strategies, at least partially motivated by unique genetic predispositions.
Causal inference using traditional MR methods rely on strict assumptions for
independent 1Vs, however given the extensive pleiotropy underlying complex traits such
as SLE and CVD, efforts to satisfy these assumptions can result in biasing the analyses
by excluding previously established associations. Furthermore, the exclusion of SNPs
associated with CVD-related traits results in the loss of relevant molecular information.
While the use of SLE IVs that are also associated with CVD or confounders in traditional
MR disqualifies the causal estimates from representing an effect on CAD directly through
SLE, these SNPs can be just as important with respect to understanding the relevant
biological pathways underlying CAD in SLE. Similarly, stringent LD-clumping to obtain an

independent set of Vs not only reduces the statistical power of MR#/, but also can omit
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additional SNPs, genes, and pathways underlying CAD in SLE. Due to our rigorous efforts
to satisfy the assumptions and account for LD in the traditional MR analyses, while also
employing numerous MR methods that account for IV-invalidity, pleiotropy, or
heterogeneity, these results may give overly-conservative estimates of the causal effects
and underlying mechanisms as a result of over-pruning.

To overcome these limitations of traditional MR, we developed and employed a
PPIl-based MR approach using networks comprehensively derived from large sets of SLE-
associated SNPs, regardless of their associations with CVD-related traits. By generating
cluster-specific associations between effect sizes on SLE and CAD, biologically relevant
SNP-to-gene modules can be categorized as having shared (positive estimates) or
opposing (negative estimates) effects on SLE and CAD. Traditional MR using
independent, SLE-specific IVs mapping to positive and negative clusters, separately,
confirmed that the groups of causal clusters are representative of positive and negative
causal effects on CAD through SLE, respectively. We believe that our PPI-based MR
approach is particularly beneficial in cases when the exposure is complex and
heterogeneous, such as SLE which embodies a diverse range of molecular and
pathophysiological mechanisms that we expect to impose unique casual effects on CAD.

Genetic variants are typically mapped to genes with respect to genomic location,
identifying genes containing and/or nearby the SNPs of interest. Additionally, more recent
advances have given rise to identification of trans-acting genomic regions that can
epigenetically and/or transcriptionally influence genes at distant locations. This is
especially important for complex, polygenic traits, such as SLE and CAD, of which most

associated variants are non-coding. Here, we link SNPs to genes via amino acid changes

17



in encoded proteins, proximity, expression quantitative trait loci (eQTL) predictions, and
regulatory elements in an effort to be as comprehensive as possible. Our subsequent
PPIl-based clustering elucidated a broad range of biologically relevant molecular networks
within the diverse set of implicated genes and importantly served to filter out noise.
Furthermore, our PPl-based MR approach served to highlight SNP-to-gene modules
contributing most to the causal effects of SLE on CAD. Together, these results
demonstrate how SLE genetics can be used to identify both known and novel loci and
pathways with causal implications on CAD.

Numerous biologically relevant SNP-to-gene modules were determined to have
positive causal effects on CAD through SLE by MR, spanning inflammatory factors,
adaptive and innate immunity, intracellular signaling, cell differentiation, microRNA and
MRNA processing, mitochondrial function, and more. A wide range of enrichments
amongst positive causal clusters have been hypothesized and/or demonstrated to
contribute to CVD in SLE patients, including glucocorticoids, neutrophil cell death
(NETosis) and degranulation, TNF-like weak inducer of apoptosis (TWEAK) signaling,
canonical and alternative complement pathways, Th1 differentiation, lipid and lipoprotein
metabolism among others.

Considering the drastically increased prevalence and mortality of CAD in SLE, the
considerable portion of SLE-associated risk variants with negative causal effects on CAD
was unexpected and suggested that numerous variants contributing to SLE have
atheroprotective effects. Further SNP-to-gene mapping and detailed pathway analyses
revealed that these variants are involved in various processes, predominantly related to

oxidative stress and cholesterol homeostasis, whose atheroprotective effects have been
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found to be impaired in certain disease-related contexts, such as SLE. For example, the
enzyme responsible for maintaining cholesterol homeostasis though lipoprotein lipase
synthesis, cholesterol 27-hydroxylase, has been shown to be decreased in human
monocytes and aortic endothelial cells of SLE patients, and is thought to impair the
protective mechanism of efflux of cellular cholesterol*®. Cyp27al is the gene that encodes
the cholesterol 27-hydroxylase and is an LXR target activated by oxysterols as well as a
target of RXR and PPAR in human macrophages*®. LXR activation has additional
proatherogenic and atheroprotective effects, as LXR activation in the liver promotes
atherosclerosis via excess lipogenesis, whereas LXR activation in macrophages and
dendritic cells has anti-inflammatory effects, linking lipid metabolism, immune cell
function, and inflammation®°.

Our approach also has the advantage of identifying “actionable” points of
therapeutic intervention with the potential to impact the inflammatory environment
associated with CAD in SLE. This is especially important given that CAD risk in SLE
cannot be fully accounted for by the increased prevalence of traditional atherosclerotic
risk factors. SLE subjects therefore may derive particular benefit from treatments that
mitigate inflammatory intermediates such as type | interferons with anifrolumab. Our
findings also highlight additional putative targets, including PCSK9 involved in LDL
receptor recycling. Inhibitors of PCSK9 activity, such as alirocumab and evolocumab are
FDA approved to treat hyperlipidemia and may prove to be effective in controlling
atherosclerosis in chronic inflammatory conditions®!. Finally, recent reports also support
targeting oxidized LDL molecules (anti-oxLDL, orticumab) for the prevention of

cardiovascular events in SLE®?,
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Limitations of the Study

Limitations of this study include those related to the data integrated in our pipeline.
First, SLE genetic association studies have been restricted in size and scope, yielding
limited power and genomic coverage, especially considering the extensive heterogeneity
and polygenicity of lupus. To maximize both power and scope, we used the largest
genetic association study for SLE, which is limited to Immunochip SNPs, the largest SLE
GWAS, as well as SLE-associated SNPs pooled from the Phenoscanner platform.
However, most genetic association studies, including the multi-ancestral data used in this
study, are heavily biased towards European ancestries. This is especially problematic
given the increased CVD morbidity and mortality in SLE patients of African-ancestry® in
addition to the ancestry-dependent disparities observed in both SLE and CAD. It is also
of note, that certain risk factors leading to distinct phenotypic outcomes such as CAD are
likely to be impacted by environmental factors that cannot be accounted for by genetics
alone. This is important with respect to the higher disease burden observed in African
ancestry patients, where barriers to treatment (such as delayed diagnosis and/or limited
access to a specialist) may contribute to elevated mortality in this population and further
underscores the importance of generating large datasets with diverse patient populations.
In addition, the ability to map genetic variants to implicated genes is limited to known
SNP-to-gene relationships included in Ensembl’'s variant effect predictor (VEP),
Genotype-Tissue Expression (GTEx), and Human ACtive Enhancer to interpret
Regulatory variants (HACER) databases. Although putative causal pathways associated

with the HLA region are intriguing, mapping of the SNPs within the HLA region to genes
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is challenging because of the extensive LD across the region. Additionally, genes
included in our PPI networks and clusters are limited to protein-coding genes and
interactions included in STRINGdb. This is a potential shortcoming of our pipeline
especially considering the large number of non-coding genes implicated in our SNP-to-
gene predictions in addition to the growing evidence highlighting the contributions of non-
coding long RNAs and microRNAs in both SLE and CAD>*%°, Similarly, the ability to
annotate gene clusters functionally is limited and potentially biased by the data underlying
the numerous enrichment platforms used in our pathway analyses. IPA, EnrichR, which
pools a myriad of public databases, and cell and functional analytic tools were all utilized
to obtain orthogonal and reproducible annotations. Ultimately, however, our robust SNP-
to-gene mapping approach, which included multiple sources of information in combination
with biologically informed clustering employing numerous sources of annotation, enabled
comprehensive analysis of both small and large sets of genetic variants to specific
pathways with excellent reproducibility.

In summary, we have employed various approaches to clearly identify shared
genetic risk factors for SLE and CAD. These results have provided new information about
common molecular pathways in SLE and CAD, as well as the genetic and molecular

information to consider novel therapeutic interventions in these conditions.
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MAIN FIGURE LEGENDS

Figure 1. MR demonstrates a positive association of effect sizes of SLE-associated
non-HLA SNPs on SLE and CAD. A) Graphical depiction of the 2-stage approach for an
initial exploratory analysis using expanded groups of SNPs as |Vs followed by a
confirmatory analysis using highly curated IVs. B-C) Forest plots of 6 MR causal
estimates (beta = standard error). For results, grey indicates insignificant (p> 0.05), red,
positive causal estimates determined by each MR method. B) Immunochip-derived SLE-
associated non-HLA SNPs were used as Vs for SLE; summary statistics from both the

SLE Immunochip study (left panel) and SLE GWAS (right panel) were used for the
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exposure; summary statistics from the CAD GWAS were used for the outcome. C)
Additional MR analyses using SNPs associated (p<10-%) with SLE in the Immunochip and
GWAS study (row 1 and 2) or Phenoscanner reaching genome-wide significance (p
<5x108, row 3) were used as IVs; summary statistics for the exposure and outcome are
indicated. MR analyses excluding the entire short-arm of chromosome 6 and excluding
only the extended HLA region (chr6:27-34Mb, left columns). Right columns show MR
analyses using the same sets of SNPs excluding pleiotropic SNPs associated (p<10-°)
with either CAD- directly or CVD-related confounders, included on the Phenoscanner

platform.

Figure 2. MR demonstrates a net positive-causal effect of SLE-associated non-HLA
SNPs on CAD. A) MR diagram for testing the causal effects of SLE on CAD with respect
to instrument relevance to the exposure, exclusion from the outcomes (i.e. CAD, MI, IS)
and independence from confounding factors. LD-clumping (R?<0.001) was used to obtain
independent 1Vs. B) Forest plots of MR causal estimates (beta + standard error) for SLE
on CAD (CAD-a, CAD-b), MI (Ml-a, MI-b), IS, cardiomyopathy (CM) and atrial fibrillation
(AFib) GWAS using 16 MR methods. Missing PRESSO-OC estimates indicate
insignificant global tests for horizontal pleiotropy. For results, grey indicates insignificant
(p> 0.05), red, positive causal (p<0.05), and blue, negative causal (p<0.05) estimates
determined by each MR method. Numbers within forest plots indicate the SNPs used as
IVs after harmonization. C) Application of S-LDSC using summary statistics for SLE, CVD
and CAD GWAS to estimate the heritability (coefficient + standard error) of the 284 SNP-
predicted genes (top panel) and 160 SNP-predicted proteins from STRINGdb (lower

panel). Bar color indicates coefficient significance. D) Cluster metastructures for the 160
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putative protein-coding genes are based on PPl networks. Functional and cell-type
enrichments for each cluster were determined using BIG-C (black labels) and I-scope
(red labels), respectively. Black labels over colored shadings represent shared functional

annotations for the clusters they surround.

Figure 3. Analysis of SLE-associated SNP-predicted genes with causal effects on
CAD by single-SNP MR. A-B) Forest plots (beta + standard error) of the top 25 (by
absolute value of causal estimates) positive (A) and negative (B) causal non-HLA SNPs
identified by single-SNP MR (SSMR) using the Wald ratio method. C and E) Pie charts
illustrating the chromosomal distribution of 80 positive (C) and 96 negative (E) causal SLE
SNPs on CAD. D and F) Cluster metastructures for the 200 (D) 184 (F) predicted genes
from positive and negative causal SNPs identified by single-SNP MR. Functional and cell-
type enrichments for each cluster were determined using BIG-C (black labels) and I-
scope (red labels), respectively. Bold black labels over colored shadings represent shared
functional annotations for the clusters they surround. (G-H) S-LDSC using summary
statistics for SLE, CVD and CAD GWAS to estimate the heritability (coefficient + standard
error) of genes (open bars) and SNP-predicted proteins (hashed bars) predicted by
positive (G) and negative (H) causal SNPs determined by SSMR. Bar color indicates

coefficient significance.

Figure 4. SLE-derived gene network with causal implications on CAD and PPI-
based MR. A) S-LDSC using summary statistics for SLE, CVD and CAD GWAS to
estimate the heritability (coefficient + standard error) of the 2,336 genes (open bars) and

1,501 proteins (hashed bars) predicted by 838 Immunochip SNPs associated with SLE.
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Bar color indicates coefficient significance. (B) Functional and cell-type enrichments for
cluster metastructures were determined using BIG-C (black labels) and I-scope (red
labels), respectively. Bold black labels over colored shadings represent shared BIG-C
functional annotations for the clusters they surround. Node size is proportional to the
number of SNPs (height) mapping to the genes in each cluster (width). For node color,
red and blue indicate significant positive or negative estimates, respectively for 14/16 MR
methods used (tier 1); light red and light blue, significant positive or negative estimates
by MR-IVW or at least 7/16 MR-methods (tier 2); grey, insignificant. Thickness of the
yellow border is roughly proportional to the negative log of the MR-IVW p-value. Green
border indicates clusters with -log(MR-IVW p-value) > 3. C) Forest plots from PPI-based
MR showing estimates (beta * standard error) calculated by MR-IVW for select positive
and negative clusters. D) PPIl-based S-LDSC (coefficient + standard error) using GWAS

summary statistics for SLE, CVD and CAD. Bar color indicates coefficient significance.

Figure 5. Comprehensive PPl-based MR predicts sets of SLE associated variants
and pathways causal of CAD. A) S-LDSC using GWAS summary statistics for SLE,
CVD and CAD to estimate the heritability (coefficient + standard error) of the 3,272 genes
(open bars) and 1,972 protein-coding genes (hashed bars) predicted by 1,708 combined
Immunochip and Phenoscanner-derived SNPs. Bar color indicates coefficient
significance. (B) Functional and cell-type enrichments for cluster metastructures were
determined using BIG-C (black labels) and I-scope (red labels), respectively. Bold black
labels over colored shadings represent shared BIG-C functional annotations for the
clusters they surround. Node size is proportional to the number of SNPs (height) mapping

to the genes in each cluster (width). For node color, red and blue indicate significant
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positive or negative estimates, respectively for 14/16 MR methods used (tier 1); light red
and light blue, significant positive or negative estimates by MR-IVW or at least 7/16 MR-
methods (tier 2); purple, mixed estimates; grey, insignificant. Thickness of the yellow
border is roughly proportional to the negative log of the MR-IVW p-value. Green border
indicates clusters with a negative log of the MR-IVW p-value > 3. C-D) Forest plots from
PPI-based MR showing estimates (beta + standard error) calculated by 16 MR methods
for select (C) positive and (D) negative clusters. The number of SNPs used as Vs for
each cluster are indicated in the plots. E) PPI-based S-LDSC (coefficient + standard error)
using GWAS summary statistics for SLE, CVD and CAD. Bar color indicates coefficient

significance.

Figure 6. PPl-based MR identifies SLE SNPs with positive and negative causal
effects on CAD. A) Workflow depicting PPIl-based MR. B-C) PPI-based MR validation.
Forest plots (beta + standard error) from 16 MR methods using summary statistics from
the SLE GWAS (B) or SLE Immunochip (C) as the exposure and CAD GWAS as the
outcome. SLE-associated non-HLA SNPs mapping to positive and negative clusters,
separately (by tier) and together (“All SNPs”) were used as Vs after excluding CVD and
confounder-associated SNPs followed by stringent LD-clumping (R?=0.001) and
harmonization. The number of SNPs used as IVs for each SNP set are indicated in the
plots. For results, grey indicates insignificant (p > 0.05); dark red, positive (p < 0.00075);
red, positive (p <0.05); dark blue, negative (p < 0.00075); blue, negative (p <0.05) by each

MR method.
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Figure 7. Genes and molecular pathways associated with positive causal clusters
identify therapeutic interventions for managing CAD in SLE. A) All tier 1 and a
selection of tier 2 clusters were functionally annotated using BIG-C, IPA and the EnrichR
database. Select drugs acting on direct gene targets or on any of the associated pathways
(italics) are listed. B) Venn diagram summarizing therapies that might uniquely impact

SLE or CAD and those that may target pathways common to both diseases.

STAR METHODS

RESOURCE AVAILABILITY
Lead contact
Further information and requests should be directed to the Lead Contact, Katherine A.
Owen (kate.owen@ampelbiosolutions.com).
Materials availability
This study did not generate new unique reagents.
Data and code availability
e This paper analyzes existing, publicly available data. Al GWAS and Immunochip
studies are referenced.
e Original software code and documentation have been deposited on figshare

(www.figshare.com; doi.org/10.6084/m9.figshare.21225251) and is publicly

available as of the date of publication.
¢ Any additional information required to reanalyze the data reported in this report is
available from the Lead Contact upon request.

Experimental models and subject details

27


http://www.figshare.com/

This study did not use any experimental models or enroll human subjects.

METHOD DETAILS

Identification of SLE- and CAD-associated SNPs and overlap

SNPs associated with each disease were obtained from previous GWAS and Immunochip
studies. For CAD, we used a comprehensive multi-ancestral meta-analysis of GWAS?32,
For SLE, we included results of multiple GWAS and Immunochip studies to account for
as many ancestries as possible?-3%, In total, 7,222 and 16,163 unique SNPs were
significantly (p<10) associated with SLE and CAD, respectively, and were employed in
these studies. A full list of the SNPs, chromosome locations, positions and sources used

are detailed in Table S9.

Identification of SNP-predicted genes
Expression quantitative trait loci (eQTLs) were identified using GTEx®® version 6.8
(GTEXportal.org) and mapped to their associated eQTL expression genes (E-Genes). To
find SNPs in enhancers and promoters, and their associated transcription factors and
downstream target genes (T- Genes), we queried the atlas of Human Active Enhancers
to interpret Regulatory variants®’ (HACER, http://bioinfo.vanderbilt.edu/AE/HACER). To
find SNPs in exons of protein-coding genes (C-Genes) and include proximal genes (P-
Genes, within 5kb), we queried the human Ensembl genome browser’s variant effect

predictor®® (VEP, ensembl.org/info/docs/tools/vep, GRCh38.p12).

Network analysis and visualization
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Protein-protein interaction (PPI) networks of SNP-predicted protein-coding genes were
generated by STRING®® (https://string-db.org, version 11.0b), and resulting networks
were imported into Cytoscape® (version 3.6.1) for visualization and partitioned with
MCODE via the clusterMaker26! (version 1.2.1) plugin. Metastructures are based on PPI
networks. For all metastructures, node gradient shading is proportional to intra-cluster
connectivity, cluster size indicates number of genes per cluster and edge weight indicates

inter-cluster connections.

Functional gene set analysis
Predicted genes were examined using Biologically Informed Gene Clustering (BIG-C;
version 4.4.). BIG-C is a custom functional clustering tool developed to annotate the
biological meaning of large lists of genes and has been previously described®-64. |-Scope
is a custom clustering tool used to identify immune cell types in large gene datasets®®.
The Ingenuity Pathway Analysis (IPA; https://www.giagenbioinformatics.com) platform
and EnrichR® (https://maayanlab.cloud/Enrichr/) web server provided additional

molecular pathway enrichment analysis.

Drug candidate identification

Drug candidates were identified using LINCS®4, STITCH®® (v5.0), IPA and literature
mining. Each of the database tools includes either a programmatic method of matching
existing therapeutics to their targets or else is a list of drugs and targets for achieving the

same end.
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QUANTIFICATION AND STATISTICAL ANAYSIS

Linkage Disequilibrium Score Regression (LDSC) Genetic Correlations

LDSC?® was used to estimate genome-wide genetic correlations between traits using
GWAS summary statistics. Pre-processed summary statistics from SLE, CAD and CVD
GWAS were obtained from the Broad webpage
(https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). Using the LDSC
software provided on github (https:// github.com/bulik/ldsc) and reference data on the
Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), including European
LD scores 'eur_w_Id_chr' or 'weights_hm3_no_hla' as weights for analyses excluding the
HLA region. Using standard parameters, the "ldsc.py" (with the "--rg" flag) script was used

to generate genome-wide genetic correlation estimates between SLE and CVD or CAD.

Stratified Linkage Disequilibrium Score Regression (S-LDSC)

S-LDSC?3 was used to obtain gene-set specific disease-heritability estimates using
GWAS summary statistics. Pre-processed summary statistics from SLE, CAD and CVD
GWAS were obtained from Broad webpage
(https://alkesgroup.broadinstitute.org/LDSCORE/all_sumstats/). Using the S-LDSC
software provided on github (https:// github.com/bulik/Idsc) and reference data on the
Broad webpage (https://alkesgroup.broadinstitute.org/LDSCORE/), annotation and LD
score files were generated for each SNP-predicted gene- and protein- set, separately.
Using standard parameters, the “make_annot.py” and “Idsc.py” (with the “--12” flag)

scripts were first used to generate the gene-set-specific annotation and LD files, then
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the “Idsc.py” (with the “- - h2-cts” flag) script was used to generate stratified heritability

scores for each GWAS.

Selection of valid, independent instrumental variables for traditional MR analysis
Traditional MR methods, such as MR-IVW, operate under three strict assumptions for
instrumental variable (V) validity: 1) the relevance assumption, 2) the exclusion
restriction criteria assumption, and 3) the independence assumption. To satisfy the
relevance assumption, SNPs significantly (genome-wide significance p-value < 5x10)
associated with SLE?7:28.74-81.29.67-73 \yere obtained from the Phenoscanner database
(www.phenoscanner.medschl.cam.ac.uk)(82,83) (Table S9). To satisfy the exclusion
restriction criteria and independence assumptions, 89,336 SNPs weakly associated (p-
value < 1x10-°) with CVD and confounders including cholesterol, obesity, blood
pressure, insulin resistance, smoking, age-related diseases, and many more, were
excluded from being IVs for SLE-exposure (see Table S2 for the full list of excluded
traits). HLA-region SNPs were conservatively removed from MR analyses by excluding
the short-arm of chromosome 6. Stringent LD clumping®’ was employed using the
clump data (R?=0.001, 100kb window, 1000G EA reference population) function to

generate an independent set of 60 SLE-IVs harmonized for each GWAS.

