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Project highlights
This project breaks new grounds on three different fronts – in the theory, algorithms and large-scale
measurement studies of online attention. The new advances are enabled but significant expands
those made in our prior AFOSR projects: The Anatomy of Social Media Popularity (2015-2018,
#1514018) and Linking Online Attention to Measurable Actions (2019-2021, #1914078).

On the theory of online attention, we propose a novel view of attention allocation via computa-
tional economics and mathematical optimization. Specifically, we examine the attention allocation
of many users on a set of digital goods with infinite supply. Such dynamic is important in shap-
ing processes and outcomes in society, from trending items in entertainment, collective knowledge
creation, to election outcomes. The outcomes of online cultural markets are susceptible to intricate
social influence dynamics, particularly so when the community comprises consumers with hetero-
geneous interests. This has made formal analysis of these markets improbable. In this work, we
establish robust connections between influence dynamics and optimization processes for the first
time. In trial-offer markets where the consumer preferences are modelled by multinomial logit,
we show that the proportional-response-esque influence dynamic is equivalent to stochastic mirror
descent on a convex objective function, thus leading to a stable and predictable outcome. When
all consumers are homogeneous, the objective function has a natural interpretation as a weighted
sum of efficiency and diversity of the culture market. In simulations driven by a large-scale rec-
ommender system, we observe that ranking strategies aligned with the underlying heterogeneous
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preferences achieve higher efficiency and diversity.
On algorithms that explain and forecast online attention, we propose Radflow, a new, robust,

and efficient model for large networks of time series. Radflow embodies three key ideas: a recurrent
neural network to obtain node embeddings that depend on time, the aggregation of the flow of
influence from neighboring nodes with multi-head attention, and the multi-layer decomposition of
time series. On real-world datasets ranging from a few hundred to a few hundred thousand nodes,
we observe that Radflow variants are the best performing model across a wide range of settings.
The recurrent component in Radflow also outperforms N-BEATS, the state-of-the-art time series
model. We show that Radflow can learn different trends and seasonal patterns, that it is robust to
missing nodes and edges, and that correlated temporal patterns among network neighbors reflect
influence strength.

On measurements, we present a large-scale cross-country study for characterizing the distribu-
tion of audience political leanings for different media outlets. The methodological components of
these new measurements include high-fidelity Twitter streams; highly accurate user geolocations;
mapping global users onto one coherent axis of ideological leaning; and comprehensive valida-
tion of the estimated new media bias scores. We apply the resulting metrics to many countries,
covering many countries in the well-studied Global North, and those in the under-studied Global
South. These data-driven tools help answer questions such as: Are US readers of the cnn on av-
erage more left-leaning than those of theguardian? Does reuters reach an ideologically balanced
audience base in US, Argentina, and Philippines? As a preview, we find mixed results for these
two questions. And our methods allow us to extend the questions to other media and countries. We
expect that such answers would inform activist groups, and media watchdog organizations about
country-specific media audience profiles, inform media outlets of their effectiveness and audience
base across different countries, and inform individuals to reflect on our day-to-day media diet.

New Datasets
• WIKITRAFFIC [87], the largest dynamic network of time series with 366K nodes and 22M

time-dependent links spanning five years. This dataset provides an open benchmark for de-
veloping models in this area, with applications that include optimizing resources for the web.
Specifically, WIKITRAFFIC dataset is significantly larger than VEVOMUSIC, consisting of
61K nodes (music videos) and 300K+ links, released by our prior AFOSR work [96].

• COVID2020 [99], a new, longitudinal Twitter dataset during the first year of COVID-19, with
more than 95% coverage using our own multi-stream data collection strategy [97], 17M+
geo-located users globally, and 346M+ tweets over an 8-month period.

Publication list
The following publications result from this project.

• [103] Haiqing Zhu, Yun Kuen Cheung, Lexing Xie. Stability and Efficiency of Personalised
Cultural Markets. Under review at ACM TheWebConf, November 2022.
Summary: We propose a novel view of attention allocation via computational economics
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and mathematical optimization. Contrary to conventional wisdoms on the randomness of
cultural markets, we show that a large number of users responding to popularity signals indi-
vidually can lead to probabilistically stable and predictable outcomes that trades off market
efficiency and diversity.
Technical sections: Section 1

• [87] Alasdair Tran, Alexander Patrick Mathews, Cheng Soon Ong and Lexing Xie. Radflow:
A Recurrent, Aggregated, and Decomposable Model for Networks of Time Series. In WWW
’21: The Web Conference 2021, Pages 730-742, 2021. https://doi.org/10.1145/3442381.
3449945
Summary: This work introduces a novel model Radflow, for effective and efficient fore-
casting and imputation on a network of time series. Radflow embodies three key ideas: a
recurrent neural network to obtain node embeddings that depend on time, the aggregation of
the flow of influence from neighboring nodes with multi-head attention, and the multi-layer
decomposition of time series. We show that Radflow can learn different trends and seasonal
patterns, that it is robust to missing nodes and edges, and that correlated temporal patterns
among network neighbors reflect influence strength.
Technical section: Section 2

• [99, 98] Cai Yang, Siqi Wu, Lexing Xie. The Shapes of the Fourth Estate Worldwide:
Profiling Global Media Audience During the COVID-19 Pandemic. Under revision at ACM
CSCW, October 2022.
Summary: We curate a high-fedelity COVID dataset and study user-media interaction at a
global scale. We map user political leaning on the top 20 countries by geo-located Twitter
population, and present detailed statistical profiles of media reach and audience leaning for
both the developed countries and the Global South.
Technical section: Section 3
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With information produced in abundance, human attention has become the scarce resource for
which various types of information compete [83]. The internet operates as a major exchange of
information and attention for the past few decades, yet surprisingly little is known about how in-
dividual choices and collective attention interact, or about how different parties can influence or
control it. This important knowledge gap poses great challenges to the trustworthiness of online
information from global political outcomes, to the mental well-being of individuals, to having re-
liable information about topics ranging from climate change to public health. The challenges are
so great, that the study of collective attention is recently referred to as a “crisis discpline” [9].
This project aims to uncover the mathematical underpinnings of online attention market, design
computational methods for making attention allocation stable and fair, enable applications where
content producers, consumers, platforms and regulators could each play a role in influencing atten-
tion allocation towards socially beneficial goals. The new knowledge will enable organisations and
individuals to foster safer and more trustworthy online spaces for the public, and benefit citizens
through the minimisation of harm and misinformation when they are online.

The research program at Computational Media Lab of ANU has been advancing three frontiers
in understanding online attention for the past 8+ years. The newest front, started during this project
is a theoretical analysis of distributed behavior of social media users, and mapping the optimization
landscape of well-known feedback loops in social networks (Section 1). In algorithm development,
we develop new approaches to modeling networks of time series, surpassing state of the art models
in both forecasting and imputation, and are able to scale to 100,000s of nodes, which no prior
work has achieved ( Section 2) – this work builds upon the machine learning and algorithmic
work in our previous grants (#1514018 and #1914078). In large-scale measurement, we map
political leaning and media consumption at the global scale, providing a detailed statistical profile
of media consumption and audience distribution for 20 countries spanning the global North and
South (Section 3).

Full technical details are in our papers and pre-prints [87, 99, 103].
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1 Theory: An optimization view of attention markets
In 2006 Salganik et al published seminal experiments on the effect of feedback signals on attention
allocation among a set of songs, now dubbed MusicLab [79]. Several mathematical models have
been proposed to describe it [67, 58], but all of them assumes that preferences to different items
are the same for all users (via a term called quality), and none of them reveal the overall objec-
tive function of asynchrous behaviour from a large number of users. The level of mathematical
understanding largely lags behind the the rich literature and wide-spread practice of recommender
systems that estimates and caters to inividual user preferences. On the other hand, recent work in
classical markets (especially Fisher markets) offer a range of results to understand equilibria from
an algorithmic and optimization perspective [28, 100].

1.1 New insight: the objectives of MusicLab dynamics
We first define the simple MusicLab market. A set of items I is available for consumption, in-
dexed by i = 1, . . . , |I|, each with a (fixed and known) quality factor q̄i > 0. The notation q̄i is
meant to emphasise that the notion of average quality across all users being modelled here (which
is obviously simplistic). q̄i is also an inseparable combination of item ranking and inherent qual-
ity/preference that can be modelled separately in a general market. An infinite number of users
arrive at the market, and time t advances upon arrival of a new user. We use ϕt ∈ [0, 1]|I| to denote
a vector of market shares of all items, where ϕt

i is the fraction of total attention that item i obtained
up to time t. Naturally ϕt lies on the interior and boundaries of a simplex,

∑
i ϕi ≤ 1, denoted as

∆. The probably that item i is chosen by the (t + 1)-th user is desciribed by a multinomial logit
model [? , Chapter 17]. Note that this probability is proportional to the item quality factor q̄i and
the current market share of the item ϕt

i warped by a constant exponent r, describing a feedback
loop from the current market allocation. This mechanism is similar to what is known as propor-
tional response in Fisher markets [100]. Then the market share of the next time step is simply
ϕt+1 = g(ϕt) ∈ [0, 1]|I|, with:

gi(ϕ
t) =

q̄i(ϕ
t
i)

r∑|I|
k=1 q̄k(ϕ

t
k)

r
. (1)

This choice process with feedback naturally leads to the notion of market equilibrium – a market
share ϕ is an equilibrium if g(ϕ) = ϕ.

The new insight is in establishing a robust connection between the equilibria of such a homo-
geneous MusicLab market and the following two constrained optimization problems.

Sum-utility Regularised log-utility

max
ϕ∈∆

|I|∑
i=1

q̄iϕ
r
i (2) max

ϕ∈∆

|I|∑
i=1

[ϕi log q̄i − (1− r)ϕi log ϕi] (3)

One can view the sum-utility objective (2) as the “total utility” since the choice probability of
item i is proportional to the “utility” all users obtain from it, which is q̄iϕ

r
i . When 0 < r ≤ 1

sum-utility is concave, leading to a unique maximum. The regularised log-utility objective (3)
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time t+1

item j

user group i

attention
allocation

time t

time t
Objective function
Equation (9)(15)

Proportional response
Equation (3)

time t+1

Figure 1: A core contribution of this work is to provide an optimisation view (Top) of cultural mar-
kets (Bottom), which affords new results on stability, efficiency and equilibrium behavior. (Bottom)
An illustration of a culture market with several types of users interacting with a few items (color
similarity between users and items indicate differing matches in preferences). Users allocate atten-
tion to the items based on proportional-response-esque dynamic.

has two parts. The first summation can be viewed as an alternative measure of total utility, with
the item utility log q̄i weighted by its market share ϕi. This term encourages items with a larger
quality term to have larger market shares. The second term is the information entropy of market
share H(ϕ) = −

∑
i ϕi log ϕi, encouraging ϕ to be flat - i.e. spread among a wider set of items.

Hyper-parameter r controls the regularisation strength between the two terms. When 0 < r ≤ 1
regularised log-utility is concave and therefore having a unique maximum, due to the first term
being linear in ϕ, and entropy H(ϕ) being concave.

The equivalence of equilibria of (1) and the maximiser of sum-utility can be established by
seeking the stationary point of the Lagrangian, leading to the solution ϕ∗

i =
q̄γi∑
j q̄

γ
j

, with ex-

ponent γ = 1
1−r

. One can also verify that the same ϕ∗ maximises regularised log-utility (by
looking at derivatives of the Lagrangian). But regularised log-utility affords an additional benefit:
ϕt+1 = g(ϕt) is the same as mirror descent update rule on this objective. The unpublished proof
is inpired by a similar result on Fisher markets [28]. It additionally needs the theory of stochastic
approximations and Robbins-Monro algorithm, and is omitted due to space constraints.

This finding may appear surprising, since the social network literature does not spell out ob-
jectives of distributed actions or the uniqueness of equilibria. More generally, the vast literature
on new algorithms and empirical results on recommender systems and machine learning for social
media is large disconnected from the theoretical work in markets and social network algorithms.

1.2 Our Contributions
The main themes of this work is to establish several robust connections between stochastic T-O
markets and optimization, and to use these connections to rigorous show that the influence dynam-
ics in these markets are stable. For the homogeneous markets, we discover two objective functions
for which the equilibrium of a T-O market is maximizer of these objectives. The first objective
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is the “total utility” of the market. The second objective is of particular interest due to its natural
interpretation. It is a weighted sum of the efficiency and the diversity of the market shares in the
market, as measured by the Shannon entropy. While efficiency is a natural benchmark, diversity
in cultural market is also important for the healthy development of the platform. The diversity not
only broaden the customer base, it also provides financial support to the less popular producers
to keep them in the cultural industry. Thus, it is of the platform providers’ interest to strike for a
balance between efficiency and diversity.

Interestingly, we show that the influence dynamic is indeed equivalent to stochastic mirror
descent on the second objective. This suggests the dynamic is implicitly optimizing a natural
objective in the market. A significant consequence is this allows us to present a new proof of a
result of Maldonado et al. [67] that the dynamic converges to the unique equilibrium of the market
almost surely.

For heterogeneous markets, we show that the equilibrium is optimizing an ex-post version of
Nash social welfare. In classical Fisher market setting, Nash social welfare is the product of users’
utilities, whereas each utility is raised to a power of the user’s budget. In our case, the power
is the budget times the efficiency for that user at the equilibrium. Then we turn our focus to two
interesting sub-classes of heterogeneous markets, namely (i) the users have the same appeals on the
items, but they perceive the qualities of the items differently; (ii) the users perceive same qualities
on the items, but they have different appeals on the items. For (i), we show that it is equivalent to a
homogeneous market. For (ii) we design a new objective function, where the influence dynamic is
equivalent to stochastic mirror descent on the objective. Again, this allows use to show the dynamic
converges to a equilibrium almost surely.

The robust connection between the dynamics and optimization processes echoes with the self-
reinforced efficiency of some economic systems, for which there exist natural dynamics or algo-
rithms that can attain equilibrium, while the equilibrium optimizes popular efficiency measure like
social welfare. See Related Work below for more relevant discussions.

We also empirically explore how ranking strategies deployed by platforms can affect the overall
efficiency and diversity of the market via interactions of visibility and the underlying user prefer-
ences. Using the well-known MovieLens-100K dataset, we examine the (user-centric) efficiency
and (item- or producer- centric) diversity measures across three ranking strategies: random, quality-
driven, and popularity-driven. Results confirm quality ranking being superior among all for both
metrics, while popularity ranking comes last. The seemingly slow convergence in the simulation
points to open questions for analysing the rate in culture market optimisations.

1.3 Related Work
As early as in 1971, Simon [83] pointed out that in an information rich world, attention becomes
the new scarcity that information consumes. Examples of attention economies include entertain-
ment such as music, film and television [79, 12], political campaigns and votes [17], scientific
publications and researchers [45]. Since Simon’s visionary statement, the research community has
formulated economic question about attention in a number of different ways. Such as articulating
the phenomenon of attention scarcity in corporate life [36], diagnostic criteria for attention scarcity
and solving it as (one off) allocation problems [42, 43], or connecting attention allocation to adver-
tising revenue [41]. A recent study by Vosoughi et al. [90] showed that false news spreads faster
online, suggesting that besides quality, appeal (e.g. novelty of the false news and the emotion it
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stimulates) of a digital good is crucial in social influence. More broadly, the web research com-
munity have measured attention to items by individual users [85], a large set of users [95], and
attention among a network of items [96].

