

Design: REV-03.18.2016.0 | Template: 01.04.2023

A Tool for Satisfying Real-Time

Requirements of Software Executing on

ARINC 653 with Undocumented

Multicore
Bjorn Andersson
Dionisio de Niz
Mark Klein

February 2023

SPECIAL REPORT

CMU/SEI-2023-SR-001

Software Solutions Division

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-

tribution.

http://w w w.sei.cmu.edu

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon w ork funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 w ith Carnegie Mellon University for the operation of the Softw are Engineering Institute, a

federally funded research and development center.

The view , opinions, and/or f indings contained in this material are those of the author(s) and should not be con-

strued as an off icial Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT

NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHA NTABILITY, EXCLUSIV ITY, OR

RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT

MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMA RK,

OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-

tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative w orks from this material for in-

ternal use is granted, provided the copyright and “No Warranty” statements are included w ith all reproductions

and derivative w orks.

External use:* This material may be reproduced in its entirety, w ithout modif ication, and freely distributed in

w ritten or electronic form w ithout requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Softw are Engineering Institute at

permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM23-0135

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY I

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Table of Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Single-core ARINC 653 3
2.2 Multicore 4
2.3 Multi-core ARINC 653 5
2.4 The complexity of timing analysis and the need for schedulability test 5

2.4.1 Example 6
2.4.2 Why it is challenging? 6
2.4.3 Schedulability test 6

2.5 Assumptions 7
2.6 System model 8
2.7 Previously-published schedulability test 10

3 A Challenge in implementing Schedulability analysis 11
3.1 Idea how to evaluate the condition (11) 11
3.2 Found interval 13
3.3 Discard interval 13
3.4 Property of not found, not discarded interval 14
3.5 Split interval 14
3.6 Decide if splitting interval is promising 14
3.7 Idea how to evaluate the condition (11) and get smallest t 15
3.8 Algorithm to evaluate the condition (11) 16
3.9 Algorithm for evaluating the condition (10) 16

4 New Tool 17

5 Evaluation 18

6 Conclusions 19

References 20

Appendix A: Detailed Results of Experimental Evaluation 21

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY II

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

List of Figures

Figure 1. ARINC 653 single core 2

Figure 2. ARINC 653 multicore 4

Figure 3. The complexity of timing analysis and the need for schedulability test 5

Figure 4. Definition of reqlpARINC653(,,PART,i,t) 8

Figure 5. Illustration of a, b, fa, fb, ga, gb. 9

Figure 6. Algorithm for evaluating Condition (11) in schedulability test 12

Figure 7. Algorithm executing the schedulability test in Theorem 1 13

Figure 8. Our new tool that implements the schedulability test in Theorem 1. 17

Figure 9. The time required by our new schedulability test when varying parameters. 18

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY III

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Abstract

ARINC 653 aims to simplify integration of independently developed (avionics) application soft-

ware executing on a shared computer platform. A key idea is that the application software is orga-

nized as a set of partitions, potentially with different criticality levels, and the underlying operat-

ing system attempts to achieve certain isolation properties between the partitions. When using

ARINC 653 on multicore, the existence of undocumented hardware is a challenge because it in-

fluences timing of software but we do not know exactly how the hardware works. A recent

method (developed by us [8]) has addressed this. The main idea is to (i) describe the software sys-

tem as a set of processes and describe each process with parameters, (ii) introduce an abstraction

that describes the execution speed of a process as a function of co-runner processes on other pro-

cessor cores, (iii) empirically find the numeric values of this abstraction, and (iv) use a formal

verification technique (called schedulability test) that takes as input the description of processes

and outputs a statement on whether all timing requirements will be satisfied at run-time for all

scenarios assumed to be possible. Unfortunately, no software tool that implements this formal ver-

ification technique was available. Therefore, in this paper, we present such a software tool. As

part of developing this tool, one challenge that we faced (and addressed) is that the schedulability

test was formulated as a condition but in order to make this useful, we need to have an algorithm

that can evaluate this condition and this turns out to be non-trivial. We also present an evaluation

of this tool on randomly-generated tasksets; this evaluation shows that our tool runs reasonable

fast when analyzing systems with 12 tasks and 8 processor cores.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

1 Introduction

ARINC 653 aims to simplify integration of independently developed (avionics) application soft-

ware executing on a shared computer platform [1,2]. A key idea is that the application software is

organized as a set of partitions, potentially with different criticality levels, and the underlying op-

erating system attempts to achieve certain isolation properties between the partitions. Originally,

ARINC 653 was defined for the case that the shared computer platform had a processor chip with

a single processor core. But today computers with multicore processors are becoming common;

consequently ARINC 653 has been extended for computer platforms with multicore processors.

This brings to the fore the question whether, and how well, techniques (run-time isolation and of-

fline verification) originally developed to be used for ARINC 653 for single-core carry-over to

multicore.