Mendelian Randomization (MR)
MR was used to test for causal relationships between SLE and CAD using the MR-Base®
(https://lwww.mrbase.org) TwoSampleMR*® package in R

(https://github.com/MRCIEU/TwoSampleMR). Various sets of SLE-associated genetic
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variants used as instrumental variables (IVs) and summary statistics for SLE-exposure
were manually imported into R and summary statistics were carried out for MR-base
compatibility using the ‘format data’ command. All effect sizes and standard errors were
obtained from the exposure summary statistics used in each analysis, regardless of the
study in which each IV was associated with the exposure. Given the availability of well-
powered CAD/MI GWAS on MR-Base, IVs for CAD and MI were directly obtained from
each exposure GWAS using the ‘extract instruments’ command for the bidirectional
analyses. Data from the SLE and all CVD-related GWAS studies used in our MR analyses
are publicly available and also accessible through the MR-Base software, which was used
to obtain the outcome summary statistics via the ‘extract outcome data’ command. The
‘allele harmonization’ command was used to ensure the effect estimates of the exposure
and outcome are based on matching alleles, excluding SNPs with completely
mismatching alleles from the MR analysis or reversing the effect and non-effect alleles
along with the effect estimates when applicable. Because of the allele harmonization step
and because some SNPs are absent from the available summary statistics, a small
proportion of SNPs used as IVs are absent from the final MR calculations. Up to sixteen
individual MR methods were carried out through the TwoSampleMR package, including
inverse variance weighted (IVW), simple mode, weighted mode, simple median, weighted
median (WMedian), MR-Egger, MR-PRESSO (raw and outlier-corrected), MR-RAPS,
and two sample maximum likelihood (ML). The ‘MR report’ function was used to generate
a summary containing heterogeneity and directional pleiotropy tests and scatterplots
(Figure S2). MR-IVW and MR-Egger heterogeneity test results (Q-value) indicate whether

significant heterogeneity was detected, which does not necessarily indicate biased causal
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estimates. MR-Egger intercept indicate whether significant directional horizontal
pleiotropy was detected, which usually indicates biased causal estimates. For single-SNP
MR, the ‘MR single-SNP’ function was also carried out using the Wald Ratio method. Full
details of all MR results are included in Table S2 and a summary of all the main findings

are included in Table S10.

PPl-based MR

SLE-associated variants from the Immunochip3! and Phenoscanner database®223 were
linked to their most likely genes, and the genes used to generate PPI-informed gene
clusters. The SLE-associated SNPs mapping to genes in each of PPI-based clusters were
then extracted to “reverse engineer’ subsets of SNPs that could be used separately as
SLE-IVs for MR to independently estimate the causal effects of each PPI-informed SNP-
to-Gene module on CAD. Up to sixteen MR methods were carried out for each SNP-to-
gene module through the TwoSampleMR package.

In additional analyses (related to Figure 6) using the combined Immunochip and
Phenoscanner SNP dataset, filtering eliminated SNPs weakly associated (p-value < 1x10
5) with CVD and confounders including cholesterol, obesity, blood pressure, insulin
resistance, smoking, age-related diseases, and many more (Table S2). HLA-region SNPs
were conservatively removed from MR analyses by excluding the short-arm of
chromosome 6. Stringent LD clumping®” was employed using the clump_data (R?=0.001,
100kb window, 1000G EA reference population) function to generate an independent set
of SLE-IVs. Various analyses were performed using independent, valid IVs derived from

‘All SNPs’, SNPs mapping to ‘Insignificant’ clusters, ‘Positive Tier 1’ clusters, ‘Positive
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Tier 1 and Tier 2’ clusters, ‘Positive MR-IVW p-value<0.00075’ clusters, ‘Negative MR-
IVW p-value<0.00075’ clusters, ‘Negative Tier 1’ clusters, and ‘Negative Tier 1 and Tier

2’ clusters.

Monte Carlo Simulations for expected MR results using random sets of
Immunochip-derived SNP-to-Gene modules

Monte Carlo Simulations were implemented and performed to estimate the false
discovery rate with respect to significant PPl-based MR causal estimates. 120,026
Immunochip SNPs included in the SLE summary statistics were mapped to putative
genes using the VEP, including regulatory effects, to generate an Immunochip SNP-to-
Gene library with 67,211 unigue SNPs mapping to 7,602 STRINGdb proteins. In each
simulation, a random set of 3 to 152 SNP-predicted proteins were selected from the 7,602
proteins and used to extract up to 400 Immunochip SNPs. MR-IVW was then performed
for SLE on CAD using harmonized, non-HLA SNPs (via removal of the entire short-arm
of chromosome 6) from the simulated set of Immunochip SNPs as IVs. By using our
Immunochip derived SNP-to-Gene dictionary for random selection of protein clusters and
associated SNPs to generate random sets of 1Vs, our simulations account for both a high
degree of LD and pleiotropy, especially considering the major influence of loci associated

with diabetes in development of the Immunochip.

Supplemental Table Legends

Table S1. Canonical pathway and disease phenotype enrichments for network

analysis of SNP-predicted genes overlapping SLE and CAD. Related to Figure 1 and
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S1. Gene set enrichments for each cluster were determined using IPA and the EnrichR
library database. P-values from Fisher’s exact test measures the significance of overlap

between genes in each cluster and genes within an annotation.

Table S2. List of all included SLE and excluded CVD/confounder-associated traits
from the Phenoscanner database for use as SLE-IVs in MR analyses. Related to

Figure 2.

Table S3. Full MR results. Related to Figures 2, 3, 4, 5, and 6.

Table S4. Pathway analysis of SLE IVs determined to be causal of CAD by
traditional MR. Related to Figure 2. Gene set enrichments for each cluster were
determined using IPA and the EnrichR library database. P-values from Fisher’s exact test
measures the significance of overlap between genes in each cluster and genes within an

annotation.

Table S5. Canonical pathway and disease phenotype enrichments for network
analysis of positive and negative causal SNP-predicted genes determined by
single-SNP MR. Related to Figure 3. P-values from Fisher’s exact test that measures the

significance of overlap between genes in each cluster and genes within an annotation

Table S6. PPIl-based S-LDSC results for the 46 and 67 PPI-based of genes clusters

derived from SLE-associated SNPs. Related to Figure 4.
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Table S7. Validation of PPl-based MR-IVW results for 46 and 67 SLE-derived
clusters on CAD. Related to Figures 4, 5, 6 and S6. MR-IVW results for SLE on CVD-
related summary statistics available on the MR-base platform, including two CAD GWAS,

two MI GWAS, Ischemic Stroke, Cardiomyopathy, and Atrial Fibrillation.

Table S8. Pathway analysis of positive and negative-casual Tier 1 and Tier 2 SLE-
derived SNP-predicted protein clusters with significant (p-value<0.05) causal
estimates on CAD by PPl-based MR for the comprehensive 67-cluster network.

Related to Figure 5.

Table S9. Lists of SNPs, chromosome locations, p-values and sources (where

available). Related to Figures 1, S1, 2, 3, 4 and 5.

Table S10. Summary of major findings. Related to STAR Methods.
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Figure S1. Analysis of SNP-predicted genes associated with both SLE and CAD. Related to Figures 1 and 2. A)
Venn diagram of overlap between multi-ancestral SLE- and CAD-associated (p<10®) SNPs. B) Venn diagram of
overlap between SNP-predicted genes derived from regulatory elements (T-Genes), eQTL analysis (E-Genes),
coding regions (C-Genes), and proximity within 5kb (P-Genes). C) Application of S-LDSC using summary statistics
for SLE, CVD, and CAD GWAS to estimate the heritability of the 189 SNP-predicted genes (top panel) and 135
SNP-predicted proteins (lower panel) from STRINGdb. Bar color indicates coefficient significance. D) Application
of LDSC to estimate the genetic correlation between SLE and CAD or CVD. E) PPI network consisting of 135
putative protein-coding genes. Functional and cell-type enrichments for each cluster were determined using BIG-C
(black labels) and I-scope (red labels), respectively. Black labels over colored shadings represent shared BIG-C
functional annotations for the clusters they surround.
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Figure S2. Bidirectional MR summaries between SLE and CAD. Related to Figure 2 and Table S3. Scatter plots
showing GWAS effect size estimates on the exposure (x-axis) and outcome (y-axis) with each dot representing a
SNP and lines representing MR-estimates of SLE on CAD, MI and IS (A) and in the reverse direction, with CAD or
MI as exposure and SLE as the outcome (B). MR-IVW and MR-Egger heterogeneity test results (Q-value) indicate
whether significant heterogeneity was detected (asterisks, p<0.05), which does not necessarily indicate biased causal
estimates. MR-Egger intercept indicates whether significant (asterisks, p<0.05) directional horizontal pleiotropy was
detected, which usually indicates biased causal estimates. N.s., not significant.
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Figure S3. SLE-associated SNPs on chromosome 6 account for the majority of negative causal effects on CAD
by SSMR. Related to Figure 3. A-B) Forest plots (beta + standard error) of the top 25 (by absolute value of causal
estimates) positive (A) and negative (B) causal SNPs identified by SSMR using the Wald-ratio method. C-D) Pie
charts illustrating the distribution of 119 positive (C) and 234 negative (D) causal SLE SNPs on CAD. E-F) Cluster
metastructures for the 498 (E) 557 (F) predicted genes from positive and negative causal SNPs identified by single-
SNP MR. Metastructures are based on PPI networks, clustered using MCODE and visualized in Cytoscape. Node
gradient shading is proportional to intra-cluster connectivity, cluster size indicates number of genes per cluster and
edge weight indicates inter-cluster connections. Functional and cell-type enrichments for each cluster were
determined using BIG-C (black labels) and I-scope (red labels), respectively. Bold black labels over colored
shadings represent shared functional annotations for the clusters they surround.
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Figure S4. MR analyses for positive and negative causal SNPs determined by SSMR. Related to Figure 3 and
Table S3. A) Forest plots (beta + standard error) of the 80 positive (A) and 96 negative (B) causal non-HLA SNPs
identified by SSMR using the Wald ratio method, ordered by absolute value of causal estimates.
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Figure S6. Positive and negative causal estimates for PPI-based clusters using MR-IVW. Related to Figures 4
and 5. (A-B) PPI-based MR-IVW (beta + standard error) using these the 46 (A) and 67 (B) clusters of SLE SNP-
derived I'Vs in CAD, MI, IS, cardiomyopathy, and atrial fibrillation GWAS. For results, grey indicates insignificant
(p > 0.05), dark red and red, positive causal at p < 0.00075 and p < 0.05, respectively; dark blue and blue, negative
causal p <0.00075 and p < 0.05, respectively by IVW.
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Figure S7. Expected vs. observed MR-IVW casual estimates corresponding to random vs. PPI-based SNP-to-
gene modules. Related to Figure 5. A) Schematic illustrating the Monte Carlo Simulations for expected MR results
using random sets of Immunochip-derived SNP-to-Gene modules. B-D) Histograms representing the proportion of
insignificant (p>0.05, gray), positive causal (p<0.05, red), negative causal (p<0.05, blue), positive causal
(p<0.00075, dark red), and negative causal (p<<0.00075, dark blue) results with respect to number of SNPs used as
I'Vs for SLE-exposure on CAD corresponding to (B) the 46 SLE-derived clusters and (C) the comprehensive 67
SLE-derived clusters and (D) over 50,000 random sets of Immunochip-derived SNP-to-Gene modules.
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Table S10. Summary of major findings. Related to STAR Methods.
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Abstract: Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory
disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic
factors are a significant contributor to SLE risk and may be informative for identifying pathogenic
mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background,
we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole
blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE.
Results were replicated on the same array in four cell types from a set of four Danish female MZ
twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated
in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There
were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood,
including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to
the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression
in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of
disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential
methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in
independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing
pathway and the type I interferon pathway. The DM-DE genes were also informatically queried
for potential gene-drug interactions, yielding a list of 41 drugs including a known SLE therapy.
The DM-DE genes delineate two important biologic pathways that are not only reflective of the
heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source,
type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell-
and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the
nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for
therapeutic intervention.
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1. Introduction

Systemic lupus erythematosus (SLE) is a chronic and severe systemic autoimmune
disease characterized by the over-production of autoantibodies and heterogeneous clinical
manifestations. With more than 100 risk loci identified, a genetic etiology for SLE is
unequivocal [1-8]. In fact, the cumulative effect of these risk loci is substantial; the odds
ratio (OR) for SLE in individuals of European ancestry is 30 when comparing individuals
with the highest 10% of risk allele genetic load (i.e., polygenetic risk score—the weighted
count of the number of risk alleles) to individuals in the lowest 10% of genetic load [6].
Despite the strong genetic contribution to risk, the concordance rate between monozygotic
(MZ) twins ranges between 24-35%, suggesting that much of the risk remains unexplained
and highlighting the potential importance of epigenetic and environmental factors in SLE
susceptibility [9].

There is compelling evidence that epigenetic mechanisms, such as 5" Cytosine methy-
lation, are involved in the pathogenesis of SLE. For example, promoter demethylation at
multiple genes in T cells treated with DNA demethylating agents are sufficient to cause
lupus in animal models [10]. In recent years, several studies have investigated DNA methy-
lation in SLE patients on a genome-wide scale. The earliest of these genome-wide studies
interrogated 27,578 CpG sites in 12 SLE patients and 12 healthy controls using the Illumina
Infinium HumanMethylation27 Beadchip, and identified 336 differentially methylated
genes, the majority of which were hypomethylated in the cases relative to the controls [11].
Subsequent studies have examined genome-wide methylation in larger samples of SLE
patients using the HumanMethylation450 Beadchip (>485,000 CpG sites) in a number of cell
types, including naive CD4+ T cells [12-16], memory and regulatory T cells [17], CD19+ B
cells [17], CD14+ monocytes [14,17], granulocytes [14], neutrophils [18], and whole blood or
peripheral blood mononuclear cells (PBMC) [19-25]. Differential methylation has not only
been observed when comparing SLE patients to healthy controls, but similar patterns have
been identified in SLE patients with nephritis [12,19,22], skin involvement [13], specific
antibodies [20], and pediatric SLE [26]. The primary and consistent finding across all these
studies has been hypomethylation of interferon-regulated genes across various cell types
in cases, regardless of SLE disease activity [27].

The analysis of phenotypically discordant MZ twins represents the ideal design by
which to assess the role of epigenetic variation in disease etiology and trait heritability
while controlling for genetic background [28] and has revealed the existence of differentially
methylated regions associated with several autoimmune diseases, including SLE [29], type
1 diabetes [30], psoriasis [31], and ulcerative colitis [32]. To date, the only previously
published twin methylation study in SLE that exclusively used MZ twins quantified DNA
methylation in white blood cells from 15 discordant MZ twin pairs at 1505 CpG sites
in 807 genes using the Illumina GoldenGate Methylation Cancer Panel I [29]. Here, we
performed a genome-wide analysis of DNA methylation in a discovery cohort of MZ twins
discordant for SLE. The discovery cohort consisted of three twin pairs of European descent,
and methylation was measured in whole blood using Illumina’s HumanMethylation450
Beadchip. The two strongest associated signals were validated using pyrosequencing.
Findings from the discovery cohort were replicated in an independent set of MZ twins
from Denmark. We then evaluated gene expression data from multiple cell types and
kidney biopsies from 10 independent SLE cohorts to identify genes proximal to CpGs
exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting
differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) for pathway
analyses. Together, the methylation, gene expression, and pathway analyses uncovered
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two separable yet complimentary molecular pathways of lupus pathogenesis, shedding
light on potential drug repositioning opportunities and novel therapeutic targets for SLE.

2. Materials and Methods
2.1. Discovery Cohort

Genomic DNA was extracted from peripheral blood of three female MZ twin pairs of
European ancestry discordant for SLE enrolled in the Lupus Family Registry and Repository
(LFRR) [33]. All cases met ACR classification criteria for SLE [34].

2.2. Replication Cohort

An SLE study of 15 twin pairs from Denmark, assayed on the HumanMethylation450
Beadchip, in monocytes, CD4+ T cells, CD19+ B cells, and granulocytes, was published in
2018 by Ulff-Moller et al. [14]. These data were downloaded from the Gene Expression Om-
nibus (GEO, accession no. GSE110607), and all available female MZ twin pairs discordant
for SLE were retained for analysis (4 twin pairs). The publication states that of these four
female MZ twin pairs discordant for SLE, two of the non-SLE twins had other autoimmune
diseases, including Sjogren’s syndrome, systemic sclerosis, autoimmune thyroiditis, and
primary biliary cirrhosis. However, this clinical information was not available in GEO.

2.3. Genome-Wide DNA Methylation Assay and Array Validation in LFRR Twins

Genomic DNA (1pg) from each individual was treated with sodium bisulfite using
the EZ 96-DNA methylation kit (Zymo Research, Irvine, CA, USA), following the man-
ufacturer’s standard protocol. Genome-wide DNA methylation was assessed using the
IIumina Infinium HumanMethylation450 BeadChip (Illumina, Inc., San Diego, CA, USA),
which interrogates over 485,500 CpG sites that cover 99% of RefSeq genes (including the
promoter, 5’UTR, first exon, gene body, and 3'UTR), as well as 96% of CpG islands and
island shores. Arrays were processed using the manufacturer’s standard protocol, with
both members of each twin pair being hybridized to the same row on the microarray to
minimize batch effects. GenomeStudio software (Illumina, Inc.) was used to perform
initial quality control and to calculate the relative methylation level of each interrogated
cytosine, which is reported as a 3-value given by the ratio of the normalized signal from
the methylated probe to the sum of the normalized signals of the methylated and unmethy-
lated probes. This 3-value for each CpG site ranges from 0 (unmethylated) to 1 (fully
methylated). CpG loci with a stringent detection p-value > 1.0 x 10~° in any of the samples
were excluded (n = 2118 probes) to control for poor-quality assays. Validation of the array
data in the LFRR twins was performed by pyrosequencing two of the most significant
CpGs probes: cg13304609 (in IFI44L) and cg23570810 (in IFITM1). The correlations between
the methylation proportions from the array and pyrosequencing for these two probes were
2 =0.98 and r? = 0.99, respectively.

2.4. Collection of Gene Expression Experiments from SLE Patient Datasets

Raw data were downloaded from 10 publicly available gene expression datasets (Sup-
plemental Table S1). Only datasets from female lupus patients were analyzed. Active SLE
was defined as a Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) > 6 [35].
This has become the standard threshold for disease activity in recent clinical trials of SLE.

2.5. Data Analysis

To identify differentially methylated genes between unaffected and SLE-affected
twins, a paired t-test on the probe-specific 3-values was computed separately for the
discovery and replication twin datasets. For the discovery set, CpG sites meeting (1) the
Benjamini-Hochberg False Discovery Rate (FDR) [36] threshold Prpr < 0.05 (equivalent to
p <1.06 x 10~7) and (2) a mean DNA methylation difference of (AB) > 10.085| were con-
sidered statistically significant; the mean methylation difference threshold was obtained by
maximizing the area under the receiver operator characteristic curve (AUC) as a function of
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the 3-value (described below). The genes related to the differentially methylated CpG sites
(as annotated by Illumina for the HumanMethylation450) were queried in the Interferome
online database to identify interferon-regulated genes [37]. In addition, significant CpG
sites were investigated for evidence of association between DNA methylation pattern and
gene expression (mQTL) using the IMETHYL genome browser [38]. These results are based
on 100 healthy subjects with RNA-seq data and DNA methylation data in CDA4T cells,
monocytes, and PBMC.

Statistical analysis of the expression data was completed using the following R
packages available from Bioconductor: GEOquery, affy, affycoretools, simpleaffy, gcrma,
LIMMA, and GSVA. Non-normalized arrays were first inspected for visual artifacts and
poor RNA hybridization using Affymetrix QC plots. Principal component (PC) plots were
generated for all cell types in each experiment to identify outliers. After removing outliers,
the datasets were normalized using the gcrma package (available in Bioconductor [39],
www.bioconductor.org) resulting in log?2 intensity values for the R expression set objects
(denoted E-sets); an E-set combines several information types in a single structured object:
an expression value matrix, phenotypic metadata corresponding to individual samples
(phenoData), annotation data describing each feature (probeset) of a microarray platform
(featureData), as well as other separate metadata matrices describing the experimental
protocol and array platform design. To increase the probability of identifying differen-
tially expressed genes (DE genes), the analyses were completed using normalized datasets
prepared using both the native Affymetrix chip definition file (CDF), as well as custom
BrainArray Entrez CDFs. Illumina CDFs were used for GSE49454.

The CDF-annotated E-sets were filtered to remove probes with very low intensity
values by computing the mean log2 values for each probe across all samples and removing
those in the lower half of the range of mean values from the expression set (E-set). Probes
missing gene annotation data were also discarded. GCRMA normalized expression values
were variance-corrected using local empirical Bayesian shrinkage before calculation of
differential expression using the ebayes function in the Bioconductor limma package [40].
The resulting p-values were adjusted for multiple hypothesis testing using Benjamini—
Hochberg False Discovery Rate (FDR) [36]. Significant Affymetrix and BrainArray probes
within each study were merged and filtered to retain DE probes with a PFDR < 0.2. This
list was filtered to retain only the most significant probe per gene.

To identify DM-DE genes, we used a logistic regression model (expression fold change
as a binary outcome > 0 versus < 0) to determine cell-type specific thresholds for the
difference in the 3-value that maximized the area under the ROC curve (AUC) predicting
increased differential expression (Figure 1A, Supplemental Figure S1). These thresholds
were determined by calculating the area under the receiver operating characteristic curve
(AUC) across points at regular intervals between 0 and —0.15 and selecting the values
that maximized the AUC. Primary inferences are based on thresholds, which included a
logFC in expression > 0 and a mean difference in 3 < —0.085, —0.055, —0.08, and —0.055
in whole blood, monocytes, B cells, and T cells, respectively. Figure 1A displays these
thresholds as vertical bars. For clarity, genes with differential methylation p-values greater
than 0.0001 and a mean DNA methylation difference of (Af) > 10.025| have been removed
from Figure 1A.
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Figure 1. Hypomethylated genes showing differential expression in independent SLE cohorts.
(A) Specific thresholds for the difference in the -value (from the discordant twin methylation
experiment in whole blood) that maximize the area under the ROC curve predicting increased
differential expression in the independent SLE whole blood experiments (GSE39088, GSE49454),
monocytes (GSE38351), B-cells (GSE10325, GSE4588), and T cells (GSE10325, GSE51997) are shown
as vertical bars. Genes with differential methylation p-values greater than 0.0001 and a mean DNA
methylation difference of (AB) > 10.025| have been removed from the plots. (B) Heatmap of 43 genes
hypomethylated in the discordant twin data (A < —0.085) and differentially expressed between
controls and active (SLEDAI > 6) or inactive (SLEDAI < 6) lupus patients from two whole blood
experiments, monocytes, B cells, and T cells. Hierarchical clustering was performed across rows with
Euclidean distance metric and complete linkage. Blue/red gradient represents the log fold change
values in lupus patients compared to controls.
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The DM-DE genes were analyzed in a pathway analysis using the MCODE [41]
clustering algorithm and STRING networking scores [42].