The concept of self-reinforced efficiency of economic systems can be traced back to the “in-
visible hand” metaphor of Adam Smith. One of the first analytical confirmations of the concept is
the famous First Welfare Theorem, which states that a market equilibrium of any complete mar-
ket is Pareto efficient [6, 37]. Furthermore, in a broad class of markets called Eisenberg-Gale
Fisher markets, market equilibrium optimizes a popular efficiency measure called Nash social
welfare [40, 39, 51]. On the other hand, in combinatorial auction, any Walrasian equilibrium
(if exists) optimizes the social welfare [15]. In many of these economic systems, there are nat-
ural adaptive price/bidding dynamics (e.g. tâtonnement [91, 7, 31, 32, 27, 26] and proportional
response [92, 62, 100, 16, 28, 18, 46, 19, 29, 30]) or auction algorithms (e.g. ascending price auc-
tion [56, 73]) that can attain the efficient equilibria. As we shall see, the influence dynamics we
study are indeed a stochastic version of proportional response.

1.4 Model: The Trial-Offer Market with Heterogeneous User Types
First, we describe stochastic trial-offer (T-O) market, in which users come to the platform one-by-
one to try and purchase the items. This model generalises cultural markets specified by Krumme et
al. [58] and Maldonado et al. [67] to heterogeneous types of users. Then we describe a continuous
and deterministic analogue of the stochastic model which will be useful for analysis. In this work,
we still use purchase to denote user completing a transaction on an item, where the resource a user
spends is attention. One could think of it as a unit amount of time. Without loss of generality,
we assume that each user has the same budget of attention, and that each item costs one unit of
attention.

Stochastic Model. Let U denote the types of users and I denote the set of items. The fraction
of Type-i users is denoted by wi; note that

∑N
i=1wi = 1. If |U| = 1, we say the market is

homogeneous, otherwise it is heterogeneous.
The dynamic starts at time t = 0. At each time t ≥ 1, a random user comes to the platform

and tries an item, and then she decides to purchase the item or not. Let dtj denote the number of
purchases of item j up to time t. To ensure that all items have a positive probability to be tried in
the initial rounds, we assume that each item was purchased before the dynamic starts, i.e. d0j ≥ 1
for every item j. The market share of item j at time t is

ϕt
j :=

dtj∑|I|
k=1 d

t
k

.

We let ∆ denote the simplex of all possible market shares:

∆ =

ϕ ∈ R|I| :

|I|∑
j=1

ϕj = 1, ϕj ≥ 0 for any item j

 . (4)

If the user at round t is of Type-i, the probability that she will try item j is modelled as a
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multinomial logit:
vij(ϕ

t−1
j )ri∑|I|

k=1 vik(ϕ
t−1
k )ri

, (5)

where each vij ≥ 0, and ri > 0 is a parameter that depicts the strength of feedback signal for
Type-i users.1 vij is a parameter that depicts the visibility of item j to Type-i users, which depends
on the appeal of the item itself, and also how the item is promoted or ranked with respect to other
items. After a Type-i users tries an item j, she purchases the item with probability qij ∈ [0, 1]. This
probability is intrinsic to the user and the item, and does not depend on exogenous factors.

In the homogeneous case, since there is only one user type, we will drop all indices i from the
notations, resulting in vj, qj, r, and clearly w1 = 1.

This distributed dynamic is the result of two interacting factors: A social feedback signal
(ϕt−1

j )ri based on the overall popularity of the item, such as the one implemented by the original
musiclab experiment [79], or the number of downloads and likes on myriads of internet platforms;
the user-specific visibility and quality factors vij and qij generalises recent models that analyse ho-
mogeneous attention market with feedback loop [58, 53], making it more realistic. This feedback
dynamic is also similar to proprotional response in Fisher markets [28], which we will exploit for
obtaining key results in Section 1.5.

Ranked list is one of the most popular forms of presenting a set of items to users, and a salient
factor affecting the visibility of an item is its position in such a list [35]. If the positions are fixed
throughout the attention dynamic, vij remains constant. Our theoretical results focus on this case.
In our empirical simulations, we will explore how different strategies of positioning the items by
the platform provider will affect the outcome.

We compute the probability of item j being the next purchase by manipulating the trial and
purchase probabilities.

Lemma 1 In a stochastic T-O market defined above, the probability that the next purchase is for
item j, denoted by pj(ϕ), is a function of the current market share ϕ, given by yj(ϕ)/(

∑|I|
k=1 yk(ϕ)),

where

yj(ϕ) :=

|U|∑
i=1

wiqij ·
vij(ϕj)

ri∑|I|
k=1 vik(ϕk)ri

. (6)

yj(ϕ) represent the probability that item j is tried and then purchased by any user group. In the
homogeneous case, the probability that the next purchase is for item j is

vjqj(ϕj)
r∑|I|

k=1 vkqk(ϕk)r
. (7)

For ϕ to be a stationary point in this stochastic process, it must satisfy that pj(ϕ) = ϕj for all
items j. This motivates the following equilibrium notion.

Definition 2 For any T-O market, we say a market share ϕ is a trial-offer market equilibrium
(TOME) if p(ϕ) = ϕ.

1Here ri = 0 denotes no social feedback signal from the current market share, whereas ri → ∞ means only the
most popular item will be chosen in the next round. If the denominator

∑|I|
k=1 vik(ϕ

t−1
k )ri = 0, then this probability is

defined as 0.
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We show that TOME exists under mild conditions ([4]??) using the Brouwer’s fixed-point the-
orem.

Theorem 3 If (i) 0 < ri < 1 and wi > 0 for any user type i, and (ii) for each item j there exists
type i such that vijqij > 0, then the market must have a TOME ϕ∗, in which ϕ∗

j > 0 for all items j.

In the homogeneous case, we can explicitly compute the unique TOME ϕ∗ if 0 < r < 1:

ϕ∗
j =

(vjqj)
1/(1−r)∑|I|

k=1(vkqk)
1/(1−r)

, (8)

provided that vkqk > 0 for some item k. It is easy to verify ϕ∗ is a stationary point by plugging it
into Theorem 2, Section 1.5 specifies how to obtain ϕ∗ and argues for its uniqueness.

Efficiency and Diversity Measures. An online platform may be interested in maximizing
∑|I|

j=1 yj(ϕ),
the probability of successful transaction among all items.

Definition 4 At any market share ϕ, define the T-O market efficiency as E(ϕ) :=
∑|I|

j=1 yj(ϕ).

A platform may also be interested in promoting a diversity of items. A natural measure of
diversity is the Shannon entropy, which is the standard measure of uncertainty of a probability
distribution in information theory [33]. Given market share ϕ, its Shannon entropy is

H(ϕ) = −
|I|∑
j=1

ϕj log ϕj. (9)

Continuous and Deterministic Analogue of the Stochastic Model. In this analogous model,
there is one user of each type i, whose budget is wi. The item set is again I. The budget wi

corresponds to the maximum amount of attention the buyer can afford in the platform. At each time
t ≥ 0, each buyer i spends an amount of btij for item j. Subject to budget constraints,

∑M
j=1 b

t
ij ≤

wi. Let the total spending on each item be btj :=
∑N

i=1 b
t
ij , then the market share of item j at time t

is ϕt
j := btj/(

∑M
k=1 b

t
k). For t ≥ 1, the update rule is

btij = wiqij ·
vij(ϕ

t−1
j )ri∑M

k=1 vik(ϕ
t−1
k )ri

= wiqij ·
vij(b

t−1
j )ri∑M

k=1 vik(b
t−1
k )ri

. (10)

Note that the middle term in (10) is the same as the term appeared in (6), so bj =
∑|U|

i=1 bij is the
same as yj(ϕ) in (6). With this, it is not hard to see that ϕ∗ is a TOME of a stochastic T-O market
if and only if b∗, where each b∗ij is computed by the middle term of (10) by replacing ϕt−1 with ϕ∗,
is a fixed point of the dynamic (10) of the analogous continuous and deterministic market.

Comparison with Classical Fisher Market and Proportional Response. The continuous and
deterministic market and the dynamic (10) are reminiscent of the classical Fisher market and the
proportional response (PR) dynamic in [28]. However, there is one crucial difference. PR dynamic
in Fisher market is same as (10) but with bt−1

k on the RHS replaced by bt−1
ik /bt−1

k . The term bt−1
j

is viewed as the price of item j, while a higher price in PR drives down spending on that item
from the buyers. In contrast, a higher value of bt−1

j in (10), which corresponds to receiving more
attention in the T-O market, will lead to more spending on that item. This reflects the tendency of
cascading in general influence dynamics.
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1.5 Results
This section provides an overview of our key new results in four parts. Section 1.5.1 establishes
a novel connection between TOME in homogeneous markets and two convex objectives. Sec-
tion 1.5.2 shows that update steps in deterministic T-O markets are mirror descent steps for these
objectives. Section 1.5.3 defines Robbins-Monro algorithm in order to connect the stochastic dy-
namics to the established optimisation framework. Section 1.5.4 presents the objective functions
for heterogenous markets and its two special cases.

1.5.1 TOME maximises regularised utilities

First, we establish a robust connection between TOME of homogeneous T-O market and optimiza-
tion. For notational simplicity, let q̄j = qjvj , noting that qjvj are coupled in both (7) and (8). We
consider the following constrained optimization problem:

max

|I|∑
j=1

q̄jϕ
r
j ,

subject to ϕ ∈ ∆.

(11)

We can view the objective function as the “total utility” since the choice probability of item j is
proportional to the “utility” associated with it, which is q̄jϕr

j . We establish the equivalence between
the equilibria and the maximisers of the above problem in the following theorem (proof in ??).

Theorem 5 If ϕ∗ is a maximiser of the problem (11), then it is a TOME.

We also discover another optimization problem which captures the TOME in the homogeneous
market. Consider the following constrained optimization problem:

max Ψ(ϕ) =

|I|∑
j=1

(ϕj log q̄j − (1− r)ϕj log ϕj) ,

subject to ϕ ∈ ∆.

(12)

The objective function in (12) can be decomposed into two parts, namely
∑|I|

j=1 ϕj · log q̄j and
(1− r)

∑|I|
j=1−ϕj log ϕj . The first summation can be viewed an alternative measure of total utility,

with the utility of item j being log q̄j weighted by its market share ϕj . The second is (1− r)H(ϕ)
– the entropy of market share. When r = 1, the entropy term disappears, so the optimization
problem (12) becomes trivial: the optimal solution is by setting ϕj = 1 for the highest-utility item
j = argmaxk q̄k. As r decreases from 1, i.e. the strength of feedback signal reduces, the entropy
term becomes more significant, which encourages diversity in the optimal solution.

For 0 < r < 1, (11) and (12) are both concave in ϕ, therefore having a unique maximum. A
crucial advantage of (12) over (11) is that mirror descent on (12) provides insight into the conver-
gence of the stochastic influence dynamics in T-O market as specified in (5) and (7). To formally
describe this discovery, we need several concepts in optimization theory, which are discussed next.
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1.5.2 T-O update as mirror descent

Consider a general constrained convex optimization problem of minimizing a smooth convex func-
tion f(x), subject to the constraint x ∈ C for some convex set C.

Definition 6 Let C be a compact and convex set. Let h be a differentiable convex function on C.
The Bregman divergence w.r.t. h, denoted by dh, is defined as

dh(x, y) = h(x)− h(y)− ⟨∇h(y) , x− y⟩,

for any x ∈ C and y ∈ rint(C).

The famous Kullback–Leibler (KL) divergence is a special case of Bregman divergence, gener-
ated by the function h(x) =

∑
j(xj log xj − xj).

Given a Bregman divergence dh, the corresponding mirror descent update rule is

xt = argmin
x∈C

{
⟨∇f(xt−1) , x− xt−1⟩+ 1

α
· dh(x, xt−1)

}
, (13)

where α is considered as the step-size of the update rule, which may depend on t in general.
In the next section, we will discuss conditions on f for which (13) converges to the optimal

solution. But before that, we point out the following crucial discovery.

Lemma 7 Let ϕt be market share over time, and function p(ϕ) as defined in Theorem 1. The
update rule

ϕt = p(ϕt−1) (14)

is same as the mirror descent update rule (13) for the optimization problem (12), in which dh to
taken as the KL divergence, and α = 1.

The update rule (14) is deterministic, but we can use the methodology in Maldonado et al. [67]
to rewrite the stochastic influence dynamic as a Robbins-Monro algorithm. Then we can use results
in stochastic approximation [13] to establish convergence of the influence dynamic. Proof for this
lemma is in the supplemental material [4].

1.5.3 Robbins-Monro Algorithm

Definition 8 ([13, 77]) A Robbins-Monro algorithm (RMA) is a discrete-time stochastic process zt

whose general structure is specified by

zt − zt−1 = γt ·
(
F (zt−1) + U t

)
,

where zt ∈ Rn for some n ≥ 1, F : Rn → Rn is a deterministic continuous vector field, γt is
deterministic and satisfies γt > 0,

∑
t≥1 γ

t = +∞ and limt→∞ γt = 0, and E[U t|F t−1] = 0 where
F t−1 is the natural filtration on the entire process.

Note that market share ϕ will change only when there is a purchase. Thus, Maldonado et
al. [67] modify the time schedule to only count those times at which a purchase occur, and show
the following lemma.
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Lemma 9 ([67]) In the stochastic T-O market, the update of market share follows the following
RMA w.r.t. the modified time schedule:

ϕt − ϕt−1 =
1

t
·
(
(p(ϕt−1)− ϕt−1) + U t

)
,

where U t is the random variable defined as below. Let et denote the random unit vector whose j-th
entry is 1 if item j is purchased at time t. Then U t = et − E[et|Fk−1]. (Recall that etj = 1 with
probability pj(ϕ

t−1).)

With the above lemma, we can apply the seminal results of Benaı̈m [13] to show that the RMA
trajectory is the asymptotic pseudo trajectory of the mirror descent update (14). By using the
convergence theorem established in [25, 28], we show that both dynamics converge to the global
minimisers of (12). This allows us to present a new proof of the following theorem in [67] (see
[4]?? for details).

Theorem 10 ([67], Theorem 5.3) With the homogeneous setup, if ϕ0 > 0 and 0 ≤ r < 1, then
with probability 1,

lim
t→∞

ϕt = ϕ∗, (15)

where ϕ∗ is uniquely defined as the maximiser of the convex program (12). And for any r ∈ [0, 1],

lim
t→∞

Ψ(ϕt) = Ψ∗ (16)

with probability 1, where Ψ is defined in (12), and Ψ∗ is the global maximum of problem (12).

1.5.4 TOME for heterogeneous markets

For the heterogeneous case, we show the following proposition, which depicts that the TOME is
optimizing an ex-post version of a convex objective.

Proposition 11 The optimal solution of the following convex program is the TOME:

max
{ϕj}

|I|
j=1

|U|∏
i=1

(

|I|∑
j=1

qijvijϕ
r
j)

wia
∗
i ,

subject to:
|I|∑
j=1

ϕj = 1

(17)

where a∗i =
∑|I|

j=1 qijvijϕ
∗
j∑|I|

k=1 vikϕ
∗
k

and ϕ∗
j satisfies the equilibrium equation for any i ∈ U and j ∈ I.

A proof is provided in the online supplement [4]??. (11) takes the form of a product-of-utilities
(or sum-of-log-utilities). Known as Nash social welfare [55], this utility affords fairness properties
in the resulting allocations [14, 23]. A proper exposition of this connection is outside the scope
of this work. Once a∗i are known, (11) is convex in ϕ – hence ex-post. In general, optimization
involving a∗i is non-convex, and we deem properties of its solution open problems.

Then we turn our focus to two interesting cases of heterogeneous market, where ri = r for all
types i, and:
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• the trial randomness is the same across all user types (i.e., vij are the same for all types i),
but the purchase randomness can be different (i.e., qij can be different for various types i);

• the trial randomness can be different across all types (i.e., vij can be different for various
types i), but the purchase randomness is the same across all types (i.e., qij are the same for
all types i).