With single-core processor, satisfying real-time requirements of software on ARINC 653 was typ-

ically achieved through four activities. First, a time-triggered schedule (called module schedule) is

repeated indefinitely; this provides a predictable supply of processing time to partitions. Second,

each partition is assigned two numbers: period and duration. From the perspective of the applica-

tion software in a partition, the period and duration can be viewed as a guarantee provided by the

time-triggered schedule on the supply of processing time. From the perspective of the time-trig-

gered schedule, the period and duration of a partition can be viewed as a requirement on how fre-

quently the partition should receive service and how much. Third, given the period and duration

of each partition, one can obtain a function that provides for each possible time interval, a lower

bound on the amount of processing time supplied to a partition during this time interval. Fourth,

with this lower bound, one can apply techniques that can prove satisfaction of real-time require-

ments (or disprove it) of a set of concurrent processes given a model of these processes; such

techniques are called schedulability tests in the real-time systems research literature. This be-

comes challenging because of three reasons (i) in a partition, the number of processes can be

greater than the number of processor cores so only some of them can execute at a given time, (ii)

some processes are event-triggered so that the time when they request to execute are not known in

advance, they are rarely requested but when they do, they have urgent need to execute (short

deadline), and (iii) hardware resources shared between processor cores (e.g., cache memory,

memory bus) can cause the execution speed of one process executing on one processor core to de-

crease because of execution of a process on another processor core. The last one becomes even

more challenging when the multicore processor has undocumented hardware (i.e., the shared re-

sources within the processor chip and within the memory system are not disclosed by the hard-

ware maker).

The research literature has provided methods that can analyze ARINC 653 for single core

[3,4,5,6]. The research literature has also provided methods that can analyze multicore systems

with undocumented hardware but not for ARINC 653 [7]. Two years ago, there was no method

that could analyze ARINC 653 on undocumented multicore. We, however, addressed this in a re-

cently-published paper [8]; specifically, we developed a method that can analyze ARINC 653 on

undocumented multicore. The main idea is to (i) describe the software system as a set of

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 1. ARINC 653 single core

processes and describe each process with parameters, (ii) introduce an abstraction that describes

the execution speed of a process as a function of co-runner processes on other processor cores,

(iii) empirically find the numeric values of this abstraction, and (iv) use a formal verification

technique (called schedulability test) that takes as input the description of processes and outputs a

statement on whether all timing requirements will be satisfied at run-time for all scenarios as-

sumed to be possible. This enables, under certain assumptions, satisfying real-time requirements

of multicore software on ARINC 653 even with undocumented hardware. Unfortunately, no soft-

ware tool that implements this formal verification technique was available [8].

Therefore, in this paper, we present a software tool that implements the method in [8]. As part of

developing this tool, one challenge that we faced (and addressed) is that the schedulability test

was formulated as a condition but in order to make this useful, we need to have an algorithm that

can evaluate this condition and this turns out to be non-trivial. We also present an evaluation of

this tool on randomly-generated tasksets; this evaluation shows that our tool runs reasonable fast

when analyzing systems with 12 tasks and 8 processor cores.

Scope: This paper studies the problem of proving timing correctness of processes executing on

ARINC 653 on undocumented multicore where configuration (e.g., generating the module sched-

ule, assigning processes to processor cores) has already been done; how to select configuration is

not the scope of this paper.

The remainder of this paper is organized as follows. Section 2 gives background. Section 3 pre-

sents a challenge in implementing the schedulability analysis. Section 4 presents our new tool.

Section 5 presents performance evaluation of our new tool. Section 6 gives conclusions.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2 Background

2.1 Single-core ARINC 653

ARINC 653 [1,2] is a standard for avionics systems and emphasizes safety. This is a broad scope;

in this paper, we focus only on real-time requirements aspects of ARINC 653.

Fig. 1 illustrates ARINC 653 for a single-core system. The software system is organized as a set

of partitions. The scheduling of the single core is as follows. There is a schedule, called module

schedule, whose length is called a major time frame; this schedule is repeated indefinitely. This

module schedule contains partition time windows (ptws); a ptw is a time interval characterized by

(i) an offset, (ii) a duration, and (iii) the partition that is served during this ptw. In Figure 1, there

are four ptws in a major time frame: two ptws serve Partition 1; one ptw serves Partition 2; and

one ptw serves Partition 3. A partition is also characterized by its period and its duration meaning

that for time intervals of length equal to the period, it holds that the cumulative amount of time

that ptws serve this partition in this time interval is greater than or equal to the duration of the par-

tition. The ARINC 653 standard does not mandate a specific major time frame but it states (page

6 in [2]):

The major time frame can be defined by a multiple of the least common multiple

of all partition periods in the integrated module.

We will not make this assumption; our paper is more general.

A partition may consist of a set of processes. There are two special processes: the main process

and the error handling process. The former deals with initialization of a partition and the latter

deals with error handling. In this paper, we will ignore them. Instead, we will focus on processes

that implement functionality of the application of a partition. Also, in this paper, we focus on the

system when it has been initialized (i.e., in case the initialization has real-time requirements, then

we ignore that in this paper). In addition, we ignore processing due to error handling in the error

process.

