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Efficient and Fair Decentralized Task Allocation Algorithms for 
Autonomous Vehicles -- Technical Report 

1. Research Objectives and main contributions

The objective of this project is to improve the efficiency of the multi-agent decentralized mission coordination with 
an inter-agent communication infrastructure. In phase 1 of this project, we explored the enhancement of the Consensus-
Based Bundle Algorithm (CBBA) for distributed task allocation with budget constraints. The limitation of the CBBA 
technique is that the environment must be known a priori to all agents and tasks must be clearly defined with known 
costs and rewards. This technique is obviously not suitable for cooperative missions in an unknown environment where 
agents must explore and improvise their actions together. In phase 2 of this project, we study cooperation techniques 
for missions in unknown environment where agents have only partial observations. The study uses multi-agent predator 
and prey game as a platform. The goal is for the agents to jointly locate and capture the prey. The agents have no prior 
knowledge of the environment or the prey’s escape algorithm. They communicate with each other to obtain environment 
information beyond their own local observations. Based on their local understanding of the environment, the agents 
choose their own action, which includes where to move and whether to communicate with other agents, to maximize 
the team rewards. Reinforcement learning is applied to optimize the agent’s policy such that the game is completed with 
the fewest steps.  

The main contribution of our phase 2 research is the belief-map assisted multi-agent system (BAMS). A belief map 
represents the hidden state of the environment maintained by the agent after fusing the incoming messages. By 
integrating the belief map with the reinforcement learning framework and providing feedback to the belief map, we 
accelerate the training and improve the rewards that the system can receive. The performance of BAMS is evaluated 
using a cooperative predator and prey game in an environment of different levels of complexity. The BAMS provides 
the following benefits compared to existing multi-agent models with message passing capability. 

1) The training converges 68% faster and the agents trained using BAMS model completes the game with 27.5%
fewer steps.

2) It has robust performance. During the application mode, the number of agents does not have to be the same as
the training environment.

3) The messages between agents are encrypted. The messages in BAMS are vectors of learned representations of
the agent’s belief of the environment. They do not only contain information about current but also future states
of agents and environment. Each number does not have correspondence to any physical attribute of the agent or
environment. Unless one has the trained model of BAMS, it is not possible to decode the information.

4) Agents reach tacit agreement during the training. From the experimental results, it seems the agents trained using
BAMS understand each other’s intention without explicit communication.

5) The decoded belief map provides a rough interpretation for the agent’s decision. A belief map decoder is trained
together with the policy network in BAMS. By comparing the belief map with the actual map, the system
receives additional channel of feedback, which supervises the training process. During execution, the belief map
provides a way to interpret the agent’s hidden state, which can further be used to explain the agent’s behavior.

2. Research Accomplishments

2.0. Implementation and training of the BAMS Model 

Training of multi-agent reinforcement learning (MARL) is challenging because agents have only partial observations 
of the environment, and their decisions are not visible to each other. The unknown movements of other agents reduce 
the environment predictability and make the environment non-stationary. Message exchanges among agents can provide 
information beyond local observation. However, when to communicate, what to communicate and how to leverage the 
received messages are variables that need to be optimized. The message passing system and message format should not 
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be manually designed. What features are needed by the policy network of reinforcement learning are not known in prior. 
A manually designed message format usually does not give the best result.  

Things get complicated when a trainable message passing network is used to connect agents. The messages are 
additional partial observations that help agents to gain insight of each other. However, the additional trainable variables 
in the message network significantly increases the model complexity, prolongs the training time, and escalate the chance 
of overfitting. 

Training a complex deep neural network using reinforcement learning is time consuming because the only feedback, 
i.e., the reward, is delayed, sparse and indirect. We accelerate the DRL by introducing another feedback channel that 
helps to learn a more efficient message passing network and a more effective representation of the environment. This 
consequently leads to better policy and faster convergence. In our belief-map assisted multi-agent system (BAMS), each 
agent is supplemented with a map decoder. It transforms its hidden state into a belief map, a symbolic representation of 
the agent’s knowledge of the global environment. This symbolic representation is simple, and its corresponding ground 
truth value can easily be obtained. By comparing the belief map with the actual map, the system receives additional 
channel of feedback, which supervises the training process. During execution, the belief map provides a way to interpret 
the agent’s hidden state, which can further be used to explain the agent’s behavior. 

To help the agents coordinate better in team and retrieve information from messages more efficiently, gating and 
attention are also integrated into the message passing system. The attention model helps agents to differentiate important 
and irrelevant messages, while the gating removes the redundancy and saves communication power and bandwidth. 

Details of the BAMS are shown in Figure 1. For the ith agent, the model consists of the following four major 
components:  

 Observation Encoder𝐸௜(): The observation encoder extracts key features from agent’s local observation, 
which will later be combined with received messages and be used to update the hidden states. 

 Message Attention Module 𝐴௜() : The attention module assigns weights to different messages to filter 
relevant information based on the hidden state of the local agent.  

 Map Decoder 𝐷௜(): The decoder reconstructs a belief map of the environment at symbolic level based on the 
hidden state of the local agent. The belief map represents agent’s local knowledge of the global environment. 
It will be compared with the ground truth to provide additional feedback to assist the training of the 
observation encoder, the hidden state generator, and the message attention module.  

 Policy Network 𝑝௜(): The policy network is an actor-critic model that selects the best action for the local 
agent to maximize the overall system utility. In BAMS, the action consists of two parts, a discrete movement 
action and a binary communication action. The former decides how agent moves to complete the game and 
the latter decides whether the agent should broadcast its local information to connected neighbors.  

