
AFRL-AFOSR-JP-TR-2023-0052

Efficient and Fair Decentralized Task Allocation Algorithms for Autonomous
Vehicles: A Machine Learning Based Approach

Qiu, Qinru
SYRACUSE UNIVERSITY
900 S CROUSE AVE STE 620
SYRACUSE, NY, 13244
USA

01/04/2023
Final Technical Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
Air Force Office of Scientific Research

Asian Office of Aerospace Research and Development
Unit 45002, APO AP 96338-5002

REPORT DOCUMENTATION PAGE

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE
20230104

2. REPORT TYPE
Final

3. DATES COVERED

START DATE
20200928

END DATE
20220927

4. TITLE AND SUBTITLE
Efficient and Fair Decentralized Task Allocation Algorithms for Autonomous Vehicles: A Machine Learning Based Approach

5a. CONTRACT NUMBER 5b. GRANT NUMBER
FA2386-20-1-4062

5c. PROGRAM ELEMENT NUMBER
61102F

5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER

6. AUTHOR(S)
Qinru Qiu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SYRACUSE UNIVERSITY
900 S CROUSE AVE STE 620
SYRACUSE, NY 13244
USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD
UNIT 45002
APO AP 96338-5002

10. SPONSOR/MONITOR'S
ACRONYM(S)
AFRL/AFOSR IOA

11. SPONSOR/MONITOR'S
REPORT NUMBER(S)
AFRL-AFOSR-JP-
TR-2023-0052

12. DISTRIBUTION/AVAILABILITY STATEMENT
A Distribution Unlimited: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The project was very successful in both scientific accomplishments, and in strengthening a productive collaboration between US and Australian researchers.
One research paper has been submitted to 2023 IEEE International Conference on Robotics and Automation (ICRA) and is included as supplemental information. The
group is also submitting an abstract to the 2023 workshop on Naval Applications of Machine Learning. A proposal based on their research results was submitted to NSF
RINGS (Resilient and Intelligent Next-Generation Systems) program and was selected for funding.
There are also two videos about the research results at the following YouTube links
https://youtu.be/d4dRHNA5HTc
https://youtu.be/H_SYPXkBpWQ
From the PI (Qinru Qiu): "We were very excited about the performance of the BAMS based multi-agent systems. Although this project has ended, we are going to
further investigate their potentials and limitations. We were recently selected by the NSF Resilient & Intelligent NextG Systems (RINGS) program and part of our
proposed research is the multi-agent message passing system for cooperative sensing and navigation"

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
6

19a. NAME OF RESPONSIBLE PERSON
GEOFFREY ANDERSEN

19b. PHONE NUMBER (Include area code)

Standard Form 298 (Rev.5/2020)
Prescribed by ANSI Std. Z39.18

Efficient and Fair Decentralized Task Allocation Algorithms for
Autonomous Vehicles -- Technical Report

1. Research Objectives and main contributions

The objective of this project is to improve the efficiency of the multi-agent decentralized mission coordination with
an inter-agent communication infrastructure. In phase 1 of this project, we explored the enhancement of the Consensus-
Based Bundle Algorithm (CBBA) for distributed task allocation with budget constraints. The limitation of the CBBA
technique is that the environment must be known a priori to all agents and tasks must be clearly defined with known
costs and rewards. This technique is obviously not suitable for cooperative missions in an unknown environment where
agents must explore and improvise their actions together. In phase 2 of this project, we study cooperation techniques
for missions in unknown environment where agents have only partial observations. The study uses multi-agent predator
and prey game as a platform. The goal is for the agents to jointly locate and capture the prey. The agents have no prior
knowledge of the environment or the prey’s escape algorithm. They communicate with each other to obtain environment
information beyond their own local observations. Based on their local understanding of the environment, the agents
choose their own action, which includes where to move and whether to communicate with other agents, to maximize
the team rewards. Reinforcement learning is applied to optimize the agent’s policy such that the game is completed with
the fewest steps.

The main contribution of our phase 2 research is the belief-map assisted multi-agent system (BAMS). A belief map
represents the hidden state of the environment maintained by the agent after fusing the incoming messages. By
integrating the belief map with the reinforcement learning framework and providing feedback to the belief map, we
accelerate the training and improve the rewards that the system can receive. The performance of BAMS is evaluated
using a cooperative predator and prey game in an environment of different levels of complexity. The BAMS provides
the following benefits compared to existing multi-agent models with message passing capability.

1) The training converges 68% faster and the agents trained using BAMS model completes the game with 27.5%
fewer steps.

2) It has robust performance. During the application mode, the number of agents does not have to be the same as
the training environment.

3) The messages between agents are encrypted. The messages in BAMS are vectors of learned representations of
the agent’s belief of the environment. They do not only contain information about current but also future states
of agents and environment. Each number does not have correspondence to any physical attribute of the agent or
environment. Unless one has the trained model of BAMS, it is not possible to decode the information.

4) Agents reach tacit agreement during the training. From the experimental results, it seems the agents trained using
BAMS understand each other’s intention without explicit communication.

5) The decoded belief map provides a rough interpretation for the agent’s decision. A belief map decoder is trained
together with the policy network in BAMS. By comparing the belief map with the actual map, the system
receives additional channel of feedback, which supervises the training process. During execution, the belief map
provides a way to interpret the agent’s hidden state, which can further be used to explain the agent’s behavior.

2. Research Accomplishments

2.0. Implementation and training of the BAMS Model

Training of multi-agent reinforcement learning (MARL) is challenging because agents have only partial observations
of the environment, and their decisions are not visible to each other. The unknown movements of other agents reduce
the environment predictability and make the environment non-stationary. Message exchanges among agents can provide
information beyond local observation. However, when to communicate, what to communicate and how to leverage the
received messages are variables that need to be optimized. The message passing system and message format should not

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

2

be manually designed. What features are needed by the policy network of reinforcement learning are not known in prior.
A manually designed message format usually does not give the best result.

Things get complicated when a trainable message passing network is used to connect agents. The messages are
additional partial observations that help agents to gain insight of each other. However, the additional trainable variables
in the message network significantly increases the model complexity, prolongs the training time, and escalate the chance
of overfitting.