In ARINC 653, a process is specified with its period, deadline (called “time capacity” in ARINC

653), whether it is periodic or aperiodic, and whether its deadline is hard or soft. In this paper, we

focus only on periodic processes (i.e., we assume that there are no aperiodic processes) and we

assume that all processes have hard real-time requirements. We make these assumptions because

these are common in the academic literature on real-time scheduling and because these are the

type of processes that tend to be safety critical.

To prove that processes meet deadlines, it is necessary to compute a lower bound on the amount

of processing time that a module schedule provides to a partition. One way is to compute, for each

partition p, this lower bound directly from the module schedule; we call this interpretation 0. An-

other way is to compute for each partition p, a period and duration for partition p such that this pe-

riod and duration expresses this lower bound. This requires a careful definition of period and a

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 2. ARINC 653 multicore

duration of a partition and we found an ambiguity in the standard. We let interpretation 1 denote

one meaning and let interpretation 2 denote another meaningfor details, see [8].

ARINC 653 uses fixed-priority preemptive scheduling meaning that each process is assigned, be-

fore run-time, a priority which is a number and at run-time whenever there is a need to select one

process for execution (i.e., there is more than one process eligible for execution) the one with the

highest priority among the eligible processes is selected for execution.

Note that in ARINC 653, a process i can only execute at time t if there is a ptw for which the fol-

lowing holds: (i) the ptw is active at time t, (ii) the ptw belongs to the partition of process i. This

brings the advantage that ARINC 653 was designed for: isolation between partitions. But it also

brings with it the following drawback. Consider a process that has remaining execution and is the

highest-priority process at time t (and hence may have a short deadline requiring to execute ur-

gently). This process may be prevented from executing because the ptw that is active at time t be-

long to another partition than the partition of this process.

2.2 Multicore

A multicore is a computer with many processors implemented on a single chip. Each of these pro-

cessors is called a processor core. Hence, the computer can execute many processes simultane-

ously. We are interested in multicores that share memory because these are common in practice

and these are the focus of ARINC 653. Typically, a multicore has a shared physical address space

and there are various resources in the memory system (cache memories that store frequently ac-

cessed data items; write back buffers that store data that a program has written to but where the

write has not yet taken effect in the main memory; hardware prefetch units that speculatively fetch

data in anticipation of the data that a program needs to access).

An important consequence of these shared resources in the memory system is that they can cause

inter-core interference; that is, the execution of one process on one processor core can influence

the execution of another process on another processor core (typically, this influence is slowing

down the execution of the other process). The amount of slowdown depends on the software, the

hardware, and the specific scenario (the memory accesses and their interleaving). But there have

been reports that the slowdown can be 103x and 300x [9,10] so we believe this effect deserves at-

tention.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 3. The complexity of timing analysis and the need for schedulability test

2.3 Multi-core ARINC 653

In recent years, ARINC 653 has been extended for multicores. The basic idea is that: (i) a parti-

tion is assigned a set of virtual processor cores, (ii) a process in the partition is assigned to a vir-

tual core local to the partition, (iii) the partition also provides a mapping from the local virtual

processor cores of the partition to physical processor cores, and (iv) at each instant, there is at

most one partition active. We will assume this behavior in the rest of the paper; other ideas, how-

ever, have been considered for standardization (e.g., allowing processes to migrate between pro-

cessor cores and allowing two or more partitions to active simultaneously) but we will not con-

sider them in this paper.

Fig. 2 illustrates multicore ARINC 653.

2.4 The complexity of timing analysis and the need for schedulability

test

ARINC 653 allows many processes in a single partition; this brings complexity to timing analysis

and this complexity is even greater for multicore and undocumented multicore. To illustrate this,

and to give a pre-view of our schedulability test, we show a simple example below.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

2.4.1 Example

Consider a computer system with two processor cores and a single ARINC 653 partition and this

partition has a single ptw whose duration is equal to the major time frame (that is, it is active all

the time). Figure 3 shows it. Assume that there are three processes: Process 1, Process 2, and Pro-

cess 3 so that (i) Process 1 is assigned to processor core 0 and Process 2 and 3 are assigned to pro-

cessor core 1 and (ii) Process 3 has lower priority than Process 2. Suppose that we are interested

in the response time of Process 3; that is, the time from when it arrives until it finished. The re-

sponse time of Process 3 depends on (i) the time it has to wait until Process 2 (which has higher

priority and is on the same processor) finished and (ii) the time that Process 1 executes in parallel

with Process 3. In addition, the former depends on how much slowdown that Process 1 causes on

Process 2. To simplify our discussion, assume that Process 1 does not experience inter-core inter-

ference and assume that Processor 2 does not experience inter-core interference. But assume that

Process 3 executes with half speed at those times when it executes simultaneously with Processor

1.

2.4.2 Why it is challenging?

The example above shows one particular scenario: all processes arriving simultaneously and with

given execution times of processes and this yields a response time for this particular execution of

Process 3. But changing to another scenario (e.g., moving the arrival time of Process 3 later) leads

to a different response time of Processor 3. Typically, execution times are bounded by worst-case

execution time (WCET) estimates that are known but there is still a very large number of scenar-

ios. So the problem that we are facing is: given certain bounds on the scenario (e.g., WCET of

processes, description of slowdown of processes, bounds on when processes can arrive), find an

upper bound on the response time of each process and compare it to the deadline of the process.