 Hidden State Generator 𝑙𝑠𝑡𝑚௜(): The hidden state generator is a Long short-term memory (LSTM) that fuses 
feature from local observation and received messages into a vector. This vector represents the agent’s 
knowledge about the current state of the global environment.  

All five components in the BAMS are trained together. The training of BAMS is to help the agents to learn when to 
communicate with others and how to efficiently utilize the received messages and local observation to make the best 
decision to maximize the system reward and at the same time reconstruct the belief map of the environment. The loss 
function is calculated as the weighted sum of three components, value loss, action loss and map loss. The value and 
action losses are the loss of the critic network and actor network respectively. And the map loss is calculated as 
𝑀𝑎𝑝 𝐿𝑜𝑠𝑠 =  𝑀𝑆𝐸 (𝔾௜

௧  −  𝑏௜
௧), where 𝔾௜

௧ denotes the ground truth map for agent i at time t, and 𝑏௜
௧ is the predicted 

map given by map decoder  𝐷௜().The entropy regularization coefficient for value loss and map loss is 0.01. For more 
detailed information of the BAMS model please refer to our paper [3] submitted to ICRA attached to this report. 
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Figure 1 Architecture of BAMS model 

2.1. Setup experiments to evaluate BAMS in a predator-prey game  

We utilized the classic grid-based predator-prey environment for our experiment and evaluation. In this task, there 
are N predators (agents) with limited vision v to explore the mxm sized grid environment with a single prey. The value 
of N varies from 3 to 10, and m varies from 7 to 20 to represent games with different complexity. The environments are 
further divided into 2 categories, with obstacles and without obstacles. For environments with obstacles, K obstacles are 
randomly placed, with K varies from 10 to 30. This corresponding to 7% to 20% of the total environment space. 

The agents have limited observation range. An agent can only observe things in the 3x3 area centered by itself. Agent 
can take 5 different actions (up, down, left, right, and stay) at every timestep. They also make a binary decision every 
timestep on whether to broadcast their own hidden state. All agents (predators) have a maximum step limitation, which 
varies with the environment size. 

We compared BAMS with 2 reference models based on previous work. They are: Modified TarMAC (M-TarMAC) 
and IC3Net. All three models leverage a message passing system among agents and their agent action spaces are the 
same.  The differences of the three models are summarized in the following table: 

 Message passing Gated message Attention to the message Decoded belief map 

IC3Net [1]  Yes Yes No No 

M-TarMAC [2]  Yes Yes Yes No 

BAMS  Yes Yes Yes Yes 

The main difference between BAMS and other two models is the addition of the map decoder and the consideration 
of the map loss in the training. The additional channel of feedback during training will make sure that after combining 
the received message with the local observation and the local hidden state, the agent is able to reconstructor a map that 
correctly reflects the current environment. This step helps agents to reach consensus about message encoding and 
interpretation, and consequently lead to a more effective communication network.  

In addition to M-TarMAC and IC3Net, we introduced a heuristic rule-based algorithm as the baseline. The heuristic 
algorithm will guide the agents to explore the map from left to right, and top to bottom. Whenever the agent finish 
exploring a row, they will move to the next row beyond their observation range. When they reach the margin of map, 
they will turn around and explore in the opposite direction until they reach the step limit or observed the prey. Once one 
agent observed the prey, it will send out the location to all other agents. And all other agents will take the shortest path 
to catch the prey. 
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2.2. Performance evaluation of BAMS with static prey 

We first test the performance of BAMS in the environments where prey does not move. With the static prey, to 
ensure cooperation among agents, the game will not complete until all agents reached the prey. Table I compares the 
BAMS with three reference algorithms when environment size varies from 7x7 to 20x20. It shows that our approach 
takes fewer steps in average to complete the gate compared with the references. When the environment size is 7×7 with 
3 agents, the improvement of BAMS is 34.05% compared with M-TarMAC and IC3Net. As the environment becomes 
more complicated, the performance of IC3Net and M-TarMAC degrades because of slow and difficult convergence in 
the training. The BAMS gives 21.07% and 34.62% improvements compared to IC3Net and M-TarMAC respectively.  

TABLE I. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR TESTING UNDER SIMPLE ENVIRONMENTS 

 N=3, m=7, 
max steps =  20 

N=5 m=12, 
max steps = 40 

N=10, m=20, 
max steps =  80 

Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate 

Heuristic 14.56 - 33.24 - 68.9 - 

IC3Net 12.48 0.6 32.9 0.39 73.82 0.6 

M-TarMAC 12.39 0.32 29.8 0.04 71.76 0.35 

BAMS 8.17 1 21.64 0.27 56.46 0.05 

As seen from Figure 2, the BAMS has much faster convergence than the other two works. This indicates that, with 
the help of additional feedback from the belief map, the relationship between the hidden state, action, and reward is 
more consistent, hence it can be learned with fewer iterations. In other words, the supervised loss that we obtained by 
comparing the belief map with the ground truth map helps the model to learn a better representation of the global 
environment and helps to tune the message passing network to be more effective. We need to point out again, the 
feedback is only needed during the training. During the execution, no ground truth map is available, the only purpose 
of the belief map is to provide an interpretation of the agent’s decision. The map decoder 𝐷௜() is not required for the 
agent to play the game. 