Protein-drug interaction networks were generated for each DM-DE gene individually
via STITCH [43], Ingenuity Pathway Analysis (IPA) (Qiagen Bioinformatics: ingenuity.com),
and the Drug—Gene Interaction database [44]. Drugs were denoted as (1) known utility
in lupus therapy, (2) FDA-approved compound, (3) currently involved in a clinical trial
(not necessarily SLE), and (4) generally regarded as safe (GRAS) compounds. Using a
hypothesis-driven ranking of the therapeutic potential for SLE applications of specific
drugs or compounds, the combined lupus treatment scoring (CoLTS) scores (range —16 to
+11) were calculated [45].

3. Results
3.1. Characteristics of the MZ Twins

The LFRR MZ twins were all females of European ancestry, and the SLE-diagnosed
twins exhibited a range of SLE clinical conditions (Supplemental Table S2). The Danish
MZ twins were also all females of European ancestry. Clinical characteristics such as
number of ACR criteria, SLEDAI score, autoantibodies, and medications are described in
Ulff-Moller et. al., but were not available in GEO [14].

3.2. Identification of Differentially Methylated Regions in Twins Discordant for SLE

Of the 485,577 CpG sites passing quality control metrics, 59 sites in 33 genes met both a
Prpr < 0.05 (equivalent to a non-FDR p < 1.06 x 10~7) and a mean DNA methylation differ-
ence of (AB) > 10.085| (Table 1). Only two of these significant CpG sites showed increased
methylation in the affected twins (hypermethylation), while the remaining 57 exhibited
lower methylation (hypomethylation). Of the 33 genes represented in Table 1, 22 are
regulated at some level by type I interferons (as defined by Interferome [37]). Eleven
genes are novel to our study and have not been previously reported as SLE-related in
a genome-wide methylation study, five of which are unrelated to the typical interferon
signature (LY6G5C, CXCR1, ATOH8, CACNA1D, MECOM). Lymphocyte antigen 6 complex,
locus G5C (LY6G5C), is located within the major histocompatibility complex class III region
and codes for a protein associated with the cell membrane by a glycosylphosphatidylinosi-
tol linkage and involved in signal transduction [46]. Chemokine (C-X-C motif) receptor
1 (CXCR1) encodes for a protein that is a receptor for interleukin 8. Genetic and expression
variation in CXCR1 have been correlated with infections (e.g., active tuberculosis, hepatitis
B, Candida albicans) and modestly with SLE [6,47-50]. Atonal bHLH transcription factor
8 (ATOHS), calcium voltage-gated channel subunit alphal D (CACNA1D), and MDS], and
EVI1 complex locus (MECOM) do not have known links to autoimmune disease or infec-
tions. Given the gender bias in SLE, it is interesting to note that none of the differentially
methylated probes meeting our significance criteria were located on the X chromosome.

We next examined the 59 differentially methylated CpGs from the discovery cohort
(Table 1) in the Danish twin replication cohort. Even with the probable dampening effect
generated by two of the Danish non-SLE twins having other autoimmune diseases, we
observed very high concordance in the direction of the Ap values. Specifically, 55 (93%),
54 (92%), 52 (88%), and 54 (92%) of the 59 differentially methylated CpG sites in the
LFRR twins were concordant in the Danish twins” monocytes, CD4+ T cells, CD19+ B
cells, and granulocytes, respectively. Furthermore, 35, 26, 32, and 33 of the 59 CpG sites
were statistically significant (p-value < 0.05) and directionally concordant in the monocyte,
CD4+ T cell, CD19+ B cell, and granulocyte expression datasets, respectively; only one
of these was statistically significant in the opposite direction (p-value < 0.05; Additional
File 1). Thus, the Danish twin data strongly corroborated the global pattern of methylation
observed in the LFRR twin data.
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Table 1. Differentially methylated probes from three monozygotic twin pairs discordant for SLE.

AB Interferon- Relation to
* t -
PG Chr  Pos (bp) Gene L il Pair2 Pai3 Mean p-Value Regulated ¥ CpG 't
cg13304609 1 79085162 IFI441,  —024 —027 —037 —029 158 x 1074 IRG
cg06872964 1 79085250 IFI44L —026 —021 —024 1.05x10"% IRG
cg03607951 1 79085586 IF44L  —027 —03 —021 —-026 7.23x10°22 IRG
cgl7515347 1 159047163 AIM? —0.09 —011 -0.07 —0.09 3.01 x 10712 IRG
cg08272268 1 200380059 ZNF281 —0.08 —0.07 —011 —0.09 433 x 10715 S_Shore
cg01028142 2 7004578 CMPK2 —022 —036 —043 —033 7.98x 108 IRG N_Shore
cg10959651 2 7018020 RSAD2 —-0.13 —-0.1 —0.16 —013 3.14x 104 IRG
cg10549986 2 7018153 RSAD2  —0.08 —0.09 —-01 —0.09 1.95x 10~ IRG
cgl4126601 2 37384708  EIF2AK2 —0.08 —01 —012 —01 555x 10716 IRG S_Shore
cg26337070 2 85999873  ATOH8 —0.06 —012 -0.11 -0.1 7.55 x 1079
cg04781494 2 202047246  CASP10 —0.07 —0.13 —0.08 —0.09 839 x 10~ IRG
cgl15768138 2 219030752 CXCR1  —0.09 —-0.12 —-0.11 -011 7.38x10°%
cgl13411554 3 53700276 CACNAID —0.06 —012 —0.09 —0.09 8.66 x 10~8
€g22930808 3 122281881 g‘%{(lﬁ' —-036 —034 —04 —0.37 6.74x 10712 IRG N_Shore
PARPY- 9
cg08122652 3 122281939 o —034 031 —051 —038 111x10 IRG N_Shore
PARPY- —56
cg00959259 3 122281975 oo —037  —03 034 -034 13210 IRG N_Shore
cg06981309 3 146260954 PLSCRI —024 —028 —021 —024 6.41 x 10731 IRG N_Shore
cg02556393 3 168866705 MECOM —0.08 —0.09 —-01 —0.09 3.14x 10" N_Shore
cg07809027 4 15007205 CPEB2 —007 —-01 —012 —-01 208x10"4 S_Shore
cg02215171 4 89379156  HERC5 —0.08 —0.09 —-0.11 —0.09 4.48 x 1018 IRG S_Shore
cgl7786255 4 108814389 SGMS2  —0.07 —0.09 —-0.11 —0.09 2.01x 10716 IRG
cg21873524 4 190942744 -01 -01 -012 —011 1.03x10°% Island
cg24740632 5 134486678 —0.11 —-012 —0.14 -—012 226 x 1070
cg06012695 6 28770593 —-01 —013 —-0.11 359 x 10716
cg25138053 6 31368016 —0.11 —0.09 —0.07 —0.09 3.67x 1071 S_Shore
cg22708150 6 31649619  LY6G5C —0.12 —-014 —-0.17 —-0.14 1.05x 1071 N_Shore
cg07292773 6 156718177 0.07 0.1 0.11 0.1 222 x 107V Island
cgl12013713 7 139760671  PARPI2 —0.12 —0.14 —0.09 —012 144 x 10716 IRG N_Shore
cg20190772 8 48572496  KIAA0146 —0.08 —0.07 —0.13 —0.09 1.40 x 108
cg14864167 8 66751182  PDE7A  —025 —035 —-045 —035 121 x107° N_Shelf
cg06102678 8 81491328 —0.08 —012 —0.07 —0.09 1.00x 10~ Island
cgl12110437 8 144098888 LY6E —-0.16 -017 —-027 —02 314 x107° IRG N_Shore
cg17555806 10 74448117 —0.08 —012 —0.07 —0.09 151x10°8 N_Shelf
cg02314339 10 91020653 —0.08 -014 —-011 -011 1.72x10°8
cg06188083 10 91093005 IFIT3 —-029 —-016 —-031 —-025 6.18x10°% IRG
cg05552874 10 91153143 IFIT1 —-02 —028 —-03 —026 6.01x10716 IRG
cgl14910175 10 131840954 —-0.07 -011 -0.08 —0.09 1.56x 10~ N_Shelf
cg10552523 11 313478 IFITM1  —-014 -0.12 -0.14 -0.13 5.90 x 107115 IRG N_Shelf
cg20566897 11 313527 IFITM1  —011 —-011 —0.09 —01  7.00 x 1062 IRG N_Shelf
cg23570810 11 315102 IFITM1 —024 —025 —034 —027 143x 10718 IRG N_Shore
cg03038262 11 315262 IFITM1  —024 —022 —029 —025 441 x 10740 IRG N_Shore
g20045320 11 319555 —-019 —-013 —-02 —0.18 485x 107V S_Shore
cg17990365 11 319718 IFITM3  —0.16 —0.15 —0.15 —0.16 8.78 x 1072% IRG S_Shore
cg08926253 11 614761 IRF7 —0.15 -014 —-023 -0.17 2.01 x 10~ IRG Island
cgl2461141 11 5710654 TRIM22 —01 —-0.08 —-012 —-01 635x10° % IRG
cg23571857 17 6658898 XAF1 —0.07 -013 —011 -0.1 1.46 x 1078 IRG
cg04927537 17 76976091  LGALS3BP —0.14 —0.11 —02 —015 277 x10°10 IRG
cg25178683 17 76976267  LGALS3BP —0.15 —0.11 —-021 —016 201 x 1078 IRG
cgl6503797 18 19476805 —0.08 —-0.12 —0.08 —0.09 539 x 10712 N_Shore
cgl15871086 18 56526595 —0.07 =011 —0.08 —0.09 2.08 x 10~ N_Shelf
g23352030 20 62198469  PRIC285 0.13 019 0.11 014 236 x 101 Island
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Table 1. Cont.

" + AB g Interferon- Relation to

PG Chr  Pos (bp) Gene L4l Pair2 Pair3 Mean p-Value Regulated CpG *t
cgl6785077 21 42791867 MX1 —0.11 —-0.09 —-0.12 —011 8.45x10% IRG N_Shore
g22862003 21 42797588 MX1 —031 —-025 —-035 —-031 1.62x10% IRG N_Shore
cg26312951 21 42797847 MX1 —026 —-017 —-02 —021 628x 10715 IRG N_Shore
cg21549285 21 42799141 MX1 —-05 —035 —057 —047 659 x10°13 IRG S_Shore
cg05543864 22 24979755 GGT1 —0.08 —0.08 —01 —009 144x10™%
cg20098015 22 50971140 ODF3B  —0.19 —022 —021 —021 9.88x 1083 IRG S_Shore
cg05523603 22 50973101 —0.17 —023 —027 —022 551x10"4 S_Shelf
cg02247863 22 50983415 —-007 —-01 —011 —0.09 251x10°13 N_Shore

* CpGs meeting the Prpg < 0.05 threshold (equivalent to p < 1.06 x 1077) and having |AB| > 0.085. * Positions are from Build 37.  IRG as
defined by Interferome [37]. ™t Island: CpG sites > 200 bp, with GC content > 55% and observed to expected ratio > 0.6. N_shore: 0-2
kb upstream from island; S-shore 0-2 kb downstream from island; N_shelf 2—4 kb upstream from island; S_shelf 2—4 kb downstream
from island.

We also sought to determine if the dominating presence of the interferon signature
might have masked more modest signals from other individual (non-IFN) loci. After
regressing out the mean {3-value (methylation value) for the most significant CpG site in
each interferon-regulated gene in Table 1 (as defined by Interferome [37]), no additional
CpG sites across the genome met an FDR threshold of significance (Prpg > 0.05).

We considered the genomic context of the CpG sites showing aberrant methylation in
the LFRR MZ twins. Here, a CpG island was defined as a cluster of CpG sites of greater
than 200 bp, with GC content >55%, and the observed-to-expected (under mathematical in-
dependence of the Gs and Cs) ratio >0.6 [51]. Interestingly, out of 59 CpG sites differentially
methylated, the majority (54%, n = 32) were located in a CpG shore (0-2 kb from island) or
shelf (24 kb from island), whereas only 8% (n = 5) were located in a CpG island (Table 1).
This is in contrast to the composition of the 450k chip in which about one third of the CpG
sites reside in islands (Supplemental Figure S2). Notably, the only two hypermethylated
CpG sites (relative to the unaffected twin) meeting our significance thresholds reside in
CpG islands.

3.3. Hypomethylated Genes Are Overexpressed in Independent Cohorts

Methylation at CpG sites influences gene expression. Thus, linking differential methy-
lation to changes in gene expression by showing that the same genes were associated with
SLE in both types of experiments (even in independent samples) would provide further evi-
dence of the importance of these genes and could identify potential actionable mechanisms.

Genes harboring a CpG site with A < —0.085 and p < 0.01 (for differential methyla-
tion) were tested for differential expression in whole blood from two independent cohorts,
each comparing SLE patients to healthy controls (GSE39088 and GSE49454) (Table 2).
Relative to controls, overexpression was observed in both active and inactive SLE pa-
tients within almost all of these genes, and the level of expression was highly correlated
within the gene expression experiments (experiment 1, r = 0.95; experiment 2, r = 0.99).
IFI44L, RADS2, and IFIT1 showed the highest fold changes and comparable increases
in expression in active and inactive SLE patients; IFI44L is noteworthy as it has been
reported to be predictive of SLE status relative to healthy controls and other autoimmune
diseases [52]. Cohorts with expression data derived from monocytes (GSE38351), CD19+,
and CD20+ B cells (GSE10325, GSE4588), and CD4+ T cells (GSE10325, GSE51997) reflected
a consistent pattern of increased expression in genes meeting the mean (methylation)
ApB threshold of —0.085 (Figure 1B). Upon extending Ap to <—0.055, the statistically ap-
propriate threshold for detecting differential expression in monocytes and T cells in our
dataset (see Methods), an additional 54 hypomethylated genes were evaluated in the gene
expression datasets (Supplemental Table S3). Overall, the pattern of differential expression
of hypomethylated genes was very similar across the cell subtypes examined (Figure 1B,
Supplemental Table S3). Thus, the differential expression results in independent cohorts in
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multiple cell types provide a multi-omic, independent pseudo-replication, and translational
interpretation of the methylation results (Table 2).

Hierarchical clustering (Euclidean distance, complete linkage) of the DM-DE genes
using the log fold change (LFC) identified a cluster of nine genes with markedly higher
LFC (Figure 1B). This cluster shows a consistent pattern across whole blood, monocytes,
B cells, and T cells, as well as in both active and inactive SLE disease. In fact, the LFC
remained largely consistent between active and inactive disease across all DM-DE genes.
Exceptions to this pattern include FK506 binding protein 5 (FKBP5), parvin beta (PARVB),
and strawberry notch homolog 2 (SBNO2) in whole blood, where there is upregulation
in active patients and non-significant change in inactive patients. This pattern was not
replicated in any of the individual cell types.

Table 2. Differential expression of hypomethylated genes in whole blood from two independent SLE cohorts.

Active SLE § Inactive SLE §

Methylation Interferon- Log FC Log FC Log FC Log FC

CpG* Chr Pos (bp) ! Gene Mean Ap p-\;;lue Regulated 1 Exit 1 Exfi)t 2 Exgpt 1 Ex%t 2
cgl6526047 1 949893 ISG15 —0.11 1.28 x 1074 IRG 3.1 2.77 2.74 2.59
cg05696877 1 79088769 IFI44L -0.3 6.60 x 10-° IRG 3.98 3.8 3.64 34
cg01079652 1 79118191 IFI44 —0.34 534 x 1074 IRG 3.54 253 3.7 233
cgl7515347 1 159047163 AIM2 —0.09 3.01 x 10712 IRG 1.39 0.86 1.08 0.49
cg01028142 2 7004578 CMPK?2 —0.33 7.98 x 108 IRG 2.76 15 2.43 1.51
cgl0959651 2 7018020 RSAD?2 —0.13 314 x 1074 IRG 4.04 3.32 3.76 3.04
cgl4126601 2 37384708  EIF2AK2 —0.1 5.55 x 10716 IRG 1.47 2.02 1.08 1.68
cgl5768138 2 219030752 CXCR1 —0.11 7.38 x 10°% 0.43 0.96 0.38 0.66
cg08122652 3 122281939 EATI%%' —0.38 1.11 x 107? IRG 1.36 1.56 1.07 1.55
cg06981309 3 146260954  PLSCRI —0.24 6.41 x 10731 IRG 1.77 1.25 1.38 1.07
cg02694620 3 172109284  FNDC3B —0.11 3.80 x 1073 0.57 0.82 0.41 0.52
cgl5065340 3 195632915 TNK2 —0.16 404 x 1073 0.22 0.31 0.2 0.25
cg07809027 4 15007205 CPEB2 -0.1 2.08 x 10714 0.66 0.52 0.42 0.45
cg02215171 4 89379156 HERC5 —0.09 448 x 10718 IRG 2.62 2.48 2.14 2.36
cg05883128 4 169239131 DDX60 —0.25 213 x 1073 IRG 1.24 1.38 1.06 1.46
cg08099136 6 32811251 PSMBS —0.11 1.43 x 1074 IRG —0.39 —0.13 NS NS
cg00052684 6 35694245 FKBP5 —0.16 1.65 x 1073 1.11 0.71 NS NS
cg05994974 7 139761087  PARP12 -0.15 6.89 x 107> IRG 1.52 157 1.14 1.25

cgl4864167 8 66751182 PDE7A —0.35 1.21 x 10~? —1.24 —041 —0.82 -0.23
cgl12110437 8 144098888 LY6E —0.2 3.14 x 107° IRG 2.66 1.92 243 1.7
cg03848588 9 32525008 DDX58 —0.1 434 x 1074 IRG 1.48 1.3 1.32 1.07
cg06188083 10 91093005 IFIT3 —0.25 6.18 x 108 IRG 2.25 3.15 2.3 2.87
cg05552874 10 91153143 IFIT1 —0.26 6.01 x 10716 IRG 3.39 2.94 3.42 2.81
cg23570810 11 315102 IFITM1 —0.27 1.43 x 10718 IRG 1 1.03 1.03 0.81
cgl7990365 11 319718 IFITM3 —0.16 8.78 x 10~2% IRG 0.92 2.23 0.71 2.13
cg08926253 11 614761 IRF7 —0.17 2.01 x 1072 IRG 1.84 1.79 14 1.37
cg08577913 11 4415193 TRIM21 —0.1 1.74 x 1073 IRG 0.56 0.93 0.28 0.75
cgl2461141 11 5710654 TRIM22 —0.1 6.35 x 1075 IRG 1.14 1 0.99 1.05

cg26811705 11 118781408 BCLIL —0.09 1.64 x 1073 —0.6 —0.35 —0.41 —0.32
cg19347790 12 81332050 LIN7A —0.09 1.87 x 1074 0.93 0.99 1.24 0.61
cg25800166 12 113375896 0OAS3 —0.13 536 x 1072 IRG 252 2.69 0.73 235
cgl9371652 12 113415883 0AS2 —0.11 224 x 1073 IRG 1.48 1.56 1.64 1.53
cg03753191 13 43566902 EPSTI1 -0.1 9.23 x 1073 IRG 2.65 2.26 2.71 2.02
cg00246969 13 99159656 STK24 —0.11 6.26 x 107 0.81 0.32 0.66 0.36
cg07839457 16 57023022 NLRC5 —0.23 6.10 x 10°° IRG 0.7 0.23 0.53 0.27
cg23571857 17 6658898 XAF1 —0.1 1.46 x 10°8 IRG 2.85 1.96 2.35 1.68
cg23378941 17 64361956 PRKCA —0.11 6.89 x 107> IRG —1.11 -0.3 NS NS
cg25178683 17 76976267  LGALS3BP —0.16 2.0 % 1078 IRG 1.16 1.21 0.72 1.05
cg07573872 19 1126342 SBNO2 —0.15 2.77 x 1073 IRG 0.38 0.58 NS NS
cg07839313 19 17514600 BST?2 —0.12 348 x 1073 IRG 1.24 0.49 1.17 0.41
cg21549285 21 42799141 MX1 —0.47 6.59 x 10713 IRG 2.12 2 1.86 1.79
cgl9460508 22 44422195 PARVB —0.1 1.64 x 1073 0.54 0.39 NS NS
cg20098015 22 50971140 ODF3B -0.21 9.88 x 108 IRG 1.61 0.61 1.36 0.47

Differential gene expression values come from GSE39088 (Expt 1) and GSE49454 (Expt 2) in whole blood of lupus patients compared with
controls. * CpGs with p <0.01 and | A1 > 0.085. T Positions are from Build 37. ¥ As defined by Interferome [37]. § Active disease is defined
as >6 on the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) [35].
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Although only one of the three affected MZ twins in the discovery cohort had renal
involvement, almost all of the genes mapping to differentially methylated CpG sites showed
overexpression in both the kidney glomerulus and tubulointerstitium from independent
lupus nephritis patients (Table 3). In the glomerulus, 28 genes were overexpressed, 2 were
under expressed, and 14 were not significantly differentially expressed in lupus nephritis
samples compared to healthy controls. In the tubulointerstitium, 27 were overexpressed,
5 under expressed, and 12 not significantly differentially expressed. IFI44L, MX1, and IFI44
showed the highest levels of overexpression across the two tissues. The fold change was
correlated between the two tissues (r = 0.66, p < 0.0001).

