
NPS-MA-23-001

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Robustness and Vulnerability Measurement of Deep

Learning Methods for Cyber Defense

by

Thor Martinsen, Wei Kang, Elana Kozak, and Philip Smith

December 2022

Distribution Statement A: Approved for public release. Distribution is unlimited.

Prepared for: Navy Cyber Defense Operations Command. This research is supported by

funding from the Naval Postgraduate School, Naval Research Program
(PE 0605853N/2098). NRP Project ID: NPS-22-N336-A

THIS PAGE INTENTIONALLY LEFT BLANK

i STANDARD FORM 298 (REV. 5/2020)

Prescribed by ANSI Std. Z39.18

REPORT DOCUMENTATION
PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE
December 2022

2. REPORT TYPE:
Technical Report

3. DATES COVERED:
START DATE:
January 1, 2022

END DATE:
December 31, 2022

4. TITLE AND SUBTITLE:
Robustness and Vulnerability Measurement of Deep Learning Methods for Cyber Defense

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
 0605853N/2098

5d. PROJECT NUMBER
NPS-22-N336-A

5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)
Thor Martinsen, Wei Kang, Elana Kozak and Philip Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
Department of Applied Mathematics
Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING
ORGANIZATION REPORT
NUMBER
NPS-MA-23-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Naval Postgraduate School; Naval Research Program
Navy Cyber Defense Operations Command
112 Lake View Parkway
Suffolk, VA 23435

10.
SPONSOR/MONITOR'S
ACRONYM(S):
NRP; NCDOC

11.
SPONSOR/MONITOR'S
REPORT NUMBER(S)
NPS-MA-23-001;
NPS-22-N336-A

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Statement A: Approved for public release. Distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The goal of this study is to investigate mathematical concepts and quantitative measures of robustness and vulnerability of machine learning
systems to adversarial data and develop computational methods capable of quantitatively evaluating the robustness and vulnerability of deep
learning tools that can be applied in cybersecurity settings. The first phase of the project is a literature review. The second phase of the study is
focused on robustness analysis of infrastructure cyber security. Using a microgrid power system model and learning-based fault detection as the
testbed, we investigate the robustness of neural networks subjected to noisy or poisoned data. Finally, the third phase of the project, explores
distributional robustness. Neural networks may sometimes be used outside of the environment in which they were trained. If the distribution of
the incoming data is significantly different from that of the training data, it could negatively impact the performance of the neural network. In
addition to a quantitative analysis of robustness, the study reveals an underlying relationship between the robustness and the dynamical behavior
the training data.

15. SUBJECT TERMS
Deep learning, robustness, cyber security, fault detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 72 a. REPORT

U
b. ABSTRACT

U
C. THIS PAGE
 U

19a. NAME OF RESPONSIBLE PERSON
CAPT Thor Martinsen, USN

19b. PHONE NUMBER (Include area code)
(831)656-2581

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Ann E. Rondeau Scott Gartner
President Provost

The report entitled “Robustness and Vulnerability Measurement of Deep Learning Methods for
Cyber Defense” was prepared for the Navy Cyber Defense Operations Command and is funded
by the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098).

Distribution Statement A: Approved for public release. Distribution is unlimited.

This report was prepared by:

________________________ ________________________
 Thor Martinsen Wei Kang
 CAPT, USN, PhD Professor

Reviewed by: Released by:

________________________ ________________________
 Frank Giraldo, Chairman Kevin B. Smith
 Department of Applied Mathematics Vice Provost for Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The goal of this study is to investigate mathematical concepts and quantitative measures of
robustness and vulnerability of machine learning systems to adversarial data, and develop
computational methods capable of quantitatively evaluating the robustness and vulnerability of
deep learning tools that can be applied in cybersecurity settings. The first phase of the project is a
literature review. The second phase of the study is focused on robustness analysis of
infrastructure cyber security. Using a microgrid power system model and learning-based fault
detection as the testbed, we investigate the robustness of neural networks subjected to noisy or
poisoned data. Finally, the third phase of the project, explores distributional robustness. Neural
networks may sometimes be used outside of the environment in which they were trained. If the
distribution of the incoming data is significantly different from that of the training data, it could
negatively impact the performance of the neural network. In addition to a quantitative analysis of
robustness, the study reveals an underlying relationship between the robustness and the
dynamical behavior of the training data.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. Introduction .. 1

II. Literature review .. 3

A. Robustness under data uncertainties or adversarial attack .. 3

B. Robustness achieved through training ... 4

C. Infrastructure cyber security .. 6

D. Distributional robustness ... 7

E. Other related literature.. 8

F. Summary .. 10

III. A case study – machine learning and robustness of microgrid fault detection.. 11

A. Robustness – definitions and quantitative measures ... 13

B. Machine learning ... 14

C. Model, data and DNN robustness analysis ... 17
1. A power system model ... 17
2. Data generated for DNN training ... 19
3. Tools for DNN training .. 19
4. Network architecture ... 20
5. Perturbations in data for robustness study .. 21
6. Real data ... 22
7. Robustness measurements .. 23

D. Results ... 23
1. Hyperparameter baseline ... 23
2. Robustness under uniformly random noise ... 25
3. Network types and their robustness .. 27
4. The stability of prediction ... 29
5. Learning with noisy data... 30
6. Learning using real data ... 32

E. Summary .. 33

IV. Distributional robustness ... 35

A. Data structure and data generation ... 35
1. Data structure ... 35
2. Simulated Data ... 36

B. Results and dynamics analysis ... 37
1. Network Construction .. 38
2. Distributional changes .. 41
3. Depth and width changes ... 43
4. Data distribution of dynamic systems .. 50

C. Summary .. 52

V. Conclusions ... 55

LIST OF REFERENCES .. 57

INITIAL DISTRIBUTION LIST .. 62

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Navy networks and infrastructure are under frequent cyberattack. One developing

area of application of Artificial Intelligence (AI) and Machine Learning (ML) is

cybersecurity systems. However, some machine learning weaknesses, such as lack of

interpretability as well as susceptibility to data poisoning attacks, are important issues

that must be studied and addressed in order to ensure the reliable and safe use of AI tools

is network and cybersecurity settings. The robustness of Deep Learning (DL) techniques

used in computer vision and language processing have been extensively studied.

However, less is currently known about the vulnerabilities and robustness of DL methods

suitable in cybersecurity applications. This report includes a literature review, case study,

and computer simulations focusing on the robustness and vulnerability of machine

learning methods applicable to both department of defense (DoD) and civilian

applications. The work was carried in calendar year 2022 by two faculty members and

two graduate students assigned to the department of Applied Mathematics at the Naval

Postgraduate School. The study was funded by the Navy Research Program. Some of

the work contained herein can also be found in the recently published master’s degree

theses of the two project students.

Sophisticated cyber actors and nation-states are developing capabilities to disrupt,

destroy, or threaten the delivery of essential services. According to the Cybersecurity &

Infrastructure Security Agency (cisa.gov) “As information technology becomes

increasingly integrated with physical infrastructure operations, there is increased risk for

wide scale or high-consequence events that could cause harm or disrupt services upon

which our economy and the daily lives of millions of Americans depend”

(https://www.cisa.gov/cybersecurity). Many of the United States Navy’s operations

depend upon physical infrastructure such as the power grid and computer networks.

These days, cybersecurity plays an essential role in protecting a wide spectrum of critical

systems and infrastructures. For example, the reliability of power grids depends upon

robust cybersecurity protections (GAO@100 (2021)). The use of AI and Machine

Learning in cybersecurity settings is a developing area that is attracting increased

 2

attention. For instance, researchers have studied the use of supervised learning to classify

particular security problems such as denial-of-service attacks or to identify different

classes of network attacks such as scanning and spoofing (Berman at al. (2019);

GAO@100 (2021); Sarker et al. (2020)). Many approaches to network intrusion

detection using DL such as Deep Belief Networks (DBNs) and Restricted Boltzmann

Machines (RBMs) (Alrawashdeh and Purdy (2016)) have also been proposed. DBNs can

also be applied to detect malware attacks. Studies show that a combination of feature

selection and Deep Neural Networks (DNNs) can perform tasks of malware classification

(Berman at al. (2019), Sarker at el. (2020)). The stacked auto-encoder, a special kind of

DNN, can be used for network traffic identification and protocol classification (Berman

at al. (2019)). Despite many promising applications of DL, neural nets have been shown

to be susceptible to adversarial data, such as small perturbations to the input data which

cause significant variation in the output of the network leading to errors such as

mislabeling. The problem of quantitatively measuring the robustness and vulnerability of

DL used in cybersecurity applications is a relatively new area that requires more study.

 3

II. LITERATURE REVIEW

A. ROBUSTNESS UNDER DATA UNCERTAINTIES OR ADVERSARIAL
ATTACK

Robustness in machine learning often takes on different meanings. One definition

of robustness is “the degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions” (O’Mahony et al.

(2004)). In other words, it is the ability of a Machine Learning (ML) model to perform

well against noisy or adversarial generated data. In O’Mahony et al. (2004), the authors

focus on an adversarial attack and define the Stability of Prediction, 𝑆𝑆𝑆𝑆𝑆𝑆, as a

quantitative robustness measurement value. SOP measures the success of an attack,

which is correlated to the robustness of the machine learning system. An 𝑆𝑆𝑆𝑆𝑆𝑆 value

close to one indicates very little change between the pre- and post-attack predictions,

meaning that the system is stable, whereas an 𝑆𝑆𝑆𝑆𝑆𝑆 value equal to zero means that the

prediction changed by at least some quantity 𝛼𝛼. In this case, the system is not very

robust. For example, an 𝑆𝑆𝑆𝑆𝑆𝑆 of 0.4 at 𝛼𝛼 = 2 means that 60% of all predictions were

changed by at least +2 units. One advantage of the 𝑆𝑆𝑆𝑆𝑆𝑆 measurement is that it can be

used to compare the robustness of various recommendation systems, regardless of their

individual accuracy.

Hembram et. al. studied robustness in the context of a soil erosion, using a gully

erosion prediction model. In their research, they defined robustness as a combination of

discrimination ability and reliability (Hembram et al. (2021)). The discrimination ability

of the system referred to the ability of a model to separate between a gully presence and

absence areas, whereas reliability was the accuracy of the predicted gully locations

compared to the observed locations. Their analysis provided several methods of

measuring both aspects of robustness. For discrimination ability, they used efficiency,

the Jaccard index, the Matthew's correlation coefficient, the Kappa coefficient, as well as

receiver operating characteristics. For reliability they calculated the root mean square

error (RMSE) and the mean absolute error (MAE). These common statistics equations

can be used to compare a variety of ML models. As shown in the gully erosion study,

 4

combined they can produce a detailed picture of the ML predictions, however, each

measurement focuses solely on one aspect of the problem. Most commonly, the RMSE is

used as a benchmark error measurement.

Derks et. al. (1995) performed a robustness analysis on two different types of

neural networks, namely the Radial Base Function (RBF) and the Multi-layered Feed-

forward (MLF) network. In their research, they generated noisy data sets by sampling

noise from a normal distribution such that the error ratio was around 1%. They

subsequently trained both types of networks on the original and modified data sets. Using

the root mean squared error, root mean squared error of prediction, and percentage

explained variance, they concluded that the RBF model was more robust. This research

demonstrates how noise can be added to input data and suggests ways of measuring its

effect. While their results were specific to the data sets they used, their methods could be

applied to other ML models in order to test robustness.

B. ROBUSTNESS ACHIEVED THROUGH TRAINING
Developing training methods to achieve robustness is also studied in Robey et al. (2020).

