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About This Report

The U.S. Department of Defense (DoD) requires more efficient and timely methods 
to acquire, integrate, and interoperate systems and, perhaps more crucially, systems-of-
systems (SoSs) to deter near-peer adversaries in a rapidly evolving threat environment 
and prevail in combat should deterrence fail. To meet this need, DoD has undertaken 
many initiatives to create command and control (C2) standards for interoperability of 
its own systems, U.S. civilian systems used in homeland defense, and allied systems 
used in coalition fights. In 2019, the RAND Corporation’s National Defense Research 
Institute was asked to participate in a multiyear effort to help DoD understand the 
challenges of creating a universal C2 language to facilitate the evolution of systems and 
interoperability of SoSs. Striking the right balance among competing standardization 
objectives is challenging, and these design choices have the potential to adversely affect 
weapon system performance. In this report, we establish a conceptual framework for 
analyzing SoS performance of different sensor-to-shooter connections, combinations, 
and associated C2 constructs. The intent is not to accurately estimate the performance 
of a specific SoS with and without a universal interface, but rather to explore the range 
of trade-offs designers make between performance and characteristics of a standard 
interface, using examples from active protection systems, electronic warfare, and bal-
listic missile defense.

The research reported here was completed in December 2021 and underwent 
security review with the sponsor and the Defense Office of Prepublication and Secu-
rity Review before public release.

RAND National Security Research Division

This research was sponsored by the Office of the Secretary Defense and conducted 
within the Acquisition and Technology Policy Center of the RAND National Security 
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Research Division (NSRD), which operates the National Defense Research Institute 
(NDRI), a federally funded research and development center (FFRDC) sponsored by 
the Office of the Secretary of Defense, the Joint Staff, the Unified Combatant Com-
mands, the Navy, the Marine Corps, the defense agencies, and the defense intelligence 
enterprise.

For more information on the RAND Acquisition and Technology Policy Center, 
see www.rand.org/nsrd/atp or contact the director (contact information is provided on 
the webpage). 
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Summary

Background

Command and control (C2) of military capabilities in the late 20th and early 21st cen-
turies require linking, synchronizing, and directing multiple complex systems under 
tight time constraints, all while under attack by the enemy. The consequences of fail-
ure are severe. At the tactical and operational levels, systems that do not work well 
together cannot bring their full capabilities to bear or may even malfunction and cause 
collateral damage. At the strategic level, a malfunctioning system of systems (SoS) can 
result in catastrophic battlefield losses. 

The U.S. Department of Defense (DoD) has therefore undertaken many initia-
tives to create and document C2 standards for interoperability.1 Standardized, well-
documented and well-understood interfaces ensure that the systems involved exchange 
the right data in the right format and interpret those data in the right way. However, 
standardizing, documenting, and educating personnel in the use of an interface is 
not enough to guarantee interoperability. Interfaces that are designed for a particular 
context are optimized for a mission and for the systems that support that mission. 
Assumptions about the mission—and the operational concepts used—are embedded 
within the interface optimization process. While this is adequate for missions that 
do not involve large numbers of different sensors and shooters and where the context 
is reasonably bounded and understood, the problem becomes intractable when one 
attempts to allow any sensor to connect to any shooter, each of which was designed to 
its own set of mission assumptions, constraints, and operational concepts. This leads 
to the typical n-squared interface problem in systems engineering that increases com-

1  For the purposes of this report, we will use the International Organization for Standardization/International 
Electrotechnical Commission 25010 definition of interoperability: “Interoperability is the degree to which two 
or more systems, products or components can exchange information and use the information that has been 
exchanged.”
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plexity and cost in developing and maintaining interoperable interfaces and potentially 
reduces reliability. Creating a common interface standard for the SoS that is capable 
of expressing the nuances needed for interoperability while also meeting all the perfor-
mance objectives of the mission is challenging. Striking the right balance between the 
competing standardization objectives of interoperability and performance is perhaps 
more art than science. 

With the above in mind, the Office of the Under Secretary of Defense for 
Research and Engineering in 2019 asked the RAND Corporation’s National Defense 
Research Institute (NDRI) to research key aspects related to the implementation of a 
still-to-be-designed Universal Command and Control Language (UCCL) and assess 
the effects that a UCCL might have on the performance of weapon systems and SoSs. 

Research Objective

Our research objective is to establish a conceptual framework for analyzing SoS per-
formance of different sensor-to-shooter connections, combinations, and associated C2 
constructs. The intent is not to accurately estimate the performance of the system with 
and without a universal interface, but rather to explore the range of trade-offs by iden-
tifying how performance depends on the characteristics of interfaces and how it varies 
with respect to the details of the technical implementation. Consequently, this effort 
should not be viewed as a study of a specific standard interface but as an early system 
engineering study of how such an interface could and should be designed.

In this report, we review several DoD SoS integration efforts to understand 
their approach to achieving interoperability and the impact on performance (latency, 
throughput) of SoSs that use that approach. We also review a commonly used open 
interface standard, the Data Distribution Service (DDS), that strives to balance interop-
erability concerns with performance and describe the trades that were made in produc-
ing a version of the DDS that is lightweight enough to push out to the edge computing 
devices commonly known as the Internet of Things (IoT). With that background, we 
then identify the performance requirements for each of three DoD missions. Using a 
mission thread analysis, we assess how imposing a common UCCL might impact the 
performance of those missions. 



Summary    xiii

What We Found

Insights from Ongoing DoD SoS Integration Efforts

The specific experiments we reviewed examined the following interface standards, all 
of which are used in DoD weapon systems: SoS Technology Integration Tool Chain 
for Heterogeneous Electronic Systems, Open Mission Systems, Universal C2 Interface, 
DDS, and Variable Message Format.2 The following are the findings from this review:

1. Interface technical performance—as measured by throughput/bandwidth and 
latency of processing the data packets—is greatly affected by implementation 
details, such as message encoding and compression. It is not merely the defini-
tion of the interface but also the implementation that matters to performance. 
Different implementations of a standard can result in different packet sizes in 
real-life implementations, including fixed format binary, general purpose binary, 
compressed Extensible Markup Language (XML), and regular XML. We use 
this range of packet/data size as a proxy for different interface implementations 
in our modeling of specific mission threads. 

2. Features of the network in which the standard is installed—such as architec-
ture, communications model, and number of participants—can have signifi-
cant impact on system performance, even when the standard and its implemen-
tation are unchanged.

3. Higher complexity associated with processing of some messaging standards has 
a significant effect. Central processing unit (CPU) processing time needed for 
packet processing (encoding, encryption, decryption, decoding, and process-
ing of the information) is a significant contributor to overall performance of an 
interface.

Insights from Mission Thread Analysis

To gain insights into the effect of a UCCL on operational performance, we conducted 
analyses of three mission threads chosen to highlight a range of different military 
operations with varying sensitivity to message delays (i.e., latency):

1. An electronic warfare (EW) mission based on the CONverged Collaborative 
Elements for RF [Radio Frequency] Task Operations (CONCERTO) system 

2  Note that we did not perform independent experiments of these interface standards but confined our work to 
the review of current experiments conducted by reputable entities.
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developed for the Defense Advanced Research Projects Agency (DARPA). This 
is a single system thread with extremely short timelines and very simple C2 
exchanges between subsystems. 

2. An active protection system thread based on the Marine Air Defense Integrated 
System (MADIS), in which a few platforms coordinate a local defense against 
incoming threats with relatively short timelines. 

3. A ballistic missile defense thread. This thread has reasonably long mission exe-
cution times and a fairly complex C2 construct with multiple sensors, shooters, 
and C2 elements. 

All three of these SoSs have already made a basic trade—the complexity of the C2 
is reduced as the needed response times shorten. Yet by studying their implementation 
in more detail, we may learn exactly why and how mission performance is affected by 
the performance of the “language” of its interfaces. Our analysis shows that implemen-
tation details of a standard interface may contribute to interface overhead that changes 
technical performance by orders of magnitude. The most pronounced effect is due to 
delays in the interfaces. However, technical performance does not necessarily translate 
to impact in mission performance. 

Electronic Warfare Mission Thread

CONCERTO is an EW system designed to minimize size, weight, and power when 
installed in military aircraft. EW requires very short reaction times, and the CON-
CERTO system is optimized for speed. The key technical measure for mission success 
is the maximum distance at which the aircraft can successfully jam a target emitter—
this is warfare at the speed of light. We found that

• adding even a modest amount of interface overhead will affect mission perfor-
mance, but in some cases, the effects could be mitigated.

• if the overhead increases above that modest amount, significant operational per-
formance degradation is likely. These types of submillisecond system responses 
require a very carefully tailored interface or a much-reduced overhead version of 
a UCCL.

• implementing standard interfaces for systems used in EW is high-risk and requires 
careful and detailed engineering analysis to ensure that performance trade-offs do 
not adversely affect mission success.
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Active Protection System Mission Thread

The MADIS is a family of systems providing air defense capabilities to protect a ground 
maneuver force on the move against such threats as unmanned aerial systems and 
fixed-wing and rotary-wing aircraft. MADIS is being developed as the first of three 
increments toward modernizing the Marine Corps’ existing ground-based air defense 
capability. The key technical measure for mission success is the minimum distance at 
which a threat can be detected and still defeated, i.e., the minimum defeat distance. Our 
analyses indicated that

• latency (i.e., delay) caused by a UCCL can influence operational performance, but 
the impact may be modest

• in most cases, interface inefficiencies are not likely to be the main contributor to 
the minimum defeat distance

• for stressing cases of higher-end threats and tight performance requirements, care-
ful engineering analysis should be performed to ensure operational performance 
trade-offs do not compromise mission success. 

Ballistic Missile Defense Mission Thread

Missiles designed to fly a ballistic trajectory threaten territory far from their launch 
sites and are hard to defeat but have key periods of vulnerability that a layered defense 
system exploits. The ballistic missile defense (BMD) mission thread takes minutes to 
execute from launch detection to final kill. We found that

• additional end-to-end latencies on the order of seconds imposed by an inefficient 
interface design are unlikely to influence the successful execution of the thread

• however, some links within the thread have very constrained bandwidth—such 
as the downlink from a satellite detecting launch of the missile, or the fire control 
link to the interceptor—that might require an optimized UCCL interface3 

• a UCCL may provide the opportunity to rapidly add sensors to the missile defense 
system, enabling a diverse set of sensor geometries that improve trajectory esti-
mates and warhead discrimination, improving Pkill. However, throughput and 

3  For example, we identified the final sensor update to the interceptor as a critical step in the thread that could 
impact probability of kill (Pkill). Latency in this step caused by a UCCL is unlikely to influence Pkill if elements 
of the system have been calibrated for clock drift and if interfaces carry critical timing information for each 
element of the kill chain. We caution, however, that it is probable that latency will influence warhead discrimi-
nation. This unclassified study did not model warhead discrimination, but these algorithms are known to be 
latency-sensitive.
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congestion of the underlying network by adding more sensors using an inefficient 
UCCL could erase these gains. 