Significant DNA methylation sites were further investigated for evidence of associa-
tion between DNA methylation at a specific CpG site and gene expression (eQTM) using
the iIMETHYL genome browser with data on 100 healthy Japanese subjects with RNA-seq
data and DNA methylation data in CD4T cells, monocytes, and PBMC [38] (Supplemental
Table S4). Most of the CpGs from Table 1 that are identified in iMETHYL are eQTMs for
the gene in which they reside. In contrast, some are eQTMs for additional genes of interest.
For example, cg17515347 is in physical proximity to AIM1, which has an important role
in T cell regulation in autoimmune diseases. However, this CpG site is also an eQTM for
five other genes in CD4+ T cells (TAGLN2, SLAMF8, DUSP23, PHYIN1 FCRL6), several of
which have established autoimmune disease connections. Transgelin-2 may help regulate
activation and migration of B cells in lymph node follicles, exhibits increased expression in
B cells from lymph nodes in SLE patients, and appears important in host defense [53,54].
SLAM family member 8 (SLAMFS) is a member of the SLAM family of genes of which
several members have been associated with multiple autoimmune diseases [55]. FcR-like 6
(FCRLS®), a receptor that binds to major histocompatibility complex (MHC) class Il HLA-
DR, is expressed in B cells and has a tyrosine-based immunoregulatory function [56,57].
Dual-specificity protein phosphate 23 (DUSP23) expression is reportedly higher in CD4+ T
cells from SLE patients compared to healthy controls [58]. Thus, DNA methylation in these
regions, and potentially others, may have a complex and multifaceted impact on autoim-
munity. Annotation of cg20098015 on chromosome 22 is linked to Outer Dense Fiber of
Sperm Tails 3 (ODF3B). However, this CpG is an eQTM for SCO2 homolog, mitochondrial
and SCO cytochrome oxidase deficient homolog 2 (SC0O2), and thymidine phosphorylase
(TYMP), both involved in mitochondrial functions.

3.4. Pathway Analysis of DM-DE Genes

Pathway, clustering, and networking analyses were completed to elucidate patterns
among the DM-DE genes. Ingenuity Pathway Analysis (IPA) identified two primary
canonical pathways: (1) interferon signaling and (2) pattern recognition receptor (PRR)
(Figure 2A). The overlap p-value, which tests for independence between known targets
of each transcription regulator in a pathway and the list of genes provided, shows very
strong association for these two pathways. Other significant pathways of note include
the activation of interferon regulatory factors (IRFs) by pattern recognition receptors,
retinoic acid-inducible gene I protein (RIG-I)-like receptors in innate immunity, and NF-«B
activation by viruses. Figure 2B illustrates the IFN signaling pathway determined by
IPA. Notably, in this pathway all of the DM-DE genes are downstream, and none were
identified as upstream signaling molecules. IPA also identified 39 upstream regulators
(1Z-score| > 2) of the DM-DE genes that showed differential expression between SLE
cases and controls in whole blood (Figure 2C).
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Figure 2. Pathway analyses of hypomethylated genes showing differential expression in independent
SLE cohorts. (A) List and statistical significance of the overlap of the IPA canonical pathways com-
prised of hypomethylated genes showing differential expression in whole blood of independent SLE
patients. (B) IPA canonical IFN signaling of hypomethylated genes showing differential expression
(increased expression in SLE cases in red) in whole blood of independent SLE patients. (C) Activation
Z-scores of genes predicted as upstream regulators of genes hypomethylated in the discordant twin
data (AR < —0.085) and differentially expressed in whole blood between independent SLE cases
and controls. A positive (negative) Z-score indicates that a regulator has significantly more (fewer)

activated predictions than inhibited predictions.
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Table 3. Differential expression of hypomethylated genes in kidney biopsies from independent SLE patients with
lupus nephritis.

Methylation Interferon- Log FC Log FC Tubu-
CpG*” Chr Pos (bp) * Gene Mean Ap p-Vleue Regulated # Glon:gerulus loirglterstitium

cg16526047 1 949893 15G15 | —0.11 1.28 x 1074 IRG 3.32 47
cg05696877 1 79088769 IFI44L 2 —0.3 6.60 x 107° IRG 5.14 5.94
cg01079652 1 79118191 IF144 | —0.34 534 x 1074 IRG 3.94 476
cgl7515347 1 159047163 AIM?2 —0.09 3.01 x 10712 IRG 0.58 NS
cg01028142 2 7004578 CMPK2 # —-0.33 7.98 x 1078 IRG NS NS
cg10959651 2 7018020 RSAD?2 -0.13 3.14 x 10714 IRG 431 3.36
cgl4126601 2 37384708 EIF2AK2 2 —0.1 555 x 10716 IRG 1.54 1.72
cgl5768138 2 219030752 CXCR1 —0.11 7.38 x 107% 0.68 —0.17
cg08122652 3 122281939 PARP9-DTX3L 2 —0.38 1.11 x 107? IRG NS NS
cg06981309 3 146260954 PLSCR1% —0.24 6.41 x 10731 IRG 1.92 2.07
cg02694620 3 172109284 FNDC3B —0.11 3.80 x 1073 NS 0.47
cgl5065340 3 195632915 TNK2 | —0.16 4.04 x 1073 0.38 —04
cg07809027 4 15007205 CPEB2 —0.1 2.08 x 10714 NS NS
cg02215171 4 89379156 HERC5 1 —0.09 448 x 10718 IRG 3.16 1.96
cg05883128 4 169239131 DDX60 —0.25 2.13 x 1075 IRG 1.11 2.31
cg08099136 6 32811251 PSMBS —0.11 1.43 x 107* IRG 0.76 251
cg00052684 6 35694245 FKBP5 8 —0.16 1.65 x 1073 —1.27 —2.77
cg05994974 7 139761087 PARP12 | —0.15 6.89 x 107> IRG 2.26 1.86
cgl4864167 8 66751182 PDE7A —0.35 1.21 x 107 NS NS
cgl2110437 8 144098888 LYGE © -0.2 3.14 x 107 IRG 1.28 1.23
cg03848588 9 32525008 DDX58 © -0.1 434 x 1074 IRG 2.89 2.59
cg06188083 10 91093005 IFIT3© —0.25 6.18 x 1078 IRG 2.59 3.14
cg05552874 10 91153143 IFIT1 9 —0.26 6.01 x 10716 IRG 2.24 2.77
cg23570810 11 315102 IFITM1 —0.27 1.43 x 10718 IRG 2.24 3.29
cgl17990365 11 319718 IFITM3 —0.16 8.78 x 10-2% IRG 2.24 2
cg08926253 11 614761 IRF7 | -0.17 2.01 x 1070 IRG 2.8 1
cg08577913 11 4415193 TRIM21 —0.1 1.74 x 1073 IRG 1.35 0.77
cgl2461141 11 5710654 TRIM22 -0.1 6.35 x 1072 IRG 1.73 2.86
cg26811705 11 118781408 BCLIL —0.09 1.64 x 1073 NS NS
cg19347790 12 81332050 LIN7A —0.09 1.87 x 1074 NS —0.57
cg25800166 12 113375896 0OAS3 —0.13 5.36 x 107> IRG 3.77 1.1
cg19371652 12 113415883 0AS?2 —0.11 224 x 1075 IRG 4.86 1.74
cg03753191 13 43566902 EpsTI1 1 -0.1 923 x 107> IRG NS NS
cg00246969 13 99159656 STK24 —0.11 6.26 x 107° NS 0.28
cg07839457 16 57023022 NLRC5 -0.23 6.10 x 10~° IRG NS NS
cg23571857 17 6658898 XAF1 -0.1 1.46 x 1078 IRG 3.14 3.05
cg23378941 17 64361956 PRKCA —0.11 6.89 x 107> IRG —0.48 —0.08
cg25178683 17 76976267 LGALS3BP —0.16 2.0x 1078 IRG 0.57 1.49
cg07573872 19 1126342 SBNO2 —0.15 2.77 x 1073 IRG NS NS
cg07839313 19 17514600 BsT2 | —0.12 3.48 x 1073 IRG NS 2.91
cg21549285 21 42799141 MX12 —0.47 6.59 x 10713 IRG 4.05 4.64
cg19460508 22 44422195 PARVB —0.1 1.64 x 1073 0.28 NS
cg20098015 22 50971140 ODE3B —0.21 9.88 x 108 IRG NS NS

Differential gene expression values come from GSE32591: kidney glomerulus and tubulointerstitium WHO class 3/4 lupus nephritis versus
control samples. NS indicates not significant FDR p-value > 0.2). * CpGs with p < 0.01 and AB < —0.085. * Positions are from Build 37.

1 As defined by Interferome [37]. § SLE patients show decreased expression in both kidney tissues. || Hypomethylation of this gene at the
same CpG site has been reported in SLE patients with renal involvement [12]. T Hypomethylation of this gene at a different CpG site has
been reported in SLE patients with renal involvement [12]. # Hypomethylation of this gene at the same CpG site has been reported in SLE
patients with and without renal involvement [12]. ¢ Hypomethylation of this gene at a different CpG site has been reported in SLE patients
with renal involvement [12].

The DM-DE genes were further analyzed in an additional pathway analysis using the
MCODE clustering algorithm and STRING networking scores. Two distinct yet related
clusters emerged (Figure 3). As expected, there was an enrichment of genes in the IFN-
inducible/pattern recognition receptor pathway. As visually represented by the colors of
the nodes and node outlines in Figure 3, all genes in this cluster were upregulated in both
active and inactive SLE patients; all of these except PARP9 were overexpressed in both
kidney tissues.
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Figure 3. MCODE clustering of hypomethylated genes showing differential expression in indepen-
dent SLE cohorts. A network scoring degree cutoff of 2, node score cutoff of 0.2, k-Core of 2, and a
max depth of 100 were applied. Node color indicates log2(FC) direction and node size is inversely
scaled with A (larger nodes are more strongly hypomethylated). Edge weight is scaled by STRING
protein—protein connectivity score. All upregulated genes present in clusters were also upregulated
in inactive SLE WB samples. 1, upregulated in kidney glomerulus, WHO class 3/4. 1, upregulated in
kidney tubulointerstitium, WHO class 3/4.

The second cluster was comprised of genes involved in the nucleic acid-sensing
pathway, a primary antiviral defense in vertebrates as well as a mechanism to respond
to intracellular nucleic acids of cellular origin. There were strong links among the genes
in these two clusters as this nucleic acid response of the innate immune system results in
the production of type 1 interferon (i.e., INF-& and INF-f3) and expression of interferon
stimulated genes [59]. These hypomethylated genes showed increased expression in both
active and inactive SLE patients; the lone exception observed was the reduced expression
of PRKCA in active SLE patients. As in the IFN-inducible/pattern recognition receptor
pathway, the majority of these nucleic acid-sensing pathway genes were expressed in both
kidney tissues. The gene DEAD H-box helicase 58 (DDX58), which encodes for retinoic
acid-inducible gene I (RIG-I) [60], was the central node and exhibited the strongest and
most numerous links to other genes within the cluster.

3.5. Potential Drug Targets

The DM-DE genes were analyzed for potential gene—drug interactions (Table 4). As
evidence of its potential utility, this approach identified methotrexate, a lupus therapy,
targeting EPSTI1. Twelve of the DM-DE genes are linked to drugs that are currently in
ongoing clinical trials, primarily trials related to cancer (Table 4). The drug target analysis
also identified 24 additional FDA-approved drugs linked to genes associated with the
nucleic acid-sensing or the interferon-inducible pathways. These drugs could merit careful
consideration for future clinical trials in SLE.



Genes 2021, 12, 1898 14 of 20
Table 4. Predicted drugs targeting hypomethylated genes and associated pathways with Ap < —0.085.

CpG * Chr  Pos(bp) * Gene Mean AR p-Value STITCH [43] IPA # DGIdb [44]
cg16526047 1 949893 ISG15 —-0.11 1.28 x 1074 Irinotecan F
cg10959651 2 7018020 RSAD?2 —-0.13 314 x 10714 Fludarabine
cgl4126601 2 37384708  EIF2AK2 —0.1 5.55 x 10716 I“d‘mbg‘ggzmahve
cg15768138 2 219030752 CXCR1 -0.11 7.38 x 107% Reparixin P Reparixin P IS<CH'527123¥

etoprofen
cg06981309 3 146260954 PLSCR1 —0.24 6.41 x 10731 Wogonin ©
cgl5065340 3 195632915 TNK2 ~0.16 4.04 x 1073 Dasatinib~! F \O,Slmem“ﬂ? ¢ Debromohymenialdisine
emurafenib
Carfilzomib*F,
cg08099136 6 32811251 PSMBS —0.11 1.43 x 1074 Oprozomib P, Carfilzomib*F Carfilzomib*F,
Bortezomib® F
Rapamycin/ Venlafaxine F
cg00052684 6 35694245 FKBP5 —0.16 1.65 x 1073 Sirolimus?F, a enataxine
Tacrolimus® F ormipramine
: F
cg14864167 8 66751182  PDE7A ~035  121x10°° DKe“’“f?n a
yphylline
cg12110437 8 144098888 LY6E -0.2 3.14 x 107° DLYE5953AP
cg06188083 10 91093005 IFIT3 -0.25 6.18 x 1078 Imidazoles P
cg(08926253 11 614761 IRF7 —-0.17 2.01 x 107 Hesperidin P
Methotrexate If T,
g03753191 13 43566902 EPSTI1 —0.1 9.23 x 1075 gmblasu.“.e 5
oxorubicin *,
Cisplatin F
cg00246969 13 99159656 STK24 —0.11 6.26 x 107° Staurosporine P
Midostaurin ¥,
Enzastaurin P,
Quercetin PG,
Aprinocarsen,
cg23378941 17 64361956 PRKCA —0.11 6.89 x 107> Staurosporine P Aprinocarsen Ruboxistaurin P,
Ingenol Mebutate FW,
Bryostatin D
Sotrastaurin Acetate P,
Tamoxifen? F
cg07839313 19 17514600 BST2 —0.12 3.48 x 1073 Resveratrol® P G
; s CF
g21549285 21 42799141 MX1 —047 659 x 1013 Mcltom?’c?“% ’
olchicine
cg19460508 22 44422195 PARVB —-0.1 1.64 x 1073 Lovastatin®F Bortezomib® F

* CpGs with p <1 x 1073 and AB < —0.085. * Positions are from Build 37.  Qiagen Bioinformatics: ingenuity.com F FDA approved.
D Ongoing clinical trial or DiD © GRAS. T Known utility in lupus therapy. *¥ Ingenol mebutate is FDA-approved in the US but withdrawn
in the EU. Numbers in superscript are CoLTS scores and range from —16 to +11.

4. Discussion

Environmental challenges coupled with genetic susceptibility are often hypothesized
to cause the innate and adaptive immune system to become chronically active, causing
failure to recognize subsequent autoimmune disease [61]. Aging and environmental expo-
sures such as smoking, chemicals, diet, and viral pathogens predictably trigger methylation
or demethylation at CpG sites. Altered methylation of a CpG site changes the accessibility
of transcriptional elements to specific regions, which leads to regulation of gene expression.
The relationship between DNA methylation and gene expression is complex, including
being influenced by specific tissues/ cells [62-64]. However, in general, DNA methylation
in promoter regions is often inversely correlated with gene expression. The above paradigm
is consistent with the results of this multi-omic study, which has demonstrated that genes
involved in the nucleic acid-sensing and interferon-inducible pathways were observed to
be hypomethylated in SLE-affected MZ twins and upregulated in independent SLE cohorts.
Despite the clear biological importance of tissue-specific methylation and gene expression,
here, the high concordance of hypomethylated genes in whole blood with increased gene
expression across a variety of tissues from multiple independent cohorts suggests a high
fidelity of the DNA methylation-gene expression relationship at these loci.
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Every epigenome-wide study of SLE to date, including this one, has identified hy-
pomethylation of multiple type I IFN-related genes. While there is no doubt that stimulation
of the type I IFN pathway is important in SLE, the mechanism by which this stimulation
occurs will be unique for each SLE patient. Interferon induction occurs due to activation of
one of several types of pattern recognition receptors, which are programmed to respond to
double-stranded DNA (dsDNA), double-stranded RNA (dsRNA), or single-stranded RNA
(ssRNA). The type of nucleic acid (NA) present will depend on the species and cell type
producing the NA. Furthermore, the NA may leak into the cytosome where its recognition
is again specific to the receptor activated. In our study, bioinformatic analysis identified
the NA-sensing pathway, with DEAD/H-Box helicase 58 (DDX58) as the central node
(Figure 3). DDX58 encodes for retinoic acid-inducible gene I (RIG-I), which recognizes
ssRNA. In contrast to Toll-like receptors (TLRs), which recognize NAs in the endosome,
RIG-I-like receptors (RLRs) interact with mitochondrial antiviral signaling protein (MAVS)
in the cytosol [65]. MAVS subsequently phosphorylates interferon regulatory factors 3
(IRF3) to stimulate type 1 IFN expression. The NA-sensing pathway generated by our
analysis also included absent in melanoma 2 (AIM2), a cytosolic dsDNA-sensing protein
that activates the inflammasome, further emphasizing the plausible role of this pathway in
initiating lupus inflammation [66,67].

The cascade of functional consequences resulting from genetic variation and unique
environmental exposures will differ for each individual SLE patient. While some SLE
patients (10-30%) will present no IFN signature [68], others will overexpress IFN through
one of the several mechanisms described above. The DM-SE gene list we prioritized may
be a useful tool in grouping SLE patients into DA receptor groups, or “endotypes” as
they have been termed by Mustelin et al. [68] Therapies targeting helicases such as RIG-I,
MAVS, or AIM2 could prove useful for SLE. One such inhibitor of RIG-I, enhancer of zeste
homolog 2 (EZH2), has been shown to play an epigenetic role in SLE and was proposed as a
therapeutic target by Tsou et al. [60]. Network analyses and public database queries of our
DM-DE genes yielded a list of genes whose products predict gene-drug interactions. The
resulting list includes methotrexate, a drug used for the treatment of lupus. The remaining
gene—drug interactions we identified merit thorough scrutiny as they could be candidates
for future trials.

Three recent studies have observed aberrant methylation of IFN genes in SLE patients
with renal involvement [12,19,22]. A summary of the literature (Additional File 2) shows
our study’s consistencies with these published findings. While hypomethylation of these
genes has been confirmed in CD4+ T cells and peripheral blood, no SLE study to date has
examined genome-wide DNA methylation in kidney biopsies. By considering differential
gene expression derived from the micro-dissected glomerulus and tubulointerstitium
kidneys in an independent cohort of SLE patients, in conjunction with the significance
of aberrant methylation in the MZ twin data, this study corroborates many of the loci
previously published as being hypomethylated in lupus nephritis patients.

The lack of any differentially methylated genes on the X chromosome is noteworthy
given the 9:1 female to male gender bias in SLE. This result is not fully explained by the fact
that older female MZ twins show a strong tendency for the same X chromosome to be inacti-
vated [69,70] as the lack of differentially methylated sites on the X chromosome in this study
is consistent with previous studies of unrelated individuals [11,15,17-21,23,52]. Jeffries
et al.,, using the [llumina Infinium Human Methylation27 array, did observe differential
methylation of CpGs in PCTK1, ARAF, RRAGB, and SNX12 on the X chromosome [11], but
no studies utilizing the more recent arrays replicate these findings. In our MZ twin study,
CpG sites associated with SNX12 had a minimum p-value = 0.02 (change in 3 = —0.04),
but none of the other three genes had p-values < 0.05. Thus, to date, methylation patterns
among genes located on the X chromosome do not appear to explain a substantial portion
of the risk of SLE.

Within this study, the genomic locations of hypomethylated CpG sites were highly
skewed toward CpG shores (0-2 kb from island) and shelves (2—4 kb from island) instead
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of islands. Here, only 5 of 59 CpG sites were in a CpG island, despite nearly one third
of the CpG sites on the [llumina HumanMethylation450 BeadChip being in a CpG island
(Supplemental Figure 52). Our findings are consistent with those of Yeung et al., who
demonstrated that most CpG sites hypomethylated in their lupus patients, when compared
to controls, were located in CpG shores [21]. These data corroborate the hypothesis that
CpG islands tend to have lower methylation rates than less dense CpG regions (e.g., shores
and shelves) and that lower density allows for greater methylation autonomy in response
to the environment, leading to increases in potential functional significance of the shores
and shelves.

There are several limitations of this multi-omics study. One limitation was the modest
sample size, as a larger sample would provide the potential to identify additional differen-
tially methylated regions and pathways. However, it is important to recognize the power
and value of a discordant MZ twin study design to reduce confounding based on genetic
and environmental background. Further, the modest sample size does not negate the
positive findings. There were only three discordant MZ twin pairs in the discovery cohort,
but we replicated these results in an independent cohort of four MZ twin pairs. Given the
number of samples, we were unable to construct and adjust for the full cell composition of
the peripheral blood samples as the limited degrees of freedom precluded the robust use
of deconvolution methods. Adjusting for latent methylation components in our analysis,
while dampening the associations slightly, still identified the same IEN signature. Further,
the collective results are supported by larger, independent case-control studies (described
in Additional File 2), and we have shown that our methylation results correlate with gene
expression in multiple cell types and tissues in independent SLE case—control studies; many
were also identified as eQTMs in a Japanese cohort of 100 healthy individuals. We recognize
that our cross-sectional study design (i.e., discovery, replication) cannot separate causality
from response to disease, but the consistency of differentially methylated regions with the
differentially expressed genes from independent gene expression studies is informative
and helps identify epigenetically modified genes and pathways that are important in SLE.

5. Conclusions

The intersection of hypomethylated genes from MZ twins and upregulated genes from
multiple independent cohorts and cell types were attributed to two distinct but integrated
biologic pathways: the nucleic acid-sensing pathway and the IFN-inducing pathway. The
source, type, and location of nucleic acids found in an SLE patient determine how and by
which receptor the NA is recognized, and ultimately which IRF is stimulated. A multi-
omics approach could allow classification of patients into different endotypes and possible
treatment groups. Informatically linking the DM-DE genes to drug therapies identified a
list of compounds that could be critically evaluated as potential candidates for future trials,
either broadly for SLE or for individuals with specific hypomethylation signatures.
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calculated at regular intervals between 0 and —0.15 in four cell types; Figure S2: Proportions of
significantly associated CpGs (as defined in Table 1) located in islands, shores, shelves, and other
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Abstract

expression pattern in public data sets.

patient monocyte function.

Background: We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-clas-
sical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-estab-
lished genetic risk alleles on transcription at single-cell resolution.

Methods: Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations
(CD147*CD16™ CL and CD149MCD16% NCL) from SLE patients. Novel analysis methods were used to control for the
within-person correlations observed, and eQTLs were compared between cell types and risk alleles.