Given a classification task with data drawn from a joint distribution (𝑥𝑥,𝑦𝑦)~𝐷𝐷, with 𝑥𝑥 ∈

ℝ𝑑𝑑 and 𝑥𝑥 ∈ {0,1, … ,𝑘𝑘}, and a loss function 𝑙𝑙(𝑥𝑥,𝑦𝑦;𝑤𝑤), the goal of a machine learning

algorithm is to find the weights, 𝑤𝑤 , which minimize the risk over the distribution 𝐷𝐷. This

can be written as

min
𝑤𝑤

𝔼𝔼(𝑥𝑥,𝑦𝑦)~𝐷𝐷 [𝑙𝑙(𝑥𝑥, 𝑦𝑦;𝑤𝑤)]

A network using this training function is vulnerable to adversarial attacks, meaning a new

input 𝑥𝑥𝑎𝑎𝑑𝑑𝑎𝑎 is close to the original value 𝑥𝑥 with label 𝑦𝑦, but the predicted class of 𝑥𝑥𝑎𝑎𝑑𝑑𝑎𝑎 is

not 𝑦𝑦. Perturbation-based robust learning is used to train neural networks “to be robust

against a worst-case perturbation of each instance 𝑥𝑥” (Robey et al., 2020). This is

formulated as a min-max problem, where the goal is to minimize the risk over 𝐷𝐷 of a

maximized perturbation 𝛿𝛿 ∈ ∆.

min
𝑤𝑤

𝔼𝔼(𝑥𝑥,𝑦𝑦)~𝐷𝐷 [max
𝛿𝛿∈∆

𝑙𝑙(𝑥𝑥 + 𝛿𝛿, 𝑦𝑦;𝑤𝑤)]

 5

The problem with adversarial training is that this method often fails to protect against

natural variation in the data. Rather than focusing on adversarial attacks, Robey et. al.

propose another method, namely model-based robust deep learning, to account for this

natural variation. The focus of their study is image classification, so the examples are

natural variation such as snowy conditions or background color. This method of model-

based robustness requires a model of natural variation, 𝐺𝐺(𝑥𝑥, 𝛿𝛿), which is a mapping that

takes input datum 𝑥𝑥 and a nuisance parameter 𝛿𝛿 to a naturally varied output 𝑥𝑥′ (Robey et

al., 2020). Finding this model of natural variation can be difficult since their geometry is

often more complex than that of adversarial perturbations. In fact, the perturbation-based

adversarial training method is a special case of the model-based method, where (𝑥𝑥, 𝛿𝛿) =

𝑥𝑥 + 𝛿𝛿 for 𝛿𝛿 ∈ ∆≔ {𝛿𝛿 ∈ ℝ𝑑𝑑: ||𝛿𝛿||𝑝𝑝 ≤ 𝜀𝜀}. For image classification problems, a known

model of natural variation for rotation is 𝐺𝐺(𝑥𝑥, 𝛿𝛿) = 𝑅𝑅(𝛿𝛿) for 𝛿𝛿 ∈ ∆≔ [0, 2𝜋𝜋]. If the

model of natural variation is not a priori knowledge, then 𝐺𝐺(𝑥𝑥, 𝛿𝛿) should be learned from

the data before starting the robustness training. This is done by separating the data into

two sets A and B. The set A contains the original data and the set B contains the data with

natural variation. The goal is then to find a model 𝐺𝐺 which transforms the distribution of

data in A into the distribution of data in B.

The model-based robustness training algorithm is similar to the adversarial perturbation-

based method. It is formulated as a min-max problem. This optimization problem is

often difficult to solve exactly, but the problem can be modified to a finite-sample setting

which is relatively easy to solve. These model-based robustness methods were evaluated

by comparing the standard training model with no robustness considerations to an

adversarial training model with the perturbation-based method. The results in Robey et al.

(2020) show that the model-based methods provide significant robustness improvements

to a variety of datasets and nuisances. Additionally, model-based training provides an

advantage over other methods, even when tested on datasets with higher natural variation

than the set it was trained on. Overall, their model-based robust deep learning techniques

show significant improvement over other methods when used in image classification

problems.

 6

The idea of defining a model of variation may be useful for other types of data sets, apart

from image classification problems. This approach can help train networks against many

types of predictable noise. The main challenge with this approach is defining the model.

Once an accurate model of variation is found, any of the three model-based training

methods would provide significant robustness improvement.

C. INFRASTRUCTURE CYBER SECURITY
Implementing cybersecurity defenses within infrastructure such as power systems is

increasingly important. Power systems are relevant in nearly every aspect of modern life,

and we rely upon them being resilient despite their complexity. Nevertheless,

disturbances from natural events, maintenance, or even attacks can occur. Determining

the location and causes of disturbances is usually done by experienced human operators,

however, machine learning has recently been applied to differentiate between types of

disturbances (Hink et al. (2014)). Hink et. al. tested various machine learning methods on

a set of simulated data from Mississippi State University which contained five types of

disturbances: short-circuit fault, line maintenance, remote tripping command injection

(attack), relay setting change (attack), and data injection (attack). Their goal was to

classify the disturbances into three classification schemes, with either 37 specific event

scenarios, three types of events (attack, natural event, or no event), or a binary scheme of

attacks and normal operations. The three-class scheme with a JRipper + Adaboost

method produced the best results, proving that using machine learning is a viable

approach to power system disturbance classification.

Another study conducted in 2019 by Wang et al. used data from Phasor Measurement

Units (PMU) within the power system to classify disturbances. Like the Hink research,

this study also used the three event classes: no event, natural event, and intrusion event.

To improve flexibility and gain higher accuracy and robustness in this model, the

researchers started by ”manually constructing new features from the original data in the

dataset so as to enhance data dimension.” Subsequently, they performed data splitting

and training by sorting the original features according to importance and then selecting

diverse proportions of those features. This reduced the error caused by bad PMU

 7

measurements. Finally, their model assigned different weights to each label and chose the

final classification label based on these weights. The model was tested on a dataset from

the ICS cyber-attack datasets and success was measured in terms of accuracy, prediction,

recall, F1 score, the ROC curve, and the Area under the ROC Curve (AUC). This study

showed that splitting the data and using manufactured features had a positive effect on

the classifier's predictions of power system disturbances. Fault detection using machine

learning is proposed in Rahman et al. 2020.

D. DISTRIBUTIONAL ROBUSTNESS
Due to a variety of reasons, including operator error, adversarial influence, or simply

being the best option available, neural networks are sometimes used outside of the

environment in which they were trained. This may negatively impact their performance

to a greater or lesser degree. Broadly speaking, the desire for model robustness includes

the ability of a machine learning system to remain stable across and outside of different

probability distributions. If an adversary influences the sampling, labelling, or

probability distribution of even a small proportion of training or testing data, the

performance of a model can be greatly affected. Distributional robustness may also affect

non-adversarial situations, such as broader applicability of a model or maintaining

accuracy after an unanticipated shift in probability distributions. In this report,

distributional robustness is defined as the quantifiable difference between the

performance of a model on a given data distribution compared to the model’s

performance on data taken from the distribution upon which the model was originally

trained.

Many attempts have been made to create robust machine learners and optimizers built on

unknown data distributions. Oftentimes, they either rely upon known moments (such as

mean and covariance) or on making worst-case estimates within a limited bound of

possible data distributions. Gao and Kleywegt (2016) came up with a statistical-distance-

based Distributionally Robust Stochastic Optimizer (DRSO) that allows consideration of

otherwise unwieldy data distributions. By considering the Wasserstein metric (Vallender

(1974)), Gao and Kleywegt were able to obtain precise structural descriptions of worst-

 8

case distributions, allowing model creators to hedge their bets against likely and unlikely

statistical distributions.

Other choices in model development may increase robustness with regards to

distribution. While self-supervised models may be slightly less efficient and accurate than

fully supervised models, Hendrycks et al. (2019) demonstrated that self-supervision

increases a model’s robustness to both adversarial examples as well as dealing with near-

distribution and out-of-distribution data points. When used in conjunction with a fully

supervised system, the self-supervised system had minimal impact on accuracy while

improving robust performance without requiring larger models or additional data.

Notably, a high degree of robustness is not always necessary or desired in a machine

learning systems. Several papers reviewed in this study found that an increase in machine

learning robustness, also brought with them a decrease in performance on the original

distribution, since the model was trained to prioritize more than simple performance

Bhagoji et al. (2018). Consequently, machine learning systems may require different

levels of robustness depending upon the application for which they are intended.

E. OTHER RELATED LITERATURE
Machine learning applications in cybersecurity settings are numerous, and include

network routing, network traffic monitoring and anomaly detection, computer intrusion

detection and prevention, as well as safeguards put in place to thwart data poisoning

attacks. Machine learning systems have proven to be very useful in detecting irregular

network activity leading up to an attack. Lu, Mabu, Wang, and Hirasawa developed a

class association rule pruning system based on matching degree and genetic algorithms to

unify misuse detection (detecting the beginning of known attacks on a computer system)

and anomaly detection (detecting suspicious activity not connected to known attacks) (Lu

et al. (2013)). This approach helped reduce flaws such as high false positive rates

associated with misuse and anomaly detection. Symmetric key cryptography may in the

future also benefit from the application of machine learning. In 2006, Yu and Cao

proposed using time varying delayed chaotic Hopfield neural networks to form

 9

pseudorandom binary strings used to encrypt large multi-media files. Machine learning

has been extraordinarily useful in computer vision. Caelli and Bischof provide an

excellent in-depth overview of this complex field, discussing how to use complex

algorithms to encode images, extract important features, and accurately associate these

features with specific human knowledge. Machine learning was especially helpful for the

rule generation step, in which the system undergoes steps to generate descriptions of

objects (Caelli et al. (1997)). While both computing power and machine learning

capabilities have increased in the years since Caelli and Bischof first published this book,

it still forms a solid basis for understanding the machine learning applications in

computer vision. Interestingly, machine learning can also be enlisted to protect machine

learning systems from data poisoning. Data poisoning occurs when an adversary tries to

manipulate a machine learning system by changing points in the training data set so the

model will mislabel certain instances. Barreno, Nelson, Joseph and Tygar explored

several protections against such attacks, including training a model to use the Reject On

Negative Impact (RINO) defense, in which training examples are discarded if they have a

negative impact on performance (Barreno et al. (2010)). Many issues related to machine

learning system defense, such as increases in computational costs and decreases in

accuracy remain, but machine learning systems may be able to assist with optimizing

such factors.

Linda, Vollmer, and Manic tailored an intrusion detection system for specific

applications in critical infrastructures. Using neural networks for cluster boundary

modeling, their Intrusion Detection System - Neural Network Model (IDS-NNM)

managed to capture all intrusion attempts using previously unseen data rather efficiently

(Linda et al. (2009)). In their research, they envision applications in nuclear power plants,

power systems, or other Supervisory Control and Data Acquisition (SCADA) fields,

especially given the fact that neural network-based models may be able to detect new

attack instances that a trained operator had never experienced before. Incorporation of

such models can, however, pose additional threats. Recognizing the fact that machine

learning systems may introduce additional system attack vectors, Anthi, Williams,

Rhode, Burnap, and Wedgburry explored different ways in which machine learning could

 10

be used to attack machine learning based intrusion detection systems protecting industrial

control systems such as power grids and manufacturing plants. Their adversarial machine

learning attacks decreased the performance of the systems protecting simulated critical

infrastructure by about 10%, but this loss was partially reversed by training the detection

systems to protect against adversarial attacks (Anthi et al. (2021)).