• if real-time composability of the sensor-to-shooter network is desired, network 
throughput and congestion are likely to be greatly affected by a UCCL’s discovery 
protocol. The detailed implementation of a discovery protocol should be tailored 
to mission needs to account for bandwidth-constrained elements of the system.

Conclusions and Implications

In conclusion, our research demonstrates that implementation details of interfaces may 
change technical performance by orders of magnitude; the most pronounced effects 
we found are caused by delays in the exchange of information. Therefore, designers 
of interfaces may need to trade off technical performance to achieve interoperability.4 
However, we also find that technical performance does not necessarily translate to an 
impact on mission performance.

From a mission performance perspective, we found that

• mission performance is mainly driven by operational concepts and not the inter-
face design

• nevertheless, a UCCL has the potential to adversely affect mission outcomes if 
designers do not apply in-depth engineering analysis and careful design practice 

• the potential impact on mission performance may force designers to limit the 
amount of overhead they are willing to incur in implementing a new SoS.

The following are concrete examples of how a UCCL could harm mission 
performance: 

1. In the BMD thread, we found a single interceptor link that is severely band-
width limited, where any additional overhead may have significant impact on 
operational performance.

2. In the active protection system thread, we found that some higher-end threats 
may require a limitation on interface overhead to ensure mission success.

4  Technical performance is evaluated using metrics and interface parameters such as delays, data rates, memory 
use, and data processing time. We note that interoperability does not similarly have established metrics or inter-
face parameters that can be used in evaluating these trade-offs, an issue we address in follow-on work to this 
study.
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3. Finally, for the EW thread, we found that even modest inefficiencies may have 
a significant impact on mission performance. 

DoD can mitigate some of the risk associated with implementation of a UCCL by 
following these general principles:

• Focus on achieving interoperability for SoS with non-time-critical interfaces or 
missions with wide performance margins that allow the warfighter to reap the 
benefits of more or better sensor-shooter pairing. More specifically, efforts should 
be focused on SoSs (a) that do not have strong dependencies between operational 
performance and message delays, and (b) whose improved interoperability pro-
vides high operational benefits.

• When evaluating the risk of implementing a UCCL, specifically evaluate and 
design mitigation strategies for
 – systems with severely restricted bandwidth links
 – systems with processors that have very little available processing power
 – algorithms that require large amounts of data operations per bit of data
 – systems with submillisecond performance requirements.

• For interfaces that have tight delay and timing requirements, optimize the inter-
face for compile time composability. In other words, optimize the interface prior 
to the mission, not dynamically during the mission.

• Create multiple versions of the standard that are optimized to the performance 
constraints of the underlying networks and computing nodes. As computing 
infrastructure becomes more constrained, systems should be able to fall back 
to less capable but still interoperable versions of the standard for information 
exchange.

While the modeling we performed in this research was intended to be a high-level 
investigation of the general trade-offs between interface inefficiencies and operational 
performance, our methodology could be applied in a more detailed technical analy-
sis of specific systems. Anyone evaluating the applicability of a UCCL to a particular 
system should

• translate the mission-critical operational requirements into an interface perfor-
mance trade-space (e.g., delays versus messaging overhead)

• quantify the overhead that a specific standard interface implementation would 
impose
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• estimate the impact on operational performance and compare it with operational 
requirements associated with the mission

• assess whether some of the impact could be mitigated by technical means—for 
example, by optimizing the particular interface or using an optimized version of 
the standard. If the issue is related to processing power, then adding more proces-
sors could resolve the concern. Where bandwidth is an issue, provide a higher-
bandwidth link.

• if the impact cannot be easily or cost-effectively mitigated by technical means, 
assess whether can it be mitigated through revised tactics, techniques, or proce-
dures. For example, perhaps the warfighter could maintain larger operational dis-
tance from the threat, or a change to the force structure might mitigate the threat.

• finally, if the operational performance limitation cannot be mitigated reasonably 
and cost-effectively, then the interface in question may not be a good candidate 
for standardization.

We would be remiss if we did not offer one final word of caution regarding DoD’s 
efforts to create a UCCL. While the performance of a standard ensures its technical 
and operational viability, nontechnical considerations often have a much larger impact 
on whether it will be broadly accepted in the market (even a constrained market, 
such as that within DoD). These primarily are related to the economics of standards 
that can enable ecosystem growth, better retention of human capital, reduced vendor 
lock, and cheaper training and retraining. To harness these benefits, DoD will need to 
design and implement an effective and efficient standardization process that addresses 
and accommodates the interests and motivations of all stakeholders, as well as the legal 
and regulatory context within which the standardization process will take place. 
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CHAPTER ONE

Introduction

Command and control (C2) of military capabilities have been essential parts of  
warfighting since the dawn of mankind. However, what began with shouted com-
mands and visual or auditory confirmation that they were being followed has now 
turned into the challenge of linking, synchronizing, and directing complex heteroge-
neous systems, under tight time constraints and with the potential of interference by 
the enemy. The consequences of failure are severe, at both the tactical and operational 
levels—when systems that do not work well together cannot bring their full capabili-
ties to bear, or even malfunction and cause damage—and at the strategic level—with 
the loss of battles in wartime and costly acquisition failures in peacetime. 

C2 Interface Standardization Challenges

The U.S. Department of Defense (DoD) has therefore undertaken many initiatives 
over the years to create C2 systems standards for interoperability. Current practices 
for integration across systems generally rely on the development of Interface Control 
Documents (ICDs) that describe in detail how the different systems and subsystems 
connect and interact. While a well-documented and well-understood ICD can ensure 
that the systems involved exchange the right data in the right format and interpret 
those data in the right way, ICDs are specific to the systems they are associated with 
and, therefore, are usually optimized for these systems and their missions. When a 
new system needs to be integrated, a new ICD is required, and, at some point, the 
number of ICDs may become unmanageable. Legacy ICDs may also be insufficient 
for new missions or new combinations of systems. The emerging future vision of joint 
operations calls for connecting any sensor to any shooter, anytime. If that vision is to 
be enabled through individual ICDs between all potential sensors and shooters, this 
would lead to n2 different interfaces and ICDs, where n is the number of sensors and 
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shooters. Developing, verifying, maintaining, and evolving such a large number of 
interfaces becomes difficult. Reducing the number of interfaces is known to simplify 
the design process; reduce costs of design, testing, and maintenance; and increase reli-
ability of the fielded system.1 Additionally, common interfaces reduce complexity and, 
therefore, risk, as most problems in systems are commonly found at the interfaces.2

Trying to avoid a large number of system-to-system ICDs by instead creating a 
common interface standard for the system-of-systems (SoS) is challenging. If the SoS 
does not exist yet, assumptions about its emergent characteristics must be made to 
define appropriate interface elements. If the SoS already exists, additional overhead is 
created by having to adapt the system components’ existing interfaces to the new stan-
dard, resulting in reduced performance. In both cases, standardization misses its goal 
if the standard ends up not being specific or broad enough.

Thus, selecting the right standardization approach and striking the right balance 
among competing standardization objectives is challenging. The Office of the Under 
Secretary of Defense for Research and Engineering therefore asked the RAND Cor-
poration’s National Defense Research Institute (NDRI) to research key aspects related 
to the implementation of a Universal Command and Control Language (UCCL) and 
assess the effects that a UCCL might have on the performance of weapon systems and 
SoSs. As part of this effort, NDRI researchers reviewed DoD SoS programs to under-
stand their interface requirements, compared those requirements to determine where 
they fall within the different definitions of common interfaces for DoD and aerospace 
programs, identified the performance requirements for each of three use cases (mission 
threads), and assessed how imposing a common UCCL requirement might affect the 
performance of the systems. We established a conceptual framework for analyzing SoS 
performance of different sensor-to-shooter connections, combinations, and associated 
C2 constructs. The intent was not to accurately estimate the performance of the system 
with and without a universal interface, but rather to explore the range of trade-offs by 
identifying how performance depends on the characteristics of the standard interface 
and how it varies with respect to the details of the technical implementation. Conse-
quently, this effort should not be viewed as a study of a specific standard interface but 
as an early system engineering study of how such an interface could and should be 
designed. While we recognize that communications and networking effects should be 

1  Ofri Becker, Joseph Ben Asher, and Ilya Ackerman, “A Method for System Interface Reduction Using N2 
Charts,” Systems Engineering, Vol. 3, 2000.
2  Olivier L. de Weck, “Fundamentals of Systems Engineering,” lecture notes slide deck, Massachusetts Institute 
of Technology (MIT) Lincoln Labs, Fall 2015.
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considered and are included in our models, UCCL itself is intended to be agnostic of 
the underlying communications systems and networking constructs.

Organization of This Report

The next chapter describes the methodology used by the RAND research team, out-
lining the approach and documenting caveats and limitations. Chapter Three then 
presents a discussion of standards for interoperability, followed by a case study on 
one such standard that illustrates the trade-offs involved and presents important non-
technical considerations. Chapter Four summarizes insights from third-party testing 
and experimentation based on three different C2 interface standards. Chapters Five 
through Seven document findings derived from modeling and simulation conducted 
by the RAND research team for three different DoD mission threads. Chapter Eight 
provides conclusions and recommendations. A reference section and an appendix con-
taining a short discussion of the origins of the Publish-Subscribe Model and the Data 
Distribution Service (DDS) are at the end of the report.
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CHAPTER TWO

Methodology

The intent of this study is to establish a conceptual framework for analyzing SoS 
performance of different sensor-to-shooter connections and associated C2 constructs. 
This framework will connect specific attributes of a UCCL interface, such as message 
size, with technical performance parameters, such as message delay. We will develop 
an estimate that relates technical performance parameters to operational performance 
in the context of a set of mission threads. These estimates of performance will then be 
used to highlight potential risks that a standard interface might impose on the success-
ful execution of a particular mission.1

Approach

The research began with a survey of the existing literature and available experimental 
or field-testing results to identify performance concerns found in other standardization 
efforts within DoD and in commercial industry and obtain estimates of the technical 
performance impacts one might reasonably expect. The intent was to identify specific 
attributes of interface implementation that affect system performance. Additionally, 
typical implementation attributes in other standardization efforts will establish a typi-
cal range of values for these attributes. 

These insights then guided the development of a mathematical model tying tech-
nical system performance to specific values for these attributes. We then used the 
model to estimate technical performance for a range of different values that highlight 
how different implementations of a standard interface will affect technical system per-

1  It is critical that any analysis like ours be framed within the context of the mission rather than simply in terms 
of percentage changes of such attributes as mission throughput or latency. Some missions are adversely affected by 
even a 10-percent change in these factors, while others remain relatively successful even should such parameters 
double or even triple.
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formance. Based on this range of technical performance, we then estimated impacts 
on the operational performance of the system and the risks to execution of the mission 
thread. Two different types of impacts were considered: impact on the overall execu-
tion of the thread and impact on a critical step in the thread. The critical step analysis 
was intended to identify any critical steps or exchanges in the thread that might be par-
ticularly sensitive to performance overhead and to estimate potential risks in executing 
this specific step or exchange.