For the first case, we show that it can be reduced to the homogeneous case. For the second
case, we design a new optimization problem and show that (10) is indeed mirror descent for the
problem. The driving variables of the problem are bij but not ϕj , where bij are the driving variables
in the dynamic (10). We let bj =

∑|U|
i=1 bij , and set qj to be the common value of qij for all i. The

optimization problem is

max

|I|∑
j=1

− r

qj
(bj log bj − bj)

+

|U|∑
i=1

|I|∑
j=1

(
1

qj
(bij log bij − bij)−

bij
qj

log qjvij

)

subject to
|I|∑
j=1

bij
qj

= wi, ∀i ∈ U .

(18)

By perform a variable transformation xij = bij/qj to the above problem, we obtain an equivalent
transformed optimization problem where xij are the driving variables, which is needed for the key
lemma below. The proof is in [4]??.

Lemma 12 The update rule (10) is equivalent to mirror descent w.r.t. KL divergence on the trans-
formed optimization problem.

With the above lemma in hand, we again use RMA and Benaı̈m’s results to establish conver-
gence of the stochastic influence dynamics in heterogeneous market. The proof can be found in
supplement [4]??.

Theorem 13 With the heterogeneous setup when ri = r < 1 for all i ∈ U , if one of the following
conditions

1. vij = vj for all i ∈ U , j ∈ I.

2. qij = qj for all i ∈ U , j ∈ I.

is satisfied. In addition, ϕ0 > 0. Then with probability 1,

lim
t→∞

ϕt = ϕ∗, (19)

where ϕ∗ is uniquely defined as the maximiser of the convex program (18). And when r ∈ [0, 1],

lim
t→∞

Γ(ϕt) = Γ∗, (20)

with probability 1, where Γ is the objective function of problem (18), and Γ∗ is the global maximum
of problem (18).
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1.6 Analysis
The strategy to prove our main result Theorem 13 could be divided into two main steps. First, after
applying the variable transformation xij = bij/qj mentioned in the last section, we demonstrate
the equivalence between the stochastic RMA process and the deterministic “weighted” mirror de-
scent dynamic. Then, we exploit the convexity of the proposed objective function to deduce the
convergence.

1.6.1 RMA and asymptotic pseudotrajectory

First, we need the notion of asymptotic pseudotrajectories. It formulation needs us to introduce the
concept of semiflow, which is a flow but only considering the part where t ≥ 0.

Definition 14 ([13], section 3) A semiflow Φ on a metric space (M,d) is a continuous map

Φ : R+ ×M → M,

Φ(t, x) = Φt(x)
(21)

such that
Φ0 = id, Φt+s = Φt ◦ Φs (22)

for all (t, s) ∈ R+ × R+.

Next, for a (semi)flow (which is potentially induced by a vector field), we define the notion of
asymptotic pseudotrajactory. Roughly, it means that a trajectory is very close to the integral curve
(or flow) if we push t to infinity.

Definition 15 ([13], section 3) A continuous function X : R+ → M is an asymptotic pseudotra-
jectory for ϕ if for any T > 0,

lim
t→∞

sup
0≤h≤T

d(X(t+ h),Φh(X(t))) = 0. (23)

Now we turn back to our problem.. Our goal is to study the trajectory of a discrete-time process
{zn}n∈N ⊂ Rm adapted to the filtration {Fn}n∈N which could be written as

zn+1 − zn = γn+1(F (zn) + Un+1), (24)

where F ∈ C∞(Rm,Rm) is a smooth map, {γn}n∈N are the step sizes satisfying

∞∑
n=1

γn = ∞ and lim
n→∞

γn = 0, (25)

and Un ∈ Rm are random perturbations satisfying E[Uk+1|Fk] = 0. For such a process, the
“trajectory” could be defined as the interpolated curve connecting the sequence in Rm generated by
the stochastic process. Set

τ0 = 0, τn =
n∑

i=1

γi, (26)
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where n ≥ 1. And define the continuous time affine interpolated process Z(t) as

Z(τn + s) = zn + s
zn+1 − zn
τn+1 − τn

(27)

for all n ∈ N and 0 ≤ s < γn+1. Finally, we have the main tool of analysing such the Robbin-
Monro Algorithms, which is summarised in the following theorem,

Theorem 16 ([13], section 4) Let F be a smooth vector field on M . In addition, for any point p it
has unique integral curves around p. Assume that

1. supn E[∥Un+1∥q] ≤ ∞ and
∑

n∈N γ
1+ q

2
n ≤ ∞ for some q ≥ 2.

2. Either
sup
n

∥zn∥ ≤ ∞ (28)

or F is Lipschitz and bounded on a neighbourhood of {xn : n ≥ 0}.

Then the interpolated process Z is an asymptotic peseudotrajectory of the flow Φ induced by F
almost surely.

With these results, establishing the equivalence between the stochastic RMA and the deterministic
weighted mirror descent can be done (see [4] ?? for details).

1.6.2 Convergence of mirror descent dynamics

As discussed in the preceding section, the key steps to demonstrate the convergence result rely on
the strong convexity of our objective function for the mirror descent update. In particular, we will
focus on the class of functions satisfying the following definition.

Definition 17 The function f is (σ, L)-Bregman strongly convex with respect to the Bregman di-
vergence dh if for any y ∈ rint(C) and x ∈ C,

f(y)+⟨∇f(y),x− y⟩+ σdh(x,y) ≤ f(x)

≤ f(y) + ⟨∇f(y),x− y⟩+ Ldh(x,y).
(29)

Thankfully, the objective functions of mirror descent updates for both homogeneous and het-
erogeneous cases are Bregman strongly convex. The proof can be found in [4]??.

Lemma 18 With the heterogeneous setting when ri = r for all i ∈ U , the objective function of
problem (18) is (1− r, 1)-Bregman strongly convex w.r.t the KL divergence.

Next, to demonstrate the continuous analog (10) is converging, we could apply the following
theorems for both the case of r < 1 and the case when r = 1.

Theorem 19 ([28], Theorem 3.1) Suppose that f is (σ, L)-strongly Bregman convex with respect
to dh. With the update rule (13) together with the fact that α = 1

L
, for all t ≥ 1,

f(xt)− f(x∗) ≤ σ

( L
L−σ

)t − 1
· dh(x∗,x0). (30)
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Theorem 20 ([28], Theorem 3.2) Suppose f is L-Bregman convex function with respect to dh, and
xT is the point reached after T applications of the mirror descent update rule (13) together with
the fact that α = 1

L
. Then,

f(xT )− f(x∗) ≤ L · dh(x∗,x0)

T
. (31)

To prove the market share ϕt converges as t → ∞, we exploit the RMA theory and converted the
problem to analysing the following “weighted” version of the mirror descent dynamic.

xt+1
weighted = βtg(x

t) + (1− βt)x
t. (32)

where g(xt) is the standard mirror descent update satisfying g(xt) = argminx∈C
{
⟨∇f(xt) , x− xt⟩+ 1

α
· dh(x, xt)

}
,

{βt}t∈N are step sizes.
Beyond existing results, the convergence of update rule (32) is established in the following

theorem (proof is provided in [4]??)

Theorem 21 Suppose that f is (σ, L)-strongly Bregman convex (σ, L ≥ 0) with respect to dh. In
addition, dh(x,y) is convex on both variables. Under the conditions

∑∞
t=0 βt = ∞, and 0 < βt ≤ 1

for any t ≥ 0, t ∈ Z, with the update rule (32), the dynamic converges to the global minimum of f ,
which is

lim
t→∞

f(xt
weighted) = f(x∗). (33)

where the step size αt = 1.

1.7 Empirical observations
We simulate cultural markets using real-world preferences from the well-known MovieLens dataset [49],
in order to explore the efficiency and diversity of the market with different ranking strategies under
currently available information, such as by popularity [79] or quality.

We set up the simulation using the MovieLens-100k dataset [49] and construct a market with
heterogeneous user types using two data sources. This dataset consists of 100,000 ratings (1-5)
from 943 users on 1682 movies, where each user has rated at least 20 movies. In addition, simple
demographic information such as gender and age for each user is provided. We performed matrix
completion using incomplete SVD [12] via the Surprise python package2, yielding a preference
matrix Γ = [γij] ∈ R943×1682 for each (user, movie) pair. With γij ∈ [0, 1] denoting the normalised
preference of user i ∈ U and item (movie) j ∈ I.

To simulate heterogeneous perference types, we then divide the users into M non-overlapping
subgroups based on user attributes. Let

⋃M
i=1 Ui = U , where Ui denote the set of users in group

i. Denote O as the set consists of all indices (i, j) with γi,j observed (in the MovieLens-100k
dataset), and Ō as the set of unobserved indices (the remaining entries estimated with incomplete
SVD). We first calculate the internal visibility factor v̂ij by averaging over the set of observed
entries generated by user group i using (34). This choice reflects the intuition that platforms rank
items based on known user ratings. We also calculate the quality factor qij as by averaging over the
set of unobserved entries generated by user group i using (35). This choice reflects the intuition that
in a T-O market, the probability of purchase depend on a quality factor that is often visible before

2https://surpriselib.com
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Figure 2: The evolution of market efficiency (left) and entropy (right) under different ranking
strategies. Each simulation is run for 300,000 new users, a measurement is taken after every 1000
time steps. The solid lines denote the median, the shaded area represent the 25-th to the 75-th
percentile of 50 repeated simulations.

a user tries an item. Averaging over unobserved entries makes qij contain the maximum amount
of new information against v̂ij within MovieLens, yet also ensures that qij and v̂ij are positively
correlated (rather than being negatively correlated, which can drive efficiency to zero).

v̂ij =
1

|(k, j) ∈ O, k ∈ Ui|
∑

(k,j)∈O,k∈Ui

γkj. (34)

qij =
1

|(k, j) ∈ Ō, k ∈ Ui|
∑

(k,j)∈Ō,k∈Ui

γkj (35)

Note that users in the simulation are generalisations of these M groups of user populations from
MovieLens via attributes qij and v̂ij , rather than being subsets (or samples) from the original 943
users. Other strategies for estimating qij and v̂ij is left for future work. In this section, we report
results where users form two groups, splitting based on gender (only binary gender attribute is
available in MovieLens). We use two groups to illustrate the differences in efficiency and diversity,
results for other group compositions are in the supplement [4].

We also account for position bias in ranked lists [35] in order to construct the actual visibility
factor vij , which can vary over time, denoted as vtij . We use the position bias parameters from
MUSICLAB model [58, 67], linearly interpolated to the size of MovieLens-100K. This results in
a list of fixed weights ιk, with k = 1, . . . , 1682. We adopt the separable click-through rate (CTR)
model commonly used in modeling auctions [1], which simply multiplies the inherent visibility
with ηtij , the position bias factor of item j presented to user i at time t.

vtij = v̂ijη
t
ij (36)

The relationship between ιk and ηtij is defined in the following three ranking strategies.

• Random-ranking. Upon each simulation round, the ranking of items is randomly and uniformly
drawn from a permutation of indexes {1, 2, . . . , 1682}. That is, the visibility term vij is set to the
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product of v̂ij and a random element of ι. This ranking changes for each simulation step. One
expects such a strategy to promote diversity while preserving some information on item appeal
through v̂ij .

• Popularity-ranking. This strategy sorts the items by descending market share ϕt, and set ηtij =
ιk, with k = arg sortdesc{ϕt}[j]. This ranking will change over the simulation steps, and is
analogous to the original MUSICLAB experimental setting [79]. One expects this strategy to be
unstable due to the randomness early in the simulation, since it could accidentally promote items
that users do not like to the top resulting in the high quality items being buried.

• Quality-ranking. Denote the descending sorting rank of item j among user group i as k =
arg sortdesc{qi,:}[j], where qi,: is the one-dimensional array for qualities factors in group i, and [j]
denotes array indexing. Then the position bias factor is set to the corresponding item, and ηtij =
ιk. This ranking does not change over the simulation steps, since both qij and its sorting order
remains fixed. One expects this strategy to best align visibility with the underlying quality metrics
(unobserved before trying), since it has oracle access to qij , and should yield high efficiency.

In the simulation, an infinite number of new users arrives over different rounds, some will make
a purchase, some will try an item and not make a purchase (after flipping a biased coin parame-
terized by qij). This setting is consistent with other theoretical and simulation studies of cultural
market and recommender systems [58, 53]. We report market efficiency as the empirical version of
Theorem 4, namely, the fraction of users who made a purchase. We also measure diversity among
the set of items, by computing entropy (9) at each time step.

Figure 2 summarises the trends of efficiency and diversity over the three ranking settings. The
quality-ranking oracle has the highest efficiency and highest diversity overall, followed by random
ranking, and popularity ranking has the lowest efficiency and diversity when there are sufficient
number of users. For popularity ranking, we observe less than 100 items with any attention at all
at the end of most simulation runs. This confirms our intuition that despite the presence of user-
specific preference data, popularity-based rankings are unstable: prone to be driven by random
initialisations, and result in market dominance by a few popular items. Note that the differences in
empirical measures of efficiency is fairly small (within 0.02 of each other), implying that the rela-
tive importance of preference data and social signals can be quantified, which is left as future work.
The fairly wide and over-lapping inter-quatile ranges of the three rankings could imply a slow con-
vergence rate and high noise at 300,000 simulation steps, or it could be caused by the fully general
objective function (17) being ex-ante non-convex and potentially not stable. We found it surprising
how slowly the diversity of items by popularity decreased, it took more than 250,000 users for the
diversity to drop below random or quality- ranking strategy for most simulation runs. This indi-
cates that more understanding is needed for the convergence rate of stochastic heterogeneous T-O
markets.

2 Algorithm: Modeling networks of time series
We propose a novel neural model for networks of time series that tackles all three challenges.
We adopt a Recurrent structure that affords time-sensitive Aggregations of network flow on top
of the Decomposition principle of time series; hence the name Radflow. It is more expressive
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than N-BEATS [74] because it can generate node embeddings to handle graph inputs. It is more
scalable than T-GCN as it can process hundreds of thousands of nodes via network attention and
importance-weighted node sampling.

The structure of Radflow allows it to take dynamically changing nodes and edges as inputs,
makes it tolerant to missing data, and is suitable for multivariate time series. Moreover, its multi-
head attention strategy and layered decompositions provide interpretations over network influences
and time.

In the following sections, we first describe the problem and then we introduce Radflow in detail.

2.1 Problem Statement
Consider the problem of time series forecasting in a graph. The input is a graph G = (V ,E),
consisting of N nodes denoted V = {v1,v2, . . . ,vN}, and M edges. Each node vj is associated
with a multivariate time series having T observations:

vj = [vj
1,v

j
2, . . . ,v

j
T ] (37)

where vj
t ∈ RD is the D-dimensional observation vector of node vj at time step t. When the

time series has only one value per time step (univariate), then D = 1. We use vj
[t:s] to denote a

subsequence of vj containing all observations from time t to s, where t ≤ s:

vj
[t:s] = [vj

t ,v
j
t+1, . . . ,v

j
s−1,v

j
s] (38)

If node vi has the potential to directly influence the time series of node vj at time step t, then we
add a directed edge eijt from vi to vj , and vi becomes a neighbor of vj . We define Nt(v

j) to be
the set of neighbors of vj at times step t. Edges may appear and disappear over time, thus G is a
dynamic graph. We can now represent G as an adjacency array A ∈ RN×N×T . For an unweighted
directed graph, the entry aijt in A is 1 if edge eijt exists, and 0 otherwise.