Results: The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p =0.0004). There
were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differ-
ences in the impact of the risk alleles between these monocyte subsets. The SPPT and TNFAIP3 loci were associated
with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same
transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression
demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individu-
als, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1

Conclusions: We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and
NCL subsets. These data support the importance of the SPPT and TNFAIP3 risk variants and the IRF1 transcript in SLE

Introduction

Systemic lupus erythematosus (SLE) is a poorly under-
stood autoimmune syndrome driven by the interplay of
genetic and environmental influences, which lead to a
break in immunologic self-tolerance. Genetic studies in
SLE have been successful in identifying more than 100
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SLE susceptibility loci [1, 2]. Most of the genetic poly-
morphisms associated with SLE are not coding-change
variants [3, 4]. They are either located in non-coding
regulatory regions near the 5’ and 3’ regions of genes, in
DNAse hyper-sensitivity sites, or are in perfect LD with
DNAse hypersensitivity sites. This suggests modulation
of transcription as a likely mechanism by which many
SLE-risk loci impact immune system biology [2], and
data from many complex diseases support this idea [5].
Importantly, there is substantial variation in the pattern
of DNAse hyper-sensitivity among different human cell
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types, supporting the idea that polymorphisms can tune
gene expression in a highly cell-specific manner [5]. Thus,
examining multiple cell types will be critical in determin-
ing the function of SLE-risk loci, as it is likely that the
regulatory influence of these polymorphisms vary across
cell types.

Transcriptomic studies in SLE using whole blood,
peripheral mononuclear cells, or whole tissue are con-
founded by variations in the numbers and types of cells
found within different samples and between individuals.
In such studies, the relative proportion of contributing
cell subsets can influence gene expression profile based
on the unique gene signature related to their functions
[6, 7], making it more difficult to interpret the biological
significance of the observed differential gene expression.
For example, it is impossible to determine if the differ-
ence in gene expression is shared homogeneously in all
cells, or if the observed difference in gene expression is
primarily driven by divergent gene expression in one par-
ticular cell subset, or if the difference arises solely due
to a difference in proportions of specific cell types [8].
Similarly, an impact of the risk locus on gene expression
in a minor cell subset may not be observed within a bulk
cell data set. The situation could be even more complex,
as each of these possibilities could be present in vary-
ing proportional degrees across samples within a given
study. While de-convolution methods can be used, it is
easy to envision scenarios in which de-convolution would
be of limited use (e.g., the same transcript is simultane-
ously up- and down-regulated in different cell types, to
varying degrees) [9, 10]. An additional strength of single-
cell gene expression studies is that correlations between
transcripts represent within-cell correlations, while co-
expression in mixed cell bulk samples could represent
some within cell correlations, but also could be the result
of complex relationships between cells of different types.

While most of the confirmed SLE-risk loci are located
in or near genes with immune system function, for the
vast majority, we do not understand their impact on cell
biology and immune responses nor their influence on
various immune cell subsets. For risk loci near genes of
unknown molecular function, it is difficult to identify the
relevant biological pathway and cell type(s) when consid-
ering functional follow-up experiments. This is a major
challenge in SLE genetics as many risk loci have been
definitively implicated in SLE pathogenesis, but their
molecular function is poorly understood [2]. When con-
sidering using gene expression data in eQTL studies, the
above advantages of single-cell gene expression data from
purified cell populations are intriguing and would suggest
that single-cell expression studies would more accurately
indicate the biological impact of risk loci. Our group and
others have previously studied gene expression in sorted
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immune cell populations as well as at single-cell level in
SLE patients and found striking between-individual dif-
ferences in gene expression between immune cell sub-
sets and within the same immune cell types [1, 7, 9]. In
this study, we use single-cell gene expression data from
two important SLE monocyte subsets and perform a
single-cell eQTL analysis. We selected seven SNPs from
six established SLE risk loci and 90 target genes for this
analysis. We observed many eQTLs that met statistical
significance after adjusting for the within-individual cor-
relation by modeling the individual as a random effect in
a linear model and applying multiple testing correction.
These results demonstrate the efficiency of single-cell
eQTL approach to effectively detect the biological impact
of risk loci. The associated eQTL transcripts largely dif-
fered between the two closely related monocyte sub-
sets, making the case that risk locus function differently
depending upon cell type. We also observed a great deal
of diversity in the transcript lists associated with each
risk SNP.

Methods

Patients and samples

Whole blood samples from 15 Female SLE patients ful-
filling the American College of Rheumatology criteria for
the diagnosis of SLE [11, 12] and five age-sex matched
healthy controls were procured from the Mayo Clinic,
Rochester, MN. Exclusion criteria included pregnancy,
active acute infection, chronic infection (e.g., hepatitis C,
HIV, etc.), and current intravenous therapy (e.g., meth-
ylprednisolone or cyclophosphamide). The institutional
review board approved the study and all patients pro-
vided informed consent. The patient data were used for
all eQTL analyses, and the control data were only used in
the comparison of IRF1 expression. The control set was
too small to analyze separately for eQTLs, and combining
patient and control cells together for eQTL analysis could
result in confounding due to the expected differences in
gene expression between patients and controls. Control
data were only used in the IRF1 expression analysis.

Purification of classical (CD147*CD16~) and non-classical
(CD149™CD16™) monocytes

As previously described [9], CD14"tCD16 classical
(CL) monocytes and CD144™CD16% non-classical
(NCL) monocytes were isolated from peripheral blood
and purified using magnetic separation. Briefly, CL
monocytes were first purified by negative selection
using a modified Human Pan-Monocyte Isolation pro-
tocol (Miltenyi) with addition of anti-CD16-biotin
(Miltenyi) into the biotin-antibody cocktail. The purity
was further increased using subsequent CD14 posi-
tive selection (Miltenyi). NCL monocytes were purified
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similarly with addition of anti-CD14-biotin (Miltenyi)
to the antibody cocktail for negative selection followed
by CD16 microbeads (Miltenyi) for positive selection.
Flow cytometry analysis showed that of the CL and
NCL populations obtained, each contained >95% of
each desired cell type (Supplemental Fig. 1).

C1 single-cell capture

Single-cells from each bulk monocyte subset were iso-
lated using Fluidigm C1 Single-Cell Auto Prep System.
Purified CL monocytes were stained with Molecular
Probes " CellTracker " Green CMFDA Dye (Life Tech-
nologies), while NCL monocytes were unstained before
loading to C1 Single-Cell Auto Prep Array Integrated
Fluidic Circuits (IFCs). CL and NCL monocytes were
then sequentially loaded onto the C1 Integrated Fluidic
Circuit (IFC). CL vs. NCL monocyte lineage of individ-
ual cells was determined by direct visualization using
fluorescent microscopy, and at the same time, empty
wells and wells that contained more than one cell were
marked to exclude from later analysis. The IFCs were
then examined using fluorescent microscopy, and the
captured cells were identified as CL (stained) or NCL
(not stained). Wells that contained more than one cell
were also noted to exclude from later analysis. We cap-
tured 470 CL and 394 NCL cells from the SLE patients
in total, averaging between 50 to 60 single cells per
patient across both monocyte subsets, after excluding
doublets and fragments. These results represent a 60%
capture site efficiency.

Single cell PCR gene expression

A total of 90-target genes, relevant to monocyte func-
tion, that included major cytokines and pathway proteins
involved in inflammation were selected for pre-amplifica-
tion in the IFCs using the Fluidigm C1 Single-Cell Auto
Prep System according to the manufacturer’s protocol.
qPCR-based gene expression assay of the target gene
pre-amplified cDNAs were carried out using 96.96 IFCs
on the BioMark HD System (Fluidigm) as described in
the protocol. Raw data was analyzed using the Fluidigm
Real-Time PCR Analysis software (v. 4.1.2) and quality
check was performed by inspecting melt curves, amplifi-
cation curves. A failure score was calculated for each cell
as described previously [9, 13]. Cells with failure score
(total CT value) greater than two standard deviations
above the mean were excluded from downstream analy-
sis. The limit of detection CT values was set at 28 [10];
CT values greater than or equal to 28 were considered
non-detected and were assigned a value of zero for analy-
sis. Gene expression values were calculated by subtract-
ing the threshold cycle value for each gene for each cell
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from the number of cycles in the PCR reaction. In this
way, higher numbers represent greater gene expression,
and lower numbers indicate less expression.

Genotyping

Seven lupus risk single nucleotide polymorphisms
(SNPs) in six gene loci, IRF5, IRF7, ITGAM, PTPN22,
SPP1, and TNFAIP3 were genotyped for eQTL analysis.
We selected well-established lupus risk polymorphisms
from the literature which we thought may have function
in monocytes [2]. The polymorphisms studied were as
follows: IRF5 (rs10488631), IRF7 (rs1061502), ITGAM
(rs1143679, rs1143689), PTPN22 (rs2476601), SPP1
(rs9138), and TNFAIP3 (rs2230926). Genotyping was
performed using PCR allelic discrimination assays on a
BioMark HD System (Fluidigm). The observed genotype
frequencies of the studied SNPs did not deviate signifi-
cantly from Hardy—Weinberg equilibrium.

Statistical analysis

For the initial univariate analysis, gene expression data
was separated in to three genotype categories for each
bi-allelic SNP for each patient (homozygous minor allele,
heterozygous, and homozygous major allele). Data in CL
and NCL populations were separately analyzed, using
non-parametric analyses (Mann-Whitney U). Even
when considering eQTL associations that surpassed a
Bonferroni correction for the number of comparisons
(P=8 x 107°), this was found to be too permissive with
respect to type I error (Supplemental Fig. 2) [14]. This
was due to distributional properties of the data that dem-
onstrated patterns of normal expression mixed with vary-
ing degrees of dropout data and significant within-person
correlation in transcript values. To deal with these prop-
erties, data was reanalyzed for eQTL associations uti-
lizing four separate approaches [15]. The first approach
used a tweedie mixed-effects model [16] to simultane-
ously account for the dropout and the person-specific
heterogeneity. Gene expression was modeled as the out-
come and genotypes were modeled as predictors along
with a random effect for individual. The second approach
used a logistic mixed-effects model [17], where all non-
zero gene expression values were assigned as ones and
modeled as a binary outcome to compare the proportion
of genes turned “on” or “oft” for each SNP. Genes where
the average proportion turned “on” exceeded 98% were
dropped. The third approach also computed a mixed-
effects model with just the non-zero gene expression
values, assuming an underlying Gaussian distribution.
Lastly, the proportion of genes turned “on” or “oft” was
computed within each individual and a simple analysis of
variance was computed where the proportion was mod-
eled as the outcome and the genotype as the predictor.
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A Benjamini-Hochberg false discovery rate was used to
control for multiple comparisons and results meeting an
FDR <0.1 were retained [18]. As shown in Table 1, the
logistic and proportional models provided the strongest
ability to detect eQTLs (12 and 9 eQTLs respectively),
followed by Gaussian (3 eQTLs), and tweedie (1 eQTL)
models. eQTL lists were compared among risk alleles
and between cell types to understand the degree to which
effects were shared between cells types and the degree to
which SLE-risk loci coordinately regulated the same tran-
scripts. eQTLs were considered shared if they met the
significance cutoff in both monocyte subsets and were in
the same direction of association. These patterns of shar-
ing are represented using Venn diagrams.

Analyses to detect modules of gene co-expression in
the single-cell data were completed in each cell type
separately (CL and NCL). Using the intersection of
genes (common across all individuals), we built a pair-
wise gene-by-gene correlation matrix for each indi-
vidual and each cell type. Each correlation matrix was
averaged into a single correlation matrix to find a mean
correlation across all individuals while removing the
inter-individual differences. The mean correlation was
then used to compute eigenvectors and eigenvalues and
build a principal component analysis. From there, each
individual cell was projected on to that principal com-
ponent space and observed for differences by individ-
ual. Gene sets were retained if the absolute value of the
individual loadings associated with highly explanatory
principal components were greater than 0.7.

Results

Unique eQTL associations between CL and NCL monocytes
Using the four different analysis methods to query the
data resulted in a total of 25 eQTL associations meet-
ing a FDR <0.1 (Table 1, Fig. 1). Interestingly, these
largely differed between the two related monocyte
subsets. There were 18 eQTLs exclusive to NCL cells,
5 eQTLs exclusive to CL cells, and one shared eQTL
(Fig. 1, p=0.0007 for a difference between the observed
degree of sharing and a model in which 50% of eQTLs
are shared between cell types). The SLE-associated
SNPs demonstrated more eQTLs in NCLs compared
to CLs (p=0.0004). For a given SNP, the eQTL associ-
ated transcripts largely differed between cell types, with
only one transcript-eQTL shared between CL and NCL
cells (SPP1 rs9138 with the IRF1 transcript). The great-
est number of eQTLs was observed with the SPPI and
TNFAIP3 loci (7 and 8 eQTLs respectively). We included
two missense SNPs in the ITGAM locus that have been
shown evidence for independent biological function
[19], and these two SNPs in the same locus were associ-
ated with different transcripts. These data indicate that
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Table 1 List of significant eQTL associations detected by
the various statistical methods in classical and non-classical
monocytes at <0.1 FDR

Gene (SNP rsID) Associated  Method Monocyte subset
transcript

[TGAM (rs1143679) TLR7 Logistic Classical
[TGAM (rs1143683) JAKT Logistic Classical
TNFAIP3 (rs2230926)  IRF8 Proportion  Classical
SPP1 (rs9138) ARGT Logistic Classical
SPP1 (rs9138) IRF1 Logjistic Classical
SPP1 (rs9138) IRF4 Logistic Classical
IRF5 (rs10488631) IRF1 Logistic Non-classical
IRF7 (rs1061502) IRF1 Logistic Non-classical
[TGAM (rs1143679) ARG1 Gaussian Non-classical
[TGAM (rs1143679) TCF4 Logistic Non-classical
[TGAM (rs1143683) IL1B Gaussian Non-classical
ITGAM (rs1143683) TNFA Gaussian Non-classical
TNFAIP3 (rs2230926) CD274 Logistic Non-classical
TNFAIP3 (rs2230926) FCERIG Proportion Non-classical
TNFAIP3 (rs2230926)  IL7R Proportion Non-classical
TNFAIP3 (rs2230926) STATT Proportion Non-classical
TNFAIP3 (rs2230926)  STAT2 Tweedie Non-classical
TNFAIP3 (rs2230926) TNFA Logistic Non-classical
TNFAIP3 (rs2230926) TYK2 Proportion Non-classical
PTPN22 (rs2476601) IL5 Logistic Non-classical
SPPT (rs9138) IFIT5 Proportion Non-classical
SPP1 (rs9138) ILTA Proportion  Non-classical
SPPT (rs9138) IRF1 Logistic Non-classical
SPPT (rs9138) TLR3 Proportion Non-classical
SPPT (rs9138) TYK2 Proportion Non-classical

the same risk allele had a different biological impact
between the two monocyte subsets. This is striking given
that the two monocyte subsets would largely be more
closely related, than to B cells or T cells. These data sug-
gest the importance of studying risk alleles within very
specific cellular subsets to understand their biologi-
cal roles. The different analysis methods used to detect
eQTLs performed differently in the single-cell data, with
logistic and proportional models detecting the greatest
number of eQTLs (Table 1).

Degree of eQTL transcript sharing between SLE-risk alleles
Next, we assessed whether different SNPs modulated
the same transcripts (transcript sharing), as this could
indicate different risk alleles converging on similar
biological pathways. There were no transcripts shared
among SNPs in CL cells (Fig. 2). In NCLs, two tran-
scripts were common between two SNPs (TNFA,
TYK?2), and one transcript was common to three SNPs
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Fig. 1 Venn diagram showing unique and shared eQTL associated transcripts between CL and NCL for each lupus risk SNP. Numbers indicate the
number of transcripts associated with each SNP, with the numbers inside the overlap indicating transcript associations which are shared across the
two monocyte subsets and those outside the overlap indicating unique SNP-transcript associations for each monocyte subset. The orange circle
represents CL monocytes and the green circle represents NCL monocytes. Each lupus risk SNP is represented with different color

(IRFI). Interestingly, in the NCL cells SNPs in IRFs IRFI expression is modulated by SLE genetic risk fac-
(IRF5 and IRF7) are associated with IRF1 expression. tors in monocyte lineage cells.

It is also notable that /RFI was the one eQTL that was

shared between CL and NCL cells in the analyses above.  On/off pattern of gene expression

Thus, while genetic variation in IRFI has not been asso-  Interestingly, the IRFI transcript demonstrated a highly
ciated with SLE, these analyses support the idea that binary expressed/not expressed pattern for all cells

Classical Monocytes Non-Classical Monocytes

TNFAIP3
12230926
@) ITGAM rs1143683

ITGAM rs1143683 SPP1 159138 ITGAM rs1143679
(1) (3)

ITGAM rs1143679
M
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1
IRF5 rs10488631 M

(1)

IRF7 rs1061502

Fig. 2 Comparison of eQTL lists for the different SLE-risk SNPs in two monocyte subsets. Venn diagram showing unique and shared eQTL transcripts
associated with each risk allele for A CL and B NCL monocytes. The circles indicated by each color to represent one lupus risk SNP. Numbers in each
area of the diagram represent the number of transcripts significantly associated with that risk allele, either separately or overlapping between risk
alleles.
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Fig. 3 /RFT expression in CL and NCL monocytes in each individual separately. Gene expression values for IRFT are shown, with the cells from
each individual in the study in a separate column. CL monocytes are shown in blue and NCLs in green, with each dot representing one cell. The
genotypes under each column represent the SPPT rs9138 genotype in each person

from a given individual, such that either all of the indi-
vidual’s cells did not express the gene or the majority
of cells showed IRF1 expression (Fig. 3). This was true
of both the CL and NCL monocytes from the same
person. This pattern was restricted to patients and not
observed in the controls in our study. We have seen this
pattern in other single-cell qPCR studies of other dis-
eases [20]. For example in a study of rheumatoid arthri-
tis monocytes, we observed that JAKI expression fit this
pattern, in patients only and not in controls [20]. JAKI
did not fit this pattern in the present study of lupus
patients, suggesting that this pattern of gene expres-
sion may be specific to the disease state. We searched
public databases for other precedents of this on/off pat-
tern of gene expression using Bio Turing browser ver-
sion 2.5.3 [21]. We found a similar pattern for IRFI in
monocytes from a single-cell RNA sequencing study
examining patients with myeloma [22] (Supplemen-
tal Fig. 3). While our PCR data have a wider dynamic
range of values than the public RNA-seq data, the on/
off pattern appears similar between these two studies.
This suggests that examining gene expression patterns
in an individual is important, as this type of pattern is
likely to be lost when individuals are pooled for analy-
sis. The strength of the pattern in our data compared to
RNA-seq data sets may indicate that these patterns are
more efficiently detected in single cell gPCR data than
in single cell RNA-seq data.

Modular co-expression analysis of the single-cell data

The principal component analyses revealed much higher
overlap of cells when correcting for inter-individual dif-
ferences than not (Fig. 4). For classical cells, the first prin-
cipal component explained 39.5% of the variance and the
second principal component explained only 3.05% of the
variance. Similarly, in non-classical cells, the first princi-
pal component explained 35.6% of the variance and the
second principal component explained only 3.49% of the
variance (Fig. 4). Thirty-two genes were associated with
lower principal component 1 scores across both of the
cell types (|loadings|>0.7) (Table 2). Sixteen genes were
associated with lower principal component 1 scores in
non-classical cells (Table 2). Of those, 15 were shared
in both cell types and only one (IFNG) was unique to
NCLs, demonstrating a core set of co-expressed genes
that are in common across both cell types (Table 2). In
the CL cells, there were 16 additional genes that were co-
expressed, supporting a larger co-expression network in
this cell type.

Discussion

In this study, we document a number of eQTLs associ-
ated with common autoimmune risk alleles for SLE in
human monocytes, at a single-cell resolution. We stud-
ied patients, which may have increased our ability to
detect eQTLs associated with these alleles, as the other
requisite genetic background for SLE is also present in
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Fig. 4 Principal component analyses of classical and non-classical cells. Each cell is a dot, and data are shown after adjusting for the inter-individual
differences by averaging gene-gene correlation matrices across each individual and subsequently projecting cells onto to the principal component
space. Cells are color-coded and circled by 95% confidence ellipses by subject identifiers. Large overlap demonstrates the removal of the
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Table 2 Co-expression networks, genes associated with lower
principal component 1 scores (|loadings|>0.7). These gene sets
represent a set of co-expressed genes that explain the most
variance in each dataset. A large portion of the genes are shared;
however, classical cells demonstrate a much larger co-expression
network

Classical Shared Non-classical
CCR6 CCR2 IFNG
ITGAE CCR5

CD36 IDOT1

CD86 IFIH1

FCER1G IFIT3

GMCSF IL23A

IFIT2 STAT3

IFNB1 STATS

IL15 TLR3

2 IL12B

LILRA4 TRAF6

PRDM1 FLT3

STAT6 CTLA4

TLR8 CXCR7

TICAM1 CD80

TYK2

VCAN

these individuals. The degree of difference in eQTL lists
between monocyte subsets was striking, as these two
cell types are more closely related to each other than
other common immune cell types such as T cells and
B cells. These data suggest that highly cell-type specific
patterns of eQTLs are present in immune cells. There-
fore, choosing the right cell types and including multi-
ple cell types will be critical when studying risk alleles
in immune mediated diseases. Screening of single-cell
eQTL data [23] across multiple cell types would be an
important strategy to decide upon which cell type to
study in functional experiments, and our data support
the limitations of gene annotation and presumed func-
tions when considering the biological impact of the risk
allele. One example of this would be the large number of
trans associations we observe, which could not be pre-
dicted based upon the sequence location of the risk vari-
ant (e.g. SPP1(rs9138) associated with IRFI and TYK2
transcripts).

