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1 Project Objectives

This report documents progress and results of the project “Novel Computational Methods for Predicting
Transitions in Spatiotemporal Neurodynamics between Attention and Mind-wandering”.

We aim to build an exploratory and predictive model of the brain that is sensitive to the transitions between
sustained attention and mind-wandering behaviors. Such a predictive model potentially has applications in
tracking attention during critical tasks as well as being of medical and diagnostic relevance. Towards this
goal, we developed novel methods for characterizing and predicting the spatio-temporal dynamics of the
brain at two complementary levels with differing types of spatial and temporal resolution:

Level 1. Electroencephalography (EEG) microstates, which are short quasi-stable topographies of brain
electrical activity as measured at the scalp, on the order of 80-120 milliseconds.

Level 2. Functional Magnetic Resonance Imaging (fMRI) functional connectivity maps, which reveal
networks of blood-oxygen-level-dependent (BOLD) activation in distributed brain areas at a slower time
scale, on the order of seconds, with high spatial resolution.

This research examines and relates the regularities in patterns and sequences of EEG microstates and
functional connectivity maps, with the intention of predicting transitions between states in humans of attention
and mind-wandering.

Scientific Objectives. The present project set out to address the following novel methodological objectives:

(1) derive a discrete ‘alphabet’ for fMRI functional connectivity maps analogous to the ‘alphabet’ of EEG
microstates, quasi-stable patterns of electrical activity that cluster into small finite number of discrete types,
(2) characterize sequential dynamics of such simultaneous EEG and fMRI ‘microstate’ by building optimal
generative automata models using the epsilon-machine approach previously applied by us to the EEG
microstate sequences,
(3) identify rigorous mathematical measures for characterizing properties of generative automata models at
subject- and group-levels, and
(4) apply the developed methods to differentiate between attention and mind-wandering with the view of
predicting mind-wandering episodes during attention demanding conditions.

In the course of literature review, we assessed multiple approaches to classify fMRI states into types or
discrete classes, referred to as fMRI dynamic functional connectivity (dFC) maps. In particular, the type
of dFC maps referred to as co-activation patterns are derived in manner completely analogous to EEG
microstates but at a time scale on the order of 1 to 2 seconds, and were seen as most relevant for our goals
(see Section 2 for details). Therefore, objective (1) could be reformulated as:
(1) derive a small finite set of temporally discrete fMRI Co-Activation Patterns (CAPs), which are occurring
simultaneously and in-tandem with, EEG microstates.
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Simultaneous EEG-fMRI Dataset

The target dataset for attention and mind-wandering comprised simultaneous EEG and fMRI data ac-
quired from 20 healthy right-handed individuals (age range 20-41 yo) by Prof. Robert Leech and Dr. Peter
Hellyer as part of a larger MRC-funded study based at Imperial College London (PI, Prof. David Sharp).
All participants were scanned during three runs: 1) eyes-open resting state lasting 8 minutes, where mind-
wandering is expected; 2) a block-design focused attention paradigm using Choice Reaction Time (CRT)
task blocks interleaved with eyes-open rest blocks as a baseline condition with 49s duration of each block;
and 3) the same CRT task only continuous, without the blocked design. For more details on the sample, the
paradigm, and scanning parameters see (Fagerholm et al., 2015). This dataset has prior ethical approval
including secondary analysis for 20 healthy participants for both resting state and the attention task runs.
The EEG data were captured at 5kHz with a 30-channel array, placed according to the extended international
10-20 system (Klem et al., 1999). The fMRI was recorded with the voxel size 2.00 x 2.00 x 2.00 mm, with a
/echo time (TR/TE) ratio of 2000/30ms, using 35 ascending slices with 3.00mm thickness. The offset between
the beginning of each participant’s fMRI and EEG recordings was recorded. Three of the 18 participants
were removed from analysis during processing - two for errors during data capture and one for showing
characteristics of an outlier during microstate analysis.

Using a complementary eyes-closed EEG dataset (described in Section 6.1), our previous report
(Nehaniv et al., 2021) focused on syntactic and discrete dynamical characterizations of EEG during mind-
wandering and in this report Sections 5, 6 and 7 focus on assessing the use of such characterizations to
distinguish mind-wandering from attention requiring conditions of visualization and verbalization.

With Prof. Leech joining the project in its second year, we extended the methods developed for EEG
using the eyes-closed dataset to EEG and fMRI in the target dataset to complete objectives 1, 2, and 3.
Integrating the methods for both EEG and fMRI in analysis of the target dataset in ongoing work focuses on
the signature of mind-wandering vs. attention to complete objective 4 with partial results reported here. Due
to the disruption of the COVID-19 pandemic, the integrated models for EEG-fMRI will be reported on in
subsequent publications.
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2 Background on Discrete Sequence Analysis for EEG and fMRI

Here we give context to the reader with a concise review of relevant literature on EEG microstates, fMRI
functional connectivity dynamics, and sequence analysis for discretized neurodynamics, and describe the
outstanding questions to be addressed.

Literature Review: Overview

Electroencephalography (EEG) has been used to characterize microstates: sets of transient, quasi-stable
topographical maps of global EEG signal distributed across the scalp with an average duration of 80-120
milliseconds. In recent years, sequence analysis of EEG microstates has become of increased interest.
Patterns in EEG microstate sequences have shown meaningful relations to mental states, psychopathologies,
neurodevelopmental stages, and neurological diseases. Whereas EEG microstate syntax captures neural
spatiotemporal dynamics at the scalp, understanding its relationship to large neural networks and their
dynamics, as well as associated cognitive processes/mental states, has continued to be an elusive goal.
Functional magnetic resonance imaging (fMRI) studies attempted to identify the relationship between EEG
microstates and the brain’s intrinsic functional networks. However, no previous study has attempted to
simultaneously apply sequence analysis to characterize EEG microstate and fMRI functional connectivity
(FC) network dynamics. Here, we suggest application of discrete sequence analysis to simultaneously
acquired EEG and fMRI data by generating EEG microstates along with a set of dynamic FC (dFC) fMRI
states referred to as Co-activation Patterns (CAPs), doing so in both the resting state and in choice reaction
time (CRT) tasks. This paves the way for use of EEG microstate and fMRI CAP sequences in both resting
state and attention-requiring tasks in constructing predictive and generative epsilon-automata models of
observed discrete sequences associated to these cognitive processes.

2.1 EEG Microstate Definition

Brain neural dynamics associated with cognitive functions, particularly unconstrained mental activities
like the resting and mind-wandering states, are heavily studied topics. EEG has been used as a robust
neuroimaging approach for decades (Tudor et al., 2005), with the dominating methodology being frequency
analysis (Kubicki et al., 1979). EEG activity shows a multitude of superimposed frequencies which can be
investigated separately in defined ranges referred to as "bands". EEG activity within the various bands has
been associated with different mental states (Aftanas & Golocheikine, 2002; Borbély et al., 1981) and has
different characteristics in those with disorders (Newson & Thiagarajan, 2019).

In the “alpha" band (8-12Hz) it has been shown that the brain’s electrical activity is somewhat discontinu-
ous. It is characterized by rapid and dramatic changes in topographic distribution, followed by periods of
quasi-stable spatial distributions. These distributions are referred to as EEG microstates (Lehmann, 1987).
Microstates maintain maximum and minimum potential points on the scalp for a short period of time, which
then swap locations, with the maximum point taking the place of the minimum point, and vice versa. Formal
definition of a microstate ignores this switch, only considering the pole locations. A single microstate is
generally 80-120ms long, following the dominant alpha band frequency range (Teplan, 2002).

It has been shown that of the topographies observed across time points, a select few configurations
are most dominant. EEG microstates cluster into an ‘alphabet’ of discrete classes, similar to the letters of
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Figure 1: The canonical set of EEG microstates, labelled A, B, C and D left to right. Classes of microstate adapted
from (Milz et al., 2016). Colours range from blue to red, with the most red indicating one pole, and the most blue
indicating the other pole. Microstate A has poles in a left occipital to right frontal orientation, whereas microstate B is
from right occipital to left frontal orientation. Class C has a symmetrical frontal to occipital orientation, and class D has
a similar symmetrical orientation, but has a more frontocentral to occipital axis.

DNA code, with four topographic types referred to as microstate classes A, B, C, and D. These classes have
been shown to ‘explain’ around 80% of variance in eyes-closed resting state EEG data, and are referred
to as the ‘canonical’ EEG microstates (Koenig et al., 2002). The states have been found to be highly
replicable in different populations, both healthy and clinical, in eyes-closed resting state EEG data (Michel
& Koenig, 2018), and have demonstrated stability across methodological approaches (Khanna et al., 2014).
Figure 1 shows the canonical classes of microstates. Microstate A has poles in a left occipital to right frontal
orientation, whereas the axis through microstate B’s poles has a right occipital to left frontal orientation.
Class C has a symmetrical frontal to occipital orientation, and class D has a similar symmetrical orientation,
but has a more frontocentral to occipital axis.

While the canonical set of four EEG microstates has been shown to be stable across studies (Michel &
Koenig, 2018), data-driven approaches have been implemented to understand whether four is the optimal
number of classes (Custo et al., 2014; Musso et al., 2010; Yuan et al., 2012). Data-driven approaches consider
the amount of variance in topographies accounted by a candidate set of microstates, as well as cognitive
functions that can be associated to each microstate class. For example, one study used a criterion algorithm to
define the number of microstates to use and found their optimal number to be seven (Custo et al., 2017). Some
classes defined in this seven appear to be more fundamental components of the canonical set; microstate F,
named C′ in other studies (Michel & Koenig, 2018), has a spatially similar orientation to microstate C, but
has a more occipitocentral pole, as opposed to microstate C′s occipital pole. This demonstrates the stability of
the canonical set, yet raises questions as to whether clustering into four microstate classes is ideal, especially
with many studies having used data-driven approaches successfully (Custo et al., 2014; Musso et al., 2010;
Yuan et al., 2012). It is suggested that the best way to choose the number of EEG microstate classes might be
a data-driven approach that also compares to the canonical set for association to functional significance.

2.2 Microstate parameters and sequences

While the topographies of the canonical microstate classes remain stable between studies, parameters of each
individual class change based on the group and also cognitive state. The most commonly measured parameters
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are duration (average amount of time spent in a single microstate), occurrence (mean number of times a
single microstate’s class happens within a 1s window) and coverage (percentage of time covered by a single
microstate class). These parameters, as well as pairwise transitions between microstate classes, have been
shown to differ between mental states such as sleep (Brodbeck et al., 2012), hypnosis (Katayama et al., 2007)
and meditation (Faber et al., 2005; Faber et al., 2015). Neurological disorders such as Alzheimer’s (Strik et al.,
1997) and Parkinson’s disease (Pal et al., 2021) also show differences in these features. Psychopathologies
like schizophrenia have also demonstrated altered parameters versus controls (Khanna et al., 2015; Koenig
et al., 2002; Lehmann et al., 2005).

Short sequences of EEG microstates have already been investigated without relation to brain networks.
Sequences of four microstates have been shown to differ between groups of paranormal believers and non-
believers, with believers exhibiting the sequence A→ B→C→ A more predominantly, and non-believers
exhibiting the reverse A→C→ B→ A more predominantly (Schlegel et al., 2012). Similarly, in a study
conducted by Lehmann et al. (2005), length four sequences of microstates were shown to differ between
schizophrenic patients and controls in the canonical set. The specific sequence A→C→D→ A was common
in controls, but its reverse, A→ D→C→ A, was found as more common in the patients. It was shown by
Nehaniv and Antonova (2017) that transition frequency differences found by Lehmann et al. (2005) do not
explain the complexity of microstate syntax sufficiently, and that longer sequences are needed. Transition
probabilities between microstates are often non-stationary across the time series (von Wegner et al., 2017),
and hence a richer model may be required to capture the dynamics of EEG microstates. Van De Ville et al.
(2010) also presented evidence of higher level structure regularities in microstate sequences by revealing
scale-free dynamics in microstate syntax, concluding that “modelling microstate syntax needs to go beyond
short-range interactions such as those modelled by n-step Markov chains”.

2.3 Functional significance of EEG microstates

Although the topographies are replicable from study to study, the functional significance of EEG microstates
is yet to be understood. Use of cognitive manipulations has been applied in attempts to relate each microstate
with specific cognitive processes. Milz et al. (2016) reported microstate A as having a higher average duration
during visual tasks, suggesting an association with visual processing. It has been suggested however that
this increased duration during visual tasks may instead be due to microstate A being associated inhibition of
language processing instead (Antonova et al., 2022). Microstate B has been associated with verbal processing
(Milz et al., 2016) as well as visual processing when comparing occurrence and coverage during eyes-closed
and eyes-open states (Seitzman et al., 2017).

Microstate C has a reported decrease in occurrence during a task relative to resting state (Milz et al.,
2016; Seitzman et al., 2017), but specific differences between task conditions are unclear. Microstates A, B
and C have also shown no meaningful differences in parameters between tasks in a separate study (Antonova
et al., 2022).

Microstate D has been associated with attention orientation in different ways. Some suggest microstate D
is associated with the resting state, reporting an increase in duration (Antonova et al., 2022) and occurrence
(Milz et al., 2016) during resting state versus visualization and verbalization tasks, while others suggest an
association with task conditions, reporting increase in duration and occurrence during a serial subtraction
task versus resting state (Seitzman et al., 2017).
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The lack of understanding of functional significance makes it clear that relating EEG microstates to brain
networks may be a useful way of deriving their function. This may be done through source localization,
or relation to fMRI data. Many studies have attempted to relate EEG microstates to functional networks
in the brain using source localization (Milz et al., 2016; Milz et al., 2017; R. D. Pascual-Marqui et al.,
2014). Source localization attempts to infer the position of the current sources in the brain from the electrode
potentials at the scalp. The issue with this approach is that many different current density distributions in a
3D volume can produce the same potential distribution on the surface (Helmholtz, 1853). In the study of
EEG, this is called the “inverse problem” (Grech et al., 2008). The problem states that one cannot discern
the source of the neural signals in the brain based on activity at the scalp alone. Remedies to the issue are
actively being investigated (Castaño-Candamil et al., 2015; Lopez Rincon & Shimoda, 2016), but have been
a subject of investigation for decades (R. D. Pascual-Marqui, 1999; Vega-Hernández et al., 2008). The utility
of source localization should not be discounted, but assumptions including the number of sources that give
raise to a EEG microstate, result in an uncertainty in the true nature of the underlying generators. Hence,
it may be more suitable to use EEG in-tandem with another form of measurement, using a “best of both
worlds” approach (Manganas & Bourbakis, 2017). Different topographies at the scalp cannot be used to
unambiguously discern the location of generators in the brain. However, differences in scalp topography
imply the existence of different distributions of generators, even if those generators are unknown (Michel &
Koenig, 2018).

2.4 Functional Magnetic Resonance Imaging as a comparative measure of neural activity

Functional magnetic resonance imaging (fMRI) is another form of non-invasive measurement of brain
activity. It uses the blood-oxygen-level-dependency (BOLD) signal - a measure of blood flow in the brain
- to investigate generators of observed neural activities. The neural basis of this blood flow measurement
is rooted in the metabolic load change apparent in active regions of the brain. This change is called the
hemodynamic response (HR), and lags behind neural activity by a few seconds (Buckner, 1998). The BOLD
signal has proven to be a strong correlate of neural activity (Abreu et al., 2021; Britz et al., 2010; Brookes
et al., 2009; Marino et al., 2019; Musso et al., 2010; Yuan et al., 2012), but it lacks direct association to an
electrical signal. Using fMRI and EEG simultaneously allows the spatiotemporal dynamics of the brain to be
observed at two complementary levels, i.e. at high spatial vs. temporal resolution, respectively (Manganas &
Bourbakis, 2017). and gives fMRI a neuro-electrical association.

Attempts have been made to associate EEG microstates and fMRI using the hemodynamic response
function (HRF), convolving it with the EEG signal to bring it into the same temporal domain of fMRI
(Buckner et al., 2008). This approach has been incorporated to associate the functional significance of fMRI
states (Damoiseaux et al., 2006; Karapanagiotidis et al., 2020; Yeo et al., 2011) to EEG microstates; such
studies have generally associated microstate A with verbal processing, B with visual processing, C with
subjective processing, and D with attention orientation (Britz et al., 2010; Milz et al., 2016; Yuan et al., 2012).
While it is clear that some progress has been made using the HRF, there is contention on the significance of
the approach (R. D. Pascual-Marqui et al., 2014). It may therefore be necessary to incorporate a different
method that retains the temporal resolution of EEG and spatial resolution of fMRI data, instead of reducing
one to meet the other. Investigation into candidate fMRI states that are analogous to an EEG microstates is a
useful first step in this endeavour.

Similarly to EEG microstates and their characteristic sequences, canonical sets of functional maps have
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been studied in fMRI, referred to generally as functional connectivity (FC) maps (Biswal et al., 1995). There
are many distinct types of these maps, each of which has its own prior assumptions and methodologies of
generation.

2.4.1 Functional Connectivity Maps and Resting State Networks

In its most basic form, functional connectivity (FC) is the relationship between neural activation patterns of
anatomically separated brain regions. Regions of the brain are associated by their activation in relation to the
function of activation, rather than actual anatomical connectivity (Biswal et al., 1995). Correlation between
the time series of different recorded voxels (a voxel is a unit of measurement in fMRI, a cubic volume of
specified size within the 3D image) are what determine FC networks. There are many approaches developed
for FC investigation, but when considering whole-brain connectivity patterns, the best approach is to use
model-free methods. These methodologies are designed to find general patterns of connectivity across brain
regions, rather than focusing on a single region. Such methods include principal component analysis (PCA),
independent component analysis (ICA), and various types of clustering (Preti et al., 2017). The patterns of
connectivity produced by these approaches aim to be maximally independent of one another, aiming to find
the underlying sources of the resting state activity.

Resting state networks (RSNs) are identified components of fMRI activity. These networks are generated
from resting state fMRI, commonly using ICA, and have been shown to be associated with different cognitive
functions (Buckner et al., 2008; Damoiseaux et al., 2006; Fox et al., 2006). One such set of RSNs that are
commonly used as a comparative set, generated a set of seven spatial functional networks in the cortex (Yeo
et al., 2011). Figure 2 shows this set of RSNs. Each RSN is indicated by a different colour. Note that the
RSNs are spatial parcellations and not whole-brain activity patterns, due to their nature as equivalence classes
in a spatial partition (in that a single brain region cannot be a part of more than one network).

Figure 2: Set of spatial set of seven resting state networks, adapted from (Yeo et al., 2011). Each RSN is indicated by a
different shade of red-yellow. Image was generated using FSLeyes. Cursor is located at MNI152 zero point.

The issue with the methodologies identified above is that they merely find correlated spatial sources.
When the chosen method of analysis is applied, the output maps are a functional correlation of regions of
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the brain over the course of the whole time series, not capturing the temporal dynamics of the large-scale
brain networks. This means that the FC networks are “temporally static", and therefore they are difficult to
effectively relate directly to the continuously changing nature of spatiotemporal neural dynamics, e.g., as
captured by the discrete sequence of EEG microstates over time.

2.4.2 Dynamic functional connectivity maps

Dynamic functional connectivity (dFC) approaches aim to capture the fluctuating nature of neural networks.
Many methodologies have been developed to investigate dFC (Calhoun et al., 2014). All share the objective
of analysing FC across a time scale, but do so in different ways. The most common approach is the sliding
window, where connectivity between brain regions is computed as Pearson correlation between pairs of
BOLD time courses over a temporal window (Hutchison et al., 2013). The computation is repeated iteratively,
with the window moving along the whole time course to generate a connectivity time course. Performing
this for all connections yields a dynamic characterization of connectivity of the whole brain. Many different
window types have been proposed to improve upon this core concept (see Preti et al., 2017, Supp. Fig. 1),
but all are limited by the necessity of dimensionality reduction. Since the analysis can only be applied
when comparing specific regions of the brain, it is limited to correlations between the regions that were
predefined. Importantly, the sliding window approach also works under the assumption that the brain’s
activity is characterized by slow temporal dynamics (Hutchison et al., 2013), contrary to the fast temporal
dynamics reflected in EEG microstates.

Frame-wise analysis was proposed as an alternative to the sliding-window approach for dFC analysis to
do away with the assumption of slow dynamics. Frame-wise approaches fall into two categories: BOLD phase
coherence and BOLD co-activation. Firstly, phase coherence studies were initially introduced to use phase
synchronization between voxels as a measure of dFC, to improve temporal resolution versus the existing
sliding window approach (Glerean et al., 2012). The approach has yielded studies which apply leading
eigenvector dynamic analysis (LEiDA), which captures phase-locking states: states of phase coherence in
activity between regions of the brain. Such states have been shown to overlap with functional subsystems in a
meaningful way (Cabral et al., 2017; Vohryzek et al., 2020), and the parameters of these states have shown
evidence of relation to cognitive performance (Cabral et al., 2017), also showing an ability to differentiate
participants with major depressive disorder from healthy controls (Figueroa et al., 2019). However, these
dFC maps are generally generated out of dimensionally reduced datasets, using atlases that reduce the brain
into parcellated sub-regions. The phase correlation is hence between predefined regions of the brain. This
reduction into atlases is not useful when the intention is to maintain the spatial resolution of the fMRI data
for comparison with the relatively low spatial resolution of EEG.

BOLD co-activation approaches are the other form of frame-wise analysis, first being introduced with
the method of point process analysis (PPA) (Tagliazucchi et al., 2012; Tagliazucchi et al., 2010). PPA only
considers "relevant" time points, defining relevant as time points in the BOLD signal where a predefined
threshold of activity is crossed. The peaks of activity in the BOLD time course are due to neuronal avalanching
(Tagliazucchi et al., 2012), a phenomena observed in EEG studies (Fagerholm et al., 2015; Van De Ville et al.,
2010). These peak time points are then subject to ICA, generating PPA-RSNs.

The BOLD co-activation approach was improved upon by applying the same process to a time course
of fMRI activity, while retaining the original volumes of each time point, rather than subjecting them to
ICA (X. Liu et al., 2013). A threshold is defined based on the overall time series, and all suprathreshold
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events in the fMRI signal are taken as relevant input volumes. Clustering analysis is then applied to each
of these volumes to generate a set of states. These states are referred to as co-activation patterns (CAPs).
In this way, CAPs have been shown to be temporal sub-component’s of the known RSNs generated by
means of FC approaches (X. Liu et al., 2018). The FC maps can, therefore, be thought of as the temporal
averages of CAPs. This PPA-CAP method can be applied to a specific user defined brain region, or across
the whole brain (X. Liu et al., 2013). It is commonplace in such an approach to measure equivalents to the
EEG microstates parameters of occurrence, coverage, and duration (Chen et al., 2015; Koenig et al., 2002;
Milz et al., 2016; Milz, 2015). In fact, the methodological steps of obtaining EEG microstates and CAPs are
analogous. Furthermore, CAP approaches have already shown ability to differentiate across conscious states
(Amico et al., 2014), and parameters of CAPs have been shown to differ between "rest" and working memory
(Chen et al., 2015).

While PPA has the advantage of being an atlas-free analysis, avoiding a reduction of dimensionality due
to parcellation, it should be noted that it has shortcomings in this particular case. Due to the selection of
relevant time points of fMRI data, the number of time points used in analysis is reduced. Attempting to
associate the higher temporal resolution of EEG with the lower temporal resolution of fMRI means that the
number of time points in fMRI must be maximized to increase likelihood of identifying correspondences
between the two types of neuroimaging data. There are however variants of the CAP approach which exist
(X. Liu et al., 2018), and application of CAP analysis without use of a threshold is tractable.

2.5 FMRI sequence analysis

Investigation into transitions between the dFC states is part and parcel of dFC study in general (Preti et al.,
2017). Many studies generate probabilistic state transition matrices to understand pairwise relationships
between states. Any studies which have generated a discretized sequence of fMRI states have only done so
for investigation of dynamics between pairs of states however, rather than the dynamics of longer-length
sequences (Karapanagiotidis et al., 2020; Vohryzek et al., 2020). Hence application of state sequence analysis
methods used in EEG microstate studies (Nehaniv & Antonova, 2017; Schlegel et al., 2012; Van De Ville
et al., 2010) to fMRI CAPs may yield recurring sequences that can be associated with mental states, just as
the states themselves have been. Even short sequences of fMRI states can last multiple seconds, allowing
for an investigation of spatiotemporal patterns of activity that utilize a longer window of time vs. traditional
sliding window approaches, while still retaining high spatial resolution.

By relating the two in complementary fashion, one may better understand the functional signifi-
cance of EEG microstates, and characterize the spatiotemporal dynamics associated with different mental
states/cognitive process at both high spatial (fMRI ‘microstate’ sequences) and temporal (EEG microstate
sequences) resolution.

2.6 Micro-states and Macro-States - Utilizing Simultaneous EEG-fMRI

Britz et al. (2010) reported microstate A as associated with a negative blood-oxygen-level-dependency
(BOLD) signal in the phonological network, and microstate B as associated with negative BOLD signal in the
visual network (Britz et al., 2010). Custo et al. (2017) have also found similar associations. This appears to be
in contradiction to the findings of Milz et al. (2016), where function of microstates A and B was indicated as
the other way around: A in visual processing, and B in verbal processing. As pointed out by Antonova et al.
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(2022) however, these two findings can be reconciled. EEG microstates are predominantly driven by sources
in the alpha band frequency (Milz et al., 2017). Alpha is known to have inhibitory effects on modality-specific
processing (O’Gorman et al., 2013), and negative BOLD activity may be related also to inhibitory neuronal
activity (Sten et al., 2017). Hence, the observation that microstate A is predominant during visualization tasks
(Milz et al., 2016), taken together with the suggestion that the generator of microstate A is a negative BOLD
activity in the phonological network (Britz et al., 2010), may reflect an inhibiting action of the language
processing areas during visualization tasks. Similarly, microstate B was implicated as predominant during
verbalization tasks (Milz et al., 2016) due to its generator being the inhibition of visuo-spatial processing
areas (Britz et al., 2010).

Microstate C has been associated with a positive BOLD signal in the posterior of the anterior cingulate
cortex (ACC) along with other regions, with function being suggested as a subjective representation of the
participant’s own body (Britz et al., 2010). This was also found by Custo et al. (2017) in source localization
methods, but in the non-canonical microstate C′ (or F). These findings are in contradiction to the cognitive
analyses described above however, which suggested an association with the default mode network (Seitzman
et al., 2017).