Computing upper bounds on response times of processes is one form of schedulability test.

2.4.3 Schedulability test

Let us create a schedulabiity test for the aforementioned example and assume that we want to find

the response time of Process 3. Let du{1,2} denote the cumulative duration of time that Process 1

and Process 2 executes simultaneously. Let du{1,3} denote the cumulative duration of time that

Process 1 and Process 3 executes simultaneously. Let du{1} denote the cumulative duration of time

that Process 1 executes while there is no execution on Processor core 1. Analogous for du{2} and

du{3}. Let C1 denote the WCET of Process 1 for the case that it executes when the other processor

core (process core 1) is idle. Assuming the execution speeds as mentioned in the example and us-

ing these notations, we obtain the following:

The response time of Process 3 is:

 (1)

Since (from our assumption), Process 1 does not experience inter-core interference, it holds that:

 (2)

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

 (2)

 For similar reason:

 (3)

 Since (from our assumption), Process 3 executes with half speed at those times when it exe-

cutes simultaneously with Process 1, it holds that:

 (4)

Clearly, durations must be non-negative. Hence:

 (5)

We can find an upper bound on the response time of Process 3 by solving the following optimiza-

tion problem: Maximize (1) subject to the constraints (2),(3),(4),(5).

It can be seen here that (i) the response time of a process depends on its arrival and other pro-

cesses, (ii) since a process can in general arrive many times, we are typically interested in an up-

per bound on the response time over all those requests, and (iii) to compute an upper bound on the

response time of a process, we need to make assumptions. Therefore, in the next section, we will

state assumptions that we make and the system model that we use. Then, we present the schedula-

bility test from previous work [8].

2.5 Assumptions

We have already stated some assumptions that we make in this paper. In addition, we make the

following assumptions:

A1. We assume that processes do not self-suspend. There are primitives in ARINC 653 that are

potentially blocking (operations on counting semaphores, mutexes, and message passing). We as-

sume that these are not used.

A2. We assume that processes do not request to execute non-preemptively. There is a primitive

(called lock_preempt) in ARINC 653 and we assume that this is not used.

A3. We assume that the operating system uses some means to make sure that the speed of execu-

tion of one partition does not depend on execution of another partition. One way to achieve this

(which is done in some operating systems) is to flush the cache and TLB after each ptw.

A4. We allow for the possibility that a process in one partition executing on one processor core

can experience smaller execution speed (due to inter-core interference) from another process on

another processor core if the other process is in the same partition. Indeed, our schedulability test

takes this effect into account.

A5. We assume that each process is assigned to a processor core; i.e., it does not migrate between

processor cores.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Maximize

 (6)

Subject to

 (7)

 (8)

 (9)

Figure 4. Definition of reqlpARINC653(,,PART,i,t)

2.6 System model

We consider a set of processes  and a computer platform . Let PART denote the set of parti-

tions. A process i is characterized by the parameters T i, Di, prioi, and parti with the interpreta-

tion that (i) Ti is the period of process i; its meaning is the same as the meaning in ARINC 653

and (ii) Di is the deadline of process i; in ARINC 653, it is called “time capacity”, (iii) prioi is the

priority of process i; its meaning is the same as the one in ARINC 653; and (iv) parti is the parti-

tion to which process i is assigned. Let Pl denote the period of partition l and let Ql denote the du-

ration of partition l.

At run-time a process arrives periodically. Each time a process arrives, it clearly requests to exe-

cute and we call this requested execution a job. Hence a process generates a sequence of jobs.

Each job has an arrival time and a deadline. The deadline of a job of process i is Di time units af-

ter the arrival time of this job. If a job finishes by its deadline, then we say that the job meets its

deadline. The arrival time of the kth job of process i is Ti time units after the arrival time of the k-

1th job of process i. We assume that for each process i it holds that Di ≤ Ti (this is called con-

strained-deadline periodic processes).

We use a model where each process is described by a set of segments. The reason for using this

description is that it allows describing different parts of a program having different sensitivities

with respect to how much slowdown they experience from other programs. Let Vi denote the set

of segments of process i. The interpretation is that the segments in Vi are ordered so that the kth

segments in Vi is called vi
k. Note that, a process is permitted to have just a single segment; if so

|Vi|=1 and vi
1 is this single segment. A job of process i executes its segments in order; that is, it

executes segment vi
1 first; then if there is a 2nd segment, it executes segment vi

2; and so on.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Figure 5. Illustration of a, b , fa, fb , ga, gb.

 Eventually, when the last segment of the job has finished, the job finishes. Segment v i
k is de-

scribed with Ci
k; the meaning is that the execution requirement of vi

k is in [0, Ci
k]; that is, Ci

k rep-

resents the worst-case execution requirement. Ci
k influences how long it takes for segment vi

k to

execute but the time it takes depends on its co-runners which can be different at different times.