Training a complex deep neural network using reinforcement learning is time consuming because the only feedback,
i.e., the reward, is delayed, sparse and indirect. We accelerate the DRL by introducing another feedback channel that
helps to learn a more efficient message passing network and a more effective representation of the environment. This
consequently leads to better policy and faster convergence. In our belief-map assisted multi-agent system (BAMS), each
agent is supplemented with a map decoder. It transforms its hidden state into a belief map, a symbolic representation of
the agent’s knowledge of the global environment. This symbolic representation is simple, and its corresponding ground
truth value can easily be obtained. By comparing the belief map with the actual map, the system receives additional
channel of feedback, which supervises the training process. During execution, the belief map provides a way to interpret
the agent’s hidden state, which can further be used to explain the agent’s behavior.

To help the agents coordinate better in team and retrieve information from messages more efficiently, gating and
attention are also integrated into the message passing system. The attention model helps agents to differentiate important
and irrelevant messages, while the gating removes the redundancy and saves communication power and bandwidth.

Details of the BAMS are shown in Figure 1. For the ith agent, the model consists of the following four major
components:

 Observation Encoder𝐸௜(): The observation encoder extracts key features from agent’s local observation,
which will later be combined with received messages and be used to update the hidden states.

 Message Attention Module 𝐴௜() : The attention module assigns weights to different messages to filter
relevant information based on the hidden state of the local agent.

 Map Decoder 𝐷௜(): The decoder reconstructs a belief map of the environment at symbolic level based on the
hidden state of the local agent. The belief map represents agent’s local knowledge of the global environment.
It will be compared with the ground truth to provide additional feedback to assist the training of the
observation encoder, the hidden state generator, and the message attention module.

 Policy Network 𝑝௜(): The policy network is an actor-critic model that selects the best action for the local
agent to maximize the overall system utility. In BAMS, the action consists of two parts, a discrete movement
action and a binary communication action. The former decides how agent moves to complete the game and
the latter decides whether the agent should broadcast its local information to connected neighbors.

 Hidden State Generator 𝑙𝑠𝑡𝑚௜(): The hidden state generator is a Long short-term memory (LSTM) that fuses
feature from local observation and received messages into a vector. This vector represents the agent’s
knowledge about the current state of the global environment.

All five components in the BAMS are trained together. The training of BAMS is to help the agents to learn when to
communicate with others and how to efficiently utilize the received messages and local observation to make the best
decision to maximize the system reward and at the same time reconstruct the belief map of the environment. The loss
function is calculated as the weighted sum of three components, value loss, action loss and map loss. The value and
action losses are the loss of the critic network and actor network respectively. And the map loss is calculated as
𝑀𝑎𝑝 𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 (𝔾௜

௧ − 𝑏௜
௧), where 𝔾௜

௧ denotes the ground truth map for agent i at time t, and 𝑏௜
௧ is the predicted

map given by map decoder 𝐷௜().The entropy regularization coefficient for value loss and map loss is 0.01. For more
detailed information of the BAMS model please refer to our paper [3] submitted to ICRA attached to this report.

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

3

Figure 1 Architecture of BAMS model

2.1. Setup experiments to evaluate BAMS in a predator-prey game

We utilized the classic grid-based predator-prey environment for our experiment and evaluation. In this task, there
are N predators (agents) with limited vision v to explore the mxm sized grid environment with a single prey. The value
of N varies from 3 to 10, and m varies from 7 to 20 to represent games with different complexity. The environments are
further divided into 2 categories, with obstacles and without obstacles. For environments with obstacles, K obstacles are
randomly placed, with K varies from 10 to 30. This corresponding to 7% to 20% of the total environment space.

The agents have limited observation range. An agent can only observe things in the 3x3 area centered by itself. Agent
can take 5 different actions (up, down, left, right, and stay) at every timestep. They also make a binary decision every
timestep on whether to broadcast their own hidden state. All agents (predators) have a maximum step limitation, which
varies with the environment size.

We compared BAMS with 2 reference models based on previous work. They are: Modified TarMAC (M-TarMAC)
and IC3Net. All three models leverage a message passing system among agents and their agent action spaces are the
same. The differences of the three models are summarized in the following table:

 Message passing Gated message Attention to the message Decoded belief map

IC3Net [1] Yes Yes No No

M-TarMAC [2] Yes Yes Yes No

BAMS Yes Yes Yes Yes

The main difference between BAMS and other two models is the addition of the map decoder and the consideration
of the map loss in the training. The additional channel of feedback during training will make sure that after combining
the received message with the local observation and the local hidden state, the agent is able to reconstructor a map that
correctly reflects the current environment. This step helps agents to reach consensus about message encoding and
interpretation, and consequently lead to a more effective communication network.

In addition to M-TarMAC and IC3Net, we introduced a heuristic rule-based algorithm as the baseline. The heuristic
algorithm will guide the agents to explore the map from left to right, and top to bottom. Whenever the agent finish
exploring a row, they will move to the next row beyond their observation range. When they reach the margin of map,
they will turn around and explore in the opposite direction until they reach the step limit or observed the prey. Once one
agent observed the prey, it will send out the location to all other agents. And all other agents will take the shortest path
to catch the prey.

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

4

2.2. Performance evaluation of BAMS with static prey

We first test the performance of BAMS in the environments where prey does not move. With the static prey, to
ensure cooperation among agents, the game will not complete until all agents reached the prey. Table I compares the
BAMS with three reference algorithms when environment size varies from 7x7 to 20x20. It shows that our approach
takes fewer steps in average to complete the gate compared with the references. When the environment size is 7×7 with
3 agents, the improvement of BAMS is 34.05% compared with M-TarMAC and IC3Net. As the environment becomes
more complicated, the performance of IC3Net and M-TarMAC degrades because of slow and difficult convergence in
the training. The BAMS gives 21.07% and 34.62% improvements compared to IC3Net and M-TarMAC respectively.

TABLE I. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR TESTING UNDER SIMPLE ENVIRONMENTS

 N=3, m=7,
max steps = 20

N=5 m=12,
max steps = 40

N=10, m=20,
max steps = 80

Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

Heuristic 14.56 - 33.24 - 68.9 -

IC3Net 12.48 0.6 32.9 0.39 73.82 0.6

M-TarMAC 12.39 0.32 29.8 0.04 71.76 0.35

BAMS 8.17 1 21.64 0.27 56.46 0.05

As seen from Figure 2, the BAMS has much faster convergence than the other two works. This indicates that, with
the help of additional feedback from the belief map, the relationship between the hidden state, action, and reward is
more consistent, hence it can be learned with fewer iterations. In other words, the supervised loss that we obtained by
comparing the belief map with the ground truth map helps the model to learn a better representation of the global
environment and helps to tune the message passing network to be more effective. We need to point out again, the
feedback is only needed during the training. During the execution, no ground truth map is available, the only purpose
of the belief map is to provide an interpretation of the agent’s decision. The map decoder 𝐷௜() is not required for the
agent to play the game.