Three mission threads were chosen to highlight a range of different military oper-
ations with varying sensitivity to message delays:

• The first was an electronic warfare (EW) mission based on the CONverged Col-
laborative Elements for RF [Radio Frequency] Task Operations (CONCERTO) 
system developed for the Defense Advanced Research Projects Agency (DARPA). 
This is a single system thread with extremely short timelines and very simple C2 
exchanges between subsystems. 

• The second was an active protection thread modeled on the Marine Air Defense 
Integrated System (MADIS), in which a few platforms coordinate a defense 
against incoming threats with relatively short timelines. 

• The third was a ballistic missile defense (BMD) thread, with reasonably long 
mission execution times and a fairly complex C2 construct with multiple sensors, 
shooters, and C2 elements. 

Note that all three of these SoSs have already made a basic trade—the complex-
ity of the C2 is reduced as the needed response times shorten. Yet by studying their 
implementation in more detail, we hope to learn exactly why and how C2 performance 
is affected by the performance of the “language” of its interfaces. We found that these 
three mission threads cover a wide range of scenarios affected differently by underlying 
technical C2 performance. 

For each mission thread, we present the modeling approach, along with the 
assumptions and limitations specific to the individual thread. The performance is 
computed over a range of inputs, and the operational performance risks are discussed 
over this range of potential interface implementation parameters. 

Our analysis of each mission thread used the same high-level conceptual C2 con-
struct, shown in Figure 2.1. In this construct, a target operates within an environment, 
and the mission thread begins with a sensor detecting that target through the environ-
ment using an estimation of the physical properties of both the target and its environ-
ment. Sensed target and environmental information are sent over a communication 
link to a C2 authority. The C2 authority uses the information to assess the situation 
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and decide on a course of action (COA). If that COA is to engage the target, a message 
is sent over a communication link to a shooter.2 The shooter then delivers its effects 
toward the target. This cycle could iterate several times and involve multiple sensors, 
shooters, and C2 authorities. 

To simplify our analysis, our modeling assumed that there is no human in the 
loop—i.e., all communication is machine-to-machine, and no human cognition and 
reaction delays are included.3 We assumed computing systems at the sensor, C2 author-
ity, and shooter that are capable of appropriately processing the data. We then charac-
terized the effect of delays in data transfer over the communications channel and from 
processing the data. We included five possible delays from target sensing to the C2 

2  The term shooter here is used in the broader sense to mean any effect capable of neutralizing an attacker. This 
can be a kinetic kill vehicle, such as those used to intercept a missile, or an electronic jammer used to bring down 
electronically controlled vehicles. 
3  In reality, the United States has very few systems that are designed to autonomously make decisions to engage 
adversary forces. However, were we to include human decision times, they would dominate the overall response 
times and obscure the mission impacts of alternative interface designs that are the subject of our research. We will 
return to this limitation of our approach when we discuss the results of our study.

Figure 2.1
High-Level Mission Threads C2 Model
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authority and six delays from the C2 authority to the effects reaching the target. The 
five delays to C2 authority are

1. time to sense the target through the environment
2. time for the computer at the sensor to process the sensed information and create 

a data packet
3. time to encrypt the packet
4. time to transmit this packet over the communication link to the C2 authority
5. time to decrypt the packet at the C2 authority. 

The six delays from C2 authority to reaching the target are

1. time to process the information and create a data packet by the C2 author-
ity computer. We do not include the processing time involved with assessing, 
deciding, and acting upon the information, which is considered out of scope for 
this analysis.

2. time to encrypt the packet
3. time to send the packet over the communication link to the shooter
4. time to decrypt the packet at the shooter
5. time for the computer at the shooter to process the information. We do not 

include any processing time at the shooter to compute a firing solution, which 
is considered out of scope for this analysis.

6. time for the effects launched by the shooter to reach their target.

Each mission thread model accounted for each of these effects differently. For 
example, the time it takes a radio frequency signal to travel at the speed of light from 
the target to the sensor is critical in an EW mission in which small fractions of a mil-
lisecond are important. For BMD, where response times are measured in seconds or 
minutes, these delays can be ignored. 

The analysis for each mission thread was also slightly different to account for the 
different types of operational outcomes each is expected to achieve. A set of assump-
tions and limitations for each thread is given, detailing how we approached the prob-
lem and how one should interpret the results. 

We then present the mathematical model used in the analysis of each thread. For 
the BMD thread, which represents the most complex C2 construct of the three, we 
developed a model in Python to estimate the end-to-end performance of thread execu-
tion. The other two threads are simpler and were modeled as relationships in Excel 
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spreadsheets. The modeling results are then presented, the data interpreted, and we 
present conclusions. 

Finally, we conducted a critical step analysis to identify whether particular steps 
or information exchanges in the thread are particularly sensitive to performance over-
head, and we discuss associated risks.

Assumptions, Constraints, and Limitations 

As discussed earlier, the intent of this study was an early system engineering explora-
tion of a generic standard interface. It was not focused on a specific implementation, 
nor was it intended to estimate the performance of specific implementations or make 
judgments on specific mission impacts. The analysis drew on unclassified informa-
tion and available specifications of the underlying systems. Information about detailed 
subsystem characteristics, such as message sizes or underlying signal processing algo-
rithms, was not available at the unclassified level and was abstracted at a high level in 
the analysis. As a result, one should not view these results as representing specific sys-
tems but rather broad classes of systems like the ones chosen. The results represent an 
understanding of how performance would vary with respect to varying interface imple-
mentations, but not how a specific interface design would affect the specific system in 
the execution of a particular mission thread.

Additional assumptions and limitations of our modeling efforts were as follows:

• The systems were not assumed to be real-time composable systems. That is, we 
did not attempt to assess the effects of a C2 system trying to discover differ-
ent sensors and shooters on the fly. While we are fully cognizant that discovery 
protocols can have significant impacts on system performance, the performance 
impact of such a protocol was beyond the scope of this research.

• We made the broad assumption that when adding a sensor-to-shooter pairing 
to an overall SoS, another sensor-to-shooter pairing is removed. In other words, 
we did not analyze the impact of allowing all sensors to talk to all shooters, all 
the time. Any performance impact of adding multiple overlapping message flows 
was not considered. Additionally, we did not model the process of managing “all 
sensor, all shooter” data flows or how flows could be added or removed. These 
effects could substantially affect performance overhead but are beyond the scope 
of the study.

• We did not include the effect of packet fragmentation. We recognize that all 
systems have a maximum packet size, and that if a message exceeds that size, it 
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will be broken into multiple packets. While these multiple packets would add to 
the overhead associated with sending a message, the effect was not considered 
because it is a secondary effect and can vary widely, depending on design choices 
and implementation.
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CHAPTER THREE

Standards

Standards to Achieve Interoperability

In this report, we are generally concerned with interoperability standards. For the pur-
poses of this report, we will use the International Organization for Standardization/
International Electrotechnical Commission (ISO/IEC) 25010 definition of interoper-
ability: “Interoperability is the degree to which two or more systems, products or components 
can exchange information and use the information that has been exchanged.”1 As a practi-
cal example of what interoperability requires, consider the “any sensor, any shooter” 
battle management paradigm set forth by DoD’s Fully Networked Command, Con-
trol, and Communications (FNC3) initiative. To realize that vision requires that sen-
sors and shooters not only have a physical means of communicating the ones and 
zeros that make up modern information systems—i.e., technical interoperability—but 
also recognize that those ones and zeros are authorized communications with specific 
meanings. Ultimately, what is required are standards that allow sensors and shooters 
to share understanding of the past, present, and future location of targets and autho-
rization to engage selected targets. To achieve this goal, the system must have a shared 
understanding of the syntax (formats, fields, units of measure) and semantics (defini-
tions of meaning) used in exchanging the information—i.e., syntactical and semantic 
interoperability.2

1  ISO/IEC, “Systems and Software Quality Requirements and Evaluation (SQuaRE)—System and Software 
Quality Models,” ISO/IEC 25010:2011, webpage, 2011. 
2  An example of the difference in syntax and semantics is that syntactically interoperable systems have a shared 
understanding that position of a target is to be interpreted as meters in three dimensions as opposed to being 
interpreted as degrees of latitude and longitude and meters of altitude. Systems that are also semantically interop-
erable know that position of a target is measured relative to a specific reference frame such as Earth Centered 
Inertial (ECI) as opposed to a frame fixed to the sensor that is providing the target position. 
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Achieving Technical Interoperability

Over the past 20 years, great strides have been made in achieving technical interoper-
ability of computing systems. A key enabler has been the abstraction of the commu-
nication between any two nodes in the system as a stack or set of layers that provide 
the functions required for any two systems to exchange information. The two most 
commonly referenced abstractions are the Open Systems Interconnection (OSI) and 
internet models of communication. 

The OSI model has seven layers and was designed such that each layer would 
strictly depend only on the services of the layer immediately below it. Although origi-
nally developed with a set of accompanying protocols at each level that would com-
municate at that layer, the protocols were unwieldy and never caught on. However, the 
idea of the seven OSI layer model persists to this day and provides a common vocabu-
lary for network analysts.3 

The abstracted internet model is simpler, having only four layers, and is more rep-
resentative of actual practice. The seven-layer model is contrasted with the four-layer 
model in Figure 3.1, and commonly used communication standards (i.e., protocols) and 
the media of that communication are roughly mapped against them.4 

The internet model we show in Figure 3.1, unlike the OSI model, is not formally 
standardized but instead has become a de facto standard through use. In the same year 
that the OSI was published (1994), the National Research Council published Realizing 
the Information Future: The Internet and Beyond, proposing a four-layer model that is 
described thus: 

The Open Data Network proposed in this report involves a four-level layered 
architecture configured as follows: (1) at the lowest level is an abstract bit-level 
service, the bearer service, which is realized out of the lines, switches, and other 
elements of networking technology; (2) above this level is the transport level, with 
functionality that transforms the basic bearer service into the proper infrastructure 
for higher-level applications (as is done in today’s Internet by the TCP protocol) 
and with coding formats to support various kinds of traffic (e.g., voice, video, fax); 
(3) above the transport level is the middleware, with commonly used functions 
(e.g., file system support, privacy assurance, billing and collection, and network 
directory services); and (4) at the upper level are the applications with which users 

3  ISO/IEC, “Open Systems Interconnection—Basic Reference Model: The Basic Model–Part 1,” ISO/IEC 
7498-1:1994, webpage, 1994. As of December 2019, it can be purchased online (see references list for URL). 
However, hundreds and, perhaps, thousands of representations of the model can be found online using the term 
OSI 7 layer model in any search engine.
4  Many commonly used protocols have elements of different layers in their makeup. 
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interact directly. This layered approach with well-defined boundaries permits fair 
and open competition among providers of all sorts at each of the layers.

