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Executive Summary 

This report provides a comprehensive summary of the contributions made as part of 
the Bot Language project, a 5-year initiative led by the US Army Combat Capabilities 
Development Command Army Research Laboratory in partnership with researchers 
at the University of Southern California’s Institute for Creative Technologies and 
Carnegie Mellon University. In particular, this report describes accomplishments 
funded under the project “Naturalistic Behavior for Shared Understanding and 
Explanation with Intelligent Systems.” The goal of this research is to provide more 
natural ways for people to communicate with robots using language. Our vision is to 
enable robots to engage in a back-and-forth dialogue with human teammates where 
robots can provide status updates and ask for clarification where appropriate. To this 
end, we conducted a phased progression of four experiments where human 
participants gave navigation instructions to a remotely located robot, while the 
robot’s dialogue and navigation processes were initially controlled by human 
experimenters. Over the course of the experiments, automation was progressively 
introduced until dialogue processing was completely driven by a classifier trained 
on the data collected in previous experiments. 

The novel contributions of the Bot Language project include 1) this multiphased 
approach to collecting unconstrained natural language as training data for machine 
learning algorithms to support conversational interactions, 2) the corpora of 
dialogue and robot data collected and curated into the SCOUT Corpus (Situated 
Corpus of Understanding Transactions), 3) a series of fully automated, proof-of-
concept systems that show the technical promise of the approach taken, 4) the 
algorithms created as part of the project that now form the basis for the Army’s 
Joint Understanding and Dialogue Interface capability enabling conversational 
interactions between Soldiers and autonomous systems, and 5) innovations in the 
semantics of instructions in human–robot dialogue through the Dialogue-AMR 
(Abstract Meaning Representation) formalism. 
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1. Introduction 

The focus of this research is to make Soldier–agent interactions, especially with 
embodied agents such as robots, both safe and more effective by employing 
dialogue as a mode of communication. Dialogue, specifically back-and-forth verbal 
conversation using natural language, offers many benefits over traditional graphical 
user interfaces. Among these, dialogue enables agents to prompt a human teammate 
for clarification if a directive is unclear, and also to provide status updates as tasks 
are completed. Natural language dialogue can help achieve the vision of intelligent 
agents serving as teammates alongside Soldiers by offering an intuitive 
unconstrained mode of communication as used by Soldiers today in completing 
missions. 

With the goal of collecting natural conversations with intelligent agents, we wanted 
an experimental approach that would enable us to address the following questions: 
1) How can agents communicate effectively as teammates with humans to 
accomplish shared tasks? and 2) How can the protocol for exchanges elicit the 
natural diversity of communication strategies from humans, as they instruct agents 
such as robots, in a form that agents can use? To answer these questions, we worked 
with researchers at the University of Southern California’s Institute for Creative 
Technologies (USC ICT), an Army University Affiliated Research Center, to 
determine experimentally how methods from the development of intelligent virtual 
humans could be adapted for robots. While physical robotic platforms motivated 
our main task, we aimed to identify methods that generalize to a variety of software 
agents that can benefit from dialogue. 

In USC ICT’s SimSensei1 project, researchers used a methodology we call Data-
driven “Wizard-of-Oz” (DWoZ) to observe how humans would chat with what they 
believed to be an autonomous virtual avatar. In reality, the avatar they saw on their 
screen was controlled by human “wizard” experimenters. In collaboration with USC 
ICT, our goal was to assess if these contributions could be extended to autonomous 
systems, namely ground robots, to support collaborative search and navigation tasks 
with human teammates. This project, sponsored under the US Army Combat 
Capabilities Development Command (DEVCOM) Army Research Laboratory 
(ARL) funding line “Naturalistic Behavior for Shared Understanding and 
Explanation with Intelligent Systems,” and known externally as the “Bot Language” 
project, consisted of a series of experiments that executed the vision of multiphased 
experimentation where wizards standing in for artificial intelligence (AI) 
components were “automated away” in later phases. The operational hypothesis was 
that dialogue systems for physical agents like mobile robots could be trained from 
DWoZ-based dialogue collection. 
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The novel contributions of this research to the fields of dialogue, human–robot 
interaction, human factors, and natural language processing were the following: 

• A multiphased, empirical approach to collecting training data for machine 
learning algorithms that support conversational interaction with intelligent 
agents that refer to the physical world (e.g., mobile robots) (Sections 4 and 5) 

• A corpus of dialogue and robot data (Situated Corpus of Understanding 
Transactions [SCOUT]) that serves as a basis for informing intelligent 
agents on how to respond to human teammates in collaborative search and 
navigation tasks (Section 6.1) 

• A series of fully automated, end-to-end, proof-of-concept systems developed 
over the course of the research that show the technical promise of natural 
conversational interactions with intelligent agents using the DWoZ approach 
(Section 6.2) 

• Algorithms created as part of the project that now form the basis for the 
Army’s Joint Understanding and Dialogue Interface (JUDI) capability 
enabling conversational interactions between Soldiers and autonomous 
systems (Section 6.3) 

• A set of novel annotation schemes that model the structure, content, and 
semantics of dialogue exchanges between participants that instruct 
intelligent agents and wizard experimenters that control the robot’s behavior 
(Section 6.4) 

The remainder of this report is organized as follows. Section 2 provides a basic 
overview in related work. Section 3 relates prior research and pre-pilot studies 
conducted in advance of this project to the selected configuration of the DWoZ 
design. Section 4 overviews the task and experimental setup. High-level descriptions 
of the experiments and their findings are provided in Section 5. Finally, a discussion 
about the impact of the project can be found in Section 6, with metrics in Section 7, 
and concluding thoughts in Section 8. 
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2. Related Work 

2.1 Dialogue for Human–Robot Interaction 

Although natural language-based interaction has been explored extensively in the 
field of human–robot interaction,2,3 the primary focus has been on creating 
algorithms for automatic processing of one direction of communication (i.e., 
interpreting human instructions or producing responses), but not both directions at 
the same time. 

For the goal of interpreting human instructions, researchers followed the 
methodology of corpus-based robotics,4 where experiments collect verbal or written 
instructions. The core algorithms rely on computational techniques for natural 
language understanding (e.g., Kruijff et al.5 and Williams et al.6) and symbol 
grounding that maps language to symbolic representations used for task planning 
(e.g., Tellex et al.7 and Hemachandra et al.8). 

Limited effort has been done to create response generation algorithms for robot-to-
human communications beyond templates written by system developers. Some 
focused on ways robots can explain tasks9 and paths10,11 to people using natural 
language. Meanwhile, others focused on clarification algorithms12 about objects and 
asking for help with collaborative tasks.13 

Several dialogue-based interfaces were developed for mobile robots, such as 
DIARC14 and TeamTalk,15 but most rely on handcrafted templates to select 
responses or synthetic training data. Our work builds upon this related work by 
investigating empirical methods to human–robot dialogue collection, which 
balances eliciting robot-directed natural language from participants while 
maintaining a tractable data set that can be used for training a dialogue system. 