We now define the time series forecasting problem as it applies to dynamic graphs. The forecast
length F is the number of future time steps for which the model will make predictions, while
the backcast length B is the number of past observations available for making such predictions.
Suppose we are currently at time t = 0. To forecast the time series of node vj (which we shall call
the ego node) from time step 1 to F , the forecast model

v̂j
[1,F ] = ForecastModel

(
vj
[−B+1:0],V

N(vj)
)

(39)

will take two sets of inputs: the B most recent observations of vj and the information from its
neighbors. This leads to two different settings, both of which will be evaluated in Section 1.5. The
first is IMPUTATION, in which we observe the true values of the neighbors at the time of prediction.
This amounts to using the ground-truth observations of the neighbors during the forecast period:

VN(vj) =
{
v′
[−B+1:F ]

∣∣ v′ ∈ N(vj)
}

(40)

This is the setting used by [96] and is most useful when the main goal is to fill in missing data in the
time series, or to interpret the influence between nodes. The second setting is FORECAST, where
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we first use our best pure time series model to predict the future observations of each neighbor.
These predictions are then used in the full model to forecast vj itself.

In both settings, the final output of the model is

v̂j
[1,F ] = [v̂j

1, v̂
j
2, . . . , v̂

j
F ] (41)

corresponding to the forecast values for the next F time steps. Here we use the hat notation to
denote the model’s predictions, e.g., v̂j

t is the forecast time series vector of the ground truth vj
t .

2.2 Radflow
Radflow consists of two main modules: a recurrent component and a flow aggregation component.
The recurrent component models all the time series in the graph independently, while the flow
aggregation component additively adjusts the predictions based on the neighboring time series.
The forecast v̂j

t of node vj at time step t is obtained by summing up the outputs of the two main
modules,

v̂j
t = v̂jR

t + v̂jA
t (42)

where v̂jR
t is the forecast contribution from the recurrent component and v̂jA

t is the contribution
from the aggregation component. Note that v̂jA

t is itself a function of v̂jR
t .

2.2.1 Recurrent component

We predict time series by breaking them down into L components using stacked recurrent blocks.
The recurrent component is also designed to feed into the flow aggregation component which uses
the node vectors to aggregate information in a neighborhood.

We first project the historical observations of the time series into a latent space in RH , where
H is the hidden state size:

zj1
t = WD vj

t (43)

Here WD ∈ RH×D is a learnable weight matrix. To get an intuitive justification for this projection,
consider the special case where D = 1 and WD is the all-ones vector. Then zj1

t would contain
H copies of the observation vjt . This resembles running an ensemble of H different time series
models in parallel.

The recurrent component of our model consists of L blocks. Let zjℓ
t be the input to Blockℓ for

node vj at step t. In particular, the vector zj1
t computed in Equation (43) will be used as the input

to the first block. Each block will output three vectors—the backcast vector pjℓ
t , the forecast vector

qjℓ
t , and the node vector ujℓ

t :

(pjℓ
t , q

jℓ
t ,u

jℓ
t ) = Blockℓ(z

jℓ
t ) (44)

with pjℓ
t , q

jℓ
t ,u

jℓ
t ∈ RH . Specifically inside each block, we have an LSTM cell followed by

feedforward layers. The LSTM cell is first to operate, accepting as input: the time series residual
computed by the previous block zjℓ

t ∈ RH , the previous time step’s hidden state hjℓ
t−1 ∈ RH , and
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the cell state cjℓt−1 ∈ RH . The LSTM cell produces a hidden output hjℓ
t , which is then passed

through three different feedforward layers:

pjℓ
t = FeedForwardPℓ(hjℓ

t ) (45)

qjℓ
t = FeedForwardQℓ(hjℓ

t ) (46)

ujℓ
t = FeedForwardUℓ(hjℓ

t ) (47)

Each of the feedforward layers consists of two linear projections with a GELU activation after the
first linear projection:

FeedForward(h) = W FF2 GELU(W FF1 h) (48)

The GELU activation function is a stochastic variant of ReLU that has been shown to outperform
ReLU in sequence-to-sequence models [? ]. It is defined as GELU(x) = xΦ(x), where Φ is the
standard Gaussian cumulative distribution function.

The first output pjℓ
t is a component of the projected time series captured by Blockℓ. Subsequent

blocks depend on the residual value of the projected time series after removing this component:

zjℓ+1
t = zjℓ

t − pjℓ
t (49)

The second output qjℓ
t is Blockℓ’s contribution to the forecast of the next time step. The final

forecast representation of the recurrent component will be the sum of all the blocks

q̂jR
t+1 =

L∑
ℓ=1

qjℓ
t (50)

where q̂jR
t+1 ∈ RH . We then project this into RD to get the forecast contribution from the recurrent

component, i.e. the first term in Equation (42):

v̂jR
t+1 = WR q̂jR

t+1 (51)

2.2.2 Flow aggregation component

The flow aggregation component models the influence between the time series of neighboring nodes
in the network. This component takes as input time-dependent embeddings from the recurrent com-
ponent of each node in the neighborhood, and produces as output the second term in Equation (42).
Each embedding summarizes the time series of the corresponding node up to the current time. Let
uj

t be the embedding of the ego node vj at time step t, formed by summing the node vectors ujℓ
t

over all L blocks:

uj
t =

L∑
ℓ=1

ujℓ
t (52)

In the IMPUTATION setting, the set of embeddings of all neighbors of the ego at time t+ 1 is

Uvj

t+1 = {ui
t+1 | i s.t. vi ∈ Nt+1(v

j)} (53)
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while in the FORECAST setting, we simply replace the ground truth ui
t+1 with the forecast ûi

t+1.
We now project the ego’s embedding into the query space,

uQj
t = WQ uj

t (54)

and the neighbors’ embeddings into the key and value space,

uKi
t+1 = WK ui

t+1 ∀i s.t. vi ∈ Nt+1(v
j) (55)

uV i
t+1 = W V ui

t+1 ∀i s.t. vi ∈ Nt+1(v
j) (56)

The aggregated embedding ũj
t+1 is then the weighted sum of the values with a GELU activation,

ũj
t+1 = GELU

(∑
i

λi u
V i
t+1

)
(57)

where the weights λi, called attention scores, are computed from the dot product between the query
and the keys, followed by a softmax. Note that the ego node is not included in the aggregation;
instead it is added separately,

ûj
t+1 = W Euj

t +WN ũj
t+1 (58)

which is then projected down to RD,

v̂jA
t+1 = W A ûj

t+1 (59)

The vector v̂jA
t+1 is the forecast contribution from the flow aggregation component, i.e. the second

term in Equation (42).
We call the full model with multi-head attention Radflow. Note that the flow aggregation com-

ponent and the recurrent component are decoupled. Thus we can easily substitute the multi-head
attention with another node aggregation method. In particular, if we replace Equation (57) with a
simple arithmetic average of the neighbors,

ũj
t+1 =

1

|Nt+1(vj)|
∑
i

ui
t+1 (60)

we would obtain the original formulation of GraphSage [48]. We call the model that uses Equa-
tion (60) instead of Equation (57) Radflow-GraphSage. In addition to adopting Equation (60), a
further simplification is to remove the linear projection in Equation (58) when adding the ego’s
embedding with its neighbors’. Let us call this variant Radflow-MeanPooling.

2.2.3 Relationship with existing models

GAT Our multi-head attention neighborhood aggregation is similar to the Graph Attention Net-
work (GAT) [89]. To compute the attention score in GAT, we first need to concatenate the ego
node’s embedding with the neighbor’s, and then feed the result through a single feedforward net-
work followed by a LeakyReLU. In contrast, we revert back to the original multi-head attention [88]
where we compute the attention scores with a simple dot product. We also add zero attention, in
which a node has the option not to attend to any neighbor.
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N-BEATS The process of feeding residuals of time series into deep network layers is inspired
by N-BEATS. However, N-BEATS takes residuals from the raw scalar observations, whereas our
approach calculates the residuals from the vector-valued projections of the time series, as shown
in Equation (43). Moreover, N-BEATS is not easily adapted to the dynamic graph setting since
it does not produce embeddings that depend on time. N-BEATS treats the forecasting task as
a multivariate regression problem, where every step can see every other step in the history. This
allows us to obtain an embedding for the whole series but not for an individual step. In our proposed
architecture, the node vector ujℓ

t is used to construct the time-dependent embedding of each step,
as shown in Equation (52).

Transformers In the last few years, transformers [88] have become the sequence model of choice
in the NLP domain. Despite their success in NLP tasks, little progress has been made with time
series forecasting. Most recently, [93] designed a transformer to forecast flu cases, but their model
provides only marginal improvement over the LSTM baseline. Our preliminary investigation indi-
cated that LSTMs perform better than transformers in the time series setting. We hypothesize that
the strict temporal ordering of the LSTM can encode time series more naturally; while text, which
often has a latent tree structure, is more naturally encoded by the transformer with its attention
mechanism and position encodings.

Non-neural aggregation The most relevant non-neural aggregation approach is ARNet [96], a
forecasting model for scalar-valued time series in which the prediction is computed as:

v̂jt =

p∑
k=1

αj
kv

j
t−k +

∑
vi∈N(vj)

βijvit (61)

where the first term is an autoregressive model of order p = 7 (days) and the second term mod-
els the network effect. The learnable parameters βij can be interpreted as the edge weight that
controls the proportion of views propagating from node i to node j. Although ARNet is simple
with a straightforward interpretation, the model assumes that the network is static. Furthermore
[96] only evaluated on the IMPUTATION setting and not on the FORECAST setting where the future
observations are unknown.

Neural aggregation The closest model to ours is T-GCN [101], where a modified GRU cell does
a graph convolution before computing the update and reset gates. Unlike Radflow which has been
implemented to fetch subgraphs from disk and only compute the network information once after
the final LSTM layer, T-GCN requires the entire network to be in memory and aggregates the
network at every time step in every layer. Therefore, T-GCN does not scale to larger datasets due
to both space and time complexity. Our proposed architecture, on the other hand, can easily handle
dynamic networks of hundreds of thousands of nodes.

2.3 Predicting time series networks
The empirical validation of Radflow is carried out on two small static networks—LOS-LOOP and
SZ-TAXI [101]; and two large-scale dynamic networks—VEVOMUSIC [96] and WIKITRAFFIC.
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Out of these, WIKITRAFFIC is a new dataset that we have collected and it is the largest dynamic
network of time series to date.

2.3.1 Evaluation settings

Evaluation is done by predicting view counts of the final 7 days on VEVOMUSIC and the final 28
days on WIKITRAFFIC. For LOS-LOOP and SZ-TAXI, we predict the speeds in the final hour (the
final 12 steps in LOS-LOOP and the final 4 steps in SZ-TAXI). As stated in Section 2.1, we consider
both the FORECAST and IMPUTATION settings for the large datasets. On VEVOMUSIC, we evaluate
on two different networks: the full dynamic network which we call VEVOMUSIC (dynamic), and
the static network which we call VEVOMUSIC (static). To construct the static version, [96] used a
majority smoothing method to remove edges that occur only briefly and made the remaining edges
persistent in all time steps. Their best model ARNet was only evaluated on this static network in the
IMPUTATION setting. On WIKITRAFFIC, we consider two networks: one is a network of univariate
time series of view counts, while the other is a network of bivariate time series where desktop and
non-desktop traffic are split.

Following prior forecasting work [65, 66], our main evaluation metric will be the Symmetric
Mean Absolute Percentage Error for forecast horizon F :

SMAPE-F =
100

T FD

T∑
j=1

F∑
t=1

D∑
d=1

∣∣vjtd − v̂jtd
∣∣

1
2

(∣∣vjtd∣∣+ ∣∣v̂jtd∣∣) (62)

where T is the number of samples in the test set, F is the forecast horizon, D is the dimension of
the time series, and v̂jtd is the forecast value of the ground truth vjtd. SMAPE is interpretable with
an upper bound of 200 and a lower bound of 0. It is scale-independent, ensuring that prediction
errors will be considered relative to the magnitude of the sequence. This is important because it
prevents nodes with a large number of views from dominating the evaluation measure. A lower
SMAPE corresponds to a better fit, with it being 0 if and only if the prediction matches the ground
truth perfectly. For the two small networks of univariate time series, LOS-LOOP and SZ-TAXI, we
additionally report the Root Mean Square Error,

RMSE-F =

√√√√ 1

T F

T∑
j=1

F∑
t=1

(
vjt − v̂jt

)2
(63)

and the Mean Absolute Error,

MAE-F =
1

T F

T∑
j=1

F∑
t=1

∣∣vjt − v̂jt
∣∣ (64)

similar to what was done in the T-GCN paper [101].

2.3.2 Model variants

We compare 8 time series baselines, 7 variants of networked time series, and 7 more variants of
Radflow in an ablation study. Results of the following 8 time series baselines are in Table 2 and
Table 3.
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Table 1: Hyperparameters of Radflow-NoNetwork (8) and Radflow (15) on WIKITRAFFIC (uni-
variate). We calibrate the hidden size to ensure that the number of parameters of all models are
within 5% of each other. See the Appendix [86] for the hyperparameters of other model variants.

0 Hops 1 Hop 2 Hops

Number of parameters 1,589,762 1,608,464 1,576,52
LSTM hidden size 128 116 112
Feedforward hidden size 128 116 112
Number of LSTM layers (L) 8 8 8
Dropout probability 0.1 0.1 0.1
Number of attention heads - 4 4
Backcast (seed) length 112 112 112
Forecast length 28 28 28

(1) Copying Previous Step: We use the final observation before the test period as the prediction.
This is the final day in VEVOMUSIC and WIKITRAFFIC, the final 5 minutes in LOS-LOOP,
and the final 15 minutes in SZ-TAXI.

(2) Copying Previous Week: Since we observe weekly seasonality in both VEVOMUSIC and
WIKITRAFFIC, a stronger baseline is to copy observations in the final week just before the
test period and use them as the predictions.

(3) AR: The autoregressive (AR) model used by [96] for the static VEVOMUSIC network.

(4) Seasonal ARIMA: We train an ARIMA(p, d, q)(P,D,Q)m model separately for each time
series, where p, d, q, P,D,Q are the AR, difference, MA, seasonal AR, seasonal difference,
and seasonal MA terms, respectively. These are learned automatically using the pmdarima
package. The number of periods in a season m is set to 7 days for VEVOMUSIC and WIKI-
TRAFFIC.

(5) Individual LSTMs: The LSTM baseline used by [96]. It is trained separately for each time
series, with no weight sharing across network nodes.

(6) LSTM: The standard LSTM model with weight sharing. Unlike variant (4), this method uses
only one set of LSTM weights for the entire dataset.

(7) N-BEATS: The neural regression with residual stacking from [74]. The implementation
consists of eight stacks, each containing one generic block. A generic block internally uses
four fully-connected layers, followed by a fork into the forecast and backcast space. For
bivariate WIKITRAFFIC, we train two separate N-BEATS models.

(8) Radflow-NoNetwork: Radflow with only the recurrent component, i.e. first term v̂jR
t in

Equation (42). It does not take any contribution from the network.

Results for the forecasting models which use the network structure are presented in Table 3 and 4.
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(9) T-GCN: The model proposed by [101] that uses a modified GRU cell to aggregate nodes.
Since T-GCN is not scalable to larger datasets (see Section 2.2.3), we only compare Radflow
against T-GCN on LOS-LOOP and SZ-TAXI [101].

(10) ARNet: The state-of-the-art model [96] for the VEVOMUSIC (static) dataset in the IMPUTA-
TION setting (see Section 2.2.3).

(11) LSTM-MeanPooling: The same architecture as (6) but with mean-pooling node aggrega-
tion, using the hidden output of the final LSTM layer as a node’s representation.

(12–15) Radflow: Variants of our proposed architecture with different network aggregation tech-
niques: a simple mean (12), GraphSage (13), Graph Attention Network (14), and our full
Radflow model with multi-head attention (15). Table 1 outlines the hyperparameters used in
the full model.