In particular, the concept of a distinct bearer service contributes to meeting the 
key objective of separating the information service provider from the network ser-
vice provider in order to allow all potential service providers the opportunity to 
flourish in an ODN [Open Data Network] environment. To provide for this sepa-
ration, the committee has structured the protocol stack of its architecture such that 
it narrows down considerably at the interface to the (open) bearer service layer. 
Above this narrow “waist” the stack broadens out to include the broad range of 
options for the transport, middleware, and applications layers. Below this narrow 
waist, the stack again broadens out to include the many possible technologies for 
implementing network access, local area networks, metropolitan area networks, 
and wide area networks. Such an arrangement reinforces the principle of separa-
tion and is intended not to prevent the same supplier from acting in two roles, 

Figure 3.1
The OSI and Internet Models of Communications

NOTE: HTTP = hypertext transfer protocol; POP = Post Office protocol; FTP = file transfer protocol; TCP = 
transmission control protocol; UDP = user datagram protocol; IP = internet protocol; IPv4 = internet 
protocol version 4; IPv6 = internet protocol version 6; BGP = border gateway protocol; OSPF = Open 
Shortest Path First; WiFi = wireless fidelity.
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but rather to ensure that individual competitors can enter into the marketplace at 
either level.5

Although the names of the layers and the partitions between them morphed in 
subsequent years, the vision of the internet packet and routing protocols (today’s net-
work layer) as being the open standard at the “waist” of a software stack that would 
permit “fair and open competition” at the layers above and below has been fully real-
ized in the years since. This is an example of a formal, committee-designed standard 
that was adopted in the market, but the market then adapting it to its various stake-
holder needs, thus creating a different common standard with a different structure that 
achieves the same results.

The ubiquitous use of the internet packet structure and accompanying routing 
protocols at the network layer of these models is the unifying element that links most 
communications today. However, this is not true for many weapon systems. Only 
recently have we been able to package the computing infrastructure needed to sup-
port a full IP network stack to meet the constraints of size, weight, and power intrinsic 
to many weapon systems. Therefore, many military systems currently communicate 
using highly specialized waveforms; access protocols; and customized, often fixed-
format, messages. If two systems use different standards, they can be linked using 
custom translators. Many of these standards are being updated to be able to carry 
internet packets, offering the hope of greater technical interoperability in the future, 
but security and encryption remain difficult issues. Technical interoperability—the 
proper understanding of bit content and sequencing—achieves only the most basic 
level of interoperability. Other mechanisms are needed if both sides of the interface are 
to understand what those data mean.

Achieving Syntactical Interoperability

As we noted earlier, recovering the ones and zeroes that constitute a packet or datagram 
of information is not enough to ensure weapon systems interoperability—both sender 
and receiver need a shared understanding of how to convert the transmission into 
data. The most straightforward way to achieve syntactical interoperability is to assign 
specific meaning to a fixed group of bits—this is called the format of the message. For 
instance, the binary (i.e., bit-level) format of IPv4 is shown in Figure 3.2. Looking at 
the format, we know that the four most significant bits of the first word are the version 
of the packet format, the IP address of the sender is in the fourth word, and the desti-

5  National Research Council, Realizing the Information Future: The Internet and Beyond, Washington, D.C.: 
The National Academies Press, 1994, p. 5.
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nation address is in the fifth word. But even to understand that format, we first need 
to know how big a word is (16- and 32-bit words are the usual choices) and the order 
in which bits and/or bytes are stored or transmitted—some computers expect the first 
bytes stored and/or received to be the most significant digits, while others expect the 
first bit or byte received to be the least significant digits (this is called big endian and 
little endian).6 Further complicating things, many software engineers expect counts to 
begin numbering from zero (for bits, bytes, words, segments, etc.), while non–software 
engineers usually assume that counts begin at one—meaning that any description of 
the format that uses bit or word numbering (as opposed to saying “the four most sig-
nificant bits” or “the fourth word received”) is subject to misinterpretation.

A further examination of the packet header shows a common practice in modern 
computing—self-definition of interfaces. The first field tells the receiving nodes the 
version of the format being used—both IPv4 and IPv6 versions of the protocol are in 
use today—and by putting this information first, the receiving node can determine 
whether it has the compatible software stack to interpret the rest of the message cor-

6  The concept of endianness can apply to any sequence of items, but the most common usage of the term is in 
defining how bytes are transmitted and stored.

Figure 3.2
Bit Structure of an Internet Header

SOURCE: Information Sciences Institute, University of Southern California, Internet Protocol: DARPA 
Internet Program Protocol Specification, Request for Comments 791, Arlington, Va.: Defense Advanced 
Research Projects Agency, Information Processing Techniques Office, September 1981.
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rectly. The second field, the internet header length (IHL), further defines the format 
in that it contains a value to tell the receiving nodes how long the header itself is (the 
standard header is five words, but this four-bit field can hold a maximum value of 15, 
allowing for a further ten words of optional data). The final field in the first word is the 
total length, defining the total number of words in the packet. Using these two pieces of 
information, the receiving computer then can determine where the data in the message 
start (after the last word of the header) and the number of data words contained within 
the packet (total length minus header length). 

So far in this discussion, simply being able to extract the correct bits that define 
a field and read its binary value has been sufficient to understand the information 
contained in this header. But other fields are not nearly as straightforward. Consider, 
for example, the Protocol field, which defines what protocol should be used at the next 
layer up in the software stack. This eight-bit field can hold values from zero to 255, 
but protocols are rarely referred to by a number, so some other means must be used 
to convey to the receiving software that a “6” means to handle the message exchange 
using TCP, while a “17” means to use UDP. This level of syntactical interoperability 
has typically been achieved through paper specifications that are provided to software 
developers and then coded into the sending and receiving software items. This paper 
process is subject to great misinterpretation, even for relatively simple concepts. In 
one of the better known (and expensive) incidents of misinterpretation of syntax, for a 
launch vehicle capable of carrying two satellites to orbit, the original designers desig-
nated the satellite position with a single bit, meaning the field could be either one or 
zero. When the design team on one side of the interface interpreted one as meaning 
the upper satellite and the team on the other side interpreted one as meaning the lower 
satellite, the result was a loss of mission.7

To mitigate the risk that mistakes in syntax will cause failures in communication 
between systems, the software industry invented the concept of an interface defini-
tion language (IDL)—a specification language that provides the syntactical details in 

7  This syntactical error led to a wiring error that left the Intelsat VI F-3 satellite stranded in orbit. National 
Aeronautics and Space Administration (NASA) astronauts flying on the space shuttle later conducted a repair 
mission. Today, the repair mission is better known than the error that led to it. Wayne Eleazer, “Launch Failures: 
The ‘Oops!’ Factor,” Space Review, January 31, 2011.

Another famous example where lack of syntactical interoperability led to failure in space is that of the Mars 
Climate Orbiter, which was lost on arrival at Mars. The root cause was found to be that one team had designed 
using metric units (meters and kilograms) and another had designed using English units (feet and pounds). 
Douglas Isbell, Mary Hardin, and Joan Underwood, “Mars Climate Orbiter Team Finds Likely Cause of Loss,” 
press release, NASA, 1999.
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a language-independent machine-readable format.8 These IDLs are often associated 
with a specific set of protocols that form a conceptual message bus for the exchange 
of information across processes, platforms, and systems. Unfortunately, no IDL has 
become a de facto standard—currently, the Wikipedia page for IDLs lists 22 different 
languages, with each addressing a different set of features or design challenges (such as 
performance efficiency). New IDLs are constantly being created as Microsoft, Google, 
Facebook, and others vie to establish their standard as “the” standard of choice.9 Even 
if an SoS wants to use an IDL to define its syntax, it is unlikely that existing systems 
within the SoS would use the same IDL. Translators are available for some of the most 
popular languages (for example, Extensible Markup Language [XML] to JavaScript 
Object Notation [JSON]), but only if the interface design to be translated adheres to 
the least common set of features between the two languages.10 While IDLs are invalu-
able for new software development, incorporating them into an architecture to con-
nect sensors to shooters designed in different eras cannot be achieved in an efficient 
manner. Features provided by the IDL and its associated protocols in one system will 
not be supported in other systems, meaning that custom code will need to be created. 
Often, this is achieved by wrapping the messages associated with the less capable IDL 
within a message format for the more capable IDL. The net effect can often be nested 
protocols several layers deep.

Achieving Semantic Interoperability

Semantic interoperability is grounded in a shared understanding of the meaning of data 
and the relationships between data. For instance, syntactic interoperability ensures that 
two systems know that the data exchanged represents a price. Semantic interoperability 
would ensure that both systems understand that the price is in U.S. dollars and does 
not include tax, and that when associated with an invoice, tax must be included before 
payment is made. 

Ontologies, supported by the Web Ontology Language (OWL) and a smattering 
of other languages, describe the data of a system and the relationships between them 
via a formal method. For example, an ontology would show that both price and tax 
are described by monetary units, that tax in an invoice is calculated based on price 

8  Today, most IDLs can produce interface code for C, C++, Java, Ruby, Python, and many other more-obscure 
programming languages.
9  “Interface Description Language,” Wikipedia entry, webpage, updated January 4, 2021. 
10  For instance, JSON supports blank spaces in variable names, but XML does not. Also, XML is a markup 
language, but JSON is simply a formatter. Therefore, an interface specification that is translatable to both JSON 
and XML could not use blanks in variable names and cannot require any of the XML markup features.
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and location of the sale, and that invoices describe payments due. To fully describe a 
domain of knowledge typically requires that we define thousands of entities and rela-
tionships. Even with the expressiveness of an OWL, semantic interoperability can be 
elusive.

While development of a foundational ontology on which other ontologies could 
be based is a subject of ongoing study in software development, domain-specific ontol-
ogies have been developed for selected industries. For DoD weapon systems, the most 
relevant may be the National Information Exchange Model (NIEM) and its prede-
cessor, the Universal Core, which incorporated both “Cursor on Target” and “Situ-
ational Awareness” entity-to-entity relationships.11 The NIEM has been designated as 
the DoD standard for “vocabulary” since 2013 and is formatted for distribution as an 
XML schema or using the Unified Modeling Language (UML). The current release is 
4.2, which includes a beta tool for building JSON objects from the model.12

Interoperability’s Impact on Computing Performance

At each layer of the communications model is the concept of a datagram or packet 
with a header that encapsulates all the bits (headers and data) at the layer above it. 
This header contains the information needed to interpret, decrypt, route, marshal, 
or otherwise process the enclosed bits to accomplish the functions allocated to that 
layer of the architecture. A notional diagram of encapsulating each layer’s information 
on the way down the stack and then stripping it off on the way up the stack to reveal 
the data transmitted is shown in Figure 3.3. If the datagram or packets can be routed 
from sender to receiver, and if both sender and receiver have compatible stacks of soft-
ware, data can be transmitted. Note that the stacks do not need to be identical, only 
compatible—i.e., they must be able to recognize the header information and process 
it appropriately to recover the encapsulated information and pass it to the next layer in 
the stack. At intermediate nodes between senders and receivers, the lower elements of 
the software stack are used to manage the flow of information using “addresses” and 
other information contained in the headers. 