2.2 Wizard-of-Oz Methodology 

The Wizard-of-Oz (WoZ) design methodology has been used for many years in 
human–computer interaction research, including research involving natural language 
interfaces, to inform design specifications for technologies that have not yet been 
implemented. WoZ’s costs are limited to the costs of wizard experimenters standing 
in for future technologies and provides a very malleable way to alter system 
functionality—the only requirement being to change the policies that a wizard 
would follow. WoZ has been used for simulating dialogue interfaces,16 such as for 
human–robot interaction.17 Wizards also can play a role in collecting dialogue 
clarification strategies.18 Similarly, our research partners at USC ICT have used 
WoZ to collect verbal and nonverbal behaviors to train algorithms for a virtual 
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human therapist in the SimSensei project.1 Our work expands on these methods by 
exploring multimodal communication strategies when the robot and human are not 
co-present and must complete tasks together as a team where information such as 
location, visual content, and dialogue would be exchanged. 

3. Background 

Prior to the start of this project, the Army invested in research efforts for human–
robot and human–agent natural language communication. One such project was the 
5-year Army Research Office (ARO)-funded Multidisciplinary University Research 
Initiative (MURI) titled SUBTLE (Situation Understanding Bot through Language 
and Environment).19,20 Following this successful effort, the question arose as to how 
the results might transition into ARL for further research. While the SUBTLE 
MURI yielded software integrated into a proof-of-concept system, several 
capabilities were intentionally left out of the system design, including automatic 
speech recognition and dialogue management software. Speech recognition was 
deemed insufficiently robust at the time but evolving at such a rapid pace that, in 
practical terms, the researchers decided others in the future could incorporate it into 
the system. They also determined that incorporating dialogue management was not 
feasible, as it was contingent on another capability they needed to develop first—a 
syntactic parser-plus-semantic analyzer module that would interpret natural 
language commands. As a consequence of these two design decisions, there was no 
practical way to collect spoken-language dialogue data sets. 

Following the SUBTLE MURI, ARL researchers conducted two preliminary studies 
(i.e., pre-pilots) to determine how best to record, identify, and track the dialogue, 
video, and light detection and ranging (LIDAR) information that was explicitly 
shared by, or indirectly available to, two members of a human–robot team when 
conducting a collaborative search task. The result of lessons learned in those efforts 
led to the WoZ configuration of the Bot Language project. In the first pre-pilot, 
volunteers were enlisted to be the direction giver (i.e., “Commander”) or the direction 
follower (i.e., “Robot Navigator”) controlling a remotely located mobile robot.21 

Only the Robot Navigator could “see” for the robot, via its onboard video camera 
and LIDAR sent back to the Robot Navigator’s display. The Robot Navigator was 
instructed to act as though they were situated in the robot’s position and to obey the 
Commander. The Robot Navigator was to consider the robot’s actions as their own, 
and to consider available video and LIDAR point cloud feeds as their own 
perceptions. The Commander and Robot Navigator communicated by text chat on 
their computers. 
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Follow-on discussions with volunteers indicated both that relying on the text chat 
communication was too slow for real-time navigation of the robot and that limiting 
the Commander to text-only information from the Robot Navigator was frustrating 
and left them “in the dark.” To address these problems, in the second study, two 
changes were made to speed up the communication and expand the Commander’s 
understanding of the robot’s environment. The Commander and Robot Navigator 
participants now spoke to each other, though their roles remained the same with the 
Robot Navigator doing both the robot navigation and dialogue handling. The 
transmission of LIDAR map data and video stream was allowed to pass 
uninterrupted from the robot’s sensors to the Commander under various conditions 
controlling for visual information that both could see. Participants were generally 
able to use both image and map data in conjunction with dialogue to build enough 
shared understanding to communicate about the environment and accomplish the 
exploration tasks at hand.22 These changes led to dialogue speed-up, as expected. 
However, with this increased level of engagement came an unintended side effect: 
volunteers participating as the Robot Navigator found it exceedingly challenging to 
shift their attention between navigating the robot with image and LIDAR 
information and participating in the dialogue that required attention to coordinate 
turn-taking in conversation with the Commander.23 This challenge spurred the 
decision already under consideration to “split” the Robot Navigator’s stand-in role 
as robot to two wizards—one for dialogue management and one for navigation 
(Fig. 1). Section 4 describes the revised approach used for the Bot Language 
experiments. 
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Fig. 1 The Commander issues verbal instructions to the robot, whose capabilities are 
performed by two wizards standing in for the respective abilities of dialogue management and 
robot navigation. (Original figure from Marge et al.24) 

4. Approach 

This section overviews the task and experiment setup. For additional details, please 
see Marge et al.24 

4.1 Task Domain 

In this research, a human teammate called the “Commander” instructs a remotely 
located robot to explore a building. The rate of information exchange was restricted 
to simulate a low-bandwidth environment similar to the contested networking 
situations that Soldiers are expected to experience in the future battlefield. The 
Commander was expected to perform a building reconnaissance, that is, assess the 
structure of the building based on information sent from the robot, decide on the 
robot’s actions, and determine if the building has been recently occupied. To 
accomplish this, the Commander would speak to the robot (e.g., “turn left 
90 degrees,” or “go through the door”). Direct teleoperation was not permitted due 
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to the low-bandwidth scenario. Unlike many of today’s modes of human–robot 
interaction, the Commander could neither observe the robot directly nor see a video 
feed from its camera. Instead, the robot could respond in natural language and 
provide information that can feasibly be sent over a low-bandwidth network—a live 
map with the robot’s location and an occupancy grid, and images captured from the 
robot’s camera that can be sent upon request (see Fig. 1, upper right). 

4.2 Multi-Wizard Setup 

As mentioned in Section 2, we use the WoZ methodology to collect the necessary 
training data in our experiments. In the initial phases of the project, there were two 
wizards. Each wizard takes the role of what were ultimately separate modules in an 
autonomous system. A “Dialogue Manager Wizard” (DM-Wizard) would listen to 
the Commander’s verbal instructions and respond using a chat window to send 
status updates and clarification questions. As long as the instruction was executable 
in the current context, the DM-Wizard would send a constrained version of the 
instruction to a second wizard called the “Robot Navigator Wizard” (RN-Wizard). 
The RN-Wizard would directly teleoperate the robot without the Commander’s 
knowledge. As the RN-Wizard moved the robot, they would convey status updates 
verbally back to the DM-Wizard, which would then be passed back to the 
Commander as status updates. See Fig. 1 for an illustration of this setup. 

4.3 Multiphased Approach  

This project takes a multiphased approach to creating automated dialogue 
capabilities for autonomous systems; in initial phases, wizards play the role of 
components that are automated in later phases. These phases can be summarized in 
Table 1. Experiments with human subjects served as a way to not only collect 
training data for the automated components but served as milestones to measure our 
progress. By convention, we ordered experiments numerically. Experiment 1 served 
as our initial exploratory phase where we wanted to collect the full range of 
communications that may take place in the task domain. The DM-Wizard would 
type responses to Commander instructions in real time based on a set of guidelines 
that were established during experiment piloting. The guidelines specified that 
executable instructions were those that contained both a clear instruction and a 
specified endpoint. Thus, open-ended instructions equivalent to verbal 
teleoperation (e.g., “move forward”) were not acceptable. The DM-Wizard faced 
several challenges in Experiment 1: not only did they have to respond as quickly as 
possible to both the Commander and RN-Wizard, but to physically type these 
messages with as few typographical errors as possible to avoid impacting the 
Commander’s perception of autonomy. 
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Table 1 Testing scenarios over time. Columns indicate progression of testing scenario 
experimentation and development; rows represent scenario components. (Original table from 
Marge et al.28). 