It is interesting that we observed more eQTLs in
the NCLs as compared to the CLs, as the cell num-
bers were similar between the two cell subsets and this
is not related to statistical power. It could suggest that
these risk alleles mediate their risk of disease to a greater
degree via the NCL lineage as compared to the CL lin-
eage. The structure of shared transcript modulation
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shown in Fig. 2 provides a map of the interactions
between risk alleles at the biological level, and these
data suggest greater coordination between risk alleles in
NCL monocytes at least with respect to the variants and
transcripts that we studied. Interestingly, while the num-
ber of eQTLs observed in CL cells was fewer, the co-
expression network observed in this cell type contained
a larger number of transcripts. This taken together with
the analysis above would suggest that a fewer number of
risk alleles are operative in CL cells but that these alleles
result in a larger number of co-expressed transcripts.
This finding should be tested in an RNA-seq experi-
ment, as this conclusion is limited by the fact that we
tested a prescribed set of transcripts in this study. Our
data also support the overall importance of the SPP1 and
TNFAIP3 risk alleles with respect to gene transcription
in both CL and NCL monocytes. These data support
the idea that different risk alleles will have their greatest
effects in specific cell types, which will not be predict-
able from the magnitude of the effect size in case-con-
trol genetic association. The SPPI risk variant has been
linked to innate immune system cytokine production in
SLE previously [24], while TNFAIP3 variants have been
associated with differential TNFAIP3 function in mono-
cyte lineage cells [25].

The on-off pattern of gene expression observed with
IRF1 is striking, and in comparison with public RNA-
seq data sets it seems that the qPCR approach we have
used illustrates this pattern more dramatically. This
could be due to the more quantitative nature of PCR
vs. shotgun sequencing. Biologically, this could relate
to a strong transcriptional repressor, and it is interest-
ing that we have observed this phenomenon in disease
but not in controls, and in multiple disease states and
with different transcripts [20]. This could indicate that
the on/off gene expression pattern is related to either
medication or to the underlying disease process. In our
study, the IRFI transcript which was expressed in an
on/off pattern was an eQTL. This could suggest genetic
variation as a cause of the on/off pattern, although it
is a trans-eQTL and thus would not represent a sim-
ple impact upon a cis-regulatory element. We have
observed trans-eQTLs in this study despite measuring
some of the transcripts for the annotated cis-gene vari-
ants being studied. We did not include each transcript
in the region of the SNPs studied, and thus, we did not
emphasize cis-eQTLs, but instead focused on mono-
cyte-relevant transcripts that result from pathway acti-
vation events in the cell.

There are some limitations of this study. We have
studied limited number of target genes and well-
established SLE risk alleles; however, future stud-
ies are needed to include additional risk alleles and
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more diverse transcripts related to SLE pathogenesis.
This will help in identifying additional eQTLs and in
delineating the effect of risk variants in different cell
types through cis or trans transcript regulation. Sec-
ond, it is will be interesting to follow up the surpris-
ing on/off gene expression pattern in other disease
states, larger control samples, and across different
cell types. We expect that this should be done using
single cell qPCR along with single cell RNA-seq, and
the qPCR method may be more sensitive to detect
this pattern.

Conclusions

Studying single-cell eQTLs in SLE patient immune
cells has allowed for novel insights which could not
be achieved using previous mixed immune cell gene
expression methods. These data support the impor-
tance of the SPP1 and TNFAIP3 risk variants and the
IRF1 transcript in SLE patient monocyte function.
This approach would be of great utility to detect dif-
ferential transcription related to SLE-risk loci across
multiple primary human cell types. This approach
addresses a major frontier in complex autoimmune
disease genetics, allowing us to understand how the
function of a given risk allele varies by cell type in
humans.
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Bars show the median, error bars show the interquartile range. Data from
public database as reported in Haradhvala, N.J, et al.,, Cancer Research,
2019.
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Abstract

Autoimmune and inflammatory diseases are polygenic disorders of the immune system. Many genomic
loci harbor risk alleles for several diseases, but the limited resolution of genetic mapping prevents
determining if the same allele is responsible, indicating a shared underlying mechanism. Using a
collection of 129,058 cases and controls across six diseases, we show that ~40% of overlapping
associations are due to the same allele. We improve fine-mapping resolution for shared alleles two-fold
by combining cases and controls across diseases, allowing us to identify more eQTLs driven by the
shared alleles. The patterns of sharing indicate widespread shared mechanisms, but not a single global
autoimmune mechanism. Our approach can be applied to any set of traits, and is particularly valuable as
sample collections become depleted.

Keywords
Autoimmune disease, Genetics, Molecular mechanism, Gene expression

Autoimmune and inflammatory diseases are a heterogeneous group of disorders, where activation of
both the adaptive and innate immune system coupled with loss of self-tolerance leads to target tissue
destruction'. These diseases are heritable, and genome-wide association studies (GWAS) have identified
hundreds of susceptibility loci, confirming their polygenic nature23. Like other complex disease risk traits,
heritability is strongly enriched in gene regulatory regions active in specific cell populations*-6, suggesting
risk is mediated to a large extent by altering gene expression in specific cell types under specific
conditions. These diseases are also comorbid”-8, with dual diagnoses being more frequent in individuals
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than expected by chance, and multiple diseases aggregating in families®. We and others have shown
that many genetic loci harbor risk variants for multiple autoimmune diseases'%-'2, suggesting that
comorbidity may be due to shared genetic liability and, hence, shared mechanisms of disease. In
particular, a previous survey of five chronic inflammatory conditions found widespread sharing of risk
effects, indicating the presence of such shared pathways*!.

Instances of pleiotropy, where the same variant influences risk to more than one disease, would by
definition point to a shared molecular effect, and thus a shared mechanism. The limited resolution of
genetic mapping has made it difficult to distinguish such cases from situations where distinct genetic
variants in the same locus mediate risk to different diseases. This limited resolution restricts our ability to
uncover shared pathogenic mechanisms, understand why modulating some immune functions can
increase risk to one disease whilst decreasing risk to others, or make inferences about the origins of
these diseases and their different prevalence rates around the world. Several methods have been
developed to leverage pleiotropy to look for shared associations; when applied to autoimmune and
inflammatory diseases, these methods have shown substantial sharing, which mirrors the overall shared
heritability of these diseases'3-16.

An important driver of the limited resolution of genetic mapping is disease cohort sample size'”. Currently
available disease cohorts, most of which have been extensively studied already, are the result of
decades-long international recruitment efforts. Meaningful increases in sample size are thus difficult to
envision in the immediate future. An alternative way to increase sample size, and thus genetic mapping
resolution, would be to jointly analyze cohorts across diseases. Previous studies have not taken this
opportunity to explicitly increase fine-mapping resolution through pleiotropy, which we pursue here. In
conventional meta-analyses of cohorts with the same disease, we assume that any associations are
shared across strata. Most pleiotropy mapping methods also assume that effects are shared across
diseases'®; however, it is unclear whether this approach will work at loci that contain multiple associations
that vary across diseases (e.g. IL2ZRA). We cannot make this assumption across diseases. It is thus
crucial to ensure that the same allele drives risk to two or more diseases, rather than separate alleles in
the same genomic locus.

Here, we first show substantial genome-wide shared heritability between autoimmune and inflammatory
diseases. We then look at 224 instances where genetic associations to multiple diseases occur in the
same genomic region, and show that 41.5% of these observed associations are due to pleiotropic
variants, with the remainder being due to different alleles in the region. When we combine cases and
controls across diseases to map each shared association, we increase fine-mapping resolution two-fold
on average. This increase in resolution is meaningful, as it reveals new instances where a shared disease
risk effect is pleiotropic with an immune cell subtype eQTL. Comorbidity is widespread between diseases
of all organ systems, and sample sizes are limited, so this strategy is widely applicable beyond the
immune-mediated diseases. Thus, this approach to careful dissection of shared effects can reveal
mechanisms that are common across diseases and pinpoint key genes driving shared biology.

Results

Autoimmune and inflammatory diseases share heritability

We first assessed the evidence for genome-wide shared heritability between 17 autoimmune and
inflammatory diseases from GWAS summary data. After quality control, we used LD score regression?®
to estimate heritability (hg?) for each trait (Supplementary Fig. 2a). We found that 11/17 diseases had
sufficient heritability captured by common variants to make these comparisons meaningful (Z-score >
4)0, so we restricted our analysis to this subset. We then calculated the proportion of shared heritability
between each pair of diseases, again using LD score regression, which is robust to sample overlaps
between cohorts?0. We found a broad pattern of shared heritability (Fig. 1), with the strongest overlaps
between atopic dermatitis, asthma and allergic traits (0.51 < ry < 0.91), which may represent a shared
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basis for atopic inflammatory disease. We saw a strong correlation between systemic sclerosis and
systemic lupus erythematosus, which were also correlated with primary biliary cirrhosis (0.42 < ry < 0.86).
In line with our previous findings'2!, these results indicate that autoimmune and inflammatory diseases
share a substantial portion of genetic risk factors, even when accounting for the major histocompatibility
locus (MHC), where overlapping haplotypes confer risk to different autoimmune and inflammatory
diseases??. Overall, this suggests that some mechanisms are common between sets of diseases, but we
find no evidence of universal sharing indicative of a large core autoimmune susceptibility component'0-21,

[Fig. 1: Joint analysis of shared autoimmune disease risk alleles improves fine-mapping two-fold.]

Autoimmune diseases share genetic associations

While this shared heritability gives an overall impression of the relationship between diseases, it cannot
identify specific genetic risk factors—and thus, genes and pathways—shared between diseases. To
compare samples from different collections genotyped at different centers, it was important to minimize
batch effects by ensuring all samples were profiled on the same platform. We therefore chose six
autoimmune and inflammatory diseases with large numbers of samples genotyped on the ImmunoChip?3
(celiac disease, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, systemic lupus
erythematosus and type 1 diabetes; Supplementary Fig.1). This targeted array interrogates variants in
188 known risk loci to saturation, representing only 1.9% of the genome but capturing 38-86% of risk loci
that have been identified in the six diseases (Supplementary Fig. 2a). Using partitioned LD score
regression, we confirmed that ImmunoChip regions account for 27.6% (MS) to 46.3% (CeD) of the
estimated heritability for five of the six diseases for which GWAS data was available (Supplementary Fig.
3b). After quality control, removal of population outliers, resolution of duplicate and related samples, and
imputation to the 1,000 Genomes reference haplotypes, we analyzed a total of 104,302 SNPs in 188
non-MHC genomic regions for association with disease in 82,630 cases and 104,573 controls
(Supplementary Fig. 1).

We first identified associations across the 188 loci in each disease independently by assembling cases
and controls into homogeneous population strata and meta-analyzing across these groups. As multiple
independent associations at a locus have been described in all diseases, we used stepwise logistic
regression followed by fixed-effects meta-analysis to allow for such effects. Results from fixed-effects
and random-effects models were not meaningfully different (Supplementary Fig. 4). An orthogonal
backward selection analysis with GCTA?2* recapitulated at least 90% of our findings (Supplementary Fig.
5). We found 197 independent associations in 123 different ImmunoChip loci at genome-wide
significance (P < 5 x 108), and 361 associations at 166 loci with suggestive association evidence (P <
105, Supplementary Fig. 2b). Overall, we find some level of support for essentially all known genome-
wide significant effects in the ImmunoChip regions.

We found substantial evidence for multiple independent associations within loci, with 7% (RA) to 30%
(IBD) of loci exhibiting more than one independent effect (Supplementary Fig. 2c). This included three
instances of associations that have not been reported before (Supplementary Fig. 6). In celiac disease,
we found suggestive unconditioned associations at two loci: a variant intronic to ANKS1A on chromosome
6 (rs12206298; P = 4.1 x 107), and a variant intronic to CTSH on chromosome 15 (rs3784539; P=1.3 x
10%). After conditional association, both these associations passed the genome-wide significance
threshold (P=4.9 x 108 and 1.1 x 108 respectively). We found evidence of a second, independent effect
in each locus (rs4713844, P=9.9 x 10%; and rs7181033, P = 8.7 x 10%). Similarly, in IBD, we found that
a suggestive association in the CLEC16A locus on chromosome 16 (rs7201325, P=1.4 x 107) reached
genome-wide significance after conditioning (P = 1.1 x 10-19), with evidence of a secondary, independent
effect (rs55773334, P = 7.6 x 10%). The presence of multiple masked independent effects highlights the
need to look carefully at suggestive associations.
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Having ensured we were capturing most of the known associations in ImmunoChip loci for each of the
six diseases, we looked for shared effects across diseases, i.e. whether the same variant mediates risk
to more than one disease. We found 218 overlapping conditionally independent associations at 98 loci
(a lead variant associated to one disease at P < 105, and a lead variant for another disease P < 104
both lead variants being in LD 2> 0.5 with at least one common SNP). Using joint likelihood mapping
(JLIM), we found evidence of a shared effect in 90/218 (41.3%) such overlaps, involving a total of 56
conditionally independent shared effects spanning 52 unique loci (Fig. 1b). Of these, 42 effects were
shared between two diseases, nine between three, and five between four diseases (Fig. 1c¢). Unlike
previous reports, which could not distinguish between shared and distinct associations with multiple
diseases in a locus, these observations indicate that many mechanisms are shared between autoimmune
and inflammatory diseases.

We found three loci where multiple conditionally independent associations for one disease were shared.
Inthe STAT4locus, we found two independent effects each for RA and SLE were shared (Supplementary
Fig. 7a). In the CD28-CTLA4 locus, one T1D risk association near CD28 is shared with CeD, whereas
another, an intronic variant in CTLA4 is shared with RA (Supplementary Fig. 7b). In the TYK2 locus, one
RA risk association is shared with SLE, IBD, and T1D; a second association, localizing to ICAMS3, is
shared with SLE alone (Supplementary Fig. 7c). Cumulatively, these examples demonstrate that disease-
associated alleles in the same locus can have different consequences, and that careful comparisons
across diseases can distinguish each effect.

Shared associations improve fine-mapping resolution

We next assessed if joint analysis across diseases could improve fine-mapping resolution. For each of
the 56 shared associations, we assembled conditionally independent association data across all disease
cohorts sharing that association, and combined them with fixed-effects, inverse variance-weighted meta-
analysis. In a subset of loci, we saw an unexpected decrease in significance and increase in
heterogeneity in the meta-analysis; we found these to be shared associations with opposite effects, where
an allele increases risk for one disease and decreases it for the other (Supplementary Figs. 8-16). In five
of these nine cases, variants with opposing effects were shared between MS and IBD. After inverting the
association statistics to account for these effects, our meta-analysis resulted in higher significance for
122/131 (93.1%) associations across all 52 loci harboring a shared effect, demonstrating the potential to
bolster association findings with our approach.

To establish if this increase in sample size provides a meaningful increase in fine-mapping resolution, we
used FINEMAP?5 to calculate posterior inclusion probabilities for SNPs at each of the 56 shared effects,
both in individual diseases and in the cross-disease meta-analysis. We then calculated 95% credible sets
for each disease, both before and after cross-disease meta-analysis. We found a substantial decrease
in the mean credible interval size, from 36.6 (s.d. 46.8) to 16.5 (s.d. 20.0), representing an improvement
of 55% (Fig. 1e). We saw resolution improvement across the spectrum of initial association evidence,
with the largest gains where an effect had relatively weak evidence of association in a disease: for
associations below genome-wide significance in a single disease, our resolution increased from a mean
of 50.8 SNPs to 18.0 SNPs after cross-disease meta-analysis; for associations already above genome-
wide significance in a single disease, we saw improvement from a mean of 21.8 SNPs to 14.9 SNPs.
This is exemplified by a shared association in the C10rf106 locus on chromosome 1, where credible
intervals of 28, 8, and 11 SNPs for CeD, IBD and MS respectively are reduced to eight variants in very
tight linkage disequilibrium (minimum r2 = 0.976) on cross-disease meta-analysis (Fig. 2). In this case,
there are genome-wide significant associations in each disease independently, but increasing sample
size from symmetric equivalent 19,026 (CeD), 53,312 (IBD), 35,618 (MS) to a cross-disease meta-
analysis 93,001 (symmetric equivalent) increases the resolution for both CeD and MS, identifying a core
risk haplotype within C1orf106. As the eight variants in this haplotype are in near-perfect LD, we may
have reached the limit of fine-mapping resolution at this locus using samples of a single ancestry.
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[Fig. 2: A shared effect on chromosome 1 can be fine-mapped to eight variants across celiac disease,
inflammatory bowel disease, and multiple sclerosis.]

Shared associations indicate common mechanisms

The ultimate promise of increasing fine-mapping resolution is to increase the interpretability of association
signals. We and others have shown that disease risk associations are enriched in non-coding regions
with gene regulatory potential*52627. We have used the JLIM approach to show that autoimmune disease
associations are sometimes shared with expression quantitative trait locus (eQTL) signals?®®, indicating
the risk allele also influences gene expression. However, most associations are not shared with an eQTL,
nor are they attributable to coding variants. To assess if this is due to limitations in fine-mapping
resolution, we looked for shared associations between the 56 shared effects we discovered and cis-
eQTLs for nearby genes in naive T cells, monocytes and neutrophils in the BLUEPRINT?? dataset. We
found 137 shared effects between each of 131 shared conditionally independent association signals in a
single disease and eQTLs for nearby genes. We then looked for shared effects between the better-
powered cross-disease meta-analysis data in each of the 52 loci, and can attribute 19 new disease/eQTL
effects to the underlying diseases (Fig. 3; Supplementary Table 6). Most of the implicated eQTLs are
present in only one of the three cell types we interrogated, with T cells providing the largest number. We
also exclude 13/137 disease/eQTL shared effects as no longer relevant because we do not find evidence
of shared association between the cross-disease meta-analysis and eQTL data. Our gains primarily occur
in cases where the cross-disease meta-analysis reduces the credible interval size (Fig. 3c), indicating
that this gain of resolution drives these new observations.

The direction of shared eQTL effects indicate whether we should expect increases or decreases in
expression for those genes to increase disease risk. We reasoned that we might also see the same
direction of effect between cases and controls, where the risk state is magnified. We therefore looked at
single cell RNA-seq data derived from T cells collected from a cohort of MS patients and healthy
controls®°. After quality control, we were able to detect twelve genes that were targets of eQTLs shared
with MS risk signals in our analysis. We found a significant pattern of correlation (P = 0.018): when a
disease risk allele increased expression of a target gene, we saw higher expression in cases than in
controls, and when it decreased expression we saw lower levels in cases than in controls (Fig. 3d). This
suggests that shared associations that drive risk-altering changes to gene regulation do in fact alter
disease risk, and our results are uncovering pathogenic mechanisms.

[Fig. 3: The increased resolution of fine-mapping shared associations across diseases allows
identification of more disease-eQTL overlaps.]

The relative direction of the disease and eQTL associations can also suggest specific mechanistic
hypotheses. This is exemplified by an association in the RGS1 locus, shared between celiac disease and
MS (Fig. 4). RGS1 encodes a regulator of G-protein mediated signaling active in immune cell populations.
We had previously reported a shared association between an RGS17 eQTL in macrophages and both MS
and CeD risk. We now show that the effect is shared between the two diseases; this better fine-mapped
shared effect also overlaps with RGS7 eQTLs in multiple cell populations, not just macrophages. The
cross-disease meta-analysis reduces the credible interval to 10 variants overlapping the promoter region
of RGS1. The lead credible interval variant overlaps a region of accessible chromatin within an active
enhancer immediately upstream of the RGS1 promoter. Further, this variant lies in a predicted binding
site for ZNF263, and position-weight matrix analysis suggests the minor allele abrogates binding3'.

[Fig. 4: Jointly analyzing an association shared between multiple sclerosis and celiac disease improves
fine-mapping resolution and identifies a shared eQTL for RGS1.]
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Discussion

We have quantified the shared heritability between autoimmune and inflammatory diseases, and
demonstrated that we can leverage this to identify genetic variants that alter risk to multiple diseases. In
previous work, Ellinghaus et al. looked for shared effects between five chronic inflammatory diseases, of
which only the subsets of IBD are in common with our work''. We observe, as they did, widespread
sharing between diseases. Uniquely, we then meta-analyze across diseases and show this significantly
increases fine-mapping resolution, compared to considering each disease in isolation: the number of
effects where a single variant explains 95% of the posterior probability of association increases from 13
to 20 (a 54% increase); for 50% of the posterior probability, we see an increase from 31 to 54 (74%).
Furthermore, we see an increase in the number of eQTLs, with evidence of sharing an effect with disease
risk, from 137 to 143 (4.4%). Thus, in terms of identifying causal variants and functional interpretation,
meta-analyzing across diseases meaningfully increases our ability to interpret genetic associations. This
sets the stage for variant-to-function efforts to uncover key pathogenic mechanisms, as we provide high-
value targets relevant to multiple diseases.

This approach can be applied to any set of traits sharing associations; we therefore suggest this is a
fruitful avenue to maximize the interpretability of existing genetic studies of human complex traits,
especially as shared mechanisms are applicable to multiple conditions. It is particularly valuable as
sample collections, particularly of diseases that are difficult to diagnose or not especially common in the
population, become depleted. Disease cohorts are often genotyped on different platforms, and the
majority of common variants imputed. This can introduce a substantial bias, if cohorts of samples with
different diseases have differential genome coverage. We have avoided this in our study by using a
common platform, at the expense of not covering the entire genome. These technical hurdles will diminish
as genotyping platforms coalesce around a standard set of variants, and as the community shifts to
whole-genome sequencing rather than genotyping. We note that biological interpretation of genetic
associations, shared or otherwise, is dependent on access to molecular and cellular phenotype studies
such as eQTLs, which require profiling a wide array of tissues or cell types under diverse stimuli in order
to identify the consequences of disease-associated variants. The BLUEPRINT dataset, which we used
here, covers three very different blood cell types, but dozens more exist, in which the variants we have
identified could act. This context specificity may be one reason we cannot always assign a cognate eQTL
to each well-resolved association2.

In terms of understanding the common mechanisms in autoimmunity, we and others have reported that
many loci harbor associations to multiple autoimmune diseases. However, these approaches have relied
on simple proximity of variants to infer that the underlying mechanisms must be shared. We have
quantified the shared heritability between autoimmune and inflammatory diseases, and shown that a
substantial proportion of shared loci harbor pleiotropic effects influencing risk to multiple diseases, which
represent shared mechanisms. Many loci, however, harbor multiple independent effects, indicative of
distinct mechanisms driving risk to different diseases; this is consistent either with the same underlying
genes being influenced in different contexts to induce risk for different diseases, or with different genes
which happen to be encoded near each other. Previous studies by us and others were not designed with
this resolution'®, and could only identify loci harboring potentially different effects to multiple diseases.