The suggested generator of microstate D has been shown to be highly concordant in two fMRI studies
(Britz et al., 2010; Custo et al., 2017) as a negative BOLD activity in the dorsal attention network. This is in
line with the finding by Milz et al. (2016) that microstate D is more active during rest, but does not reflect
that reported by Seitzman et al. (2017).

Worth noting is the “non-canonical” microstate E. This state has thus far not been related to fMRI. Source
localization studies give conflicting suggestions of its source, with some suggesting it is generated from
the default mode network (Custo et al., 2017), and others from the right medial pre-frontal cortex (mPFC)
(Bréchet et al., 2019).

Despite these studies elucidating some conflicts in the field, it is clear that the specific functional
significance of EEG microstates remains unclear. It is important to highlight that all canonical microstates
have been shown as active in all cognitive processing modes (Antonova et al., 2022; Milz et al., 2016),
suggesting that despite parameter differences between cognitive processes, each microstate’s functional
significance is not so clear cut. A more recent study has attempted to use microstates to predict dynamic
functional connectivity (dFC) states (Abreu et al., 2021), fMRI states which consider whole-brain dynamics,
rather than the activity of a particular network. In the study, microstates outperformed EEG spectral analysis
in their predictive power of dFC states (although microstates were generated using a unique, non-stationary
method). Abreu et al. (2021) highlighted how brain networks are continuously changing, and that consequently
it would be expected that EEG microstate dynamics would reflect this. Due to this, it was found that the
relationship between EEG and fMRI states is too complex to reduce to a one-to-one characterization of fMRI
state network and EEG microstate, as in previous studies (Britz et al., 2010). Hence, we suggest here that it
may be of importance to investigate the syntax of microstate sequences to better understand their relation to
fMRI dFC states, and hence the functional significance of EEG microstates themselves.

2.7 Epsilon-machines as Models for Multi-scale Spatiotemporal Neurodynamics

Methods using epsilon-machines have recently been developed to derive and describe the ‘grammar’ of EEG
microstate sequences (Nehaniv & Antonova, 2017). The aim of such approaches is to characterize mental
processes in terms of their patterning of microstate sequences. Epsilon-machines are generative automata that
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can be used to derive optimal predictive models of underlying spatiotemporal neurodynamics. It has been
shown that the complexity of EEG microstate dynamics in individuals cannot be captured by simple pairwise
transition probabilities between microstates, but requires the generation of complex discrete dynamical
systems with many causal states (Nehaniv & Antonova, 2017). Computational tools for understanding such
systems from Krohn-Rhodes algebraic automata theory can be applied to analyse the complexity of predictive
automata models (Egri-Nagy et al., 2014; Nehaniv et al., 2015; Rhodes, 2010). Epsilon-machine automata are
constructed as generative brain models from observed discrete event sequences in EEG and/or fMRI. These
sequences recorded during different cognitive states yield different epsilon-machine brain models which are
used in order (1) to capture syntactic properties of the sequences that occur in the course of neurodynamics
of these cognitive states, and (2) to aid in recognition of these cognitive states by comparing new or unseen
EEG or fMRI sequences of discrete letters, i.e., EEG microsates or fMRI co-activation pattterns, from
participants to match them to the neurodynamics that can be generated by those various brain models for
different cognitive states. Furthermore, we aim to create coupled multiscale models linking slower temporal
transitions at the fMRI timescale (transitions between CAPs) with different, temporally fine-grained EEG
microstate models, each running at a faster time scale in tandem and simultaneously with the fMRI models,
and providing syntactic (formal langauge/generative automata) characterizations of neurodynamics in order
to identify corresponding cognitive states as well as to identify transitions between cognitive states. Such
models could be applied then to other datasets, or in real-time to new data, e.g., from the same individuals
whose EEG/fMRI was used to construct the models in order to do such cognitive processing mode and
transition identifications.
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3 Methods

3.1 Initial Investigation into Discretization of Simultaneous EEG-fMRI Data

Here we report the results from initial exploration of EEG and fMRI pre-processing methods for the
simulataneous EEG/fMRI dataset, as well as the initial investigations into deriving an alphabet of discrete
EEG patterns (microstates) and an alphabet of discrete fMRI activity patterns (co-activation patterns) in
pursuit of project objective 1 (see Section 1).

3.1.1 Preprocessing EEG

EEG data were processed using the EEGLAB toolbox in MATLAB (Delorme & Makeig, 2004). The standard
approach in EEG microstate analysis is to cut out any periods of noise from the data and use short periods
of time named epochs (approx. 2s) for analysis (Koenig et al., 2002; Michel & Koenig, 2018; Milz et al.,
2016). Since a goal of the project is to relate EEG microstates and their temporal sequence to discrete fMRI
states and sequences, it is necessary to retain as much temporally continguous data as possible in much
longer epochs, lasting minutes not seconds. Hence, before removing large portions of data, different methods
of noise removal were attempted that would retain as much of the signal as possible for analysis. Various
attempts at noise reduction are detailed below.

Figure 3: (Left) Top-down view of EEG channel locations of the 30 channel 10-20 system (Klem et al., 1999),
on a two-dimensional cartoon head. Channels not on head are below neighbouring channels in 3D space. (Right)
Three-dimensional representational image of electrodes on scalp. Image generated using Brainstorm (Tadel et al., 2011).
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Basic preprocessing. First, since this data was recorded inside an fMRI scanner, artefacts due to interference
of the scanner are apparent. The BrainVision Analyzer’s magnetic resonance (MR) template was applied to
all channels to remove artefacts associated the scanner (Brain Products, 2021). Next, each participant’s EEG
channels were referenced to the global average. In general, EEG recordings are the difference in electrical
potential between two points expressed in micro-volts, which in this case is the difference between two
recording sites. It is common practice to reference each channel to a ground electrode. Since there was no
such electrode in this case, the average potential across all electrodes was calculated, and that output value
was used as the reference. This was done for each participant individually (Figure 3).

The dataset recorded here contained an abnormal noise component. During the recording of the EEG and
fMRI, the fMRI machine caused the channel leads to vibrate at 17Hz. Due to this, there were periods in the
time course which contained bursts of high 17Hz activity. To counter this, on a participant-by-participant
basis, a least squares linear regression was applied to the periods of high 17Hz activity with a 17Hz sinusoidal
wave used as the regressor. In some participants, this 17Hz artifact was active throughout the time course but
at a lower amplitude. In these cases, a windowed application of the same regression was applied throughout
the time series. This technique of noise removal is a traditional approach in the field (Croft & Barry, 2000)
and is used often to remove heart and eye associated artefacts. Figure 4 shows an example of a burst of the
17Hz artefact across recording channels (left), and the same period after regression (right).

Figure 4: Comparison of a period of a single participants EEG time course, before (left) and after (right) application of
a linear regression using a 17Hz signal as a regressor to remove the periods of noise and retain brain signal. X-axis
indicates time point on the participant time course of recording. Y-axis shows label of each channel recording.

Following this, the data was down-sampled to 250Hz, from its collected frequency of 5kHz. The data
was then band-pass filtered between 2 and 20Hz. This filter range is common practice in the field (Khanna
et al., 2014; Milz et al., 2016; Milz et al., 2017), and retains alpha band activity.
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Exploratory processing.
Along with the 30 EEG channels recorded across the scalp, one EOG channel and one ECG channel were

recorded to measure the electrical activity of the eyes and the heart, respectively, potential sources of noise in
the EEG signal. Eye movement, blinking and muscle movement around the eyes are especially apparent in
the dataset due to the eyes-open state. In epochs of the time series that these types of artefacts were apparent,
a linear regression was applied to each channel individually, using the EOG channel as a regressor. While
this noise was mitigated in some cases, most applications were not successful in removing noise. Since the
EOG channel itself contained noise, regression of the EOG channel with EEG only added noise. The same
was the case for application of ECG as a regressor.

Other cases of noise had the potentiality of having both EOG and ECG noise present simultaneously. A
multi-linear regression was applied to these cases (Croft & Barry, 2000), and again, in many cases, noise was
introduced rather than mitigated. For this reason, any periods of noise that were apparent other than the 17Hz
artefacts (which were successfully removed with regression), were excluded from further analysis. Lastly,
some artefacts were associated with head movement. To confirm this, the points at which suspected head
movement artefacts occurred on the time series were compared to the relative motion measured during fMRI
registration (see section 3.1.3), as shown in figure 5. Such components cannot be removed via regression and
were excluded from further analysis. The exclusion of these periods meant that the only noise remaining in
the data was noise that was latent throughout the time series and could not be easily cut out.

Figure 5: Estimated head movement generated by MCFLIRT program from registration and motion correction of
fMRI data for single participant. Blue line shows absolute head movement from timepoint to timepoint, green line
shows relative head movement from starting position at 0s. Y-axis given in mm. Inset shows the EEG time course of a
three second time period. Noise that was not removed by noise corrections is apparent in the period, and relative head
movement as well as absolute head movement are high during this period.
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Figure 6: Finalized flowchart of EEG preprocessing steps. EEG channels are first rereferenced to the global average.
Then, regression is applied to periods where 17Hz artefact is apparent. Data is then down-sampled to 250Hz, and
band-pass filtered between 2 and 20Hz. Periods that have the minimum amount of noise are then isolated into epochs,
and ICA is applied at an individual level. Components containing clear signs of noise are excluded from further analysis.

The final step of preprocessing was application of single-participant ICA. Components that were identified
as noise were removed from the data. From the remaining signal, as many 2 second epochs as possible
were taken from each participant that were the most noise-free, and these epochs were used to generate
EEG microstate classes, which could be used then to derive EEG microstates sequences in over much longer
epochs. Therefore, the approach used most prominently in the field of EEG microstate analysis was adopted.
Figure 6 shows the finalized EEG preprocessing pipeline.

3.1.2 EEG Microstate Analysis

EEG microstates were generated using a data-driven technique with application of the KeyPy software
package using Python (Milz et al., 2016; Milz, 2015). For each participant, the EEG topographies at time
points of maximum global field power (GFP) (Skrandies, 1990) are collected and used as input to a specific
k-means clustering algorithm (R. Pascual-Marqui et al., 1995). Clustering is a procedure of classifying a set
of objects in different groups such that within group differences are smaller than across group differences.
K-means clustering is applied here to classify EEG time points based on spatial similarity. The modified
version of k-means applied here, differs in that polarity of channels is ignored (R. Pascual-Marqui et al.,
1995).

If it is the case that four microstates are being sought after, the algorithm takes an extra labelling step,
taking the existing canonical set of microstates and computing a similarity score between the data-driven set
and the canonical sets from previous studies (Koenig et al., 2002; Milz et al., 2016). Once all similarities are
computed, the data-driven set is labelled with the canonical set based on highest similarity. These classes are
then used to compute mean classes across participants.

Figure 7 shows the four mean microstate classes across the 13 of the 18 participants (5 were excluded
due to errors in processing). The mean microstates generated show clear similarities to those in figure 1, with
similar orientations to those described in the canonical set, yet are not identical. The mean classes explain
81% of variance in the data, a similar percentage to past studies (Michel & Koenig, 2018).
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Figure 7: Data-driven EEG microstate maps generated from 13 of the 18 participants using KeyPy. Microstates are
labelled A, B, C and D based on highest correlation with canonical maps. Note that polarities are not relevant when
comparing to canonical set.

3.1.3 Preprocessing fMRI

Basic processing. FMRI data processing was carried out using FEAT version 6.00, part of the FSL software
library (Jenkinson et al., 2002). First, non-brain removal was applied using the brain extraction tool (BET)
(Smith, 2002). This extracts a basic "mask", which is used to differentiate the voxels associated with the brain,
from those which are not. The MCFLIRT tool is next applied to the fMRI time series, a motion correction
and registration tool(Jenkinson et al., 2002). Registration is the 3D alignment of two images. Alignment
in this case implies that an anatomical location is the same voxel across participants. To ensure that this
alignment takes place, all participants are registered against a standard image space. The functional data of a
single participant is first aligned with its simultaneously captured structural data (T1 image). That alignment
is then registered onto a standard space (MNI152 2mm), so that participants can be compared. This process is
known as an inverse transform. In this case, the transform was an affine transform, which implies 12 degrees
of freedom (DOF) for the registration, i.e., 12 degrees by which the images may be manipulated in 3D space
to achieve alignment.

Next is spatial smoothing. This process assigns each voxel a weighted average of its neighbouring
voxels, with each voxel being weighted based on its closeness to the voxel of interest. This is applied using
a Gaussian kernel of full width at half maximum (FWHM) 5mm. The process reduces resolution of the
data, but increases the signal to noise ratio, and a minimum smoothness is required for Gaussian random
field theory to apply to analysis, a prior that must be adhered to for processing to be valid. A high-pass
temporal filter is applied, using a weighted least squares regression line with sigma equal to 50s, to remove
low frequency components that are commonly associated with noise in fMRI recordings.

Exploratory processing. The final step was application of ICA for noise removal. This was initially applied
using the MELODIC tool, an ICA package available in the FSL software suite. ICA was applied across
participants with 50 components as the output. Each of the ICs were manually inspected, and those which
were clearly noise (e.g. a large portion of activity was outside the brain, clear movement artefacts) were
excluded. The remaining components were then regressed back onto the time series of each individual
participant, so that only those components were remaining. Noise in each of the components were still
clearly apparent. This is likely due to the group approach of the ICA. Components which were removed from
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individual participants were deemed noise components across the group of participants, rather than at the
individual level.

To alleviate these problems of persisting noise, the ICA package AROMA was applied to the dataset
(Pruim et al., 2015). ICA-AROMA automatically detects noise components in ICA applications, and applies
said ICA at the participant level, similar to approaches in EEG microstate processing. This approach removes
participant specific noise components, instead of generalizing noise across the group. ICA-AROMA reduced
noise drastically in the resulting dFC maps, and was hence used in subsequent analysis. The finalized pipeline
of fMRI preprocessing is found in figure 8, using AROMA as an automatic noise removal tool.

Application to

CAP Analysis

Figure 8: Finalized processing pipeline of fMRI data. Raw data is applied to brain extraction to isolate brain related
voxels. Motion correction and registration are applied to the brain voxels to remove movement related noise, and
to bring all participants to a common space. Spatial smoothing of voxels is then applied to increase SNR. Finally,
participants are individually subjected to ICA using AROMA, and output has temporal filter applied.

3.1.4 Initial Investigation into CAP Analysis

To obtain the fMRI CAPs, a k-means clustering algorithm was applied to each of the preprocessing approaches
outlined above. K-means was initially applied to all 8160 fMRI volumes (time frames) from 17 of the 18
participants (one excluded due to errors). The cluster centres were subjected to a z-statistic which normalized
across the CAPs, so that the maps quantify the degree of significance to which the CAP values for each voxel
deviate from zero. Figure 9 shows CAPs generated from the data processed using group-ICA, with 7 clusters.
Upon visual inspection, it is clear that these CAPs contain excessive noise, and cannot be used to discern any
meaningful associations.

Clustering was also applied to the ICA-AROMA outputted data, using 30 clusters. Ten of the 30 are
shown in figure 10, labelled accordingly. These CAPs evidently have a much improved SNR to those found
in figure 9. CAPs 7, 9, 12, 26 and 28 all have some coarse similarity to the default mode network (DMN).
Furthermore, CAPs 6, 10 and 15 have a similar relationship to existing medial and occipital visual RSNs. CAP
2 shows coarse similarity to the salience network, while CAP 9 shows similar overlap with the sensorimotor
network, and CAPs 16 and 26 have some clear frontal component (Damoiseaux et al., 2006; Fox et al., 2006;
Heine et al., 2012). Each of these associations supports suggestions that CAPs are temporal components of
RSNs (X. Liu et al., 2013; X. Liu et al., 2018).
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Figure 9: fMRI CAPs generated from clustering analysis of time point volumes using less robust noise removal
techniques. Each map is viewed in three dimensions via its sagittal, coronal and transverse plane, left to right. Grey
background image is the MNI152 standard. All states are shown at the zero point of standard space. Colours overlaying
the standard brain indicate z-score of active regions of activity in each CAP. Colour bar shows the z-score range across
the states.

23

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



Figure 10: fMRI CAPs generated from clustering analysis of time point volumes using ICA-AROMA derived dataset.
Grey background is the MNI152 2mm standard brain. Colours overlaying the standard brain indicate regions of activity
in each CAP. Colour bar shows z-score. All CAPs shown at zero point of standard space.
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3.1.5 Outstanding Questions and Follow-up Objectives following Initial Investigation

Here we record observations, questions and plans as we saw them immediately following the initial in-
vestigation just described: Each discrete set of states (microstates for EEG and CAPs for fMRI) must be
subjected to stability checks, to confirm their validity. The number EEG microstates must be considered from
a data-driven perspective. Using a criterion to determine the optimal number of states is an important step to
take. Possible candidates are the minimum description length (MDL) (Yuan et al., 2012), and the more basic
cross-validation criterion of R. Pascual-Marqui et al. (1995). Following a criterion check, the next steps are
iterative application of microstate analysis, to ensure a convergence of centroids of the clustering algorithm.
Parameters of microstates also need to be investigated further, as comparison to field consensus will validate
findings, and to highlight individual differences and differences between conditions such as attention and
mind-wandering.

Stability of fMRI Co-Activation Patterns (CAPs) is also essential, however, in contrast to EEG microstates
which have been studied for decades, this is a new area of research. To first understand how the fMRI states
generated would compare to those in the literature, a labelling procedure will be employed, similar to that
employed on EEG data (Milz, 2015; R. Pascual-Marqui et al., 1995). A similarity measure will be used to
compare the generated states to existing states in the field, so that a more robust verification of similarity can
be confirmed, rather than a simple by-eye comparison. Investigation of clustering with different numbers
of centroids is also necessary to validate the discovered CAPs. A basic iterative stability check can also
employed for this purpose. CAPs are expected to show some differences between conditions and individuals.

Once both EEG microstates and fMRI CAP sets are confirmed as valid states, the next step will be the
application of sequence analysis. The states generated in both domains will be initially remapped back onto
their respective time series, and each sequence of discrete EEG microstates and fMRI co-activation patterns,
an epsilon-machine model can be constructed (Nehaniv & Antonova, 2017). Application of sequence analysis
to both the EEG microstates and fMRI CAPs can then be used to not only generate a simple transition
matrix, but also identify common sequences of events (events being the occurrence of a given EEG microstate
or fMRI CAP in the time series) in both domains, and to create generative models that could be used for
prediction and identification of neurodynamics.

Overlap of the states, sequences, and grammars of each of EEG and fMRI states will next be analysed.
Importantly, how EEG microstate sequences are associated to CAPs can then be analysed, and long sequences
of fMRI states can be investigated. Both of these comparisons have not yet taken place in the field, and
investigation will allow for identification of patterns of states in both domains that may be native to specific
mental states. Generating a model of such mental states by analysing the sequential patterns at rest will then
allow the mind-wandering states that are found at rest to be identified within attention tasks.

3.2 Follow-up Developments of Processing and Analysis Pipeline

Building on the experiences of our initial investigation of the target dataset described above, we refined our
methods and tools. We describe here our developed methods and software processing software and their
application to simultaneous EEG-fMRI datasets. These serve to generate and relate discrete alphabets and
sequences of EEG microstates and fMRI Co-Activation Patterns. This will then serve as the basis for temporal
analysis via studying short temporal syntactic information (n-grams) and the construction of generative and
predictive neurodynamic models (epsilon-machines – see Section 5) in the sequel.
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3.2.1 EEG Preprocessing

The EEG pre-processing pipeline was iterated upon to include better tools for cleaning, while still utilizing
EEGLAB. The previously used BrainVision MR noise removal tool was replaced with the FMRIB suite for
EEGLAB (Iannetti et al., 2005; Niazy et al., 2005), to streamline the pipeline. Magnetic resonance (MR)
noise was removed from the EEG signal using the FASTR artefact slice removal template. The FMRIB
suite also provided additional functions for removal of noise components that could not be controlled as in
Section 3.1.1. Heartbeat detection was then used with the ECG channel as a reference with the QRS and
BCG tools, which detect and remove artefacts caused by heartbeats. The vibration caused bursts of 17Hz
signals in was regressed out for each individual with the EEGLAB CleanLine suite (Delorme & Makeig,
2004), which estimates and removes sinusoidal artifacts for each channel using frequency domain regression
techniques (Mitra & Bokil, 2007). Artefact subspace reconstruction (ASR) was then used to clean the data of
any remaining noise (Miyakoshi et al., 2020). Offset between the start of EEG and fMRI recordings was used
to ensure that the recordings aligned temporally, along with an offset of 6 seconds in the fMRI due to the
haemodynamic response function (HRF) (Buckner, 1998).

3.2.2 EEG Microstate Analysis

Application of a data-driven technique was employed over the previous year of investigation with application
of the EEGLAB microstate plugin (Poulsen et al., 2018) rather than KeyPy. For each participant, the EEG
topographies at time points of maximum global field power (GFP) (Skrandies, 1990) were collected as input
into a k-means clustering algorithm. K-means clustering is applied here to classify EEG time points based
on spatial similarity. Two thousand GFP peaks were taken from each of the fifteen participants (two were
removed for issues during capture, one for clear outliers during microstate analysis), and variant k-means
clustering was applied up to a maximum of 500 iterations, with 100 repetitions of each candidate number of
clusters. The run with the highest explained variance was used as the result. The process was repeated with 3,
4, 5, 6, 7 and 8 clusters. Measures of fit were used to determine the best number of clusters to use, and the
resulting cluster centroids were assessed as to whether they were physiologically feasible. The measures of
fit were global explained variance (GEV) and the cross-validation (CV) criterion (R. Pascual-Marqui et al.,
1995). Global explained variance measures how similar each EEG sample time point is to the cluster centre
it has been assigned to (Murray et al., 2008). The CV criterion calculates an estimator of the variance of
residual noise in the fit (R. Pascual-Marqui et al., 1995). Standard parameters were used to measure and
compare the microstates. Duration is the average amount of time spent in a single microstate. occurrence
is the mean number of instances of a single microstate’s class per second. Coverage is the percentage of
time covered by a single microstate class. Each of these parameters were calculated at the subject level, and
compared across the group.

3.2.3 fMRI Preprocessing

Pre-processing of the fMRI pipeline was largely unchanged, but two new tools were used to refine the pipeline.
A group masking was applied which removed both white matter regions, and voxels which were not apparent
in all participants. This resulted in noise components that were active outside the brain being removed (note
the voxels outside the brain in Figure 9). The global signal, i.e., the mean signal averaged over the whole
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brain, of each participant was regressed from the time series of each voxel so that the BOLD signal observed
was the variance from the mean across the brain. This approach is a heavily debated one (Fox et al., 2009),
but its use is retained here due to its utility in CAP analysis (T. T. Liu et al., 2017). Finally, a parcellation
was applied to the data. Parcellation takes the average activity across a set of voxels that are labelled with
the same region and assigns the mean value to the region rather than the individual voxel values. Existing
parcellations were used here: the Schaeffer 1000 cortex (Schaefer et al., 2018), and the Tian S4 sub-cortex
(Tian et al., 2020), totalling 1054 individual regions.

3.2.4 fMRI Co-activation Pattern Analysis

Co-activation patterns were generated by applying a k-means clustering algorithm to the time series of fMRI
using Python 3.9 and the scikit-learn (Pedregosa et al., 2011) and nilearn (Abraham et al., 2014) packages.
The individual participants were concatenated into a single time series, and the group mask was used to
identify voxels of interest. The dataset then had its dimensionality transformed, resulting in a 2D matrix,
the first axis being voxels and the second axis being time points. K-means clustering was applied along the
temporal dimension, using a maximum of 1000 iterations for 100 repetitions. The best fit was identified for 6,
8 and 10 clusters. Only even numbers are considered due to the common activation/attenuation CAP pairs
(X. Liu et al., 2018). Clusters at k=6, 8 and 10 were retained to compare their activation with microstate
sequences. Upon generation of a CAP set, a spatial correlation was computed between each pair of CAPs in
that set. To this matrix of spatial similarity between CAP volumes was then applied the Munkres algorithm.
This combinatorial optimization algorithm was used to assign pairs of CAPs based on the highest level of
dissimilarity (Munkres, 1957). The previous generation of CAP analysis as in section 3.1.4 did not attempt to
identify pairs, nor did it use low numbers of CAPs. The low numbers of CAPs were chosen since the number
of event types that can be used in the construction of dynamical sysetms models (epsilon-machines) must be
kept low to avoid an increase in the number of possible sequences leading to a resulting paucity of data to be
able capture transitions involving them (see Section 5 for an overview of epsilon-machines). Morevover, the
initial "CAPs" generated and reported in Section 3.1.4 were generated from independent components instead
of the data itself. These shortcomings were rectified, and the results with the correct implementation as just
described are found in Section 4.1.2.

3.2.5 Additional Work: Initial Investigations into Sequence Analysis

It was necessary to review the occurrence of microstate and CAP n-grams. An n-gram is defined as a sequence
of events of given length n (here the events in the temporal sequence are individual EEG microstates or fMRI
CAPs, respectively) . The duration parameter, as in section 3.2.2 was also calculated for the n-grams of
both microstates and CAPs. N-gram duration is defined as the total amount of time the individual n-gram
lasted, simply the sum of each individual event’s duration in the n-gram. However, coverage cannot be
investigated in this way. Since n-grams greater than length one overlap (the sequence ABCDE in length
2-grams would give AB, BC, CD, DE), defining coverage as the percentage of the time series covered by
the n-gram would not be sufficient. N-gram frequency is therefore a novel parameter that is defined here as
the number of occurrences of an n-gram over the total possible number of occurrences of an n-gram. For
example, if the full input sequence of observations is ABCDE, the possible number of occurrences of a length
3-gram would be : ABC, BCD, and CDE. Hence, ABC, BCD and CDE would have one occurrence over three
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possible occurrences, and hence a frequency of 33.3% each. This definition of n-gram frequency, therefore,
accommodates the length of the n-gram considered.