We introduce a speed of execution of a segment vi
k at a time given a schedule. If a schedule is

given, one can identify which other segments executes at this time when vi
k executes; we call

these other segments co-runners. The execution speed of segment vi
k given co-runners is not fixed

so we describe it with a lower bound and an upper bound.

Let the lower bound on the execution speed of segment vi
k given co-runners co be denoted pw i,co

k

and let the upper bound on the execution speed of segment vi
k given co-runner co be 1. The intui-

tion behind this notation is that pw can be thought of as progress worst case and this can be

thought of as meaning lower bound on the speed of execution. In order to represent the lower

bound with parameters, we introduce COi
k as a set of tuples where each tuple <cs i,h

k, pcsi,h
k> has

the meaning that if vi
k has the co-runner set csi,h

k then pw i,co
k is pcsi,h

k. The segment vi
k is also

characterized by pdi
k, meaning progress default; this provides a lower bound on the execution

speed of segment vi
k if such a bound is not provided by COi

k for a certain co.

A segment finishes when the number of units of execution it has completed is equal to its execu-

tion requirement. The completed number of units of execution of a segment in a time interval is

the integral of the speed of execution of the segment over the time interval.

Note that we have not specified how many jobs a process generates; and we have not specified the

arrival times of jobs (only that they are periodic but we did not specify the time when the first job

of a process arrives); we did not specify the execution requirement of a segment (only specified

an upper bound on it); we did not specify the speed of execution of a segment (only a lower and

upper bound on it). Therefore, there are many possible schedules that the system can generate.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

We say that a system (described by a set of processes , a computer platform , and partitions

PART) is schedulable if for all schedules that it can generate, for all processes, for all jobs in this

schedule, the job meets its deadline.

hep means higher-than-or-equal-priorities. Formally:

We let op means other-processors. Formally,

We say that a segmentset s exactly-executes at time t if both of the following are true (i) each seg-

ment in s executes at time t and (ii) for each segment that executes at time t, the segment is in s.

We say that a segment is assigned to the processor core to which the task that the segment belongs

to is assigned.

Note that in order for it to be possible for a set of segments to exactly-execute, it must be that the

segments in this set are assigned to different processor cores. Hence, there are some sets of seg-

ments that cannot exactly-execute.

Let S(,,PART,i,k) denote the set of segmentsets such that for each segmentset s in

S(,,PART,i,k) it holds that (i) s can exactly-execute and (ii) vi
k is in s.

When we analyze a process i, we will consider the amount of execution of processes on other

processor cores than the one that process i executes on. Then, we will find xUB useful. Let

xUB(,,PART,i’,k’,t) be an upper bound on number of units of execution performed by segment

vi’
k’ in a time interval of duration t assuming that no deadline miss occurs before the end of the

time interval; formally:

2.7 Previously-published schedulability test

Let sbfI(,,PART,i,t) (meaning supply bound function) be a function that yields a lower bound

on the cumulative duration of time that the partition to which task i belongs to is served among

all time intervals of duration t. Previous work provides expressions for thissee [8] so it is not

repeated here. With these defininitions and notations, we can express a schedulability test as fol-

lows:

Theorem 1 (from [8]): If i t[0,Di] reqlpARINC653(,,PART,i,t) ≤ sbfI(,,PART,i,t),

then the system is schedulable.

Proof: See [8].

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

3 A Challenge in implementing Schedulability analysis

To actually use the schedulability analysis of Theorem 1, and to build a tool based on it, we need

to evaluate the condition:

 i t[0,Di] reqlpARINC653(,,PART,i,t) ≤ sbfI(,,PART,i,t) (10)

Since this condition has two quantifiers (one universal and one existential) and since it involves

real numbers and functions that are expressed on a form that are not closed-form expressions, it is

not trivial to evaluate this condition. We will discuss how to do this now.

We can observe that:

O1. t≥0 ≤ reqlpARINC653(τ, ,PART,i,t)

 This follows from the definition of reqlpARINC653.

O2. t≥0 sbfI(τ, ,PART,i,t) ≤ t

 This follows from the definition of sbfI(τ, ,PART,i,t)see ref [8].

O3. The universal quantifier in (10) is over a finite set.

O4. reqlpARINC653(τ, ,PART,i,t) is non-decreasing with increasing t.

 This can be seen from the definition of reqlpARINC653.

O5. sbfI(τ, ,PART,i,t) is non-decreasing with increasing t.

 This can be seen in [8].

From O1 and O2, it follows that the range [0, Di] can be replaced by [, Di] without changing

the evaluated result of (10).

From O3, it follows that we can iterate over all tasks and for each task, evaluate the condition:

 i t[,Di] reqlpARINC653(,,PART,i,t) ≤ sbfI(,,PART,i,t) (11)

 If for each task i it holds that (11) is true, then (10) is true and hence the taskset is schedulable.

So we will now discuss how to evaluate (11).

