
1
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

SysMLv2 as a DMSL to support
AADLv2 Semantics and Analysis

Jerome Hugues

2
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-

15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed

as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM

PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.

Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic

form without requesting formal permission. Permission is required for any other use. Requests for permission

should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM23-0202

3
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

BLUF: Extending MBSE with SysML for complex
embedded systems architecture
SysML supports systems engineering practice through modeling and model processing.

SysmL1.7 recently released, future SysMLv2 entering finalization

SAE AADL was started at the request of U.S. Army to address complexity in integrating

avionics subsystems through a modeling language and a large class of analysis capabilities.

Recurring concern: Do we need two separate languages?

Working with both impacts cost, model update cycles, etc.

A way forward: the best of both worlds

• SysMLv2 provides a foundation to host the AADL language.

• SysMLv2 open API could bring AADL-native V&V capabilities to the SysML world.

4
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

1. Model-Based for complex avionics systems, the SAE AADL language

2. SysMLv2 as a host DSML for AADL

3. Leveraging AADL ecosystem

5
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

The Safety-Critical Embedded Software System Challenge

Problem:

• Software increasingly

dominates safety and

mission-critical system

development

• Issues discovered long

after they are created

A critical task: Reducing safety and security risks through early analytical assurance

Goal:

Early discovery of

system-level issues

through virtual

integration and

incremental analytical

assurance

Solution:

• Language standardized via SAE International & matured

into practice through pilot projects & industry initiatives

• Tooling available under open source license continually

enhances analysis, verification, and generation

capabilities

• Expertise in Modeling Safety-Critical Embedded Systems

6
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Before You Even Write a Line of Code…

AADL allows you to design the entire system and see where

integration problems may occur. Then you can change the

design of the system to eliminate those errors.

Being able to perform a virtual integration of the software,

hardware, and system is the key to identifying problems

early—and changing the design to ensure those problems

will not occur.

• SAE Avionics AADL
standard adopted in

2004

• Focused on embedded

software system

modeling, analysis, and
generation

• Strongly typed language
with well-defined

semantics

• Used for critical systems
in domains such as

avionics, aerospace,
medical, nuclear,

automotive, and robotics

About AADL

7
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

About AADL

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

4

RAH-66 COMANCHE SOFTWARE REWORK

& INTEGRATION COSTS
• In 1983, the Army planned to buy 5,023 vehicles at $12.1 million/copy.

• Test schedule delays and increasing development costs scaled down

the planned buy to 650 aircraft at $58.9 million/copy.

• Most testing involved integration of the complete Mission Equipment
Package, which incorporated a radar, infrared, and image-intensified

television sensors for night flying and target acquisition.

• Technical challenges remained in software development, integration
of mission equipment, radar and infrared signatures, and radar perf.

• The first flight had been originally planned to take place during

August 1995, but was delayed by a number of structural and software
problems that had been encountered.

• Key program elements, including development and integration of
certain software capabilities, failed to foster confidence with Army

overseers; several capabilities were viewed as having been unproven

and risky.

• The anticipated consumption of up to 40% of the aviation budget by

the Comanche alone for a number of years was considered to be

extreme.

References:

• http://www.defense-aerospace.com/articles-view/release/3/32273/pentagon-hit-over-comanche-

failings-(jan.-23).html

• https://en.wikipedia.org/wiki/Boeing%E2%80%93Sikorsky_RAH-66_Comanche#cite_note-26

• https://en.wikipedia.org/wiki/Boeing%E2%80%93Sikorsky_RAH-66_Comanche#cite_note-

Eden_p139-9)

Comanche costs were expected to consume up to 40% of US Army Aviation budget resulting in
cancellation. Integration and software rework were significant cost contributors.

Photo Credit: Boeing-Sikorsky

Two major software (SW) rebuilds
occurred during development
indicating significant integration

issues

• 1st increment: 75% of SW replaced

• 2nd increment: 50% of SW replaced

AADL backstory

AADL initiated in 1999 after

Comanche failure

Goal was to anticipate
integration risks for large
complex avionics platforms

Note:

AADL first published in 2004

SysML in 2006

Evolved in parallel, with

different objects

8
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Architecture Analysis & Design Language (AADL) Standard
Targets Embedded Software Systems

AADL captures mission and safety critical embedded software system architectures in
virtually integrated analyzable models to discover system level problems early and

construct implementations from verified models

In 2008 Aerospace industry initiative
chose AADL over SysML and other

notations as it specifically

addresses embedded software

systems

AS 5506 Standard Suite

Standards provide
long-term industry-wide

solutions to support

multi-organization

model-based engineering

http://www.sae.org/
http://www.sae.org/

9
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Helping to Revolutionize Army Aviation