Finally we conduct an ablation study to test the key components of our architecture (Table 5).
Starting with the best model (15), we substitute one component with an alternative:

(16–20) Radflow with other node embeddings: As shown in Section 2.2, the LSTM cell contains
a hidden state h which is used to produce three vectors, p, q, and u. Instead of having a
separate output u to represent a node, we could alternatively reuse the cell’s hidden state h
(16), the backcast representation p (17), or the forecast representation q (18). We could also
concatenate different representations, such as [h;p] (19) or [h;p; q] (20).

(21) Radflow with no final projection: We ignore the linear projection in Equation (58) and add
the ego node’s embedding to its neighbors’ directly.

(22) Radflow with one attention head: This final variant tests the effect of having only one
attention head instead of the default four in the full model.

2.3.3 Data preprocessing and training details

Web-scale time series observations often vary greatly in scale. An unpopular page might get zero
views, while a popular page might receive millions of visits daily. To ensure similar scaling, both
the inputs and outputs of our models are log-transformed time series. Outputs are exponentiated
before computing SMAPE, RMSE, and MAE. Missing views are imputed by propagating the last
valid observation forward. We do not apply any other preprocessing techniques to the time series,
such as trend or seasonality removal.

Table 1 shows key hyperparameters of Radflow. We trained all models on the SMAPE objective
using the Adam optimizer [57] with β1 = 0.9, β2 = 0.999, ϵ = 10−8. We set the weight decay
factor to 10−4 and decouple it from the learning rate [64]. We warm up the learning rate to 10−4 in
the first 5,000 steps and then linearly decay it afterward for 10 epochs, each of which consists of
10,000 steps. We clip the gradient norm at 0.1. All our models are implemented in Pytorch [75].
For a fair comparison, we fix the number of layers of all variants to eight and ensure that size of all
variants are within 5% of each other.
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Table 2: Performance of time series models with no network information. We report mean SMAPE-
7 on VEVOMUSIC (22 Oct 18 – 2 Nov 18) and mean SMAPE-28 on WIKITRAFFIC (3 Jun 20 –
30 Jun 20). Rows are numbered according to Sec 2.3.2. See the Appendix [86] for statistical
significance tests.

VEVO

MUSIC

WIKITRAFFIC

(univariate)
WIKITRAFFIC

(bivariate)

(1) Copying Previous Step 14.0 22.5 26.8
(2) Copying Previous Week 10.3 21.0 25.4
(3) AR [96] 10.2 - -
(4) Seasonal ARIMA 9.67 19.6 22.8
(5) Individual LSTMs [96] 9.99 - -
(6) LSTM 8.68 16.6 20.4
(7) N-BEATS 8.64 16.6 20.3
(8) Radflow-NoNetwork 8.42 16.1 19.4

Table 3: FORECAST performance on the static traffic networks. On LOS-LOOP, we report mean
SMAPE-12, RMSE-12, and MAE-12. On SZ-TAXI, we report mean SMAPE-4, RMSE-4, and
MAE-4.

LOS-LOOP SZ-TAXI

SMAPE RMSE MAE SMAPE RMSE MAE

(1) Copying Previous Step 3.92 3.40 2.39 45.8 4.32 2.81
(8) Radflow-NoNetwork 3.60 3.23 2.18 80.2 3.99 3.06
(9) T-GCN [101] 3.97 3.42 2.41 80.5 6.27 3.52
(15) Radflow 3.50 3.11 2.11 77.5 3.36 2.51

2.3.4 Computational costs

Training time VEVOMUSIC experiments were trained on a Titan V GPU and WIKITRAFFIC

experiments were trained on a Titan RTX GPU. The Titan RTX has twice the memory of the Titan
V and is needed to train the two-hop Radflow on WIKITRAFFIC. All pure time series models
converge very quickly, taking no more than three hours to train. Models with one-hop aggregation
take up to 17 hours to train, while models with two-hop aggregation can take up to two days. We
pick the model from the epoch with the lowest SMAPE score on the validation set as our best
model.

Efficient computation of graphs Unlike previous approaches such as T-GCN, our models do not
require the whole graph to be in memory during training. Instead we store the graph in the HDF5
format and only load one batch at a time directly from disk.

Neighborhood sampling To keep the computation tractable, we devise an importance-based
neighborhood sampling technique. Instead of the common uniform sampling that was, for ex-
ample, used by [48], we propose a two-stage approach to select neighbors. First we assign each
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Table 4: Performance of models with network information. We report mean SMAPE-7 on VEVO-
MUSIC (22 Oct 18 – 2 Nov 18) and mean SMAPE-28 on WIKITRAFFIC (3 Jun 20 – 30 Jun 20).
Rows are numbered according to Sec 2.3.2. Bold numbers indicate the best model(s) within a
column. Refer to the Appendix [86] for the p-values from the dependent t-test for paired samples
between models with similar performance.

VEVOMUSIC (static) VEVOMUSIC (dynamic) WIKITRAFFIC (univariate) WIKITRAFFIC (bivariate)

Forecast Imputation Forecast Imputation Forecast Imputation Forecast Imputation
1H 2H 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H 1H 2H

(10) ARNet [96] - - 9.02 - - - - - - - - - - - - -
(11) LSTM-MeanPooling 8.60 8.67 8.14 8.13 8.80 9.03 7.91 7.90 16.8 16.7 15.5 15.2 20.2 19.9 19.2 18.9
(12) Radflow-MeanPooling 8.34 8.44 7.82 7.81 8.42 8.32 7.74 7.61 16.5 16.5 15.1 15.1 19.8 20.2 18.5 18.6
(13) Radflow-GraphSage 8.39 8.37 7.78 7.64 8.43 8.46 7.46 7.27 15.9 16.7 14.7 15.0 19.3 19.9 18.2 18.4
(14) Radflow-GAT 8.52 8.50 7.88 7.74 8.43 8.39 7.44 7.28 16.2 16.0 15.0 15.2 19.5 19.7 18.3 18.6
(15) Radflow 8.33 8.39 7.67 7.63 8.37 8.45 7.32 7.27 16.2 16.0 14.5 14.8 19.9 19.6 18.3 18.5

Table 5: Ablation study on the key components of Radflow on one-hop VEVOMUSIC networks.

VEVOMUSIC

(static)
VEVOMUSIC

(dynamic)

(15) Radflow 7.67 7.32
(16) Radflow (h as embeddings) 7.78 7.51
(17) Radflow (p as embeddings) 7.77 7.49
(18) Radflow (q as embeddings) 7.84 7.35
(19) Radflow ([h;p] as embeddings) 7.75 7.39
(20) Radflow ([h;p; q] as embeddings) 7.76 7.38
(21) Radflow (no final projection) 7.80 7.33
(22) Radflow (one attention head) 7.77 7.43

neighbor a score
∑

d vjtd
outdegree(vj

t )+1
. This score is the total view count of the neighbor at time step t,

normalized by the outdegree of the neighbor at that time. A self-loop is added to avoid division by
zero. Intuitively, a neighbor with a larger number of views will have a greater influence, but the
influence will be more diffuse if that neighbor has many outlinks. Using these scores, we remove
neighbors in the bottom 10th percentile in the neighborhood of each ego node, which reduces noise
induced by aggregation.

In the second stage, we sample four neighbors during training with probability proportional to
the number of time steps that the neighbor appears in the backcast period. During evaluation, we
find using all nodes to be computationally infeasible due to the large data size. Thus for each ego
node, we choose only the 16 most frequently appearing neighbors in the one-hop setting and the
top eight in the two-hop setting.

2.4 Selected results
Radflow is evaluated on four datasets. Two are on urban traffic consisting of several hundred nodes;
two are large-scale datasets—VEVOMUSIC containing 61K videos [96] and a newly curated WIK-
ITRAFFIC dataset containing 366K pages and 22M dynamic links. On both VEVOMUSIC and
WIKITRAFFIC, Radflow without network information is consistently better than the comparable N-
BEATS [74]. Among models with network information, Radflow variants perform the best in both
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Figure 3: Overview of the Radflow model, centered around the WIKITRAFFIC subgraph of Yellow
vests movement (a social movement in France since 2018, shown on the left). Each node is a page
with a time series of view counts, shown in its individual mini-panel. Edge strengths correspond to
average attention scores in the forecast period. The final forecast is produced by summing over the
output from eight layers of the recurrent component and the network flow aggregation component
(shown on the right). Radflow correctly predicts a sharp drop in traffic volume for Yellow vests
movement from 3 June 2020 to 30 June 2020, due to information from neighboring nodes such as
Black bloc and Turning Point USA.

imputation and forecasting tasks. In particular, Radflow outperforms state-of-the-art ARNet [96] by
19% in SMAPE score on VEVOMUSIC. We find that the layers in the recurrent component capture
different seasonality and trends, while attention over the network captures the time-varying influ-
ence from neighboring nodes. Figure 3 illustrates the task of predicting 28 days of view counts on
Yellow vests movement, based on the historical traffic of that page and the traffic of the neighboring
pages. Radflow correctly predicts the sharp drop that is observed during the test period.

We first discuss prediction performances of different model variants (Sections 2.4.1 and 2.4.2,
Tables 2 to 5). When applicable, we report in parentheses the p-value (denoted as p) from the
dependent t-test for paired samples. All differences discussed in this section are statistically sig-
nificant. For more detailed significance tests, see the Appendix [86]. We then present a visual
interpretation of different layers in the recurrent component (Section 2.4.3), followed by insights
provided by the network aggregation component (Section 2.4.4). Finally, we present two prelim-
inary studies on the potential applications of models like Radflow: the robustness of predictions
when the network is not fully observed (Section 2.4.5), and the relationship between traffic surges
on nodes and their attention scores (Section 2.4.5).

2.4.1 Forecasting and imputation performance

FORECASTING without networks Table 2 summarizes the comparison between Radflow-NoNetwork
and the corresponding time series forecasting baselines (1–7). The LSTM variant (6) outperforms
both AR (3) and Seasonal ARIMA (4), showing the robust performance of flexible neural models.
Furthermore, it also outperforms models trained on individual time series (3, 4, 5), highlighting the
advantage of using large amounts of training data. N-BEATS (7) outperforms LSTM (6) by a small
margin of 0.04 SMAPE (p = 6 e−3) on VEVOMUSIC, while Radflow-NoNetwork outperforms all
other baselines, showing promises in combining the recurrent structure with the residual stacking
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idea in our architecture.
Additionally, Radflow-NoNetwork outperforms ARNet (10), the state-of-the-art for VEVOMU-

SIC that uses network information (Table 4), indicating that having the right model outweighs hav-
ing more information for this task.

FORECASTING with networks Tables 3 and 4 summarize performances of models (9–15) on
the four networked time series datasets. Our full model (15) outperforms T-GCN in LOS-LOOP

by a non-trivial margin on all metrics. SZ-TAXI is more noisy and no model is able to beat the
SMAPE from copying the previous step. This is because SZ-TAXI contains many consecutive
zero measurements, which the copying baseline is able to take advantage of. On non-zero test
measurements, Radflow is able to outperform all other variants. See the Appendix [86] for these
results.

Across all eight FORECASTING settings on VEVOMUSIC and WIKITRAFFIC, the top-performing
models are all Radflow variants. Compared to Radflow-NoNetwork (8), incorporating one-hop
neighbors improves the SMAPE score on VEVOMUSIC from 8.42 to 8.33 (p = 2 e−33). On
WIKITRAFFIC (univariate), using one-hop GraphSage (13) improves SMAPE from 16.1 to 15.9
(p = 2 e−21). This confirms the recently reported network effects in the YouTube and Wikipedia
traffic [96, 104]. Note that WIKITRAFFIC is much larger and more diverse, making consistent
improvements harder, hence the smaller effect size compared to VEVOMUSIC.

Finally, compared to the smoothed static network, using the dynamic network in VEVOMUSIC

only improves the performance for some model variants. This is because the static graph was
constructed from the smoothing of edges (i.e. uncommon edges were removed), which reduces
noise in the absence of ground-truth views from the neighbors. More generally, although Radflow
is designed to handle dynamic graphs, it is impossible to know a priori whether dynamic edges will
improve the prediction performance in a given data domain.

IMPUTATION Having ground-truth observations of neighboring nodes during the forecast period
leads to substantially better SMAPE scores for all models. Models that perform well in the FORE-
CAST setting also perform well in the IMPUTATION setting, with Radflow (15) achieving the highest
SMAPE in six of the eight IMPUTATION settings. The performance gain going from one hop to
two hops is more evident in the IMPUTATION setting. For example, there is a boost from 7.67 to
7.63 (p = 1 e−8) on the static VEVOMUSIC, and from 7.32 to 7.27 (p = 3 e−14) on the dynamic
VEVOMUSIC. Compared to the previous state-of-the-art ARNet [96], our best model achieves a
SMAPE score that is 19% better (from 9.02 to 7.27).

On WIKITRAFFIC, using two-hop neighbors uniformly lowers the performance, while the train-
ing time more than doubles. Compared to VEVOMUSIC, each Wikipedia page has many more links,
most of which would be ignored by the reader. The network effect in WIKITRAFFIC is thus weaker
than VEVOMUSIC (see Figure 5), leading to more noise being introduced in the two-hop setting.

2.4.2 Radflow components

Among the variants with attention, the weighted multi-head attention of Radflow yields the best
performance in 10 out of 16 tasks across FORECAST and IMPUTATION, while GraphSage, which
puts an equal weight on all neighbors, is the second best (best in 6 out of 16 tasks). This indi-
cates that simpler attention mechanisms (inner-product attention in Radflow and node averaging in
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Figure 4: Average prediction over all test pages from each layer of Radflow-NoNetwork on the
28-day test period of WIKITRAFFIC. The light shade corresponds to the 95% confidence interval.
Different layers capture different seasonal and trend patterns. See Section 2.4.3.

Radflow-GraphSage) are preferred over more complex ones (Radflow-GAT), but it should not be
too simple (Radflow-MeanPooling).

Table 5 presents an ablation study that tests other key components in Radflow. Overall, we find
that having more than one attention head helps (15 vs 22), so does a linear projection before node
aggregation (15 vs 21). It is also preferable to have a separate projection on the output of the LSTM
cell to obtain the node embeddings u, than to re-use the hidden state h, the backcast representation
p, or the forecast representation q (15 vs 16–20). All differences are statistically significant.

2.4.3 Layered decomposition of time series

The recurrent component of Radflow is decomposable into L = 8 layers, via Equations (50)
and (51). Figure 4 shows the layer-wise contribution to the forecast from Radflow-NoNetwork.
The results are averaged over all 2,434 test pages in WIKITRAFFIC over the 28-day test period, and
re-scaled to the same range for readability. We observe that component 8 encodes strong weekly
seasonality that is consistent across all test pages (with a small confidence interval). Components
1–5 encode varying levels of a decreasing trend, whereas component 7 encodes an increasing trend.
Overall, weekly seasonality is visible in all components except the first, confirming the common
intuition that representations learned via neural networks are often over-complete.

2.4.4 Quantifying effects of the network

Network contribution Radflow can identify settings where the network information becomes
important for the final predictions. Figure 5 shows the contribution to the final forecast made by the
network component (the second term of Equation (42)). In both VEVOMUSIC and WIKITRAFFIC,
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Figure 5: The contribution from the network on the final forecasts. The network component of less
popular nodes is larger. For nodes with similar daily view counts, VEVOMUSIC (left) exhibits a
stronger network effect than WIKITRAFFIC (right). See Section 2.4.4.

there is an approximately inverse linear relationship between the network contribution and the log
of average daily views, indicating that forecasts of less popular nodes rely more heavily on the
network. For nodes with a similar number of daily views (take, for example, 103 views per day),
VEVOMUSIC exhibits a stronger network effect (∼4%) than WIKITRAFFIC (∼3%), indicating that
user behaviors on YouTube recommender links and Wikipedia hyperlinks are different, warranting
further investigation (e.g., with user-level data).