F. SUMMARY
During the literature review, we discovered that the concept of machine learning

robustness is not unique. In fact, it oftentimes is not rigorously defined. There are a

variety of different aspects of robustness that may affect the performance of a machine

learning model. In addition, improving machine learning system robustness could

negatively impact the performance of the model. Consequently, the implementation and

evaluation of robustness should be tailored with the application in mind. Machine

learning applications in cybersecurity is a relatively new area of research. Most machine

learning robustness studies have thus far focused on traditional machine learning

applications such as computer vision, image classification, and language processing.

However, some techniques found in the existing literature are applicable to a wider

spectrum of application scenarios. Overall, the robustness of machine learning systems

employed in infrastructure, network, and cybersecurity settings is an important area that

calls for more research.

 11

III. A CASE STUDY – MACHINE LEARNING AND ROBUSTNESS
OF MICROGRID FAULT DETECTION

Before being able to fully realize the promise of machine learning, we must first ensure

that we trust how such systems function throughout the full range of their expected

operating environments. This in turn requires that we explore how the underlying

algorithms work and gain an understanding for the limits to their reliability and

robustness. The robustness of DL techniques used in computer vision and language

processing have been extensively studied. However, less is currently known about the

vulnerabilities and robustness of DL methods suitable in cybersecurity applications.

In machine learning, data is essential in order to train the system. Some data is random in

nature and adheres to a probability distribution, while other data may be dynamical in

nature and obeys a system model. Typical examples of the former are those related to

computer vision and language processing. The robustness of these associated DL models

has been extensively studied. Many infrastructure-related cybersecurity problems,

however, are dynamic in nature and adhere to some dynamical system, which can often

be modeled using first principles or learning-based approaches. The robustness of DL

models trained using dynamical data is thus far underrepresented in the body of existing

security related DL research. Using a microgrid system model as an example, we

analyzed the robustness of various Deep Neural Networks (DNNs) under natural

disturbances, operator error, or adversarial attacks. In power grids, data forms a time

sequence following the trajectory that obeys the physical laws of power systems.

Microgrids are a special type of power systems that are essential to DoD operations.

Microgrids are local energy grids that can be disconnected from a larger grid and operate

independently (Connecticut Department of Energy and Environmental Protection

(2020)). These can be used in conjunction with a larger, traditional power grid to provide

stability for critical infrastructure. For machine learning, microgrids provide a prime

environment to analyze the system and make predictions based on specific

measurements. As with any power grid, faults can occur due to natural disturbances,

 12

operator error, or adversarial attacks. Typically, human operators are used to determine

where these issues occur, however, this task is suited for machine learning programs as

well (Hink et al. (2014), Lin et al. (2019), Almutairy and Alluhaidan (2017)). Microgrids

are particularly useful for studying these machine learning techniques because

strategically measured data can sufficiently represent the functioning power system,

thereby allowing the neural network to make accurate predictions. Despite the many

applications and exciting potential of machine learning, it brings with it weaknesses that

can be exploited. Neural networks are only as good as the data on which they are trained.

Understanding the vulnerabilities and limitations of machine learning is crucial when

incorporating these technologies into existing systems. For military applications in

particular, we must be absolutely confident in the machine learning system’s ability to

perform correctly under adverse conditions brought about by either natural phenomena or

deliberate attack. Machine learning systems must therefore be adaptable to the

environment in which they operate and resistant to adversarial input. Moreover, the

operators of equipment containing machine learning components must be aware of

machine learning limitations and should have a general understanding of the machine

learning model upon which their system was built. Just as engineers study theoretical

concepts before applying them, analysts must understand how machine learning works

before relying on its results. With a greater understanding of the underlying principles,

operators can critically assess the real-time predictions provided by their machine

learning system.

Due to its relative simplicity, our ability to control network variables, and the availability

of training data, this research used a simulated microgrid called the 9-bus model (Vittal et

al. (2019)). The research focused on robustness, a broad term that encompasses a

system’s ability to perform well in the presence of noise and uncertainties. We began by

designing and training a simple feedforward neural network using MATLAB’s neural

network toolbox. This network served as a baseline for follow-on experiments, since it

performs well under perfect conditions but incorporates no additional robustness

measures. Once built, we added three types of noise (uniform random, Gaussian, and

adversarial) to the testing data and measured the network’s performance. We

 13

subsequently tested other network structures and measured their performance and

stability against added noise. Finally, we trained new neural networks using training data

with added noise in the hopes of improving their robustness against noisy testing data.

Based on these tests, we determined the optimal structure for a machine learning tool

using power grid data. Analysis of the average errors over large testing data sets showed

the limits of the amount of random and adversarial noise that could be added while

maintaining prediction accuracy. We subsequently provide recommendations for the

training and use of a machine learning tool along with parameters for which the tool can

be trusted. The goal of this analysis is that it adds to our overall understanding of

machine learning robustness and suggests ways in which we can quantify and measure

this important characteristic. Although the neural networks developed and tested in this

research were employed in a microgrid, the methods and conclusions obtained herein can

be applied to more complex networks and data sets found in cybersecurity applications.

A. ROBUSTNESS – DEFINITIONS AND QUANTITATIVE MEASURES
There are many definitions of robustness for machine learning, all of which can in broad

terms be summarized as “the degree to which a system or component can function

correctly in the presence of invalid inputs or stressful environmental conditions”

(O’Mahony et al. (2004)). In other words, it is the ability of an ML model to perform well

despite noise or adversarial data inputs. O’Mahony et al. focus on an adversarial attack

and define the stability of prediction as a robustness measurement. Their definitions are

given below.

Definition 3.1. (O’Mahony et al. (2004)) For each user-item pair (𝑎𝑎, 𝑗𝑗) ∈ 𝐴𝐴, the

prediction error, 𝐸𝐸𝑝𝑝, of prediction pre- and post-attack 𝑇𝑇 is given by

where 𝑝𝑝𝑎𝑎,𝑗𝑗 and 𝑝𝑝′𝑎𝑎,𝑗𝑗 are pre- and post-attack predictions respectively.

Definition 3.2. (O’Mahony et al. (2004)) The stability of prediction (SOP) of the set 𝐴𝐴 to

an attack 𝑇𝑇 is given by

 14

where 𝛼𝛼 is an arbitrary prediction shift. When 𝛼𝛼 ≥ 0, 𝜅𝜅𝑎𝑎,𝑗𝑗 (𝛼𝛼) = 1 if 𝐸𝐸𝑝𝑝 (𝑎𝑎, 𝑗𝑗 , 𝑇𝑇) ≥ 𝛼𝛼 and 0

otherwise, when 𝛼𝛼 < 0, 𝜅𝜅𝑎𝑎,𝑗𝑗 (𝛼𝛼) = 1 if 𝐸𝐸𝑝𝑝 (𝑎𝑎, 𝑗𝑗 , 𝑇𝑇) ≤ 𝛼𝛼, and 0 otherwise.

The SOP value measures the success of an attack, which is correlated to the robustness of

the machine learning system. A value close to 1 indicates that very few predictions

changed by more than 𝛼𝛼 due to the attack, meaning the system is stable. A value close to

0 means that many predictions changed by at least 𝛼𝛼, so the system is not very robust. As

an example, an SOP of 0.4 at 𝛼𝛼 = 2 means that 60% of all predictions were changed by at

least +2 units. If the benchmark of accuracy for this system was ±2, then an SOP of 0.4

shows it is not robust against that particular attack. These measurements of robustness are

designed to test an ML model against an adversarial attack. The prediction error gives a

measure of the magnitude of the change that an attack causes, whereas the SOP gives an

analysis of the attack’s effectiveness. One advantage to the SOP measurement is that one

can use it to compare the robustness of various recommendation systems, regardless of

their individual accuracy.

B. MACHINE LEARNING
Machine learning is a wide area of study whose overall goal is to use algorithms to make

predictions based on input data. The applications are wide ranging, from simple

classification tasks to complex game play or modeling. Within the realm of machine

learning algorithms, supervised learning is a method of training a network to make

predictions based on examples. This requires a large set of data which can be broken into

separate training and testing sets such that the algorithm “learns” on the training data and

is later validated on previously unseen testing data. The training process uses an

optimization method to minimize a loss function, or difference between the predictions

and actual values. This research focuses on neural networks, which take input data into a

series of neurons, each with an activation function, and then output a prediction. A single

neuron can be visualized with the following image.

 15

 Figure 3.1. A neuron

Here the neuron takes in the inputs 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 and a +1 intercept term, then outputs ℎ𝑊𝑊,𝑏𝑏

(𝑥𝑥) = 𝑓𝑓 (𝑊𝑊𝑇𝑇 𝑥𝑥 + 𝑏𝑏) where 𝑓𝑓 is the activation function, 𝑊𝑊 is the set of weights represented

by a matrix, and 𝑏𝑏 are the bias terms (Ng et al. (2017)). Common activation functions are

graphed below.

 Figure 3.2. Activation functions

The sigmoid function is

The hyperbolic tangent, or “tanh” function, is

 16

The rectified linear (ReLU) function is

A neural network is composed of layers, each with a set of neurons. The leftmost layer is

called the input layer and the rightmost is the output layer. Any layers in between are

referred to as hidden layers. The example in Figure 3.3 takes in data 𝑥𝑥 ∈ R3 and outputs

𝑦𝑦 ∈ R2. It has two hidden layers, the first with three neurons and the second with two.

 Figure 3.3. A neural network

The neural net uses parameters (𝑊𝑊, 𝑏𝑏) where 𝑊𝑊(𝑙𝑙)𝑖𝑖𝑗𝑗 denotes the weight of the connection

between unit 𝑗𝑗 in layer 𝑙𝑙 and unit 𝑖𝑖 in layer 𝑙𝑙+1. The parameter 𝑏𝑏(𝑙𝑙)𝑖𝑖 is the bias associated

with unit 𝑖𝑖 in layer 𝑙𝑙 + 1. The output value of unit 𝑖𝑖 in layer 𝑙𝑙, also called the activation, is

denoted 𝑎𝑎(𝑙𝑙)𝑖𝑖 . This is computed as 𝑎𝑎(𝑙𝑙+1) = 𝑓𝑓 (𝑧𝑧(𝑙𝑙)) where 𝑧𝑧(𝑙𝑙+1) = 𝑊𝑊(𝑙𝑙)𝑎𝑎(𝑙𝑙) + 𝑏𝑏(𝑙𝑙). These

calculations are referred to as forward propagation. The final output, or hypothesis, is

ℎ𝑊𝑊,𝑏𝑏 = 𝑎𝑎(𝐿𝐿), where 𝐿𝐿 is the final layer. The final layer often uses a different activation

function to produce the final prediction. For this research, we considered the pure linear

and softmax functions (default for MATLAB’s predefined network structures). The pure

linear transfer function (called purelin in MATLAB) outputs the input (i.e., 𝑓𝑓 (𝑥𝑥) = 𝑥𝑥).

The softmax function, however, outputs a vector of probabilities:

 17

where 𝜃𝜃 are the parameters of the model (Ng et al. (2017). This is used for classification

networks where the prediction should be one of 𝐾𝐾 categories. To train the neural network

we used the backpropagation algorithm (Sanger (1989), Rumelhar et al. (1986)). This

method uses standard gradient descent to reduce the cost function, 𝐽𝐽 (𝑊𝑊, 𝑏𝑏). Given a

training set (𝑥𝑥1, 𝑦𝑦1), ..., (𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚) the cost function is computed as

where

Recall that 𝐿𝐿 is the number of layers and 𝑠𝑠𝑙𝑙 is the number of neurons in layer 𝑙𝑙 ≤ 𝐿𝐿. The

weight decay parameter 𝜆𝜆 is used to balance the two terms. Note that it is only applied to

𝑊𝑊, not the bias term 𝑏𝑏. This research focused primarily on feedforward multi-layered

neural networks, also called deep neural networks. However, there are many other forms

of machine learning algorithms and network structures which may be topics for further

study.