However, header information is not the only inefficiency introduced by interoper-
ability. At many levels of the stack, information must be exchanged with other nodes to 
complete the function assigned to that layer of the architecture. For instance, if TCP 
is used at the transport layer of the architecture, then messages sent via TCP are seg-

11  The situational awareness ontology can be accessed by authorized users online in a document from DoD’s 
Chief Information Officer’s Network Management Working Group.
12  The beta tool for building JSONs is available from the public “Military Operations” domain of NEIM 4.2: 
National Information Exchange Model, “Movement,” database, undated. 
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mented into packets that are numbered before being passed to the IP layer. The receiv-
ing TCP processing waits a set amount of time and then requests retransmission of any 
packets not received within that time. Only when the complete message is reassembled 
is it passed to the upper layer of the stack. This protocol, while ensuring error-free com-
munication when packets are lost or corrupted in transmission, puts additional mes-
sages on the underlying links and can introduce considerable delay in the overall mes-
sage transmission. At the upper layers of the architecture, where a middleware is used 
as a virtual message bus, discovery protocols can add a significant number of messages 
on the underlying physical links—especially when a new node joins the network. The 
resultant congestion can significantly degrade the near real-time operations needed 
for targeting in a weapon system. Tactics to control these impacts almost inevitably 
include a trade-off between latency (delay), throughput (rate of information that can 
be transmitted), and memory use. A concrete example of those trade-offs is described 
in the next section.

DDS–eXtremely Resource Constrained Environment—An Example of 
the Trade-offs Required for Performance

The Data Distribution Service

The eXtremely Resource Constrained Environment (XRCE) extension of the DDS 
middleware is one of the dominant machine-to-machine communication methods 
used in real-time systems today. Developed between 2001 and 2004 for defense and 

Figure 3.3
Encapsulating for Interoperability Increases the Amount of Information That Must Be 
Passed Between Nodes in a System
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aerospace needs, it has become widespread. DDS uses a publish-subscribe model to pro-
vide efficient and resilient network communications while allowing both the publishers 
of data and the subscribers to those data to be agnostic to many of the characteristics 
of the other.13 In addition to discoverability—which allows applications and computing 
nodes to be added or removed from the network without manual configuration—DDS 
includes quality of service (QoS) features, which allow network communications to be 
centrally managed in terms of bandwidth consumed, delivery reliability, and resource 
limitations. In particular, DDS was designed to provide reliable delivery at speed and 
at load. As a result, the designers of the original DDS made a number of design trades 
that favored efficiency of transmission and speed of transactions over memory use.

Internet of Things Devices—Beyond DDS’s Design Expectations

As networked technologies matured, network-connected devices started to become far 
more widespread. The Internet of Things (IoT) is a term that has come to represent 
small internet-connected devices that are very lightweight in terms of their processing 
power and that communicate with larger applications to provide real-time monitoring 
of items as varied as the status of a pacemaker and the temperature of a home. Because 
DDS was one of the leading communication standards for machines, developers of 
IoT devices such as smart thermostats, networked security cameras, and remote health 
monitors began to use it. However, many of these developers found the performance of 
DDS incompatible with their needs. 

For many applications, the problems arose from the need for the IoT device to run 
off battery or limited solar power, or the need for the device to fit into an extremely 
small physical package. The computing hardware is often optimized for extremely 
low power use and miniaturized for a small footprint. Despite rapid advances in tech-
nology that allow us to put greater and greater amounts of memory into smaller and 
smaller packages, existing DDS implementations consumed too much processing 
power and memory for many of these devices.14 While DDS supported discovery to 

13  In a publish-subscribe communication paradigm, publishers advertise the data they have available for sub-
scription. This advertisement can include guarantees of the quality of the data provided in terms of staleness, 
frequency of update, etc. Subscribing services then obtain that data through the middleware. In some publish-
subscribe systems the process of matching subscribers to publishers is dynamic and on the fly through a process 
called discovery. In others, it is more constrained and can even be hard coded. In all cases, publish-subscribe 
middlewares use IDLs to ensure syntactic interoperability as described in the previous section. A basic primer on 
publish-subscribe and how it is used in real time systems can be found at PubNub, “What Is Publish-Subscribe 
(Pub/Sub)?” Realtime Technology Glossary, website, undated.
14  For a recent discussion of the continuing challenge of memory on low-power IoT devices, see Khader Moham-
mad, Temesghen Tekeste, Baker Mohammad, Hani Saleh, and Mahran Qurran, “Embedded Memory Options 
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add or remove publishers and subscribers, it did not anticipate large numbers of sen-
sors that would power up from sleep only to report a reading and then disappear from 
the network again. Because larger sensors deployed alongside very small ones often did 
support DDS, there was a push to develop a new protocol that would allow all sensors 
to interact on the DDS network. This protocol became the DDS XRCE specification. 
DDS-XRCE was able to reach its performance goals only by sacrificing some features. 
A detailed examination of the trade-offs made may help illuminate factors that must 
be considered in designing communication systems.

Memory Trade-offs—Losing Memory Flexibility and Gaining Efficiency and 
Certainty

In many standard DDS implementations, memory is allocated dynamically. Dynamic 
memory allocation allows the DDS application to use more memory when needed but 
also to reduce its use when not under heavy load, freeing up space for other applica-
tions running on the same computing hardware. However, for an IoT client, dynamic 
memory becomes a liability because the total memory on the device is extremely small. 
In fact, dynamic allocation could easily consume all available memory. Therefore, 
XRCE implementations commonly allocate memory statically, ensuring a specific size 
of their application memory footprint.15 While this means the memory cannot be used 
by other applications even if unused by the DDS-XRCE, the sacrifice ensures that 
the XRCE cannot consume all available memory. In addition to removing the use of 
dynamic memory, the developers streamlined the size of the DDS code, allowing the 
full program for network communications to use less than 75 kb of read-only memory 
and 2.5 kb of read/write memory.16 A comparable DDS implementation might require 
over 100 kb of read/write memory, so the reduction to 2.5 kb is significant.

Bandwidth Trade-offs—Losing Resiliency and Gaining Speed

The DDS-XRCE specification also removes most of the QoS features used in DDS 
and simplifies the network structure. Instead of full network discovery, microdevices 
using DDS-XRCE communicate with only a single agent. This agent is typically a 
computing node permanently connected to the DDS network. The removal of most 

for Ultra-Low Power IoT Devices,” Microelectronics Journal, Vol. 93, November 2019.
15  Research on secure and reliable memory allocation in IoT devices is a continuing field of study. A recent paper 
on this topic is Runyu Pan and Gabriel Parmer, “MxU: Towards Predictable, Flexible, and Efficient Memory 
Access Control for the Secure IoT,” ACM Embedded Computing System, Vol. 18, No. 5s, Article 103, October 
2019.
16  eProsima, “Micro XRCE-DDS,” webpage, 2019.
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QoS functions and routing sections not only affected memory, but also reduced the 
message size significantly, from 48 to 100 bytes in DDS down to 12 to 16 bytes in 
XRCE.17 

However, these changes sacrifice a more resilient mesh network style for a more 
brittle star network that depends on the single agent computer. The change in network 
topology means a simpler address field, allowing messages to fit into extremely small 
memory buffers, but it comes at the expense of network resilience, as described next.18 

Encryption and Resiliency Trade-offs—Sacrificing Security for Speed

The design decisions above that make the DDS-XCRE bandwidth- and memory- 
efficient may come at the expense of security or may need to be compromised to 
achieve security.

The first way the design trades security for efficiency is in the network style. A 
star network with the agent machine at the center simplifies addressing, routing, and 
discovery functions in the protocol header, but it also makes the entire network depen-
dent on the single agent computer. If that computer is compromised or destroyed, the 
entire network ceases to function. A more fully meshed network, with less throughput 
efficiency, is more resilient to loss of any single node.

We also observe that while it is not a trade-off displayed clearly by XRCE, this 
switch to a star network and the reduced use of discovery reduce the attack surface for 
a determined adversary, thus perhaps improving security. Discovery protocols allow 
computers or sensors to leave the network (for example, to sleep for power consump-
tion, or for maintenance, or because of a power or transmission failure) and rejoin the 
network later, even if the network configuration (number and addresses of core/agent 
servers) has changed. In a business context, discovery is enormously useful. However, 
in a military context, it is often viewed as a security risk and is therefore disabled on 
operational networks. 

Turning our attention to encryption, we note that the small size of DDS-XRCE 
messages challenges some fundamental aspects of securing the transmission of data. 
One issue is that encryption algorithms commonly rely on separating transmissions 

17  It should be noted that these optimizations function correctly only if the content of the message is small rela-
tive to the header. If systems need to transmit large amounts of per-packet data, the performance of DDS-XRCE 
is diminished, perhaps becoming unusable.
18  Note that because many IoT sensors report only a single item, such as temperature, the standard DDS headers 
will often be much larger than the information being transmitted. DDS-XRCE is therefore more “efficient” than 
standard DDS when measured as a ratio of overhead to information transmitted.
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into blocks.19 When a transmission cannot be evenly split into packets occupying the 
full size of the block, the remainder is “padded” with data to confuse attempts to 
decrypt based on the smaller remainder block. In the case of XRCE, every transmission 
may be quite small, meaning that every transmission may receive significant padding, 
increasing bandwidth consumption. This extra consumption of bandwidth can be 
avoided by aggregating data to better fill out the block, but that action might increase 
latency if all data are not immediately available and creates dependencies that adversely 
influence later system upgrades.

Another encryption issue that may affect DDS-XRCE applications is rooted in 
the fact that encrypted traffic can be decrypted more easily when any part of the 
source text is known. Repeated identical sections of text must be encrypted with a 
randomized starting value called an initialization vector. Large numbers of identical 
messages mean that the chance of reusing an initialization vector on another message 
with identical content increases, risking the security of the encryption. Messages that 
are dominated by header information that is either known or guessable to an attacker, 
with a very small body of unique information, as is the case with many DDS-XRCE, 
are therefore fairly easy to decrypt. 

However, the ultimate security trade may be decisions to remove encryption 
entirely when adding small IoT devices to a larger network. While DDS itself often is 
used with encryption, the processing overhead of encrypting and decrypting all mes-
sages would consume significant battery power on a tiny sensor. Given the discussion 
earlier regarding the encryption vulnerabilities of IoT-generated traffic, the decision to 
remove it altogether may be reasonable, but the impact on the larger networks of sen-
sors must be considered.