 
Figure 2 Convergence Speed Comparison (a)Simple_12x12 (b)Simple_20x20 (c)Complex_12x12 

We further tested the model using testing environments with 10, 20 and 30 obstacles. We found that, even though 
the network is trained with 20 obstacles, it can handle different environments. The performances of the three deep 
learning models in complex environment are shown in Table II. In average BAMS reduces the number of steps by 23.6% 
and 16.5% compared to IC3Net and M-TarMAC, respectively.  

 

TABLE II. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR TESTING UNDER COMPLEX ENVIRONMENTS 

No. of obstacles 10 20 30 

Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate 

IC3Net  45.39 0.53 48.56 0.54 49.37 0.57 

M- TarMAC 39.43     0.062 44.78  0.073 46.92 0.076 

BAMS 31.8 0.056 36.51 0.065 41.42 0.054 

 
DISTRIBUTION A: Distribution approved for public release. Distribution unlimited 



5 

To test the robustness of the trained policy, we train the BAMS and 
IC3Net model in an environment with 5 agents and test them in different 
environments with agent number varying from 2 to 15. As shown in Figure 3, 
the average number of steps that BAMS takes to complete the game reduces 
with the number of agent increases as we expected. However, this is not the 
case for IC3Net. For IC3Net, when the number of agents increases, due to 
the increased amount of message, the agents have difficulty in getting an 
accurate view of the environment. Therefore, the number of steps to 
complete the game increases. 

For more experimental results please refer to the attached paper. An 
animation of the game can be found at (https://youtu.be/d4dRHNA5HTc). 
It shows the trajectory of agents and the decode belief map. 

2.3. Performance evaluation of BAMS with moving prey 

We further tested the performance of BAMS in an environment where prey is capable of escaping. Both the agents 
and the prey have the same observation range. Once the prey observes an agent or multiple agents, it will move to a 
nearby location that is the farthest away from the agent(s). To make the game more challenging, in addition to the 
original 3×3 observation, we also created a test scenario where both the agents and prey have 5×5 observation range. 
In a moving prey scenario, it usually requires multiple agents to round up the prey in order to capture it. A heuristic 
algorithm is also developed, where the agents first scan the map in a zig-zag manner from top to bottom and then from 
left to right. If the prey is found, they will chase the prey to the corner to capture it.  

TABLE III. MOVING PREY GAME WITH  3×3 OBSERVATION RANGE 

Pre-train Observation size Success rate Average steps Communication rate Avg. steps of 
Heuristic alg. 

No 3×3 0.31 32.47 0.94 33.78 

Yes 3×3 0.85 15.13 0.07 33.78 

Yes 5 ×5 0.92 17.42 0 29.54 

The average performance of our agents is summarized in TABLE III. Rows 1 and 2 in the table correspond to 
environments where agents have 3x3 observation range. Row 1 gives the performance of agents using BAMS model 
trained directly with moving prey. Only in 31% of the testing cases the agents can successfully capture the prey and the 
agents actively communicate (94% of the time) with each other. Row 2 gives the performance of agents using BAMS 
model pretrained with fixed prey and then fine turned with moving prey. The success rate improves from 31% to 85%. 
The results show that moving prey created a dynamic environment, which is hard for agents to learn to understand each 
other. Pretrain the agents in a simple environment with fixed prey is more effective. In this environment, the average 
number of steps to complete the game using the heuristic algorithm is 33.78 steps, which is 4% and 123% more than 
the agents without and with pretraining.  

When the vision size increases to 5x5, with pre-training, the success rate to capture the prey increases to 92% and 
the average steps to complete the game also increases to 17.42 steps. Overall, the performance is 69.6% better than the 
heuristic algorithm. We also found that, with moving prey, the agents tend to cooperate without communication. It is 
our hypothesis that the side channel information, such as the elapsed time,   

A video that showcases the intelligence of the trained agent can be found at https://youtu.be/H_SYPXkBpWQ. 

3. Dissemination of Research Results  

One research paper [3] has been submitted to 2023 IEEE International Conference on Robotics and Automation 
(ICRA). We are also submitting an abstract to the 2023 workshop on Naval Applications of Machine Learning. A 
proposal based on our research results was submitted to NSF RINGS (Resilient and Intelligent Next-Generation Systems) 
program and was selected for funding.   
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Abstract—Multi-agent cooperative games carried out by 
robots or autonomous vehicles have wide applications in civil, 
military, and scientific expeditions. Compared to centralized 
control, distributed decision making, where each agent chooses 
its own action to maximize the overall system rewards, is 
sometimes more favorable due to its low complexity and high 
resilience. A message passing system among agents is an effective 
way to help them obtain information beyond the observation of 
their local area and make global optimal decisions. When to 
communicate, what to communicate and how to leverage the 
received messages are variables that can significantly impact the 
agents’ ability to make good decisions and should be optimized. 
Existing works impose no rule in the message passing system and 
will learn it together with the agent’s actions in a reinforcement 
learning (RL) setting. Due to the nature of RL and the large 
search space, the training converges slowly. In this work, we 
present a belief-map assisted multi-agent system (BAMS). A 
belief map, which represents the hidden state of the environment 
maintained by the agent after fusing the incoming messages, is 
integrated into the model. By providing feedback to the belief 
map, we accelerate the training and improve the rewards that 
the system can receive. The performance of BAMS is evaluated 
using a cooperative predator and prey game with maps of 
different complexity and compared to previous multi-agent 
models with message passing capability. The simulation result 
shows that the training of BAMS converges 68% faster and the 
agents trained using BAMS model completes the game with 27.5% 
fewer steps.  