Figure 2 Convergence Speed Comparison (a)Simple_12x12 (b)Simple_20x20 (c)Complex_12x12

We further tested the model using testing environments with 10, 20 and 30 obstacles. We found that, even though
the network is trained with 20 obstacles, it can handle different environments. The performances of the three deep
learning models in complex environment are shown in Table II. In average BAMS reduces the number of steps by 23.6%
and 16.5% compared to IC3Net and M-TarMAC, respectively.

TABLE II. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR TESTING UNDER COMPLEX ENVIRONMENTS

No. of obstacles 10 20 30

Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

IC3Net 45.39 0.53 48.56 0.54 49.37 0.57

M- TarMAC 39.43 0.062 44.78 0.073 46.92 0.076

BAMS 31.8 0.056 36.51 0.065 41.42 0.054

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

5

To test the robustness of the trained policy, we train the BAMS and
IC3Net model in an environment with 5 agents and test them in different
environments with agent number varying from 2 to 15. As shown in Figure 3,
the average number of steps that BAMS takes to complete the game reduces
with the number of agent increases as we expected. However, this is not the
case for IC3Net. For IC3Net, when the number of agents increases, due to
the increased amount of message, the agents have difficulty in getting an
accurate view of the environment. Therefore, the number of steps to
complete the game increases.

For more experimental results please refer to the attached paper. An
animation of the game can be found at (https://youtu.be/d4dRHNA5HTc).
It shows the trajectory of agents and the decode belief map.

2.3. Performance evaluation of BAMS with moving prey

We further tested the performance of BAMS in an environment where prey is capable of escaping. Both the agents
and the prey have the same observation range. Once the prey observes an agent or multiple agents, it will move to a
nearby location that is the farthest away from the agent(s). To make the game more challenging, in addition to the
original 3×3 observation, we also created a test scenario where both the agents and prey have 5×5 observation range.
In a moving prey scenario, it usually requires multiple agents to round up the prey in order to capture it. A heuristic
algorithm is also developed, where the agents first scan the map in a zig-zag manner from top to bottom and then from
left to right. If the prey is found, they will chase the prey to the corner to capture it.

TABLE III. MOVING PREY GAME WITH 3×3 OBSERVATION RANGE

Pre-train Observation size Success rate Average steps Communication rate Avg. steps of
Heuristic alg.

No 3×3 0.31 32.47 0.94 33.78

Yes 3×3 0.85 15.13 0.07 33.78

Yes 5 ×5 0.92 17.42 0 29.54

The average performance of our agents is summarized in TABLE III. Rows 1 and 2 in the table correspond to
environments where agents have 3x3 observation range. Row 1 gives the performance of agents using BAMS model
trained directly with moving prey. Only in 31% of the testing cases the agents can successfully capture the prey and the
agents actively communicate (94% of the time) with each other. Row 2 gives the performance of agents using BAMS
model pretrained with fixed prey and then fine turned with moving prey. The success rate improves from 31% to 85%.
The results show that moving prey created a dynamic environment, which is hard for agents to learn to understand each
other. Pretrain the agents in a simple environment with fixed prey is more effective. In this environment, the average
number of steps to complete the game using the heuristic algorithm is 33.78 steps, which is 4% and 123% more than
the agents without and with pretraining.

When the vision size increases to 5x5, with pre-training, the success rate to capture the prey increases to 92% and
the average steps to complete the game also increases to 17.42 steps. Overall, the performance is 69.6% better than the
heuristic algorithm. We also found that, with moving prey, the agents tend to cooperate without communication. It is
our hypothesis that the side channel information, such as the elapsed time,

A video that showcases the intelligence of the trained agent can be found at https://youtu.be/H_SYPXkBpWQ.

3. Dissemination of Research Results

One research paper [3] has been submitted to 2023 IEEE International Conference on Robotics and Automation
(ICRA). We are also submitting an abstract to the 2023 workshop on Naval Applications of Machine Learning. A
proposal based on our research results was submitted to NSF RINGS (Resilient and Intelligent Next-Generation Systems)
program and was selected for funding.

15

20

25

30

35

40

0 5 10 15 20

Av
er

ag
e

st
ep

s

#of agents

BAMS IC3Net Heuristics

Figure 3 BAMS trained using 5 agents can
handle environment where agent population

ranges from 2 to 15.

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

6

References

[1] Singh, A., Jain, T., and Sukhbaatar, S. (2019). “Learning when to communicate at scale in multiagent cooperative
and competitive tasks.” In ICLR, 2019.

[2] Abhishek Das, Th´eophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle Pineau.
(2019). “TarMAC: Targeted multi-agent communication.” In ICML, pages 1538–1546, 2019.

[3] C. Luo, Q. Huang, F. Kong, A. B. Wu, H. Li, and Q. Qiu, “Enhancing Multi-agent Message Passing for Cooperative
Games Using Belief Map Assisted Training,” submitted to IEEE International Conference on Robotics and
Automation (ICRA).

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

Abstract—Multi-agent cooperative games carried out by
robots or autonomous vehicles have wide applications in civil,
military, and scientific expeditions. Compared to centralized
control, distributed decision making, where each agent chooses
its own action to maximize the overall system rewards, is
sometimes more favorable due to its low complexity and high
resilience. A message passing system among agents is an effective
way to help them obtain information beyond the observation of
their local area and make global optimal decisions. When to
communicate, what to communicate and how to leverage the
received messages are variables that can significantly impact the
agents’ ability to make good decisions and should be optimized.
Existing works impose no rule in the message passing system and
will learn it together with the agent’s actions in a reinforcement
learning (RL) setting. Due to the nature of RL and the large
search space, the training converges slowly. In this work, we
present a belief-map assisted multi-agent system (BAMS). A
belief map, which represents the hidden state of the environment
maintained by the agent after fusing the incoming messages, is
integrated into the model. By providing feedback to the belief
map, we accelerate the training and improve the rewards that
the system can receive. The performance of BAMS is evaluated
using a cooperative predator and prey game with maps of
different complexity and compared to previous multi-agent
models with message passing capability. The simulation result
shows that the training of BAMS converges 68% faster and the
agents trained using BAMS model completes the game with 27.5%
fewer steps.