Visualising attention flow The attention scores in Radflow capture some information about the
flow of traffic. In particular, we observe that the model pays more attention to a neighboring node
on days that have a spike in traffic (see the Appendix [86] for a specific example). This motivates
us to visualize the attention flow among WIKITRAFFIC nodes in an interactive web app [82]. In
this visualization, nodes are represented in a graph (bottom panel) and as time series (top panel).
Edge weights are attention scores from Radflow multiplied by the traffic on the source node.

Figure 6 is a screenshot for the subgraph centered around the Wikipedia page of Kylo Ren, a
character in the Star Wars series played by the actor Adam Driver. From the figure, we observe that
the time series of the two nodes (Kylo Ren in blue, Adam Driver in pink) have synchronized spikes
at the same time as the release of major Star Wars movies. Furthermore, there appears to be more
traffic flowing from Kylo Ren to Adam Driver than the other way, indicated by the thickness of the
edges.

2.4.5 What if . . .

Data is missing? We consider the robustness of Radflow to missing data. This setting is relevant
when collecting and observing data from all nodes is very costly (e.g., sites spread out over large
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Figure 6: An interactive web app [82] for attention flow, available at https://attentionflow.ml.
Shown here is the subgraph for the Wikipedia page Kylo Ren, a character in Star Wars played
by Adam Driver. The thickness of an edge is determined by the product between the attention
score and the traffic volume of the source node. See Section 2.4.4.

geographical areas) or when nodes are simply unavailable (e.g., sites whose data are proprietary).
To this end, Figure 7 shows our evaluation of Radflow on the IMPUTATION task for VEVOMUSIC

with a percentage of time series values (left pane) or edges (right pane) deleted at random. As more
nodes become missing, the performance of Radflow decays at a much slower rate than Radflow-
NoNetwork. This indicates that Radflow is effective in imputing and mitigating missing values
from other neighbors. Similarly, Radflow is relatively robust to missing edges. With 40% of edges
missing, the performance of the two-hop model only drops by 1% in SMAPE. Even with 80% of
edges missing, Radflow is still substantially better than Radflow-NoNetwork.

Node traffic doubles? In addition to the example of an actual traffic spike in Figure 3, we further
perform an evaluation to visualize the effects of hypothetical sudden changes in node traffic. This
scenario is useful for planning resources such as edge network caching for mobile videos, or for
estimating economic demands associated with nodes such as advertising.

For each test node in the IMPUTATION task on WIKITRAFFIC, we pick one neighbor and double
its views on one forecasting day. Figure 8 (left) shows that as a page becomes more popular, the
attention on it uniformly decreases, indicating that attention tends to dampen node traffic spikes
instead of amplifying them. More evidently, we can see from Figure 8 (right) that a higher attention
score is positively correlated with a large effect on the ego node’s traffic. This indicates that despite
the non-linear relationship between attention scores and network component in Section 2.2, one
could qualitatively infer the traffic flow from one page to another using attention scores.
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Figure 7: The effect of missing view counts (left) and missing edges (right) on VEVOMUSIC using
Radflow. As we delete more data, Radflow’s performance degrades at a much slower rate than
Radflow-NoNetwork (in blue). See Section 2.4.5.

Figure 8: The effect of doubling a neighbor’s view count during the forecast period. Left: scatter
plot of attention scores before (x-axis) and after (y-axis) doubling. Right: Scatter plot of the relative
increase of the ego node’s views (x-axis) and attention scores after doubling (y-axis). Attention
scores decrease as a neighbor becomes more popular (left). A higher attention corresponds to a
larger flow of traffic from the neighbor to the ego node (right). See Section 2.4.5.
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3 Measurement: Profiling global media audience during the
COVID-19 pandemic

News media is an important political force, as it is sometimes referred to as the Fourth Estate3 or
fourth power, after the three separate branches – legislative, executive, and judicial – of a Western
democratic political system. Conventional knowledge about this fourth estate has been challenged
in recent years, by unexpected election results in different countries [20], by alleged interference
from foreign powers faraway [8], by the widespread use of proprietary, algorithm-mediated content
personalization [34], and by the fact that social media users influencing each other in real-time [5].
New understandings of how media reach and influence a connected audience base around the world
are very much called for, especially since much research has focused on the United States (e.g., its
media, users, and political systems) and a small number of Western countries.

This work aims to address three prominent gaps on measuring contemporary media. First,
recent work on quantifying media ideological bias – via editorial curations [68, 2], surveys [21,
44], or data-driven measurements [10, 78] – all focus on estimating one single categorical label
or numerical score for each media outlet, without explicitly taking into account the diversity of
content from each outlet, nor the breadth of audience bases for each outlet. However, quantifying
the distribution of audience reach (on their political leaning or other attributes) is important to
reflect the diversity in both content providers and media consumers [59], hence the metaphorical
“Shape of the Fourth Estate” in the paper title. The second is in measuring media reach beyond
the US and several well-studied Western countries [63, 84, 22], and designing methods and metrics
that can extend to a large part of the Global South. Quantitative profiles of media consumption
in a diverse collection of countries could catalyze conceptual advances in characterizing media
systems [47, 38], especially for societies outside of the Western democratic system and culture.
The third is the analysis of cross-country differences in audience profiles. Existing studies on
media either focus on in-depth analysis within a single country [10, 63, 78], or profile a number
of countries separately by taking into account their respective political systems [50]. To the best
of our knowledge, there have not been comprehensive (political) profiles of media audiences for
global and country-specific outlets across different countries. Overall, our work seeks to answer
two questions:

RQ1: For a given country, what is the breadth of readership, in terms of political leaning, for the
top media outlets in that country?

RQ2: For a given media, how does its audience profile compare across different countries, and how
does its audience profile compare with other media outlets in a given country?

To answer those questions, we start by collecting one of the largest COVID-19 tweet datasets
from March to November 2020. We extract Twitter user locations based on tweet geotags and self-
reported locations. We focus on the top 20 countries with the most number of geolocated users,
yielding 17.7M Twitter users posting 346M tweets. We refer to this dataset as COVID2020 (Sec-
tion 3.1). We further map the political leanings of global users onto one coherent spectrum, i.e.,
from lean-Dem to lean-Rep, by applying label propagation algorithm on user-user retweet networks
(Section 3.2). We examine the overall user distributions in the top 20 countries of COVID2020,

3https://en.wikipedia.org/wiki/Fourth Estate
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and compare them to known theories in media systems (Section 3.3). We find that our estimates
of average audience leaning score for each media are highly correlated with existing media bias
ratings by conducting three different validations: (a) against six existing US-centric media bias es-
timates [2, 70, 10, 21, 78], for which we obtain similar correlation coefficients; (b) against the 2020
US election state-level voting results, for which we obtain correlation r = 0.74 with p < 0.001;
and (c) against a recent media survey from 12 different countries [44], for which our estimates have
at least r = 0.67 with 4 out of 6 intersecting countries.

We consider URL sharing behavior as a signal of media consumption, Our contribution to this
work is the nuanced profiling of the audience leaning distribution for a specific media for users
from a specific country (Section 3.4). In a country-centric view, we can show the country-level
top consumed media and their audience leaning distributions. For instance, even though thehill
has a Center bias rating, it is the second most lean-Dem media in Germany (more so than 5 other
media rated Center-left). In a media-centric view, we can show the different audience bases of one
media in different countries. For example, nytimes has a broader audience leaning distribution in
the US and Brazil, but its audience distribution is much narrower in Germany and even more so in
Australia. This means that the readers of nytimes in the US and Brazil would have access to a more
diverse set of news sources, but not so for nytimes’s readers in Germany and Australia. We also find
that sometimes a media’s audience does not appear to align with its stated goals, or it can be more
consumed by readers of the opposite partisanship in some countries. For example, bbc, the state-
sponsored broadcaster in the UK, explicitly aims to reach a nationwide audience. But its audience
base appears to be more lean-Dem than those of telegraph or dailymail in COVID2020. As another
example, breitbart, considered a strongly lean-Rep outlet, has more than 75% lean-Dem audience
in India and Pakistan, and between 25% and 50% of its audience being lean-Dem in Indonesia,
France, Mexico, and Nigeria. Overall, our work enables a data-driven view of country-specific
audience distributions, which provide new insights for media outlets, activist groups, and media
watchdog organizations, as well as to individuals for reflecting on and choosing our day-to-day
media diet.

The main contributions of this work include:

• A new, longitudinal Twitter dataset, COVID2020, with a high sampling rate and accurate user
geolocation. The dataset will be released upon publication.

• A new set of media bias estimates (surrogated by the average user leaning score from users
who share URLs from this media) that are shown to be highly correlated with existing edito-
rial or survey-based scoring. This can be previewed from this anonymous link4 and will be
released publicly upon publication.

• Evidences that for the same media outlet, audience leaning distribution can differ signifi-
cantly from country to country; within a country, relative audience leaning among outlets
can differ significantly from known media labels.

3.1 COVID2020 Dataset
We collected public discourse about COVID-19 on Twitter from March 2020 to November 2020.
Our dataset, referred to as COVID2020, consists of n=17708444 geolocated Twitter users from

4https://tinyurl.com/y53m8ttw
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20 target countries and n=346304286 COVID-19 tweets posted by them. In this section, we first
introduce our tweet collection strategy. We then describe the method of extracting user locations on
Twitter. Next, we discuss the selection of political dividing hashtags. Lastly, we extract the URLs
shared in tweets to study media consumption patterns about COVID-19 news.

3.1.1 Collecting COVID-19 tweets

We use the Twitter filtered streaming API to construct a new, high-volume COVID-19 tweet dataset.
The tracked COVID-19 keywords are obtained from [24]. We ran the data crawler from March
2020 to November 2020, covering eight months during the first year of the pandemic. Our initial
investigation in early 2020 shows that the daily volume of COVID-19 tweets exceeds the Twitter
API limit by a large margin. For example, about 25M COVID-19 tweets were posted each day in
March 2020. This is significantly over the Twitter API limit of 1% of total tweets, which is roughly
4M for a day.5 If we just use the Twitter API naively, more than 80% of relevant tweets would be
missing. A better data collection strategy is needed to increase the dataset coverage and recall.

We adopt the crawling strategy proposed by [97], which consists of three steps: (a) partition-
ing the data stream into several sub-streams by tracked keyword and language; (b) estimating the
sampling rate for each sub-stream using rate-limit messages provided by Twitter; (c) taking the
union of all sub-streams. This strategy is shown to significantly reduce data loss, and thus re-
sults in a high-fidelity dataset for high-volume, real-time stream under Twitter API’s limits. In our
implementation, the estimated sampling rates range from 95% to 100% for different sub-streams,
meaning that we have a high recall for all COVID-19 posts on the Twittersphere. To reduce the
computational load, we processed one week’s data every two weeks. The resulting dataset spans
18 calendar weeks (week 13 to week 47 in 2020). We experienced several server glitches during
data collection, and lost data for two entire weeks (week 27, 29) and another four days (in week
17, 31). In total, we obtained n=999040035 COVID-19 tweets posted by n=62687121 users.

The temporal data volume of COVID2020 is shown in Figure 9a (green line). The x-axis is the
week number. The left y-axis shows the average number of daily tweets in each selected week. The
volume of COVID2020 dataset starts from more than 25M tweets per day in March, and drops to
about 5M tweets per day in November. The decline may be attributed to user fatigue on COVID-
19 topics. According to a survey from Pew Research Center [72], 71% of Americans expressed
willingness to take breaks from COVID-19 news, and 43% said the news made them emotionally
worse.

We also compare our COVID2020 dataset with a widely cited COVID-19 tweet dataset curated
by [24] (Figure 9a blue line). We find that COVID2020 is significantly larger throughout the data
collection period, though the volume difference decreases as time passes. For example, in week
13 (03/23 - 03/29), [24] had only 7.56M tweets while we collected 184M tweets (24 times larger).
Note that the observation of decreasing volume in COVID-19 tweets is only made possible by our
data stream with a high-sampling rate (green line). On the contrary, simply reading daily volumes
from a single Twitter stream would lead to the opposite conclusion (blue line).

On the right y-axis, we show the fraction of tweets from [24] that also appear in COVID2020
for every week (gray bar). On average, 96.59% of tweets from [24] are included in COVID2020. To

5Researchers have found that Twitter streaming API provides no more than 50 tweets per second [54], though the
Twitter API limit is more commonly known as no more than 1% of the entire tweet volume for any time intervals.
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Figure 9: (a) Comparison between COVID2020 dataset and [24]. Left y-axis: our COVID2020
(green line) is much larger than [24] (blue line) throughout time. Right y-axis: most tweets (on
average 96.59%) from [24] are also included in COVID2020 (gray bar). (b) CCDF plots of the
number of tweets per user for all users (blue line) and the set of geolocated users (red line).

the best of our knowledge, COVID2020 is the largest COVID-19 tweet dataset for the same period.

3.1.2 Identifying Geolocated Twitter Users

To measure the user behavior in different countries, we extract the location information from (a)
Twitter users who use geotags in their tweets and (b) those who explicitly mention their locations
on their profiles.

• Geotagged users. Approximately 0.85% of all tweets in COVID2020 are attached with geotags.
A geotagged tweet includes a (city, state, country) place tag and may also include a (longitude,
latitude) coordinates tag. We use the country tag to identify users worldwide, and further use the
state tag to map US users into the 50 US states. To aggregate geotagged tweets into geotagged
users, we assign the identified locations to users, which essentially builds the user mobility traces
during COVID-19. For simplicity, we filter out all users posting geotagged tweets from multiple
countries and US users from multiple US states. In the end, we identified n=1958826 geotagged
users.

• Geoparsed users. Because most users do not post geotagged tweets, we also parse the self-
reported location strings from their user profiles. We use the Simplemaps6 data to construct a list
of all possible combinations of cities, states, and countries (both full names and abbreviations).
We then check the location strings against the curated list. We only include users with one exact
string-matching location. We identified n=20975218 geoparsed users.

At the country level, there are n=1077887 overlapping users between the two aforementioned
sets. We consider the locations obtained by geotagged tweets as ground-truth and then evaluate
the precision of string-matching geoparsing on overlapping users. We find that geoparsing is able

6https://simplemaps.com/data/world-cities
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Figure 10: (a) The size of users with unique locations (lighter blue bars) and users who are retweet-
ing others (darker blue bars). Countries are ranked by the number of users with locations. (b) The
ratio of the top two most used languages in 20 selected countries.

to identify the locations of 93% of overlapping users correctly. At the US state level, there are
n=285808 overlapping US users. Geoparsing correctly identifies the state locations of 92% of
them. The high accuracy shows that it is possible to take advantage of both methods to extract
user locations on Twitter. We hence merge the two sets of users, with mismatched geoparsed
users assigned locations from geotagging. In total, there are n=21097109 users with one unique
geolocation. They posted n=397943516 tweets.

Figure 9b plots the complementary cumulative density function (CCDF) of the number of
tweets per user. For all users in COVID2020 and for the set of geolocated users, the two distri-
butions are very similar. This observation assures us that analyzing geolocated users would not
skew the user activity distribution, either to the more active or less active subpopulations.

There are several third-party libraries for extracting geolocations from social media data [69],
for example, OpenStreetMap and Google Geocoder API. We experimented with those libraries in
our pilot test. However, we find that those libraries often operate based on a quota system and thus
are unable to process millions of requests in a reasonable amount of time. We also evaluated several
machine-learning-based and rule-based geoparsing libraries (e.g., Mordecai) that have been trained
on location texts, but found their performances not satisfactory with the noisy location strings.
Therefore, we use the geotags in tweets and exact string-matching for self-reported location on
user profile.