3.1 Idea how to evaluate the condition (11)

In the area of real-

this can (if f is non-decreasing with increasing t) be solved using fixed-point iteration. But the ex-

pression (11) does not have this structureits right-hand side is not t. Hence, we will seek an-

other way.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

function compute_t_for_given_task(enable_find_smallest_t,i,τ,,PART) returns <Boolean,Real>

a= b=Di;tolerance=(b-a)/10000.0;found_sat=False;

 found_sought = False; val = -1

fa,ga = = compute_f_and_g(i,a,τ,,PART)

if fa<=ga then return True, a

fb,gb = compute_f_and_g(solver_to_use,i,b,τ,,PART)

my_fg_queue = fg_queue()

my_fg_queue.enqueue(found_sat,fg_queue_element(a,b,fa,fb,ga,gb))

if fb<=gb then

 found_sat = True

 val = b

 my_fg_queue.sorting_entire_Q(found_sat)

 my_fg_queue.prune_large_a(val)

 if enable_find_smallest_t then

 if my_fg_queue.is_queue_non_empty() then

 found_sought = ((val-my_fg_queue.get_smallest_a_in_Q())<=tolerance)

 else found_sought = True

 else

 found_sought = True

if (not found_sought) then

 my_fg_queue = fg_queue()

 my_fg_queue.enqueue(found_sat,fg_queue_element(a,b,fa,fb,ga,gb))

 while (my_fg_queue.is_queue_non_empty()) and (not found_sought) do

 e = my_fg_queue.dequeue()

 if e.fa<=e.gb then

 m = (e.a+e.b)/2.0

 fm,gm = compute_f_and_g(solver_to_use,i,m, τ,,PART)

 my_fg_queue.enqueue(found_sat,fg_queue_element(e.a,m, e.fa,fm, e.ga,gm))

 my_fg_queue.enqueue(found_sat,fg_queue_element(m,e.b, fm,e.fb,gm, e.gb))

 if fm<=gm then

 if found_sat then

 val = min(val,m)

 else

 found_sat = True

 val = m

 my_fg_queue.sorting_entire_Q(found_sat)

 my_fg_queue.prune_large_a(val)

 if enable_find_smallest_t then

 if my_fg_queue.is_queue_non_empty() then

 found_sought = ((val-my_fg_queue.get_smallest_a_in_Q())<=tolerance)

 else found_sought = True

 else

 found_sought = True

return found_sought, val

Figure 6. Algorithm for evaluating Condition (11) in schedulability test

Our idea on how to evaluate (11) is as follows: We seek a value of t[,Di] such that reql-

pARINC653(,,PART,i,t) ≤ sbfI(,,PART,i,t). We will do this through branch-and-bound on

the interval [,Di] that is, we will divide the interval [,Di] into subinterval and explore the

subintervals.

We will define rules for this exploration. These rules pertain to an interval [a,b] and tells us what

we can do with it; here we assume that [a,b] is a subset of [,Di] because we will perform the ex-

ploration for only such intervals. One rule tells us that we have found an interval [a,b] such that in

this interval, there is a t that satisfies (11). Another rule tells us that an interval [a,b] cannot con-

tain a value of t that we seek. Another rule tells us how to split an interval [a,b]. Yet another rule

tells us whether an interval [a,b] is promising for further search (i.e., it is promising to split this

into subintervals for further exploration).

When searching through these intervals, the question we ask is whether:

 t[a,b] reqlpARINC653(,,PART,i,t) ≤ sbfI(,,PART,i,t) (12)

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

function do_sched_test(terminate_on_first_unschedulable_task,enable_find_smallest_t,τ,,PART)

 return <Boolean,array of Real>

 success = True; i = 1; terminate_schedulabilitytesting = False

 while ((i<=ntasks) and (not terminate_schedulabilitytesting)) do

 flag, ti = compute_t_for_given_task(solver_to_use,enable_find_smallest_t,i,,τ,,PART)

 success = success and flag

 terminate_schedulabilitytesting = (terminate_on_first_unschedulable_task and (not success))

 i = i +1

 if (success) then return True, t

 else return False, []

Figure 7. Algorithm executing the schedulability test in Theorem 1

because if this is true, then (11) is true as well (follows from the fact that [a,b] is within [

,Di]).

Evaluation of reqlpARINC653(,,PART,i,t) and sbfI(,,PART,i,t) for a given t can be expen-

sive so later on, we will store these for specific values of t. Let fa denote evaluation of reql-

pARINC653(,,PART,i,t) for t=a and let ga denote evaluation of sbfI(,,PART,i,t) for t=b.

Analogous for fb and gb. Figure 5 illustrates this.

Clearly:

 a≤b

O4 and O5 (which express monotonicity), yields:

t[a,b] fa ≤ reqlpARINC653(,,PART,i,t) ≤ fb (13)

t[a,b] ga ≤ sbfI(,,PART,i,t) ≤ gb (14)

Combining (13) and (14) yields:

t[a,b] fa-gb ≤ reqlpARINC653(,,PART,i,t) - sbfI(,,PART,i,t) (15)

From the definition of fa, fb, ga, gb, we obtain:

t[a,b] reqlpARINC653(,,PART,i,t) - sbfI(,,PART,i,t) ≤ min(fa-ga, fb-gb) (16)

Found interval

3.2 Found interval

From the definition of fa, fb, ga, gb, (11), (12), and the fact that satisfying (12) implies satisfying

(11), we obtain:

 fa≤ga  (12) is true  (11) is true (17)

 fb≤gb  (12) is true  (11) is true (18)

Hence, these can be used to declare that we have found an interval that we seek.