Keywords— multi-agent system, multi-agent reinforcement 
learning (MARL), message passing, partial observation. 

I. INTRODUCTION 

A multi-agent cooperative game features multiple 
autonomous systems collaborating with each other on a task to 
jointly maximize the overall utility of the system. From rescue 
missions where multiple robots are dispatched to search for a 
missing person, to military applications where multiple UAVs 
collaborate in surveying of a wide area, to scientific 
expeditions where rovers jointly explore an unknown terrain, 
multi-agent cooperative game can be used to model many 
different applications. When the number of agents increases, 
centralized monitoring, controlling and searching [1][2] for the 
optimal behavior of all agents will not be feasible due to the 

exponential growth of the complexity. It will also increase the 
vulnerability of the system due to potential single-point failure 
[3][4].  Distributed control and optimization, where each agent 
makes its own decision based on local information, is 
sometimes more desirable. However, its obvious limitation is 
that the agents only have partial observations of their local area, 
and hence cannot make global optimal decisions. 

Message exchanges among agents can provide global 
information and help the agents to move out of local optimum. 
However, when to communicate, what to communicate and 
how to leverage the received messages are variables that need 
to be optimized. In a real-world environment, communication 
usually takes place within the resource constraints. Constant 
communication will result in a large number of messages, 
which consumes not only communication energy and 
bandwidth but also processing power. The messages sending 
in consecutive cycles by the same agent, or by agents close to 
each other are likely to be similar. Sending redundant 
messages again and again is a waste of energy and bandwidth. 
Frequently communicating every bit of observed information 
to other agents is not only wasteful but may also undermine 
the receiver’s decision-making ability, as it cannot effectively 
distinguish valuable information from irrelevant information. 
The message passing system and message format should not 
be manually designed. Many multi-agent games are optimized 
using reinforcement learning (RL) such as actor-critic model. 
What features are needed by the policy network to select action 
are not known in prior. A manually designed message format 
usually does not give the best result. Finally, to save 
communication energy and to improve the communication 
security, the high-dimensional observation must be encoded 
into a low-dimensional message that can only be decoded by 
agents. Similar to [16][23], in this work, we train the message 
passing network together with the policy network. The 
message generation and encoding network evolves with the 
policy network during the training process. 

Deep reinforcement learning (DRL) has received close 
attentions and extensive studies because of its outstanding 
performance in control and optimization of autonomous 
systems [1][6][7]. In the past decade, single-agent 
reinforcement learning has achieved remarkable success [7] 
[8]. The research focus has now shifted to the multi-agent 
reinforcement learning (MARL) to solve problems in 
challenging domains such as multi-player simulated games 
[9][10]. In those applications, agents have partial observations 
of the environment, based on the observation, they select their 
own actions. Training of MARL is challenging because agents’ 
decisions are not visible to each other. The unknown 
movements of other agents reduce the environment 
predictability and make the environment non-stationary. 
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Things get more complicated when a trainable message 
passing network is used to connect agents. The messages are 
additional partial observations that help agents to gain insight 
of each other. Previous research [11] proved that all agents 
could share their own information and aim for a common goal 
through internal communication. However, the additional 
trainable variables in the message network significantly 
increases the model complexity, prolongs the training time, 
and escalate the chance of overfitting. 

Training a complex deep neural network using 
reinforcement learning is time consuming because the only 
feedback, i.e., the reward, is delayed, sparse and indirect. In 
this work, we accelerate the DRL by introducing another 
feedback channel that helps to learn a more efficient message 
passing network and a more effective representation of the 
environment. This consequently leads to better policy and 
faster convergence. In our belief-map assisted multi-agent 
system (BAMS), each agent is supplemented with a map 
decoder. It transforms its hidden state into a belief map, a 
symbolic representation of the agent’s knowledge of the global 
environment. This symbolic representation is simple, and its 
corresponding ground truth value can easily be obtained. By 
comparing the belief map with the actual map, the system 
receives additional channel of feedback, which supervises the 
training process. During execution, the belief map provides a 
way to interpret the agent’s hidden state, which can further be 
used to explain the agent’s behavior. 

To help the agents coordinate better in team and retrieve 
information from messages more efficiently, gating and 
attention are also integrated into the message passing system. 
The attention model helps agents to differentiate important and 
irrelevant messages, while the gating removes the redundancy 
and saves communication power and bandwidth.  

We evaluated the performance of the BAMS model using 
a multi-agent predator-prey game with and without obstacles. 
Centralized training and distributed execution are adopted. 
The experimental results show that, compared to existing 
models, the BAMS is more suitable for large-scale 
environments with complicated landscapes.  

The key contributions of this paper are summarized as 
follows: 

• We proposed a belief-map assisted training 
mechanism that supplements reinforcement learning 
with supervised information to accelerate the training 
convergence.  

• Proposed a belief-map decoder to reconstruct a 
symbolic map from the environment embedding to 
provide additional feedback during the training. The 
map transforms the hidden state of agents into a 
human-readable format, which significantly 
improves the interpretability of the agent’s decision-
making process. 

• Adopt message gating and attention in the message 
passing system to improve the communication 
efficiency. The gating is implemented at the sender 
side to effectively cut the transmission power and 
communication bandwidth.  

• Simulation results show that agents with the 
enhancements can be trained for effective operation 
in large and complex environments. The training time 
reduces by 68% and the overall performance 
improves by 27.5%.  