Since CAPs and microstates are co-occurring, it is possible to review the microstate n-grams occurring
during specific CAP occurrences. The alignment step outlined in section 3.2.1, combined with an offset of 6s
due to the haemodynamic response function (HRF), allowed for an approximate temporal alignment of the
microstate and CAP sequences arising in the course of the same underlying neural activity. Once aligned, the
periods of activity where each CAP occurred were isolated in the microstate time series, generating a list of
microstate sequences that were occurring during each CAP individually.

3.3 Predictive Generative Brain Models: Epsilon-Machines

Details of the development of epsilon-machine models of EEG and fMRI discrete sequences and associated
methods, and attepmpts at their application, as achieved so far are reported in the remainder of this report.
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4 Results: Progress toward Objectives for EEG/fMRI

Here were report the results achieved so far toward the project objectives focusing on the simultaneous
EEG-fMRI dataset. Additional methods and results for epsilon-machines methods applicable to EEG or
fMRI datasets for recognizing cognitive states are illustrated in the next chapters.

4.1 Objective 1: Deriving Sets of EEG Microstates and fMRI CAPs

4.1.1 Five EEG Microstates Optimally Explain Variance

Figure 11 shows the set of EEG microstates from 3-8 clusters, along with the global explaned variance (GEV)
and cross-validation (CV) score of each number of clusters. While explained variance did increase as the
number of microstates was increased, there is an apparent plateau as more are added. Since the CV criterion
is an estimator of residual noise, a low score is desirable. As the number of clusters increases, the possibility
of noise is amplified. An upward curve develops from five microstates onward. The combination of these two
measures concluded that the optimal number of clusters to use was five, with a GEV of 69.5%.
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Figure 11: Overview of choosing optimal number of clusters for EEG microstate analysis. The two leftmost panels
show the global explained variance (GEV) and cross-validation criterion (CV) score respectively, for each candidate
number of clusters. Right panel shows the microstates for each number of clusters. Each row is ordered by most to least
explained variance, left-to-right. Microstates are numbered for ease of reference, e.g., microstate 6-2 denotes microstate
the in the row for six microstates in the second column .

Parameters were derived from the five chosen microstates through the back-fitting procedure for each

29

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



participant as outlined in section 3.2.2. Whichever cluster centre each time point was most similar to was
labelled with that cluster. This created a sequence of microstates which could then be used to identify the
parameters of coverage and duration. Figure 12 shows these two parameters across participants for each of
the five microstates. Note that the microstates have been reordered and labelled by the “canonical” set in the
microstate literature.
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Figure 12: Plot of re-ordered five microstates. Violin plots show distribution of microstate durations in milliseconds,
using the left side y-axis. Dash on each violin shows the average duration in each case, dot gives the median value.
Colours are unique to each microstate. Width of the violin indicates the number of times the given microstate occurs for
the given duration. Grey bar plot shows the coverage of the given microstate using the right-side y-axis.

In the resting state, the first four microstates in the five-cluster set show spatial similarity with the
“canonical” set, which has been studied extensively in the existing literature (Koenig et al., 2002; Milz et al.,
2016; Milz et al., 2017). Note the increased similarity to the canonical set in Figure 1 versus previous
iterations (Figure 7). Microstate E has also been identified previously (Bréchet et al., 2019; Custo et al., 2017;
Michel & Koenig, 2018). The average duration across all microstates was around 100ms (Figure 12), also
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agreeing with existing literature (Khanna et al., 2014; Koenig et al., 2002; Michel & Koenig, 2018; Milz
et al., 2016; Milz et al., 2017).

4.1.2 Generating Co-Activation Patterns (CAPs): An Eight-letter Alphabet for fMRI

Figure 13 shows the CAPs using 8 clusters for the resting state. CAPs were also generated for 6 and 10
clusters, which can be found in Supplementary Figures 46 and 47 respectively. When increasing the number
of clusters from 6 to 8, unique CAPs were generated which did not obviously belong to a larger cluster using
6 CAPs (see CAPs 1 and 2 in Figure 13). Ten CAPs were not used because pairings were not as obvious,
and some pairs of CAPs appeared to be very similar states that likely belonged to the same larger cluster.
Additionally, keeping the number of CAPs down is necessary in order to apply epsilon-machine analysis at
the fMRI level as this requires more data with increasing alphabet size (i.e., distinct discrete observed event
types; which here are the CAPs). The eight CAPs explained 36% of the variance.

4.1.3 Structure and Analysis of the CAPs for Resting State

The first two CAPs show a total attenuation and activation of the sub-cortex, respectively. CAP 1 is most
generally similar to an activation pattern of the DMN (Leech et al., 2012). CAP 2, while conversely showing
somewhat of an attenuation of the DMN, also demonstrates activation of the more posterior and parietal
cortex. Activation of the sensorimotor cortex accompanies the attenuation of the thalamus in CAP 2, an
activation pattern described in previous resting state CAP studies (X. Liu et al., 2018).

CAP 3 shows a clear attenuation of the visual network (Schaefer et al., 2018; van den Heuvel & Hulshoff
Pol, 2010; Yeo et al., 2011). Interestingly, attenuation is apparent in frontal regions of the frontoparietal
control network (FPN) (Menon, 2011) and regions indicative of the limbic system. The strongest regions of
activation are in the dorsal and ventral attention networks.

In the subcortex, CAP 3 shows much of the thalamus, hippocampus and caudate nucleus as active, with
the putamen and globus pallidus showing attenuation patterns. Conversely, CAP 4 shows an activation of
the visual system, along with activation in similar regions of the FPN, but shows the same attenuation of
activity as CAP 3 in OFC. Attention networks are also opposed to its pair here, with CAP 4 showing the most
substantial attenuation in the same dorsal and ventral areas.

CAPs 5 shows an activation of the DMN and visual network. More lateral regions of the frontal lobe and
precentral regions also display this activation pattern. The posterior regions of the dorsal attention network
are attenuating here. The FPN and salience networks show attenuation also, as expected by the so-called
triple-network model outlined by (Menon, 2011). CAP 5 shows mostly attenuation in the subcortex but
interestingly has an asymmetry in activation/attenuation from left to right in the thalamus. CAP 6, the inverse
of CAP 5, shows an attenuation of the DMN, with the FPN and salience network showing activation patterns.
A clear demonstration of the utility of the CAP method is highlighted here. While the DMN has been derived
statically in the past (Menon, 2011; Yeo et al., 2011), the DMN is active in CAPs 1 and 5, but both differ
drastically across the rest of the brain.
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Figure 13: Eight Co-Activation Patterns of the resting-state eyes-open data across participants. CAPs are numbered in
their pairs, with each row showing a pair. Brighter red-yellow values indicate higher activation, brighter blue values
indicate higher deactivation. CAPs are represented on surfaces with a colour range of -1 to 1 for visualization purposes.
Ll and Lm are left hemisphere lateral and medial views respectively. Rl and Rm are right hemisphere lateral and medial
views respectively. The cortical surface is visualized on the fsaverage5 surface.
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CAPs 7 and 8 are representative of the heavily investigated gradient map referred to as the “sensory-
association axis”, or “principle gradient” (Haak & Beckmann, 2020; Hong et al., 2020; Margulies et al., 2016;
Park et al., 2021). The axis shows a functional distinction in activity in unimodal and transmodal regions in
the cortex. It distinguishes them as being on a gradient (or spectrum) rather than two distinct regions. The
pattern outlined clearly has the same pattern as in CAPs 7 and 8; only in the case of the CAPs do we have an
activation and attenuation pattern. It is worth noting here that the patterns shown in CAPs 3 and 4 resemble
the secondary gradient of this analysis (Margulies et al., 2016). CAPs may represent the poles of the axes
in this study. In the subcortex, CAP 7 has symmetrical activation patterns in the putamen, globus pallidus,
amygdala, and ventroposterior thalamus, with the rest of the thalamus showing attenuation, along with the
caudate, nucleus accumbens and hippocampus. CAP 8 has symmetrical activation patterns in much of the
thalamus, caudate nucleus and the nucleus accumbens.

CAP Similarity, Transitions and Parameters. The spatial correlation matrix between the eight CAPs is
shown in Figure 14 (left). The highest correlations are between CAPs 2 and 4, 3 and 6, and 4 and 7. Note the
low correlations between the CAP pairs. CAPs were labelled as pairs based on their dissimilarity. CAPs 1
and 2 have the least dissimilarity of all pairs (Figure 14, left).

Additionally, the right panel of Figure 14 shows transition ratios between CAPs. Note the low transition
ratios between paired CAPs, suggesting the need to transition into another CAP first to get from a CAP to its
opposite. A simple and noteworthy pattern is the high ratio from 3 to 6 and 6 to 3 - suggesting a basic loop
between two CAPs, which are relatively similar spatially.
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Figure 14: Similarity matrix between each of the eight data driven CAPs (left). Diagonal is comparison of a CAP to
itself. Note white boxes between dissimilar pairs. Transition ratios between given CAPs (right) gives starting CAP on
y-axis and ending CAP on x-axis. Note again low ratios of transition between paired CAPs.
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Figure 15 shows the coverage (left) and average duration (right) of each CAP across participants, for the
set of 8 CAPs. Colours indicate pairings of CAPs that were generated by the assignment algorithm outlined
in section 3.2.4.

Figure 15: Left shows boxplots of coverage of CAPs across the time series across participants, given as a percentage
of time points. Right shows boxplots of the average duration per participant, measured in number of TR’s (units of
fMRI recording time points, in this case each 2 seconds long). In both cases, mean line is therefore the average of the
given CAP across participants for the given metric. Box indicates the interquartile range, stems show minimum and
maximum values, dots show outliers, defined as a participant that has a metric more than 3 standard deviations from the
mean. Colours are indicative of the pairs of opposite CAPs.

CAP duration and coverage have not yet been reported in the resting state alone, with accounts of duration
and coverage being in relation to a patient group (Abreu et al., 2021). Statistical significance of parameters of
CAPs could be established in the future.

Comparison with Resting State CAPs Generated from NKI Rockland Sample. Each set of CAPs was
correlated against eight CAPs generated from the large NKI Rockland sample (Tobe et al., 2022). This
set is shown in Figure 16. A correlation between the NKI set and the set of 8 CAPs was generated with
the correlation coefficients given in Figure 17. Note the CAPs 1 and 4-8 all show a strong correlation/anti-
correlation with at least one of the NKI CAPs. CAPs 2 and 3 do not show this strong correlation. CAP 3 does
show a similar topography to NKI CAP 1 however, despite not showing strong correlations. Additionally,
CAP 1 shows a slight correlation/anti-correlation with the NKI pair CAPs 1 and 2, but their topographies do.
Note that the visualizations of the CAPs do not include the 54 sub-cortical regions, but the correlations do
include them.
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Figure 16: CAPs generated using eight clusters from the NKI Rockland sample, using 721 with each participant being
recorded in resting state for approximately 5 minutes each. The same parcellation as in our approach was applied here
to control the dimensionality of the dataset. Ll and Lm are left hemisphere lateral and medial views respectively. Rl and
Rm are right hemisphere lateral and medial views respectively. The cortical surface is visualized on the fsaverage5
surface.

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



D
at
a
D
riv
en
C
A
P
s

NKI Dataset CAPs

Pairwise Linear Correlation Coefficients

Figure 17: Pairwise linear correlation coefficients calculated between 8 data-driven CAPs in the present dataset and 8
CAPs generated in the large NKI sample dataset. Colour bar indicates the r value of each CAP comparison between
datasets.
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Figure 18: Word clouds indicating the top 15 most correlated topics to each CAP generated using NeuroSynth image
decoder. Each CAP has its visualization shown next to its word cloud. Larger words indicate stronger correlations.
Orange words indicate most strongly correlated topics for each CAP, where black text indicates less correlated topics.
TOM is theory of mind.

Topics Correlated to the Resting State CAPs. For further clarification, the resting state CAPs were also
assessed with NeuroSynth (Yarkoni et al., 2011) in order to associate their patterns with the wider literature
in the field, as shown in Figure 18. CAP 1 was associated with various memory tasks and face recognition.
CAP 2 on the other hand was associated with motor tasks and tasks in general. The lack of polarity between
suggested functions of this pair may be due to their low dissimilarity (Figure 14 left), as well as their low
coverage (Figure 15 left). CAPs 1 and 2 may also simply indicate more complex transitory states which are a
combination of multiple cognitive activities. CAP 3 showed labelling with somatosensory and motor tasks,
where CAP 4 showed visual tasks. Similarly, CAPs 5 and 6 show NeuroSynth labels for resting state, to
task execution respectively. CAPs 7 and 8 show a general correlation with unimodal and transmodal activity
labels respectively.
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4.2 Objective 2: Characterizing the Sequential Dynamics of EEG Microstates and fMRI
CAPs using Epsilon-Machines

4.2.1 Microstate N-Grams

Here, the calculation of two microstate n-gram parameters was derived, as outlined in section 3.2.5. The
n-gram duration and frequencies of microstate n-grams of length 2 and 3 is shown in Figure 19. The variance
of both parameters between n-grams is evident. Colours denote the starting microstate of each n-gram.
The variance of parameters appears to increase as longer n-grams are considered. The duration of n-grams
naturally gets longer with the length of the n-gram, and coverage gets smaller naturally, too, since the
possibility of an n-gram occurring gets smaller in the pool of possible n-grams that could occur.

4.2.2 CAP Specific Microstate N-Gram Parameters

Parameters were calculated for the set of 5 microstates and their n-grams during each CAP from n=1-5.
Figure 20 shows the n-gram parameters across each n-gram length.

Noteworthy is the uniformity of frequency and coverage between CAPs, but the greater variance of
duration between CAPs as n is increased.
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Figure 19: Violin plot of microstate n-gram durations, and bar plots of n-gram coverages of length 2 (top) and 3
(bottom). Colours indicate the starting microstate in the n-gram. Mean durations are more varied as the length of the
n-gram increases.
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Figure 20: Microstate n-gram parameters during each CAP isolated period of the time series. The first column shows
the average duration of each n-gram during each CAP in milliseconds (ms). The second column shows the frequency of
each n-gram during each CAP. The third column shows the coverage for each of the microstates (1-grams) during each
of the CAPs. Each row shows the parameters for a given n-gram length. Colour bars indicate the values of the given
matrix. Note that none of the colour bars in each column or row are uniform, since each matrix is on a different scale.
The x-axis labels of 2-grams and greater do not show all labels, but instead show the range alphabetically. There are 20
2–grams, 80 3-grams, 320 4-grams and 1280 5-grams. Black values on the 5-gram matrices indicate a zero - meaning
the given n-gram did not occur for the given CAP.
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4.2.3 Group-Level Epsilon-machines

This section uses the concept of epsilon-machines, which serve as predictive generative brain models
constructed from observed discrete data sequences such as EEG microstate sequences or fMRI Co-activation
Pattern (CAP) sequences. For background and details on epsilon-machines see Section 5 or this project’s
first year’s report (Nehaniv et al., 2021).

A: 0.204 B: 0.209

I

C: 0.144 D: 0.230 E: 0.213

Figure 21: Epsilon automaton of five data driven EEG microstates using 1-grams in the resting state. Causal states are
labelled with the microstates that they are associated with. Arrows denote a transition from one microstate to the next.
Labels on each arrow are the probability of transition from the starting state to the ending state, given the starting state.
All probabilities are rounded to three decimal places. State I denotes the impossible state. Labels next to the impossible
state give the frequencies of occurrence of each microstate.

Preliminary investigations were carried out by building epsilon-machines using the five data-driven
EEG microstates with 1- and 2-grams across all participants. Figure 24 shows the epsilon automaton for
the 1-gram EEG microstates. In this case, minimization yielded no collapsing of states since that causal
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states correspond to the five microstates which have different probability distributions for the next observed
microstate. The probability of transition between microstates is displayed on arrows between causal states.
The epsilon-machine built and minimized using microstate 2-grams is given in Figure 22. The number of
possible event-based 2-grams from 5 possible microstate observations is 20, which was reduced to 18 in the
minimization. The 2-grams BA and EA were binned in the same causal state, and BD and ED were binned in
the same causal state. The causal state groups and their transition probability distributions are outlined in
Figure 23.

Figure 22: Data driven microstate 2-gram epsilon automaton in the resting state. Each node is a causal state, which
contains within it a set of microstate 2-grams. Transitions between the casual states are indicated by arrows, and are
labelled with the next observed microstate and the probability of occurrence of this microstate.
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Causal State
0
1
2
3
4
5 BA EA
6
7 BD ED
8
9
10
11
12
13
14
15
16
17
18
19

CE
DA

AC

BE
CA

CD
CB

EC
UNKNOWN

EB
DE
DC
DB

Microstate 2-grams
IMPOSSIBLE
AB

AD
AE

BC

Figure 23: Table of microstate 2-grams that correspond to the causal states in Figure 22 for resting state data. Impossible
state and unknown or “dead" state are included.

Similarly, event-based 1- and 2- gram epsilon-machines were also constructed for the fMRI CAP
sequences across participants. The 1-gram automaton is shown in Figure 24. Note the additional complexity
of this representation over that given in Figure 21 due to the 8 CAPs used here versus the five microstates.
Minimization of the 2-gram CAP epsilon-machine did not cause the binning of any CAPs, indicating
uniqueness of transition probability distributions between all CAP 2-grams in the event-based approach.
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2: 0.104
4: 0.122
6: 0.145
8: 0.130

I

1: 0.116
3: 0.122
5: 0.129
7: 0.130

Figure 24: Epsilon automaton of eight data-driven CAPs using 1-grams. States are labelled with the CAPs that they
are associated with. Arrows denote a transition from one CAP to the next. Labels on each arrow are the probability
of transition from the starting state to the ending state, given the starting state. All probabilities are rounded to three
decimal places. State I denotes the impossible state. Labels next to the impossible state are the frequency of occurrence
of each CAP.

4.3 Objective 3: Identify Rigorous Mathematical Measures for Characterizing Properties
of Generative Automata Models at Individual- and Group-Levels

Rigorous mathematical measures for epsilon-machines include their statistical complexity, the log2 of their
number of causal states (Crutchfield, 1994); as well also algebraic characterizations of their dynamics such as
the semigroup of tranformations the basic events generate on their state spaces; and their natural subsystems -
maximal permutation groups occurring in these structure (Nehaniv et al., 2015); as well as their Krohn-Rhodes
complexity - the necessary number of levels with group-computation needed to hierarchically construct the
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epsilon-machine Rhodes, 2010. An upper bound on complexity is given by the holonomy decomposition
computed with the computer algebra package SGPDEC (Egri-Nagy et al., 2014), and if no permutation groups
occur this gives instead a bound on the aperiodic complexity of the automaton Nehaniv, 1996.

In preliminary work on the simultaneous EEG/fMRI dataset, holonomy decompositions of EEG microstate
event-based epsilon-machines constructed using the resting state condition in the target dataset, using length
1-, 2- and 3-grams, were carried out. The decompositions resulted in the lowest number of levels possible in
every case: n+1, meaning also the lowest upper bound on the level of aperiodic complexity possible for a
process that forgets its state after n events. No permutation group subsystems were found at any level.

The same was the case for the resting state CAP sequence data. At n-gram lengths 1-, 2-, and 3 in the
event-based group epsilon-machine, the decompositions again had minimal complexity upper bounds in every
case, with the number of hierarchy levels in each case being n+1. Once again, no permutation groups were
found at any level in all cases.

These mathematical measures will be continue to be investigated more thoroughly in coming work (see
Section 5 for information on epsilon-machines).

4.4 Objective 4: Apply the Developed Methods to Existing Datasets to Attempt to Differ-
entiate Between Attention and Mind-Wandering to Predict Mind-Wandering Episodes
During Attention-Demanding Conditions

Processing and analysing the attention task data was completed in both the blocked and continuous recordings.
Five microstates were seen as optimal in both cases. A high similarity is seen across the task recordings
topographically in the microstates generated. Figure 25 shows the microstates generated for each task,
with Figure 26 showing the spatial similarity matrix between the resting state set and the two task sets of
microstates. Note the high similarity score on the diagonal, indicating a consistency in the set of microstates
across tasks. The standard parameters of the microstates were also calculated for both CRT tasks.

Eight CAPs were also generated in both the CRT task recordings. Figures 27 and 28 give the CAPs
generated in each case. Here unlike in the EEG microstates, there is a lack of consistency between tasks.
Spatial similarity matrices are given in Figure 29 to quantify the difference between the resting state CAPs
and each of the two CRT tasks.
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Resting
State

Blocked
CRT

Continuous
CRT

A B C D E
Microstates

Figure 25: Five data-driven microstates for resting state (top) blocked CRT task (middle) and continuous CRT task
(bottom). Each row label is indicative of the canonical state that has been reported in the literature. Note that the
location poles of each microstate across tasks is relevant but the +/- locations are not, due to the oscillating nature of
microstates.

Figure 26: Spatial correlation of the five data-driven microstates for resting state versus the blocked CRT task (left)
and resting state versus the continuous CRT task (right). Colour bar indicates correlation score, blue being low, yellow
being high.
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CRT0 CAP4CRT0 CAP3

CRT0 CAP5

CRT0 CAP7

CRT0 CAP6

CRT0 CAP8

CRT0 CAP1 CRT0 CAP2

Figure 27: Eight CAPs generated using the blocked Choice Reaction Task (CRT) data. CAPs are in the same row as
their respective activation-deactivation pair. CRT0 is used as a shorthand label to specify the blocked CRT task.
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CRT2 CAP4CRT2 CAP3

CRT2 CAP5

CRT2 CAP7

CRT2 CAP6

CRT2 CAP8

CRT2 CAP1 CRT2 CAP2

Figure 28: Eight CAPs generated using the continuous Choice Reaction Task (CRT) data. CAPs are in the same row as
their respective activation-deactivation pair. CRT2 is used as a shorthand label to specify the continuous CRT task.
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Figure 29: Spatial correlation of the eight data-driven parcellated CAPs for the resting state versus the blocked CRT
task (left) and resting state versus the continuous CRT task (right). Resting state is on the x-axis in both cases. Colour
bar indicates correlation score, blue being low, yellow being high. Each plot uses the corresponding colour bar.

In addition to these group-level structural differences between EEG microstates and fMRI CAPs in mind-
wandering vs. attention-requiring tasks, there are dynamical differences at individual and group level. In
Sections 6 and 7, we report on differentiating cognitive processing modes (mind-wandering, verbalization and
visualization conditions) using epsilon-machines constructed at individual- and group-levels based on another,
eyes-closed dataset described in section 6.1. This includes explorations of metric spaces of these brain models
by studying the separation relations between epsilon-machines constructed for different cognitive processing
modes, as well as tests of differentiating between individuals. Further, competitive log-likelihood assessments
are introduced to detect an unknown discrete EEG sequence of microstates’ best-matching brain models. The
same techniques can all be applied to CAP sequences from fMRI data.
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5 Epsilon-Machines: Optimal Generative Models from Finite Datasets

Following the viewpoint introduced by Nehaniv and Antonova (2017), we construct optimal discrete genera-
tive dynamical systems from the observed EEG microstate sequences or from fMRI co-activation patterns
sequences from the different recordings to determine syntactic properties of mind-wandering or other cogni-
tive processing modes.

Crutchfield and Young proposed the general method of studying information sources of discrete observa-
tions and constructing provably optimal dynamical recognizers/generators called ε-machines that optimally
capture or approximate the behaviour of an observed process (Crutchfield & Young, 1989).1 Originally, the
construction supposed access to an infinite past history and a probability distribution over possible futures.
Analogous to minimization processes for finite automata, infinite past histories leading to the present moment
that all have the same probability distribution over all possible futures are identified as causal states of
the ε-machines. In a given causal state, the different discrete observations (“letters”) that are possible are
described by their probability distribution of occurrence. A single observation leads from a causal state to the
next according to the next observed letter. The state transition is deterministic, but which observation occurs
is probabilistic. Causal states make the future conditionally independent from the past.

5.1 Constructing ε-machines from n-gram Transitions Observed in Data

Instead of infinite past histories and infinite possible futures, finite histories are used when working with
real-world datasets. We call a sequence of n successive discrete observations of a process an n-gram, or
history of length n. One partitions the histories a given length (n-grams) into classes with (statistically)
indistinguishable futures, according to time series data. We can consider all histories of a given length n and
of these only those that occur in the observations under consideration, e.g. within a single 3-minute epoch.

Given such an n-gram X1 . . .Xn of observations, the dataset may include n+1-grams of the form X1 . . .XnY
for an observation Y , where Y and each Xi (1 ≤ i ≤ n) are in the discrete alphabet A of possible discrete
observations. The frequency of Y given that the preceding n-gram is X1 . . .Xn defines a probability distribution
on the next observation Y conditioned on the current n-gram. This observation occurs with probability
p(Y |X1 . . .Xn), as estimated from the data, and one has a deterministic state-transition function between
n-grams:

δ (X1 . . .Xn,Y ) = X2 . . .XnY,

when Y is observed following X1 . . .Xn.
This construction specifies an automaton that is like an epsilon-machine, except that equivalent states are

not merged. We call such an automata a pre-epsilon machine. A pre-epsilon machine is a dynamical model
of an observed process that can be constructed from the data before one performs any minimization to merge
equivalent states. Minimization of the number of states is important in charaterizing dynamics and studying
the complexity of the process under observation. One can identify two states if their probability distributions
over all possible futures (sequences of observations over a temporal window after the current state) differ by

1Here ε is the small Greek letter epsilon (ε) and refers to a measure of the precision of observation. The precision of observation
and more generally the fact that any ‘objective’ measures depend on apparatus, means, and precision of the observation process are
explicitly acknowledged as part of the approach and reflected in the models that result. Indeed, ε-machines model and optimally
predict sequences of discrete observations of a system.
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no more than some small threshold δ ≥ 0. By iteratively merging states with such equivalent futures one
obtains an epsilon-machine whose states are then referred to as causal states (following Crutchfield).

5.2 Three (or rather Five) Levels of Temporal Resolution: Clock, Peak and Event Mode

After processing and discretization in the alphabet of EEG microstates or fMRI Co-Activation Patterns
(CAPs), each epoch or condition in an experiments yields an EEG microstate sequence or fMRI CAP
sequence. Due to artifact removal, neurodynamic observations in EEG and fMRI broken in contiguous
substrings whose syntax we study. We use three different scales of temporal analysis for EEG and two for
fMRI yielding five different temporal scales of analysis in total at different orders of magnitude in time.