Keywords— multi-agent system, multi-agent reinforcement
learning (MARL), message passing, partial observation.

I. INTRODUCTION

A multi-agent cooperative game features multiple
autonomous systems collaborating with each other on a task to
jointly maximize the overall utility of the system. From rescue
missions where multiple robots are dispatched to search for a
missing person, to military applications where multiple UAVs
collaborate in surveying of a wide area, to scientific
expeditions where rovers jointly explore an unknown terrain,
multi-agent cooperative game can be used to model many
different applications. When the number of agents increases,
centralized monitoring, controlling and searching [1][2] for the
optimal behavior of all agents will not be feasible due to the

exponential growth of the complexity. It will also increase the
vulnerability of the system due to potential single-point failure
[3][4]. Distributed control and optimization, where each agent
makes its own decision based on local information, is
sometimes more desirable. However, its obvious limitation is
that the agents only have partial observations of their local area,
and hence cannot make global optimal decisions.

Message exchanges among agents can provide global
information and help the agents to move out of local optimum.
However, when to communicate, what to communicate and
how to leverage the received messages are variables that need
to be optimized. In a real-world environment, communication
usually takes place within the resource constraints. Constant
communication will result in a large number of messages,
which consumes not only communication energy and
bandwidth but also processing power. The messages sending
in consecutive cycles by the same agent, or by agents close to
each other are likely to be similar. Sending redundant
messages again and again is a waste of energy and bandwidth.
Frequently communicating every bit of observed information
to other agents is not only wasteful but may also undermine
the receiver’s decision-making ability, as it cannot effectively
distinguish valuable information from irrelevant information.
The message passing system and message format should not
be manually designed. Many multi-agent games are optimized
using reinforcement learning (RL) such as actor-critic model.
What features are needed by the policy network to select action
are not known in prior. A manually designed message format
usually does not give the best result. Finally, to save
communication energy and to improve the communication
security, the high-dimensional observation must be encoded
into a low-dimensional message that can only be decoded by
agents. Similar to [16][23], in this work, we train the message
passing network together with the policy network. The
message generation and encoding network evolves with the
policy network during the training process.

Deep reinforcement learning (DRL) has received close
attentions and extensive studies because of its outstanding
performance in control and optimization of autonomous
systems [1][6][7]. In the past decade, single-agent
reinforcement learning has achieved remarkable success [7]
[8]. The research focus has now shifted to the multi-agent
reinforcement learning (MARL) to solve problems in
challenging domains such as multi-player simulated games
[9][10]. In those applications, agents have partial observations
of the environment, based on the observation, they select their
own actions. Training of MARL is challenging because agents’
decisions are not visible to each other. The unknown
movements of other agents reduce the environment
predictability and make the environment non-stationary.

Enhancing Multi-agent Message Passing for Cooperative Games
Using Belief Map Assisted Training

Chen Luo*, Qinwei Huang*, Fanxin Kong, Member, IEEE, Alex B. Wu, Helen Li, Fellow, IEEE, and
Qinru Qiu, Senior Member, IEEE

* Indicates equal contributions.
Chen Luo, Qinwei Huang, Fanxin Kong and Qinru Qiu are with the

Department of Electrical Engineering & Computer Science, Syracuse
University, Syracuse, NY 13244 USA (e-mail: {cluo05, qhuang18,
fkong03, qiqiu}@ syr.edu).

Alex B. Wu is with Fayetteville-Manlius High School. (e-mail:
abwu2016@gmail.com).

Helen Li is with the Department of Electrical & Computer
Engineering, Duke University, Durham, NC 27708. (e-mail:
hai.li@duke.edu).

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

Things get more complicated when a trainable message
passing network is used to connect agents. The messages are
additional partial observations that help agents to gain insight
of each other. Previous research [11] proved that all agents
could share their own information and aim for a common goal
through internal communication. However, the additional
trainable variables in the message network significantly
increases the model complexity, prolongs the training time,
and escalate the chance of overfitting.

Training a complex deep neural network using
reinforcement learning is time consuming because the only
feedback, i.e., the reward, is delayed, sparse and indirect. In
this work, we accelerate the DRL by introducing another
feedback channel that helps to learn a more efficient message
passing network and a more effective representation of the
environment. This consequently leads to better policy and
faster convergence. In our belief-map assisted multi-agent
system (BAMS), each agent is supplemented with a map
decoder. It transforms its hidden state into a belief map, a
symbolic representation of the agent’s knowledge of the global
environment. This symbolic representation is simple, and its
corresponding ground truth value can easily be obtained. By
comparing the belief map with the actual map, the system
receives additional channel of feedback, which supervises the
training process. During execution, the belief map provides a
way to interpret the agent’s hidden state, which can further be
used to explain the agent’s behavior.

To help the agents coordinate better in team and retrieve
information from messages more efficiently, gating and
attention are also integrated into the message passing system.
The attention model helps agents to differentiate important and
irrelevant messages, while the gating removes the redundancy
and saves communication power and bandwidth.

We evaluated the performance of the BAMS model using
a multi-agent predator-prey game with and without obstacles.
Centralized training and distributed execution are adopted.
The experimental results show that, compared to existing
models, the BAMS is more suitable for large-scale
environments with complicated landscapes.

The key contributions of this paper are summarized as
follows:

• We proposed a belief-map assisted training
mechanism that supplements reinforcement learning
with supervised information to accelerate the training
convergence.

• Proposed a belief-map decoder to reconstruct a
symbolic map from the environment embedding to
provide additional feedback during the training. The
map transforms the hidden state of agents into a
human-readable format, which significantly
improves the interpretability of the agent’s decision-
making process.

• Adopt message gating and attention in the message
passing system to improve the communication
efficiency. The gating is implemented at the sender
side to effectively cut the transmission power and
communication bandwidth.

• Simulation results show that agents with the
enhancements can be trained for effective operation
in large and complex environments. The training time
reduces by 68% and the overall performance
improves by 27.5%.

The rest of the paper is organized as follows. Section II
introduces some previous works related to communication in
a multi-agent reinforcement learning system. Section III gives
the detail of our proposed method including the believe map
decoder and attention model. The experimental results are
given in Section IV followed by the conclusions in Section V.