 Exp 1 Exp 2 Exp 3 Exp 4 ScoutBot MultiBot 
25 26 completed 2018 completed 2019 27 28 

Dialogue 
Processing 

wizard + 
typing 

wizard + 
button 
presses 

wizard +  
button presses 

ASR +  
auto-DM 

ASR + 
auto-DM 

ASR + 
auto-DM 

Robotic wizard + wizard + wizard + wizard + finite state auto-assign 
Behaviors joystick joystick joystick joystick machine via TBS 
Robot(s) 1 physical 1 physical 1 simulated 1 simulated 1 simulated 2 simulated 

Environment 
indoors + 
real 
building 

indoors + 
real 
building 

indoors +  
sim building 

indoors + sim 
building 

indoors + 
sim 
building 

outdoors + 
sim 
buildings 

Notes: DM: Dialogue Management; ASR: Automatic Speech Recognition; TBS: Tactical Behavior 
Specification. 

The Experiment 1 data were analyzed to identify DM-Wizard messages and 
response templates that balance tractability for an autonomous system to use and 
full coverage of responses to what participants were likely to say in the task domain. 
This included strategies the DM-Wizard could use to ask for clarification and 
recover from problematic instructions. In Experiment 2, this set of messages was 
incorporated into a click-button graphical interface (see Fig. 2), substantially 
reducing typing and composition effort by the DM-Wizard. The graphical interface 
provided greater uniformity in responses. 

 

Fig. 2 Excerpt of a Wizard graphical interface for handling commands and composing replies 
to participants. Blue buttons reply to the Commander participant, while red buttons route 
messages to the RN-Wizard that teleoperates the robot. CAPS indicate text-input slots. 
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The first two experiments were done in a real-world indoor environment with a 
physical robot (Clearpath Robotics Jackal). While this resulted in realistic and useful 
data for analysis, the pace of data collection was limited to the availability of the 
physical space used in data collection. Previous work showed that instruction-giving 
in virtual and real-world environments are similar,29 so we explored the option of 
a virtual environment setup in Experiment 3. Like the first two experiments, the 
Commander would have access to the same visual information (e.g., a live map, 
pictures from the robot’s camera, and text dialogue), only it was simulated in the 
Gazebo high-fidelity virtual simulator.30 This included the physics of objects and 
views from a virtual version of the robot and its camera. From the Commander’s 
perspective, the study was equivalent to the previous two, with the exception that the 
images from the camera were virtually rendered. Shifting the experiment setup to 
simulation offered several benefits: 1) there was no longer a dependency on the 
availability of physical space or robot platforms, 2) technical problems were far less 
likely in a controlled virtual environment, and 3) data collection could be done in 
parallel at multiple experiment sites. During this time, an additional collaborator 
(Carnegie Mellon University) joined the team to help in analyzing emotional 
expression and face pose data from participants during the study. Beyond this 
difference, the experiment followed the protocol and experiment design of the first 
two studies. 

Data collection during Experiment 3 resulted in sufficient training data to train an 
automated component that replaced the DM-Wizard. Instead of a human 
experimenter listening to the Commander’s speech and routing messages back and 
to the RN-Wizard, in Experiment 4 a dialogue system provided these capabilities. 
This final study had only the RN-Wizard as a wizard experimenter to teleoperate 
the robot in response to instructions provided to it by the dialogue system. The 
system itself was divided into two main components: 1) a speech recognition 
component that would interpret speech in real time from the Commander, and 2) a 
dialogue manager classifier that would determine the Commander’s intent from 
their speech using training data collected in the previous studies. Additional 
technical details regarding the classifier can be found in Gervits et al.31 The system 
used in this study was the precursor to JUDI, used by ARL’s Artificial Intelligence 
for Maneuver and Mobility (AIMM) Essential Research Program (ERP). 
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5. Data Collection Experiments 

In all experiments, the participant (Commander) conducts a collaborative search 
and navigation task with a robot teammate to assess the structure of a house-like 
environment and locate objects of interest. 

5.1 Experiment Design and Method  

Participants first answered a questionnaire to collect demographic information (see 
Appendix A for a list of all surveys). They were then seated at a computer monitor 
and fitted with a headset microphone and a keyboard configured with a push-to-
talk button. Participants were also provided a list of the robot’s capabilities (see 
Appendix B), shown a photo of the robot (either real or virtual, depending on the 
experiment configuration), and given a worksheet outlining the tasks and a pen to 
take notes. An experimenter walked through the heads-up interface used by 
participants to monitor the robot and its environment (see Fig. 1, upper right). 
Participants were not informed that the robot was controlled by wizard 
experimenters. 

Participants then completed a training session where they would practice interacting 
with the robot in a simplified version of the task (specifically, this environment was 
a narrow corridor with a few rooms to explore with the robot). Once they were 
comfortable with the task, participants proceeded to the two main trials. These two 
trials took place at different starting locations in a house-like environment, with the 
order of starting points counterbalanced across participants. Each trial also had 
different tasks, such as tallying doorways, shovels, shoes, or whether the space was 
recently occupied. These trials lasted until participants self-reported that they 
finished the task, or 20 min had elapsed, whichever came first. After each trial, the 
participant reported on findings to the experimenter. In all the following experiments, 
a participant only participated in an experiment run once. 

5.2 Experiment 1: Free Response Mode  

5.2.1 Method Summary 

Experiment 1 followed the general experiment design, with a Commander 
participant and two wizard experimenters (DM-Wizard and RN-Wizard). The DM-
Wizard typed responses manually using a keyboard into chat windows to both the 
Commander (responses and clarifications) and RN-Wizard (tasks to complete), so 
we call this experiment Free Response Mode. Experimentation took place at Adelphi 
Laboratory Center (ALC).  
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5.2.2 Participation 

Ten people participated in Experiment 1. There were 8 male and 2 female 
participants, and the mean age was 44 (min = 28, max = 58). 

5.2.3 Key Findings 

Experiment 1 sought to examine the feasibility of our setup: can we collect useful 
robot-directed dialogue data with human experimenter stand-ins for components 
that will ultimately be automated? While our setup did show that collecting useful 
dialogue, speech, and robot data was possible, there were limitations to the 
consistency of the responses generated by the DM-Wizard. First, responses were slow. 
This was because not only did the DM-Wizard have to think on-the-spot about how 
to respond, they also needed to type carefully so as not to introduce typographical 
errors, as mentioned in Section 4. Second, since every response was manually typed, 
there was naturally some divergence. This divergence needed to be manually 
analyzed to identify the core patterns in how a robot should respond in similar 
situations. 