Here is how we use three time-scales for EEG and two for fMRI when constructing sequences from
which to do n-gram analysis and epsilon-machine construction:

• Clock Time. Observations of EEG microstates are encoded into strings of the letters corresponding the
observed microstate A, B, C, D or E (here at a rate 250 Hz, with each letter corresponding to 4 ms.) For
fMRI Co-activation patterns, the timescale is 2000 ms (the scan time) for observation corresponding to
the repetition time (TR) of fMRI scanning to record a CAP.

• Global Field Power Peak-based Time. The EEG microstate at each successive peak of the global field
power in electroencephalographic recording gives a string of observed microstates at these peaks (∼50
msec per observation or ‘letter’).

• Event-based Time. The sequence of distinct EEG microstates is reported – on average every ∼80-120
msec per event or ‘new letter’ recording the newly observed microstate, i.e., when there is a transition
to an EEG microstate of different type. This sequence contains no repeated letter XX for any X.
Similarly for fMRI, this is the temporal sequence of distinct fMRI CAPs. For EEG, we have on average
one microstate event every 80 - 100 ms, and for fMRI, we have a new CAP approximately every 2-7
seconds.

5.3 Epsilon-Machine Construction

We give more detail on our epsilon-machine construction and minimization. Let there be a system that
is in a continuous dynamic process of change. We may not have any accurate description of the working
this system, we can only observe it, but we want to investigate it and build a discrete dynamic model that
simulates its behavior.

We suppose the process of change of our model is discrete and our model of system can be in one of a
finite set of possible states. There is also the set of possible observations of the system we can make, and
we regard these as events that act to transition our model of system from one state to another. Each event
occurs with a certain probability in our model given its state, and for each state we know the only state the
system will go to after this event. Such a model is called a deterministic finite probabilistic automaton -
epsilon machine A = (S,A,δ , p), where S is a state space, A is an alphabet of possible discrete observations
(and/or events), δ : S×A→ S is a transition function and p : S×A→ [0,1] is probability function, with
∑a j∈A p(s,a j) = 1 for each state s ∈ S.

51

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



We construct epsilon machines according to the sequences of either microstates of EEG recordings, which
are the sets of finite words over the alphabet of EEG microstates {A,B,C,D} (or possibly larger alphabets of
microstates, or sequences of fMRI Co-activation Patterns - it does not matter - the formalism is the same,
as long as the alphabet is a discrete finite set). Each letter of this alphabet is considered as an event, which
occurs in our system and transfers it to the next state.

To define the state space of our model, we suppose that the occurrence of each event within the system
depends on the history of a fixed length - the last L events that occurred within the system. So we assume that
all possible histories of length L bring the system into different states and the state space S consists of |A|L
possible words of the length L. Any future event from the current state occurs with different probabilities and
puts the system into a certain state defined as follows.

Transition function δ : S×A→ S from state w ∈ S which is the word w = X1...XL ∈ AL, with the input
letter (or event) Y ∈ A puts the system into a state

δ (w,Y ) = X2...XLY ∈ AL (1)

Probabilities of each transition are approximately determined over the entire available set of observations
as the ratio of the number of each transition after a specific word to the number of occurrences of this word
with a letter after it in observations.

Let us denote for all ai ∈ A and w ∈ AL,

• num(w) - the number of occurrences of word w with a letter after it in data,

• num(w,ai) the number of occurrences of letter ai ∈ A after word w.

Then we have

p(w,ai) =
num(w,ai)

num(w)
. (2)

There is a problem with this definition of probabilities when the set of sequences we are dealing with contains
words that occur only at a sequence in the data with no successor letter since num(w) = 0, giving division by
zero. Such states are called dead states, after them there is no information on the future and it is impossible
to determine the probabilities of any event from them. There are several possibilities in the construction,
including 1) one can terminate the run of system if a dead state is encountered, 2) one can estimate the
probability of the next event from the frequency of occurrence of events in the data. Our model has several
rules for handling such states, but these are rather technical and will be described elsewhere. Events of
probability zero can be treated as transitioning to an impossible state from which there is no return.

As mentioned, probabilities are estimated from the frequency with which a given n-gram is followed by
the particular letter as in equation (2), but that in case an n-gram does not occur with any successor letter
in the data, then the ε-machine will terminate upon reaching this state. As a convention, the probability of
seeing any observation in such a state is treated as zero (even though these sum to zero in a dead state – i.e.,
outgoing probabilities do not sum to 1).

Also, if an n-gram does not occur, its frequency is zero, and we also assign the value zero to each
transition probability from the n-gram. That is, if num(w) = 0, we take p(w,ai) = 0 as regards equation (2).
This allows us to regard the ε-machine as having all possible n-grams as states.
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One can then merge states whose probability distributions over possible futures are within a threshold
δ ≥ 0 of each other as mentioned, and iterate the process to converge to a minimized epsilon-machine
whose states are causal states. The result of minimization is provably well-defined, i.e., always yielding
the same result. (Full details will be published elsewhere.) This result and the C++ software implementing
epsilon-machine minimization are the work of Hanna Derets, and the access to the software is available on
request to the University of Waterloo Algebraic Intelligence and Computation Laboratory. Figures 21 and 22
and Figure 24 in Section 4.2 show the models that result from epsilon-machine construction and minimization
for EEG microstates and for fMRI CAP sequences, respectively, from the resting state condition of the target
dataset.

5.4 Geometry of the Space of ε-Machines

To compare two epsilon machines E1 and E2, two types of distance metric between them are defined as follows:

Epsilon Distance Metric We define a distance metric on ε-machines constructed according to transition
probabilities from n-grams as in Section 5.3. The distance between two such ε-machines E1 and E2 is defined
as:

D(E1,E2) =
1
|A|n ∑

all n-grams (a1, ..,an)
∑
x∈A
|p1(x|a1, ...an)− p2(x|a1,a2, ..,an)|,

where A is the alphabet, and pi(x|a1, ...an) is the probability of letter x being observed after n-gram a1, . . . ,an

according to ε-machine Ei for i = 1 or 2. Recall that if no letter has been observed after a1, ...an we defined
pi(x |a1, ...an) = 0 by convention for all x ∈ A, and the ε-machine terminates upon reaching the state with
this n-gram.

This is a distance metric on n-gram transition ε-machines.2

We normalize its values by dividing by the number of n-grams, which for our alphabet A is |A|n. (Note
for event-mode, |A|n needs be replaced by the number of event-mode n-grams, i.e., |A|(|A|−1)n−1 to avoid
repeated letters in the n-grams.) Normalization helps when we extend this to all ε-machines: We extend to
distances to k-gram transition ε-machines as follows. Without loss of generality, suppose k ≤ n, and let E1 be
a k-gram ε-machine and E2 describe an n-gram ε-machine, then we define:

D(E1,E2) =
1
|A|n ∑

all n-grams (a1, ..,an)
∑
x∈A
|p1(x|an−k+1, ..,an)− p2(x|a1,a2, ..,an)|.

That is, only the last k letters of the n-gram are considered for epsilon-machine E1.3 (As before, for
event-mode, |A|n needs be replaced by |A|(|A|−1)n−1 .)

Now formally, if E2 is an `-gram ε-machine (with `≤ n), we can complete the definition of the metric:

2This is essentially an L1- or “Manhattan” metric, and was introduced in our previous report (Nehaniv et al., 2021).
3This metric is valid not just for tables describing ε-machines with n-grams, but any ε-machines whose next state depends only

on the last n observations.
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D(E1,E2) =
1
|A|n ∑

all n-grams (a1, ..,an)
∑
x∈A
|p1(x|an−k+1, ..,an)− p2(x|an−`+1,a2, ..,an)|.

To see that the triangle inequality holds, observe that this follows from the fact the first formula above is
a metric (essentially the Manhattan distance on functions from the set of n+1-grams to non-negative real
values in [0,1]) and that we are in effect treating the k-gram and `-gram ε-machines as n-gram ε-machines
sensitive only to the last k, resp. ` observations (1≤ k, `≤ n). Symmetry D(E1,E2) = D(E2,E1) holds trivially.
However, the definiteness requirement for a metric D(E1,E2) = 0 if and only if E1 = E2, means that we must
identify ε-machines with the same behaviour. So, technically speaking we have a metric space whose points
are classes of ε-machines producing the same sequences with the same probabilities.

Remark: Note that the above metrics are well-defined also for ε-machines for which there exists an n
such that a history of the last n observations determines the probability of the next observation (letter) – or,
equivalently, whenever the n-gram of most recent observations determines the causal state. 4

Jaccard Distance between ε-machines. Another distance metric on ε-machines that we define for further
analysis is a Jaccard distance variation. Here we assume that in addition to the fact that epsilon-machines
are constructed according to transition probabilities from n-grams in the sequences of data, we also know
some additional information about n-grams in the data: the number of occurrences of the letter ai ∈ A after
all of the n-grams, as well as the number of occurrence of all n-grams in data. Knowing this information for
pre-epsilon-machines we can also maintain this information for minimized machines. The Jaccard distance
between two such ε-machines E1 and E2 is defined as:

J(E1,E2) =
1
|A|n ∑

w∈An
1− ∑ai∈A min(n1([w]1,ai),n2([w]2,ai))

∑ai∈A max(n1([w]1,ai),n2([w]2,ai))
(3)

nx([w]x,ai) - the number of occurrences of the event ai after all of the n-grams w in the state [w]x in the
epsilon-machine Ex, where [w]x is equivalence class of the word w in the xth epsilon-machine.

Epsilon distance can be used if we want to compare two machines build on the different lengths of history
(see (Nehaniv et al., 2021) for details), while Jaccard distance for this use is meaningless. However, if a
transition is equally likely in both machines, but much rarer in one epsilon-machine than in the other, the
Jaccard distance captures this difference, while the epsilon distance misses it.56

4In particular, we can use this metric to measure distance to a minimized ε-automata such as those produced by CSSR (Shalizi &
Klinkner, 2004) and similar methods.

5Epsilon distance is the metric introduced in the project’s first year report (Nehaniv et al., 2021). Jaccard distance for automata is
new (due to authors H. Derets and C.L. Nehaniv), and is introduced here for the first time. Note that computing Jaccard distance
requires knowledge not only of probabilities but of event counts.

6The original classical Jaccard distance between two non-empty multi-sets is defined as

dJ(A,B) = 1− |A
⋂

B|
|A

⋃
B|

As this is a metric and we can denote the following:

A = {(x1,r1), ...,(xn,rn)}, B = {(x1,k1), ...,(xn,kn)},

where xi - are the elements of the multi set A∪B, ri ≥ 0, ki ≥ 0 - amount of their occurrences in the multi-set A and B respectively.
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5.5 Difference between using epsilon and Jaccard distances

By definition of epsilon and Jaccard distances, we see that they consist of differences in the probabilities
of the corresponding transitions (epsilon) and differences in the number of occurrences of these transitions
(Jaccard) accumulated over all states and events. The probabilities of transitions in the constructed machines
are the frequencies of these transitions. The Jaccard distance is introduced to add sensitivity to how typical
transitions are to particular machines. For example, a certain state in one machine with alphabet {A,B}
appears 10 times and the transition A from it occurs in 5 cases, which means that the transition probability is
1/2. In the second epsilon machine, this state occurs 1000 times, and the transition A occurs 500 times, so the
transition probability is also 1/2. However, this transition in the first machine occurs much less frequently,
which will be taken into account in the Jaccard distance through the difference in the number of transitions
(500 - 5 = 495) yielding as summand (1− (5+5)/(500+500)) = 495/500 instead of (1/2-1/2=0) for the
epsilon distance type - see equation (3) for Jaccard distance.

Therefore, the difference or closeness between machines determined using these two types of distance
only indicates the presence or absence of accumulated differences in the above properties.

Factors such as the number of causal states after minimization, the absence of some n-grams in the data
of one of the sets, difference in the number of occurances of duration of the microstates in the number of
occurrences or in duration data - all these factors increase the difference if they are different in the compared
groups.

The classical Jaccard distance formula is equivalent to the following equation:

dJ(A,B) = 1− ∑
n
i=1 min(ri,mi)

∑
n
i=1 max(ri,mi)

Which implies that formally speaking the only difference between the Jaccard distance for epsilon-machines and Jaccard distance for
non-empty multi-sets lies into normalization: we its values by dividing by the number of n-grams, which for our alphabet A is |A|n.
So, technically speaking in case of Jaccard distance we also have a metric space whose points are classes of ε-machines producing
the same sequences with the same probabilities.
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6 Neurodynamical Brain Models for Cognitive States

6.1 Another Dataset and Its Processing to Extract EEG Sequences

To identify signatures of mind-wandering and compare two other cognitive processing modalities (silent
verbalization, and visualization), we employed another EEG dataset with 26 participants in eyes-closed
resting state (unlike the fMRI-EEG eyes-open dataset we have discussed so far). Traditionally EEG and the
derived microstates have been studied in eyes-closed conditions - the general trend is that alpha-power is
reduced in most people when the eyes are open. This EEG eyes-closed dataset complements the simultaneous
EEG-fMRI study and was also employed in the analyses of the project’s first year report (Nehaniv et al.,
2021), which focused on characterizing the mind-wandering condition. This dataset contains for each
participant approximately two 3-minute epochs each of EEG data from interleaved conditions designed to
elicit mind-wandering, verbalization and visualization; followed by a second run through the sequence in
order to allow us to compare EEG syntactic properties in different recurring conditions.

6.1.1 Participants

A total of 26 participants were recruited via university circular emails and local on-line forums. The inclusion
criteria were English fluency, right-handedness (as ascertained using the Edinburgh Handedness Inventory
(Oldfield, 1971)), and age between 18 and 65 years. The exclusion criteria were a history of: i) mental health
problems, ii) drug and/or alcohol abuse, and iii) neurodevelopmental and/or neurodegenerative disorders.
One participant was excluded due to a pre-existing neurological disorder.

The methods development/main analysis sample consisted of 20 participants (Mean age: 40.2, SD=14.63,
range: 21-62); Male/Female=12/8; Mean age in higher education: 4.11, SD=.96, range: 2-5).

The validation sample consisted of 5 male participants (Mean age: 21.2, SD=2.28, range: 19-24; Mean
years in higher education: 2.2, SD=1.3, range: 1-4 ).

The study received ethics approval from King’s College London Ethics Approval Board (Ref: HR-16/17-
4092) and informed consent was gained from the participants prior to participation.

6.1.2 Experimental Paradigm

The experimental paradigm consisted of two identical runs of two repetitions of the same condition sequence:
Runs 1 & 2: mind-wandering → verbalization → visualization (Repetition 1) → mind-wandering →
verbalization → visualization (Repetition 2). For the mind-wandering condition, the participants were
instructed to relax and allow their minds to wander naturally. For the verbalization and visualization conditions,
the participants were asked to repeat silently the word ‘square’ or to visualize a square, respectively, at a
self-paced rate of approximately 2 sec (without silent counting). Each condition was 3 min long, with a total
duration of 18 min for each run. Participants had their eyes closed throughout the run. All participants were
given a practice run of a full condition sequence lasting 1 min. (For the details of paradigm development and
piloting, see (Antonova et al., 2022).)

Abbreviations. For brevity in presentation, we denote the two runs by R1 (Run 1) and R2 (Run 2). Within
each run we denote the epochs in the condition sequence just mentioned as MW1, Ver1, Vis1, MW2, Ver2,
and Vis2, respectively, in that order. Thus R1-Vis2 denotes second visualization epoch in Run 1.
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6.1.3 Experimental Presentation and Procedure

The paradigm (written instructions and an example of a square outline for the visualization condition) was
programmed in OpenSesame (Mathôt et al., 2012) and presented on a 24” Dell SE2416H6 LCD monitor.
Auditory instructions before the start of each condition were relayed using a prerecorded voice presented
through the PC speakers.

6.1.4 EEG Data Collection and Analysis

EEG data recording. EEG data were recorded using a 40-channel Neuroscan Quikcap system (Com-
pumedics, USA). A total of 36 channels were recorded including 4 electrodes for the EOG signal and two
references. The EEG electrodes were arrayed according to the standard 10-20 EEG setup. The VEOG
electrodes were positioned above and below the left eye, the HEOG electrodes at the outer canthi. The online
reference electrode was set to A2, and the ground electrode was at AFz. The data were low-pass filtered at
250 Hz and sampled at 1 kHz.

EEG data preprocessing. The EEG data were inspected in Brainstorm (Tadel et al., 2011), imported into
EEGLAB (Delorme & Makeig, 2004), and segmented into twelve 3-min epochs (i.e. 2 runs x 2 repetitions
x 3 conditions = 12 epochs). Each EEG epoch was re-referenced to the common average and band-pass
filtered (1–20Hz, 4th-order Butterworth filter). Eye-movement artefacts were removed by regressing the
EEG channels with the EOG (Croft & Barry, 2002). Obvious (mostly movement and swallowing) artifacts
were cut out (ranging between 0 and 11 in number per epoch) and noisy electrodes rejected (0-3 per epoch)
before the application of independent component analysis (ICA) on the remaining channels (27-30 per epoch)
and time-frames (93,000 – 185,000 per epoch). For each ICA component, the time-course, 2D skull map
of inverse weights, and power spectrum were inspected, and the percentage variance of the EEG signal
explained by each component was compared to the explained variance of the EOG signal. Standard criteria
were used for component rejection based on their spatial profile and temporal-frequency composition. The
number of retained ICA components varied between recording epochs (range 7-26) but had little effect on the
derived micro-state outcomes, as also observed by others (Dinov & Leech, 2017). Finally, the EEG data were
down-sampled to 250 Hz.

EEG microstate computation. The EEG Analysis Toolbox KeyPy (Milz et al., 2016; Milz, 2015) assigns
each EEG time-frame to a microstate class based on its 2D spatial organization. Microstate classes can be
pre-defined, or calculated from the data using a clustering algorithm. For the present study, both strategies
were used. First, as a quality test for our recordings, four data-driven maps were generated by running (200
repetitions of) KeyPy’s modified k-means clustering algorithm, and assigning them the labels A, B, C and D
based on their correlation with the canonical class maps of Milz et al., 2016. Only the time-frames at the
local global-field-power (GFP) peaks were used to minimize the effect of noise, with low-power intermediate
time-frames being interpolated by KeyPy. As most of the GFP peaks occur at the crests and troughs of the
alpha waves, the average interval between peaks was about 50ms (50.2 ± 3.4 over all epochs for the main
group). In a second stage, KeyPy was rerun skipping the clustering phase and assigning directly the peaks of
the GFP function to one of the four canonical maps of (Milz et al., 2016), as with the data-driven maps, the
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Milz et al. maps were first assigned to the GFP peaks and interpolated in between.

6.1.5 Canonical vs. Data-driven EEG Microstates

Microstate classes can be pre-defined, or calculated from the data using a clustering algorithm. For the
present study, both strategies were used in order to be able compare their performance in the analysis of
spatiotemporal neurodynamics: canonical EEG microstates from the KeyPy library, as well as data-driven
EEG topographic maps generated for each participant and epoch by running KeyPy’s clustering algorithm
and assigning them the labels A, B, C and D based on their correlation with the canonical class maps of (Milz
et al., 2016).

Canonical EEG microstates and a population average of data-driven EEG microstates from the dataset
are shown here in Figure 30.

Figure 30: The topographical maps for (a) canonical EEG microstate classes A, B, C, and D of (Milz et al., 2016) from
the KeyPy template library (reduced from 64 to 30 channels and rendered with the EEGLAB topoplot function), and b)
data-driven EEG microstate maps derived from the present dataset’s recordings computed in KeyPy (Milz, 2015) using
a variant k-means clustering (average from 20 participants across epochs (Antonova et al., 2022)).
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The EEG microstates sequences for each epoch were studied to extract syntactic structure at three scales
of temporal resolution explained in Section 5.2. In this section and the next we limit the discussion to
reporting results using the four canonical EEG microstate.

6.1.6 Epoch, Individual & Group Level Models of Mind-Wandering, Verbalization & Visualization

After processing and discretization of EEG recodings in the alphabet of EEG microstates, each 3-minute
session yields an EEG microstate sequence (possibly interrupted by the removal of several artifacts) of
approximately 45,000 EEG microstates (180 seconds at 250 Hz). Due to artifact removal, this is broken
into contiguous substrings whose syntax we study. We use three different scales of temporal analysis for
epsilon-machine construction (namely, clock, peak and event temporal scales as explained in Section 5.2).

Using the method of epsilon-machine construction minimization described in section 5.3 we build
generative models of neurodynamics for each temporal mode at epoch, individual and group level :

1. For each epoch in our dataset we construct such an ε-machine.

2. Combining the data from a given participant’s mind-wandering epochs we can construct an brain model
of mind-wandering for that individual. Similary, for verbalization and visualization.

3. For all sequences in Run 1 (respectively Run 2), we can construct a single epsilon-machine from the
two visualization epochs (Ver1 and Ver2) combining the data from a group of individuals. Similarly,
we can construct two mind-wandering epsilon-machine from the two mind-wandering epochs (MW1
and MW2) of the run from the group; and the this is also done for the visualization epoches (Ver1,
Ver2).

6.2 Analysing the Geometric Space of Brain Models

From the set of all files with sequences of microstates of 3-minute EEG recordings of individuals, in this
work we consider only the data of the R1 run, which correspond to the 20 participants coded as C01-C10,
C12, C14, C17-C18, C20, C22-C26. For R1 of these individuals we have three cognitive processes and 2
repetitions of each. In the work reported in this section, we did not study the individual files separately, but
the concatenation of all individual files into one for each of the 6 cognitive process conditions R1-MW1,
R1-MW2, R1-Ver1, R1-Ver2, R1-Vis1, R1-Vis2. Using the algorithm described earlier, we build epsilon
automata from the concatenated data, and for the comparison of the epsilon machines of different cognitive
process conditions we use the 6 by 6 matrices of pairwise epsilon and Jaccard distances. The automata have
parameters for building and minimizing, which in the range of all considered values gives us: 3 time modes,
7 history lengths, 21 minimization delta values (starting from δ = 0 all values with a step of 0.05 up to
δ = 1) and two types of distance - a total of 882 parameter configurations for minimized machines and 42
pre-epsilon automata, so together we obtain 924 pairwise distance matrices.

6.2.1 Embedding the Metric Space in Euclidean Space

When considering a set of epsilon machines, we pass to a matrix of pairwise distances, however, having
only this matrix, it is difficult to say anything about the difference between automata within the set. Therefore,
we associate a set of points on a two-dimensional plane with a set of machines, preserving the pairwise
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distances between them as much as possible. The set of points is found according to the following algorithm,
described in detail in the article (Young & Householder, 1938).

1. Let D be a distance matrix n×n, where Di j is the distance between epsilon machines Ei and E j.

2. Define matrix Mi j as follows

Mi j =
D2

1 j +D2
i1−D2

i j

2

3. Find the coordinates of the points by eigenvalue decomposition of matrix Mi j.

S - diagonal matrix of eigenvalues, U - normalized matrix of eigenvectors, X =U
√

S - matrix of points
corresponding to machines.

If there exists a set of points in a k-dimensional space k < n that exactly preserves the pairwise distances
between machines of the set, then only k columns of X will be non-zero (corresponding to k non-zero
eigenvalues of M).

4. For the two-dimensional embedding use coordinates in columns corresponding to the two biggest
eigenvalues.

To assess the quality of displaying real distances on a two-dimensional plane, the following numerical
characteristics are calculated:

Maximum Local Distortion - maximum relative error of the approximation of the distance between 2D
points representing machines.

dL = max
i, j

|Di j−D
′
i j|

Di j

Di j - distance between epsilon machines Ei and E j.
D
′
i j - distance between corresponding two-dimensional points, that represent machines Ei and E j.

Maximum Global Distortion - maximum absolute error of the approximation of the distance between
2D points representing machines divided by the maximum distance between the machines of this set.

dG = max
i, j

|Di j−D
′
i j|

maxi, j Di j

Variance of the selected display directions - what fraction of the original distance falls on the selected
projections.

Vall =
|λx|+ |λy|

∑λ∈Spec |λ |
V+ =

|λx|+ |λy|
∑λ∈Spec+ |λ |

λx,λy - two biggest the eigenvalues of matrix M which correspond to the selected columns of coordinates.
Spec - the spectrum of the matrix M, i.e., the set of eigenvalues of matrix M (with multiplicities, if any)
Spec+ - the positive eigenvalues in the spectrum of M only.
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Obtaining negative eigenvalues means the impossibility of Euclidean embedding in n-dimensional space,
which indicates the loss of information on n-dimensional points, however, in our case, we are still considering
a two-dimensional projection, so it may be useful to see what proportion of the total value of non-negative
eigenvalues are the two chosen directions.

Maximum Euclidean Embedding Error - maximum absolute error of the approximation of the distance
between n-dimensional points representing machines.

e = max
i, j

|Di j−D∗i j|
maxi, j Di j

Di j - distance between epsilon machines Ei and E j.
D∗i j - distance between corresponding n-dimensional points that represent epsilon machines Ei and E j.

6.2.2 Results: 2D projection of Euclidean embedding for pairwise distance matrices

Having a matrix of pairwise distances between 6 group-level epsilon machines of cognitive process conditions
in R1: MW1, MW2, Ver1, Ver2, Vis1, Vis2, we can calculate its Euclidean embedding in 6-dimensional
space, since both types of distances are metrics, and then consider how the machines corresponding to the
cognitive processes are located on the 2D projection. Such an embedding, however, is not always possible,
and sometimes it is possible into a space of smaller dimensions. Considering the success of the Euclidean
embedding, we obtain 33 out of 42 successful embeddings in 6-dimensional space for pre-epsilon machines,
and 459 out of 882 for minimized machines. For each particular distance matrix we can consider the
maximum Euclidean embedding error, as the maximum absolute difference between epsilon machines and
corresponding 6-dimensional points, i.e., in the case where we have Euclidean embedding this error equals
zero. Calculating the maximum Euclidean embedding error averaged among all failed embeddings we obtain:
for pre-epsilon machines it equals e = 0.0022 with the standard deviation σe = 0.0025 and for minimized
machines - e = 0.0053 with the standard deviation σe = 0.0065. For the comparison of the epsilon machines,
we do not look at the entire embedding (6 dimensional space), but only at the two columns corresponding to
the largest eigenvalues—that is, the 2D projection of the points, as it can be considered even if we do not
have Euclidean embedding with the zero error.