Geolocated users broken down by country. In this work, we focus on the top 20 countries with
the most geolocated users. Figure 10a shows the size of geolocated users in the top 20 countries in
shallow blue bars. US has the most users (n=6638437) while Germany has the least (n=178571).
Note that the ratio of geolocated users across countries is on par with previous studies, for example,
the ratio of US, Spanish, and German Twitter users reported by [11]. For each country, we also plot
the size of users who have retweeted others in darker blue bars. We will infer the political leaning
of those retweeting users in Section 3.2.

Top two tweet languages in each country. We also want to find out whether the COVID2020
dataset is biased toward English tweets because our tracked COVID-19 keywords are all in English.
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To address this concern, we count the frequency of used tweet languages in the top 20 countries.
The language information is extracted from the “lang” field in the tweet object. It can be one of
the BCP 47 language codes or “und” if the language is not recognized.

Figure 10b shows the stacked bar plot of the top two most used languages in each country.
The y-axis shows the ratio of tweets written in marked language. We find that a large fraction of
tweets are posted using native or official languages in non-English speaking countries. For instance,
Spanish (es) is the most used language in countries like Argentina, Mexico, Spain, Colombia and
Venezuela; Portuguese (pt) is most used in Brazil; French (fr) in France; and Turkish (tr) in
Turkey. This assures that the COVID2020 dataset covers Twitter users who are representative of
their resident countries, and thus not a biased group of English-speaking users in all countries.

3.1.3 Curating Political Hashtags Related to 2020 US Presidential Election

We initially wanted to use one universal scale to measure political polarization all over the world,
but we find that it is an intrinsically difficult task due to the multifaceted nature of political systems
operating in different countries. The two widely used political scales by computational social
scientists are the left–right and liberal-conservative spectrum. However, neither of them can be
applied unanimously worldwide without careful calibrations. Firstly, the views about contested
political topics are misaligned across countries. For example, US liberals support abortion while
conservatives oppose; however, both UK liberals and conservatives support abortion [76]. If we use
pro/anti-abortion keywords to classify users, we would misclassify UK conservatives as liberals.
Secondly, the political dividing topics vary significantly across countries. For example, in the
US, those topics include abortion, gun control, racial justice, etc [61]. But in most European
countries, debates between political groups focus on taxation, welfare, and immigration [22]. It
is even unclear what topics are debated in traditionally less studied Asian and African countries.
One strategy that might address this problem is to curate a specific list of political dividing topics
for every single country. However, it is difficult without the help of political scientists who have
domain knowledge about individual countries.

In this work, we focus on a narrower perspective of the political spectrum for the global Twitter
users. We measure the leaning toward the two major US political parties, i.e., the Democratic party
and the Republican party, in the 20 selected countries (lean-Dem and lean-Rep for simplicity).
Because our COVID-19 data collection period is leading up to the 2020 US presidential election,
many tweets in COVID2020 also contain hashtags related to the US election. We collect political
hashtags curated in previous work [52, 94], for example, #bidenharris2020, #voteblue for lean-
Dem hashtags; #maga, #trump2020 for lean-Rep hashtags.

In total, we obtained 414 lean-Dem and 409 lean-Rep hashtags Across all countries, there are
n=331233 users using these hashtags on their Twitter profile descriptions and/or in any posted
tweets. n=271967 (82.1%) of them are located in US. They are referred to as seed users, and are
later used to infer political labels of a larger user population in Section 3.2. Figure 11 displays
the top 25 lean-Dem and lean-Rep hashtags, ranked by the number of users who have used them.
Darker bars in the front indicate seed users in the US while lighter bars in the back indicate seed
users across the world. Though the top ranked hashtags have been mainly used by US seed users,
there are a few tags that have a large presence outside of the US. For instance, #covididiots, the
most used lean-Dem hashtag, was used by n=12602 users in the US, and n=31624 users in all
other countries.
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Figure 11: Top 25 lean-Dem and lean-Rep hashtags ranked by the number of seed users using the
corresponding hashtag.

3.1.4 Extracting URL Domains

URL sharing behavior is commonly used as a proxy for studying media consumption patterns on-
line [3, 10]. To understand how Twitter users in different countries consume and share COVID-19
news, we extract URLs from each tweet in COVID2020. Specifically, we use the expanded url
field in the tweet object. Twitter API provides the full URL address if the URL is shortened by Twit-
ter’s own shortener (i.e., t.co). We further curate a list of media-specific shorteners (e.g., cnb.cx to
CNBC, wapo.st to Washington Post) and use them to resolve shortened URLs. We discard URLs
that are shortened by other shorteners (e.g., bit.ly, tinyurl.com) because expanding such shortened
URLs often requires sending an http request to the browser, which is very time-consuming at scale.
For each URL, we extract the domain information. There are n=28497 domains shared by 50 or
more users from the top 20 countries in COVID2020 dataset, and n=8410 domains shared by more
than 50 users in the US.

There are two desired benefits of studying media consumption at the level of media domain.
First, even a URL has only been shared by a handful of users, aggregating into the domain level
would give us more users to analyze. Second, for the same media, different domains may reveal the
coverage focus. For example, one would expect that cnnphilippines and cnnindonesia have very
different audience bases because the former focuses on reporting Philippines news while the latter
focuses on Indonesia, even though they both belong to the CNN media group.

For each domain, we define a metric global audience reach, computed as the number of unique
Twitter users sharing URLs from this domain across all top 20 countries. Figure 12 displays the
top 50 domains according to their global audience reach. We can see many established media from
English speaking countries spanning the full range of the political spectrum (e.g., from cnn in US
and bbc in UK, to foxnews in US and independent.co.uk in UK). Media outlets from Asia also
appear in the top 50, such as cnnindonesia in Indonesia, astroawani in Malaysia, aajtak.in in India.
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Figure 12: Top 50 domains ranked by their global audience reach.

Despite using the word “media”, we notice that some media platforms also appear in top positions
(e.g., pscp.tv, instagram). They are websites that host content from others rather than producing
content by themselves. We opt to keep those platform domains, since many media outlets also
function as a platform for user-generated content, and drawing a precise line will be difficult.

3.2 Mapping the political leaning of global users onto one scale
We develop a procedure for estimating the political leaning toward the two major US political
parties, i.e., lean-Dem or lean-Rep. The procedure contains four steps:

1. Identifying seed users. We use hashtags on both the users’ profiles and their tweets to label
the leaning of a set of seed users. The process of curating political hashtags related to 2020
US presidential election is described in Section 3.1.3. Next, we calculate a leaning score for
each user by rep−dem

rep+dem
, where rep and dem are the numbers of lean-Rep and lean-Dem hashtags,

respectively. To reduce noises, we only consider users with a score higher than 0.9 (less than
−0.9) as lean-Rep (lean-Dem) seed users. There are n=331233 seed users (n=177170 lean-Dem,
n=154063 lean-Rep) in total.

2. Constructing user-user retweet network. A simple retweet (without comment) disseminates
the original post to the retweeter’s followers, showing support from retweeter to retweetee. Re-
searchers have shown that the retweet network is of high homophilyand can be used to estimate
user leaning on Twitter.To this end, we construct the user-user retweet network for the geolo-
cated users in the 20 target countries. The result is an undirected network. Each node is a
user, and each edge indicates at least one retweet between the two users. We use the number of
retweets as the edge weight. The number of users on the retweet network within each country is
shown by the darker blue bars in Figure 10a.

3. Extracting network backbone. To remove insignificant edges in the network, we run the dis-
parity filtering algorithm [80] to extract the network backbone. We set the significance threshold
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Political leaning Precision Recall F1 score #Identified users

lean-Dem 0.86 0.94 0.90 n=1850270
lean-Rep 0.92 0.82 0.87 n=589601

Table 6: Performance of estimating user political leaning via label propagation in 10-fold cross
validation setup.

to be 0.01. We make a minor modification to the filtering process: if an edge is statistically in-
significant but connects nodes that are both seed users, we do not discard it to ensure better
connectivity to seed users. This modification is shown to help the label propagation step de-
scribed later. The reduced network has n=2439871 nodes with n=15820431 edges in total.

4. Propagating labels from seed users. Finally, we apply the label propagation algorithm [102] on
the extracted backbone network to infer user leanings. An important hyperparameter is α, which
controls the trade-off between preserving original information and receiving new information
from neighbors. We used 10-fold cross-validation to do a line search between 0 to 1 and found
the optimal α to be 0.85. Upon convergence, label propagation returns a score for each leaning
between 0 and 1, which is then re-scaled into [−1, 1]. We use the normalized score as the
predicted leaning score for each user. A score closer to −1 (1) means this user’s retweet network
mainly consists of lean-Dem (lean-Rep) users. A score closer to 0 means this user’s neighboring
network consists of a mix of lean-Dem and lean-Rep users. We also use 10-fold cross-validation
to estimate the performance of label propagation. Table 6 shows that our estimation has high
F1 scores for both lean-Dem and lean-Rep users. Note that we estimated political leaning for
n=2439871 users. This is 7.4 times of the seed users, and makes up 11.6% of all geolocated
users.

Our proposed procedure has one desired feature for cross-country analysis: it calibrates and
unifies the scales – which are often perceived differently – across countries. For example, US con-
servatives and UK conservatives have contrasting opinions on issues such as universal healthcare,
LGBT rights, and gun control. In this work, we choose to map the political spectrum onto the axis
of the US Democratic-Republican scale. This makes our estimated quantity comparable across
different countries.

3.3 Distribution of political leaning across countries
We profile the distribution of uses’ political leaning in each country. Figure 13 displays 20 density
plots for the estimated user leanings, one for each of the top 20 countries in Figure 10a. Leaning
scores in [−1, 0) are considered lean-Dem and colored in blue, while scores in (0, 1] are considered
lean-Rep and colored in red. Note that for each country, the number of users with leaning estimates
is smaller than the total number of geolocated users in Figure 10a.

Our profiling shows that lean-Dem users are the majority in all of these 20 countries (ranging
from 50.7% to 94.6%). This is consistent with a COVID-19 era survey by Pew Research Center
that 69% of top US Twitter users are considered lean-Dem [81]. Another overall impression is the
considerable diversity of user distributions across different countries. While countries such as the
US and Canada exhibit a bi-modal distribution with one mode (local maximum of a distribution)
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Figure 13: The distributions of estimated user leaning in 20 countries from COVID2020. x-axis:
leaning scores obtained from label propagation; y-axis: relative frequencies (density) of users
within a country. The number below country names are the total number of users found in this
country from COVID2020, and the fraction of lean-Dem users in the country.

in each of the lean-Dem and lean-Rep regimes, user distributions in many countries show multiple
modes, such as the two groups of lean-Dem users in France, as well as the multiple modes in both
the lean-Dem and lean-Rep regimes in Argentina and Mexico. In a number of countries, there is a
mode near or at the center (such as Colombia and Pakistan), showing a wide variety in the division
of political leaning that does not align with the US-centric ideological manifests.

How shall we conceptualize these observations? Posts on Twitter are known to behave more
like broadcast media than a social network [60]. We posit that comparative studies on media
systems in different countries will help explain and conceptualize our observations. In the three
original models of Western media systems [47], US, UK and Canada are classified as the liberal
system. The user distributions in these three countries indeed exhibit high similarity – large spread
over the lean-Dem to lean-Rep spectrum, and having a mode in each of the lean-Dem and lean-
Rep regime. There are also deviations from existing media system theories, for example, France
and Spain are both classified as polarized pluralist, but Twitter users in France appear to have two
prominent groups in the lean-Dem regime, whereas users in Spain are more evenly distributed. We
acknowledge that the top 20 countries are merely a sample of all possible analyses that one can do
to compare country-level political profiles, comparisons of democratic corporatist will be possible
if one examines the top 50 countries in ?? in ??. The top 20 countries in COVID2020 provide a
number of observations on countries outside of Western Europe and North America. Since [47]’s
work, there has been a proliferation of typologies. One overview is given by [38]. There are a large
number of factors being identified as relevant; they include but are not limited to communication
values (freedom vs. responsibility), government system, media ownership and interaction with the
state, geopolitical history, and philosophy. Those factors often correlate with location and the main
language of the country. There are a few groups of countries that support such multifaceted simi-
larities, such as (a) Argentina and Mexico, Indonesia, Philippines and Malaysia; (b) Colombia and
Venezuela. Some countries may violate surface similarities, such as users from India are heavily
lean-Dem, whereas users in Pakistan have one lean-Dem mode and one center-leaning mode.
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What can or cannot be read from these plots? The user leanings are estimated by whom are
connected to those using lean-Dem and lean-Rep hashtags via retweets. While we do not claim
that this user population is representative of the country or even its Twitter user base, in Section 3.4
we show that media leanings from this dataset have strong correlations with those obtained via
traditional survey methods [44] in Australia, US, UK, Spain, but weaker correlation for France and
Germany. This means that the interpretability of the political profile results here varies by country.
Overall, the geolocated users in COVID2020 dataset provide a unique and geographically diverse
picture of user polarization around the world, and we hope it will shed light on understanding
political behavior and media landscape in countries that do not often appear in computational social
science writings, such as Malaysia, South Africa, Nigeria. We hope our methodology and initial
observations serve as a basis for further inquiry.

The observations in this section focus on all users and all media domains within a country, in
Section 3.4 we will break down the user distribution for each media domain.

3.4 Media consumption patterns across countries
From the sharing behavior of geolocated users with political leaning estimates, we obtain the distri-
bution of audience leanings for each media domain for a given country or US state (Section 3.4.1).
We then validate the domain leaning scores against known media rating sources and recent research
results, we also examine the correlation of domain leaning to voting records in US (Section 3.4.2).
Lastly, we profile the user leaning distributions for media domains across different countries (Sec-
tion 3.4.3).

3.4.1 Computing Audience Leaning Distributions for Each Domain

In this work, each Twitter user can be represented as a nested tuple (u, lu, νu,Du), where u is the
user id, lu is the location of user u (Section 3.1.2), νu is their political leaning (Section 3.1.3 and
Section 3.2), and Du = {du1, du2 . . .} is the set of media that the user has shared (Section 3.1.4).

We define the total audience reach κ(d) of domain d as the number of unique users sharing
URLs from domain d: κ(d) = |{u|d ∈ Du}|. Similarly, the audience reach of domain d in location
l is κ(d, l) = |{u|d ∈ Du, lu = l}|, where |·| denotes set cardinality.

We compute the average audience leaning ν̄(d) of each domain d by averaging over all users
who have shared it at least once. We can similarly compute the average leaning of domain d shared
by users in location l, denoted as ν̄(d, l). In subsequent uses of the average audience leaning score,
we omit the range of domains d and (a given) location l when they are clear from context.

ν̄(d) =
1

κ(d)

∑
{u|d∈Du}

νu; ν̄(d, l) =
1

κ(d, l)

∑
{u|d∈Du,lu=l}

νu .

Moreover, information extracted from the COVID2020 dataset affords a richer set of statis-
tics for each domain. We denote the distribution of user leanings for domain d, in location l as
Distrν(d, l), which can be represented as mean and variance, median and quantile values (Figure 18
and ??), or density plots (Figure 13). Note that similar user-based aggregation was used in recent
work: [10] described a domain by averaging over the leanings of users who had shared it; [78]
computed domain scores based on Twitter users who had shared its URLs.
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3.4.2 Validating Average Audience Leanings

Comparing with existing media bias ratings for US audience. We first compare the domain
leaning scores to six other estimates in the recent literature [10, 21, 70, 78, 2]. Since all of these
sources are based on the US and report a numerical average or categorical label, we compare them
to the average domain leaning for US users ν̄(d, l = ‘US’). We include domains with an audience
reach (unique number of users) of at least 50, there are 8,410 such domains in the US portion of
COVID2020. We first take the intersection between these domains and those from each of the prior
literature; we then compute Pearson’s r for continuous scores and Spearman’s ρ for ordinal scores,
between average domain leanings ν̄ and the scores from existing sources. Section 3.4.2 summarizes
the results with scatter plots of the scores and correlation results.