The rest of the paper is organized as follows. Section II 
introduces some previous works related to communication in 
a multi-agent reinforcement learning system. Section III gives 
the detail of our proposed method including the believe map 
decoder and attention model. The experimental results are 
given in Section IV followed by the conclusions in Section V.   

II. MOTIVATIONS AND PREVIOUS WORKS  

We consider a fully cooperative multi-agent game as a 
decentralized partially observable Markov Decision Process 
(DEC-POMDP) [12]. DEC-POMDP is defined as a tuple 
⟨𝑁, 𝑆, 𝑃,𝓡,𝓞,𝓐, Z, 𝛾⟩, where 𝑁 denotes the number of agents; 
𝑆 is a finite state space; 𝑃(𝑠!|𝑠, 𝒂): 𝑆 ×𝓐× 𝑆	 → [0,1] stands 
for the state transition function; 𝓐 = [𝑨𝟏…	𝑨𝑵] is a finite set 
of actions, where 𝑨𝒊 represents the set of local actions 𝒂𝒊 that 
agent 𝒊  can take; 𝓞 = [𝑶𝟏…	𝑶𝑵]  is a finite set of 
observations controlled by observation function Z: 𝑆 ×𝓐	 →
	𝓞; 𝓡: 𝑆 ×𝓐	 → 	ℝ is the reward function; and 𝛾 ∈ [0,1] is 
the discount factor. 

According to the DEC-POMDP model, each agent 𝑖 takes 
an action 𝑎% 	based on its local observation 𝑜%. When all agents 
applied their actions [𝑎&, 𝑎', … , 𝑎(] to the environment, the 
environment moves to a new state 𝑠′ and returns a joint reward 
𝑟 . The MARL trains policies 𝜋%(𝑎%|𝑜%):	𝑶𝒊 →	𝑨𝒊	, ∀𝑖,  that 
maximizes the expected discounted reward 𝔼[∑ 𝛾*𝑟*+

*,& ]. 
  Sharing the observation improves the performance and 

helps agents to learn a better action policy. Efficient 
communication allows agents to have more information about 
the global environment and reduces the negative impact of 
partial observations. Previous works model a multi-agent 
communication system as a message passing graph neural 
network [13][14]. Each node in the graph represents an agent 
and each edge models a communication pathway equipped 
with message encoding and decoding. Different graph 
topologies have been studied [15]. Recent works focus on 
improving the efficiency and reducing the cost of the 
communication using gated message passing [18], attention 
[17], and event/memory driven processing [19][20][21].  

As the first work on learnable communication, [22] 
designed a message passing network where message 
generation only depends on the agent’s local observation, local 
action and received messages. The message encoder is a MLP 
trained together with the policy network using reinforcement 
learning. CommNet [25] embeds a centralized communication 
channel into the network. It improves [22] by maintaining a 
local hidden state in each agent using a recurrent neural 
network (RNN). The hidden state is determined by the 
sequence of local observations and received messages and will 
be sent to other agents as the communication message. When 
multiple messages are received, the agent consolidates them 
by calculating the average. Then as the extension of CommNet, 
the IC3Net used the long short-term memory (LSTM) to 
generate hidden states.  It introduces a gating mechanism, 
which is a binary action, to dynamically block or unblock the 
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message transmission. The policy of communication gating is 
optimized using reinforcement learning. 

Gated-ACML [18], TarMAC[23] and ATOC [26] adopt 
the gating mechanism and improve the inter-agent 
communication using an attention model. The attention model 
prioritizes received messages so that agents can choose useful 
features. While the Gated-ACML applies gating to prune the 
message to save the communication bandwidth, ATOC applies 
attention to determine whom the agent should talk to, and 
dynamically changes network structure accordingly. TarMAC 
uses gating and attention to improve the success rate and 
reward of the game. However, as we will discuss later, their 
gating is applied at the receiver side, therefore, it does not 
reduce communication cost and bandwidth. Furthermore, 
there will be unintentional message leakage under certain 
conditions.  

In this work, we improve the gating mechanism and 
implement it at the sender’s side without information leakage. 
We also proposed a belief-map assisted training which 
significantly improves the training speed and quality for large 
and complex games.  

III. PROPOSED METHOD 

In this section, we present the structure and training of 
belief-map assisted multi-agent system (BAMS). Details of 
the BAMS are shown in Figure 1. For the ith agent, the model 
consists of the following four major components:  

• Observation Encoder 𝐸%() : The observation encoder 
extracts key features from agent’s local observation, 
which will later be combined with received messages and 
be used to update the hidden states. 

• Message Attention Module 𝐴%(): The attention module 
assigns weights to different messages to filter relevant 
information based on the hidden state of the local agent.  

• Map Decoder	𝐷%(): The decoder reconstructs a belief map 
of the environment at symbolic level based on the hidden 
state of the local agent. The belief map represents agent’s 
local knowledge of the global environment. It will be 
compared with the ground truth to provide additional 

feedback to assist the training of the observation encoder, 
the hidden state generator, and the message attention 
module.  

• Policy Network 𝑝%(): The policy network is an actor-critic 
model that selects the best action for the local agent to 
maximize the overall system utility. In BAMS, the action 
consists of two parts, a discrete movement action and a 
binary communication action. The former decides how 
agent moves to complete the game and the latter decides 
whether the agent should broadcast its local information 
to connected neighbors.  