Our results reveal complex patterns of shared heritability between autoimmune diseases. In particular,
we find many opposite effects shared between IBD and MS, where the same allele increases risk for one
disease but decreases risk for the other. This is reminiscent of the differential outcomes of anti-TNFa
therapies, which are beneficial in IBD but exacerbate MS symptoms?3, as initially suggested by dissection
of risk effects impacting the TNF receptor 134, Further, it suggests that some disease mechanisms may
have an optimum state, and either hypermorphism or hypomorphism are deleterious, as previously
suggested's. However, these two diseases also have the largest number of cases in our analysis. We
therefore cannot completely exclude the possibility that opposing effects are widespread but we lack
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power to detect them. Overall, we see no evidence for a substantial component of risk shared across all
six diseases, which would be indicative of a pan-autoimmunity mechanism. Our benchmarking suggests
this is not due to a lack of power to detect shared effects?8, and our results strongly support independent
effects in most loci. As our results argue against a single, shared autoimmune mechanism, they also
dispute a single evolutionary origin for autoimmune and inflammatory diseases, which would have
resulted in a set of risk alleles driving broad autoimmunity?e.

Methods

Shared heritability analysis

We downloaded complete summary statistics for all autoimmune and inflammatory disease GWAS
available in the NHGRI-EBI GWAS catalog®®. We focused on European ancestry studies with at least
2,000 subijects for which signed summary statistics were available. Where multiple studies were available
for a given trait, we chose the study with the largest cohort size. By applying these filters, we obtained
GWAS statistics for atopic dermatitis (AtD)38, allergic traits (All)37, asthma (Ast)38, celiac disease (CeD)3°,
eosinophilic granulomatosis with polyangiitis (EGPA)%, selective IgA deficiency (slgAD)#!, inflammatory
bowel disease (IBD)3, latent autoimmune diabetes in adults (LADA)*2, primary biliary cirrhosis (PBC)*3,
primary sclerosing cholangitis (PSC)#4, psoriatic arthritis (PsA)*5, systemic lupus erythematosus (SLE)?*6,
systemic sclerosis (SSc)*7, and vitiligo (Vit)*8. IBD summary statistics also included results for Crohn’s
disease (CD) and ulcerative colitis (UC); as expected, these exhibited high correlation as they share
some, but not all of their genetic architecture (data not shown). We downloaded summary statistics for
psoriasis (Ps)*® from dbGaP and summary statistics for rheumatoid arthritis (RA)%° from GRASP. We
obtained multiple sclerosis (MS) summary statistics from the International MS Genetics Consortium2.
Sources and accession numbers for included studies are documented in Supplementary Table 2.

We first removed indels and single nucleotide polymorphisms (SNPs) inconsistent with the 1,000
Genomes Project (Phase 3) reference panel>'. We next filtered for strand-unambiguous biallelic SNPs
with minor allele frequency (MAF) > 0.01 in the 1,000 Genomes European (EUR) reference subjects.
Following Bulik-Sullivan et al.2%, we removed variants with INFO < 0.9 where this information was
available. As INFO scores were not available for most datasets, we uniformly filtered on SNPs present in
the HapMap 3%2 reference panel. Where differing effective sample sizes were provided for each variant,
we removed SNPs genotyped in fewer than two-thirds of the 90™ percentile population size.

After quality control, we used linkage disequilibrium (LD) score regression'® to estimate heritability (hg?)
for each trait from summary statistics, using the 1,000 Genomes EUR individuals as reference. As
recommended by the developers?°, we excluded traits with heritability Z-scores < 4 from further analysis.
We next used LD score regression to calculate correlations (rg) among all pairs of the remaining traits.

ImmunoChip datasets

We obtained raw ImmunoChip genotypes for six autoimmune and inflammatory diseases (Supplementary
Fig. 1; Supplementary Table 2), including CeD?33, IBD%4, MS55, RAS56, SLE57:%8 and type 1 diabetes (T1D)%.
Each of the participating disease consortia provided data, including two separate SLE consortia (OMRF
and Genentech). For the CeD and SLE datasets, we used GenomeStudio to call genotypes from intensity
files.

After resolving conflicting SNP nomenclature and allelic encoding across datasets, we lifted these over
from GRCh36 (hg18) to GRCh37 (hg19). We excluded SNPs that could not be mapped unambiguously
to the newer assembly.

All datasets consisted of multiple strata, typically divided by country of origin (Supplementary Table 3).
We therefore divided datasets into country-level strata and performed quality control independently within
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each stratum. As one of the T1D datasets consisted of affected sibling pairs, we processed this
separately.

Genotype quality control

Quality control and association analysis are discussed in detail in the Supplementary Materials and here
in brief. We used PLINK®® to perform initial quality control. Within each stratum, we first removed
individuals missing >10% of genotypes, and SNPs that were missing in >5% of individuals. We then
assessed the remaining samples for sex inconsistencies. Where X chromosome genotypes were
available, we calculated X chromosome homozygosity for each individual. We then used Mclusté' to
divide samples into male and female clusters assuming a Gaussian mixture model with two components.
Inferred sex was used where these were not specified in the original datasets. Individuals were removed
if their recorded sex differed from the model-inferred sex.

We focused our analysis on individuals of European descent. To identify population outliers, we merged
our genotype data with reference data from the 1,000 Genomes Project®' and performed principal
component analysis®. We removed samples with a smaller Euclidean distance to the EAS or AFR
centroids than to the EUR centroid. We then repeated principal component analysis and removed
samples with a smaller Euclidean distance to the SAS centroid than to the EUR centroid. At each step,
samples that did not correspond to an identifiable reference population were removed empirically.

After removing population outliers, we removed SNPs exhibiting deviation from Hardy-Weinberg
equilibrium expectation (P < 10-8). We next identified and removed subjects with extreme homozygosity.
We used PLINK to calculate inbreeding coefficients (F) for each individual. Within each stratum, we
removed individuals with F > 2.5 s.d. from the stratum mean. We next applied a second, more stringent
filter for missing values, removing individuals with >1% missing data and SNPs missing in >1% of
individuals.

We then identified close relatives (& > 0.185) and duplicates (7 > 0.90) within each disease dataset.
Duplicates were removed from further analysis. Relatives were excluded from a second Hardy-Weinberg
equilibrium assessment, where we filtered SNPs that violated Hardy-Weinberg equilibrium at P < 105.
We included relatives to provide additional chromosomes for phasing and imputation; we removed these
before association testing. After quality control, we excluded strata with fewer than 150 remaining cases
or controls.

A total of 168,928 subjects were available for analysis after quality control. After identifying and removing
control samples that were shared among studies, we were left with 129,058 unique individuals. The
numbers of subjects supplied and analyzed are indicated in Supplementary Fig. 1. More detail on the
numbers of subjects per stratum are given in Supplementary Table 3. A detailed accounting of all subjects
(Supplementary Table 4) and SNPs (Supplementary Table 5) can also be found in the Supplementary
Data.

Imputation and association analysis

Before imputation, we removed indels, rare SNPs (MAF < 0.05) and SNPs that were missing differentially
between cases and controls (P < 10-%). We then used SHAPEIT2% to remove SNPs that were inconsistent
with the 1,000 Genomes (Phase 3) reference haplotypes and to phase remaining SNPs. We used
IMPUTE2%* to impute reference SNPs that were not genotyped, and to fill in sporadically missing
genotypes. A subset of genotyped SNPs could not be reliably imputed from the reference haplotypes
(concord_type0 < 0.75 despite info_type0 > 0.8). As these were either mis-mapped or unreliably
genotyped, we excluded these SNPs and performed a second round of imputation as above.
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We removed imputed SNPs if they did not have two alleles present, if they were imputed with INFO <
0.75, or if they had MAF < 0.05. We also removed variants that violated Hardy-Weinberg equilibrium at
P < 0.001, and those that exhibited differential missingness between cases and controls at P < 0.01.

We used SNPTEST®5 to perform logistic regression of imputed genotype dosages against phenotype in
each stratum, incorporating the first two principal components as covariates into an additive model. We
then combined association statistics into a fixed-effects, inverse variance-weighted meta-analysis®® for
each disease. The extended MHC (6:28-34 Mb, GRCh37 coordinates) was excluded from analysis.

To allow for multiple independent effects at a given locus, we used iterative stepwise conditional logistic
regression. For each iteration after the first, we repeated logistic regression in each stratum, this time
conditioning on all previously identified meta-analysis lead SNPs with P < 0.0001. Results were again
combined in a fixed-effects meta-analysis. We restricted our search for lead variants to SNPs present in
all strata, with # <50 and r? < 0.9 to all previous lead SNPs. Where such a lead SNP could be identified,
we added this to the list of conditioning variants and proceeded with another round of association testing.
We continued conditioning until we detected three independent signals or no variants with P < 0.0001
remained.

Our iterative conditioning approach produced a set of independent associations for each trait at each
ImmunoChip locus. To identify conditionally independent association signals at each locus, we iterated
over the set of lead variants, this time conditioning on the all-but-one variant. For this analysis, we again
required SNPs to be present in all strata, with # < 50. We validated our forward selection results using a
reverse selection method implemented in GCTA. As this analysis produced results nearly identical to our
reverse selection model (Supplementary Fig. 5), we used the reverse stepwise conditioning results in
subsequent analyses.

Identification of shared genetic effects

We used Joint Likelihood Mapping (JLIM)?8 to identify genetic effects that are shared across multiple
diseases at each ImmunoChip locus. The method relies on permutation of genotype-level data, so we
restricted our analysis to diseases with data available for large numbers of samples. We wished to
analyze trait pairs exhibiting at least moderate strength of association; we therefore identified pairs of
traits at each locus with lead variants significant at P; < 0.00001 and P-< 0.0001. To ensure a moderate
degree of linkage disequilibrium between assessed traits, we identified the set of variants with r2 = 0.5 to
each lead variant; trait pairs were assessed for a common underlying genetic effect where these sets
shared at least one variant. To this initial set of candidates, we added additional trait pairs that appeared
similar based on their Manhattan plots.

For each analyzed trait pair, we identified and removed shared controls before JLIM analysis. We then
applied JLIM in both directions, using each trait alternately as the primary and secondary trait. We set
the analysis window to be the maximal coordinates of the union of the 2 = 0.5 windows; resolution was
set to the default 2 = 0.8. Linkage disequilibrium in the primary trait was estimated from 1,000 Genomes
reference data; for the secondary trait, we estimated this directly from best-guess genotypes.

We estimated JLIM significance by permutation. For each permutation, we shuffled phenotype labels
independently in each disease stratum and repeated logistic regression and meta-analysis as above. A
minimum of 10,000 permutations were performed for each trait pair.

To identify clusters of traits sharing a common genetic effect, we analyzed pairwise JLIM results as
graphs. Edges were defined between traits where JLIM was significant at P < 0.05. Maximal connected
undirected subgraphs were then identified at each locus. For subgraphs of size greater than two, we
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repeated JLIM for each ordered pair of traits in the subgraph, this time using a common analysis window
defined by the union of the 2 = 0.5 windows for all traits in the subgraph.

We validated our results by comparing with coloc2 (Supplementary Table 1). We identified a single false
positive (the SOCST locus) and removed this from our analysis.

Fine-mapping of susceptibility loci

For each cluster of traits sharing a common genetic effect, we combined data by meta-analysis. Duplicate
samples were identified and removed from each cluster. We then repeated logistic regression and meta-
analysis as described above. We used the P statistic to assess variants for heterogeneity. Within each
disease, variants were excluded if P = 50, or if they were present in fewer than half of the constituent
strata. To be included in fine-mapping analysis, variants were required to have survived filtering in all
diseases of a given cluster.

Trait pairs with opposing effect directions were identified by linear regression. For each pair, we regressed
SNP Z scores for the first trait against corresponding Z scores for the second trait. We considered trait
pairs to have opposing effect directions when their slope term was negative and statistically significant.
For such trait pairs, we reversed the direction of the effect for one trait and repeated meta-analysis.
Opposing trait pairs were confirmed by comparing heterogeneity statistics before and after reversal.

For each shared effect cluster, we used FINEMAP?2 to estimate posterior inclusion probabilities for each
variant within our shared effect clusters. SNP correlation matrices were calculated from genotypes for
each trait. We assumed a single causal variant at each locus and performed an exhaustive search. We
quantified fine-mapping improvement by comparing the number of SNPs in 95% credible intervals for
individual disease traits, and for meta-analyzed clusters.

Expression quantitative trait locus (eQTL) data

We obtained and quantitated raw RNA-sequencing reads from three human immune cell types from the
BLUEPRINT consortium??: neutrophils (CD66b+ CD16+; 196 individuals), monocytes (CD14+ CD16-;
193 individuals), and naive CD4 T cells (CD4+ CD45RA+; 169 individuals). Subjects in this study were
ascertained to be free of disease and were representative of the United Kingdom population. We used
the GTEx Analysis V8 pipeline (https://gtexportal.org)®” to align FASTQ files, filter for quality control and
quantitate gene expression. Briefly, we used STAR v2.5.3a to align reads to GRCh38. We quantitated
expression to the gene level with RNA-SeQC v1.1.9, using the GENCODE 26 gene model. We included
genes with expression values >0.1 TPM and =6 reads in at least 20% of samples; we then normalized
counts using the trimmed mean of M-values (TMM) method implemented in edgeR®8. We then normalized
expression across samples using an inverse normal transformation. We retained all samples for analysis
as none had fewer than the minimum 10 million reads.

We obtained genotype data for all individuals with available gene expression data; a total of 7,008,524
variants were available. Whole-genome sequencing, alignment, variant calling and quality control were
performed previously??. All SNPs were biallelic. We removed indels and SNPs with MAF < 0.05 or that
violated Hardy-Weinberg equilibrium at P < 0.00001. There were no heterozygosity outliers, defined as
samples with heterozygosity > 5 standard deviations from the sample mean. Similarly, there were no
cryptic relatives (& > 0.1875) or population outliers (>4 standard deviations in the first four PCs). A total
of 4,853,096 variants were available for analysis in 197 subjects.

Identification of shared susceptibility-eQTL loci

We used JLIM to identify shared eQTL—disease susceptibility loci. Disease susceptibility summary
statistics were lifted over to GRCh38 coordinates. For each shared effect, we assessed all genes with
transcription start site within 1 Mb of any susceptibility lead SNP. We regressed normalized expression
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values for these genes against genotype in a linear model, assuming an additive model of inheritance.
We used covariates to adjust for age, sex the first 5 principal components and 30 PEER factors®. The
same covariates were used to generate permutation data for JLIM.

To allow for multiple independent eQTLs within a given locus, we performed conditional cis-eQTL
analyses. For eQTL with P < 0.001, we repeated linear regression modelling, this time conditioning on
the lead SNP from the first model. We continued adding lead variants to our model until either (a) the
lead variant P = 0.001 or (b) three conditioning SNPs had been included. To identify conditionally
independent eQTL signals, we again iterated on the set of lead variants, this time conditioning on the all-
but-one variant.

After identifying conditionally independent eQTL signals for each gene, we used JLIM to assess for a
common underlying genetic effect between disease susceptibility loci and eQTLs. We lifted summary
statistics for susceptibility loci over to GRCh38 and used these as primary traits. Expression QTLs were
used as secondary traits. For each primary trait, the JLIM analysis window was chosen to be the union
of all SNPs +100 kb from the lead SNP. We estimated significance by permuting eQTL expression values
100,000 times for each trait. Within a given cluster of disease associations, we used the Benjamini-
Hochberg procedure to correct P-values for the number of genes and cell types assessed.

Single sell RNA-seq quality control

We obtained raw sequencing data from a previously-published single cell RNA-seq (scRNA-seq) study
of multiple sclerosis®®. Sample collection and data preparation are described in detail in the original
publication. Briefly, peripheral blood mononuclear cells (PBMCs) and cerebrospinal fluid (CSF) cells were
obtained from 6 healthy donors and 5 new-onset multiple sclerosis patients. For each donor, single cell
suspensions were prepared for analysis using the 10x Genomics platform. We used unique molecular
identifier (UMI) count matrices as describeds30. We filtered extreme outliers by excluding droplets with (a)
<1000 UMI counts or <500 unique genes detected, or (b) >15,000 UMI counts or >5,000 genes detected.
To exclude low-quality cells and potential doublets from our analysis, we examined the distributions of
UMI counts and number of detected genes per cell. As distributions of these parameters varied across
emulsions, we quantile-normalized logio-transformed UMI counts and logio-transformed number of
detected genes per cell. Using quantile-normalized values and the percentage of counts mapping to
mitochondrial genes, we excluded low-quality cells with <2,000 UMI counts, <900 genes detected, or
>12.5% counts mapping to mitochondrial genes. We also excluded doublets with >8,000 UMI counts or
<2000 genes detected.

Dimensionality reduction and clustering. For cells passing quality control, we normalized UMI counts
using a count per million approach, dividing each count by the total number of counts per cell. We then
multiplied normalized counts by 10,000 and added a pseudo count of 1 before log-transformation. We
then applied a variance-stabilizing transformation (VST) to account for variation in gene expression levels
across the dataset, and used genes with stabilized variance >1 and stabilized mean expression >10/-3*
as input for principal component analysis (PCA). Genes mapping to the T cell receptor (TCR), the B cell
receptor (BCR) and the Y chromosome were excluded from PCA. We computed the first 50 principal
components (PCs) using a partial singular value decomposition method, based on the implicitly restarted
Lanczos bidiagonalization algorithm (IRLBA), as implemented in the Seurat package™.

To correct for systematic differences across samples we applied Harmony integration”! to the first 50 PC
loadings. We then retained the first 30 harmony-corrected PCs, and used PC loadings as input for
visualization using UMAP (minimum distance = 0.5, spread = 10), and clustering by applying the Louvain
algorithm to a shared nearest neighbors (SNN) graph (resolution = 0.01), as implemented in Seurat. This
low-resolution clustering separated T and NK cells from B cells and monocytes. We then selected T and
NK cells and re-applied the same pipeline to the raw UMI counts to obtain a dedicated UMAP visualization
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and clusters of T cells (SNN k = 20 and Louvain resolution = 0.5), enabling us to distinguish between
different T cell sub-populations. Using normalized log-transformed UMI counts, we computed the area
under a receiver operating curve (auROC) to define diferentially expressed genes between each cluster
pairs. Manual inspection of gene markers enabled us to define several sub-populations (by order of
abundance): central memory CD4 T cells (cluster 0: CD4, CXCR5, LTB, KLRBT), naive CD4 T cells
(cluster 1: TCF7, CCR7, LEF1, CD4, STAB1, TSHZ2, NPM1, SELL), central memory CD8 T cells 1
(cluster 2: CCL5, CD8A, GZMA, NKG7, GLNY, CD8A), naive CD8 T cells (cluster 3: TCF7, NELL2, SELL,
CCR7, LEF1, CD8A, CD8B), effector CD8 T cells 1 (cluster 4: CCL4, CCL5, GZMA, CST7, PRF1, CD8A,
CD8B), natural killer cells (cluster 5: KLRG1, NKG7, PRF1, KLRB1, GZMK), regulatory T cells (cluster 6:
FOXP3, IL10RA, TIGIT, CD4), gamma-delta T cells (cluster 7: TRDC, KLRB1, GLNY, KLRC1, CCL5,
GZMA, PRF1), T follicular helper CD4 T cells (cluster 8: FAU, FTH1, VIM, CD4), megakaryocytes (cluster
9: NRGN, PPBP, TUBB1, SPARC), type | interferon activated CD4 T cells (cluster 10: MX1, ISG15, IRF7,
XAF1, IFI6), central memory CD8 T cells 2 (cluster 11: ZNF683, CD7, KLRC3, LEF1, CD8A, CD8B),
central memory CD8 T cells 3 (cluster 12: TCF7, CD27, GZMK, CD8B).

Pseudo-bulk analysis. We used cluster assignments to sum UMI counts across cell types, disease
status, tissue and donor. For each cell type in the blood compartment (PBMCs), we used a negative
binomial distribution with a local fit, as implemented in DESeg272 to model gene expression and test
differences between cases and controls, while controlling for sex as a covariate. We used shrinkage to
account for logz-fold change inflation on genes with low counts and used shrunken log»-fold change for
subsequent analyses. We focused on cluster 0 for validation of T cell eQTL predictions as this cluster
was most abundant.

Resource availability
Data availability. This paper analyzes existing, publicly available data. These accession numbers for the
datasets are listed in Supplementary Table 2.

Code  availability. Code used in  this analysis is available  on GitHub
(https://github.com/cotsapaslab/CrossDiseaselmmunochip).
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Figure Legends

Fig. 1: Joint analysis of shared autoimmune disease risk alleles improves fine-mapping two-fold.
(a) We find broad genome-wide correlation between association statistics for susceptibility to thirteen
autoimmune and inflammatory diseases for which genome-wide association data were available (allergy,
All; asthma, Ast; atopic dermatitis, AtD; celiac disease, CeD; inflammatory bowel disease, IBD; multiple
sclerosis, MS; primary biliary cirrhosis, PBC; rheumatoid arthritis, RA; systemic lupus erythematosus,
SLE; systemic sclerosis, SSc; and vitiligo, Vit). Alleles were not available for type 1 diabetes (T1D). (b)
This correlation is reflected in many loci harboring risk alleles to more than one of six diseases with
available ImmunoChip data (lower triangle). Of these 218 pairs of associations, 90 are driven by the same
underlying allele (upper triangle). (c) Risk alleles are mostly shared between two diseases (42 cases),
with nine shared between three, and five between four diseases. (d) Nine shared alleles have opposite
effect directions, increasing risk of one disease and decreasing risk of another. This is most frequent
between MS and IBD. (e) Combining cases and controls across diseases increases fine-mapping
resolution for these shared associations. We assess resolution as the number of variants required to
explain 95% of the posterior probability of association. This credible interval decreases by 55% when
combining samples across diseases (pink) compared to using only samples for one disease (orange).
Associations that are not shared across diseases have similar credible interval distributions in individual
diseases (teal). Outlying values (triangles) are winsorized; sizes of these credible intervals are indicated.