C. MODEL, DATA AND DNN ROBUSTNESS ANALYSIS

1. A power system model
To train and test a machine learning method, we first require large quantities of data. We

began by creating a model power grid and then gathered simulated data. Our system was

based on the classical 9-bus dynamical microgrid model, as described by Anderson and

Fouad (2008). It contains three generators (denoted by i= 1, 2, 3) and is modeled with “6

state variables, rotor angle (𝛿𝛿𝑖𝑖) and angular velocity (𝜔𝜔𝑖𝑖), and twelve parameters

determined by the admittance.” The parameters are constants, but the state variables vary

 18

with time. The relationships between power, rotor angular velocity, degree of rotor

rotation, and time are described by the following system of ordinary differential

equations,

where 𝐻𝐻𝑖𝑖 is the generators stored kinetic energy, 𝜔𝜔𝑅𝑅 is the angular velocity, 𝜔𝜔𝑖𝑖 is the

generator’s angular velocity, 𝐷𝐷𝑖𝑖 is the drag damping effect of the generator’s dynamical

electrical load and system drag, and 𝛿𝛿𝑖𝑖 is the generators rotor angular position. The two

power components are 𝑆𝑆𝑚𝑚𝑖𝑖, the generator’s mechanical energy, and 𝑆𝑆𝑒𝑒𝑖𝑖, the produced

electrical energy, with 𝐸𝐸𝑖𝑖 as the generator’s constant excitation voltage. The conductance

of each generator at term 𝑖𝑖 is 𝐺𝐺𝑖𝑖𝑖𝑖. The rotor angle equilibrium point for generators 1, 2,

and 3 are 0.0396, 0.3444, and 0.2300 radians, respectively. The angular velocity of the

system is 120𝜋𝜋. More details of the model refer to Anderson and Fouad (2008). A

drawing of the classical 9-bus model is shown in Figure 3.5.

 Figure 3.5. The 9-bus power system model

 19

2. Data generated for DNN training
We implemented the 9-bus system described above in MATLAB. We then simulated

trajectories for normal operations and faults at each generator. We divided the data into

two sets, training and validation. Each contains 18000 examples with data 𝑥𝑥 ∈ R30 which

represents the angular velocities from each generator, measured at 10HZ, over a one-

second interval. Each 𝑥𝑥 corresponding to 𝑦𝑦 ∈ {0, 1, 2, 3} denoting the type of fault. More

specifically, 𝑦𝑦 = 0 means there is no fault (i.e., normal operations), 𝑦𝑦 = 1 represents a

fault between generators 1 and 2 which causes a 5% change in the parameters, 𝑦𝑦 = 2

represents a fault between generators 2 and 3, and 𝑦𝑦 = 3 represents a fault between

generators 3 and 1. The data sets were split with 50% of the values representing normal

operations (𝑦𝑦 = 0) and the remaining 50% divided evenly between the three fault

locations (𝑦𝑦 = {1, 2, 3}). Once generated, the training data was used to train each neural

network and the testing data was used to measure their performance.

3. Tools for DNN training
To build and train our neural networks we utilized MATLAB’s NNtraintool. The simple

command “network” creates a custom shallow neural network, where the user can define

the number of inputs, layers, and connections. The user can subsequently train the

network according to a customizable training function and training parameters. We found

optimal results with the default training function, the Levenberg-Marquardt method

(MathWorks Help Center - accessed 2022). Each hidden layer used the hyperbolic

tangent activation function. For the setting in the training process, our baselines were

500 training iterations, a gradient of 10−7 and 100 validation checks. Once trained. the

network, was saved so it could be used later to make predictions from different input

data.

 20

 Figure 3.6. MATLAB’s NNtraintool for neural networks

4. Network architecture
The neural network tool in MATLAB contains several basic network structures. The first

network that we trained was a feedforward net (FFN). The number of hidden layers and

nodes per layer can vary, but in all cases the input layer is connected to the first layer,

which is then connected to the second layer, and so on until the final hidden layer is

connected to the output layer. We tested both the feedforward net for regression and the

pattern net for pattern classification. These MATLAB commands return the same

network structure but are designed for different data types. The basic feedforward net is

for regression, where the target values are continuous, whereas the pattern net (PN)

requires target values in the form of a vector, with all zeros except a one in the index of

the desired category. Additionally, both networks use the hyperbolic tangent (tansig)

function for their hidden layer activations, but the feedforwardnet uses a pure linear

(purelin) function for the output layer whereas the patternnet uses the softmax function

for its output.

The second network we tested was the cascade forward net (CFN). This structure is

similar to that of a feedforward network but includes a connection from the input and

every previous layer to following layers, thereby increasing the overall number of

 21

network connections. Each hidden layer used the hyperbolic tangent (tansig) activation

function, and the output layer used the pure linear (purelin) function. As before, we

customized the number of layers and nodes. It is important to note that this network takes

a particularly long time to train due to its high network density.

5. Perturbations in data for robustness study
Starting with a network trained on the “clean” data (generated by the 9-bus simulation),

one way to study robustness is to add various forms of noise or perturbations to our

validation data set and record the new error. The two distributions we used were uniform

random (𝑈𝑈[−√3,√3]) and Gaussian (𝑁𝑁(0, 1)). Note that these distributions have the

same mean (𝜇𝜇 = 0) and standard deviation (𝜎𝜎 = 1). A noise scalar, 𝛿𝛿, was then multiplied

by the noise and added to the normalized data. For example, the process of adding

uniform random noise (𝑍𝑍) to a normalized data vector, x𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚, is calculated as:

Since the networks were trained on a “clean” data set, i.e., no added noise, the “noisy”

data was different from the training set and therefore posed a challenge to the robustness

of the network. To further challenge the robustness of the networks, we injected

validation data with noise in the direction of the gradient. This so-called gradient-

perturbed data is a simple form of adversarial attack, which is intended to cause

misclassification. To perform the gradient-perturbations we first wrote a script to

calculate the gradient at one data point using the finite difference method:

where ℎ𝑊𝑊,𝑏𝑏 is the trained neural network and ℎ is a very small number, typically around

10−5. This was repeated for each index, 𝑖𝑖, of x. Since our input data x ∈ R30, this gradient

∇(ℎ𝑊𝑊,𝑏𝑏 (x)) ∈ R30. The noise vector (𝑍𝑍) was computed for each data point, x, by

calculating ∇(ℎ𝑊𝑊,𝑏𝑏 (x)) and normalizing it. This noise was then multiplied by the noise

scalar and added to the normalized data, as shown below.

 22

Computation using the finite difference method was slow. We therefore tested the

gradient-perturbations on smaller data sets with 𝑁𝑁 = 1000 test values. Prior to each test

we shuffled the validation set and then selected the first 𝑁𝑁 data points, to ensure

representative results were obtained. Although not included in this study, automatic

differentiation is another way to calculate Z as a faster algorithm for large data sets.

6. Real data
In addition to the simulated data from a 3-generator 9-bus microgrid model, we also

collected real data. To do this, we set up a Frequency Disturbance Machine (FDR) as part

of the University of Tennessee’s FNET/GridEye project (University of Tennessee

Knoxville document - accessed 2022). Our system was composed of the FDR and a small

air compressor connected to the same conventional 120V power outlet. These

components are shown in Figures 3.7 and 3.8. By running a program using MATLAB

we collect the frequency output of the outlet over a given time interval. Two types of data

were collected: normal operations and operations with load change. The load change was

achieved by intermittently turning on the air compressor. In the first case, the system

recorded the frequency output over three-minute intervals while nothing was energized.

In the second case, data was collected in three-minute intervals with the air compressor

being repeatedly turned on for 5 seconds and then off for a 10 second period. To prepare

the data for use in a neural network, we randomly selected 12-second intervals and

formed our input vectors, 𝑥𝑥 ∈ R120 of the frequency output from the FDR. Each 𝑥𝑥 was

assigned either a value of 𝑦𝑦 = 0 for normal operations, or 𝑦𝑦 = 1 if the air compressor was

turned on. The training and testing sets each contained 2750 examples, with about 40%

representing normal operations and the rest containing air compressor activity.

Feedforward neural networks were trained according to the same process outlined in

Section III.B.

 23

 Figure 3.7. FDR remote sensor Figure 3.8 Compressor used to
 change power load

7. Robustness measurements
There are numerous ways of measuring the robustness of a ML method. For this research

we focused on the average error, stability of prediction (SOP), and percent misclassified.

After each network test we first calculated the errors for each data point, i.e. the absolute

value of the difference between predicted and actual 𝑌𝑌 values. The average error is

simply the mean of this set. The SOP measures how much an “attack” (or noise) affects

the output of a neural network (O’Mahony et al. (2004)). This was calculated using the

prediction error, 𝐸𝐸𝑝𝑝, defined in Definitions 3.1-3.2. For our purposes we used a

prediction shift 𝛼𝛼 = 0.5 since any change in prediction greater than 0.5 would result in a

misclassification after rounding. The attack, 𝑇𝑇, represented the added random or gradient-

based noise. The percent misclassified was used to compare the classification networks

(pattern net structure) to the regression networks (feedforward and cascade forward). To

do this, we rounded the regression output to the nearest integer. Then the error

measurement was the percent of data points with the wrong predicted value (𝑦𝑦 ∈ {0, 1, 2,

3}).

D. RESULTS
1. Hyperparameter baseline
Hyperparameters that define the structure of neural networks were determined through

numerical experimentations. We began by training networks of 1 to 10 layers, each with

16 nodes per layer. Uniform noise with the noise scalar 𝛿𝛿 = {0, 0.01, 0.05} was added to

test their robustness with respect to average prediction error. The results are shown in

Figure 3.9.

 24

 Figure 3.9. Error of FNN with 16 hidden nodes in each layer and different

 number of layers.

As the graph shows, the average error evened out around 3 layers regardless of the noise

scalar. While there may be slight improvements for much higher numbers of layers, the

time to train these networks also increased significantly. For example, using a MacBook

Pro with the M1 chip (8 core CPU), a 3-layer FFN took roughly 13 minutes to train, 6

layers took 36.5 minutes, and 9 layers took 1 hour and 28 minutes. We therefore decided

that 3 layers was sufficient for good results with a reasonable training time requirement.

We subsequently vary the number of nodes per layer of a 3-layer FFN. We tested the

networks against data with added uniform noise. Figure 3.10 shows the average error of

networks with 4, 8, 12, 16, or 20 nodes per layer as the noise scalar increases. The testing

results indicate that the optimal number of nodes per layer is 16. As expected, using less

than 8 nodes fails to produce a very accurate or robust network. On the other hand, a

greater number of nodes does not necessarily result in better performance. For instance,

figure 3.10 shows that the FFN with 20 nodes performed worse than the FFN with 16

nodes. It is unclear what the exact cause of this is. It could be related to properties

 25

associated with the particular training algorithm used, or it may be a result of

overparameterization. Given the fact that an increased number of nodes per layer

increases the training time of a FFN (4 nodes per layer takes less than a minute, 28 nodes

takes 32 minutes), limiting our structure to 16 nodes produces the best results within

reasonable amounts of computation time (about 13 minutes).

 Figure 3.10. Error of FNN with 3-layers and varying number of nodes

2. Robustness under uniformly random noise
Based on the previous two tests of network structure, we proceeded with a 3-layer, 16

nodes per layer feedforward neural network to test the robustness. Note that this network

was trained using “clean” data (i.e., no added noise), so each of the three altered data sets

with noise presents a new challenge for the network. Various types of noise/perturbation

are introduced in Section III.C.5. Figure 3.11 shows the results of this study, with the

degree of noise (noise scalar) vs the average error of predictions. Figure 3.12 shows the

error distributions for each type of noise with 𝛿𝛿 = 0.05 and Table 3.1 provides the

numerical values for the cumulative distribution.