II. MOTIVATIONS AND PREVIOUS WORKS

We consider a fully cooperative multi-agent game as a
decentralized partially observable Markov Decision Process
(DEC-POMDP) [12]. DEC-POMDP is defined as a tuple
⟨𝑁, 𝑆, 𝑃,𝓡,𝓞,𝓐, Z, 𝛾⟩, where 𝑁 denotes the number of agents;
𝑆 is a finite state space; 𝑃(𝑠!|𝑠, 𝒂): 𝑆 ×𝓐× 𝑆	 → [0,1] stands
for the state transition function; 𝓐 = [𝑨𝟏…	𝑨𝑵] is a finite set
of actions, where 𝑨𝒊 represents the set of local actions 𝒂𝒊 that
agent 𝒊 can take; 𝓞 = [𝑶𝟏…	𝑶𝑵] is a finite set of
observations controlled by observation function Z: 𝑆 ×𝓐	 →
	𝓞; 𝓡: 𝑆 ×𝓐	 → 	ℝ is the reward function; and 𝛾 ∈ [0,1] is
the discount factor.

According to the DEC-POMDP model, each agent 𝑖 takes
an action 𝑎% 	based on its local observation 𝑜%. When all agents
applied their actions [𝑎&, 𝑎', … , 𝑎(] to the environment, the
environment moves to a new state 𝑠′ and returns a joint reward
𝑟 . The MARL trains policies 𝜋%(𝑎%|𝑜%):	𝑶𝒊 →	𝑨𝒊	, ∀𝑖, that
maximizes the expected discounted reward 𝔼[∑ 𝛾*𝑟*+

*,&].
 Sharing the observation improves the performance and

helps agents to learn a better action policy. Efficient
communication allows agents to have more information about
the global environment and reduces the negative impact of
partial observations. Previous works model a multi-agent
communication system as a message passing graph neural
network [13][14]. Each node in the graph represents an agent
and each edge models a communication pathway equipped
with message encoding and decoding. Different graph
topologies have been studied [15]. Recent works focus on
improving the efficiency and reducing the cost of the
communication using gated message passing [18], attention
[17], and event/memory driven processing [19][20][21].

As the first work on learnable communication, [22]
designed a message passing network where message
generation only depends on the agent’s local observation, local
action and received messages. The message encoder is a MLP
trained together with the policy network using reinforcement
learning. CommNet [25] embeds a centralized communication
channel into the network. It improves [22] by maintaining a
local hidden state in each agent using a recurrent neural
network (RNN). The hidden state is determined by the
sequence of local observations and received messages and will
be sent to other agents as the communication message. When
multiple messages are received, the agent consolidates them
by calculating the average. Then as the extension of CommNet,
the IC3Net used the long short-term memory (LSTM) to
generate hidden states. It introduces a gating mechanism,
which is a binary action, to dynamically block or unblock the

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

message transmission. The policy of communication gating is
optimized using reinforcement learning.

Gated-ACML [18], TarMAC[23] and ATOC [26] adopt
the gating mechanism and improve the inter-agent
communication using an attention model. The attention model
prioritizes received messages so that agents can choose useful
features. While the Gated-ACML applies gating to prune the
message to save the communication bandwidth, ATOC applies
attention to determine whom the agent should talk to, and
dynamically changes network structure accordingly. TarMAC
uses gating and attention to improve the success rate and
reward of the game. However, as we will discuss later, their
gating is applied at the receiver side, therefore, it does not
reduce communication cost and bandwidth. Furthermore,
there will be unintentional message leakage under certain
conditions.

In this work, we improve the gating mechanism and
implement it at the sender’s side without information leakage.
We also proposed a belief-map assisted training which
significantly improves the training speed and quality for large
and complex games.

III. PROPOSED METHOD

In this section, we present the structure and training of
belief-map assisted multi-agent system (BAMS). Details of
the BAMS are shown in Figure 1. For the ith agent, the model
consists of the following four major components:

• Observation Encoder 𝐸%() : The observation encoder
extracts key features from agent’s local observation,
which will later be combined with received messages and
be used to update the hidden states.

• Message Attention Module 𝐴%(): The attention module
assigns weights to different messages to filter relevant
information based on the hidden state of the local agent.

• Map Decoder	𝐷%(): The decoder reconstructs a belief map
of the environment at symbolic level based on the hidden
state of the local agent. The belief map represents agent’s
local knowledge of the global environment. It will be
compared with the ground truth to provide additional

feedback to assist the training of the observation encoder,
the hidden state generator, and the message attention
module.

• Policy Network 𝑝%(): The policy network is an actor-critic
model that selects the best action for the local agent to
maximize the overall system utility. In BAMS, the action
consists of two parts, a discrete movement action and a
binary communication action. The former decides how
agent moves to complete the game and the latter decides
whether the agent should broadcast its local information
to connected neighbors.

• Hidden State Generator 𝑙𝑠𝑡𝑚%() : The hidden state
generator is a Long short-term memory (LSTM) that fuses
feature from local observation and received messages into
a vector. This vector represents the agent’s knowledge
about the current state of the global environment.

The training of BAMS is to help the agents to learn when
to communicate with others and how to efficiently utilize the
received messages and local observation to make the best
decision to maximize the system reward.

A. Hidden state generation and policy network
At every time step, each BAMS agent collects the

observation from their local sensor. The local observation of
agent i at time t is denoted as 𝑜%* . The representation of 𝑜%* is
usually manually designed and is application specific. It
directly affects the complexity and the feature extraction
ability of the observation encoder 𝐸%(). Based on the DEC-
POMDP, the agent selects actions based on the hidden state.
The hidden state is maintained by a LSTM using local
observations and the received messages as the following:

 ℎ%*-', 𝑠%*-' = 𝑙𝑠𝑡𝑚%(𝐸%(𝑜%*), 𝑐%* , ℎ%* , 𝑠%*), (1)

where ℎ%* , 𝑠%* are hidden state and cell state at time t of agent
i, and 𝑐%* is the aggregated feature extracted from the received
messages using the attention model: 𝑐%* = 𝐹%(𝐴%ST𝑚.

* , 𝑗 ≠ 𝑖WX,
𝐹%() is a linear layer to transform the aggregated message to
the communication tensor.