As an illustrative example, Fig. 31 shows 2D projections of the Euclidean embedding for distance matrices
between group-level pre-epsilon machines for history length L = 3 according to epsilon and Jaccard distance
types as an example of visually visible the cognitive process condition ‘clustering’ result, while all of the 42
figures are provided in the supplementary materials appendix B.2.

Linear separation or clustering of cognitive processes in the 2D projections has not been verified with
an automated computer check in these 2D visualization, but different quantitive notions of separation in
the metric spaces (as it is, without projection) are reported on in section 6.2.3. After plotting the points
corresponding to the pre-epsilon machines on the plane, we see that the group-level pre-epsilon machines
corresponding to 3 cognitive process conditions are not explicitly clustered into 3 well-separated clusters,
but visually we can see that on many graphs the visualization machines are located close to each other,
verbalization is also sometimes visually separable.
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As we consider only two dimensional projections we can check what is Vall in distance between ε-
machines accounted for by the distances in selected 2D projection averaged among all configurations of the
parameters, as well as the biggest difference between pairwise distance matrices of 2D points and epsilon
machines i.e., maximum global distortion dG and maximum local dL distortion averaged for all distance
matrices.

Characteristics of 2D projections are listed in the Table 1, which shows that for minimized machines the
quality of displaying information is better on the average sense. In general, the percentage of the information
displayed on the plots is quite high, although the spread in the variance of displayed directions for all
parameters is also large. Local and global distortions have a small spread for both pre-epsilon machines and
minimized machines, and the global distortion of the matrices of pairwise distances between 2D points from
the distances between epsilon machines is quite small.

Table 1: Quality measures of displaying information on 2D projections of Euclidean embedding for 6 group-level
epsilon machines of participants, corresponding to three cognitive processes of mind-wandering, verbalization and
visualization. (See text for definition of measures used.)

Minimization Vall σVall V min
all V max

all dL σdL dG σdG

no minimization 85.91% 9.54 69.70% 99.94% 0.7797 0.2064 0.5144 0.2812
minimized 91.67% 6.49 68.38% 99.93% 0.6929 0.1580 0.3389 0.2016
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Figure 31: 2D projections of Euclidean embedding for pairwise distance matrices for group-level pre-epsilon machines for mind-wandering (square shaped points), verbalization (triangle
shaped points) and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. The first line corresponds to epsilon
distance type, second to Jaccard, history length is L = 3.
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6.2.3 Separation of epsilon machines using original matrices of pairwise distances

The transition from matrices of pairwise distances between machines to pairwise distances between points in
the 2D plane allows us to consider the visualization of the differences and grouping of automata, however,
such a transition entails the loss of some information. To cut off the influence of data loss on the comparison
results, we introduce such a concept as the separation between groups of machines, determined only by the
original matrices of pairwise distances.

A group of machines A is separable from group B if the distance between any two pairs of machines A ,
A ′ from group A is less than the distance from any machine A from group A to any machine B from group
B:

max
A ,A ′

(D(A ,A ′))< min
A ,B

(D(A ,B)), A ,A ′ ∈ A, B ∈ B

where D(A ,A ′) denotes the distance between two epsilon machines A and A ′, which can be both
epsilon or Jaccard, depending on the pairwise distance matrix we use.

When one group is separable from another we have one-sided separation, but if the separability condition
is met simultaneously for two groups, then we call it two-sided separation. In the presence of such a
separation, a numerical measure of it can also be introduced - the separation ratio.

The separation ratio RS(A,B) for two groups of machines A and B is defined as the ratio of the minimum
distance between machines from different groups and the diameter of a set of machines from two groups:

RS(A,B) =
minA ,B(D(A ,B))

minC ,C ′(D(C ,C ′))
, A ∈ A, B ∈ B, C ,C ′ ∈C = A∪B

Suppose we are comparing two groups of machines: A, which has n machines, and B, which has m

machines. Then, to test the criterion for separability of group A from group B, we perform (
n(n−1)

2
·nm)

comparisons between pairwise distances, i.e., check that the distance between each pair of machines in group
A is less than each distance between all pairs of machines, such that one is from group A and the other is from

group B. Similarly, to check the separability of group B from group A, we do (
m(m−1)

2
·nm) comparisons.

If all comparisons gave us a positive result, then we have an absolute two-sided group separation, however, if
there are pairwise distance pairs that fail the test, then we can see what percentage of them passed the test.
We will consider the percentage of pairwise distance pairs that passed the test as a percentage of separation
between groups, which can also be one-sided or two-sided depending on comparisons of pairwise distances
that we make.

6.2.4 Results: Separation for cognitive process conditions of mind-wandering, verbalization and
visualization

Checking if we can separate the machines of cognitive processes from the rest of the machines in the group
we do not need two-sided separation, because we are not interested in the machines of different cognitive
process conditions to be as close to each other as two machines of the same cognitive process condition are.
In this section we only check one-sided separation of machines of the same cognitive process condition (e.g.,
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mind-wandering machines R1-MW1 and R1-MW2) from other four machines for the other conditions (e.g,
from the verbalization and visualization machines: R1-Ver1, R1-Ver2, R1-Vis1, R1-Vis2).

In Table 2 we can see the successful (one-sided) separation cases for mind-wandering and verbalization
cognitive process conditions of group-level machines. The biggest separation ratio corresponds to verbaliza-
tion cognitive process condition and the following configuration parameters: event time mode, history length
L = 7 and minimization threshold δ = 0.2 when using Jaccard distance type, where the separation ratio
equals d = 0.981078. Visualization cognitive process condition again shows the best result for separation
from the other cognitive procsssing conditions, as it is found in 195 cases and that is why all of them are not
included in the table, only parameters for the biggest separation ratio. The biggest ratio for this cognitive
process condition is d = 0.985358 and it corresponds to the peak time mode, history length L = 7, δ = 0.150,
Jaccard distance type.

Taking the average of separation percentages for all parameters configurations yields PMW = 35.03%,
PVer = 56.62%, PVis = 77.30%. As we can see separation percentage for visualization cognitive process
condition is higher than for other cognitive process conditions.

In addition to cases where a separation criteria using pairwise distance matrices is met, it is also possible
to calculate the percentage ofseparation (defined above) in cases where we do not have separation, to see
how it changes with different parameters. As an illustrative example of the impact of choices of temporal
mode, distance metric, minimization threshold δ and history length, Fig. 32 shows that the increase of history
length very likely will lead to obtaining a bigger percentage of separation for peak time mode. In contrast,
the increase of minimization delta will lead to the decrease of percentage of separation eventually, after a
possible increase in the first several steps, and drops drammatically for δ > 0.4. For the event time mode, a
similar trend is observed for all three cognitive process conditions - the corresponding graphs are presented
in the supplementary materials Appendix B.3. At the same time for the clock mode the situation is somewhat
different: the percentage of separation is generally poor and is not so sensitive to the length of the history nor
the minimization delta threshold when changing parameters, it does not display a clear change trend but, in
the case of Jaccard distance, is slightly better for δ = 0 and history lengths L≥ 2.
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Table 2: Instances of successful one-sided separation for the (two) machines of the same cognitive process condition
from the (four) other machines in the set of group-level machines. Each row for mind-wandering (MW) and Verbalization
(Ver) conditions describes parameters of one successful separation case, while the row for Visualization (Vis) lists the
parameters for the maximum separation ratio among 195 cases of successful separation. Separation ratio is fraction of
diameter of the space separating the machines from the other others. L denotes the history length and δ the threshold
for epsilon-machine minimization.

cognitive process condition No time L δ dist type separation ratio

MW 1 event 2 0.050 Jaccard 0.537823
Ver 2 clock 6 0.900 epsilon 0.149514
Ver 3 peak 3 0.000 epsilon 0.731105
Ver 4 peak 3 0.050 epsilon 0.770639
Ver 5 peak 3 0.100 epsilon 0.425755
Ver 6 peak 4 0.100 epsilon 0.379429
Ver 7 event 2 0.050 epsilon 0.508708
Ver 8 event 3 0.000 epsilon 0.654215
Ver 9 event 3 0.050 epsilon 0.716513
Ver 10 event 4 0.000 epsilon 0.812468
Ver 11 event 4 0.050 epsilon 0.787321
Ver 12 event 5 0.150 epsilon 0.560754
Ver 13 event 5 0.200 epsilon 0.569803
Ver 14 event 6 0.250 epsilon 0.610883
Ver 15 event 6 0.350 epsilon 0.0876152
Ver 16 peak 2 0.050 Jaccard 0.711039
Ver 17 peak 3 0.100 Jaccard 0.337218
Ver 18 event 2 0.050 Jaccard 0.328331
Ver 19 event 5 0.200 Jaccard 0.651849
Ver 20 event 6 0.250 Jaccard 0.465677
Ver 21 event 7 0.200 Jaccard 0.981078
Ver 22 event 7 0.250 Jaccard 0.943592
Vis 23-217 peak 7 0.150 Jaccard maxRS = 0.985358
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Figure 32: Percentage of separation for the minimized cognitive process conditions machines, corresponding to different history lengths (from L = 1 to L = 7) and minimization deltas
(from δ = 0 to δ = 1 with the step size 0.05). First line corresponds to the epsilon distance type and second line corresponds to Jaccard distance. Three cognitive process conditions: mind
wandering, verbalization and visualization correspond to the three columns respectively. Time mode for all represented pictures is peak.
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Separation between machines after permuted label assignments.
Also, to check whether the fact that 2 machines of cognitive processes have separated from 4 other

machines in the group is not a random phenomenon, we check whether there is a separation between all
possible pairs of machines and the remaining 4 machines in the group, i.e., between misassigned pairs of
cognitive process machines. In total, for each of 882 parameter configurations, there are 15 ways to select a
pair of machines out of 6, three of which correctly correspond to pairs of machines of one process (MW pair ,
Ver pair, Vis pair ). The result shows that absolute one-sided separation was still found in some incorrect
machine relabelings, however this phenomenon is not too frequent: in no more than 1-2 cases out of 12
incorrect partitions of a set of machines into groups, for each of 882 parameter configurations.

More precisely, we have 882 · 12 = 10584 incorrect ways to select two cognitive process machines
taking all parameters configurations, out of which 838 gave a separation (7.91%). The average separation
percentage for all permutations is Pp = 48.42%, which is quite high compared to the separation percentage
of real cognitive process condition machines. To validate the capacity for separation of group machines for
different cognitive modes, repeating this experiment with more than two machines per mode would allow for
permutation testing potentially to establish the statistical significance of observed one-sided separations.

6.3 Summary

One-sided separation for cognitive processing modes at group level was achieved for all cognitive processing
conditions for some parameter values, and was best using peak and event temporal modes, while clock mode
generally showed poor performance with little sensitivity to parameters but achieved one-sided . In contrast
peak and event epsilon-machine showed increasing separation ratios for all cognitive processing modes as
history length increased. However, for minimization thresholds δ ≥ 0.4 separation performance was generally
but not always negatively impacted. The tentative recommendation is to use peak and event temporal modes,
with as large a history length as possible and minimization thresholds δ < 0.4. Mind-wandering was most
difficult to achieve one-sided separation for in group machines. This may be since it tends occurs in all
conditions. Verbalization could be separated for various parameter settings in peak and event mode using
either epsilon or Jaccard distance. Visualization was particularly robustly separated for a large range of
parameters, with the best separation ratio achieved using the Jaccard distance metric in peak mode.
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7 Recognizing Cognitive Modes and Individuals using Epsilon-machines Gen-
erated from EEG Microstate Sequences

7.1 Likelihood Analysis: cognitive process condition Recognition using Epsilon-Machines

In order to verify that the epsilon machines capture in their construction the microstate dynamics characterizing
cognitive process conditions: mind-wandering (MW), verbalization (Ver) and visualization (Vis), we can, as
one other possible approach, directly execute participants’ EEG microsate sequences on the machines and
evaluate and compare the runs.

7.1.1 Running an EEG microstate sequence on an Epsilon-Machine

Each state of the machine corresponds to a set of words of particular length L, therefore we can determine
the initial state of the computation by finding the state that corresponds to the first L microstates of the
sequence. The computation then follows along reading the input sequence letter-by-letter to determine the
epsilon-machine transitions, where each has a specified probability.

7.1.2 Log-likelihood of a Sequence

We define a measure of how well an epsilon machine E matches a sequence S = s1s2...sn as the logarithm of
the probability of the sequence had it been produced by the machine E , also called log-likelihood `. This
probability is the product of the probability of the starting state s1...sL in the epsilon machine E , built with
the history length L, and probabilities of transitions t along the computation, where the whole computation
transitions T times. Therefore,

`= log2 p(s1...sL)+ log2(
T

∏
t=1

p(t)) = log2 p(s1...sL)+
T

∑
t=1

log2 p(t), (4)

where p(s1...sL) is the probability of the L-gram s1...sL occurring in the data, according to which particular
epsilon machine was built. Here we assume that in addition to the fact that epsilon machines are constructed
according to transition probabilities from L-grams in the sequences of data, we also know some additional
information about L-grams in the data: the number of occurrences for each of the n-gram in data.

7.1.3 Error Conditions and Penalties: Restarts

Sometimes the initial state of the computation cannot be found, because the corresponding state does not exist
in the machine. Also, some transitions specified by a microstate in a sequence might have probability = 0.0
in the machine. In these cases, we need to move one letter further down the sequence and attempt to restart to
a new state, in a similar fashion as for the initial state, and add a penalty to current cumulative log-likelihood.
Additionally, there might be a situation where there is a gap in the measured EEG sequence, in which case
we also need to restart, however without incurring a penalty. These cases can be summarized as follows:

1. Restart caused by the absence of a state in the epsilon machine. (penalized)
2. Restart caused by an impossible, or zero probability transition. (penalized)
3. Restart caused by a break in the sequence of observations. (not penalized)
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L (length) Clock mode Peak mode Event mode
1 0.0102599746210696 0.1274556400506971 0.2062156118885511
2 0.0106796052063905 0.1020918599363347 0.2062156118885511
3 0.0111350251558834 0.0785025666708401 0.1902689873417721
4 0.0116310170091877 0.0630252100840336 0.1531728665207877
5 0.0000154621640845 0.0196078431372549 0.1122448979591837
6 0.0000154621640845 0.0142857142857143 0.0344827586206897
7 0.0000154621640845 0.0117647058823529 0.0192307692307692

Table 3: Minimum observed transition probability values in each length and mode

The penalty is defined as the logarithm of the smallest possible non-zero transition probability in all the
machines for a particular word length L and timing mode divided by the base of the logarithm used (2). The
values are listed in table 3. The resulting value can also be interpreted as twice as ‘bad’ as the least likely
existing transition.

7.1.4 Ranking and Evaluation

To evaluate how well the machines in a given set of epsilon-machines match a candidate sequence, we need
to compare the performance of multiple machines against a single sequence, as ` is just a relative measure.
This will create an ordered list of machines according to how well they matched the sequence. The values of
` in this list can be normalized (denoted as `norm) to the worst performing machine, so that its `norm = 0 and
other machines have `norm = `− `(worst performing machine).

7.1.5 Determining the Best Matching Epsilon-Machines from a Set for a Given EEG Microstate
Sequence

As we can construct many different machines, it will be significant what particular set of machines we
choose to run the sequence on. Epsilon-machines may combine data from many epochs, conditions and/or
participants. The sets of machines we consider are constructed from the EEG canonical microstate sequence
data from the 3 conditions (cognitive process conditions: mind-wandering, verbalization, visualization), 12
epochs (2 runs x 2 repetitions x 3 cognitive process conditions), and 240 individual epoch recordings (20
participants x 12 epochs) :

• M3: One machine per each cognitive process condition, where each combines all runs and repetitions
of the particular cognitive process condition for all 20 main participants.

• M12: One machine for each cognitive process condition in a particular run and repetition, combining
all 20 main participants.

• M240: One machine for each cognitive process condition in a particular run and repetition and for a
particular participant. That is, no sequences are combined in its construction.
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Since we are looking to determine whether we can predict the cognitive process condition of the sequence
with the machines and as some sets of machines, such as M12 and M240 in this study, may contain more
than one which matches the cognitive process condition, we are interested in more than the first machine in
the list. The measures we use are:

• Top 1: 100 if the cognitive process condition of machine in first position matches the sequence
cognitive process condition, 0 otherwise.

• Top 3: Machines in first 3 positions are considered, where each position is weighted (match in first:
100, second: 50, third: 33), the corresponding values are then sum-ed up for each match. The whole
value is normalized by 100

183 so that the maximum attainable value is 100.

• Rank: This measure considers matches at any rank, where the final score is calculated from the
following values: the sum of ranks of all the machines that match the sequence cognitive process
condition and the maximum and minimum attainable scores i.e., if n is the number of matching
machines, it would be the sum of the first n ranks and last n ranks. The final score is

rank = 100
scoremax− score

scoremax− scoremin
.

7.1.6 EEG Microstate Sequence Test Sets

To assess the quality of recognition of candidate EEG microstate sequences using a collections of epsilon
machines, we test a set of sequences against the currently selected set of machines, evaluating each sequence
according to the measures and then summarizing the results. Two test subsets are following:

• N5: The EEG sequences of 5 participants whose data that have not been part of the epsilon-machine
construction. These participants coded are as C11, C13, C15, C16 and C19.

• N20: The EEG sequences of the 20 participants that have been used to construct the epsilon-machines.
These participants are coded as C01 through C26, excluding the above five and excluding C21.

7.1.7 Examples

Figure 33 shows an example where we execute the second run and second repetition of a mind-wandering
sequence of a validation (N5) participant C11 against the set of three machines that combine the data from all
main participants in a cognitive process condition (M3). This particular example is in peak mode. We plot
the normalized `norm of the sequence on each of the machines, which are ordered along the horizontal from
the best matching machine to worst. Red dots signify a match in cognitive process condition. All scores are
evaluated and can be seen in the legend of the plot. We note that we attained a match in the first position (Top
1 = 100), which is also captured by the rank score. (Top 3 score is not appropriate in this situation.)

Moving on, the figure 34 shows the same against 12 machines. Note that without combining all the data
for a single cognitive process condition into single machine, we have now lost the match in the first position
in this example, however the overall result is still very good as the rank score shows.
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Figure 33: Validation participant C11’s EEG microstate sequence from run 2 and repetition 2 of MW task, peak timing
mode, run against M3 (epsilon-machines from the MW, Ver, and Vis data of 20 other participants), is recognized as
mind-wandering.

Figure 35 shows the same as figure 33, however this time for an a participant whose data was included
in the construction of the epsilon-machines. Note the much stronger distinction between the machines: the
log-likelihood difference between the first and second best matching epsilon-machines for the validation
participant was 30 and for the main participant it is 350. (Scales of the plots are not the same).

Figures 36 and 37 show results in the same repetition, run and cognitive process condition for 12 machines
in event and clock modes respectively for validation participant C11. In this case the results are quite similar,
compared to peak mode the scales are smaller, i.e., the distinctions less strong. Rank and Top 3 score point us
to conclude that the cognitive process conditions were best recognized in event mode.

Finally, figure 38 shows results for M240 and a matched participant C01. As this participant has a
corresponding machines in the pool of 240, it clearly stands out in the results.

To conclude, these examples show just a few trends and observations that can be made looking at
particular sequences run against different sets of machines. In the next section, we do similar runs for
the groups of participants whose data were included (N20) and not included (N5) in the epsilon-machine
constructions, summarizing the results for many sequences to obtain generalized results.
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Figure 34: Validation oarticipant C11’s EEG microstate sequence from run 2 and repetition 2 of MW task, peak timing
mode, run against M12 (12 epsilon-machines from the MW, Ver, and Vis epochs of 20 other participants), shows rank
score of 71.87 for mind-wandering.

7.2 Summary Results

The following results bar charts are obtained by running multiple sequences against differing subsets of
machines in the different timing-modes and for different word lengths. The resulting scores are averaged for
each category and the average is showed in the bar charts.

The figures 39 and 40 show the results when we limit ourselves to Top 1 score. Figure 39 shows the
results, when the sequence has been included in the machine construction while figure 40 uses the set of
sequences that have not been included in machine construction. It can be easily noticed that by including the
sequence in machine construction, the results are much improved. Especially when we consider M240, where
we do not combine sequences to construct machines, whatever the length of the words or timing mode, the
best ranking machine is always the one that corresponds to the sequence. Once we combine some sequences
to create M12 and M3, the results are almost unmistakably good for lengths of word larger than 6, except for
clock mode. When we look at sequences that have not been part of the machines (figure 40), the results are
more varied. Especially exceptional are M12 machines at recognizing Verbalization in clock and peak modes.

Let us also look at histogram which uses other than Top 1 measure. Figure 41 shows the performance of
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Figure 35: Main participant 1’s EEG microstate sequence from run 2 and repetition 2 of MW task, peak timing mode,
run against M3

M240 machines evaluated by Top 1, Top 3 and Rank scores. We can see than while Top 1 score or Top 3
score point to some differences in performance in different timing modes, cognitive process conditions and
for different word lengths, actually the distribution of matching machines among the 240 are very similar in
each case as shown by Rank score.
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Figure 36: Validation participant C11; run 2 and repetition 2 of MW task; event timing mode; run against M12
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Figure 37: Validation participant C11; run 2 and repetition 2 of MW task; clock timing mode; run against M12
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Figure 38: Main participant 1; run 2 and repetition 2 of MW task; peak timing mode; run against M240
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Figure 39: Cognitive Processing Condition Recognition Results for the N20 EEG microstate sequences for M3, M12
and M240 machines evaluated by the Top 1 score. Each row corresponds to a cognitive process condition (mind-
wandering, verbalization, visualization). Columns give the results for the M3, M12, M240 sets of epsilon-machines. In
each panel, mean Top 1 scores are plotted for clock, peak and event mode (blue, orange, green) for epsilon-machines
constructed with history lengths from 1 to 7. Recognition of cognitive process conditions is 100% against M240 for
temporal scales and at all history lengths. For the sets of group machines M3 and M12, recognition performance of
cognitive process condition rises monotonically to 100% for peak and event time-modes as history length increases, but
not for clock time-mode whose performance is poor.
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Figure 40: Results for validation (N5) sequences, for M3, M12 and M240 machines evaluated by the Top 1 score.
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Figure 41: Cognitive Process condition Recognition Results for the validation (N5) EEG microstate sequences, for
the M240 epsilon-machines. Each row corresponds to a cognitive process condition (mind-wandering, verbalization,
visualization). Columns of panels show evaluation by Top 1, Top 3 and Rank scores, respectively. Within each panel,
scores are plotted for clock, peak and event temporal modes (blue, orange, green) for epsilon-machines constructed
with history lengths from 1 to 7.
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7.3 Testing Run 2 sequences on Run 1 machines

The data being tested are not included in the data that the epsilon automata are built from, but these data are
the second repetition EEG recordings from the same participants. The sequences for checking the likelihood
of matching are EEG microstate sequences of 3-minute individual recordings.

7.3.1 Individual sequences on 3 group-level machines: cognitive process condition matching

In the first step, we only distinguish between data corresponding to different cognitive process conditions,
and we can check how often we can match a machine with the correct cognitive process condition to the
sequences using the log-likelihood.

The sequences for constructing epsilon machines are a combination of 3-minute EEG recordings of 25
participants C01 - C20, C22-C26, combined into 3 files according to the cognitive process conditions: mind
wandering (MW), verbalization (Ver), visualization (Vis).

time mind mode L1 L2 L3 L4 L5 L6 L7

clock
MW 28.0 ± 6.0 28.0 ± 6.0 28.0 ± 6.0 28.0 ± 6.0 28.0 ± 6.0 30.0 ± 6.2 32.0 ± 6.3
Ver 32.0 ± 6.3 30.0 ± 6.2 30.0 ± 6.2 32.0 ± 6.3 32.0 ± 6.3 32.0 ± 6.3 32.0 ± 6.3
Vis 38.0 ± 6.5 38.0 ± 6.5 38.0 ± 6.5 38.0 ± 6.5 38.0 ± 6.5 36.0 ± 6.4 34.0 ± 6.4

peak
MW 34.0 ± 6.4 34.0 ± 6.4 40.0 ± 6.6 42.0 ± 6.6 38.0 ± 6.5 46.0 ± 6.7 40.0 ± 6.6
Ver 32.0 ± 6.3 30.0 ± 6.2 30.0 ± 6.2 28.0 ± 6.0 40.0 ± 6.6 34.0 ± 6.4 52.0 ± 6.7
Vis 34.0 ± 6.4 36.0 ± 6.4 32.0 ± 6.3 34.0 ± 6.4 38.0 ± 6.5 20.0 ± 5.4 2.0 ± 1.9

event
MW 22.0 ± 5.6 26.0 ± 5.9 30.0 ± 6.2 34.0 ± 6.4 34.0 ± 6.4 32.0 ± 6.3 36.0 ± 6.4
Ver 34.0 ± 6.4 34.0 ± 6.4 34.0 ± 6.4 38.0 ± 6.5 34.0 ± 6.4 34.0 ± 6.4 30.0 ± 6.2
Vis 40.0 ± 6.6 40.0 ± 6.6 38.0 ± 6.5 36.0 ± 6.4 36.0 ± 6.4 44.0 ± 6.7 44.0 ± 6.7

Table 4: Average Top1 score (with 95% Confidence Interval) for matching mind mode of 150 files with sequences of
R2 data to the three group-level epsilon machines built from R1 data.

The best performance here with just 3 machines to match against for each cognitive process condition
occurs for peak mode with history length 5, then 4 or 3, for event mode with length 6 and 7, which appear to
be performing above chance level, while clock mode performs around chance level or worse.