 26

 Figure 3.11. Effect of different noise types on a 3-layer, 16-node FFN.

 Figure 3.12. Error distribution for a 3-layer, 16 node FFN against uniform, normal,

 and gradient perturbations (𝛿𝛿 = 0.05).

 27

Table 3.1. Percent of predictions within error bounds.

For small amounts of noise, the difference between types is not significant, however, as

the noise scalar increases, we see a clear distinction between random noise (uniform or

normal) and gradient perturbations. As expected, the gradient perturbations cause the

highest error since their direction is chosen based on the greatest change in the function.

For random noise, however, the distribution does not seem to matter provided that the

mean (𝜇𝜇 = 0) and standard deviation (𝜎𝜎 = 1) are the same. When looking at the error

distributions, it is however clear that the majority of data points are classified correctly,

regardless of the type of noise involved. The difference being that the gradient noise

causes significantly more error in the 1.0 − 1.5 range. While this does cause a higher

average error, in practice the difference between an error of 0.75 and 1.25 is insignificant

given the fact that both predictions would be misclassified after rounding. The most

relevant metric for accurate predictions on this data set is the percent of predictions with

an error < 0.5.

3. Network types and their robustness
For different types of networks, we test their robustness against data with added noise.

The feedforward net (our baseline structure) is compared to the pattern net and cascade

forward net, as described in section III.B. All three networks have the same structure

with 3 layers and 16 nodes per layer. Here we use the percent of data points which are

misclassified as the error measurement since the pattern net is a classification method

rather than a regression tool. We round the predictions of the FFN and CFN so that all

three networks output an integer prediction to represent the power grid fault location. We

must also note that the PN does not lend itself to gradient perturbations, since the gradient

cannot be easily computed with the classification nature of the network structure. The

results for uniform and Gaussian noise are shown in Figures 3.13 and 3.14.

 28

 Figure 3.13. Comparison of network types against uniform noise

 Figure 3.14. Comparison of network types against normal noise

 29

The two types of random noise produce nearly identical graphs, again confirming that the

distribution matters less than the mean and standard deviation. Here we clearly see that

the pattern net produces the least misclassifications whereas the cascade forward net

produces the most. This is likely due to the fact that the pattern net is designed for

classification problems, whereas the other two are used for regression and then rounded.

Between the FFN and CFN it is interesting to see that the CFN, with far more

connections between nodes and layers, actually performs worse than the simple FFN.

Considering the additional training time requirements for a CFN, the FFN is clearly a

better choice. Finally, we see that the misclassification rate for a CFN follows a near

linear relationship with the noise scalar, whereas the FFN and PN both start to level off as

the noise scalar increases. Once again, this is an advantage of the FFN and PN.

4. The Stability of Prediction

For further comparison between networks, we graphed their stability of prediction (SOP)

defined in Section III.A, Definition 3.2. Figure 3.15 shows the data obtained for random

noise and Figure 3.16 shows gradient perturbations. Each graph contains the Stability of

Prediction values for the 3-layer FFN, 3-layer CFN, 9-layer FFN, and 9-layer CFN (each

with 16 nodes per layer). Note that the PN networks are not represented due to the

inherent differences in their classification method as opposed to regression. Once again,

we see virtually no difference between the two types of random noise, confirming the fact

that the different distributions have the same effect so long as their mean and standard

deviation are identical. On the other hand, when it comes to the gradient perturbations, a

clearly different pattern emerges between the network types, particularly in the leveling

off and then sharp downturn of the 3-layer CFN. All three graphs show that the 9-layer

CFN is least stable with high noise levels, whereas the 9-layer FFN is most stable.

Interestingly, the 3-layer CFN performs worse for smaller levels of noise and the 3-layer

FFN performs slightly better. Regardless of the noise scalar, we see that the FFN

structure is generally more stable than the CFN. Taken together, these graphs

demonstrate how a grouping of networks could be used to determine whether noise has

been added to the system. While all four networks perform with perfect accuracy on

“clean” data, each network is affected differently by random or adversarial noise. These

 30

differences in stability could be measured and compared to network-noise profiles to

classify the type and scale of added noise.

 Figure 3.15. SOP comparison for 4 network structures with random added noise.

 Figure 3.16. SOP comparison for 4 network structures with gradient perturbations.

5. Learning with noisy data

Since the prediction ability of a neural network is dependent on its training, we suggest

using noisy training data to produce a more robust network. Using the same baseline FFN

 31

structure with 3 layers and 16 nodes each, we trained new networks using “noisy” data

sets. These were produced by adding uniform noise to the original training data set. We

trained one network for each noise scalar (𝛿𝛿) and then tested it against the validation data

with added uniform noise. The results are shown in Figure 3.17, where each line

represents a network trained with added noise. The graph shows that the average error

follows a curve with the lowest point at a testing noise scalar slightly lower than the

training noise scalar. For example, the red line, representing a network trained with

added noise of 𝛿𝛿 = 0.04, produces the lowest error when the testing data has noise of 𝛿𝛿 =

0.03. This trend is shown in all five networks, implying that one should train their

network with slightly noisier data than what they expect to test it on. For this data set and

range of testing noise scalars, the overall lowest error is from a network trained on added

noise of 𝛿𝛿 = 0.08 (the purple line).

 Figure 3.17. Effect of uniform noise added to both training and validation data

 32

6. Learning using real data
Following the same procedure as Section III.D.1, we train several FFNs with structures

that vary in the number of layers and nodes per layer. Figure 3.18 shows the average

errors for networks with 16 nodes per layer and various numbers of layers, where each

colored line represents testing data with a different noise scalar (𝛿𝛿). We see very little

difference between the noise scalars; however, we see a similar pattern in the steep

decline up to 3 layers, then a non-linear relationship emerges as the layers increase.

While further study is certainly required for this real data set, we do see interesting

comparisons with the simulated data results from Section III.D.1. For both, the optimal

configuration appears to be 3 layers with 16 nodes per layer. However, in the case of real

data, added noise does not appear to have the same adverse effect it had on the simulated

data (Figure 3.19). This could be due to the already noisy nature of real data.

Figure 3.18. Effect of number of layers in a FFN, each with 16 nodes per layer.

 33

Figure 3.19. Effect of number of nodes per layer in a FFN, each with 3 layers

E. SUMMARY
We used MATLAB’s Deep Neural Network Toolbox and trained networks to predict

anomaly of dynamical systems, a task of infrastructure cyber security. The basic ideas of

robustness analysis are illustrated using a microgrid model. These networks were

challenged by adding both random noise, gradient noise, and adversarial noise to the

testing data. We compared the performance of various network structures, analyzed each

type of noise, graphed the Stability of Prediction for multiple types of networks, and

improved robustness by adding noise to the training data. Using this type of analysis, one

can determine neural network robustness. For the microgrid example, the analysis leads

us to a robust network that has 3 layers and 16 nodes per layer. While this “ideal”

structure is specific to the 9-bus microgrid data, we can assume that other data sets will

also have an “ideal” network structure. Interestingly, more layers and more nodes does

not always produce a more accurate neural network. Additionally, deeper networks

 34

require more time to train, so achieving results with a simpler network can significantly

reduce the overall time to build an effective machine learning system. Overall, we

conclude that adding layers and nodes to a feedforward neural network does not directly

improve its robustness. Adding random noise from both the uniform and normal

distributions showed no difference in their effects on the network’s prediction ability. We

hypothesized that different noise distribution might affect the predictions, but this did not

appear to be the case. Instead, we conclude that noise drawn from any distribution with

the same mean and standard deviation will produce the same or very similar results in the

network. Adding adversarial noise in the direction of the network gradient did have a

significantly different effect from the random noise distributions. However, the

computation shows that more complex networks (i.e., the CFN with more connections

between layers) does not necessarily result in a more robust network. This phenomenon is

consistent with our first conclusion based on random noise. Additionally, we observe

that the PN, which is identical in structure to the FFN, produces better results because it

is designed for classification rather than regression. By plotting the Stability of Prediction

for several networks against added noise of each type, we see patterns emerge that may

be useful for noise classification. As expected, the uniform and normal random noise

graphs are nearly identical, but the gradient noise has a distinctly different shape.

Finally, we added uniform random noise to the training data as a way in which to

improve the robustness of our networks against noisy testing data. Testing shows that the

lowest error rates were achieved when a network was trained with slightly higher noise

levels than those present in the testing data. This conclusion is important for real-world

applications, where noise is expected in the input data and thus the ML system should be

trained with additional noise added to the training data set. Overall, we found that the

FNN achieved a very good level of robustness provided that optimal hyperparameters can

be found. In the next step, we will study the interconnection between the dynamical

behavior of the problem and the robustness, trying to reveal the fundamental reason of

the robust performance that is found in the microgrid example. In addition, we will

continue to analyze the learning-based method and its robustness based on the real data

collected from the FDR sensors.

 35

IV. DISTRIBUTIONAL ROBUSTNESS

It is pointed out in Section II.D that neural networks may sometimes be used outside of

the environment in which they were trained. This will negatively impact their

performance to an uncertain degree. Quantifying this degree—measuring the robustness

of the network—is essential. More broadly, the desire for robustness includes the ability

of a machine learning system to remain stable across and outside of different probability

distributions. Non-robust models will react poorly to adversarial influence or probability

shifts, with large performance changes resulting from small shifts to the sampling,

labelling, or probability distribution of small proportions of training or testing data. In

this study, we define distributional robustness as the quantifiable ability of a model to

perform on a given distribution a measurable distance from the distribution on which the

model was originally trained.

A. DATA STRUCTURE AND DATA GENERATION
1. Data structure
Our data was simulated as a traditional IEEE 9-bus model introduced in III.C.1. It has

three power generators, numbered 1, 2, and 3. Three fault types in this power system are

possible. A fault between generators one and two is designated Fault 1, between

generators two and three is designated Fault 2, and between generators three and one is

designated Fault 3. The goal is to identify a fault using deep learning with one second of

data of the trajectories of angular velocities. A series of five-second trajectories of each

generator measured at 10 Hz were generated in MATLAB, with the initial rotor angle of

each generator chosen from a uniform distribution between [−0.05, 0.05] around the

equilibrium for each generator. Each trajectory had an equal chance of experiencing Fault

1, 2, 3, or no fault at time t = 0, following a uniform distribution. From each trajectory, a

one-second time window was chosen following a uniform distribution, giving 10 data

measurements from each generator. These were concatenated, so our final data structure

for n trajectories is

 36

Where 𝜔𝜔𝑎𝑎
(𝑏𝑏)(𝑡𝑡𝑐𝑐) represents the angular velocity of rotor 𝑎𝑎 during trial 𝑏𝑏 at time 𝑡𝑡𝑐𝑐. After

normalization, this matrix is our input matrix to our neural network. An output matrix of

each trajectory’s fault classification was labeled as integers. Each fault was represented

by the number associated with it, and the case of no fault was represented by the number

0. This matrix was

where 𝑘𝑘𝑖𝑖 ∈ {0, 1, 2, 3}.