Upon completion of Experiment 1, we identified a need to automate some of the 
DM-Wizard labor to reduce latency at responding to a Commander’s instructions, 
and also to reduce variation in the syntactic structure of responses. Semantically, 
many forms of a response may be appropriate, but without a detailed analysis, there 
are challenges in gaining value from all collected data. These responses are key to 
training a dialogue system: a dialogue system will need to know not only the kind 
of situations to expect, but also how to respond to those situations. Consistent 
responses are better for creating a smoother distribution of training data for an 
automated system. 

The completion of Experiment 1 also provided an opportunity to analyze the form 
and content of instructions directed to the robot. We found that, in general, 
participants preferred to include metric content (e.g., move forward 3 ft) over 
references to the physical environment, such as landmarks (e.g., move to the box in 
front of you), in their instructions. However, we observed that participants gravitated 
to using more landmark-based instructions over time. This difference was 
statistically significant: when comparing instructions from what the first trial 
participants did to the second, they used more landmarks in their instructions in the 
later trial. This result suggests that as participants built experience with the robot 
and the natural language interface, they were comfortable giving it more “human-
like” instructions as opposed to instructions that would be equivalent to verbal 
teleoperation of a robot. Additional discussion can be found in Marge et al.25 
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5.3 Experiment 2: Structured Response Mode (Real-World)  

5.3.1 Method Summary 

Experiment 2 followed the same experiment design as Experiment 1, with the 
exception of the DM-Wizard using a graphical interface to produce messages to 
both the Commander and RN-Wizard. We call this experiment Structured Response 
Mode (Real-World). Experimentation took place at ALC. 

5.3.2 Participation 

Ten people participated in Experiment 2. There were 5 male and 5 female 
participants, and the mean age was 42 (min = 18, max = 58). 

5.3.3 Key Findings 

The use of a graphical interface to automate some of the DM-Wizard’s labor, while 
providing them the freedom to select and occasionally insert context-specific 
content into responses, was a substantial improvement in our experimental setup. 
We leveraged a process already in place with our collaboration partners at USC 
ICT that accomplished a similar feat with building a virtual human,32 but added 
innovations specific to the challenges in human–robot interaction. Generally, these 
innovations relate to identifying content patterns in the instructions and responses 
as they relate to the robot’s current task and surroundings. Details on this process 
can be found in Bonial et al.26 

Following creation of an annotation scheme to measure the content of language 
instructions and dialogue exchanges, we compared the quality of data collected in 
Experiment 2 to Experiment 1. Not only did we find that the graphical interface 
significantly improved the pace of dialogue during trials, we also found the data 
itself improved the accuracy of an algorithm that derives intent from natural language 
instructions. Despite the limitations of a click-button interface compared to free-form 
natural language to produce responses to Commander instructions, the interface itself 
maintained good coverage of situations in the task domain. All results are reported 
in Marge et al.24 

5.4 Experiment 3: Structured Response Mode (Virtual)  

5.4.1 Method Summary 

In contrast to previous experiments, Experiment 3 shifted the setup to a virtual 
rendering of the real-world environment. Like previous experiments, Experiment 3 
also had a Commander participant, DM-Wizard, and RN-Wizard. The DM-Wizard 
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used a graphical interface similar to Experiment 2. The virtual environment was 
designed to replicate a 1–1 mapping of objects from the first two experiments and 
their locations. The task domain was equivalent to previous studies. We call this 
experiment Structured Response Mode (Virtual). Experimentation took place at 
ALC, Aberdeen Proving Ground, and ARL-West (located in Los Angeles, 
California). 

5.4.2 Participation 

In Experiment 3, 63 people participated. There were 23 male and 40 female 
participants, and the mean age was 42 (min = 18, max = 70). 

5.4.3 Key Findings 

Experiment 3 assessed whether the shift to a virtual setup would accelerate the pace 
of data collection, while still collecting useful training data. Indeed, this was a 
success: in a matter of three months, we collected an order of magnitude more data 
from 63 participants compared to previous experiments that saw only 10 participants 
take part per study. The shift to a virtual setup afforded us flexibility in where to 
conduct the study and reduced a burden on equipment and staff needs required to 
conduct the study—specifically, a robotics expert was no longer required in case of 
technical difficulties. Additionally, a shift to virtual setup provided the benefit of 
collecting data from multiple populations of participants: the local communities of 
northern Maryland, the Washington DC Metro area, and the greater Los Angeles 
Metro area. In contrast to previous studies, multiple experiments could be run per 
day, as there was no dependency on the availability of a physical space or functional 
robot. 

5.5 Experiment 4: Automated Response Mode  

5.5.1 Method Summary 

The final study, Experiment 4, leveraged data collected in previous experiments to 
use a fully automated conversational interface that replaced the DM-Wizard role. 
This interface included real-time speech and dialogue processing (with push-to-talk 
for speech endpointing). An RN-Wizard was still included, as the focus of the 
research was evaluating the robustness of dialogue processing as opposed to 
introducing unanticipated robot navigation errors. The task domain was equivalent 
to previous studies. We call this experiment Automated Response Mode. 
Experimentation took place at ARL-West. 
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5.5.2 Participation 

Ten people participated in Experiment 4. There were 7 male and 3 female 
participants, and the mean age was 29 (min = 21, max = 48). 

5.5.3 Key Findings 

Since Experiment 4 was the first opportunity to evaluate an automated system, it was 
unclear whether participants would be able to successfully complete the task due to 
unforeseen errors or poor coverage by the automated system. Similar to previous 
studies, participants were able to complete tasks with the robot. An analysis of the 
data collected showed the amount of Commander instructions was similar to the 
pace of collection in previous experiments (see Table 2). While occasionally there 
were inaccuracies in the system’s behavior, participants were able to use established 
conversational strategies (e.g., issuing a cancel request) that would allow the 
interaction to continue without further disruption. 

Table 2 Corpus statistics for SCOUT 

Statistics Exp 1 Exp 2 Exp 3 Exp 4 Total 
Participants 10 10 63 10 93 
Hours of audio 10 10 63 10 93 
Transcripts 30 30 188 30 278 
Participant utterances 3,267 1,425 13,218 3,151 21,061 
Participant words 20,174 10,224 81,202 13,392 124,992 
Images taken 835 565 3,694 691 5,785 

6. Impact 

This section summarizes the resulting research products of Bot Language 
experimentation and its impact on the Army and international community. 

6.1 SCOUT Corpus  

The collection of language and robot data from Experiments 1–4 comprise SCOUT, 
the Situated Corpus of Understanding Transactions. SCOUT contains participants’ 
speech and all messages from the DM-Wizard (in Experiment 4, the automated 
Dialogue Manager) and RN-Wizard, and logs of all robot messages, maps, and 
navigation commands. The contents of SCOUT are summarized in Table 2. 

The corpus consists of data from 93 participants, whose audio recordings total 
approximately 1 h per participant. Time-aligned transcriptions display all the 
interlocutors involved in the dialogue (i.e., the Commander participant, the DM-
Wizard, and the RN-Wizard), in their respective communication floors. Table 3 
shows a sample exchange. One transcript is created per session the participant 
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completed (i.e., training and main trials), for a total of 278 dialogues, containing 
21,061 participant utterances and 124,992 participant words. 