Figure 1 Architecture of BAMS model

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

The policy network 𝑝%() is a typical actor-critic model,
with an actor network 𝛩%(ℎ%*) and a critic network 𝑉%(ℎ%*). The
𝛩%(ℎ%*) is a one-layer fully connected network. Its input is ℎ%*
and the output has two components 𝑎%* and 𝑔%*,

 𝑎%* , 𝑔%*=𝛩%(ℎ%*). (2)

Vector 𝑎%* gives the probabilities for the game actions, i.e.,
the movement that the agent is allowed to take to complete the
game. 𝑔%* ∈ [0,1] gives the probability for the binary
communication action, i.e., block or pass. In each step, the
action with the highest probability will be executed.

B. Message passing model
Agents send messages to their connected neighbors.

Following TarMAC and IC3Net, we use the hidden state as the
communication message. The hidden state contains all
information that an agent needs to decide local actions.
However, not all information is useful to its neighbors.
Furthermore, some of the information may overlap with
previous messages from the same agent or messages sent by a
nearby agent. To improve the efficiency of the communication
network, the senders need to reduce the number of redundant
messages and the receivers must be able to extract useful
information pertinent to its own decision making. We propose
to solve these two problems using message gating on the
sender side and attention model on the receiver side.

Unlike TarMAC, where the message gating is
implemented at the receiver side within the attention model,
our gating is implemented at the sender side so that gating can
effectively save the transmission power and communication
bandwidth. The outgoing message 𝑚𝑚.

* of agent j is
calculated as the product of ℎ.* and the binary gate action 𝑔.*.

 𝑚𝑚.
* =	ℎ.* × 𝑔.* . (3)

Given received messages 𝑚𝑚.
*	(𝑗 ≠ 𝑖), agent i aggregates

the messages to select the most relevant content using an
attention model. The attention model is trained to maximize
the reward from the game and minimize the loss of the belief-
map construction. Considering the communication delay,
agent i uses gated message 𝑚𝑚.

*/' send by agent j in previous
time step as the input of the key and value networks to generate
𝑘.* and 𝑣.* for time t. The query 𝑞%* of the attention model is
generated based on the agent’s local hidden state at current
time step (ℎ%*).

 𝑘.* = 𝑘𝑒𝑦S𝑚𝑚.
*/'X (4)

 𝑣.* = 𝑣𝑎𝑙𝑢𝑒S𝑚𝑚.
*/'X (5)

 𝑞%* = 𝑞𝑢𝑒𝑟𝑦(ℎ%*) (6)

 𝛼%* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 f0!
"#1$

"

23%
…

0!
"#1&

"

23%
… 0!

"#1$
"

23%
	g (7)

 𝑐%* = ∑ 𝛼%*𝑣.*(
.,' (8)

where 𝑘𝑒𝑦() , 𝑣𝑎𝑙𝑢𝑒() and 𝑞𝑢𝑒𝑟𝑦() are networks with
one fully connected linear layer, 𝑑1 is the number of
dimensions of hidden state. 𝑐%* is the aggregated feature vector
that will be used to update the hidden state. Figure 2 shows the
structure of the attention model.

C. Believe map generator
Instead of solely relying on the reward from the

environment, additional channels of feedback information
could be added to speed up the training. In this work we assist
the RL training using a decoded belief map with the multi-
agent cooperative predator-prey game in mind. As the
aggregation of past observations and incoming messages, the
hidden state of an agent represents its knowledge of the
environment. It helps the agent to make decisions considering
global environment to get more rewards from the game. The
more accurate this knowledge is, the better decision the agent
will make. However, the agent’s hidden state is a feature
vector not interpretable. The basic idea of BAMS is to decode
the hidden state into a symbolic map that is human
interpretable so that the ground truth version of the map can be
constructed. By comparing the decoded map with ground truth
map, we provide additional feedback to assist the training of
the whole system.

The map decoder 𝐷%(ℎ%*)	can be considered as an inverse
process of the observation encoder 𝐸%(𝑜%*) . Both the
observations and decoded maps are 𝑚×𝑚 graded planes,
where S is the size of the environment. The status of each grid
location is coded as a size M vector, where M is the number of
possible states of the grid. For example, for the predator-prey
game, a grid can have 4 possible states, observed (or
unobserved), occupied by a predator, occupied by a prey,
occupied by an obstacle. These 4 states are not necessarily
exclusive to each other; hence each grid is encoded as a multi-
hot vector with size M. Overall, both maps have dimension
𝑀 ×𝑚 ×𝑚. The observation map contains only information
from local agent, while the belief map should combine the
information from all agents.

In this work, we consider centralized training and
distributed execution. During training, the central controller
generates ground truth map for each agent by keep tracking the
movement of all agents. A grid is observed if it has been
observed by any agent. For any grid that has not been observed,
its other status will also be false.

Figure 3 Architecture of belief map model

Figure 2 Architecture of the attention model

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

The map decoder generates the believe map 𝑏%* for agent i
at timestamp t. As shown in Figure 3, the model has a linear
layer and two transposed convolutional layers with ReLU
activation. Let 𝔾%* denote the ground truth map for agent i at
time t, Mean Squared Error (MSE) is used to calculate the map
loss:

 𝑀𝑎𝑝	𝐿𝑜𝑠𝑠	 = 	𝑀𝑆𝐸	(𝔾%* 	−	𝑏%*) (9)

 𝑏%* 	= 	𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ%*) (10)

The map loss can be obtained every time step. Minimizing
the map loss can help all agents converge to an effective
communication protocol and efficient message processing. All
five components in the BAMS are trained together.

IV. EXPERIMENTS

We utilized the classic grid-based predator-prey
environment [13] for our experiment and evaluation. In this
task, there are N predators (agents) with limited vision v to
explore the m*m sized grid environment and chase a fixed
location prey. The value of N varies from 3 to 10, and m varies
from 7 to 20 to represent games with different complexity. The
environments are further divided into 2 categories, with
obstacles and without obstacles. For environments with
obstacles, K obstacles are randomly placed, with K varies from
10 to 30. This corresponding to 7% to 20% of the total
environment space.

A. Experiment setting
We trained our network with a batched synchronous multi-

agent Actor-Critic model, using RMSprop with a learning rate
of 0.001 and α= 0.97. The loss function is the weighted sum
of three components, value loss, action loss and map loss. The
entropy regularization coefficient 𝜀 for value loss and map
loss is 0.01. The hidden state size for LSTM is 64. For the
attention model, the key (𝑘.*)	and query (𝑞.*) have dimension
16 and the dimension of value (𝑣.*)	is 64. All agents use the
same BAMS model. the parameters for the BAMS model are
shared among all agents.