2. Simulated Data
We first generated data to construct and optimize an initial neural network. We began

with 5,000 trajectories each for Faults 1, 2, 3, and no fault. Our data points were drawn

from the trajectories as described above. We studied a random one-second section of each

trajectory, taking measurements from all three generators at 10 Hz, giving us a 30 ×

20,000 input data set on which to train. Our predictions would attempt to match a 1 ×

20,000 vector of fault numbers. To find the optimal network size, we trained and tested

neural networks with one to five layers, each containing between 1 and 16 nodes per

layer, using the hyperbolic tangent, sigmoid, and rectified linear activation functions. In

this research, we focused on the hyperbolic tangent function, the highest performing

activation function. Neural networks were constructed using the MATLAB nntraintool,

which allows users to create a custom neural network with full control over

hyperparameters, training method, and activation function. Optimization was done with

 37

the Levenberg–Marquardt algorithm. Our simplest optimum network was found with four

hidden layers of eight nodes per layer using the hyperbolic tangent function, which

achieved perfect predictions over both the training data set and a similarly sized,

independently developed initial validation set.

We tested the neural networks on differently distributed data. Our original initial

condition was a uniform distribution of initial rotor angles between −0.05 and 0.05

radians around the equilibrium. We generated more testing data sets using normal and

log-normal distributions designed to be a large distance from our training distribution. All

distributions were then truncated to fit within [−0.05, 0.05]. Our normal distribution and

log-normal distribution are linearly transformed into the domain of [−0.05, 0.05].

Generating a 30 × 20,000 testing set for each of these, our initial neural network

performed perfectly. Our uniform distribution we trained our network on had a mean of

0 and a standard deviation of �1/1200. Trying to match averages and standard

deviations of our normal and log-normal distributions to our training uniform

distributions, our normal distribution used 𝜎𝜎 = 0 and 𝜎𝜎 = �1/1200., and the log-normal

distribution used 𝜇𝜇 = log(0.05) − log(4/3)/2 and 𝜎𝜎 = log(4/3), linearly transformed into

the domain of [−0.05, 0.05]. Finally, we varied the size of the network, studying both

different depths and widths. Near perfect performance was achieved here, with the only

errors coming from massive changes to our network.

B. RESULTS AND DYNAMICS ANALYSIS
One important question was how we could determine if the dynamic nature of our system

was dominating the initial conditions of our power system. To answer this question, we

decided to analyze the initial conditions of the one second portion of the trajectory we

actually used in our neural network. To do this, we compared histograms of the rotor

angle of all three generators both at 𝑡𝑡 = 0 and at the beginning of a random one-second

interval for uniform, normal, and log-normal distributions. Our theory was that the

dynamic nature of our problem would force most trajectories to behave similarly. If this

was true, the rotor angles at 𝑡𝑡 = 0 would follow the given distribution around the

equilibrium point of the rotor, but the rotor angles of data points randomly selected along

 38

the system’s trajectories would look the same, regardless of initial condition distribution.

If the histograms were significantly different, however, this might suggest that the

dynamics of our microgrid do not dominate our initial condition variation, and that

something else may be the cause of our high level of distributional robustness.

1. Network Construction
Our first task was to optimize our neural network’s parameters and hyperparameters to

achieve the best possible predictions. The two performance metrics used were root mean

squared error (RMSE), (the square root of the sum of the square of the difference

between predictions and ground truth divided by the number of samples) and

misclassification rate, which is the proportion of incorrectly classified trajectories. A

misclassification rate of 0 means every trajectory was correctly classified. Iterating over

the number of hidden layers and nodes per layer, we found the RMSE and

misclassification rates visible in Tables 4.1 and 4.2, respectively.

Table 4.1. Root mean squared errors of different sized neural networks on a validation

data set with uniformly distributed initial conditions, with the chosen network bolded.

Table 4.2. Misclassification rate of differently sized neural networks on a validation data

set with uniformly distributed initial conditions, with the chosen neural network bolded.

 39

We can see an upper triangular pattern in Table 4.2, with higher performing networks

clustered in the upper right of the tables. This structure suggests any increase in hidden

layers should also be accompanied by an increase in nodes per layer to avoid an increase

in misclassification. To take full advantage of the upper triangular structure in both

tables, we chose to use a network with four hidden layers of eight nodes each as our base

best neural network, which consistently performed the best. This network, visualized in

Figure 4.1, performed very effectively on all data distributions. On the validation data set

with uniformly distributed initial conditions, the RMSE was 3.72×10−2, and the

misclassification rate was 0. The RMSE was 1.27×10−2 and the misclassification rate was

0 on validation data with normally distributed initial conditions. On the validation data

set with log-normally distributed initial conditions, the RMSE was 1.26 × 10−2, and the

misclassification rate was 0.

Figure 4.1. A visualization of our first optimum neural network, with four hidden

layers and eight nodes per layer. Bias terms have been omitted for clarity.

A histogram of error predictions for all three distributions is included in Figure 4.2.

Examining these histograms, we see a pattern in all predictions across distributions. Our

model predicts no fault and Fault 1 cases with almost perfect accuracy across uniform,

normal, and log-normal distributions, but the error increases when it considers Faults 2

and 3.

 40

Figure 4.2. Error histograms of our base network visualized in Figure 4.1 on vali- dation

data with uniformly, normally, and log-normally distributed initial condition variation.

We were rather surprised to see such high performance across distributions, but on closer

examination it seems to make sense. Our network is able to perfectly predict most

trajectories that have an initial condition variation of [−0.05, 0.05] around the

equilibrium, and both our normal and our log-normal distributions exclusively produce

trajectories that begin in that range. Another possible explanation for the network’s

accuracy across initial condition distributions comes from the stability of the dynamical

system, i.e., the trajectory of the power system converges to similar curves that are

independent of the initial state distribution.

 41

We decided to change both our distributions and our network hyperparameters to try and

explain this accuracy. First, we chose to examine if our base network with four hidden

layers of eight nodes each loses performance as we apply it to distributions further and

further away from the uniform distribution it was trained on. Subsequently, we applied

differently sized networks to the three distributions our base network performed so well

on, to see if our network just happened to be robust, or if other networks perform

similarly.

2. Distributional changes
We tested the neural network depicted in Figure 4.1 against data with different normally

and log-normally distributed initial conditions. If our network performed similarly on

additional distributions that are not close to the trained uniform distribution, this would

suggest our network was robust. Again, if an initial condition from a distribution was

chosen above or below of the allowed range of [−0.05, 0.05], it was assigned the value

0.05 or −0.05, depending on which side of the range it fell. Our first changed distribution

was a normal distribution modeled off our uniform distribution. This normal distribution

had the same mean and standard deviation as the original training uniform distribution,

with 𝜇𝜇 = 0 and 𝜎𝜎 = �1/1200 ≈ 0.0289. Using our original network composed of four

hidden layers of eight nodes each, our RMSE was 0.119 and our misclassification rate

was 0.

Figure 4.3. Prediction errors of a neural network composed of four hidden layers of eight

nodes each on normally distributed data with μ = 0 and σ = �1/1200 ≈ 0.0289.

 42

Next, we tried different log-normal distributions. We again matched the mean and

standard deviation to the training uniform distribution instead of choosing distribution

parameters empirically by distance. Since a log-normal distribution is skewed to the right,

however, we created two log-normal distributions, which were mirror images of each

other, each with 𝜇𝜇 = 0 and 𝜎𝜎 = �1/1200. To create a log-normal distribution X, we

considered a normal distribution Y = log(X), with 𝜇𝜇𝑌𝑌 = log(0.05) − log(4/3)/2 and 𝜎𝜎𝑌𝑌 =

�log (4/3). This created a single, right skew log-normal distribution X with a standard

deviation that matches the original uniform distribution, but with 𝜇𝜇 = 0.05.

To compensate for the skew and center distributions around 0, we considered the two

distributions 𝑋𝑋1 = 𝑋𝑋 − 0.05 and 𝑋𝑋2 = −𝑋𝑋 + 0.05, producing a right-skewed and a left-

skewed log-normal distribution, respectively, with the correct mean and standard

deviation. We ran each distribution through our base neural network composed of four

hidden layers of eight nodes each. On the right-skew distribution, our RMSE was 0.117,

and on our left-skew distribution, our RMSE was 0.131. The network had a

misclassification rate of 0 on both distributions. Histograms of error predictions are

included in Figure 4.4.

 Figure 4.4. Error histograms of network performance on data with left- and right- skew

log-normal initial condition variation.

 43

To summarize, widening the standard deviation made our predictions slightly less

accurate, but a similar error pattern is still clearly visible in the histogram in Figure 4.3.

While the error groupings were somewhat condensed in Figure 4.4, the pattern of a

section of near- perfect predictions followed by a group of much less accurate predictions

continues. Put together, the increase in prediction error does suggest our network is

slightly less robust than we earlier thought, but a pattern is still visible.

3. Depth and width changes
Our next consideration was to examine the influence of the depth or width of the neural

network on distributional robustness. A network’s depth is equal to the total number of

layers in the network, except for the input and output layers, and the width of a layer is

the number of nodes in that layer. In this section, we will use the normal and log-normal

distributions.

(i) Depth changes

We first attempted to vary the depth of our network. Shallower networks are less

complex, and therefore not always as capable as their deeper counterparts, although they

are usually faster to train. We began by cutting our network from a depth of 4 hidden

layers to 3, with the following results. On the validation data set with uniformly

distributed initial conditions, the RMSE was 3.01× 10−2, and the misclassification rate

was 0. The RMSE was 3.09 × 10−2, and the misclassification rate was 0 on validation

data with normally distributed initial conditions. On the validation data set with log-

normally distributed initial conditions, the RMSE was 3.10× 10−2, and the

misclassification rate was 0. A histogram of error predictions for all distributions is

included in Figure 4.5.

 44

Figure 4.5. Error histograms of a network with three hidden layers of eight nodes each on

validation data with uniformly, normally, and log-normally distributed initial condition

variation.

This adjustment to depth did however not have enough of an effect on network

robustness. We next tried an even shallower network, using two hidden layers of eight

nodes each. On uniformly distributed initial conditioned data, this network had a RMSE

of 0.205, and a misclassification rate of 0. On normally distributed initial conditioned

data, the network had a RMSE of 0.211 and a misclassification rate of 0. And on log-

normally distributed initial condition data, our network had a RMSE of 0.212 and a

misclassification rate of 0. A histogram of prediction errors is included in Figure 4.6.

 45

Figure 4.6. Error histograms of a network with two hidden layers of eight nodes each on

 validation data with uniformly, normally, and log-normally distributed initial condition

 variation.

We finally attempted to see the performance of a network consisting of only a single

layer of eight neurons. On data with a uniformly distributed initial condition, the RMSE

was 0.187 and the misclassification rate was 5 × 10−5. On data with normally distributed

initial condition, the RMSE was 0.224 and the misclassification rate was 0. And on data

with log-normally distributed initial condition, our RMSE was 0.230 and the

misclassification rate was 0. Error prediction histograms are included in Figure 4.7.

 46

Figure 4.7. Error histograms of a network with a single hidden layer of eight nodes each

 on validation data with uniformly, normally, and log-normally distributed initial

condition variation.

As we cut the depth of networks, our misclassification rate remained almost perfect,

which means our predictions remained the same, but we did still experience a slight loss

in robustness. In our histograms, one can see that the predictions of shallower networks

tended to be less accurate, even if the rounded predictions were still perfect. Still, we

wanted to find a change to the network that would more broadly affect robustness.

Another interesting observation comes from the shape of the histograms. Similar to the

base network of four hidden layers of eight nodes, all networks predict no fault and Fault

1 cases with a very high degree of accuracy, but Fault 2 and 3 predictions are less

accurate, even if they still round to the correct number. This produces the pattern visible

 47

in all histograms, regardless of distribution or network structure, of one tall section of

good predictions, followed by two subsequent sections of deteriorating predictions. This

suggests that the error pattern is consistent across distribution and network

hyperparameters, only increasing as the validation distribution increases distance from

the trained distribution and as the network hyperparameters move away from the optimal

choice.