Table 3 Time-aligned dialogue transcript excerpt 

0 Left floor Right floor 
ID 
no. Commander DM→Commander DM→RN RN 

1 Continue to move down the 
hallway . . .  . . . . . . 

2 . . . 

How far should I continue 
down the hallway? Would you 
like me to reach something 
that you see or go a certain 
distance? 

. . . . . . 

3 
Go down the end of the 
hallway where it appears to 
be a clock on the wall 

. . . . . . . . . 

4 . . . . . . 

Move to the end of the 
hallway where you are 
facing the clock on the 
wall. 

. . . 

5 . . . Executing . . . . . . 
6 Take a picture . . . . . . . . . 
7 . . . . . . Image . . . 
8 . . . . . . . . . Done 
9 . . . Sent . . . . . . 

Notes: DM: Dialogue Manager Wizard; RN: Robot Navigator Wizard. 
 
SCOUT additionally includes several types of annotations regarding the form and 
content of the dialogues. For more information on these annotations, see Marge et 
al.25 for instruction-level annotations and Traum et al.33 for dialogue structure 
annotations. Still-frame pictures from every time the participant requested the robot 
to take an image of the environment have been extracted from the SCOUT robot 
data, yielding a collection of 5,785 images that are interleaved with and critical to 
the unfolding dialogue. 

To date, ARL has distributed SCOUT to research partners at four universities—two 
international and two domestic—with one involved in ARL’s AI and Autonomy for 
Multi-Agent Systems (ArtIAMAS) Cooperative Agreement, who are studying 
linguistic patterns and are investigating the feasibility of novel neural network 
algorithms for human–robot dialogue with the data. These collaborations have 
oriented members of the research community toward challenges of interest to the 
Army. To date, these collaborators have published papers on modal expressions34 

and neural dialogue algorithms.35 
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6.2 Prototype Systems 

As the Bot Language experiments were piloted, launched, and the data analyzed, 
team members conducted software “sprints” aimed at demonstrable proof-of-
concept systems that show the technical promise of real-time dialogue with 
autonomous systems. These systems are summarized in the final two columns of 
Table 1. The first prototype, ScoutBot, was created to determine if the data 
collected in the initial experiments could be used to train a dialogue system to 
support collaborative navigation in a task domain similar to Experiments 1–4.27 

ScoutBot was the first human–robot dialogue system trained entirely off data 
collected using the DWoZ methodology. ScoutBot permitted users to issue verbal 
navigation instructions to a virtual Clearpath Robotics Jackal in an indoor 
environment. Notable technical demonstrations of ScoutBot were given to the Chief 
of Staff of the Army, General James McConville, and to attendees at the 2018 
Annual Meeting of the Association for Computational Linguistics (ACL), the 
premier conference for research in natural language processing and computational 
linguistics. General McConville noted the technical promise of human–robot 
dialogue: “You could tell one robot to go here, another there, and another with 
certain sensors to go there.” 

A second prototype, called MultiBot, aimed to extend ScoutBot capabilities to 
support dialogue interaction with multiple robotic platforms, and in a different task 
domain.28 By combining dialogue with advanced robotic behaviors (e.g., Tactical 
Behavior Specifications36) originally created as part of the ARL Robotics 
Collaborative Technology Alliance, MultiBot could interpret goal-based 
instructions (scout route bravo) to an aerial-ground team based on each robot’s 
capabilities in a search task. Notable technical demonstrations of MultiBot were 
given to ARL Director Dr Patrick Baker and to attendees at the 2019 Annual 
Meeting of the North American Chapter of the Association for Computational 
Linguistics (NAACL), a top-tier conference for research in natural language 
processing and computational linguistics. As a successor to ScoutBot, MultiBot 
demonstrated the generalizability of the Bot Language project’s technical 
contributions to now enabling dialogue processing between one human and a team 
of mobile robots. 

6.3 JUDI 

In partnership with USC ICT, the prototype ScoutBot dialogue system was organized 
into an application to support conversational interaction with autonomous systems 
known as JUDI, the Joint Understanding and Dialogue Interface. JUDI combines 
spoken language interaction with the full capabilities of the ARL Autonomy Stack 
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that comprise navigation and perception algorithms for robotic platforms. JUDI 
leverages elements originally created in USC ICT’s Virtual Human Toolkit37 for 
spoken language and dialogue processing algorithms. JUDI also features tight 
integration with offline speech recognition provided by the Kaldi open-source 
speech recognition toolkit.38 In contrast to many of today’s conversational systems, 
JUDI does not require a cloud connection to function. 

As a primary mode of Soldier–agent interaction for agents that use the ARL 
Autonomy Stack, JUDI provides a “heads-up, hands-free” mode of communication 
that allows Soldiers to keep their heads up and hands free for other tasks. 
Experiments with fielding JUDI are underway as part of the AIMM ERP. 

6.4 Dialogue-AMR 

Although the dialogue structure annotations of SCOUT provide information critical 
to dialogue systems on which different utterances are related and what relations exist 
between them, the annotations do not provide a markup of the semantic content of 
participant instructions. Because we hypothesize that such a semantic representation 
would be valuable in mapping the natural language instructions to the autonomous 
system’s set of executable behaviors and to the real-world objects mentioned in 
those behaviors (i.e., symbol grounding), we explored how to develop a semantic 
representation suitable for human–robot dialogue. 

We first evaluated the suitability of existing semantic representations, and opted to 
explore the strengths and weaknesses of Abstract Meaning Representation (AMR) to 
support both natural language understanding and symbol grounding in human–robot 
dialogue.39 AMR is a formalism for sentence semantics that abstracts away from 
some syntactic idiosyncrasies.40 Each sentence is represented by a rooted directed 
acyclic graph in which variables (or graph nodes) are introduced for entities, events, 
properties, and states. Leaves are labeled with concepts (e.g., (r / robot)). AMR 
provides an appropriate level of abstraction for natural language understanding in 
our human–robot dialogue application. As the goal of AMR research is to capture 
core facets of meaning unrelated to surface structure, the same underlying concept 
realized alternatively as a noun (a left turn), verb (turn to the left), or light verb 
construction (make a left turn) are all represented by identical AMRs. This is well-
suited to our setup: the agent (e.g., a robot) has a limited number of executable 
behaviors it can perform, and any user utterance needs to be mapped to a simple yet 
structured representation that the agent can understand. In turn, the agent only needs 
to communicate back to the user regarding those same concepts. Thus, the AMR 
formalism smooths away many syntactic and lexical features that are unimportant 
to the agent. Existing AMR parsers can be used to obtain an initial interpretation of 
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a user utterance, making the interpretation process easier than parsing natural 
language text directly into an agent-oriented representation. 