The agents have limited observation range. An agent can
only observe things in the 3x3 area centered by itself. Agent
can take 5 different actions (up, down, left, right, and stay) at
every timestamp. All agents (predators) have a maximum step
limitation, which varies with the environment size. Before an
agent reaches the prey, it will receive a penalty rsearching = -0.05
in each time step. To avoid this penalty, the agent must learn
to reach the prey as early as possible. Once an agent arrives at
the prey, it will stay on the prey and receives no more penalty.
If the agents reach the limit of maximum number of steps, they
will stop and mark this case as failure.

We select the best model during training based on the
average steps taken for agents to reach the target. The best
model will be used for testing. Environment setting for testing
is the same as training in terms of the number of predators and
prey, the action space, and the map size.

We compared BAMS with 2 reference models based on
previous work. They are: Modified TarMAC (M-TarMAC)
and IC3Net. As we mentioned earlier, the original TarMAC
gates the messages at the receiver side after the attention layer.
Furthermore, when all senders decided to gate their outgoing

messages, the receiver will generate an aggregated message by
paying equal attention to the received messages. In other
words, there is a message leak that let the receiver to still get
information even though all senders choose to gate their
message. In this work we fixed the message leak and move the
gating to the sender side for a fair comparison. Compared to
BAMS, M-TarMAC has similar gating and attention
mechanism, however, it does not have the additional channel
of feedback from the belief maps. IC3Net adopts the same
gating mechanism however, the receiver generates the
aggregated message simply by averaging the input messages
without attention. Neither does it have the additional feedback
channel as BAMS has.

 Moreover, we introduced a heuristic rule-based algorithm
as the baseline. The heuristic algorithm will guide the agents
to explore the map from left to right, and top to bottom.
Whenever the agent finish exploring a row, they will move to
the next row beyond their observation range. When they reach
the margin of map, they will turn around and explore in the
opposite direction until they reach the step limit or observed
the prey. Once one agent observed the prey, it will send out the
location to all other agents. And all other agents will take the
shortest path to catch the prey.

B. Experiments Results for simple environment
The simple environment does not have any obstacles.

Predators can move towards any direction within the map. We
utilize the average steps taken to represent the overall
performance of the models. Under the same circumstance,
lower average steps taken represents better performance.
TABLE I compares the BAMS with three reference algorithms
using games with different size. It shows that our approach
takes fewer steps in average to complete the gate compared
with the references. When the environment size is 7´7 with 3
agents, the improvement of BAMS is 34.05% compared with
M-TarMAC and IC3Net. As the environment becomes more
complicated, the performance of IC3Net and M-TarMAC
degrades because of slow and difficult convergence in the
training. The BAMS gives 21.07% and 34.62% improvements
compared to IC3Net and M-TarMAC respectively.

As seen from Figure 4, our approach has much faster
convergence than the other two works. This indicates that,
with the help of additional feedback from the belief map, the
relationship between the hidden state, action, and reward is
more consistent, hence it can be learned with fewer iterations.
In other words, the supervised loss that we obtained by
comparing the belief map with the ground truth map helps the
model to learn a better representation of the global
environment and helps to tune the message passing network to

TABLE I. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR
TESTING UNDER SIMPLE ENVIRONMENTS

 N=3, m=7,
max steps = 20

N=5 m=12,
max steps = 40

N=10, m=20,
max steps = 80

Avg
steps

Comm
rate

Avg
steps

Comm
rate

Avg
steps

Comm
rate

Heuristic 14.56 - 33.24 - 68.9 -

IC3Net 12.48 0.6 32.9 0.39 73.82 0.6

M-TarMAC 12.39 0.32 29.8 0.04 71.76 0.35

BAMS 8.17 1 21.64 0.27 56.46 0.05

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

be more effective. We need to point out again, the feedback is
only needed during the training. During the execution, no
ground truth map is available, the only purpose of the belief
map is to provide an interpretation of the agent’s decision. The
map decoder 𝐷%() is not required for the agent to play the game.

C. Experiments Results for complex environment
Next, we tested our approach under a complex

environment with obstacles. Each grid in the environment is
encoded as multi-hot vector of size 4, which represents
whether the grid is occupied by a predator, a prey or an
obstacle, and if the grid has been observed. We fixed the
environment size to be 12´12. Each randomly generated
training environment has 20 randomly placed obstacles.

Figure 4(c) compares the convergence speed BAMS,
IC3Net and M-TarMAC. We can see that BAMS again has the
fastest convergence speed compared to other models.
Furthermore, in average, BAMS completes the game with 3
steps fewer than the other two models. Compared to Figure
4(a), the performance different between M-TarMAC and
IC3Net also increases. This means effective message passing
network becomes more important under complicated
environment. under complex environment.

We also observed that, when the environment gets more
complexed, the performance of those models oscillates more
significantly. This can be seen in Figure 4(b) and (c) when the
environment size is 20 or when obstacles are included. This is
because, for randomly generated large (complicated)
environment, the complexity of the game varies significantly.
Things such as the initial location of the agents and the way
the obstacles are distributed will affects the number of steps
needed to complete the game.

We further tested the model using testing environments
with 10, 20 and 30 obstacles. We found that, even though the
network is trained with 20 obstacles, it can handle different

environments. The performance of the three deep learning
models in complex environment is shown in TABLE II. In
average BAMS reduces the number of steps by 23.6% and 16.5%
compared to IC3Net and M-TarMAC, respectively.

TABLE I and TABLE II also compared the communication
rate among 3 deep learning models. This is the percentage of
time when a message is not gated. The data show that BAMS
completes the game much faster without significantly
increasing the communication cost. We also observed that
when the map is relatively small and simple, BAMS agents
tend to communicate more frequently. This perhaps is because
part of their goals is to reconstruct the map. When agents
accrued enough information about the environment, they will
share it with others. We will investigate more about this
behavior in our future works.

V. CONCLUSION
We proposed a novel belief map assisted training to

improve the convergence and efficiency of multi-agent
cooperative game with distributed decision. Attention-based
inter-agent communication is adopted to overcome the partial
observation. The agent will learn when to gate the message to
save bandwidth and avoid interfering each other with
irrelevant (or redundant) information. We compared our
approach with IC3Net and TarMAC in simple and complex
predator-prey environments. The experimental results show
that our attention-based belief map can help the agent learn a
better representation of the environment hidden state and
effective message processing, which will lead to wiser
decision. We also show that the belief map assisted training
improves convergence speed and reduces average steps
needed to complete the game.