7.3.2 Individual sequences on 6 group-level machines: cognitive process condition matching

In the second step, we distinguish between data corresponding to different cognitive process conditions and
different repetitions with six group-level machines from Run 1, and again we check how often we can match
a machine with the correct cognitive process condition to the sequences using the log-likelihood.
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time mind mode L1 L2 L3 L4 L5 L6 L7

clock
MW 42.0 ± 6.6 40.0 ± 6.6 40.0 ± 6.6 40.0 ± 6.6 40.0 ± 6.6 40.0 ± 6.6 40.0 ± 6.6
Ver 24.0 ± 5.7 22.0 ± 5.6 22.0 ± 5.6 22.0 ± 5.6 22.0 ± 5.6 22.0 ± 5.6 24.0 ± 5.7
Vis 36.0 ± 6.4 36.0 ± 6.4 36.0 ± 6.4 36.0 ± 6.4 36.0 ± 6.4 34.0 ± 6.4 34.0 ± 6.4

peak
MW 50.0 ± 6.7 54.0 ± 6.7 52.0 ± 6.7 46.0 ± 6.7 24.0 ± 5.7 38.0 ± 6.5 44.0 ± 6.7
Ver 22.0 ± 5.6 28.0 ± 6.0 26.0 ± 5.9 34.0 ± 6.4 44.0 ± 6.7 52.0 ± 6.7 54.0 ± 6.7
Vis 34.0 ± 6.4 26.0 ± 5.9 30.0 ± 6.2 34.0 ± 6.4 36.0 ± 6.4 0.0 ± 0.0 8.0 ± 3.6

event
MW 44.0 ± 6.7 44.0 ± 6.7 46.0 ± 6.7 38.0 ± 6.5 36.0 ± 6.4 32.0 ± 6.3 56.0 ± 6.7
Ver 24.0 ± 5.7 26.0 ± 5.9 28.0 ± 6.0 30.0 ± 6.2 34.0 ± 6.4 34.0 ± 6.4 42.0 ± 6.6
Vis 36.0 ± 6.4 34.0 ± 6.4 32.0 ± 6.3 34.0 ± 6.4 32.0 ± 6.3 36.0 ± 6.4 2.0 ± 1.9

Table 5: Average Top1 score (with 95% Confidence Interval) for matching mind mode of 150 files with sequences of
R2 data to the six group-level epsilon machines built from R1 data.

Here with six group-level machines from Run 1, the best performance is in peak mode at a number of
history lengths 1 to 5, especially at history length 4, while in event mode for length 3 performs better than
chance at distinguishing cognitive conditions. The best setting for clock mode is length 1 (marginally above
chance overall).

7.3.3 Individual sequences on 150 individual-level machines: cognitive process condition matching

In the third step, we distinguish between data corresponding to different cognitive process conditions and
different repetitions (e.g., MW1 and MW2) and different individuals as well, and again we check how often
we can match a machine with the correct cognitive process condition to the sequences using the log-likelihood.

time mind mode L1 L2 L3 L4 L5 L6 L7

clock
MW 30.0 ± 6.2 30.0 ± 6.2 30.0 ± 6.2 30.0 ± 6.2 30.0 ± 6.2 30.0 ± 6.2 34.0 ± 6.4
Ver 40.0 ± 6.6 40.0 ± 6.6 42.0 ± 6.6 46.0 ± 6.7 46.0 ± 6.7 44.0 ± 6.7 44.0 ± 6.7
Vis 46.0 ± 6.7 46.0 ± 6.7 44.0 ± 6.7 42.0 ± 6.6 42.0 ± 6.6 40.0 ± 6.6 48.0 ± 6.7

peak
MW 38.0 ± 6.5 38.0 ± 6.5 68.0 ± 6.3 68.0 ± 6.3 32.0 ± 6.3 4.0 ± 2.6 2.0 ± 1.9
Ver 48.0 ± 6.7 38.0 ± 6.5 30.0 ± 6.2 22.0 ± 5.6 18.0 ± 5.2 24.0 ± 5.7 10.0 ± 4.0
Vis 42.0 ± 6.6 42.0 ± 6.6 10.0 ± 4.0 12.0 ± 4.4 46.0 ± 6.7 68.0 ± 6.3 82.0 ± 5.2

event
MW 40.0 ± 6.6 40.0 ± 6.6 100.0 ± 0.0 0.0 ± 0.0 10.0 ± 4.0 40.0 ± 6.6 54.0 ± 6.7
Ver 36.0 ± 6.4 32.0 ± 6.3 2.0 ± 1.9 68.0 ± 6.3 38.0 ± 6.5 12.0 ± 4.4 8.0 ± 3.6
Vis 40.0 ± 6.6 28.0 ± 6.0 0.0 ± 0.0 30.0 ± 6.2 56.0 ± 6.7 48.0 ± 6.7 46.0 ± 6.7

Table 6: Average Top1 score (with 95% Confidence Interval) for matching mind mode of 150 files with sequences of
R2 data to the 150 individual epsilon machines built from R1 data.

Here with comparison over 150 individual epoch machines from Run 1, performance improves for clock
mode with 150 machines, performing better than chance with better performances generally as history length
increases. Even better is peak mode wth lengths 1 and then 2, whereas event mode is similar to clock for
length 1 only, and above chance for length 2.
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7.3.4 Individual sequences on 150 individual-level machines: person matching

Here we check whether or not the best matching machine for a sequence from Run 2 from the set of 150
machines epochs from Run 1 is from the same participant.

time person L1 L2 L3 L4 L5 L6 L7

clock
C01 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0
C02 66.7 ± 18.3 66.7 ± 18.3 50.0 ± 19.4 66.7 ± 18.3 66.7 ± 18.3 83.3 ± 14.5 66.7 ± 18.3
C03 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0
C04 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 50.0 ± 19.4 16.7 ± 14.5 0.0 ± 0.0
C05 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C06 33.3 ± 18.3 33.3 ± 18.3 33.3 ± 18.3 33.3 ± 18.3 50.0 ± 19.4 33.3 ± 18.3 0.0 ± 0.0
C07 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5
C09 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0
C10 0.0 ± 0.0 16.7 ± 14.5 50.0 ± 19.4 66.7 ± 18.3 33.3 ± 18.3 16.7 ± 14.5 33.3 ± 18.3
C11 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0
C12 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C13 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C15 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0
C18 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C19 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C22 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0
C23 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C24 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C25 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C26 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5
All 10.7 ± 5.7 8.7 ± 5.8 11.3 ± 5.7 12.0 ± 7.4 12.7 ± 7.4 9.3 ± 6.9 8.0 ± 5.8

peak
C01 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C02 50.0 ± 19.4 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C03 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C04 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C05 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C06 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C07 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C09 16.7 ± 14.5 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C10 16.7 ± 14.5 50.0 ± 19.4 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C11 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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C12 0.0 ± 0.0 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C13 33.3 ± 18.3 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C15 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 0.0 ± 0.0 0.0 ± 0.0 50.0 ± 19.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C18 16.7 ± 14.5 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0
C19 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 0.0 ± 0.0 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C22 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C23 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3
C24 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0
C25 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C26 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0
All 10.0 ± 5.2 10.0 ± 4.5 13.3 ± 6.1 1.3 ± 2.5 0.7 ± 1.3 2.0 ± 2.8 2.7 ± 3.0

event
C01 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C02 33.3 ± 18.3 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C03 33.3 ± 18.3 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C04 16.7 ± 14.5 0.0 ± 0.0 50.0 ± 19.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C05 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C06 33.3 ± 18.3 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C07 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C09 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C10 16.7 ± 14.5 16.7 ± 14.5 50.0 ± 19.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C11 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C12 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C13 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C15 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C16 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 50.0 ± 19.4 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C18 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C19 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C22 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C23 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C24 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C25 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C26 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
All 10.7 ± 5.4 6.7 ± 3.7 11.3 ± 6.0 2.0 ± 2.1 0.0 ± 0.0 0.0 ± 0.0 2.7 ± 2.4
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Table 7: Average Top1 score (with 95% Confidence Interval) for matching person of 150 files with sequences of R2
data to the 150 individual epsilon machines built from R1 data.

Performance overall appears to be above chance, but better for some particiapnts than others (e.g.,
participant C02 is matched most of the time for clock at different history lengths; in contrast C13 is never
matched). Performance at person matching is for history length 4 in clock mode, length 3 in peak mode, and
length 1 or 3 in event mode, though shows high variability. For some settings, performance is abysmal, e.g.,
event mode machines rarely matches the person for history lengths 3 and above, never matching the person
for lengths 5 and 6.

7.3.5 Individual sequences on 150 individual-level machines: cognitive process condition matching
for each person individually

Checking per participant whether their EEG sequences from Run 2 match the cognitive process condition
when run against the 150 machines from Run 1 epochs is done in this section.

time mode mind mode L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 50 50 50 50 50 50 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 50 0 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 50 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 8: Average Top1 score (with 95% Confidence Interval) for matching cognitive process conditions of the person
C01 for 6 files with sequences of R2 data to the 150 individual-level epsilon machines built from R1 data.

The tables corresponding to the rest of the participants, i.e. C03 - C20, C22- C26 are placed in the
corresponding section of the supplementary materials section A.2 as well as all of the tests repeated using
Run 1 sequences on Run 2 machines in section A.3.

Performance is generally very poor, with certain individuals having more than 50% success in identifying
the mode for history length 3 in peak more, but generally most participants’ conditions not identified even at
chance level.

7.4 Discussion

The log-likelihood method for recognizing cognitive modes did not perform as well as the geometric distance
metrics studied in the previous section. This may perhaps be due to certain epsilon-machines attracting many
matches disproportionately. For sequences used in the construction of the epsilon-machines though that
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Figure 42: The number of correct matching of cognitive process conditions across individuals, i.e., cases where the
machine with the highest likelihood correspond to the same cognitive process condition as the sequences. The graph
displays the result of testing 150 individual R2 sequences on 150 R1 epsilon automata, for three cognitive mode
conditions in all three time modes (clock, peak, event) and 7 history lengths (from L = 1 to L = 7). Since two files with
sequences correspond to each person, in all respects we have 42 tests for each person. The last table shows the sum of
the result for three cognitive process conditions, displaying the overall process matching success across people.
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time mode mind mode L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 50 50 50 50 0
Ver 50 50 50 50 50 100 100
Vis 100 100 50 100 100 100 100

peak
MW 50 0 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 50 50 0 0 0 0 0

event
MW 0 50 0 0 0 0 0
Ver 50 50 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 9: Average Top1 score (with 95% Confidence Interval) for matching cognitive process conditions of the person
C02 for 6 files with sequences of R2 data to the 150 individual-level epsilon machines built from R1 data.

method showed very specific capacity to match the sequence over a broad range of temporal modes and history
lengths, especially for machines constructed from a single epoch’s data. There appears to be significant
variabily between individauls in how well their sequences are identified both for cognitive processing conditon
and for detecting the person who was the source of the EEG microsate sequence. Appendix A.3 contains
similar analyses but using Run 1 data on Run 2 epsilon-machines.
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8 Status and Further Planned Methodological Developments

8.1 Objective 1: EEG Microstates and Co-activation PatternsCAPs derived in Resting State
and Attenton Tasks

The EEG microstates we derived for the simultaneous EEG/fMRI target dataset have an explicit derivation
justifying the choice of five types that is supported by the explained variance and cross-validation criteria, and
are very similar topographically to the canonical set, as well as the previously investigated microstate E in the
literature. It is remarkable that this is the case for this eyes-open dataset as most microstate studies have used
eyes-closed data only. As expected from the literature, the discrete alphabet of eight Co-activation Patterns
(CAPs) derived for the target dataset has clear pairs that show functional correspondence (X. Liu et al., 2018).
Some of these CAP pairs exhibit commonly found “gradients”, while other pairs appear to include commonly
known networks co-activating and attenuating. Objective 1 has been achieved. Next steps beyond the project
will investigate a robust criterion for defining the optimal number of CAPs to use in conjunction with the EEG,
to confirm the robustness of the eight generated CAPs for resting state and attention-demanding tasks (such
as the CRT task). Unlike what we found for EEG where very similar microstates arise for both resting state
and attention tasks, the eight CAPs generated for attention tasks differ more substantially from those for the
resting state. This raises the possibility of using multiple sets of eight CAPs simultaneously in applications to
detecting cognitive mode.

8.2 Objective 2: EEG Microstate and CAP n-grams and Basic Epsilon-machines

Our studies of epsilon-machines and words (n-grams) occurring and not occurring showed differences
between cognitive modes in the arrangement of these machines in metric spaces. Also, log-likelihood
techniques for classifying EEG microstate state sequences according to cognitive mode and person-detection
were tested. These led to recognition of substantial between-subject variability in these success rates and
performed above chance accuracy even when averaging over parameter spaces. Based on the exploration
so far, one can identify the most promising ranges of parameters (temporal mode, history lengths, and
minimization thresholds) to concentrate on in order to refine and validate the methods on other datasets. In
ongoing work (not yet reported) we find large group differences in the metric spaces for epsilon-machine
brain models. The work so far mainly used eyes-closed EEG and the four canonical microstates. As a
complement to this, it would be desirable to explore how variability between participants as well as how
particular characteristics of individuals might affect performance of the methods.

For the EEG/fMRI target dataset, we are in a position to investigate these methods using the five
microstates and the CAP sets obtained. So far investigation of epsilon-machines, with minimization of
2-grams linked BA and EA, and BD and ED, respectively, in the resting state EEG microstate sequence. Both
causal states here indicate a similarity between microstates B and E, which may be due to spatial similarity.
Figure 43 shows the spatial similarity matrix between resting state microstates. B and D are two of the
most similar microstates spatially, and the similarity of transition from these microstates to others may be
due to this fact. Further investigations are required to confirm this, however. First investigations into CAP
epsilon-machines in resting state have shown no significant merging of states minimization. Dataset size
limitations and the slow rate of fMRI scanning currently limit CAP epsilon-machines to history lengths for
CAP sequences to just 1-grams. Nevertheless, we are finding that the the EEG characteristics of microstate

88

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



n-gram coverage, frequency and durations differ between the CAPs (Haydock et al., in prep.). This gives us
the insight to associate to each CAP a characteristic EEG sequence epsilon-machine to capture the multiscale
neurodynamics at group- and individual-level in different cognitive conditions.

Figure 43: Spatial similarity matrix between each pair of the five microstates. Colour indicates correlation coefficient
in each case. Diagonal is self comparison with score of one.

Further study using different length n-grams with event, peak and clock mode during CAPs in resting
state and during CAPs in attention-demanding tasks will be required to clarify this relationship further.
Epsilon-machines that serve as brain models for EEG microstate generation and prediction during each CAP
will clarify further any simple connections between EEG and fMRI by co-occurrence. Furthermore, if an
epsilon-machine is generated for the microstates that are occurring during each CAP are generated, and at
the CAP level, an epsilon-machine is also generated, a combined model of nested automata can be used
to model a task condition. Figure 44 gives a schematic of this nested model. Similarly, a complementary
multi-level model with resting state CAP transitions at the high level and EEG microstate epsilon-machine
models nested within each CAP state can be constructed combining data from the fMRI and EEG domains
can be constructed and evaluated. Such models could use clock or event model at the CAP level and any of
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clock, peak and event modes at the EEG level. We are now in a position to construct such models.
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Figure 44: Basic schematic of a potential model to bridge the gap between EEG and fMRI. An epsilon-machine can be
generated using only the EEG time series which is occurring during a given CAP (inside a single CAP circle). This may
be applied to the EEG time series for all CAPs. An epsilon-machine can then be generated at the fMRI level, creating
an automaton that transitions between CAPs. The result is an fMRI epsilon-machine which contains within it nested
machines for the EEG microstates. Significant differences between microstate dynamics during different CAP must
first be confirmed – see forthcoming work (Haydock et al., in prep.).
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8.3 Objective 3: Investigation into Characterization of Epsilon-machine Models at Individ-
ual and Group-Level

Geometric and log-likelihood investigation of epsilon-machines has been explored in this report, and must be
further validated on additional datasets. Techniques of Krohn-Rhodes theory and rigorous measures of epsilon-
machine methods are applied according to our methodology (Nehaniv & Antonova, 2017). Preliminary
investigations into the holonomy decomposition of the resting state event-based EEG microstate and fMRI
CAP epsilon-machines from our target dataset found no high levels of complexity and no natural group
subsystems. This may be due to the particular epsilon-machine construction method that was used, in contrast
to NehanivAntonova2017. Next steps will apply other epsilon-machine construction methods in an attempt to
identify natural subsystems and complexity. Immediate work to investigate these findings will run the same
analyses on peak- and clock-based epsilon-machines to check for complexity of these models. There will also
be an investigation into the epsilon-machines of EEG microstates occurring during each CAP to see whether
there is a connection between microstates and CAPs in this way, as there may be natural subsystems in the
EEG microstate behaviour that are only apparent during specific CAPs. Finally, it is natural to apply and
study the other measures already developed in this report for EEG (Sections 6, 7, and Appendix C) to CAP
and EEG epsilon-machines of the target dataset, such as the geometric distance, log-likelihood matching and
shortest zero occurrence n-grams, and also to apply these methods between subject-level epsilon-machines,
as well as to study distance geometry between the EEG microstate epsilon-machines occurring during each
CAPs. By linking CAPs and their transitions to EEG microstate syntax in this way, functional significance of
microstate syntax might be better elucidated.

8.4 Objective 4: Attention Task Data and Investigation of Subject Task Performance

The EEG microstates we derived are consistent in the resting state, the simple blocked choice reaction
time (CRT) task, and the attention-demanding, continuous CRT task. Interestingly, the CAPs generated
significantly differed between tasks, with spatial similarities showing few consistent co-activation patterns
(Figure 29). This finding may indicate that different generators in each task recording are yielding similar
electrical activity patterns on the scalp. Further investigation into this claim will be conducted in the future.
Methods of epsilon-distance and Jaccard distance comparison between reference epsilon-machines and
epsilon-machines constructed on the fly (using a sliding window - it is fast to construct a single epsilon
machine) from neurophysiological data will be assessed for detecting attention and mind-wandering. This
will be compared to log-likehood matching of reference epsilon-machines for different cognitive modes (at
group- and individual-level) for efficacy vis à vis the geometric methods – a comparison suggested by the
results of this project.

While CAPs and microstates have been generated in all task recordings, future work will focus on
measures of the epsilon-machines in the resting state, comparing with other task conditons and cognitive
modes. The models generated from the resting state data, as per objective 3, will be characterized for
both EEG microstates and fMRI CAPs, and the measures will be employed to out seek out when same
characteristics, dynamics and presumably mechanisms arise in the CRT task data to identify periods of
mind-wandering. CRT task performance data will be investigated to achieve this. Periods where subjects
make errors or react more slowly to the task will be compared to the resting state models, and capacity for
prediction of mind-wandering using the models on the performance data (errors and delays) in the EEG/fMRI
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dataset will be assessed.
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A Appendices

A.1 List of Software Pacakages Developed

Significant software development toward the project goals has been achieved since the previous report under
the direction of C.L. Nehaniv.

A.1.1 Porting KeyPy to Python 3.7

The EEG processing software KeyPy developed by Patricia Milz (KEY Institute for Brain-Mind Research,
Switzerland) (Milz, 2015) has been ported from Python 2.7 to Python 3.7 and the repository made publicly
available on github https://github.com/uwaicl/keypy. Also the calculation of variance explained by a set
of EEG microstates has been corrected.
Project Members: Thomas George, Reinoud Maex, David G. Haydock

A.1.2 Epsilon-machine construction and minimization

epsilon-machine-minimization is written for constructing and minimization of epsilon automata, according
to the data - set of strings (formal alphabet words), for example, sequences of microstates of EEG observations.

Additional functions are also possible after the construction of the automata, such as the calculation of
the distance between the machines or the likelihood of the input sequence to be accepted or generated by the
automaton.

Developed by project member Hanna Derets (MITACS intern in Summer 2021) under supervision of
C. L. Nehaniv.

A.1.3 Log-likelihood Matching of ε-machines and Visualizations

Sebastián Dohnány and Hanna Derets (MITACS interns in Summer 2021) developed software epsilon-
evaluate and others to compute log-likehood of data sequences on epsilon-machines; also various software
for Euclidean embedding, visualization in 2D and 3D for sets of points with pairwise distances given by
any distance metric.

A.1.4 Automata Animation

Sebastián Dohnány developed epsilon-animate: Animation of probabilisticly generated or pre-defined se-
quences executing on finite automata and epsilon-machines.

To request access to the software contact Prof. C. L. Nehaniv, University of Waterloo Algebraic Intelli-
gence and Computation Lab at chrystopher.nehaniv@uwaterloo.ca .
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A.2 Recognizing cognitive process condition using top 1 likelihood matching for Run 2 se-
quences tested on individual epsilon machines based on Run 1 data, for 23 individuals.

Individual sequences on 150 individual-level machines: cognitive process condition matching for
the persons 3 - 20, 22 - 26 individually

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 50 0 0
Vis 0 50 50 50 50 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 50 50 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 10: Average Top1 score for matching cognitive process conditions of the person C03 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 50 50 100 50 0
Ver 0 0 0 0 50 0 0
Vis 0 0 0 0 0 0 0

peak
MW 50 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

event
MW 50 0 0 0 0 0 0
Ver 0 0 100 0 0 0 0
Vis 0 0 50 0 0 0 0

Table 11: Average Top1 score for matching cognitive process conditions of the person C04 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 50
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

Table 12: Average Top1 score for matching cognitive process conditions of the person C05 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 0 50 50 50 0 0
Ver 0 50 50 0 0 0 0
Vis 50 50 0 50 100 100 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 50 0 0 0 0 0

event
MW 0 50 50 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 100 0 0 0 0 0 0

Table 13: Average Top1 score for matching cognitive process conditions of the person C06 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 14: Average Top1 score for matching cognitive process conditions of the person C07 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 50
Ver 0 0 50 50 50 50 0
Vis 0 0 0 0 0 0 0

peak
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 50 0 0 0 50

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 15: Average Top1 score for matching cognitive process conditions of the person C08 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 50 50 0 0 50 0

peak
MW 50 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 16: Average Top1 score for matching cognitive process conditions of the person C09 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 50 50 50 50 50 50
Ver 0 0 50 50 0 0 0
Vis 0 0 50 100 50 0 50

peak
MW 0 50 50 0 0 0 0
Ver 50 50 0 0 0 0 0
Vis 0 50 50 0 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 50 0 50 0 0 0 0
Vis 0 50 50 0 0 0 0

Table 17: Average Top1 score for matching cognitive process conditions of the person C10 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 50 50 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 50 50 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 100 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 50 0 0 0 0

Table 18: Average Top1 score for matching cognitive process conditions of the person C11 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 50

peak
MW 0 0 50 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 50 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 50
Vis 0 0 0 0 0 0 0

Table 19: Average Top1 score for matching cognitive process conditions of the person C12 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 50 0 50 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 20: Average Top1 score for matching cognitive process conditions of the person C13 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 50
Vis 0 0 0 0 0 0 0

Table 21: Average Top1 score for matching cognitive process conditions of the person C14 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 50 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 50 0 0 0 0

event
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 22: Average Top1 score for matching cognitive process conditions of the person C15 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 0 0 50 0 0 0

Table 23: Average Top1 score for matching cognitive process conditions of the person C16 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 50 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 100 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 100 0 0 50 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

Table 24: Average Top1 score for matching cognitive process conditions of the person C17 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 50 50 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 50 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 50 0 0 0 0 50 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 25: Average Top1 score for matching cognitive process conditions of the person C18 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 50 0 0 0
Vis 0 50 0 0 0 0 0

Table 26: Average Top1 score for matching cognitive process conditions of the person C19 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 50 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 50 50 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 27: Average Top1 score for matching cognitive process conditions of the person C20 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 50 50 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 50
Vis 0 0 50 0 0 0 0

event
MW 0 0 0 0 0 0 50
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 28: Average Top1 score for matching cognitive process conditions of the person C22 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 0 0 0 0 0 50

peak
MW 0 0 0 0 0 0 50
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 50

event
MW 0 0 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 29: Average Top1 score for matching cognitive process conditions of the person C23 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 0 0 0 0 0 50
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 100 0

event
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 30: Average Top1 score for matching cognitive process conditions of the person C24 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

event
MW 0 0 100 0 0 0 50
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 31: Average Top1 score for matching cognitive process conditions of the person C25 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 50
Ver 50 50 0 0 0 0 0
Vis 0 0 0 0 50 0 0

peak
MW 0 0 0 50 0 0 0
Ver 0 50 0 0 50 0 0
Vis 0 0 0 50 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 32: Average Top1 score for matching cognitive process conditions of the person C26 for 6 files with sequences
of R2 data to the 150 individual-level epsilon machines built from R1 data.
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A.3 Recognizing cognitive process condition and person using top 1 likelihood matching for
Run 1 sequences tested on individual and group-level epsilon machines based on Run
2 data.

Repeating the same test but swapping data for testing sequences and for building machines, i.e. using
individual R1 files to check their likelihood matching with machines built from R2 data, we get the following
results.

A.3.1 Individual sequences on 3 group-level machines: cognitive process condition matching

time condition L1 L2 L3 L4 L5 L6 L7

clock
MW 32.0 ± 6.3 32.0 ± 6.3 30.0 ± 6.2 26.0 ± 5.9 24.0 ± 5.7 28.0 ± 6.0 34.0 ± 6.4
Ver 50.0 ± 6.7 50.0 ± 6.7 52.0 ± 6.7 52.0 ± 6.7 54.0 ± 6.7 54.0 ± 6.7 52.0 ± 6.7
Vis 38.0 ± 6.5 38.0 ± 6.5 36.0 ± 6.4 42.0 ± 6.6 38.0 ± 6.5 34.0 ± 6.4 34.0 ± 6.4

peak
MW 24.0 ± 5.7 20.0 ± 5.4 14.0 ± 4.7 22.0 ± 5.6 34.0 ± 6.4 28.0 ± 6.0 36.0 ± 6.4
Ver 40.0 ± 6.6 42.0 ± 6.6 44.0 ± 6.7 36.0 ± 6.4 38.0 ± 6.5 60.0 ± 6.6 56.0 ± 6.7
Vis 46.0 ± 6.7 54.0 ± 6.7 52.0 ± 6.7 60.0 ± 6.6 50.0 ± 6.7 28.0 ± 6.0 16.0 ± 4.9

event
MW 24.0 ± 5.7 20.0 ± 5.4 24.0 ± 5.7 32.0 ± 6.3 32.0 ± 6.3 30.0 ± 6.2 34.0 ± 6.4
Ver 44.0 ± 6.7 40.0 ± 6.6 32.0 ± 6.3 38.0 ± 6.5 36.0 ± 6.4 28.0 ± 6.0 38.0 ± 6.5
Vis 44.0 ± 6.7 46.0 ± 6.7 48.0 ± 6.7 44.0 ± 6.7 44.0 ± 6.7 54.0 ± 6.7 48.0 ± 6.7

Table 33: Average Top1 score (with 95% Confidence Interval) for matching condition of 150 files with sequences of
R1 data to the three group-level epsilon machines built from R2 data.