3.3 Discard interval

Suppose that fa>gb. Then, applying (13) on its left-hand side and applying (14) on its right-hand

side yields:

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

reqlpARINC653(,,PART,i,t) > sbfI(,,PART,i,t)

We can repeat this for any t and this yields that:

fa>gb  t[a,b] reqlpARINC653(,,PART,i,t) > sbfI(,,PART,i,t)

Hence:

fa>gb  (12) is false (19)

Note that fa>gb does not imply that (11) is false.

3.4 Property of not found, not discarded interval

For an interval [a,b], for which we have not found what we sought ((17) and (18)), it holds that:

fa>ga (20)

fb>gb (21)

For an interval [a,b] which has not been discarded (19), it holds that:

fa≤gb (22)

Combining them yields that for an interval [a,b] for which we have not found what we sought and

for which has not been discarded, it holds that:

ga<fa≤gb<fb (23)

Note that this ensures that for these intervals, there is variation of reqlpARINC653(,,PART,i,t)

within the interval and there is variation of sbfI(,,PART,i,t) within the interval. For this reason,

there is no need to check whether reqlpARINC653(,,PART,i,t) remains constant in the interval

or check whether sbfI(,,PART,i,t) remains constant in the interval.

3.5 Split interval

For an interval [a,b], we can choose an intermediate point and split the interval. We choose the

intermediate point as m=(a+b)/2 and then split the subinterval [a,b] into [a,m] and [m,b]. Then,

compute reqlpARINC653 and sbfI for these subintervals; this yields f and g for endpoints of these

subintervals. Note that we already know f and g for the endpoints of [a,b]. Then evaluating f and g

for m, yields f and g for the endpoints of [a,m] and [m,b]. Hence, splitting a subinterval requires

just one evaluation of f and one evaluation of g.

3.6 Decide if splitting interval is promising

Let h(t) denote reqlpARINC653(,,PART,i,t) - sbfI(,,PART,i,t). Applying this on (15):

t[a,b] fa-gb ≤ h(t) (24)

Applying this on (16):

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

t[a,b] h(t) ≤ min(fa-ga, fb-gb) (25)

When considering an interval [a,b] with knowledge of fa, fb, ga, gb, and asking whether there is a

t [a,b] such that reqlpARINC653(τ, ,PART,i,t) ≤ sbfI(τ, ,PART,i,t) we view our goal as that

of finding t such that h(t)≤0. The right-hand side of (25) gives us the smallest value of h(t) that we

are aware of so far if we have not divided [a,b] into subintervals yet. The left-hand side of (24)

gives us a lower bound on how low we can possibly get h(t) after dividing [a,b] into subintervals.

Subtracting one of these from the other, yields:

fa-gb-min(fa-ga, fb-gb) (26)

Applying reasoning with (24) and (25) on (26) yields:

fa-gb-min(fa-ga, fb-gb) ≤ 0 (27)

If the expression (26) is equal to zero, then it is impossible to find a t that yields a smaller h(t) in

[a,b] than what we have already found. So there is no need to divide [a,b] into subintervals. If the

expression (26) is strictly negative, then the smaller (26) is the more potential we might have to

find a t with smaller h(t). Therefore, we call (26) the feasibility-key for [a,b]. When doing the ex-

ploration of subintervals, we maintain a queue of subintervals that we have not yet explored; we

implement this queue as a list and these subintervals are sorted in ascending order of their feasi-

bility key.

Based on the definition of reqlpARINC653(τ, ,PART,i,t) and sbfI(τ, ,PART,i,t), it holds that

these are piece-wide linear functions and there is a finite number of points where the slope

changes. However, we would like our algorithm for evaluating (11) to be robust so that it can han-

dle other functions (to allow new schedulability analysis that has lower pessimism in the future)

and therefore, we would like to guarantee termination of the computations in our branch-and-

bound procedure even if there is not a finite number of points where slope changes. Therefore, we

introduce a rule so that if the interval [a,b] is very small, then we do not continue searching. For

this reason, let tolerance be a number such that when given an interval [a,b], if b-a<tolerance, then

we deem the interval to be so small that we do not search further. This means that there may exist

tasksets such that if we continued searching, we might have been able to determine that the taskset

is schedulable; so this introduce a small amount of pessimism. Note, however, that it is always

safe in the sense that if our procedure determines that (11) is true, then (11) is indeed true. We use

tolerance=(Di -)/10000.

3.7 Idea how to evaluate the condition (11) and get smallest t

In the previous section, we have seen how to search efficiently for a t such that (11) is true (if

such a t exists). This is enough for such evaluation of (11) to be used to evaluate (10) and this

makes it possible to evaluate the condition used as schedulability test. But the meaning of t is ac-

tually an upper bound on the response time of a task (for the value of i that we consider). In some

cases, we may want to know that and report to the user. In this case, when a t exists, we want to

not just report a t but actually report the smallest t which satisfies (11). Hence, we would like to

change the aforementioned procedure so that it produces the smallest t that satisfies (11) rather

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

than just a t. We can do this as follows. When we have found a value t such that (11) is true, then

do the following:

1. If [a*,b*] is the subinterval for which this t is found, then remove all subintervals with larger

starting; that is remove all subintervals [a,b] such that a*<a.