However, we also found that AMR has several gaps in information crucial to human–
robot dialogue: 1) the illocutionary force of the speaker (i.e., what the speaker is 
trying to do with their utterance in a conversational context, such as give a command 
or ask a question); 2) tense or the time of instructed actions (i.e., will it happen in 
the future or has it already happened); and 3) aspect or the completion status of 
instructed actions (i.e., is it complete, ongoing, or not started yet). The formalism that 
we developed, Dialogue-AMR, addresses each of these gaps in a novel way that 
captures these desired three features along with the semantic, propositional content 
of instructions, within one computer-readable representation.41 

We have since shown that leveraging both AMR and Dialogue-AMR in an 
intelligence architecture for agents can reduce the amount of training data needed 
and increase computation time and efficiency for grounding the natural language 
instructions (i.e., deriving correspondences between the objects mentioned and the 
robot’s sensory perceptions, and selecting action primitives and parameters for the 
behaviors) (see Howard et al.42 for the grounding approach). We also demonstrated 
that we can extend Dialogue-AMR, as well as the automatic pipeline involving an 
AMR parser and a conversion system that outputs Dialogue-AMR, to novel domains, 
such as the blocks-world building domain of Minecraft, with very little training data 
from the new domain while maintaining high accuracy in the representation.43 

Encouraged by these promising results, ongoing work includes continuing to 
explore how to leverage AMR and Dialogue-AMR for situated human–robot 
dialogue for different collaborative tasks as well as interactions with multiple 
humans and agents. 

7. Metrics 

As of the publication of this report, the Bot Language project has produced 16 
refereed conference and symposium publications, 12 refereed workshop 
publications, 2 technical reports, and 3 published abstracts. 

7.1 Refereed Conference and Symposium Publications  

1) Bonial C, Abrams M, Traum D, Voss C. Builder, we have done it: evaluating 
& extending Dialogue-AMR NLU pipeline for two collaborative domains. In: 
Proceedings of the 14th International Conference on Computational 
Semantics (IWCS); Association for Computational Linguistics; 2021. p. 
173–183. 
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2) Bonial C, Donatelli L, Abrams M, Lukin SM, Tratz S, Marge M, Artstein R, 
Traum D, Voss C. Dialogue-AMR: Abstract Meaning Representation for 
dialogue. In: Proceedings of the 12th International Conference on Language 
Resources and Evaluation; European Language Resources Association; 2020. 
p. 684–695. 

3) Hayes C, Marge M. Towards preference learning for autonomous ground 
robot navigation tasks. In: Proceedings of AI-HRI; Artificial Intelligence-
Human–Robot Interaction Symposium; 2020. 

4) Abrams M, Bonial C, Donatelli L. Graph-to-graph meaning representation 
transformations for human–robot dialogue. In: Proceedings of the Society 
for Computation in Linguistics; Society for Computation in Linguistics; 
2020. p. 250–253. 

5) Bonial C, Donatelli L, Ervin J, Voss CR. Abstract Meaning Representation 
for human–robot dialogue. In: Proceedings of the Society for Computation 
in Linguistics; Society for Computation in Linguistics; 2019. p. 236–246. 

6) Marge M, Bonial C, Lukin S, Hayes C, Foots A, Artstein R, Henry C, 
Pollard K, Gordon C, Gervits F, Leuski A, Hill SG, Voss CR, Traum D. 
Balancing efficiency and coverage in human–robot dialogue collection. In: 
Proceedings of AI-HRI; Artificial Intelligence-Human–Robot Interaction 
Symposium; 2018. 

7) Pollard KA, Lukin SM, Marge M, Foots A, Hill SG. How we talk with robots: 
eliciting minimally-constrained speech to build natural language interfaces 
and capabilities. In: Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting; Vol. 62; Human Factors and Ergonomics Society; 
2018. p. 160–164. 

8) Lukin SM, Gervits F, Hayes CJ, Leuski A, Moolchandani P, Rogers JG III, 
Amaro CS, Marge M, Voss CR, Traum D. ScoutBot: a dialogue system for 
collaborative navigation. In: Proceedings of the 56th Annual Meeting of 
the Association for Computational Linguistics–System Demonstrations; 
Association for Computational Linguistics; 2018. p. 93–98. 

9) Lukin S, Pollard K, Bonial C, Marge M, Henry C, Artstein R, Traum D, 
Voss C. Consequences and factors of stylistic differences in human–robot 
dialogue. In: Proceedings of the 19th Annual SIGdial Meeting on Discourse 
and Dialogue; Association for Computational Linguistics; 2018. p. 110–118. 
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10) Traum D, Henry C, Lukin S, Artstein R, Gervits F, Pollard K, Bonial C, Lei 
S, Voss C, Marge M, Hayes C, Hill S. Dialogue structure annotation for 
multifloor interaction. In: Calzolari N, Choukri K, Cieri C, Declerck T, 
Goggi S, Hasida K, Isahara H, Maegaard B, Mariani J, Mazo H, Moreno A, 
Odijk J, Piperidis S, Tokunaga T, editors. Proceedings of the Eleventh 
International Conference on Language Resources and Evaluation; European 
Language Resources Association; 2018. p. 104–111. 

11) Henry C, Lukin S, Pollard KA, Bonial C, Foots A, Artstein R, Voss CR, 
Traum D, Marge M, Hayes CJ, Hill SG. The Bot Language project: moving 
towards natural dialogue with robots. In: Proceedings of the SoCalNLP 
Symposium; SoCal NLP; 2018. 

12) Moolchandani P, Hayes CJ, Marge M. Evaluating robot behavior in response 
to natural language. In: Companion of the 2018 ACM/IEEE International 
Conference on Human–Robot Interaction; Association for Computing 
Machinery; 2018. p. 197–198. 

13) Bonial C, Marge M, Foots A, Gervits F, Hayes CJ, Henry C, Hill SG, Leuski A, 
Lukin SM, Moolchandani P, Pollard KA, Traum D, Voss CR. Laying down the 
yellow brick road: development of a Wizard-of-Oz interface for collecting 
human–robot dialogue. In: Proceedings of the AAAI Fall Symposium on 
Natural Communication for Human–Robot Collaboration; arXiv; 2017. 

14) Marge M, Bonial C, Pollard KA, Artstein R, Byrne B, Hill SG, Voss C, 
Traum D. Assessing agreement in human–robot dialogue strategies: a tale of 
two wizards. In: Traum D, Swartout W, Khooshabeh P, Kopp S, Scherer S, 
Leuski A, editors. Intelligent Virtual Agents; Springer International 
Publishing; 2016. p. 484–488. 

15) Marge M, Bonial C, Byrne B, Cassidy T, Evans AW, Hill SG, Voss C. 
Applying the Wizard-of-Oz technique to multimodal human–robot 
dialogue. In: Proceedings of IEEE RO-MAN; arXiv; 2016. 

16) Cassidy T, Voss C, Summers-Stay D. Turn-taking in commander–robot 
navigator dialog (Video Abstract). In: Proceedings of the AAAI Spring 
Symposium Series; Association for the Advancement of Artificial 
Intelligence; 2015. 
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7.2 Refereed Workshop Publications  

1) Bonial C, Abrams M, Baker AL, Hudson T, Lukin SM, Traum D, Voss CR. 
Context is key: annotating situated dialogue relations in multi-floor dialogue. 
In: Proceedings of the 25th Workshop on the Semantics and Pragmatics of 
Dialogue; SEMDIAL; 2021. 