Benefits of AADL & ACVIP (via Alex Boydston)

• Decreased fielding time by finding problems early

• Early risk reduction by discovering performance issues early

• Increased cybersecurity by using AADL/ACVIP to improve

system security

• Decreased development costs and support for MOSA and certification

by transforming procurement supporting MBE and ACVIP

Virtual integration of software, hardware, and system supports

verification, airworthiness, safety, and cybersecurity certification

Over many years, the SEI has had an outstanding partnership with the

US Army, who is at the vanguard of applying AADL and ACVIP to the

Army’s future vertical lift challenge.

10
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Impact
Finding Problems Early (AMRDEC/SEI)

Summary: 6 week virtual integration of health monitoring system on CH47 using AADL

Result: Identified 20 major integration issues early

Benefit: Avoided 12-month delay on 24 month program CH47 Chinook

Improving System Security (DARPA/AFRL)

Summary: AADL applied to unmanned aerial vehicles & autonomous truck

Result: AADL models enforced security policies and were used to auto-build the system

Benefit: Combined with formal methods verification, prevented security intrusion by

a red team

High Assurance Cyber Military
Systems (HACMS)

TARDEC
Autonomous Truck

Unmanned
Little BirdUnmanned

Quadcopter

Transforming procurement (Joint Multi-Role)

Summary: Industry/DoD process demonstration

Result: Pre-integration fault identification

Benefit: 10X reduction integration test cost

Makes complex capabilities possible through Agile analytic and virtual integration of real-time

safety and security critical cyber physical embedded systems

11
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Core AADL language standard [V1 2004, ... V2.3 2022]

• Safety-critical embedded system modeling, analysis, and generation

• Strongly typed language with well-defined semantics for the execution of

threads, processes on partitions and processor, sampled/queued

communication, modes, and end-to-end flows

• AADL built as a transition vehicle from academic research (e.g., safety,

real-time scheduling, code generation, and verification) to industrial

practice

AADL Standard Suite (AS-5506 series)

Standardized AADL Annex Extensions
• Error Model language for safety, reliability, and security analysis [2015]
• ARINC653 extension for partitioned architectures [2015]
• Behavior Specification Language for modes and interaction behavior [2017]
• Data Modeling extension for interfacing (UML, source code, ASN.1, …) [2011]
• AADL Runtime System & Code Generation [2015]
• FACE Annex [2019]

12
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

1. Model-Based for complex avionics systems, the SAE AADL language

2. SysMLv2 as a host DSML for AADL

3. Leveraging AADL ecosystem

13
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

SysMLv1 + AADL workflows are brittle

SysMLv1 to AADL mappings

Brittle, multi-tools,

different representations

Language constructs are

heterogeneous, making it complex

for designers to navigate the

modeling space

Tested in 2018 with ANSYS,

technical solution in one tool

(SCADE Architect) is more efficient

From: W. Zhe, J. Hugues, J.-C. Chaudemar, and T. LeSergent, “An Integrated Approach to Model Based Engineering with SysML, AADL and FACE,”
In Proceedings of Aerospace Systems and Technology Conference 2018 (ASTC’18), 2018. 10.4271/2018-01-1942

http://dx.doi.org/10.4271/2018-01-1942

14
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

About SysMLv2

OMG initiated an RFP for SysMLv2 in 2017.

• https://www.omgsysml.org/SysML-2.htm

• Goal is to have a clean start for SysMLv2, without UML legacy

• “Drain the semantics swamp” of SysML1.x

SysMLv2 SST is driving the answer to this RFP, and defines three documents:

• KerML: “provides a syntactic and semantic foundation for creating application

specific modeling languages.”

• Systems Modeling Language (SysML): version 2.0 builds on top of KerML.

• APIs and services: to interact with both KerML and SysML.

All drafts and pilot implementation available at https://github.com/Systems-Modeling/.

https://www.omgsysml.org/SysML-2.htm
https://github.com/Systems-Modeling/

15
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

SysMLv2 / KerML

KerML SysML
KerML defines the foundations for

• Models: dependencies between elements,

definition and usage, variability

• Attributes: “characteristics of something”

• Occurrences: definition of a system timeline: specific

points in time, intervals, etc.