Pew Research audience profile score [70] was collected from n=2901 web respondents that
were representative of the US Internet users in 2014. We reconstructed these scores from the inter-
active webpage [71]. The remaining five sets of media bias scores are obtained from [78, 10, 21, 2].
Figures 14a to 14c show high correlations between ν̄ and survey-based [70], audience-based [10]
and crowd-sourced [21] audience scores. The correlation of ν̄ with the AllSides editorial scores
is fairly high (ρ = 0.76∗∗∗). In particular, the correlation of ν̄ with the Pew audience scores [70]
and AllSides score [2] (curated in 2018 by [78]) are higher (r = 0.93∗∗∗ and ρ = 0.76∗∗∗ respec-
tively) than those from [78]’s Twitter-sharing based scores (r = 0.78∗∗∗ and ρ = 0.64∗∗∗ respec-
tively). The lowest correlation is observed with the Twitter-based scoring and MTurk scoring, both
obtained from [78]. The coverage in all domains from [78] is also low (18%) due to keyword
filtering that led to COVID2020 narrowing down the candidate set of domains (as intended). The
correlation with MTurk rating scores is lower (r = 0.48∗∗∗), but it is consistent with [78]’s own
observation(r = 0.50∗∗∗).

Comparing with US state voting results. Figure 15 shows the regression plot between the mean
bias scores of URLs shared by all users within each US state and the percentage of votes to the
Republican party in 2020 US presidential election. We observe a strong correlation (r = 0.74∗∗∗,
p < 0.001) between our estimated domain bias scores and state-level voting results.

Comparing with international media surveys. A key contribution of our study is the cross-
country analysis. To this end, we compare ν̄ with survey results conducted by [44], in which
respondents form a stratified sample of subjects from 12 different countries, and were asked about
their political leaning on a seven-point scale (ranging from −0.5 to 0.5). Respondents were also
asked about the news outlets they had read online and offline in the past weeks, from a candidate list
of 30 popular outlets that varied from country to country. [44]’s audience political leaning score
for each news outlet is the mean of the self-identified leaning scores of its audience. We find a
strong correlation between the media bias scores from our estimation and that from [44] in US and
Australia (r > 0.8∗∗∗). We also notice a moderate correlation in Spain and UK (r ≥ 0.7∗∗∗). The
correlation with France and Germany are considerably lower (r = 0.45 and 0.27, respectively) and
not statistically significant. This is likely due to the narrow leaning distribution of ν̄ in France, and
that survey outcomes for German outlets are all around the center.

Across all three validation tasks, we observe strong correlations between ν̄ and other estimates
of US domain biases, voting records, and international media leaning surveys. This provides us
great confidence in producing new observations on the media sharing behavior internationally,
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(a) [70], n=26 (93%), r = 0.93∗∗∗
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(b) [10], n=299 (69%). r = 0.86∗∗∗
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(c) [21], n=15 (100%). r = 0.83∗∗∗
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(d) [2], n=152 (78%), ρ = 0.76∗∗∗
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(e) [78], n=3517 (18%),
r = 0.63∗∗∗
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(f) [78], n=281 (73%), ρ = 0.48∗∗∗

Figure 14: Correlation between average audience leaning from our data versus bias scores from
other sources, each with “[reference], n=number of overlapped domains (fraction covered in the
other source), correlation score” – Pearson’s r for continuous scores and Spearman’s ρ for ordinal
scores. ∗∗∗ denotes p < 0.001. Ordered chronologically (oldest to newest) from (a)–(f). Side
densities represent the distribution of domain leaning scores from either source.
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Figure 15: Regression plot between the average domain leaning scores and proportion of votes to
the Republican candidate in the 2020 US presidential election in each US state. x-axis: average
leaning scores of URLs shared; y-axis: percentage of votes to the Republican party. Red color
indicates more than 50% votes to the Republican party while blue indicates more than 50% more
votes to the Democratic party. Size of the bubble are proportional to the number of geolocated
Twitter users in each state. Pearson’s r = 0.74∗∗∗; p < 0.001.
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Figure 16: Correlation between our average audience leaning score(y-axis) versus those from [44]
(x-axis). We use Pearson’s r correlation test. ∗∗∗P < 0.001. n=xx shows the number of overlapped
domain with [44], (xx%) is the coverage of all domains from [44]. For domains shared in multiple
countries, we calculate the average leaning scores in each country independently.
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though we caution that the reliability of ν̄ in countries other than those validated above needs
further scrutiny.

3.4.3 Profiling Global Media Consumption
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Figure 17: Heatmap of audience reach κ(d, l) of the overall top 50 domains in the top 20 countries
of COVID2020. x-axis: domain names ranked by their average audience leaning score over 20
countries, colored according to ν̄ from lean-Dem (left) to lean-Rep (right). y-axis: 20 countries
ordered by the number of users. Cell color represents κ(d, l) for country l and domain d, in log
scale.

Figure 17 contains a headmap of audience reach of the top 50 media domains (extracted in
Section 3.1.4, ordered by average audience leaning) across the top 20 countries (extracted in Sec-
tion 3.1.2, ordered by number of users). In this map, US has the most number of users sharing a
large subset of the top 50 media. We can also identify a dozen of media domains for which the US
is not the country with the most audience. These include country-specific outlets such as Aaj Tak
(aajtak.in) in India, The Mirror (mirror.co.uk) in UK, CNN Indonesia (cnnindonesia) in Indonesia,
G1 (globo.g1) in Brazil, CBC News (cbc.ca) in Canada, Astro Awani (astroawani) in Malaysia,
ABC News (abc.net.au) in Australia, and Con El Mazo Dando (mazo4f ) in Venezuela. There are a
few other domains with significant reach in more than one non-US country, such as The Guardian
(theguardian) with significant audience in UK, US, Australia and Canada, and UOL (uol.com.br)
with significant audience in Brazil, Argentina and France. A few countries among the top 20 (e.g.,
Germany, France, and Turkey) do not show a significant user base among the top 50 media domains
– while we choose to present 50 domains due to readability, one would expect to expand the domain
list for a comprehensive analysis in these countries (see Figure 18).

In the rest of this section, we examine this media profile centered on countries and media
domains, respectively.
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Figure 18: Audience leaning distribution for the top 15 media domains ranked by audience reach
in four countries. Left subfigure: box plots on audience leaning distribution. x-axis: audience
leaning; y-axis: domain names. Green cross: mean; orange line: median. Whiskers are from the
10th percentile to the 90th percentile. Right subfigure: bar plots on audience reach κ of each domain
and country. x-axis: audience reach in thousands. y-axis label: domain ratings from [68] and [2],
“-” means not rated by the corresponding source. The domains are ranked by average audience
leaning ν̄ (green cross).

A country-centric view. Figure 18 profiles the distribution of audience leaning scores, for the
top 15 media domains (by audience reach) in four example countries: the US, Australia, Germany,
and Philippines. Figures on all of the top 20 countries are in ??. The media domains within each
country are ordered by their average leaning score ν̄(d, l) (shown as a green cross), we also include
media labels from AllSides [2] and Media Bias Fact Check (MBFC) [68] where available. Both
labels are presented as 5 categories (L - Left, Center Left / Lean Left - CL, Center - C, Center Right
/ Lean Right - CR, R - Right). Media in MBFC categories “Extreme Left/Right” do not appear
in the top 15 domains. Comparing the two editorially curated ratings, MBFC covers more news
outlets (especially outside of the US), and AllSides uses different sources of information, including
editor ranking, staff review, and community feedback. At a glance, we observe that users within
each country consume content from a mix of international media and local media. Domains from
media such as New York Times, Huff Post, CNN, and Reuters are ranked among the top 15 for
multiple countries (regardless of English-speaking or not).

From these distributions, we observe considerable audience variations for the same media
across countries – in terms of both the mean and spread of audience leanings. For example, ny-
times is considered a lean-Dem media in the US with a fairly broad audience base in the US, but its
audience distribution is much narrower in Germany, and even more so in Australia. In Australia,
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lean-Dem media tend to have a narrower audience distribution than center or lean-Rep media.
There are also country-specific rankings for media that are distinct from elsewhere. For instance,
thehill has the second-most lean-Dem audience in Germany, but has a Center label and ranks in
the middle (by leaning) of the top 15 media for US, Australia and Philippines. cnn is considered L
by MBFC, but its average audience leaning is less to the left than other venues rated CL, such as
washingtonpost and theguardian in both the US and Australia.
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Figure 19: Audience overview across countries for nytimes, reuters and breitbart. For each domain,
left subfigure: box plots on audience leaning distribution in 20 different countries. x-axis: audience
leaning; y-axis: countries. Green cross: mean; orange vertical line: median. Whiskers span the
10th percentile to the 90th percentile. Right subfigure: bar plots on audience reach in each country.
x-axis: audience size in thousands. The MBFC and AllSides labels on the domains are in brackets
after each domain name.

A media-centric view. Figure 19 profiles the distribution of audience leaning scores for three
example media across the 20 countries. In particular, we choose nytimes, reuters and breitbart,
which have been labeled as center-left, center, and extremely-right by MBFC (and Allsides for the
first two domains). Figures for more media are in ??. We see for each media, both the average
audience leaning score and the variance of the country-specific leaning scores are very diverse. For
instance, nytimes has shown to have an average audience leaning score varying between 0 to -0.5,
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NPI stance Precision Recall F1 Score #Identified users

pro-NPI 0.98 1.00 0.99 n=4407863
anti-NPI 0.58 0.27 0.36 n=96177

Table 7: Label propagation performance in 10-fold cross validation for NPI attitude.

and its inter-quartile ranges (width of the box in boxplots) are 0.31 for Australia, 0.94 for the US,
but 1.29 for Brazil. For reuters, the mean audience leaning is close to 0 in Venezuela, Colombia
and Argentina, but 90% of its audience in Malaysia, India and Nigeria are considered lean-Dem.
For breitbart has an average audience leaning score varying between 0 to 0.75 in most countries.
Its audience in US and Brazil are over 90% lean-Rep, whereas in Indonesia, France and Mexico
over 25% of its audience are lean-Dem.

These observations are significant due to three reasons. First, while there are many editor-
curated [2, 68] and data-driven [10, 21, 78, 44] media bias estimates, all of them focus on a notion
of average leaning, whereas in this work we quantify the diversity and spread of the audience
base. Second, most current leaning results are US-centric [10, 21, 78], or focus on a small number
of Western countries [44], our rating is able to cover countries in Asia, South America, Africa,
and the Global South at large. Lastly, our data curation and measurement methodology reveal
significant cross-country variation in media outlets, the average audience leaning, as well as the
political diversity in the audience base.

3.5 Political leaning + Geolocation + NPI
In this section, we move our attention from URL sharing to users’ attitudes towards NPI regimes.
The attitude towards NPI regime reflects one’s adherence/disobedience to various guidelines in-
troduced by governments and health organizations. We are interested in finding out the relations
between such adherence/disobedience with one’s belief towards the two political parties. We begin
this section by reviewing methods for estimating users’ attitudes towards NPI regimes. We then
present the overview of users along political dimension and NPI dimension. In the end, we break
down users’ political belief by their attitudes towards NPI.

3.5.1 Estimating users’ attitudes towards NPI regimes

We follow a similar approach to political leaning to infer each user’s attitude towards NPI regimes
within each country. The reduced retweet network has n=4504112 nodes and n=26149407 edges.
The performance of label propagation is shown in Table 7.

3.5.2 Global overview of users NPI attitude and political belief

We first assign each user a label for political belief and NPI attitude using the same formula pre-
sented in Section 3.2. We then compute the ratio of pro-Democratic/Republican users and pro-
/anti-NPI users within each country.

Figure 20a displays the ratio of pro-Democratic/Republican users within the 20 selected coun-
tries. The x-axis is the set of countries selected in our study. The y-axis shows the ratio of pro-
Democratic users over pro-Republican users in each country. It has shown that each country exhibit
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skewness towards pro-Democratic of different levels, i.e. there are more pro-Democratic users than
pro-Republican users. Countries like India, Indonesia, Nigeria, Malaysia and Pakistan demon-
strates the strongest skewness (ratio > 10). Meanwhile, several countries demonstrate moderate
level of skewness such as the U.S., the U.K., Turkey, France, Canada, Philippines, South Africa,
Australia and Germany (ratio > 3). There are also countries with mild pro-Democratic skewness
such as Brazil, Argentina, Spain, Colombia and Venezuela (ratio < 3).

Figure 20b displays the ratio of pro-/anti-NPI users within the same group of countries. The
x-axis is the as Figure 20a. The y-axis shows the ratio of pro-NPI users over anti-NPI users in
each country. We can also observe the skewness towards pro-NPI leaning, i.e. a large number
of users within each country tend to adhere to the NPI regimes. It is not surprising due to the
imbalanced hashtags mentioned in Section 3.2. The figure has shown that countries like India,
Indonesia, Turkey, Nigeria, Malaysia and Pakistan have their majority of users in favor of NPI
regimes compared to the rest. Meanwhile, countries like U.S., Philippines and Colombia, have
more users against such regimes with respect to the whole population in our study.

The figures presented here serve as important overview for us to understand the general features
of users within each country along the two dimensions. Nevertheless, each country is more than
what a ratio could describe. We then present a more detailed analysis over the two topics and the
relation between them in the following subsubsections.

From NPI attitude towards political belief In this subsubsection, we present the political lean-
ing breakdown of users based on their attitudes towards NPI regimes. We first partition users within
each country into pro-NPI and anti-NPI users. We then compute the ratio of pro-Democratic and
pro-Republican users within each group.

Figure 20c shows the ratio of pro-Democratic over pro-Republican users (Dem-Rep ratio for
simplicity) within broken down by their NPI attitude for each country. The x-axis shows the set
of countries selected for study. The y-axis shows the two ratio for pro-NPI users (green bars) and
anti-NPI users (yellow bars) respectively. Bars growing up implies there are more pro-Democratic
users within a particular country.

It is clear that we can observe users’ political belief varies across their attitudes towards NPI in
most countries. In more than half of the selected countries, Dem-Rep ratio is higher than 1 within
pro-NPI users but less than 1 within anti-NPI users. This has implied that within these countries,
pro-Democratic users are more likely to adhere to NPI guidelines while pro-Republican users are
more likely to disobey the guidelines. Meanwhile, Dem-Rep ratio within anti-NPI users in South
Africa and Australia are more extreme than any other countries, indicating a much stronger corre-
lation between political partisanship and attitudes towards NPI guidelines. Recall that the political
leaning can also be interpreted as users’ viewpoints towards Trump. High Dem-Rep ratio within
pro-NPI user groups implies users who follow NPI guidelines tend to oppose Trump. Similarly,
low Dem-Rep ratio within anti-NPI user groups implies users who do not follow NPI guidelines
are more likely to be Trump supporters.

Dem-Rep ratio for both pro-NPI and anti-NPI user groups is higher than 1 in India, France,
Philippines, and Pakistan. We attribute it to the pro-Democratic skewness observed previously.
In fact, we can indeed see that Dem-Rep ratio for anti-NPI users is still much lower than that for
pro-NPI users. It is also surprising to see Argentina, despite suffers less from the left skewness, has
more pro-Democratic users than pro-Republican users within anti-NPI user group.
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(a) Overall ratio of left-right users within each coun-
try. X-axis: countries selected for study; y-axis: ratio
for left-right users in log scale.
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(d) main plot in Sec 7
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