• Hidden State Generator 𝑙𝑠𝑡𝑚%() : The hidden state 
generator is a Long short-term memory (LSTM) that fuses 
feature from local observation and received messages into 
a vector. This vector represents the agent’s knowledge 
about the current state of the global environment.  

The training of BAMS is to help the agents to learn when 
to communicate with others and how to efficiently utilize the 
received messages and local observation to make the best 
decision to maximize the system reward.  

A. Hidden state generation and policy network  
At every time step, each BAMS agent collects the 

observation from their local sensor. The local observation of 
agent i at time t is denoted as 𝑜%* . The representation of 𝑜%* is 
usually manually designed and is application specific. It 
directly affects the complexity and the feature extraction 
ability of the observation encoder 𝐸%(). Based on the DEC-
POMDP, the agent selects actions based on the hidden state. 
The hidden state is maintained by a LSTM using local 
observations and the received messages as the following: 

 ℎ%*-', 𝑠%*-' = 𝑙𝑠𝑡𝑚%(𝐸%(𝑜%*), 𝑐%* , ℎ%* , 𝑠%*), (1) 

where ℎ%* , 𝑠%* are hidden state and cell state at time t of agent 
i, and 𝑐%* is the aggregated feature extracted from the received 
messages using the attention model: 𝑐%* = 𝐹%(𝐴%ST𝑚.

* , 𝑗 ≠ 𝑖WX, 
𝐹%() is a linear layer to transform the aggregated message to 
the communication tensor. 

 

Figure 1 Architecture of BAMS model 
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The policy network 𝑝%()  is a typical actor-critic model, 
with an actor network 𝛩%(ℎ%*) and a critic network 𝑉%(ℎ%*). The 
𝛩%(ℎ%*) is a one-layer fully connected network. Its input is ℎ%* 
and the output has two components 𝑎%* and 𝑔%*,  

 𝑎%* , 𝑔%*=𝛩%(ℎ%*). (2) 

Vector 𝑎%* gives the probabilities for the game actions, i.e., 
the movement that the agent is allowed to take to complete the 
game. 𝑔%* ∈ [0,1]  gives the probability for the binary 
communication action, i.e., block or pass. In each step, the 
action with the highest probability will be executed. 

B. Message passing model  
Agents send messages to their connected neighbors.  

Following TarMAC and IC3Net, we use the hidden state as the 
communication message. The hidden state contains all 
information that an agent needs to decide local actions. 
However, not all information is useful to its neighbors. 
Furthermore, some of the information may overlap with 
previous messages from the same agent or messages sent by a 
nearby agent. To improve the efficiency of the communication 
network, the senders need to reduce the number of redundant 
messages and the receivers must be able to extract useful 
information pertinent to its own decision making. We propose 
to solve these two problems using message gating on the 
sender side and attention model on the receiver side. 

Unlike TarMAC, where the message gating is 
implemented at the receiver side within the attention model, 
our gating is implemented at the sender side so that gating can 
effectively save the transmission power and communication 
bandwidth. The outgoing message 𝑚𝑚.

*  of agent j is 
calculated as the product of ℎ.* and the binary gate action 𝑔.*.  

 𝑚𝑚.
* =	ℎ.* × 𝑔.* . (3) 

Given received messages 𝑚𝑚.
*	(𝑗 ≠ 𝑖), agent i aggregates 

the messages to select the most relevant content using an 
attention model. The attention model is trained to maximize 
the reward from the game and minimize the loss of the belief-
map construction. Considering the communication delay, 
agent i uses gated message 𝑚𝑚.

*/' send by agent j in previous 
time step as the input of the key and value networks to generate 
𝑘.*  and 𝑣.*  for time t. The query 𝑞%*  of the attention model is 
generated based on the agent’s local hidden state at current 
time step (ℎ%*).  

 𝑘.* = 𝑘𝑒𝑦S𝑚𝑚.
*/'X (4) 

 𝑣.* = 𝑣𝑎𝑙𝑢𝑒S𝑚𝑚.
*/'X (5) 

 𝑞%* = 𝑞𝑢𝑒𝑟𝑦(ℎ%*) (6) 

 𝛼%* = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 f0!
"#1$

"

23%
…

0!
"#1&

"

23%
… 0!

"#1$
"

23%
	g (7) 

 𝑐%* = ∑ 𝛼%*𝑣.*(
.,'  (8) 

where 𝑘𝑒𝑦() , 𝑣𝑎𝑙𝑢𝑒()  and 𝑞𝑢𝑒𝑟𝑦()  are networks with 
one fully connected linear layer, 𝑑1  is the number of 
dimensions of hidden state. 𝑐%* is the aggregated feature vector 
that will be used to update the hidden state. Figure 2 shows the 
structure of the attention model.  

C. Believe map generator 
Instead of solely relying on the reward from the 

environment, additional channels of feedback information 
could be added to speed up the training. In this work we assist 
the RL training using a decoded belief map with the multi-
agent cooperative predator-prey game in mind. As the 
aggregation of past observations and incoming messages, the 
hidden state of an agent represents its knowledge of the 
environment. It helps the agent to make decisions considering 
global environment to get more rewards from the game. The 
more accurate this knowledge is, the better decision the agent 
will make. However, the agent’s hidden state is a feature 
vector not interpretable. The basic idea of BAMS is to decode 
the hidden state into a symbolic map that is human 
interpretable so that the ground truth version of the map can be 
constructed. By comparing the decoded map with ground truth 
map, we provide additional feedback to assist the training of 
the whole system.  