2) Gervits F, Leuski A, Bonial C, Gordon C, Traum D. A classification-based 
approach to automating human–robot dialogue. In: Marchi E, Siniscalchi 
SM, Cumani S, Salerno VM, Li H, editors. Increasing Naturalness and 
Flexibility in Spoken Dialogue Interaction: 10th International Workshop on 
Spoken Dialogue Systems; Springer Singapore; 2021. p. 115–127. 

3) Bonial C, Donatelli L, Lukin SM, Tratz S, Artstein R, Traum D, Voss C. 
Augmenting Abstract Meaning Representation for human–robot dialogue. 
In: Proceedings of the First International Workshop on Designing Meaning 
Representations; Association for Computational Linguistics; 2019. p. 199–
210. 

4) Lukin SM, Bonial C, Voss CR. Visual understanding and narration: a deeper 
understanding and explanation of visual scenes. In: Proceedings of the 
Workshop on Shortcomings in Vision and Language (SiVL); arXiv; 2019. 

5) Lukin S, Hobbs R, Voss C. A pipeline for creative visual storytelling. In: 
Proceedings of the First Workshop on Storytelling (StoryNLP); Association 
for Computational Linguistics; 2018. p. 20–32. 

6) Henry C, Gordon C, Traum D, Lukin SM, Pollard KA, Artstein R, Bonial C, 
Voss CR, Foots A, Marge M. Faster pace in human–robot dialogue leads 
to fewer dialogue overlaps. In: Proceedings of the NAACL Workshop on 
Widening NLP; Association for Computational Linguistics; 2018. 

7) Hayes CJ, Marge M, Stump E, Bonial C, Voss C, Hill SG. Towards learning 
user preferences for remote robot navigation. In: Proceedings of the RSS 2018 
Workshop on Models and Representations for Human–Robot 
Communication; University of Rochester; 2018. 

8) Bonial C, Lukin SM, Foots A, Henry C, Marge M, Pollard KA, Artstein R, 
Traum D, Voss CR. Human–robot dialogue and collaboration in search and 
navigation. In: Proceedings of the Annotation, Recognition and Evaluation 
of Actions (AREA) Workshop of the 2018 Language Resources and 
Evaluation Conference (LREC); European Language Resources 
Association; 2018. 
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9) Marge M, Bonial C, Foots A, Hayes C, Henry C, Pollard K, Artstein R, Voss 
C, Traum D. Exploring variation of natural human commands to a robot in 
a collaborative navigation task. In: Proceedings of the First Workshop on 
Language Grounding for Robotics; Association for Computational 
Linguistics; 2017. p. 58–66. 

10) Henry C, Moolchandani P, Pollard KA, Bonial C, Foots A, Artstein R, Hayes 
C, Voss CR, Traum D, Marge M. Towards efficient human–robot dialogue 
collection: moving Fido into the virtual world. In: Proceedings of the 
Workshop on Women and Underrepresented Minorities in Natural Language 
Processing (WiNLP); Association for Computational Linguistics; 2017. 

11) Summers-Stay D, Cassidy T, Voss C. Joint navigation in commander/robot 
teams: dialog & task performance when vision is bandwidth-limited. In: 
Proceedings of the Third Workshop on Vision and Language; Dublin City 
University and the Association for Computational Linguistics; 2014. p. 9–16. 

12) Voss C, Cassidy T, Summers-Stay D. Collaborative exploration in human–
robot teams: What’s in their corpora of dialog, video, & LIDAR messages? In: 
Proceedings of the EACL 2014 Workshop on Dialogue in Motion; Association 
for Computational Linguistics; 2014. p. 43–47. 

7.3 Technical Reports  

1) Bonial C, Traum D, Henry C, Lukin SM, Marge M, Artstein R, Pollard KA, 
Foots A, Baker AL, Voss CR. Dialogue structure annotation guidelines for 
Army Research Laboratory (ARL) human–robot dialogue corpus. 
DEVCOM Army Research Laboratory (US); 2019. Report No.: ARL-TR-
8833. 

2) Bonial C, Henry C, Artstein R, Marge M. Transcription guidelines for Army 
Research Laboratory (ARL) human–robot dialogue corpus. DEVCOM 
Army Research Laboratory (US); 2019. Report No.: ARL-TR-8832. 

7.4 Published Abstracts  

1) Hayes C, Marge M, Bonial C, Voss C, Hill SG. Team-centric motion 
planning in unfamiliar environments (Conference Presentation). In: 
Degraded Environments: Sensing, Processing, and Display; Vol. 10642; 
SPIE; 2018. 
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2) Marge M, Traum D, Voss CR, Hill SG. Towards natural dialogue with 
robots: ARL Bot Language. In: Proceedings of the NDIA Human Systems 
Conference; National Defense Industrial Association; 2018. 

3) Marge M, Bonial C, Pollard KA, Henry C, Artstein R, Byrne B, Hill SG, 
Voss C, Traum D. Towards natural dialogue with robots: Bot Language. 
In: Proceedings of AI-HRI; Association for the Advancement of Artificial 
Intelligence; 2016. 

7.5 Seminars and Presentations 

The project resulted in 17 invited department-level seminars showcasing natural 
language human–robot interaction research: 

1) Matthew Marge: University of Maryland, Georgetown University, 
University of Rochester, Naval Research Laboratory, Defence Science 
Technology Group (Australia), Tufts University, Bose Research, University 
of Gothenburg (Sweden), and Air Force Research Laboratory 

2) Claire Bonial: Georgetown University, University of Maryland, University 
of Colorado Boulder, and Brown University 

3) Stephanie Lukin: Loyola University Maryland and Disney Imagineering 
Research 

4) Clare Voss: USC ICT and University of Illinois Urbana-Champaign 

Finally, the project resulted in 28 presentations at international conference and 
workshop venues, and 3 keynote presentations at conferences: 

1) Matthew Marge: 2019 AI-HRI Symposium 

2) Claire Bonial, Stephanie Lukin, and Clare Voss: 2020 SemDial Workshop on 
the Semantics and Pragmatics of Dialogue 

3) Stephanie Lukin: 2020 AAAI Conference on Artificial Intelligence and 
Interactive Digital Entertainment 

8. Conclusions 

This report summarizes technical accomplishments from the Bot Language project, 
which aimed to provide more natural ways for people to communicate and interact 
with remotely located robots using natural language dialogue. The primary 
contribution of this body of work was a series of experiments that elicited dialogue-
based communications between humans and robots and the associated data that 
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form a data set called SCOUT. In the early stages of this work, the natural language 
components were controlled by human experimenters using the WoZ methodology 
but were progressively automated in later experiments. A dialogue system prototype 
developed in this work formed the basis for the Army’s JUDI capability that enables 
conversational interactions between Soldiers and autonomous systems. Another 
major contribution has been to the natural language processing community in the 
form of annotation schemes for modeling the structure, content, and semantics of 
dialogue-based exchanges from SCOUT. Today, these annotations are used to train 
machine learning algorithms to understand patterns in robot-directed natural 
language, improving how robots can make decisions when teaming with humans. 
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The surveys and questions that participants completed include the following:  

Demographic Surveys: 

• Age (free text box) 

• Gender (Female, Male options only) 

• Wear glasses or contacts 

• Experience in military service 

• Experience in video gaming 

• Experience in working with automated voice systems (e.g., SIRI) 

• Experience in working with robots and automation 

• Color vision test (screening test; we required participants to pass this 
six-question test) 

• Spatial orientation test 

• Mini-IPIP (International Personality Item Pool) 

Surveys taken before and after trials: 

• Trust Perception Scale —HRI (human–robot interaction) 

• NASA-TLX (Task Load Index) 

• Robot Perception Survey — Robot Dominance/Humanlikeness/Knowledge 
scales 
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Appendix B. Robot Capabilities 
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These are, verbatim, the capabilities provided on a sheet to study participants: 

The robot can take a photo of what it sees when you ask. The robot has certain 
capabilities but cannot perform these tasks on its own. The robot and you will act 
as a team. 