(ii) Width changes

To verify these observations, we next varied the width of our network. We began by

cutting the width to four nodes, still using four hidden layers, and again tested on

uniform, normal, and log-normal validation sets. On uniformly distributed initial

conditioned data, our RMSE was 2.62 × 10−4 and our misclassification rate was 0. On

data with a normally distributed initial condition, our RMSE was 2.71 × 10−4 and our

misclassification rate was 0. Finally, on data with a log normally distributed initial

condition, our RMSE was 2.68 × 10−4 with a misclassification rate of 0. Error histograms

are included in Figure 4.8. While we were somewhat surprised to see that this actually

outperformed our original base network consisting of four layers each with eight nodes,

this trend should not continue when looking at narrower neural networks.

 48

Figure 4.8. Error histograms of a network with four hidden layers of four nodes each on

 validation data with uniformly, normally, and log-normally distributed initial condition

 variation.

We confirmed this by testing a network composed of four layers of two nodes each. On

uniformly distributed initial conditioned data, this network’s RMSE was 0.117 and the

misclassification rate was 0. On data with a normally distributed initial condition, our

RMSE was 0.120 and our misclassification rate was 0. Whereas on data with a log-

normally distributed initial condition, our RMSE was 0.120 with a misclassification rate

of 0. Error histograms are included in Figure 4.9.

 49

Figure 4.9. Error histograms of a network with four hidden layers of two nodes each on

validation data with uniformly, normally, and log-normally distributed initial condition

 variation.

(iii) Depth and width changes

While we will not analyze multiple examples, it is worth considering what happens when

we vary both the depth and the width of a network at once, to see if these effects would

compound. To check this, we trained a network composed of three layers of four nodes

each. In this case, our predictions were much worse. On data with a uniformly distributed

initial condition, our RMSE was 0.221 and our misclassification rate was 3.93 × 10−2. On

data with normally distributed initial condition, our RMSE was 0.247 and our

misclassification rate was 4.67 × 10−2. Whereas on data with log-normally distributed

initial conditions, our RMSE was 0.264 and our misclassification rate was a much higher

0.110. A histogram of errors is visible in Figure 4.10. Despite our poor accuracy,

 50

however, the pattern of one section of good predictions followed by two sections of

progressively poorer predictions was still visible in the normal and log-normal sections.

Figure 4.10. Error histograms of a network with three hidden layers of four nodes each on

validation data with uniformly, normally, and log-normally distributed initial condition

variation.

4. Data distribution of dynamic systems
Our systems performed very well across different initial condition variation distributions.

We next asked ourselves if we were able to find the cause of this high level of robustness

and determine if this was a feature of our choice of electrical microgrid fault analysis as

our domain or if this pattern may be visible across all forms of distributional robustness.

Our conjecture being that the high level of robustness is a result of the fact that our data

point distribution is dominated by the dynamics of the system, not the initial state

distribution. As a reminder, we generate a five-second trajectory for each case, and then

only analyze a random one-second window of data from all three generators with our

neural network. This could mean that our system has a chance to reach a steady state

 51

when we sample our one-second window of data. To see what this would look like, we

analyzed our initial condition variation for the first generator 𝛿𝛿1 at both the initial time 𝑡𝑡

= 0, which would have a uniform, normal, or log-normal distribution, and at the

beginning of the random one-second window. Results are included in Figure 4.11.

At 𝑡𝑡 = 0, our initial condition for all three distributions was predictably centered around

the equilibrium for 𝛿𝛿1, which was 0.0396. However, the distribution of our data points at

random time along trajectories was almost identical, with a large number of samples at

the equilibrium itself and the rest following a similar pattern across all data distributions.

In other words, no matter what the initial state distribution was, the data set distribution

for training and validation converges due to the laws of dynamics in our system.

Changing the distribution did however have a noticeable influence on accuracy, visible in

our error histograms. In other domains less dominated by dynamics, it is likely that the

effects of distributional robustness could be even more visible in other applications of

machine learning.

 52

Figure 4.11. Histogram of 20, 000 potential c1 choices at t = 0 and at a randomly selected

time, with uniform, normal, and log-normal distributions.

C. SUMMARY
This study aimed to introduce a new form of robustness for neural network users to

consider in the form of distributional robustness for dynamical systems. Using faults in

electrical microgrids as our domain, we were able to see the impact of different

 53

distributions and network sizes on distributional robustness and performance. We

achieved acceptable performance from a network composed of four hidden layers of eight

nodes each. While wider networks did have slightly better performance, it was not

computationally worthwhile to expand the network. Table 4.2 suggests an upper

triangular structure to this problem, where an increase in network depth should be paired

with an increase to network width to avoid an increase in misclassification rate.

In Section IV.B.2, we were able to see the impact of changing distributions on network

performance. As our initial condition variation for our generator rotor angular position

moved further from the variation we used for training, performance slightly decreased.

While our misclassification rates stayed low, Figures 4.3 and 4.4 showed a decrease in

accuracy over Figure 4.2a, which was the error histogram of performance on the

distribution on which our network was trained.

Additionally, we were able to see the impact of network hyperparameters on

distributional robustness in Section IV.B.3. Reducing the depth of the network while

holding the width constant led to a much more significant impact on accuracy than

reducing the width while holding the depth constant. Combining depth and width

variations, however, led to a compounding effect on robustness, visible in Figure 4.10.

An interesting observation comes from the shape of the error histograms across changing

distributions and network sizes. In almost all cases, our histograms are a similar shape,

with only the scale of the error changes. Regardless of the initial condition distribution or

network size used, our networks predict no fault and Fault 1 cases with a very high

degree of accuracy, followed by Faults 2 and 3 with increasing errors. It would be

interesting to see if the similarities in error patterns persist in different applications of

machine learning, or if these are unique to power system applications.

Together, these results suggest that distributional robustness gains will be made through a

series of trade-offs and must be considered when applying neural networks in real-world

scenarios.

 54

In our microgrid system, the laws of dynamics are much more important than our initial

condition variation of rotor angle. Our distributions converge due to the convergence of

dynamics. This feature is amplified by our sampling method. By taking a random one-

second window in the whole five-second trajectory, we are much more likely to sample

similar looking data samples, since we are giving the rotor angle a chance to approach a

steady-state equilibrium. Indeed, while the initial distributions for 𝛿𝛿 in our differential

equations are vastly different, Figure 4.11 demonstrates that the dynamic nature of our

microgrid causes the distributions of our data points at random one-second time window

along trajectories to converge to a similar pattern, regardless of the initial state

distributions. If we were applying a neural network to a real-world microgrid or other

dynamics-dominated scenarios, this could be used as an advantage instead of a weakness,

since our network would be mostly accurate regardless of distributional changes. It is,

however, worth noting that this feature will not be visible in all other domains.

Another limitation of this study comes from the nature of machine learning itself.

Currently, the field of machine learning is not a deterministic science, depending instead

on the choices of tool and the domain on which they are applied. Because of this, this

study is only able to recommend the study of distributional robustness in other cases, not

present a strong conclusion on the effect of distributional changes on general machine

learning performance.

Future study of machine learning robustness may focus on real-world instead of

simulated data. Actual changes to initial conditions could see if the dynamic domination

of initial condition distribution visible in Figure 4.11 is a product of our simulations or a

feature visible in real microgrids. Additionally, future work could study the consideration

of distributional robustness in other fields besides electrical microgrids. It could be useful

to see if the upper triangular nature of Table 4.2 and the consistent pattern visible across

our error histograms in Sections IV.B.2 and IV.B.3 are products of our microgrid

application, choice of feedforward neural networks as a ML system, or a feature visible in

other studies of distributional robustness.

 55

V. CONCLUSIONS

The goal of this project was to investigate mathematical concepts and quantitative

measures of robustness and vulnerability to adversarial data for cybersecurity DL

applications, as well as develop computational methods capable of quantitatively

evaluating the robustness and vulnerability of DL tools. The first phase of the project was

a literature review, which was covered in Section II of the report. During this phase of

our research, we discovered that the concept of robustness is not unique, or sometimes

even rigorously defined, in the literature. There are a variety of different aspects of

robustness that may affect the performance of a ML model, and several papers we

reviewed highlighted the fact that improving robustness oftentimes can adversely impact

the performance of the specific model in use. The study and evaluation of robustness

should therefore be carried out with the application in mind. Research involving machine

learning in network - and cybersecurity settings is less prevalent than other application

areas. Most studies on ML robustness have thus far focused on applications such as

computer vision, image classification, language processing, etc. Some techniques in the

existing literature are applicable to a wide spectrum of application scenarios. However,

the robustness of machine learning employed in cybersecurity, computer networks, and

infrastructure settings is an important area that calls for more research.

The second phase of the project, reported in Section II, was focused on the robustness

analysis of infrastructure cybersecurity. Using a microgrid power system model and

learning-based fault detection as the testbed, we investigated the robustness of neural

networks under noisy or poisoned data. We found that noise drawn from a variety of

different distributions with the same mean and standard deviation produce the same, or

very similar, result in the neural network when detecting faults. However, our research

revealed that adding adversarial noise in the direction of the network gradient did have a

significantly different effect from the random noise distributions. In addition, our

investigation showed that more complex networks (i.e., the CFN with more connections

between layers) did not necessarily result in a more robust network. To improve the

robustness of our networks when operating in noisy environments, we also added

 56

uniform random noise to the training data. This approach proved to be very successful.

Our lowest error rates were achieved when our networks were trained with slightly higher

noise levels than those present in the testing data. This result is important for real-world

applications. In cases where natural or adversarial noise is expected in the input data, we

recommend training the ML model with additional noise present in the training data set.

The third phase of the project was focused on investigating distributional robustness.

Neural networks may sometimes be used outside of the environment in which they were

trained. If the incoming data's distribution is significantly different from that of the

training data, it may negatively impact the performance of the ML system to a greater or

lesser degree. Quantifying this degree and measuring the robustness of the network is

essential. Using fault detection of a microgrid as an example, we were able to see the

impact of changing distributions on neural network performance. As our initial condition

variation for our generator rotor angular position moved further from the variation we

used for training, we observed a slight decrease in ML performance. However, the

misclassification rates remained low, indicating that our neural network in general

remained robust. In this study, neural networks trained for power system's fault detection

exhibited good overall robustness. We believe the primary reason for this stems from the

power system's dynamical behavior; a phenomenon that is significantly different from

that experienced in other applications such as image processing. By selecting random

pieces of data from dynamic trajectories of the power system, one is more likely to obtain

similar looking data samples, since the system is given a chance to approach a steady

state. While the initial distributions for trajectories of the differential equations can be

vastly different, the dynamic nature of our microgrid causes the distributions of our data

points along trajectories to converge to a similar pattern, regardless of the initial state

distributions. When applying a neural network to a real-world dynamics-dominated

scenario, this could be advantageous, since the network could operate accurately

regardless of distributional changes.

 57

LIST OF REFERENCES

• P. M. Anderson and A. A. Fouad (2008), Power system control and stability, John

Wiley & Sons.

• I. Almutairy and M. Alluhaidan (2017), “Fault diagnosis based approach to

protecting dc microgrid using machine learning technique,” Procedia Computer

Science, vol. 114, pp. 449–456.

• K. Alrawashdeh and C. Purdy (2016), Toward an online anomaly intrusion

detection system based on deep learning, 15th IEEE International Conference on

Machine Learning and Applications, Doi 10/1109/ICMLA/2016.167.

• E. Anthi, L. Williams, M. Rhode, P. Burnap, and A. Wedgbury (2021),

“Adversarial attacks on machine learning cybersecurity defenses in industrial

control systems,” Journal of Information Security and Applications, vol. 58, p.