Our future work is to find better structures of the network
and investigate the communication behavior of the agents. We
will also extend the BAMS model to other multi-agent
applications with asynchronous interface, limited bandwidth,
etc.

ACKNOWLEDGMENT
This work is partially supported by the National Science
Foundation under grant CNS-2148253 and Air Force Office
of Scientific Research under grant FA2386-20-1-4062.

Figure 4 Average Step Taken Comparison (a)Simple_12x12 (b)Simple_20x20 (c)Complex_12x12

(a) (b) (c)

TABLE II. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR
TESTING UNDER COMPLEX ENVIRONMENTS

No. of
obstacles

10 20 30

Avg
steps

Comm
rate

Avg
steps

Comm
rate

Avg
steps

Comm
rate

IC3Net 45.39 0.53 48.56 0.54 49.37 0.57

M-
TarMAC

39.43 0.062 44.78 0.073 46.92 0.076

BAMS 31.8 0.056 36.51 0.065 41.42 0.054

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

REFERENCES
[1] Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., & Mordatch,

I. (2017). “Multi-agent actor-critic for mixed cooperative-competitive
environments.” Advances in neural information processing systems, 30.

[2] Huang, R., Chu, X., Zhang, J., & Hu, Y. H. (2015). “Energy-efficient
monitoring in software defined wireless sensor networks using
reinforcement learning: A prototype.” International Journal of
Distributed Sensor Networks, 11(10), 360428.

[3] Lynch, G. S. (2009). “Single point of failure: The 10 essential laws of
supply chain risk management.” John Wiley and Sons.

[4] Moradi, M. (2016). “A centralized reinforcement learning method for
multi-agent job scheduling in Grid." In 2016 6th International
Conference on Computer and Knowledge Engineering (ICCKE) (pp.
171-176). IEEE.

[5] Isele D, Rahimi R, Cosgun A, et al. (2018). “Navigating occluded
intersections with autonomous vehicles using deep reinforcement
learning.” In IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018: 2034-2039.

[6] Guillaume Lample and Devendra Singh Chaplot. (2017). “Playing fps
games with deep reinforcement learning.” In AAAI Conference on
Artificial Intelligence (AAAI), 2017

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller,
Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. (2015). “Human-
level control through deep reinforcement learning.” Nature, 518:529–
533, 2015.

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. (2016). “Mastering the game of go with deep neural
networks and tree search.” Nature, 529(7587):484–489, January 2016.

[9] Vinyals O, Babuschkin I, Czarnecki W M, et al. (2019). “Grandmaster
level in StarCraft II using multi-agent reinforcement learning.” Nature,
2019, 575(7782): 350-354.

[10] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison,
C., ... & Zhang, S. (2019). “Dota 2 with large scale deep reinforcement
learning.” arXiv preprint arXiv:1912.06680.

[11] D. Szer and F. Charpillet, (2004). “Improving coordination with
communication in multi-agent reinforcement learning,” in Proc. 16th
IEEE Int. Conf. Tools Artif. Intell., Nov. 2004, pp. 436–440

[12] Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein, S. (2002).
“The complexity of decentralized control of markov decision processes.”
Mathematics of operations research 27(4):819–840.

[13] Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., & Gao, Y. (2020). “Multi-
agent game abstraction via graph attention neural network.” In
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34,
No. 05, pp. 7211-7218).

[14] Li, Q., Gama, F., Ribeiro, A., & Prorok, A. (2020). “Graph neural
networks for decentralized multi-robot path planning.” In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 11785-11792). IEEE.

[15] Sheng, Junjie, et al. (2022). "Learning structured communication for
multi-agent reinforcement learning." Autonomous Agents and Multi-
Agent Systems 36.2 (2022): 1-31.

[16] Singh, A., Jain, T., and Sukhbaatar, S. (2019). “Learning when to
communicate at scale in multiagent cooperative and competitive tasks.”
In ICLR, 2019.

[17] M. Geng, K. Xu, X. Zhou, B. Ding, H. Wang, and L. Zhang, (2019).
“Learning to cooperate via an attention-based communication neural
network in decentralized multi-robot exploration,” Entropy, vol. 21, no.
3, p. 294, Mar. 2019.

[18] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, and Y. Ni. (2020). “Learning agent
communication under limited bandwidth by message pruning,” in Proc.
AAAI Conf. Artif. Intell. (AAAI), 2020, vol. 34, no. 4, pp. 5142–5149.

[19] E. Pesce and G. Montana. (2020). “Improving coordination in small-
scale multiagent deep reinforcement learning through memory-driven
communication,” Mach. Learn., vol. 109, pp. 1727–1747, Jan. 2020.

[20] Hu, Guangzheng, et al. (2021). "Event-Triggered Communication
Network With Limited-Bandwidth Constraint for Multi-Agent
Reinforcement Learning." IEEE Transactions on Neural Networks and
Learning Systems (2021).

[21] D. Simões, N. Lau, and L. P. Reis. (2020). “Multi agent deep learning
with cooperative communication,” J. Artif. Intell. Soft Comput. Res.,
vol. 10, no. 3, pp. 189–207, Jul. 2020.

[22] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and
Shimon Whiteson. (2016). “Learning to communicate with deep multi-
agent reinforcement learning.” In Advances in Neural Information
Processing Systems (NIPS), 2016.

[23] Abhishek Das, Th´eophile Gervet, Joshua Romoff, Dhruv Batra, Devi
Parikh, Mike Rabbat, and Joelle Pineau. (2019). “TarMAC: Targeted
multi-agent communication.” In ICML, pages 1538–1546, 2019.

[24] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang,
Taeyoung Lee, Kyunghwan Son, and Yung Yi. (2019). “Learning to
schedule communication in multi-agent reinforcement learning.” In
ICLR, 2019.

[25] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. (2016).
“Learning multiagent communication with backpropagation.” In
Advances in Neural Information Processing Systems (NIPS), 2016.

[26] J. Jiang and Z. Lu. (2018). “Learning attentional communication for
multi-agent cooperation,” In Advances in Neural Information
Processing Systems (NIPS), 2018, pp. 7254–7264.

DISTRIBUTION A: Distribution approved for public release. Distribution unlimited