Robot capabilities are: 

• Robot listens to verbal instructions from you 

• Robot responds in this text box (Experimenter points to instant messenger 
box on screen) or by taking action 

• Robot will avoid obstacles 

• Robot can take photos directly in front of it when you give it a verbal 
instruction 

• Robot will know what some objects are, but not all objects 

• Robot also knows: 

o Intrinsic properties like color and size of objects in the environment 

o Proximity of objects like where objects are relative to itself and to 
other objects 

o A range of spatial terms like to the right of, in front of, cardinal 
directions like N, S 

• History: the Robot remembers places it has been 

• Robot doesn’t have arms and it cannot manipulate objects or interact with 
its environment except for moving throughout the environment 

• Robot cannot go through closed doors and it cannot open doors, but it can 
go through doorways that are already open 

• Robot can only see about knee height (∼1.5 ft)
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List of Symbols, Abbreviations, and Acronyms 

ACL Association for Computational Linguistics  

AI artificial intelligence 

AIMM Artificial Intelligence for Maneuver and Mobility  

ALC Adelphi Laboratory Center 

AMR Abstract Meaning Representation 

ARL Army Research Laboratory 

ARO Army Research Office 

ArtIAMAS AI and Autonomy for Multi-Agent Systems  

ASR Automatic Speech Recognition 

CAPS all uppercase 

DEVCOM US Army Combat Capabilities Development Command 

DM Dialogue Management 

DM-Wizard Dialogue Manager Wizard 

DWoZ Data-driven “Wizard-of-Oz” 

ERP Essential Research Program 

HRI human–robot interaction 

JUDI Joint Understanding and Dialogue Interface  

LIDAR light detection and ranging 

MURI Multidisciplinary University Research Initiative 

NAACL North American Chapter of the Association for Computational 
Linguistics 

NASA National Aeronautics and Space Administration 

PI Principal Investigator  

RN-Wizard Robot Navigator Wizard 

SCOUT Situated Corpus of Understanding Transactions 
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SUBTLE Situation Understanding Bot through Language and 
Environment  

TBS Tactical Behavior Specification 

USC ICT University of Southern California’s Institute for Creative 
Technologies 

WoZ Wizard of Oz 
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 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLB CI 
   TECH LIB 
 
 1 DA HQ 
 (PDF) DASA(R&T) 
 
 8 USARMY AFC 
 (PDF) L BROUSSEAU 
  A LINZ 
  K WADE 
  S BRADY 
  J REGO 
  T KELLY 
  E JOSEPH 
  B SESSLER 
 
 2 DEVCOM HQ 
 (PDF) FCDD ST 
   C SAMMS 
   M HUBBARD 
 
 87 DEVCOM ARL 
 (PDF) FCDD RLA 
   C BEDELL 
   B SADLER 
   A SWAMI 
   J ALEXANDER 
   M GOVONI 
   M WRABACK 
   H EVERITT 
   S KARNA 
   JF NEWILL 
   AM RAWLETT 
   SE SCHOENFELD 
   J CHEN 
   PJ FRANASZCZUK 
   C OLIVER 
   G BRILL 
   C TEETER 
   B PERELMAN 
   A SCHOFIELD 
   J LANE 
  FCDD RLA B 
   A WEST 
  FCDD RLA CA 
   J FOSSACECA 
  FCDD RLA CB 
   P GILLICH 
  FCDD RLA CC 
   C KRONINGER 

  FCDD RLA CD 
   J ROBINETTE 
  FCDD RLA CL 
   F FRESCONI 
  FCDD RLA CG 
   D STRATIS-CULLUM 
  FCDD RLA CV 
   M KWEON 
  FCDD RLA F 
   JR GASTON 
  FCDD RLA G 
   ML REED 
  FCDD RLA H 
   JJ SUMNER 
  FCDD RLA I 
   D WIEGMANN 
  FCDD RLA J 
   B PIEKARSKI 
  FCDD RLA L 
   RD DEL ROSARIO 
  FCDD RLA M 
   ES CHIN 
  FCDD RLA N 
   BM RIVERA 
  FCDD RLA P 
   WL BENARD 
  FCDD RLA PD 
   F FATEMI 
  FCDD RLA T 
   RZ FRANCART 
  FCDD RLA V 
   S SILTON 
  FCDD RLA W 
   TV SHEPPARD 
  FCDD RLB 
   J ZABINSKI 
  FCDD RLB D 
   JS ADAMS 
  FCDD RLB PE 
   B ASHFORD 
  FCDD RLB R 
   S STRANK 
  FCDD RLB RN 
   C QUIGLEY 
  FCDD RLB RW 
   P KHOOSHABEH 
  FCDD RLB S 
   K KAPPRA 
   J VETTEL 
  FCDD RLC IT 
   M MARGE 
   C BONIAL 
   S LUKIN 
   C VOSS 
  FCDD RLD 
   PJ BAKER 
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   A KOTT 
   K JACOBS 
  FCDD RLD A 
   A MOGRO 
  FCDD RLD C 
   T KINES 
  FCDD RLD D 
   T ROSENBERGER 
   G LARKIN 
   R ZACHERY 
  FCDD RLD I 
   A FINCH 
   A LLOPIS-JEPSEN 
   D ROLL 
   S SHIDFAR 
   D KELLEY 
  FCDD RLD M 
   N ZANDER 
   R MURRAY 
  FCDD RLR 
   B HALPERN 
   S LEE 
   P REYNOLDS 
   K RASMUSSEN 
  FCDD RLR A 
   D STEPP 
  FCDD RLR C 
   LL TROYER 
  FCDD RLR DS 
   R FREED 
  FCDD RLR E 
   RA MANTZ 
  FCDD RLR EF 
   F GREGORY 
  FCDD RLR EG 
   H DE LONG 
  FCDD RLR EH 
   V MARTINDALE 
  FCDD RLR EI 
   SP IYER 
  FCDD RLR EL 
   J QIU 
  FCDD RLR EM 
   C VARANASI 
  FCDD RLR EN 
   JM COYLE 
  FCDD RLR EP 
   PM BAKER 
  FCDD RLR ET 
   B LOVE 
  FCDD RLR EV 
   J BARZYK 
  FCDD RLR EW 
   JD MYERS 
  FCDD RLR G 
   A SCRUGGS 
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