• Structure: items, parts, ports, connections,

allocations

• Behavior: actions and states

• Calculations: expressions and computations

• Requirements: i.e., a constraint satisfied by a

“subject”

• Cases: steps required to produce a result regarding

a subject: analysis case, verification case, use case

• Viewpoints/views: subset of a model that interests a

particular stakeholder

SysMLv2 builds on top of KerML and

defines

• Elements and relationships

• Annotations

• Namespaces

• Specialization

• Expressions

Notions of “defs” (types) and instances

SysMLv2 also has an extensive library for defining its

concepts and an API to manipulate models

programmatically

16
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Why Look at SysMLv2 from an AADL Perspective?

AADLv2 defines

• Concepts for representing an architecture: namespace, hierarchy, connection, etc.

• Component categories that specialize these concepts for describing software-intensive systems

• Properties that are typed attributes for configuring component types and instances

Notional alignment with SysMLv2 concepts of parts, ports, and attributes

Some AADLv2 extensions are also native in SysMLv2

• SysMLv2 analyses/verification cases and requirements are similar to ALISA (SEI)/Resolute (Collins)

• SysMLv2 behavior has similarities with AADL/BA, SysML1 RAAML with AADL/EMV2 annex

SysMLv2 also has extension mechanisms: new keywords, annex-like constructs similar to AADL

How far can we encore AADL semantics in a SysMLv2 library?

17
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL Concepts

Property Sets

. Units

. Property type

. Property definition

. Constants

Component Type

. Identifier

Category

Extends

. Prototypes

. Features

. Flows

. Properties

. Annex

Component Implementation

. Identifier

. Extends

. Subcomponents

. Connections

. Call sequences

. Modes

. Flows

. Properties

. Annex

Package

. Public decl..

. Private decl.

. Ports

. Access

. Subprogram

. Parameter

. Feature

. Ports

. Access

. Parameter

. Modes

. Transitions

Category

. Data

. Subprogram

. Thread (group)

. Process

. Memory

. Device

. (Virtual) processor

. (Virtual) bus

. System

. Abstract

18
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADLv2 Native / AADLv2 SysMLv2 Side By Side

Using SysMLv2 type systems to define AADL type hierarchy

package 'AADLv2 Components' {

import AADL::* ;

/* Component Type -- AADLv2 */

part def Thread_1 :> Thread, Type {}

part def Process_1 :> Process {}

/* Component Implementation */

part def Process_1_impl :> Process_1 {

part A_Thread_1 : Thread_1;

}

/* Instance-like approach */

part def Process_2_impl :> Process {

part A_Thread : Thread;

}

}

package AADLv2_Components

public

/* Component Type -- AADLv2 */

thread Thread_1 end Thread_1;

process Process_1 end Process_1;

/* Component Implementation */

process implementation Process_1.impl

subcomponents

A_Thread_1 : thread Thread_1;

end Process_1.impl;

end AADLv2_Components;

19
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Defining an AADL Component Category

In AADLv2 standard, each component category is

• Informally defined as a set of concepts (e.g., process, thread, etc.)

• Formally defined as a set of restriction on features (ports) and subcomponents

(parts) from a notional generic component category

• Further specified by a state machine and properties (typed attributes)

Category Type Implementation

process

Features:
 port
 feature group
 provides data access
 requires data access
 provides subprogram access
 requires subprogram access
 provides subprogram group access
 requires subprogram group access
 feature
Flow specifications: yes
Modes: yes

Properties: yes

Subcomponents:
 data
 subprogram
 subprogram group
 thread
 thread group
 abstract
Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes

Properties: yes

20
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL Process Category in SysMLv2:
Semantics Is an Explicit Artifact

part def Process specializes Component {

attribute redefines category = Component_Category::Process;

assert constraint {

checkProcessPorts (portsOnPart) &&

checkProcessParts (subparts) }}

/* Validity of ports of a process */

constraint checkProcessPorts(p : Port[0..*]) {

p->forAll { in x : Port ; checkProcessPort(x)}}

constraint checkProcessPort(p : Port) : Boolean[1] {

p hastype InPort }

/* Validity of parts of a process */

constraint checkProcessParts(p : Part[0..*]) {

p->forAll { in x : Part ; checkProcessPart(x)}}

constraint checkProcessPart(p : Part) : Boolean[1] {

p hastype Thread }

A Process has a specified category

+ constraints on its parts and ports

Template for constraints on ports

iteration on all ports
+ per-port constraints

Template for constraints on parts

iteration on all parts
+ per-part constraints

21
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Modeling Properties and Property Sets