Time Trade-offs

Because lightweight sensors often undergo long sleep cycles, transferring data between 
the sensors themselves (as DDS allows) was not sustainable: Most of them will be in 
sleep mode at any given time. This necessitates the use of the agent server as a reliable 
receiver of messages in a star network, as discussed above. Using an agent computer as 
a bridge between the normal DDS network and the XRCE network allows the small 
IoT sensor devices to share their data with the larger network, but at lower transmission 
speeds than a normal DDS client because the messages need to be passed through the 
agent and translated into the DDS format from the XRCE format.

19  RSA Laboratories, “FAQ: What Is a Block Cipher?” webpage, 1998.
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Summary of Trade-offs

Table 3.1 summarizes the trades that were made by the designers of the DDS-XCRE 
communications middleware.

DDS-XRCE represents an example of the design trades that must be made to bal-
ance memory use, bandwidth use, and speed of communication. It illustrates the need 
to trade away some attributes to enhance others. It also describes advances being made 
to push modern communication patterns such as publish and subscribe to devices at the 
very edge of the network. In order to increase bandwidth efficiency and memory foot-
print, QoS functionality, network flexibility, support for robust security, and encryp-
tion were reduced, and dynamic memory management was eliminated. This analysis 
leads us to observe that a hypothetical UCCL may need to be reconfigurable to per-
form adequately (or at all) across a wide range of possible environments. If it were not 
reconfigurable, features important for performance in one task might severely hamper 
its usefulness in others.

Table 3.1
Protocol Design Trade-offs, According to the Situation in Which Each Returns Benefits

Gain Sacrifice
Situation Under Which This  

Trade Provides Benefit

Lower bandwidth use Reduced routing flexibility, 
reduced reliability

When header size is large 
compared with message size

Reduced installation and memory 
footprint

Loss of dynamic memory 
allocation; increased effort to 
implement subsequent upgrades 
of applications

Useful when total memory and 
total storage are relatively small 
compared with application and 
message size

Increased battery life Reduced QoS, reduced data 
protection due to removal of 
encryption

When encryption is not 
required, or network load can be 
preplanned

Reliable messaging when sensors 
are offline for weeks, months, or 
years

Less control over message queue 
size

When traffic volume to edge 
nodes is small and the agent 
server is not storage-limited

Allowing sensors to sleep but still 
send and receive messages when 
awake

Requires a dedicated agent server 
to always be present to send and 
receive—loss of resilience due to 
no mesh routing capability

When edge nodes in the network 
will be typically unavailable and 
do not have spare capacity to 
handle each other’s messages
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Nontechnical Considerations for Standardization Efforts

In addition to addressing technology-based challenges, such as balancing flexibility 
and performance, successful standardization efforts also must overcome nontechnical 
hurdles. A wide variety of factors may motivate those developing standards. The orga-
nizational approach selected to create and implement the standard must address these 
different motivations to be successful. Both motivations and organizational approaches 
are discussed in this section. 

Why Standards Matter Economically

Foremost among the nontechnical considerations of standardization are the economic 
effects. The most often stated desired economic effect of standardization is what is 
called positive network effects. A positive effect arises when a social or business network 
becomes more valuable, and more entities join in, creating a sort of bandwagon effect. 
In short, each additional standardized platform that is produced provides additional 
value to each previously converted or produced platform.20 This may be especially 
effective in the case of software, as the marginal cost of software distribution is nearly 
zero, allowing the fixed cost of producing it to be amortized over a larger number of 
systems or platforms. 

Standardization may lower the barriers for entry into a market by thinning the 
“patent thicket” around some technologies. Patent thickets are sets of overlapping intel-
lectual property in which each individual element needs to be negotiated before a 
product can be produced. Standards-setting organizations, such as the Institute of 
Electrical and Electronics Engineers, can sometimes help dismantle these thickets by 
requiring firms to provide fair and equitable access to the patents involved in the stan-
dard as part of the standard-creation process.21 

Transition costs both within firms and within customers (in this case, the govern-
ment) can decrease as a result of standardization. This decrease is primarily caused by 
changes in required training and available talent. In an unstandardized environment, 
labor moving from firm to firm incurs a transitional cost in terms of retraining to use 
the new firm’s set of standards. In a standardized environment, significantly more 
human capital can be retained when labor moves between firms. Similarly, the end 

20  Jeffrey Church and Neil Gandal, “Network Effects, Software Provision, and Standardization,” Journal of 
Industrial Economics, Vol. 40, No. 1, March 1992.
21  Timothy S. Simcoe, Stuart J. H. Graham, and Maryann Feldman, “Competing on Standards? Entrepre-
neurship, Intellectual Property, and the Platform Paradox,” NBER Working Paper 13632, Cambridge, Mass.: 
National Bureau of Economic Research, November 2007. 
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consumer can better retain human capital under standardization because changing 
from one vendor’s products to another that follows the same standard is easier, at least 
in theory.

In the actual production of standardized systems and SoS, another benefit of 
standardization may be the potential for greater division of labor. Specifically, the 
increased interoperability that standardization provides may allow firms specializing in 
particular elements of a system or SoS the opportunity to work in the space where they 
have a competitive advantage and integrate with each other later in the design process 
with a lower transaction cost.22 As a result, vendor lock becomes less of a concern for 
contracting officers because open standards may allow new vendors to sustain existing 
systems at lower technical risk.

Why Standardization Efforts Sometimes Fail

As discussed in the previous section, standards matter, and successful standardization 
efforts have the potential to enable vastly increased capabilities, reduce cost and expen-
ditures, and, thus, ultimately reshape industries.23 These high stakes can therefore gen-
erate opposition from stakeholders that benefit from the status quo, be it via propri-
etary interfaces or other means of keeping customers captive, or because of increased 
requirements for user training or other services that these stakeholders may provide, 
or simply because of increased barriers to entry in their market.24 Anticompetitive 
strategies can also include requiring excessive royalties for use of standards-related IP, 
delaying the reveal of information about IP that is required for the standard, one stake-
holder attempting to dominate a standard-setting organization, or outright creating a 
standard-setting organization beholden to the particular stakeholder.25

At the same time, even without active spoilers, standardization efforts can fail 
because of practical challenges: lack of stakeholder capability, capacity, and/or com-
mitment; failure to involve key stakeholders (including from the user community); per-

22  Carmen Matutes and Pierre Regibeau, “Mix and Match: Product Compatibility Without Network Externali-
ties,” RAND Journal of Economics, Summer 1988.
23  Martin C. Libicki, James Schneider, David R. Frelinger, and Anna Slomovic, Scaffolding the New Web: Stan-
dards and Standards Policy for the Digital Economy, Santa Monica, Calif.: RAND Corporation, MR-1215-OSTP, 
2000. 
24  Angelique Augereau, Shane Greenstein, and Marc Rysman, Coordination Vs. Differentiation in a Standards 
War: 56k Modems, NBER Working Paper 10334, Cambridge, Mass.: National Bureau of Economic Research, 
2004; Marc Rysman, “Adoption Delay in a Standards War,” thesis, Boston University, October 2003.
25  Jeffrey Mackie-Mason and Janet Netz, “Manipulating Interface Standards as an Anticompetitive Strategy,” 
in S. Greenstein and V. Stango, eds., Standards and Public Policy, Cambridge, UK: Cambridge University Press, 
July 2007.
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sonality conflicts among those involved; legislative or regulatory roadblocks; concerns 
about IP disclosure and related litigation risk;26 or standards development timelines 
that are larger than related technology development cycles and that thus can make a 
standard obsolete before it is even introduced. The dynamic interaction between hard-
ware and software involved in the systems to be standardized also influences the final 
equilibrium of the market in which standardization takes place.27

In a seminal paper on the topic, Carl Cargill identified the following major catego-
ries of standardization effort failures, in order of phase of the standardization process:28

1. “The standard fails to get started” (preconceptualization or conceptualization 
stage)

2. “The standards group fails to achieve consensus and deadlocks” (conceptualiza-
tion stage)

3. “The standard suffers from feature creep and misses the market opportunity” 
(discussion or writing stages)

4. “The standard is finished, and the market ignores it” (implementation stage)
5. “The standard is finished, and implementations are incompatible” including 

because of proprietary extensions (implementation stage)
6. “The standard is accepted and is used to manage the market” e.g., via requiring 

licensing or royalty fees for use of the standard (implementation stage).

Other researchers have focused on the success factors of standardization efforts 
and have found that stakeholders’ willingness to make technological contributions and 
their understanding of the relevant market dynamics are correlated with success.29 
Standardization also benefits from network effects: the more users of the standard, the 
higher the benefits to each user.30 From the standards user perspective, a recent survey 
of Air Force Program Executive Officers (PEOs) resulted in a list of “widely accepted 
common interface standards” that can serve as case studies for successful standards 

26  Simcoe, Graham, and Feldman, 2007. 
27  Church and Gandal, 1992. 
28  Carl F. Cargill, “Why Standardization Efforts Fail,” Journal of Electronic Publishing, Vol. 14, No. 1, Stan-
dards, Summer 2011.
29  Martin B. H. Weiss and Marvin Sirbu, “Technological Choice in Voluntary Standards Committees: An 
Empirical Analysis,” Economics of Innovation and New Technology, Vol. 1–2, 1990.
30  Michael Katz and Carl Shapiro, “Systems Competition and Network Effects,” Journal of Economic Perspec-
tives, Vol. 8, No. 2, Spring 1994.
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development.31 The following guidelines, which are based on these insights, can help 
avoid standardization failure. 

1. Design and implement an effective and efficient standardization process, which 
involves:
 – including the appropriate stakeholders, including future users of the standard
 – enabling a process timeline that is faster than that of underlying technologies 
and markets

 – transparent deliberations and decisionmaking
 – clear rules for resolving disagreements and overcoming deadlock
 – considering an implementation strategy from the beginning
 – minimizing costs to the participants of the standardization process and to 
users of the standard.

2. Understand stakeholders and their motivations:
 – Anticipate stakeholder self-interest.
 – Mitigate against undue influence by a single stakeholder or group of aligned 
stakeholders.

 – Ensure that the standard provides clear benefits, not just for the market as a 
whole, but also for all stakeholders.

3. Understand the context in which the standardization process takes place:
 – legal and regulatory constraints and opportunities
 – intellectual property considerations and strategies
 – related products, services, markets, and associated standards
 – network effects.

Conclusions

Implementation of standards to achieve interoperability will require the design team 
to trade off various aspects of computing system performance. These trade-offs involve 
such performance parameters as delays, data rates, memory use, and data processing. 
Adding interoperability concepts to machine-to-machine interfaces inevitably adds 
headers to each data exchange and may require that additional data exchanges take 

31  Stephen J. Falcone, “Modular Open Systems Architecture/Approaches,” briefing slides, U.S. Air Force Life 
Cycle Maintenance Center Battle Management Directorate, February 6, 2018.
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place. To extend the standard to small devices at the tactical edge may require sacri-
ficing highly desirable attributes of a communications system, such as composability, 
resilience, or even security.