A.3.2 Individual sequences on 6 group-level machines: cognitive process condition matching

time condition L1 L2 L3 L4 L5 L6 L7

clock
MW 48.0 ± 6.7 46.0 ± 6.7 46.0 ± 6.7 46.0 ± 6.7 48.0 ± 6.7 48.0 ± 6.7 36.0 ± 6.4
Ver 44.0 ± 6.7 48.0 ± 6.7 48.0 ± 6.7 50.0 ± 6.7 50.0 ± 6.7 52.0 ± 6.7 58.0 ± 6.6
Vis 4.0 ± 2.6 2.0 ± 1.9 2.0 ± 1.9 2.0 ± 1.9 2.0 ± 1.9 0.0 ± 0.0 2.0 ± 1.9

peak
MW 48.0 ± 6.7 38.0 ± 6.5 34.0 ± 6.4 32.0 ± 6.3 36.0 ± 6.4 28.0 ± 6.0 34.0 ± 6.4
Ver 48.0 ± 6.7 54.0 ± 6.7 58.0 ± 6.6 42.0 ± 6.6 38.0 ± 6.5 78.0 ± 5.6 30.0 ± 6.2
Vis 4.0 ± 2.6 16.0 ± 4.9 22.0 ± 5.6 32.0 ± 6.3 44.0 ± 6.7 6.0 ± 3.2 32.0 ± 6.3

event
MW 50.0 ± 6.7 50.0 ± 6.7 48.0 ± 6.7 50.0 ± 6.7 46.0 ± 6.7 40.0 ± 6.6 34.0 ± 6.4
Ver 26.0 ± 5.9 26.0 ± 5.9 30.0 ± 6.2 30.0 ± 6.2 32.0 ± 6.3 26.0 ± 5.9 50.0 ± 6.7
Vis 24.0 ± 5.7 28.0 ± 6.0 28.0 ± 6.0 34.0 ± 6.4 42.0 ± 6.6 46.0 ± 6.7 8.0 ± 3.6

Table 34: Average Top1 score (with 95% Confidence Interval) for matching condition of 150 files with sequences of
R1 data to the six group-level epsilon machines built from R2 data.
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A.3.3 Individual sequences on 150 individual-level machines: cognitive process condition matching

time condition L1 L2 L3 L4 L5 L6 L7

clock
MW 40.0 ± 6.6 42.0 ± 6.6 40.0 ± 6.6 38.0 ± 6.5 38.0 ± 6.5 38.0 ± 6.5 24.0 ± 5.7
Ver 40.0 ± 6.6 38.0 ± 6.5 38.0 ± 6.5 36.0 ± 6.4 34.0 ± 6.4 34.0 ± 6.4 38.0 ± 6.5
Vis 50.0 ± 6.7 50.0 ± 6.7 50.0 ± 6.7 46.0 ± 6.7 46.0 ± 6.7 48.0 ± 6.7 44.0 ± 6.7

peak
MW 38.0 ± 6.5 28.0 ± 6.0 28.0 ± 6.0 32.0 ± 6.3 68.0 ± 6.3 58.0 ± 6.6 46.0 ± 6.7
Ver 42.0 ± 6.6 50.0 ± 6.7 52.0 ± 6.7 52.0 ± 6.7 22.0 ± 5.6 18.0 ± 5.2 44.0 ± 6.7
Vis 44.0 ± 6.7 42.0 ± 6.6 28.0 ± 6.0 20.0 ± 5.4 24.0 ± 5.7 24.0 ± 5.7 20.0 ± 5.4

event
MW 44.0 ± 6.7 32.0 ± 6.3 28.0 ± 6.0 4.0 ± 2.6 46.0 ± 6.7 44.0 ± 6.7 56.0 ± 6.7
Ver 36.0 ± 6.4 46.0 ± 6.7 68.0 ± 6.3 58.0 ± 6.6 66.0 ± 6.4 42.0 ± 6.6 48.0 ± 6.7
Vis 44.0 ± 6.7 32.0 ± 6.3 12.0 ± 4.4 34.0 ± 6.4 2.0 ± 1.9 2.0 ± 1.9 8.0 ± 3.6

Table 35: Average Top1 score (with 95% Confidence Interval) for matching condition of 150 files with sequences of
R1 data to the 150 individual epsilon machines built from R2 data.

A.3.4 Individual sequences on 150 individual-level machines: person matching

time person L1 L2 L3 L4 L5 L6 L7

clock
C01 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C02 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 33.3 ± 18.3 16.7 ± 14.5
C03 50.0 ± 19.4 33.3 ± 18.3 16.7 ± 14.5 50.0 ± 19.4 50.0 ± 19.4 33.3 ± 18.3 33.3 ± 18.3
C04 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 33.3 ± 18.3 33.3 ± 18.3 33.3 ± 18.3
C05 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C06 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0
C07 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5
C09 33.3 ± 18.3 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0
C10 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5
C11 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5
C12 33.3 ± 18.3 33.3 ± 18.3 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C13 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 33.3 ± 18.3 16.7 ± 14.5
C15 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0
C18 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C19 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 16.7 ± 14.5
C22 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0
C23 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5
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C24 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C25 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C26 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5
All 10.0 ± 5.2 10.0 ± 4.5 8.7 ± 3.2 11.3 ± 5.4 8.0 ± 4.9 10.7 ± 5.1 9.3 ± 4.1

peak
C01 0.0 ± 0.0 0.0 ± 0.0 66.7 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C02 33.3 ± 18.3 50.0 ± 19.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C03 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C04 16.7 ± 14.5 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C05 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C06 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C07 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C09 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C10 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C11 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C12 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C13 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C15 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 0.0 ± 0.0 0.0 ± 0.0 66.7 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C18 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0
C19 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C22 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C23 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C24 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C25 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C26 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
All 5.3 ± 3.5 7.3 ± 5.2 11.3 ± 7.5 2.0 ± 2.1 0.0 ± 0.0 1.3 ± 2.5 0.7 ± 1.3

event
C01 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C02 33.3 ± 18.3 50.0 ± 19.4 66.7 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C03 16.7 ± 14.5 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C04 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C05 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C06 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C07 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C08 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C09 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C10 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C11 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C12 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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C13 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C14 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C15 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0
C16 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C17 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C18 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 16.7 ± 14.5
C19 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C20 33.3 ± 18.3 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C22 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C23 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 18.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5
C24 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C25 0.0 ± 0.0 33.3 ± 18.3 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
C26 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 16.7 ± 14.5 0.0 ± 0.0 0.0 ± 0.0
All 10.0 ± 4.5 8.7 ± 4.9 10.0 ± 6.1 2.7 ± 2.4 2.0 ± 2.1 0.0 ± 0.0 1.3 ± 1.8

Table 36: Average Top1 score (with 95% Confidence Interval) for matching person of 150 files with sequences of R1
data to the 150 individual epsilon machines built from R2 data.

A.3.5 Individual sequences on 150 individual-level machines: cognitive process condition matching
for each person individually

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 50 50 50 50 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 100 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 0 50 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 0 0 50 0 0 0

Table 37: Average Top1 score for matching cognitive process conditions of the person C01 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 50 50 0 50 0
Ver 0 0 0 50 0 0 0
Vis 0 0 0 0 0 50 50

peak
MW 50 100 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 50 0 0 0 0 0

event
MW 50 50 0 0 0 0 0
Ver 0 50 100 0 0 0 0
Vis 50 50 100 0 0 0 0

Table 38: Average Top1 score for matching cognitive process conditions of the person C02 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 100 50 50 100 100 0 50
Vis 50 50 0 50 50 100 50

peak
MW 0 0 0 0 0 0 0
Ver 0 50 0 0 0 0 0
Vis 50 50 0 0 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 50 0 0 0 0 0

Table 39: Average Top1 score for matching cognitive process conditions of the person C03 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 50 50 50
Ver 0 0 0 0 0 0 0
Vis 0 0 50 50 50 50 50

peak
MW 0 0 0 0 0 0 0
Ver 0 100 0 0 0 0 0
Vis 50 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 50 0 0 0 0

Table 40: Average Top1 score for matching cognitive process conditions of the person C04 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 41: Average Top1 score for matching cognitive process conditions of the person C05 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 50 0
Vis 50 50 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

Table 42: Average Top1 score for matching cognitive process conditions of the person C06 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 50 0 0 0 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 50 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 43: Average Top1 score for matching cognitive process conditions of the person C07 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 50 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 50 50 50 0 50

peak
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 50 0 0 0

Table 44: Average Top1 score for matching cognitive process conditions of the person C08 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 50 50 50 0 50 0 0
Vis 50 50 0 0 0 50 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 50 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 45: Average Top1 score for matching cognitive process conditions of the person C09 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 0 0 0 0 50 50
Ver 0 0 0 0 50 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 46: Average Top1 score for matching cognitive process conditions of the person C10 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 50 50
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 47: Average Top1 score for matching cognitive process conditions of the person C11 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 100 100 50 50 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 50 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 48: Average Top1 score for matching cognitive process conditions of the person C12 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 50 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 50 0 0 0 0 0

Table 49: Average Top1 score for matching cognitive process conditions of the person C13 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 50 50 50
Vis 0 0 50 50 0 50 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 50: Average Top1 score for matching cognitive process conditions of the person C14 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 50 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 50 50 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 50 0 0 50 0 0
Ver 0 0 0 50 0 0 0
Vis 0 0 0 0 0 0 0

Table 51: Average Top1 score for matching cognitive process conditions of the person C15 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 50 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 50 0 0 0
Vis 0 0 0 0 0 0 0

Table 52: Average Top1 score for matching cognitive process conditions of the person C16 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 50 50 0 0 50 0 0
Vis 0 0 0 0 0 50 0

peak
MW 0 0 100 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 50 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 100 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 53: Average Top1 score for matching cognitive process conditions of the person C17 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 0 0 50 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 50 0

event
MW 50 0 0 0 50 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 50

Table 54: Average Top1 score for matching cognitive process conditions of the person C18 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 50 0 0 0
Vis 0 0 0 0 0 0 0

peak
MW 0 0 0 50 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 55: Average Top1 score for matching cognitive process conditions of the person C19 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 100 0
Vis 0 0 0 0 0 0 50

peak
MW 50 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 50 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 56: Average Top1 score for matching cognitive process conditions of the person C20 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 50 50 50 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 50 0 0 0

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 50 0 0 0 0 0 0
Vis 50 0 0 0 0 0 0

Table 57: Average Top1 score for matching cognitive process conditions of the person C22 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 50 50 50 50 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 50

peak
MW 0 0 0 0 0 0 50
Ver 0 0 50 0 0 0 0
Vis 0 50 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 100 0 0 0 50

Table 58: Average Top1 score for matching cognitive process conditions of the person C23 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 50 50 0 0 50
Vis 0 0 0 0 0 0 0

peak
MW 0 50 0 0 0 0 0
Ver 0 0 50 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 50 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 59: Average Top1 score for matching cognitive process conditions of the person C24 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 50 0 0 0
Ver 50 50 0 0 0 0 0
Vis 0 0 0 0 0 0 50

peak
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 0 0 0
Ver 0 50 50 0 0 0 0
Vis 0 50 0 0 0 0 0

Table 60: Average Top1 score for matching cognitive process conditions of the person C25 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.

time mode condition L1 L2 L3 L4 L5 L6 L7

clock
MW 0 0 0 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 50 50

peak
MW 0 0 50 0 0 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

event
MW 0 0 0 0 50 0 0
Ver 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0

Table 61: Average Top1 score for matching cognitive process conditions of the person C26 for 6 files with sequences
of R1 data to the 150 individual-level epsilon machines built from R2 data.
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Figure 45: The number of correct matching of cognitive process conditions across individuals, i.e., cases where the
machine with the highest likelihood corresponds to the same cognitive process condition as the sequence. The graph
displays the result of testing 150 individual R1 sequences on 150 R2 epsilon automata, for three cognitive mode
conditions in all three time modes (clock, peak, event) and 7 history lengths (from L = 1 to L = 7). Since two files with
sequences correspond to each person, in all respects we have 42 tests for each person. The last table shows the sum of
the result for three cognitive process conditions, displaying the overall process matching success across people.
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B Supplementary Figures

B.1 Clustering with 6 and 10 fMRI Coactivation Patterns (CAPs)
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Figure 46: CAPs generated using six clusters. CAPs are paired based on Munkres assignment algorithm applied to
their spatial correlations.
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Figure 47: CAPs generated using ten clusters. CAPs are paired based on Munkres assignment algorithm applied to
their spatial correlations.
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B.2 Two-Dimensional Projections for Metric Geometries on Epsilon-Machines for Mind-
Wandering, Visualization and Verbalization Conditions
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Figure 48: 2D projections of Euclidean embedding of metric spaces for group-level pre-epsilon-machines for mind-wandering (square shaped points), verbalization (triangle shaped points)
and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. All figures correspond to the epsilon distance type.
The three rows correspond to three history lengths L = 1, L = 2, L = 3 respectively.  
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Figure 49: 2D projections of Euclidean embedding of the metrics spaces for group-level pre-epsilon-machines for mind-wandering (square shaped points), verbalization (triangle shaped
points) and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. All figures correspond to the Jaccard
distance type. The three rows correspond to three history lengths L = 1, L = 2, L = 3 respectively. 
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Figure 50: 2D projections of Euclidean embedding of the metrics spaces for group-level pre-epsilon-machines for mind-wandering (square shaped points), verbalization (triangle shaped
points) and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. All figures correspond to the epsilon
distance type. The three rows correspond to three history lengths L = 4, L = 5, L = 6 respectively. 
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Figure 51: 2D projections of Euclidean embedding of the metrics spaces for group-level pre-epsilon-machines for mind-wandering (square shaped points), verbalization (triangle shaped
points) and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. All figures correspond to the Jaccard
distance type. The three rows correspond to three history lengths L = 4, L = 5, L = 6 respectively. 
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Figure 52: 2D projections of Euclidean embedding of the metrics spaces for group-level pre-epsilon-machines for mind-wandering (square shaped points), verbalization (triangle shaped
points) and visualization (circle shaped points) conditions. Three columns correspond to the three time modes: clock, peak and event respectively. The first row corresponds to epsilon
distance type, second to Jaccard distance, history length is L = 7.

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



B.3 Metric Space Percentage of Separation for Cognitive Processing Modes using Epsilon-
Machines with Different Temporal Scales, Different History Lengths and Differing
Thresholds for Causal State Identification
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Figure 53: Percentage of separation for the minimized cognitive process condition machines, corresponding to different history lengths (from L = 1 to L = 7) and minimization deltas (from
δ = 0 to δ = 1 with the step size 0.05). First row corresponds to the epsilon distance type and second row corresponds to Jaccard distance. Three conditions: mind-wandering, verbalization
and visualization correspond to the three columns respectively. Time mode for all represented pictures is clock.
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Figure 54: Percentage of separation for the minimized cognitive process condition machines, corresponding to different history lengths (from L = 1 to L = 7) and minimization deltas (from
δ = 0 to δ = 1 with the step size 0.05). First row corresponds to the epsilon distance type and second row corresponds to Jaccard distance. Three conditions: mind-wandering, verbalization
and visualization correspond to the three columns respectively. Time mode for all represented pictures is peak.
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Figure 55: Percentage of separation for the minimized cognitive process condition machines, corresponding to different history lengths (from L = 1 to L = 7) and minimization deltas (from
δ = 0 to δ = 1 with the step size 0.05). First row corresponds to the epsilon distance type and second row corresponds to Jaccard distance. Three conditions: mind-wandering, verbalization
and visualization correspond to the three columns respectively. Time mode for all represented pictures is event.
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C Appendix: Shortest Zero Occurrence Words in EEG

C.1 Shortest zero occurrence n-grams

In this section we are aiming to distinguish cognitive processing conditions: mind-wandering (MW), verbal-
ization (Ver) and visualization (Vis) by looking at words of microstates that do not occur within the measured
participant sequences. For brevity, we use the acronym SZO to stand for shortest zero-occurrence n-gram.
Note that if z does not occur then any word containing z also does not occur. Therefore, if z is an SZO, then
for all (possibly empty) prefixes w1 and suffixes w2, w = w1zw2 implies w does not occur. Thus to know
which words do not occur, it suffices to find the shortest ones that do not occur.

We did the analysis for both canonical and data-driven microstates and we also distinguish three timing
modes: clock, peak and event. Then we distinguish between individual and global data, where the former
contains sets of SZO’s for participants individually and the latter stands for intersection of sets of SZO’s
corresponding to individual participants within a particular timing mode, mind-mode and word length.

In the following sub-sections we both list the full sets of SZO’s, but as it is sometimes hard to determine
whether there are any differences between sets of non-occurring words, we also calculate set distances using
the Jaccard distance metric on sets, which we recall is defined for two sets S1 and S2 as

dJaccard(S1,S2) = 1− |S1∩S2|
|S1∪S2|

(5)

where bars denote cardinality (the number of elements in a set).

C.2 Canonical Global Data

In the following sub-section, non-occurring n-grams are listed for canonical microstates where individual
participants’ data are intersected to provide non-occurring n-grams globally in all matched participants. There
are never any globally non-occurring n-grams in peak mode, and the SZOs in event mode are identical for all
cognitive processing conditions and are as shown in this list of SZOs:

n=1 (none)

n=2 : AA, BB, CC, DD

n=3, n=4, n=5, n=6, n=7, n=8, n=9: (none)

SZOs List 1: Global MW, Ver and Vis in event mode: Double letters cannot occur by defintion of event mode

SZOs by Cognitive Processing Condition. There are greater differences when we come to clock mode,
below are the tables for all of the three cognitive processing conditions separately.

n=1, n=2: (none)

n=3: ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4: ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5: ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD
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n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB, BAAAAC, BAAAAD,
BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD, CBBBBA, CBBBBC,
CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC, DBBBBD, DCC-
CCA, DCCCCB, DCCCCD

n=7: ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCB, ACCCCCD, ADDDDDB, BAAAAAD, BCCCCCA, BCCCCCB,
BCCCCCD, BDDDDDA, BDDDDDC, CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBC, CDDDDDA,
CDDDDDB, DAAAAAB, DAAAAAC, DBBBBBC, DBBBBBD, DCCCCCB

n=8, n=9: (none)

SZOs List 2: Global Mind-wandering SZOs in clock mode (canonical EEG Micorstates)

n=1, n=2: (none)

n=3: ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4: ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5: ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD

n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB, BAAAAC,
BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD, CBBBBC,
CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC, DBBBBD, DCC-
CCA, DCCCCB, DCCCCD

n=7: ABBBBBC, ACCCCCA, ACCCCCD, ADDDDDC, BAAAAAB, BAAAAAC, BAAAAAD, BCCCCCA, BCCCCCD,
BDDDDDA, BDDDDDB, BDDDDDC, CAAAAAB, CAAAAAC, CDDDDDA, CDDDDDB, DAAAAAB, DAAAAAC,
DBBBBBA, DBBBBBC, DCCCCCA, DCCCCCD

n=8, n=9: (none)

SZOs List 3: Global Verbalization SZOs in clock mode (canonical EEG microstates)

n=1, n=2: (none)

n=3: ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4: ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5: ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD

n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB, BAAAAC,
BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD, CBBBBA,
CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC, DBBBBD,
DCCCCB, DCCCCD

n=7: ABBBBBD, ACCCCCA, ACCCCCB, ACCCCCD, ADDDDDA, ADDDDDC, BAAAAAD, BCCCCCA, BCCCCCD,
BDDDDDA, BDDDDDB, BDDDDDC, CAAAAAD, CBBBBBC, CDDDDDA, CDDDDDB, CDDDDDC, DBBBBBC,
DBBBBBD, DCCCCCD

n=8, n=9: (none)

SZOs List 4: Global Visualization SZOs in clock mode (canonical EEG microstates)
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Figure 56: For length n = 6 n-grams in clock mode EEG microstate sequences of duration 24 ms, all there are 33
shortest zero occurrence words of length six that ooccur in none of the cognition process conditions MW, Ver and Vis in
the eyes-closed EEG dataset with the four canonical microstates. The words AC4A does not occur in MW, CB4A does
not occur in Ver and DC4A does not occur in Vis, but each of these three occurs in the other two modes.

No 1- and 2-grams were shortest zero occurrence words in clock mode. This just means that all microstates
occur in each cognitive condition and all possible transitions occur and all possible microstates last at least
8 ms in each condition (of course we know they last longer). For n-grams of lengths 3, 4 and 5 in clock
mode (12-20 ms), no words of the form XY n−2Z occur for X ,Y,Z EEG microstates from the canonical set
with X , Y , Z as these would corresponding to microstate Y occurring with duration of 16 ms or less. For
n = 6, only 3 n-grams occur in two cognitive processing conditions among mind-wandering, verbalization
and visualization, but not the other mode as shown Venn diagram in Figure 56, These correspond to 16 ms
microstates C and A flanked by certain non-identical letters. In principle occurrence of two of these words
would could only occur in the reminaing cognitive mode. However, these are group level results and the
microstates are so short that it is possible occurrences of such words are due to noise and chance rather than
characterizing certain cognitive modes.

With 7-grams, all SZOs are microstates of this type corresponding to a microstate of duration 20 ms. Two
such words occurred for all three cognitive modes among the participants, while 9 occurred for no condition at
all. None of these 9 are palindromes, i.e., short microstates Y embedding betwenn two microstates of the same
type X . The remaining 25 such words appear in the either one or two SZO set for the three modes. Therefor no
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Figure 57: For length n = 7, n-grams in clock mode EEG microstate sequences, where duration is 28 ms, there are 9
shortest zero occurrence (SZOs) words that occur in none of the cognition process conditions (MW, Ver and Vis) in
the eyes-closed EEG dataset with four canonical microstates. The Venn diagram shows for which cognitive modes
words of the form XY 5Z are SZOs. All 34 SZOs are of this form, but two such words CD5D and DA5D do occur for all
conditions.
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SZOs of length 8 to 10 at the global level for canonical microstates. This indicates the occurrence of all four
microstates with durations 24-32 ms flanked by all possible other microstates in all combinations in all cogni-
tive conditions. That is, at least with EEG processing done using KeyPy global field power (GFP peaks) can be
so close together that the occurrence of such short microstates in all cognitive modes in the dataset is observed.

Results for data-driven n-grams shortewt zero occurrence words were similar although the words occur-
ring were not exactly the same (Section C.6).

Distances (SZOs sets, Clock, Global - Canoncial EEG Microstates). Jaccard distances
between sets of shortest zero occurrence (SZOs) words for each cognitive mode are zero for words
of each length n from 1 to 9, except for n = 6 and n = 7. Tables of these distances are presented
here together with the area of spanned by the SZO sets using the distances as sides of a triangle.

Area = 0.001 MW Ver Vis
MW 0 0.056 0.056
Ver 0.056 0 0.056
Vis 0.056 0.056 0

Table 62: SZO set distances in clock mode for length 6 canonical EEG microstate sequences

Area = 0.130 MW Ver Vis
MW 0 0.562 0.534
Ver 0.563 0 0.552
Vis 0.533 0.551 0

Table 63: SZO set distances in clock mode for length 7 canonical EEG microstate sequences

Area in these tables is the area of the triangle computed using the Jaccard distances between the
three SZO sets and is non-zero exactly when the SZO sets discriminate between the three modes.
The maximum discrimination would be achieved when all distances are 1 between different modes
(no overlap between non-empty SZO sets) and the area is

√
3

4 =∼ 0.433 7

Observations. All possible words occur in peak mode, when looked at globally and except for
AA,BB,CC, and DD in length 2 all other words occur in event mode. It is only in length 3 to 7 in
clock mode where we can find other words that never globally occur.

All of them are of the structure XY L−2(X |Z), where X , Y and Z can be any microstates such that
X , Y , Z and L is the word length. That is, these correspond to very short duration single EEG
microstates in clock mode that are not possible. This does not however apply to all short words of
this type, as there is 36 = 3×4×3 possible words of this type, where the in-between microstate is

7Area is computed according the Heron’s formula from the lengths a, b, c of the three sides of the triangle in this space as√
s(s−a)(s−b)(s− c), where s = a+b+c

2 . Although this assumes the Jaccard distances embed in Euclidean space, one can use the
computed area as an index of discrimination in any case.
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different from the first and from the last, while the first and last can be the same. But not all of the
SZO sets contain all 36 words, more specifically the sets for lengths 6 and 7 contain only 35 words
as we will see below.

In lengths 3 to 5, the sets of words that never occur are the same, containing impossibly short
microstates for 36 possible words.

In length 6 the distances between the sets are only approximately 0.05, due to only threee words
not shared by the SZO sets for MW, Ver and Vis, as each set contains all 33 possible words of the
form XY 4Z (with Y different from X and Z) plus one more word not contained by the other two
SZO sets:

• the SZO set for MW contains ACCCCA,

• the SZO set for Ver contains CBBBBA,

• the SZO set for Vis contains DCCCCA.

In other words, using canonical EEG microstates, during MW, ACCCCA does not occur while
it can in the other modes. During Ver, CBBBBA does not occur but can in the other two modes;
while in Vis, DCCCCA does not occur but can in the other modes. This could also be interpreted as
follows: short duration of EEG microstate C (24 msec) is not possible in MW if A occurs both pre
and post C, and similarly for other cognitive processing conditions, short duration B is not possible
in Ver if preceded by C and followed by A, while in Vis short duration of C cannot occur if both
preceded by D and followed by A. Note these conclusions are limited to the present data-set and
may not hold for other EEG microstate clustering methods.