102717. Available:

https://www.sciencedirect.com/science/article/pii/S2214212620308607.

• M. Barreno, B. Nelson, A. Joseph, and J. Tygar (2010), “The security of machine

learning,” Machine Learning, vol. 81, pp. 121–148.

• D. S. Berman, A. L. Buczak, J. S. Chavis and C. L. Corbett (2019), A survey of

deep learning methods for cyber security, Information, 10(4), 122;

doi:10.3390/info10040122.

• N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal (2018) “Enhancing robustness

of machine learning systems via data transformations,” in 2018 52nd Annual

Conference on Information Sciences and Systems (CISS). IEEE, pp. 1–5.

• T. Caelli, W. F. Bischof, and W. F. Bischof (1997), Machine Learning and Image

Interpretation. New York, NY, USA: Springer Science & Business Media.

• Connecticut Department of Energy and Environmental Protection (2020),

“Microgrid grand and loan programs,” Jan. 2020 [Online]. Available:

https://portal.ct.gov/DEEP/Energy/Microgrid-Grant-and-Loan/Microgrid-Grant-

and-Loan-Program

 58

• E. Derks, M. S. Pastor, and L. Buydens (1995), “Robustness analysis of radial

base function and multi-layered feed-forward neural network models,”

Chemometrics and Intelligent Laboratory Systems, vol. 28, no. 1, pp. 49–60.

• GAO@100 (2021), Report to Congressional Requests: Electricity grid cyber

security – DOE needs to ensure its plans fully address risks to distribution

systems, United States Government Accountability Office,

https://www.gao.gov/products/gao-21-81.

• R. Gao and A. J. Kleywegt (2016), Distributionally robust stochastic optimization

with Wasserstein distance, arXiv:1604.02199.

• T. K. Hembram, S. Saha, B. Pradhan, K. N. Abdul Maulud, and A. M. Alamri

(2021), “Robustness analysis of machine learning classifiers in predicting spatial

gully erosion susceptibility with altered training samples,” Geomatics, Natural

Hazards and Risk, vol. 12, no. 1, pp. 794–828.

• D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song (2019), “Using self-

supervised learning can improve model robustness and uncertainty,” Advances in

Neural Information Processing Systems, vol. 32, 2019.

• R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan

(2014), “Machine learning for power system disturbance and cyber-attack

discrimination,” in the 7th IEEE International symposium on resilient control

systems (ISRCS), pp. 1–8.

• H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez (2019),

“Adaptive protection combined with machine learning for microgrids,” IET

Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, 2019.

• O. Linda, T. Vollmer, and M. Manic (2009), “Neural network-based intrusion

detection system for critical infrastructures,” Proceedings of the International

Joint Conference on Neural Networks, pp. 1827–1834, June 2009.

• N. Lu, S. Mabu, T. Wang, and K. Hirasawa (2013), “An efficient class association

rule-pruning method for unified intrusion detection system using genetic

algorithm,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 8,

March 2013.

https://www.gao.gov/products/gao-21-81

 59

• MathWorks Help Center (2022), “trainlm Levenberg-Marquardt

backpropagation,” accessed May 10, 2022 [Online]. Available:

https://www.mathworks.com/help/deeplearning/ref/trainlm.html.

• A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun, B.

Huval, T. Wang, and S. Tandon (2017), UFLDL tutorial, [Online]. Available:

http://ufldl.stanford.edu/tutorial/.

• M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre (2004),

“Collaborative recommendation: A robustness analysis,” ACM Transactions on

Internet Technology (TOIT), vol. 4, no. 4, pp. 344–377.

• S. Rahman Fahim, S. K. Sarker, S. M. Muyeen, M. R. I. Sheikh, and S. K. Das

(2020), “Microgrid fault detection and classification: Machine learning based

approach, comparison, and reviews,” Energies, vol. 13, no. 13, 2020. Available:

https:// www.mdpi. com/1996-1073/13/13/3460.

• A. Robey, H. Hassani, and G. J. Pappas (2020), “Model-based robust deep

learning,” arXiv preprint arXiv:2005.10247.

• D. E. Rumelhart, G. E. Hinton, R. J. Williams (1986), Learning representations by

back-propagating errors. Nature. 323 (6088): 533–536, 1986.

• T. D. Sanger (1989), “Optimal unsupervised learning in a single-layer linear

feedforward neural network,” Neural networks, vol. 2, no. 6, pp. 459–473, 1989.

• I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters and A. Ng

(2020), Cybersecurity data science: an overview from machine learning

perspective, Journal of Big Data, 7(41), https://doi.org/10.1186/s40537-020-

00318-5.

• S. S. Vallender (1974), Calculation of the Wasserstein distance between

probability distributions on the line, Theory of Probability and Its Applications,

18(4), pp. 784-786.

• V. Vittal, J. D. McCalley, P. M. Anderson, and A. Fouad (2019), Power System

Control and Stability. Hoboken, NJ, USA: John Wiley & Sons, 2019.

• University of Tennessee Knoxville document, “Fnet/grideye web display,”

accessed May 20, 2022 [Online]. Available: http://fnetpublic.utk.edu

https://www.mathworks.com/help/deeplearning/ref/trainlm.html
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.1186/s40537-020-00318-5

 60

• D. Wang, X. Wang, Y. Zhang, and L. Jin (2019), “Detection of power grid

disturbances and cyber-attacks based on machine learning,” Journal of

information security and applications, vol. 46, pp. 42–52.

• E. Wood (2018), “Microgrid project at submarine base receives $5m Connecticut

grant,” Microgrid Knowledge, Sept. 10, 2018 [Online]. Available:

https://microgridknowledge.com/microgrid-project-submarine-base/.

• W. Yu and J. Cao (2006), “Stability and Hopf bifurcation analysis on a four-

neuron bam neural network with time delays,” Physics Letters A, vol. 351, no. 1-

2, pp. 64–78, 2006.

https://microgridknowledge.com/microgrid-project-submarine-base/

 61

THIS PAGE INTENTIONALLY LEFT BLANK

 62

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41

Naval Postgraduate School
Monterey, CA 93943

4. Navy Cyber Defense Operations Command

112 Lake View Parkway
Suffolk, VA 23435

	I. Introduction
	II. Literature review
	A. Robustness under data uncertainties or adversarial attack
	B. Robustness achieved through training
	C. Infrastructure cyber security
	D. Distributional robustness
	E. Other related literature
	F. Summary

	III. A case study – machine learning and robustness of microgrid fault detection
	A. Robustness – definitions and quantitative measures
	B. Machine learning
	C. Model, data and DNN robustness analysis
	1. A power system model
	2. Data generated for DNN training
	3. Tools for DNN training
	4. Network architecture
	5. Perturbations in data for robustness study
	6. Real data
	7. Robustness measurements

	D. Results
	1. Hyperparameter baseline
	2. Robustness under uniformly random noise
	3. Network types and their robustness
	4. The Stability of Prediction
	5. Learning with noisy data
	6. Learning using real data

	E. Summary

	IV. distributional robustness
	A. Data structure and data generation
	1. Data structure
	2. Simulated Data

	B. results and dynamics analysis
	1. Network Construction
	2. Distributional changes
	3. Depth and width changes
	4. Data distribution of dynamic systems

	C. summary

	V. Conclusions
	LIST OF REFERENCES
	 P. M. Anderson and A. A. Fouad (2008), Power system control and stability, John Wiley & Sons.
	 I. Almutairy and M. Alluhaidan (2017), “Fault diagnosis based approach to protecting dc microgrid using machine learning technique,” Procedia Computer Science, vol. 114, pp. 449–456.
	 K. Alrawashdeh and C. Purdy (2016), Toward an online anomaly intrusion detection system based on deep learning, 15th IEEE International Conference on Machine Learning and Applications, Doi 10/1109/ICMLA/2016.167.
	 E. Anthi, L. Williams, M. Rhode, P. Burnap, and A. Wedgbury (2021), “Adversarial attacks on machine learning cybersecurity defenses in industrial control systems,” Journal of Information Security and Applications, vol. 58, p. 102717. Available: http...
	 M. Barreno, B. Nelson, A. Joseph, and J. Tygar (2010), “The security of machine learning,” Machine Learning, vol. 81, pp. 121–148.
	 D. S. Berman, A. L. Buczak, J. S. Chavis and C. L. Corbett (2019), A survey of deep learning methods for cyber security, Information, 10(4), 122; doi:10.3390/info10040122.
	 E. Derks, M. S. Pastor, and L. Buydens (1995), “Robustness analysis of radial base function and multi-layered feed-forward neural network models,” Chemometrics and Intelligent Laboratory Systems, vol. 28, no. 1, pp. 49–60.
	 GAO@100 (2021), Report to Congressional Requests: Electricity grid cyber security – DOE needs to ensure its plans fully address risks to distribution systems, United States Government Accountability Office, https://www.gao.gov/products/gao-21-81.
	 T. K. Hembram, S. Saha, B. Pradhan, K. N. Abdul Maulud, and A. M. Alamri (2021), “Robustness analysis of machine learning classifiers in predicting spatial gully erosion susceptibility with altered training samples,” Geomatics, Natural Hazards and R...
	 R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan (2014), “Machine learning for power system disturbance and cyber-attack discrimination,” in the 7th IEEE International symposium on resilient control systems (ISRCS), pp....
	 H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez (2019), “Adaptive protection combined with machine learning for microgrids,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, 2019.
	 O. Linda, T. Vollmer, and M. Manic (2009), “Neural network-based intrusion detection system for critical infrastructures,” Proceedings of the International Joint Conference on Neural Networks, pp. 1827–1834, June 2009.
	 N. Lu, S. Mabu, T. Wang, and K. Hirasawa (2013), “An efficient class association rule-pruning method for unified intrusion detection system using genetic algorithm,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 8, March 2013.
	 MathWorks Help Center (2022), “trainlm Levenberg-Marquardt backpropagation,” accessed May 10, 2022 [Online]. Available: https://www.mathworks.com/help/deeplearning/ref/trainlm.html.
	 A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, C. Suen, A. Coates, A. Maas, A. Hannun, B. Huval, T. Wang, and S. Tandon (2017), UFLDL tutorial, [Online]. Available: http://ufldl.stanford.edu/tutorial/.
	 M. O’Mahony, N. Hurley, N. Kushmerick, and G. Silvestre (2004), “Collaborative recommendation: A robustness analysis,” ACM Transactions on Internet Technology (TOIT), vol. 4, no. 4, pp. 344–377.
	 S. Rahman Fahim, S. K. Sarker, S. M. Muyeen, M. R. I. Sheikh, and S. K. Das (2020), “Microgrid fault detection and classification: Machine learning based approach, comparison, and reviews,” Energies, vol. 13, no. 13, 2020. Available: https:// www.md...
	 A. Robey, H. Hassani, and G. J. Pappas (2020), “Model-based robust deep learning,” arXiv preprint arXiv:2005.10247.
	 D. E. Rumelhart, G. E. Hinton, R. J. Williams (1986), Learning representations by back-propagating errors. Nature. 323 (6088): 533–536, 1986.
	 T. D. Sanger (1989), “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural networks, vol. 2, no. 6, pp. 459–473, 1989.
	 I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters and A. Ng (2020), Cybersecurity data science: an overview from machine learning perspective, Journal of Big Data, 7(41), https://doi.org/10.1186/s40537-020-00318-5.
	 D. Wang, X. Wang, Y. Zhang, and L. Jin (2019), “Detection of power grid disturbances and cyber-attacks based on machine learning,” Journal of information security and applications, vol. 46, pp. 42–52.
	INITIAL DISTRIBUTION LIST