While the economics of standards may enable network effects, better retention 
of human capital, reduced vendor lock, and cheaper training, nontechnical consider-
ations often result in standards that fail to gain widespread acceptance in the market. 
Best practices to avoid such a fate include designing and implementing an effective 
and efficient standardization process; understanding stakeholders and their motiva-
tions; and understanding the market, legal, and regulatory context within which the 
standardization process will take place. 

With this background established, we next turn our attention to understanding 
how existing test data may give us insight into performance impacts of different inter-
face standard implementations.
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CHAPTER FOUR

Insights from Testing and Experimentation

In many areas, standards are specific to a narrow range of applications, which allows 
them to be customized for increased efficiency and reduced complexity. For example, 
peripherals are connected to a computer using a different standard (e.g., Universal 
Serial Bus [USB]) than the one for connecting computers to each other (e.g., Ether-
net), and short-range wireless communications use a different standard (e.g., Blue-
tooth) than do medium-range ones (e.g., WiFi).1

Developing a single standard to cover the connectivity needs of a wide range of 
systems and SoSs, as is the objective of the UCCL effort, is expected to make establish-
ing C2 links between those nodes more efficient, flexible, and robust. However, there 
are potential disadvantages, such as the additional overhead, transmission delays, or 
complexity that can be introduced by a one-size-fits-all standard.

Testing and experimentation can provide insights into how to strike the right 
balance when developing and implementing a universal standard for C2 links. This 
chapter therefore reviews results from experimental performance testing and com-
parison of the SoS Technology Integration Tool Chain for Heterogeneous Electronic 
Systems (STITCHES), Open Mission Systems/Universal C2 Interface (OMS2/UCI),3 
DDS,4 and Variable Message Format (VMF)5 standards conducted by other parties. 
The intent is to identify real-life quantitative examples of performance impacts from 
differing implementation of standards and how widely they vary. We also identified 
real-life examples of message sizes resulting from differences in standards. This infor-

1  Even this statement alone understates the specificity of standards—Bluetooth, for example, is not a single 
standard but a suite of standards (Bluetooth SIG, “Specifications,” webpage, 2021).
2  U.S. Air Force, “Open Mission Systems (OMS),” briefing, September 27, 2017b. 
3  U.S. Air Force, “Universal C2 Interface, Part of the Open Mission Systems,” briefing, 2017a.
4  Object Management Group, “Data Distribution Service Specification Version 1.4,” spec sheet, March 2015.
5  SyntheSys Defence, “Variable Message Format (VMF),” fact sheet, undated.
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mation informs the modeling in subsequent chapters and provides some comparison 
performance data to ensure modeling outputs are comparable to real-life results.

STITCHES Performance 

STITCHES is an approach for connecting heterogeneous systems by establishing mes-
sage interface standards between each system and an adjacent system, with messages 
between systems that are not directly connected being successively translated by each 
of the systems in the transmission chain. A DoD contractor recently undertook a series 
of tests in which STITCHES was integrated in different ways with the Lockheed 
Martin Critical Abstraction Layer (LM CAL) for OMS to connect subsystems, and the 
differences in performance were measured. The different systems were implemented 
on an Intel i7 processor with 4 Cores/8 Threads @ 2.2 GHz (to 3.20 GHz Turbo 
Frequency) and 16 GB RAM. Each subsystem was simulated on a different processor 
core, and messages were exchanged between cores. Messages could be sent in the native 
format (unpacked) or in an optimized smaller size format (packed).

Based on the interviews with engineers supporting the programs and a review of 
results,6 typical processing delays (excluding communications and networking delays) 
for these different standard interface implementations are on the order of milliseconds 
on a circa 2018 computer processor. The details of the implementation of the standard 
seem to affect the delay by an order of magnitude. The impact on the processor over-
head was less clear because of the way it was measured, but there seemed to be signifi-
cant differences in the speed at which certain standard encoding and decoding could 
be processed. This finding indicates that any investigation of interface performance 
should account for both delays and the processing overhead.

OMS Performance 

OMS is one of the U.S. Air Force’s Open Architecture Management Standards that 
“enable current, legacy, and new programs to realize the benefits of open architecture.”7 
OMS facilitates the integration of new subsystems in U.S. Air Force aircraft and other 
major platforms and enables communication among them. The Air Force Research 

6 The results we reviewed are not available to the general public.
7  U.S. Air Force, 2017b. 
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Laboratory (AFRL) conducted a performance characterization of OMS that looked at 
the impact of different implementations of the OMS Critical Abstraction Layer (CAL).

The messages were first serialized, i.e., translated in a more efficient on-the-wire 
format for transferring over a communication link, and then deserialized, i.e., trans-
lated back into readable format. Performance metrics tracked included average process-
ing times across all OMS messages used in the testing, as well as the average message 
size after processing by the CAL. It was observed that overall delays can vary by an 
order of magnitude, depending on the implementation of the standard. Therefore, any 
investigation of interface performance must account not only for the changes in result-
ing sizes of the messages, but also for the higher complexity associated with processing 
the different messaging standards.

Data Distribution Service Performance

DDS specifies a “Data-Centric Publish-Subscribe model for distributed application 
communication and integration” that facilitates efficient dissemination of information 
among heterogeneous systems.8 A study undertaken at Vanderbilt University9 inves-
tigated the performance of three different architectural implementations of the DDS 
standard:

1. decentralized architecture, in which user processes in the connected systems 
communicate directly with each other

2. federated architecture, in which system-to-system communication is handled 
through a separate process in each connected system that interfaces with the 
system’s user process

3. centralized architecture, in which a dedicated system, running a dedicated pro-
cess, manages the message traffic among participating systems (but participat-
ing systems still transfer data directly to each other, once the message manager 
has initialized communications).

Testing took place on dual-processor blade computers connected through a Giga-
bit network. Performance metrics again included latency and throughput, as well as 

8  Object Management Group, 2015. 
9  Ming Xiong, Jeff Parsons, James Edmondson, Hieu Nguyen, and Douglas C. Schmidt, Evaluating the Perfor-
mance of Publish/Subscribe Platforms for Information Management in Distributed Real-Time and Embedded Systems, 
Nashville, Tenn.: Vanderbilt University, 2011. 
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the standard deviation of the latency ( jitter). Table 4.1 and Table 4.2 show the results.10 
It is evident that the DDS-1 architecture provided better performance than did DDS-2 
and DDS-3, as measured both by latency and jitter and by throughput. Furthermore, 
the multicast communications model offered much better bandwidth,11 making the 
DDS-1/multicast combination the best performer.

This experiment also looked at scalability, i.e., how the performance metrics are 
affected by the number of systems communicating. Figure 4.1 shows how both the 
number of subscribers for a message and the size of the message affect bandwidth for 
the DDS-1 implementation and the multicast communications model:12

• Increasing the message size reduces the impact of overhead and thus increases the 
effective bandwidth.

• Increasing the number of subscribers significantly reduces relative performance 
for unicast, but not for multicast.

10  All values shown in these tables were extracted from the figures in Xiong et al., 2011, using WebPlotDigitizer 
(Ankit Rohatgi, WebPlotDigitizer, Version 4.4, web-based tool, November 28, 2020).
11 The authors of the DDS study define bandwidth as the maximum kilobits of data that can be sent in one 
second using a given communication model and network architecture. Therefore, a higher bandwidth score 
indicates a more efficient use of the available bandwidth on a link; i.e., fewer overhead bits are needed per data 
exchange.
12  DDS-1 multicast was chosen because it is the highest-performing combination, according to the results 
shown in Table 4.2 and Figure 4.2.

Table 4.1
Results of DDS Architecture Investigations as Reported by Xiong et al., 2011:  
Latency and Jitter, by Implementation

UNCLASSIFIED

Implementationa Architecture
Roundtrip Latency 

(ms) 
Jitter  
(μs) 

DDS-1 Decentralized 0.083 4

DDS-2 Federated 0.223 10

DDS-3 Centralized 0.433 23

NOTES: Results shown are approximate, for a message length of 64 samples, simple data type, 1-to-1 
messaging on the same blade.  = lower is better; ms = milliseconds; μs = microseconds.
a As per Xiong et al., 2011 (Figures 7 and 8).
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Table 4.2
Results of DDS Architecture Investigations as Reported by Xiong et al., 2011: Bandwidth, by 
Implementation and Communications Model

Implementationa Architecture

Bandwidth (kb/second) 

Unicastb Multicastc Broadcastd

DDS-1 Decentralized 1,320 10,700

DDS-2 Federated 1,860 1,120

DDS-3 Centralized 930

NOTES: Results shown are approximate, for a message length of 256 bytes and 12 subscribers. Blank 
cells indicate that the communications model is not supported by this implementation.  = higher is 
better.
aAs per Xiong et al., 2011 (Figures 9, 10, and 12).
b Sender addresses message to one recipient.
c Sender addresses message to multiple recipients.
d Sender transmits message to all connected recipients.

Figure 4.1
DDS-1 Scalability

SOURCE: Adapted from Xiong et al., 2011, Figure 9.
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We see in these results that even if the same interface standard is used, the way we 
architect the connections as well as the number of systems participating in the com-
munication can have an order of magnitude impact on performance.

Analyzing Universal Command and Control Interface and Variable 
Message Format

The UCI is a message interface standard that is mandatory for use with new U.S. Air 
Force acquisition programs.13 It also has been incorporated into multiple existing plat-
forms. VMF is a message interface standard used in U.S. Army systems.14 Massachu-
setts Institute of Technology (MIT) Lincoln Laboratory analyzed and compared the 
performance of these two standards and assessed the performance impact of translat-
ing from one to the other during real-time message exchanges.15 Two application cases 
were modeled: a system to system exchange of data where U.S. Air Force sensors are 
used to generate target data for a U.S. Army artillery shooter and an internal exchange 
of data between sensors and shooters integrated into a ground vehicle’s active protec-
tion system. In the system to system exchange, the Air Force systems use the UCI for 
their internal communication and the Army system uses VMF, requiring a translation 
step to be inserted between the two systems. The UCI implementation included a 
human-readable XML format, compressed XML format, and a general-purpose binary 
format based on a Google Protocol Buffers implementation. The Army VMF imple-
mentation also included the standard Army fixed-format binary (FFB). For the VMF 
case, the resulting message sizes were 2,577 bytes for XML, 785 bytes for compressed 
XML, 115 bytes for general-purpose binary, and 47 bytes for FFB. In this study, there 
was no effort made to optimize the schema (for example, in the compressed XML 
case a simple and nonoptimal gzip operation was used for the compression), and the 
now-standard and more optimal VMF XML schema was not used. Performance met-
rics used were latency, throughput, bandwidth requirements, central processing unit 
(CPU) load, and memory consumption. This work produced several insights:

13  “Use of Open Mission Systems/Universal Command and Control Interface,” Department of the Air Force 
memorandum for Air Force PEOs, October 9, 2018.
14  SyntheSys Defence, undated.
15  Edward Rutledge et al., UCCL Performance Study Report, Cambridge, Mass.: Massachusetts Institute of Tech-
nology Lincoln Labs, forthcoming.
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• Translating one message from the source standard may result in multiple mes-
sages in the destination standard, and vice versa. 