2. For the subintervals, that remain, change the sorting of the list of subintervals so that instead of

having key of an interval [a,b] being the feasibility key, it is the beginning of the interval (that is

a).

3. Continue the exploration (but recall that now the key used is not the feasibility key anymore).

4. With this continuing exploration, if we find an interval [a,b] with t that satisfies (11), we can

stop the search because then we know that among the t that satisfies (11), this is the t that is the

smallest.

3.8 Algorithm to evaluate the condition (11)

Using these ideas, we obtain an algorithmshown in Figure 6which evaluates the condition

(11). It can be configured so that it evaluates condition (11) without being concerned about get-

ting the smallest t. But it can also be configured to find the smallest t. The variable ena-

ble_find_smallest_t determines this

3.9 Algorithm for evaluating the condition (10)

We can now simply iterate over all tasks and for each task, call the algorithm that evaluates the

condition (11). Figure 7 shows this algorithm. In some cases, we only want to determine if a

taskset is schedulable. In other cases, we also want to obtain t for as many tasks as possible even

if the taskset is unschedulable. Therefore, we have a variable (that is Boolean) termi-

nate_on_first_unschedulable_task that indicates this; if terminate_on_first_unschedula-

ble_task=True, then it means that if for a task i, we find that there is no t that satisfies (11), then

we terminate the schedulability test and report unschedulable.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

4 New Tool

We have developed a tool based on these aforementioned ideas. The tool has a graphical user-in-

terface and it written in Python 3 and is available at [11]. Figure 8 shows it.

Figure 8. Our new tool that implements the schedulability test in Theorem 1.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

5 Evaluation

We have conducted an extensive evaluation of our new tool on randomly-generated tasksets. Full

details are available in Appendix A; here we only provide an overview.

Figure 9 shows part of the experimental results. Figure 9(a) shows the time it takes to run our

schedulability analysis when varying number of tasks; Figure 9(b) for the case of varying number

of processors; and Figure 9(c) for the case of varying utilization. It can be seen that time required

grows rapidly with the number of processors but it does not grow rapidly when varying number of

tasks and utilization; this is expected given that the cardinality of the set S grows exponentially

with the number of processors.

 (a) (b) (c)

Figure 9. The time required by our new schedulability test when varying parameters.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

6 Conclusions

We have presented a new schedulability test for ARINC 653 on undocumented multicore. Our

schedulability test is sufficient but not exact. We left open the question how to decrease pessi-

mism.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

References

[1] AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE, PART 0

VERVIEW OF ARINC 653, 2015.

[2] AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE, PART 1

REQUIRED SERVICES, 2015.

[3] A. Easwaran, I. Lee, O. Sokolsky, and S. Vestal, “A Compositional Scheduling Frame-

work for Digital Avionics Systems,” RTCSA, 2009..

[4] Y.-H. Lee, D. Kim, M. Younis, and J. Zhou, “Scheduling tool and algorithm for inte-

grated modular avionics systems,” DASC, 2000.

[5] A. Mok, D.-C. Tsou, and R. de Rooij, “The MSP.RTL real-time scheduler synthesis

tool,” RTSS, 1996.

[6] N. C. Audsley and A. J. Wellings, “Analysing APEX applications,” RTSS, 1996.

[7] B. Andersson, H. Kim, D. de Niz, M. Klein, R. Rajkumar, and J. Lehoczky, “Schedula-

bility Analysis of Tasks with Co-Runner-Dependent Execution Times,” TECS, 2018.

[8] B. Andersson, D. de Niz, and M. Klein, “Satisfying Real-Time Requirements of Multi-

core Software on ARINC 653: The Issue of Undocumented Hardware,” DASC 2022.

[9] H. Yun and P. K. Valsan, “Evaluating the Isolation Effect of Cache Partitioning on COTS

Multicore Processors,” OSPERT, 2015.

[10] M. G. Bechtel and H. Yun, “Denial-of-Service Attacks on Shared Cache in Multicore:

Analysis and Prevention,” RTCSA 2019.

[11] https://www.andrew.cmu.edu/user/banderss/software/pyschedanalysiscorunnerari

 nc653/pyschedanalysiscorunnerarinc653.py

https://www.andrew.cmu.edu/user/banderss/software/pyschedanalysiscorunnerari

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Appendix A: Detailed Results of Experimental Evaluation

Extensive experimental results are shown below.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

[DISTRIBUTION STATEMENT A] This material has been approved for publ ic release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

[DISTRIBUTION STATEMENT A] This material has been approved for public release and u nlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlim ited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84

[DISTRIBUTION STATEMENT A] This material has been approved for public re lease and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90

[DISTRIBUTION STATEMENT A] This material has been approved for public release and un limited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

CMU/SEI-2023-SR-001 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