In length 7, corresponding to 28 msec, the sets of short zero-occurrence words contain only 24,
22 and 20 elements respectively of the 36 possible words XY 5Z with Y different from X and Z for
MW, Ver and Vis, accounting for 34 distinct works, and naturally the distances are much greater:
about 0.5. The remaining two words of this length, CB5D and DA5D occur in all cognitive modes.
The difference (what is in the first set, but not the second one, or what occurs in second mind-mode,
but does not in first one) between MW and Ver is

ABBBBBD,DCCCCCB,ABBBBBA,BCCCCCB,CBBBBBA,ADDDDDB,
DBBBBBD,CAAAAAD,ACCCCCB,CBBBBBC

while between Ver and MW
DCCCCCD,BDDDDDB,DCCCCCA,BAAAAAB,BAAAAAC,ADDDDDC,

DBBBBBA,ACCCCCA.
Between MW and Vis
ADDDDDB,DCCCCCB,ABBBBBA,BCCCCCB,ABBBBBC,CBBBBBA,

CAAAAAC,CAAAAAB,DAAAAAB,DAAAAAC
and Vis and MW:
DCCCCCD,BDDDDDB,CDDDDDC,ADDDDDC,ADDDDDA,ACCCCCA.
Finally Ver and Vis
ABBBBBC,DCCCCCA,BAAAAAB,BAAAAAC,CAAAAAC,CAAAAAB,

DBBBBBA,DAAAAAB,DAAAAAC

141

 
 

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited



and Vis and Ver
ABBBBBD,CDDDDDC,CBBBBBC,DBBBBBD,ADDDDDA,CAAAAAD,

ACCCCCB.
Intersection of SZO sets: Nine 7-grams never occur in any mode:

ACCCCCD BAAAAAD BCCCCCA BCCCCCD BDDDDDA BDDDDDC CDDDDDA CD-
DDDDB DBBBBBC

The following 7-grams never occurring in one of three modes only:
SZOs for Vis only : ADDDDDA CDDDDDC
SZOs for Ver only: BAAAAAB BAAAAAC DBBBBBA DCCCCCA
SZOs for MW only: ABBBBBA ADDDDDB BCCCCCB CBBBBBA DCCCCCB

C.3 Canonical Individual Clock Data

In this section we look at individual canonical data in clock mode. For individual participants there
are many more entries, therefore we will illustrate the results for participant 1 and summarize the
results for others.

SZOs for Individual Clock Data (canonical).
n=2 : (none)

n=3 : ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4 : ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5 : ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD

n=6 : ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB,
BAAAAC, BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD,
CBBBBA, CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC,
DBBBBD, DCCCCA, DCCCCB, DCCCCD

n=7 :ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCA, ACCCCCB, ACCCCCD, ADDDDDA, ADDDDDB, ADDDDDC,
BAAAAAB, BAAAAAC, BAAAAAD, BCCCCCA, BCCCCCB, BCCCCCD, BDDDDDA, BDDDDDB, BDDDDDC,
CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBC, CBBBBBD, CDDDDDA, CDDDDDB, CDDDDDC,
DAAAAAB, DAAAAAC, DAAAAAD, DBBBBBA, DBBBBBC, DBBBBBD, DCCCCCA, DCCCCCB, DCCCCCD

n=8 : ABBBBBBA, ABBBBBBC, ABBBBBBD, ACCCCCCA, ACCCCCCB, ADDDDDDA, ADDDDDDB, ADDDDDDC,
BAAAAAAB, BAAAAAAC, BCCCCCCA, BCCCCCCD, BDDDDDDA, BDDDDDDB, CAAAAAAB, CAAAAAAC,
CBBBBBBA, CBBBBBBC, CBBBBBBD, CDDDDDDC, DAAAAAAC, DBBBBBBC, DBBBBBBD, DCCCCCCA,
DCCCCCCB

n=9 : ABBBBBBBA, ACCCCCCCA, BCCCCCCCB, CAAAAAAAB, CBBBBBBBA, CDDDDDDDA, DAAAAAAAB

n=10 : BAAAAAAAAB, BDDDDDDDDB

SZOs List 5: Individual MW in clock mode for participant 1

n=2 : (none)
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n=3 : ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4 : ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5 : ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD

n=6 : ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB,
BAAAAC, BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD,
CBBBBA, CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC,
DBBBBD, DCCCCA, DCCCCB, DCCCCD

n=7 :ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCA, ACCCCCB, ACCCCCD, ADDDDDA, ADDDDDB, ADDDDDC,
BAAAAAB, BAAAAAC, BAAAAAD, BCCCCCA, BCCCCCB, BCCCCCD, BDDDDDA, BDDDDDB, BDDDDDC,
CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBC, CBBBBBD, CDDDDDA, CDDDDDB, CDDDDDC,
DAAAAAB, DAAAAAC, DAAAAAD, DBBBBBA, DBBBBBC, DBBBBBD, DCCCCCA, DCCCCCB, DCCCCCD

n=8 : ABBBBBBA, ABBBBBBC, ABBBBBBD, ACCCCCCA, ACCCCCCD, ADDDDDDB, ADDDDDDC, BAAAAAAB,
BAAAAAAC, BAAAAAAD, BCCCCCCD, BDDDDDDA, BDDDDDDB, BDDDDDDC, CAAAAAAB, CAAAAAAC,
CAAAAAAD, CBBBBBBA, CBBBBBBC, CBBBBBBD, CDDDDDDA, DAAAAAAB, DAAAAAAC, DAAAAAAD,
DBBBBBBA, DBBBBBBC, DCCCCCCA, DCCCCCCB

n=9 : ACCCCCCCB, BAAAAAAAC, BCCCCCCCB, BDDDDDDDB, CAAAAAAAB, CBBBBBBBD, DAAAAAAAB

n=10 : BAAAAAAAAB, BDDDDDDDDB

SZOs List 6: Individual Ver in clock mode for participant 1

n=2 : (none)

n=3 : ABA, ABC, ABD, ACA, ACB, ACD, ADA, ADB, ADC, BAB, BAC, BAD, BCA, BCB, BCD, BDA, BDB, BDC, CAB,
CAC, CAD, CBA, CBC, CBD, CDA, CDB, CDC, DAB, DAC, DAD, DBA, DBC, DBD, DCA, DCB, DCD

n=4 : ABBA, ABBC, ABBD, ACCA, ACCB, ACCD, ADDA, ADDB, ADDC, BAAB, BAAC, BAAD, BCCA, BCCB, BCCD,
BDDA, BDDB, BDDC, CAAB, CAAC, CAAD, CBBA, CBBC, CBBD, CDDA, CDDB, CDDC, DAAB, DAAC, DAAD,
DBBA, DBBC, DBBD, DCCA, DCCB, DCCD

n=5 : ABBBA, ABBBC, ABBBD, ACCCA, ACCCB, ACCCD, ADDDA, ADDDB, ADDDC, BAAAB, BAAAC, BAAAD,
BCCCA, BCCCB, BCCCD, BDDDA, BDDDB, BDDDC, CAAAB, CAAAC, CAAAD, CBBBA, CBBBC, CBBBD,
CDDDA, CDDDB, CDDDC, DAAAB, DAAAC, DAAAD, DBBBA, DBBBC, DBBBD, DCCCA, DCCCB, DCCCD

n=6 : ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB,
BAAAAC, BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD,
CBBBBA, CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC,
DBBBBD, DCCCCA, DCCCCB, DCCCCD

n=7 :ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCA, ACCCCCB, ACCCCCD, ADDDDDA, ADDDDDB, ADDDDDC,
BAAAAAB, BAAAAAC, BAAAAAD, BCCCCCA, BCCCCCB, BCCCCCD, BDDDDDA, BDDDDDB, BDDDDDC,
CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBC, CBBBBBD, CDDDDDA, CDDDDDB, CDDDDDC,
DAAAAAC, DAAAAAD, DBBBBBA, DBBBBBC, DBBBBBD, DCCCCCA, DCCCCCB, DCCCCCD

n=8 : ABBBBBBA, ABBBBBBD, ACCCCCCA, ACCCCCCB, ACCCCCCD, ADDDDDDA, ADDDDDDB, ADDDDDDC,
BAAAAAAB, BAAAAAAC, BAAAAAAD, BCCCCCCB, BCCCCCCD, BDDDDDDB, BDDDDDDC, CAAAAAAC,
CAAAAAAD, CBBBBBBA, CBBBBBBC, CBBBBBBD, CDDDDDDA, CDDDDDDB, CDDDDDDC, DAAAAAAB,
DAAAAAAC, DAAAAAAD, DBBBBBBC, DCCCCCCB, DCCCCCCD

n=9 : ABBBBBBBA, ABBBBBBBC, ADDDDDDDB, BAAAAAAAB, BAAAAAAAC, BDDDDDDDC, DAAAAAAAC,
DBBBBBBBC, DCCCCCCCA, DCCCCCCCB
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n=10 : (none)

SZOs List 7: Individual Vis in clock mode for participant 1

Distances (Canoncial EEG Microstates). Jaccard distances between sets of shortest zero occur-
rence (SZOs) words for each cognitive mode are zero for words of each length n from 1 to 9, except
for n = 6 and n = 7. Tables of these distances are presented here together with the area of spanned
by the SZO sets using the distances as sides of a triangle.

Area = 0 MW Ver Vis
MW 0 0 0.028
Ver 0 0 0.028
Vis 0.028 0.028 0

Table 64: SZO set distances for participant 1 in clock mode for L7

Area = 0.062 MW Ver Vis
MW 0 0.394 0.457
Ver 0.394 0 0.324
Vis 0.457 0.324 0

Table 65: SZO set distances for participant 1 in clock mode for L8

Area = 0.314 MW Ver Vis
MW 0 0.728 0.938
Ver 0.728 0 0.938
Vis 0.938 0.938 0

Table 66: SZO set distances for participant 1 in clock mode for L9

Area = 0 MW Ver Vis
MW 0 0 1.000
Ver 0 0 1.000
Vis 1.000 1.000 0

Table 67: SZO set distances for Participant 1 in clock mode for L10

Observations. The non-occurring words have the same structure as when looked at clock mode
globally. Compared to global data, the distances can be greater and are also measured for lengths 8,
9 and 10, where the global intersections are empty. Especially at lengths 9 and 10, the distinctions
between mind modes are very strong with very different sets for each mind-mode.
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C.4 Canonical Individual Peak Data

SZOs for Indvidual Peak Data for a Single Participant (canonical).
n=2, n=3, n=4 : (none)

n=5 : AABAC, ADABB, ADBBA, BAADB, BACDB, BADAB, BDADB, BDCAB, BDCDA, CBDCB, CDBAC

n=6 : AADADB, AADCDA, AADDAB, ABDDAB, ACADDB, ACCADA, ADAADB, ADBCCA, ADDACB, ADDCBB,
ADDCCB, BADDAC, BADDDA, BCDDBB, BCDDBC, BCDDCA, BDACDC, BDDABB, BDDBDB, CBADDC, CCACDA,
CCBDDA, CDCDCB, CDDDBB

n=7 : ADDBDDA, ADDCCDA, ADDDBDC, ADDDDBB, BAADDDA, BADADDD, BCADDDC, BCDDBDB, BCDDCCA,
BDDADDB, BDDCCDA, BDDDDAB, CAADDDC, CCDCCDB, CDDDACD, CDDDCCB, CDDDDBB, CDDDDCB

n=8 : ADDADDDB, ADDDBDDB, ADDDDADB, ADDDDDCB, BDDDDDAC, BDDDDDCA, BDDDDDDB, CDCDDDDA,
CDDADDDA, CDDADDDB, CDDDCDCC, CDDDDCDA

n=9 : ACDDDDDDC, ADDDDDDAB, BDDDDDCDA, BDDDDDCDC, CCDDDDDDB, CDADDDDDB, CDDDDADDB,
CDDDDDCDC, CDDDDDDAB, CDDDDDDBB

n=10 : ADDDDDDDAC, BDDDDDDDDA, CCDDDDDDDB, CDDDDADDDA, CDDDDADDDC, CDDDDDDDBA, CD-
DDDDDDBB

SZOs List 8: Individual MW in peak mode for participant 1

n=2, n=3 : (none)

n=4 : BAAB

n=5 : AACAA, AADBC, ADBDB, ADCBA, ADDCB, BBCCA, BCBDA, BDCDB

n=6 : AADDDB, ABDADC, ABDDDB, ACCDCA, BBDDDB, BBDDDC, BCBDDB, BDCCDA, BDCDCA, BDDACA,
BDDACB, BDDADB, BDDCCB, BDDDBA, CABDDC, CADCDA, DDCCBA

n=7 : ABDDDDC, ACCCCDA, ACCCDCD, ADACCCC, ADDCDDB, ADDDDCB, BCDDDDB, BDCCDDA, BDCCDDB,
BDDACDC, BDDADDB, BDDCDDB, BDDDDCB, CBCDDDC, CCADDDC, CDDADDB, CDDBDDA, CDDDCCB,
DDDBDAC

n=8 : ACDDCDDC, ADADDDDA, ADDDCDDB, ADDDDCDA, BDADDDDA, BDADDDDC, BDDDDCDC, BDDDDDDA,
CCCCCCDC, CDDCDCCC, CDDDCCDA, CDDDDBDA, CDDDDCCA

n=9 : AADDDDDDA, ABDDDDDDC, ADCDDDDDC, ADDDDCDDB, BDDDDDDCA, CDCCDDDDA, CDDCDDDDA

n=10 : ADDCCDDDDA, BCDDDDDDDC, CDDDCDDDDA, CDDDDCDDCC, CDDDDDDDCA

SZOs List 9: Individual Ver in peak mode for participant 1

n=2, n=3, n=4 : (none)

n=5 : ABCDB, ABDAA, ADBAB, ADBCA, BACBC, BBAAB, BCBBA, CADBB, CBCCA, CDBBA

n=6 : ABCCDC, ACCCAB, ACDCCA, ACDDDB, ADCCDB, ADCDCB, ADDBDA, BADBAC, BCDCDA, BCDDAB, BCD-
DAC, BCDDDA, BDBCCA, BDBDDA, BDCDDB, BDDCCC, BDDCDA, BDDDBC, CADCDC, CBDADD, CBDDCC,
CBDDDA, CDADAA, CDDBBA, DBBDBB, DCACDA, DCBADA, DDCACD

n=7 : ACCDDDB, ADCDDDA, ADDADDC, BAADDDC, BCCCCCB, BCDDDCB, BCDDDDA, BDAADDC, BDDCDDA,
BDDDDAB, BDDDDCA, CCDDDCB

n=8 : ACDDCDDA, ACDDDDDA, ACDDDDDC, ADDDADDC, BDDDDCCA, CDBDDDDC, CDDDCDDA, CDDDDDAB

n=9 : BCDDDDDDC, CADDDDDDB

n=10 : BDDDDDDDDA, CDADDDDDDB, CDDDDDDCCA, CDDDDDDCDC

SZOs List 10: Individual Vis in peak mode for participant 1
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Distances (Individual SZO sets, Peak Mode - canonical).

Area = 0 MW Ver Vis
MW 0 1.0 0
Ver 1.0 0 1.0
Vis 0 1.0 0

Table 68: SZO set distances for Participant 1 in peak mode for L4

Area = 0.433 MW Ver Vis
MW 0 1.0 1.0
Ver 1.0 0 1.0
Vis 1.0 1.0 0

Table 69: SZO set distances for Participant 1 in peak mode for L5

Area = 0.433 MW Ver Vis
MW 0 1.0 1.0
Ver 1.0 0 1.0
Vis 1.0 1.0 0

Table 70: SZO set distances for Participant 1 in peak mode for L6

Area = 0.406 MW Ver Vis
MW 0 0.943 0.966
Ver 0.943 0 1.0
Vis 0.966 1.0 0

Table 71: SZO set distances for participant 1 in peak mode for L7

Area = 0.433 MW Ver Vis
MW 0 1.0 1.0
Ver 1.0 0 1.0
Vis 1.0 1.0 0

Table 72: SZO set distances for participant 1 in peak mode for L8
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Area = 0.433 MW Ver Vis
MW 0 1.0 1.0
Ver 1.0 0 1.0
Vis 1.0 1.0 0

Table 73: SZO set distances for Participant 1 in peak mode for L9

Area = 0.401 MW Ver Vis
MW 0 1.0 0.9
Ver 1.0 0 1.0
Vis 0.9 1.0 0

Table 74: SZO set distances for participant 1 in peak mode for L10

Observations. The structure of the words is much more varied and the distances between the sets much
greater compared to clock mode. This explains why the intersections for all individual participants to create
global data are empty.

C.5 Canonical Individual Event Data

SZOs in Individual Event Data (Examples from a Single Participant).

n=2 : AA, BB, CC, DD

n=3, n=4, n=5 : (none)

n=6 : ABCDCB, CBDBAB

n=7 : ABADADC, ABCDCDA, BADCADB, BADCDAB, BCDBDAC, BCDCBDA, BDCDACB, CADCBCB

n=8 : ACDBDCDB, ADBDCDCB, ADCDCADC, BADADCDB, BADCDBDC, BCADADAB, CDACDCDB

n=9 : ACDCDCDCB, DACDCDADA

n=10 : (none)

SZOs List 11: Individual MW in event mode for participant 1

n=2 : AA, BB, CC, DD

n=3, n=4, n=5 : (none)

n=5 : BDCBA, CBADB

n=6 : BADBDB, BCDACA, BCDBDB, BCDCBA, BDBCDB

n=7 : ACACDAB, BACDADB, BCDCDAB, BCDCDCB, BDADACA, CADADAB

n=8 : ACDCDADB, ADACDCDB, ADCDCDAB, BCACDCDB, BDACDCDA, BDADADAB, BDCDACDB, DACDCDCB

n=9 : ACDCDADCA, BDACDCDCA

n=10 : (none)

SZOs List 12: Individual Ver in event mode for participant 1

n=2 : AA, BB, CC, DD

n=3, n=4, n=5 : (none)
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n=6 : ABDBAC, ADCABA, BACBDC, BCDACB, BCDBAB, CADCBA, DBCBDA

n=7 : ADBCDCB, BCDADBA, BDCADCB, BDCDCBA, CACDCAB, CDACBDA

n=8 : BCDCDADA

n=9, n=10 : (none)

SZOs List 13: Individual Vis in event mode for participant 1

Distances (Individual SZO sets, Event Mode - canonical.

Area = 0 MW Ver Vis
MW 0 1.0 0
Ver 1.0 0 1.0
Vis 0 1.0 0

Table 75: SZO set distances for participant 1 in event mode for L5

Area = 0.433 MW Ver Vis
MW 0 1.0 1.0
Ver 1.0 0 1.0
Vis 1.0 1.0 0

Table 76: SZO set distances for Participant 1 in event mode for L6, L7, L8, L9

C.6 Data-driven Global Data and Shortest Zero Occurrence Words

For the data-driven EEG microstate sequences, a largely similar situation holds for n-grams that do not
occur. SZOs for data-driven global data. For peak and event mode at the global level, the situation with
data-driven EEG microstates is exactly the same as for the canonical microstates. There are non-occurring
words in peak mode at all and for event mode the only shortest zero-occurrence words are AA, BB, CC, DD
which cannot occur by definition of event mode. That is, each possible sequence of length up to 10 occurs for
at least some participant.

For clock mode, there are no SZOs of length 1 or 2, but for 3≤ n≤ 5 the words of the form XY n−2Z with
X , Y and Y , Z are all SZOs. Since the microstate Y is flanked in this words by a microstate distinct from Y
on each side, this can be interpreted as there is no EEG microstate of duration than 4(n−2) milliseconds, i.e.,
no microstate lasting than 20 ms or less. This is exactly the same as we saw for the canonical EEG microstate
sequences.

For n = 8 and n = 9 there are no SZOs in any condition in clock mode. This implies XY n−2Z do occur
for each of mindwandering, visualization and verbalization, i.e., microstate Y occurs with durations 24 ms
and 28 ms preceded and followed by any possible microstates X and Z, respectively,

For the lengths n = 6 and n = 7, however, just as for the canonical microstates, the data-driven microstates
include SZOs, words of the form XY n−2Z that do not occur and these are different for different cognitive
processing conditions:
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n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCB, ACCCCD, ADDDDA, ADDDDB, BAAAAB, BAAAAC, BAAAAD, BCC-
CCA, BCCCCB, BDDDDA, BDDDDB, BDDDDC,
CAAAAB, CAAAAC, CAAAAD, CBBBBA, CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC,
DAAAAD, DBBBBA, DBBBBC, DBBBBD, DCCCCA, DCCCCB, DCCCCD

n=7: ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCB, ACCCCCD, ADDDDDB, BAAAAAB, BAAAAAD, BCCCCCA,
BCCCCCD, BDDDDDA, BDDDDDC, CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBD, CDDDDDA,
CDDDDDC, DAAAAAB, DAAAAAC, DBBBBBA, DCCCCCA, DCCCCCB

SZOs List 14: Global Shortest Zero-Occurrence words in MW in clock mode (data-driven)

SZOs List (Data-driven) : MW in clock mode for all participants.

n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCA, ACCCCB, ACCCCD, ADDDDA, ADDDDB, ADDDDC, BAAAAB, BAAAAC,
BAAAAD, BCCCCA, BCCCCB, BCCCCD, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD, CBBBBA,
CBBBBC, CBBBBD, CDDDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC, DBBBBD,
DCCCCA, DCCCCB, DCCCCD

n=7: ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCA, ACCCCCB, ADDDDDA, ADDDDDB, BAAAAAC, BCCCCCD,
BDDDDDC, CAAAAAC, CAAAAAD, CDDDDDB, DAAAAAB, DAAAAAC, DAAAAAD, DBBBBBA, DCCCCCA,
DCCCCCD

SZOs List 15: Global Shortest Zero-Occurrence words in Ver in clock mode (data-driven)

SZOs List (Data-driven) : Verbalization in clock mode for all participants.

n=6: ABBBBA, ABBBBC, ABBBBD, ACCCCB, ACCCCD, ADDDDA, ADDDDB, BAAAAB, BAAAAC, BAAAAD, BCCCCA,
BCCCCB, BDDDDA, BDDDDB, BDDDDC, CAAAAB, CAAAAC, CAAAAD, CBBBBA, CBBBBC, CBBBBD, CD-
DDDA, CDDDDB, CDDDDC, DAAAAB, DAAAAC, DAAAAD, DBBBBA, DBBBBC, DBBBBD, DCCCCA, DCCCCB,
DCCCCD

n=7: ABBBBBA, ABBBBBC, ABBBBBD, ACCCCCB, ACCCCCD, ADDDDDB, BAAAAAB, BAAAAAD, BCCCCCA,
BCCCCCD, BDDDDDA, BDDDDDC, CAAAAAB, CAAAAAC, CAAAAAD, CBBBBBA, CBBBBBD, CDDDDDA,
CDDDDDC, DAAAAAB, DAAAAAC, DBBBBBA, DCCCCCA, DCCCCCB

SZOs List 16: Global Shortest Zero-Occurrence words in Vis in clock mode (data-driven)

SZOs List (Data-driven) : Visualization in clock mode for all participants.
Note the for n = 6 all 36 words of the form XY n−2Z do not occur in the verbalization condition. The SZO

sets for MW and Vis share 32 such words, but the SZO set for Vis has also DAAAAD, while the SZO set for
MW has also ACCCCA, ADDDDC, and BCCCCD.

For n = 7, the SZO sets for MW, Vis and Ver have 24, 13, and 19 words, respectively, for a total of 33
distinct words. The remaining three words of this length, BC5B, DB5C, and DB5D occur in all cognitive
processing conditions.

Comparison of Canonical and Data-Driven SZO sets. Note the words occurring in cognitive modes
in data-driven sequences are different from the ones canonical microstates.

In the data-driven case, EEG microstate topographies bearing the labels A, B, C, and D were generated
independently for different subjects and condition, so are do not represent fixed topolographies.8

The 9 words never occurring in any cognitive mode for canonical sequences and the two words never
occurring for data-driven sequences (AB5D and BD5C) have only BD5C in common. We remark that none

8It wold be possible to use populatioin-level clustering to obtain fixed EEG microstate topographies, but that method was not
employed here.
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these words are palindromes. One might speculate that palindromes are more likely to occur than non-
palindromes, e.g., if noise creates appears as a GFP peak during the course of a microstate X and it is
classified as another microstate Y this would result in a n-gram of the form XY kX , a palindrome. Thus one
might expect it to be easier for a non-palindrome XY Z with X , Z to be a shortest zero occurrence word than
a palindrome.

Of the 36 words of length 7, if we consider the Venn diagram with eight 8 regions for the three SZO
sets, 25% are in the same region for both canonical and data-driven sequences: BD5C in the intersection of
all 3 SZO sets, AC5A and DC5D in Ver and Vis SZO sets only; CB4 in the MW SZO set only; BA5C in the
Ver SZO set only; and AB5C, CA5C, DA5B and DC5C in the MW and Ver SZO sets only. Perhaps this might
indicate stability of their non-occurrence under change of EEG microstate clustering method.

Distances (Data-Driven EEG Microstates).
For data-driven EEG microstates, as before, at group level, Jaccard distances between sets of shortest zero

occurrence (SZOs) words for each cognitive mode are zero for words of each length n from 1 to 9, except for
n = 6 and n = 7 in clock mode. The Jaccard distances between SZO sets of the three cognitive and triangle
area are recorded here for these two word lengths. If the area is non-zero, then potentially the occurrence of
SZOs could distinguish among the cognitive modes.

Area < .0001 MW Ver Vis
MW 0 0.083 0.111
Ver 0.083 0 0.028
Vis 0.111 0.028 0

Table 77: SZO set distances in clock mode for length 6 canonical EEG microstate sequences

Area = 0.208 MW Ver Vis
MW 0 0.567 0.767
Ver 0.567 0 0.814
Vis 0.767 0.814 0

Table 78: SZO set distances in clock mode for length 7 canonical EEG microstate sequences

C.7 Discussion

Differences in non-occurring words in canonical and data-driven EEG microstates were broadly similar
at group-level. The only non-trivial words that were SZOs in clock-, peak- or event- mode in the various
cognitive mode conditions were very short EEG microstates in clock mode flanked by letters from other
microstates. These had durations much shorter than the average distance between gloabl field power (GFP)
peaks which occur on average every 50ms. The KeyPy software used interpolates EEG microstates between
these peaks, and other EEG software toolkits may suppress microstates of very short duration as noise. While
we saw differences in the SZO sets of different cognitive modes, it is unclear at present whether not these
SZO words are due to noise. At subject-level more shortest-zero occurrence words are found, but this time
not only in clock mode but also for peak and event mode too. These appear to differ between individuals and
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within individuals between cognitive modes. However, their significance remains unclear and it also not clear
whether most of these words would no longer arise as shortest zero occurrence words given more data.

It remains to test whether SZO can help classify cognitive states by eliminating states in which they can
occur leaving only those states where they may occur. Even if this is not the case for a population level,
it might still be the case for individuals reflecting inter-individual variability that we generally observe in
EEG. Also, this may be possible for certain individuals but not others (as when the areas of the SZO distance
triangles are zero as in some cases shown above).
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