The map decoder 𝐷%(ℎ%*)	can be considered as an inverse 
process of the observation encoder 𝐸%(𝑜%*) . Both the 
observations and decoded maps are 𝑚×𝑚  graded planes, 
where S is the size of the environment. The status of each grid 
location is coded as a size M vector, where M is the number of 
possible states of the grid. For example, for the predator-prey 
game, a grid can have 4 possible states, observed (or 
unobserved), occupied by a predator, occupied by a prey, 
occupied by an obstacle. These 4 states are not necessarily 
exclusive to each other; hence each grid is encoded as a multi-
hot vector with size M. Overall, both maps have dimension 
𝑀 ×𝑚 ×𝑚. The observation map contains only information 
from local agent, while the belief map should combine the 
information from all agents.  

In this work, we consider centralized training and 
distributed execution. During training, the central controller 
generates ground truth map for each agent by keep tracking the 
movement of all agents. A grid is observed if it has been 
observed by any agent. For any grid that has not been observed, 
its other status will also be false.  

 

Figure 3 Architecture of belief map model 

 

Figure 2 Architecture of the attention model 
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The map decoder generates the believe map 𝑏%* for agent i 
at timestamp t. As shown in Figure 3, the model has a linear 
layer and two transposed convolutional layers with ReLU 
activation. Let 𝔾%* denote the ground truth map for agent i at 
time t, Mean Squared Error (MSE) is used to calculate the map 
loss: 

 𝑀𝑎𝑝	𝐿𝑜𝑠𝑠	 = 	𝑀𝑆𝐸	(𝔾%* 	−	𝑏%*) (9) 

 𝑏%* 	= 	𝑑𝑒𝑐𝑜𝑑𝑒𝑟(ℎ%*) (10) 

The map loss can be obtained every time step. Minimizing 
the map loss can help all agents converge to an effective 
communication protocol and efficient message processing. All 
five components in the BAMS are trained together.  

IV. EXPERIMENTS 

We utilized the classic grid-based predator-prey 
environment [13] for our experiment and evaluation. In this 
task, there are N predators (agents) with limited vision v to 
explore the m*m sized grid environment and chase a fixed 
location prey. The value of N varies from 3 to 10, and m varies 
from 7 to 20 to represent games with different complexity. The 
environments are further divided into 2 categories, with 
obstacles and without obstacles. For environments with 
obstacles, K obstacles are randomly placed, with K varies from 
10 to 30. This corresponding to 7% to 20% of the total 
environment space.  

A. Experiment setting 
We trained our network with a batched synchronous multi-

agent Actor-Critic model, using RMSprop with a learning rate 
of 0.001 and α= 0.97. The loss function is the weighted sum 
of three components, value loss, action loss and map loss. The 
entropy regularization coefficient 𝜀  for value loss and map 
loss is 0.01. The hidden state size for LSTM is 64. For the 
attention model, the key (𝑘.*)	and query (𝑞.*) have dimension 
16 and the dimension of value (𝑣.*)	is 64. All agents use the 
same BAMS model. the parameters for the BAMS model are 
shared among all agents.  

The agents have limited observation range. An agent can 
only observe things in the 3x3 area centered by itself. Agent 
can take 5 different actions (up, down, left, right, and stay) at 
every timestamp. All agents (predators) have a maximum step 
limitation, which varies with the environment size. Before an 
agent reaches the prey, it will receive a penalty rsearching = -0.05 
in each time step.  To avoid this penalty, the agent must learn 
to reach the prey as early as possible. Once an agent arrives at 
the prey, it will stay on the prey and receives no more penalty. 
If the agents reach the limit of maximum number of steps, they 
will stop and mark this case as failure.  

We select the best model during training based on the 
average steps taken for agents to reach the target. The best 
model will be used for testing. Environment setting for testing 
is the same as training in terms of the number of predators and 
prey, the action space, and the map size.  

We compared BAMS with 2 reference models based on 
previous work. They are: Modified TarMAC (M-TarMAC) 
and IC3Net. As we mentioned earlier, the original TarMAC 
gates the messages at the receiver side after the attention layer. 
Furthermore, when all senders decided to gate their outgoing 

messages, the receiver will generate an aggregated message by 
paying equal attention to the received messages. In other 
words, there is a message leak that let the receiver to still get 
information even though all senders choose to gate their 
message. In this work we fixed the message leak and move the 
gating to the sender side for a fair comparison. Compared to 
BAMS, M-TarMAC has similar gating and attention 
mechanism, however, it does not have the additional channel 
of feedback from the belief maps. IC3Net adopts the same 
gating mechanism however, the receiver generates the 
aggregated message simply by averaging the input messages 
without attention. Neither does it have the additional feedback 
channel as BAMS has.  

 Moreover, we introduced a heuristic rule-based algorithm 
as the baseline. The heuristic algorithm will guide the agents 
to explore the map from left to right, and top to bottom. 
Whenever the agent finish exploring a row, they will move to 
the next row beyond their observation range. When they reach 
the margin of map, they will turn around and explore in the 
opposite direction until they reach the step limit or observed 
the prey. Once one agent observed the prey, it will send out the 
location to all other agents. And all other agents will take the 
shortest path to catch the prey.   