Property sets as configuration sets, similar to AADLv2 concepts

/* Configuration set */

abstract part def Thread_Scheduling_Properties {

attribute Dispatch_Protocol : Supported_Dispatch_Protocol;

attribute Priority : Integer;

/* These properties only applies to Threads. */

assert constraint { self hastype Thread }

}

part def A_Thread :> Thread, Thread_Scheduling_Properties {

attribute redefines Priority = 42;

attribute redefines Dispatch_Protocol =

Supported_Dispatch_Protocol::Periodic;

}

22
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Outline

1. Model-Based for complex avionics systems, the SAE AADL language

2. SysMLv2 as a host DSML for AADL

3. Leveraging AADL ecosystem

23
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL capabilities

AADL is highly tunable, with a restricted set of concepts

Demonstrated many use cases, 1600+ academic publications

AADL as a backbone, federating multiple activities

Analysis through generation of intermediate models + external tools

Non exhaustive list of analysis capabilities

AADL demonstrated its suitability to support various analysis for the real world

Performance evaluation: real-time and network calculus

Fault analysis: OSATE, COMPASS,

Mapping to Stochastic Petri Nets, PRISM

Security: CAMET (DoDI 8510.01)

Simulation: ADeS, Marzhin

Energy consumption of SoC: OpenPeople project

Code generation: SystemC, C, Ada, RTSJ, Lustre

WCET analysis: mapping to Bound-T

Integration: SysML, FACE, Simulink, SCADE

Architectural pattern checks:

MILS, ARINC, Ravenscar, Synchronous

Model checking:

Timed/Stochastic/Colored Petri Nets

Timed automata et al.: UPPAAL, Versa, TASM

Scheduling: OSATE, CAMET, MAST, Cheddar, CARTS

24
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

AADL commercial and open source toolchains

Multiple AADL toolchains exist, they can be easily combined thanks to the textual syntax.

• OSATE (SEI/CMU) https://osate.org/

• Eclipse-based tools. Reference implementation

• Textual and graphical editors + various plug-ins for latency, processor utilization, memory
utilization, data consistency, security, safety analysis (MIL STD 882E, ARP4761), ARINC653

• CAMET (Adventium Lab) https://www.adventiumlabs.com/curated-access-model-based-
engineering-tools-camet-library

• Extensions to OSATE to support other analysis (Multiple Independent Levels of Security
(MILS), Framework for Analysis of Schedulability, Timing and Resources (FASTAR)

• SCADE Architect (ANSYS Esterel) https://www.ansys.com/products/embedded-
software/ansys-scade-suite

• Eclipse-based tools. Combine SysML, AADL and other formalisms, code generation

• AADL Inspector (Ellidiss) https://www.ellidiss.com/products/aadl-inspector/

• Lightweight editor, model simulation, scheduling analysis

https://osate.org/
https://www.adventiumlabs.com/curated-access-model-based-engineering-tools-camet-library
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ellidiss.com/products/aadl-inspector/

25
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Examples of AADL capabilities relevant in a SysMLv2 context

Tool-supported capabilities to enrich the MBSE experience to be ”ported” to SysMLv2

Capability AADL support – Now SysMLv2 – Future

Performance Native language construct, analysis tools Specific patterns needed, preexisting work in UML
MARTE and SPT

Safety EMV2 annex, FHA and FTA generation,
support for STPA approach

SysML1: RAAML diagrams, but no FTA generation
SysMLv2: RAAMLv2?, investigate automation

ARINC653 Set of patterns for modeling avionics
platforms with precise semantics,
verification and code generation

No standard, could build on AADL standard

Integration with
OpenGroup FACE

Import FACE UoP as AADL models for
analysis

No standard, could build on AADL standard

Assurance plan ALISA language, + verification methods as
user-defined scripts, GSN export

SysMLv2 support verification methods, need
patterns for writing assurance plan

26
SysMLv2 as a DMSL to support AADLv2 Semantics and Analysis
© 2023 Carnegie Mellon University

DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution.

Conclusion

SysML and AADL synergies

Systems engineering applies to safety-critical systems

SysML has a larger footprint on the system development lifecycle

Similar language concepts, complementary toolchains, but technical hurdles with SysMLv1

BUT SysML1 does not come with standardized extensions, AADLv2 do

SysMLv2 language capabilities can support AADL concepts

One language with joint tooling thanks to SysMLv2 API for interoperability

Opportunities as SysMLv2 finalizes

Finalize library publication as a published standard

Enrich SysMLv2 with advanced modeling and analysis capabilities with AADL capabilities

Tool updates as a longer-term objective