Fig. 2: A shared effect on chromosome 1 can be fine-mapped to eight variants across celiac
disease, inflammatory bowel disease, and multiple sclerosis. (a) Overlapping associations in celiac
disease, inflammatory bowel disease and multiple sclerosis on chromosome 1, with 95% credible
intervals varying both in number of variants and physical span. (b) For each pair of diseases, the strength
of association (vertical axis) for the first trait decays in a linear fashion as a function of r2 to the lead SNP
in the second trait, consistent with a shared causal variant. (c) Meta-analyzing across the three diseases
gives a stronger association signal, which can be fine-mapped to a narrow interval within C10rf106. (d)
We find strong pairwise evidence that the association is shared between all three diseases; JLIM is
asymmetric, So we run comparisons in both directions.
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Fig.3: The increased resolution of fine-mapping shared associations across diseases allows
identification of more disease-eQTL overlaps. (a) We looked for shared effects between disease
associations and expression QTLs in loci harboring shared disease effects. When considering each
disease separately, we find 137 significant disease—eQTL overlaps across monocytes, neutrophils and
T cells from the BLUEPRINT consortium (left panel). When comparing eQTLs to cross-disease meta-
analyses, we find new overlaps (blue, middle panel) and no longer find evidence for some eQTLs (red,
middle panel), for a grand total of 143 disease-eQTL overlaps (4.4% net discovery increase, right panel).
(b) Some of the shared eQTL effects can be detected in multiple tissues, but most are restricted to a
single cell type, indicating substantial effect specificity. (c) We find new eQTL shared effects in loci where
the cross-disease meta-analysis decreases the credible interval substantially, suggesting this resolution
drives new discoveries. Disease associations where an eQTL is lost after meta-analysis also have smaller
credible intervals, suggesting these may have been false positive findings due to lack of resolution in
individual disease datasets. (d) The effects of risk-increasing shared alleles on gene expression is
mirrored in expression differences between multiple sclerosis cases and controls. This suggests that risk
states imparted due to small changes in gene expression persist during active disease, and provide
validation that our eQTL discoveries are relevant to pathogenesis.

Fig. 4: Jointly analyzing an association shared between multiple sclerosis and celiac disease
improves fine-mapping resolution and identifies a shared eQTL for RGS1. (a) Overlapping
associations for the two diseases are due to a shared effect (JLIM P =5 x 105 for CeD as primary trait;
P <5 x 10 for MS as primary trait). Meta-analyzing across the two diseases increases the overall
significance and produces a narrower credible interval (credible interval variants for each panel are in
dark grey; the physical span of the credible interval is shaded grey). The credible interval focuses on the
intergenic region proximal to RGS1. (b) This shared association is also shared with an eQTL for RGS1
in naive CD4 T cells (JLIM P = 0.015). (c) The lead disease-associated variant lies in a region of
accessible chromatin in naive CD4 T cells and total T cells. This is marked with H3K27ac in total T cells
and with H3K4me1 in naive CD4 T cells, suggesting this is an active, primed enhancer element. (d) The
RGS1 eQTL lead variant predicts the disease association P value, further indicating this is a shared
effect. (e) Disease and eQTL association effects are negatively correlated, indicating that disease risk is
associated with lower RGS1 expression. (f) RGS1 is expressed at lower levels in T cells obtained from
MS patients compared to healthy controls, confirming this risk effect direction.

Supplementary Figure Legends

Supplementary Fig. 1: Methods overview. (a) Schematic overview of cross-disease fine-mapping. We
used joint likelihood mapping (JLIM) to identify susceptibility loci that are likely to share a common
underlying causal variant across multiple autoimmune diseases (left panels). At such loci, we performed
cross-disease meta-analysis, combining data for co-localized diseases into a fixed-effects model (middle
panel, top). We then performed statistical fine-mapping; SNPs contained within the 95% credible interval
are shown as filled black circles in this schematic. In general, cross-disease fine-mapping produced
smaller credible intervals, in this schematic represented as a single causal variant. We next used JLIM
to assess each susceptibility locus for overlap with cis-eQTLs in the BLUEPRINT dataset of naive CD4
T cells, monocytes and neutrophils. In this schematic, the meta-analysis signal overlaps with an eQTL
signal (lower middle panel). At such overlaps, we expect the disease susceptibility signal to decay as a
linear function of correlation to the eQTL lead variant. We also expect a linear correlation between
corresponding effect sizes for susceptibility and eQTL gene expression (right panels). (b) Overview of
the number of subjects assessed and which passed quality control.
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Supplementary Fig. 2: InmunoChip covers a significant fraction of GWAS loci for six autoimmune
diseases. (a) Between 38.5% (MS) and 85.7% (CeD) of previously identified, non-MHC GWAS
susceptibility loci for CeD, IBD, MS, RA, SLE and T1D fall within high-density ImmunoChip regions. (b)
The total number of conditionally independent associations declines as a function of P-value threshold,
with 495 independent effects identified at P < 0.0001 and 202 independent effects identified at P < 5 x
108. At all thresholds, the largest number of effects are identified for IBD, the largest dataset. (c) The
majority of associated loci exhibit a single genetic effect at all thresholds. At P<5 x 108, up to 13.6% of
associated loci in IBD exhibit more than one effect; at the lowest threshold, multiple effects are seen at
between 7.3% (RA) and 30.1% (IBD) of associated loci.

Supplementary Fig. 3: Heritability of immune-mediated disorders is enriched in ImmunoChip
regions. We used LD score regression to estimate heritabilities (hs?) for 17 immune-mediated disorders
for which GWAS summary statistics were available. We excluded traits with heritability Z-scores < 4
(indicated in pink) from further analysis. (a) Heritability estimates for the remaining 11 traits (observed
scale) are highly variable, ranging from 0.068 (All) to 0.47 (SLE). While heritability is sensitive to
population and method of estimation, we see that several estimates are smaller than expected, reflecting
the influence of genomic control correction used in the original association studies. As this downward
bias affects both numerator and denominator equally?, it does not influence genetic correlation analysis.
(b) Using partitioned LD score regression® to measure the proportion of heritability that can be attributed
to ImmunoChip regions (~2% of the genome), we see broad patterns of enrichment, ranging from 16.8%
(Vit) to 46.3% (CeD). AtD, atopic dermatitis; All, allergy; Ast, asthma; CeD, celiac disease; EGPA,
eosinophilic granulomatosis with polyangiitis; IBD, inflammatory bowel disease; slgAD, selective IgA
deficiency; LADA, latent autoimmune diabetes in adults; MS, multiple sclerosis; PBC, primary biliary
cirrhosis; Ps, psoriasis; PsA, psoriatic arthritis; PSC, primary sclerosing cholangitis; RA, rheumatoid
arthritis; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; Vit, vitiligo.

Supplementary Fig. 4: Fixed-effects and random-effects meta-analysis produced similar results.
We conducted both fixed-effects and random-effects meta-analysis. We observe differences in effect
size estimates for only a handful of variants, all are from one locus and all for SLE (highlighted in red).
The effects are in the same direction, but magnitude is generally smaller in the fixed-effect analysis.

Supplementary Fig. 5: Backward selection with GCTA recapitulates at least 90% of results
obtained with JLIM. We reanalyzed all shared traits identified through forward conditional logistic
regression with a reverse selection model implemented in GCTA. Most effects in our analysis were in
tight linkage disequilibrium (2 =20.8) with a GCTA lead variant (120/134, 89.6%). Of these, 117 GCTA
associations were identical.

Supplementary Fig. 6: Previously unreported ImmunoChip associations. Using conditional logistic
regression to allow for multiple associated variants at a single locus, we identified three genome-wide
significant associations (two for CeD, one for IBD) that were not reported in the respective publications.
(a) Unconditional testing at the ANKS1A locus on chromosome 6 produced evidence of association that
did not reach genome-wide significance in our analysis. Conditional testing produced genome-wide
significance for a single variant within ANKS1A (rs12206298; P = 4.9 x 108), and suggestive evidence
for a second effect (rs4713844; P = 9.9 x 108) in the region. Published summary statistics (lines, top
panel) were also significant. The region may have been excluded from the initial publication as it is within
the extended MHC. (b) Unconditional testing at the ADAMTS7—MORF4L1—CTSH locus on
chromosome 15 in CeD did not reach genome-wide significance. Conditional testing revealed genome-
wide significance for a variant in CTSH (rs3784539; P= 1.1 x 10-8) and suggestive evidence for a second
effect in MORF4L1 (rs7181033, P = 8.7 x 10%). (c) Unconditional testing at the CLEC16A locus on
chromosome 16 in IBD did not reach genome-wide significance. Conditional testing produced evidence
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for a single effectin CLEC16A (rs7201325, P=1.1 x 10-1%) and modest evidence for a second effect near
RP11-396B14.2 (rs55773334, P =7.6 x 10%).

Supplementary Fig. 7: Distinct conditional associations are shared with distinct sets of diseases.
At three loci, multiple conditionally independent associations for a single disease are shared. (a) At the
STAT4 locus, two independent effects are each shared between RA and SLE. (b) At the CD28-CTLA4
locus, the second independent association in T1D near CD28 is shared with CeD and the third
independent association within CTLA4 is shared with RA. (c) At the TYK2 locus, the first independent
association of RA is shared with SLE, IBD and T1D, while the second association in RA (near ICAM3) is
shared with SLE.

Supplementary Fig. 8: An association signal near TNFRSF9, PARK7 and ERRFI1 exhibits
opposing effects in CeD and IBD. (a) Meta-analysis of CeD and IBD association data (third panel)
reduces significance (points) and increases heterogeneity (lines, Cochran’s Q) of the association signal.
(b) Regression of Z scores for CeD against corresponding Z scores for IBD reveals an inverse linear
relationship, suggesting opposing directions of effect in the two diseases. After reversing effects for CeD
and repeating meta-analysis (a, fourth panel), significance increases and heterogeneity decreases,
confirming that the effects in CeD and IBD are opposed at this locus.

Supplementary Fig. 9: An association signal near PLEK exhibits opposing effects in CeD and MS.
(a) Meta-analysis of CeD and MS association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for
CeD against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for CeD and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in CeD and
MS are opposed at this locus.

Supplementary Fig. 10: An association signal near IL12A exhibits opposing effects in MS and
SLE. (a) Meta-analysis of MS and SLE association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Zscores for MS
against corresponding Z scores for SLE reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for MS and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in MS and
SLE are opposed at this locus.

Supplementary Fig. 11: An association signal near ERAP2 exhibits opposing effects in IBD and
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Zscores for IBD
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and
MS are opposed at this locus.

Supplementary Fig. 12: An association signal near TNFSF8 exhibits opposing effects in IBD and
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and
MS are opposed at this locus.
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Supplementary Fig. 13: An association signal near ZNF365 exhibits opposing effects in IBD and
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and
MS are opposed at this locus.

Supplementary Fig. 14: An association signal near L TBR exhibits opposing effects in MS and T1D.
(a) Meta-analysis of MS and T1D association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Zscores for MS
against corresponding Z scores for T1D reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for MS and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in MS and
T1D are opposed at this locus.

Supplementary Fig. 15: An association signal near CLEC2D, CLECL 1 and CD69 exhibits opposing
effects in IBD and MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces
significance (points) and increases heterogeneity (lines, Cochran’s Q) of the association signal. (b)
Regression of Z scores for IBD against corresponding Z scores for MS reveals an inverse linear
relationship, suggesting opposing directions of effect in the two diseases. After reversing effects for IBD
and repeating meta-analysis (a, fourth panel), significance increases and heterogeneity decreases,
confirming that the effects in IBD and MS are opposed at this locus.

Supplementary Fig. 16: An association signal near STAT3 exhibits opposing effects in IBD and
MS. (a) Meta-analysis of IBD and MS association data (third panel) reduces significance (points) and
increases heterogeneity (lines, Cochran’s Q) of the association signal. (b) Regression of Z scores for IBD
against corresponding Z scores for MS reveals an inverse linear relationship, suggesting opposing
directions of effect in the two diseases. After reversing effects for IBD and repeating meta-analysis (a,
fourth panel), significance increases and heterogeneity decreases, confirming that the effects in IBD and
MS are opposed at this locus.

Supplementary Table Legends
Supplementary Table 1: Posterior probabilities of colocalization from coloc2.

Supplementary Table 2: GWAS and ImnmunoChip studies used in the analysis. Sources for datasets
used in this study. Databases and accession numbers are provided for publicly available datasets. For
datasets not available in public datasets, contact details for relevant consortia are provided. NHGRI-EBI,
NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/); dbGAP, Database of Genotypes and
Phenotypes (https://www.ncbi.nlm.nih.gov/gap/); GRASP, Genome-Wide Repository of Associations
Between SNPs and Phenotypes (https://grasp.nhlbi.nih.gov/Overview.aspx); IBDGC, NIDDK
Inflammatory Bowel Disease Genetics Consortium (https://ibdgc.uchicago.edu/); IMSGC, International
MS Genetics Consortium (https://imsgc.net); RACI, Rheumatoid Arthritis Consortium International)

Supplementary Table 3: Subjects by disease, stratum and phenotype class. Case and control
counts are provided for each disease and stratum, before and after quality control filtering.

Supplementary Table 4: Subject quality control. Inclusion status for each subject. For each subject
failing quality control, the failed step is indicated.
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Supplementary Table 5: SNP quality control. Inclusion status for each SNP. For each SNP failing
quality control, the failed step is indicated.

Supplementary Table 6: eQTLs identified at disease level and after cross-disease meta-analysis.
Shared disease susceptibility —eQTL associations are indicated. Conditioning SNPs for the eQTL data
are indicated where appropriate. Where an eQTL is identified at the disease level and also in cross
disease meta-analysis, this is indicated as “Stable eQTL.” eQTLs that are newly identified after cross
disease meta-analysis are labelled “New eQTL.”



871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

References

1.

2.

3.

18.

19.

20.

21.

22.

23.

24.

25.

Rosenblum, M. D., Remedios, K. A. & Abbas, A. K. Mechanisms of human autoimmunity. J. Clin.
Invest. 125, 2228—-2233 (2015).

International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates
peripheral immune cells and microglia in susceptibility. Science 365, (2019).

de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple
integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256—261 (2017).

Maurano, M. T. et al. Systematic Localization of Common Disease-Associated Variation in
Regulatory DNA. Science 337, 1190-1195 (2012).

Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11
common diseases. Am. J. Hum. Genet. 95, 535-552 (2014).

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide
association summary statistics. Nat. Genet. 47, 1228—-1235 (2015).

Hemminki, K., Li, X., Sundquist, K. & Sundquist, J. Shared familial aggregation of susceptibility to
autoimmune diseases. Arthritis Rheum. 60, 2845-2847 (2009).

Eaton, W. W., Rose, N. R., Kalaydjian, A., Pedersen, M. G. & Mortensen, P. B. Epidemiology of
autoimmune diseases in Denmark. J. Autoimmun. 29, 1-9 (2007).

Kuo, C.-F. et al. Familial Aggregation of Systemic Lupus Erythematosus and Coaggregation of
Autoimmune Diseases in Affected Families. JAMA Intern. Med. 175, 1518-1526 (2015).

. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7,

€1002254 (2011).

. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations

and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510-518 (2016).

. Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease

classification by inverse association with SNP alleles. PLoS Genet. 5, 1000792 (2009).

. Pouget, J. G. et al. Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases

identifies shared genetic risk. Hum. Mol. Genet. 28, 3498—-3513 (2019).

. Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune

diseases in the context of common controls. Nat. Genet. 47, 839—846 (2015).

. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and

complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661-673 (2013).

. Burren, O. S. et al. Genetic feature engineering enables characterisation of shared risk factors in

immune-mediated diseases. Genome Med. 12, 106 (2020).

. Bunt, M. van de et al. Evaluating the Performance of Fine-Mapping Strategies at Common Variant

GWAS Loci. PLOS Genet. 11, e1005535 (2015).

Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG.
Nat. Genet. 50, 229-237 (2018).

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in
genome-wide association studies. Nat. Genet. 47, 291-295 (2015).

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat.
Genet. 47, 1236—-1241 (2015).

Zhernakova, A., Withoff, S. & Wijmenga, C. Clinical implications of shared genetics and
pathogenesis in autoimmune diseases. Nat. Rev. Endocrinol. 9, 646—-659 (2013).

Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic susceptibility
to autoimmune and infectious diseases. Genome Biol. 18, 76 (2017).

Cortes, A. & Brown, M. A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101
(2011).

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait
analysis. Am. J. Hum. Genet. 88, 76—82 (2011).

Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide
association studies. Bioinforma. Oxf. Engl. 32, 1493—-1501 (2016).



922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants.
Nature 518, 337-343 (2015).

Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants.
Nat. Genet. 45, 124—-130 (2013).

Chun, S. et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-
disease-associated loci in three major immune-cell types. Nat. Genet. 49, 600-605 (2017).

Chen, L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells.
Cell 167, 1398-1414.e24 (2016).

Pappalardo, J. L. et al. Transcriptomic and clonal characterization of T cells in the human central
nervous system. Sci. Immunol. 5, (2020).

Kumar, S., Ambrosini, G. & Bucher, P. SNP2TFBS - a database of regulatory SNPs affecting
predicted transcription factor binding site affinity. Nucleic Acids Res. 45, D139-D144 (2017).
Umans, B. D., Battle, A. & Gilad, Y. Where Are the Disease-Associated eQTLs? Trends Genet. TIG
37, 109-124 (2021).

The Lenercept Multiple Sclerosis Study Group & The University of British Columbia MS/MRI
Analysis Group. TNF neutralization in MS: Results of a randomized, placebo-controlled multicenter
study. Neurology 53, 457-457 (1999).

Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple
sclerosis. Nature 488, 508-511 (2012).

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies,
targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005-D1012 (2019).
Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000
controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449-1456 (2015).

Ferreira, M. A. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic
disease biology. Nat. Genet. 49, 1752—1757 (2017).

Han, Y. et al. Genome-wide analysis highlights contribution of immune system pathways to the
genetic architecture of asthma. Nat. Commun. 11, 1776-13 (2020).

Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing immune gene
expression. Nat. Genet. 42, 295-302 (2010).

Lyons, P. A. et al. Genome-wide association study of eosinophilic granulomatosis with polyangiitis
reveals genomic loci stratified by ANCA status. Nat. Commun. 10, 5120 (2019).

Bronson, P. G. et al. Common variants at PVT1 , ATG13 — AMBRA1 , AHI1 and CLEC16A are
associated with selective IgA deficiency. Nat. Genet. 48, 1425-1429 (2016).

Cousminer, D. L. et al. First Genome-Wide Association Study of Latent Autoimmune Diabetes in
Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care 41, 2396—
2403 (2018).

Cordell, H. J. et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis
risk loci and targetable pathogenic pathways. Nat. Commun. 6, 8019—-11 (2015).

Ji, S.-G. et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk
loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269—
273 (2017).

Aterido, A. et al. Genetic variation at the glycosaminoglycan metabolism pathway contributes to the
risk of psoriatic arthritis but not psoriasis. Ann. Rheum. Dis. 78, 355-364 (2019).

Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive
immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457-1464
(2015).

Lopez-Isac, E. et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic
and vasculopathy pathways. Nat. Commun. 10, 4955—-14 (2019).

Jin, Y. et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and
highlight key pathways and regulatory variants. Nat. Genet. 48, 1418-1424 (2016).



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Feng, B.-J. et al. Multiple Loci within the Major Histocompatibility Complex Confer Risk of Psoriasis.
PLOS Genet. 5, e1000606 (2009).

Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature
506, 376-381 (2014).

The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature
526, 68-74 (2015).

International HapMap 3 Consortium et al. Integrating common and rare genetic variation in diverse
human populations. Nature 467, 52-58 (2010).

Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant
association signals in celiac disease. Nat. Genet. 43, 1193—-1201 (2011).

Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease
and highlight shared genetic risk across populations. Nat. Genet. 47, 979-986 (2015).

International Multiple Sclerosis Genetics Consortium (IMSGC) et al. Analysis of immune-related loci
identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353—1360 (2013).
Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.
Nat. Genet. 44, 1336—-1340 (2012).

Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus.
Nat. Commun. 8, 16021 (2017).

Zhao, J. et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune
diseases. Nat. Genet. 49, 433—437 (2017).

Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for
colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381-386 (2015).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets.
GigaScience 4, 7 (2015).

Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: Clustering, Classification and Density
Estimation Using Gaussian Finite Mixture Models. R J. 8, 289-317 (2016).

Abraham, G. & Inouye, M. Fast principal component analysis of large-scale genome-wide data.
PloS One 9, 93766 (2014).

Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and
population genetic studies. Nat. Methods 10, 5—6 (2013).

Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for
the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-
wide association studies by imputation of genotypes. Nat. Genet. 39, 906—913 (2007).
Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 36, 1—48
(2010).

GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science 369, 1318—1330 (2020).

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinforma. Oxf. Engl. 26, 139—140 (2009).
Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account for complex non-
genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput.
Biol. 6, €1000770 (2010).

Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019).
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat.
Methods 16, 1289-1296 (2019).

Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol. 15, 550 (2014).

Rasmussen, A. et al. The lupus family registry and repository. Rheumatol. Oxf. Engl. 50, 47-59
(2011).



	Annual Report.2022.Langefeld.Lupus Drug Reposititioning.Final
	MR Lupus and CED MR.CR-MEDICINE-D-22-00062_R3
	MZ Twins Lupus Epigenetics.genes-12-01898
	Introduction 
	Materials and Methods 
	Discovery Cohort 
	Replication Cohort 
	Genome-Wide DNA Methylation Assay and Array Validation in LFRR Twins 
	Collection of Gene Expression Experiments from SLE Patient Datasets 
	Data Analysis 

	Results 
	Characteristics of the MZ Twins 
	Identification of Differentially Methylated Regions in Twins Discordant for SLE 
	Hypomethylated Genes Are Overexpressed in Independent Cohorts 
	Pathway Analysis of DM-DE Genes 
	Potential Drug Targets 

	Discussion 
	Conclusions 
	References

	scRNA eQTL Lupus Monocytes.13075_2021_Article_2660
	Single-cell expression quantitative trait loci (eQTL) analysis of SLE-risk loci in lupus patient monocytes
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Patients and samples
	Purification of classical (CD14++CD16−) and non-classical (CD14dimCD16+) monocytes
	C1 single-cell capture
	Single cell PCR gene expression
	Genotyping
	Statistical analysis

	Results
	Unique eQTL associations between CL and NCL monocytes
	Degree of eQTL transcript sharing between SLE-risk alleles
	Onoff pattern of gene expression
	Modular co-expression analysis of the single-cell data

	Discussion
	Conclusions
	Acknowledgements
	References


	Pan Autoimmune Shared Loci.Nature Genetics resubmission 2022-07-26 changes highlighted