B. Experiments Results for simple environment 
The simple environment does not have any obstacles. 

Predators can move towards any direction within the map. We 
utilize the average steps taken to represent the overall 
performance of the models. Under the same circumstance, 
lower average steps taken represents better performance. 
TABLE I compares the BAMS with three reference algorithms 
using games with different size. It shows that our approach 
takes fewer steps in average to complete the gate compared 
with the references. When the environment size is 7´7 with 3 
agents, the improvement of BAMS is 34.05% compared with 
M-TarMAC and IC3Net. As the environment becomes more 
complicated, the performance of IC3Net and M-TarMAC 
degrades because of slow and difficult convergence in the 
training. The BAMS gives 21.07% and 34.62% improvements 
compared to IC3Net and M-TarMAC respectively.  

As seen from Figure 4, our approach has much faster 
convergence than the other two works. This indicates that, 
with the help of additional feedback from the belief map, the 
relationship between the hidden state, action, and reward is 
more consistent, hence it can be learned with fewer iterations. 
In other words, the supervised loss that we obtained by 
comparing the belief map with the ground truth map helps the 
model to learn a better representation of the global 
environment and helps to tune the message passing network to 

TABLE I. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR 
TESTING UNDER SIMPLE ENVIRONMENTS 

 N=3, m=7, 
max steps =  20 

N=5 m=12, 
max steps = 40 

N=10, m=20, 
max steps =  80 

Avg 
steps 

Comm 
rate 

Avg 
steps 

Comm 
rate 

Avg 
steps 

Comm 
rate 

Heuristic 14.56 - 33.24 - 68.9 - 

IC3Net 12.48 0.6 32.9 0.39 73.82 0.6 

M-TarMAC 12.39 0.32 29.8 0.04 71.76 0.35 

BAMS 8.17 1 21.64 0.27 56.46 0.05 
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be more effective. We need to point out again, the feedback is 
only needed during the training. During the execution, no 
ground truth map is available, the only purpose of the belief 
map is to provide an interpretation of the agent’s decision. The 
map decoder 𝐷%() is not required for the agent to play the game.  

C. Experiments Results for complex environment 
Next, we tested our approach under a complex 

environment with obstacles. Each grid in the environment is 
encoded as multi-hot vector of size 4, which represents 
whether the grid is occupied by a predator, a prey or an 
obstacle, and if the grid has been observed. We fixed the 
environment size to be 12´12. Each randomly generated 
training environment has 20 randomly placed obstacles.  

Figure 4(c) compares the convergence speed BAMS, 
IC3Net and M-TarMAC. We can see that BAMS again has the 
fastest convergence speed compared to other models. 
Furthermore, in average, BAMS completes the game with 3 
steps fewer than the other two models. Compared to Figure 
4(a), the performance different between M-TarMAC and 
IC3Net also increases. This means effective message passing 
network becomes more important under complicated 
environment. under complex environment.  

We also observed that, when the environment gets more 
complexed, the performance of those models oscillates more 
significantly. This can be seen in Figure 4(b) and (c) when the 
environment size is 20 or when obstacles are included. This is 
because, for randomly generated large (complicated) 
environment, the complexity of the game varies significantly. 
Things such as the initial location of the agents and the way 
the obstacles are distributed will affects the number of steps 
needed to complete the game.  

We further tested the model using testing environments 
with 10, 20 and 30 obstacles. We found that, even though the 
network is trained with 20 obstacles, it can handle different 

environments. The performance of the three deep learning 
models in complex environment is shown in TABLE II. In 
average BAMS reduces the number of steps by 23.6% and 16.5% 
compared to IC3Net and M-TarMAC, respectively.  

TABLE I and TABLE II also compared the communication 
rate among 3 deep learning models. This is the percentage of 
time when a message is not gated. The data show that BAMS 
completes the game much faster without significantly 
increasing the communication cost. We also observed that 
when the map is relatively small and simple, BAMS agents 
tend to communicate more frequently. This perhaps is because 
part of their goals is to reconstruct the map. When agents 
accrued enough information about the environment, they will 
share it with others. We will investigate more about this 
behavior in our future works.  

V. CONCLUSION 
We proposed a novel belief map assisted training to 

improve the convergence and efficiency of multi-agent 
cooperative game with distributed decision. Attention-based 
inter-agent communication is adopted to overcome the partial 
observation. The agent will learn when to gate the message to 
save bandwidth and avoid interfering each other with 
irrelevant (or redundant) information. We compared our 
approach with IC3Net and TarMAC in simple and complex 
predator-prey environments. The experimental results show 
that our attention-based belief map can help the agent learn a 
better representation of the environment hidden state and 
effective message processing, which will lead to wiser 
decision. We also show that the belief map assisted training 
improves convergence speed and reduces average steps 
needed to complete the game.  

Our future work is to find better structures of the network 
and investigate the communication behavior of the agents. We 
will also extend the BAMS model to other multi-agent 
applications with asynchronous interface, limited bandwidth, 
etc.  
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Figure 4 Average Step Taken Comparison (a)Simple_12x12 (b)Simple_20x20 (c)Complex_12x12 
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TABLE II. AVERAGE STEPS TAKEN AND COMMUNICATION RATE FOR 
TESTING UNDER COMPLEX ENVIRONMENTS 

No. of 
obstacles 

10 20 30 

Avg 
steps 

Comm 
rate 

Avg 
steps 

Comm 
rate 

Avg 
steps 

Comm 
rate 

IC3Net  45.39 0.53 48.56 0.54 49.37 0.57 

M- 
TarMAC 

39.43     0.062 44.78  0.073 46.92 0.076 

BAMS 31.8 0.056 36.51 0.065 41.42 0.054 
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