• Different encoding options for messages result in different performance char-
acteristics (code complexity, human-readability, processing effort, message size). 

• On fast transport networks (e.g., Gigabit Ethernet), message processing and 
transmit times are substantially below the upper limit imposed by even the chal-
lenging APS application case (challenging because it calls for a response time on 
the order of magnitude of milliseconds), independent of message encoding and 
resulting message size.

• However, on bandwidth-limited transportation networks (e.g., Link-16), the mes-
sage size, which is driven by the encoding option, can lead to transmission times 
on the order of magnitude of several seconds per set of messages, which is beyond 
what is acceptable for the APS case. Thus, encoding for time-critical applications 
must be optimized for message compactness rather than readability.

Potential Inefficiencies of a UCCL

From these past results, we observe that different implementations of different stan-
dards can have significant impacts on performance. The most pronounced effect is on 
system delays. Factors that influence delays are message size, data processing complex-
ity, transfer time over a communication link, and how the messages flow from system 
to system. Our ability to discriminate between performance of different interface 
implementations was dependent on our ability to capture the effect of these param-
eters adequately. 

Message size, as discussed in Chapter Three, can grow quickly if multiple layers 
of communication are used to complete a message exchange. An interface designed 
to operate exclusively between two specific systems can be optimized to exchange the 
minimum amount of information needed to execute the mission. If these exchanges 
are tailored to specific systems and for a specific set of actions or missions, a clever 
designer can tailor a very small message set and associated data fields without the need 
to exchange any information about the systems themselves, the mission, or underlying 
information that does not change over time or across missions. However, if the systems 
are designed to allow multiple sensors to connect to multiple shooters in ways that vary 
over time, in support of a wider variety of missions, then additional information needs 
to be exchanged between the systems. For example, when a new sensor connects to a 
new shooter, they need a handshake to identify themselves, their respective capabili-
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ties, and the mission they are executing. This requires additional data headers, data 
fields, and a negotiation protocol to agree upon a basic set of rules about their mission 
and the data to be exchanged during mission execution. These headers play a role like 
the IP headers described in Chapter Three, enabling interoperability while abstracting 
the underlying systems complexities. 

Another inefficiency introduced by a UCCL may be the need for larger data 
fields. All systems are designed to use data at a particular precision that allows their 
algorithms to make accurate calculations and decisions within the context of the mis-
sion. If only two systems are connected, then message data fields can be sized to the 
needs of each system and algorithm. When multiple sensors need to connect to multi-
ple shooters, data fields are often sized to the system that requires the highest-precision 
inputs. So, while two systems could execute the mission by passing a data element as 
an integer variable, the overall SoS might require a single or double precision variable 
to support a third system that needs higher accuracy.16 

These inefficiencies will create extra delays because of additional processing time, 
additional encryption and decryption time, and additional transmission time over the 
communication links. The processing time will depend on the speed of the underly-
ing processor and the complexity of the operations to be performed on the additional 
header and data fields. The encryption and decryption time will depend on the speed 
of the underlying cryptographic device and additional amount of header and data that 
need to be encrypted/decrypted. The transmission time will depend on the data rate 
of the communication link and the additional amount of header and data that need to 
be exchanged.

Summary of Testing and Experiment Data Review

From the cases discussed earlier, it is evident that performance—as measured by 
throughput or bandwidth and latency—is greatly affected by implementation details. 

The STITCHES-based approach, especially when combined with sender-packed 
messages, shows substantial differences in performance, depending on the configura-
tion. The details of the implementation can affect the delay by an order of magnitude. 

16  Obviously, there is a trade to be made here. Many languages support self-describing interfaces—an approach 
that uses extra headers and protocols to describe the data formats used by the system. This approach allows data 
fields to be sized to only what is needed by the sending or receiving system but comes at the expense of the extra 
messages, headers, or data fields needed to describe the interface. 
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The impact of the additional CPU processing can be two orders of magnitude. There-
fore, both delay and processing overhead are important.

In the case of the OMS experimentation, the reference CAL is significantly 
slower and less efficient regarding the message size it produces. Again, this confirms 
that implementation details matter greatly for the performance of C2 standards and 
can vary by an order of magnitude. Additionally, the higher complexity associated with 
processing some messaging standards can have a significant effect.

The DDS experiment illustrates that implementation details—such as archi-
tecture, communications model, and number of participants—can have significant 
impacts on system performance, even when the standard used is the same.

Finally, an analysis of the UCI and VMF standards for two different use cases 
again emphasizes that performance is greatly affected by such implementation details 
as message encoding and compression and depends on the underlying transmission 
protocol used and the speed of the communication link. We also saw an example of 
how different implementations of a standard can result in different packet sizes in real-
life implementations. These include FFB, general-purpose binary, compressed XML, 
and regular XML. We will use these data sizes as proxies in the following chapters 
for different interface implementations that will include modeling of specific mission 
threads and system implementations.

In Chapters Five through Seven, we analyze three different mission threads:

• EW inter-pulse jamming
• vehicle APS 
• BMD.

We chose these threads to represent a wide variety of execution times, from sub-
milliseconds for an EW mission to milliseconds for an APS mission to minutes for a 
BMD mission. For each of these threads, we modeled the effects of delays on the oper-
ational mission effectiveness and identified the risks associated with different levels of 
implementation overhead.
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CHAPTER FIVE

Electronic Warfare Mission Thread

CONCERTO is a program designed to reduce size, weight, and power (SWaP) con-
cerns in military aircraft. It does so by enabling sharing of RF hardware for onboard 
systems such as EW, communications, and radar. Developed for DARPA, CON-
CERTO relies on modern, highly capable RF equipment paired with novel methods of 
implementation. This makes CONCERTO highly mission-adaptable: Antennae could 
be added or removed without changing the system interface, and aircraft with smaller 
payloads can become more capable of performing multimodal missions. By using flex-
ible common hardware, SWaP can be greatly reduced, so long as the hardware can 
switch between functions in a sufficiently timely manner.1 In our analysis, we consider 
a genericized version of the CONCERTO system concept. The system we consider 
must have three important parts:

1. An antenna, which receives RF and provides digitized RF to the Common 
Hardware. This antenna is shared by all the possible RF functions.

2. Common processing hardware, which configures the antenna and processes 
data. This processing hardware and the antenna being common between RF 
functions is what allows the reduction in SWaP.

3. An adjudicator, which manages common processing hardware and antenna use. 
This component must exist to adjudicate use of the other two pieces of the 
system.

In this chapter, we explore how a UCCL implementation might interact with a 
system that implements a CONCERTO-like system concept, hereafter referred to as 
the System. The mission thread we explore is an EW inter-pulse jamming mission, 
which requires extremely short submillisecond reaction times, for which interface over-

1 Kevin Rudd, “CONverged Collaborative Elements for RF Task Operations (CONCERTO),” web-
page, Defense Advanced Research Projects Agency, undated.



42    Universal Command and Control Language Early System Engineering Study

head delays will have a more pronounced effect on mission performance than will be 
observed in the mission threads discussed in Chapters Six and Seven.

Modeling the Mission Thread and Its Interfaces

We must consider the level within the System’s process at which to insert UCCL. 
Within a subsystem, whether an antenna, subsystem control, or resource management, 
UCCL offers little benefit for potentially significant performance impacts. Data within 
these subsystems are rapidly exchanged, meaning that any excess header information 
leads to compounding delays. Furthermore, these subsystems are mostly self-contained, 
with only very specific inputs and outputs. As a result, it makes more sense to imagine 
UCCL as the method through which these subsystems communicate, rather than a 
language internal to any or all of them. In this way, UCCL assists in CONCERTO’s 
goal of adaptability and openness.

We examine a potential use case in which an antenna aboard some platform, 
hereafter referred to as the CONCERTO platform, is being shared between Electronic 
Support Measures (ESM) and EW jamming activities. In this scenario, outlined in 
Figure 5.1, an airborne platform in ESM mode detects a communications signal that 
it intends to jam.

After detection, the common processing hardware and adjudicator work to prepare 
and manage the switchover of the antenna’s use from ESM to EW mode. We examined 
an approximation of this process and explored how different potential UCCL headers 
affect the System’s ability to jam the pulse in terms of the distance over which this can 
be done. This distance, djam, is defined by the time available for the signal to propagate, 
which, itself, depends on the pulse of the signal to be jammed and the time to move 
and process information within the System.

In Equation 5.1, we let c be the speed at which the signals propagate (assumed to 
be the speed of light); f is the portion of the signal that must be jammed to be consid-
ered a success; and tpulse, tinternal, and txfer are the pulse length, subsystem internal process-
ing activity time, and data transfer and header processing time, respectively. We can 
see that the time remaining after accounting for the amount of the pulse that must be 
jammed and information transfer and processing time gives us the time for the signal 

d jam =
c
2
(1– f )×t pulse – t internal – t xfer( ) .  5.1
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to propagate to the receiver and then from the jammer to the target. And knowing the 
speed of the signal, we can determine djam. We derive this equation later in this chapter 
(see derivation for Equation 5.4, later). UCCL will come into play by potentially alter-
ing time txfer.

The System Interfaces

As mentioned previously, the System revolves around the interaction of three key pieces: 
the antenna, the common processing hardware, and the adjudicator. The process by 
which these parts interact in our example scenario is detailed here.

The process begins with the common processing hardware recognizing the ESM 
reading as a signal to jam and sending instructions to switch the antenna from ESM to 
EW mode. These instructions are sent to the adjudicator (to ask permission to do the 
switch) and the antenna (to do the switch). The adjudicator determines appropriate use 
of the antenna and enables the common processing hardware’s request. The antenna 
is configured into EW mode while the common hardware provides the EW waveform 
and jamming begins.

Figure 5.1
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As mentioned earlier, we explored the impact of UCCL as a requirement for inter-
action between the antenna, common processing hardware, and adjudicator but did 
not consider the use of UCCL within these subsystems and view each as being effec-
tively a black box provided by a manufacturer.

Unfortunately, because of this necessary black box approach, we do not know the 
internal processing time to accomplish tasks within the antenna, common processing 
hardware, or adjudicator subsystems and were forced to estimate them. Consequently, 
it was difficult to fully simulate the process described above. Instead, we looked for the 
most likely long pole, the interactions that most likely dictate how quickly the process 
happens. Our candidates for these are the following:

• the common processing hardware sending the setup data to the antenna, receiv-
ing the status of that setup back from the antenna, and sending the waveform 
data to the antenna

• the common processing hardware sending the setup data to the adjudicator, send-
ing an access request to use the antenna for EW purposes to the adjudicator, and 
the adjudicator enabling the configuration for the antenna.

If we assume that the processing time in the subsystems is similar between the 
two candidates, then the second candidate is likely to take longer, because the I/Q data 
are smaller than the control message, and both transport over hardwire connections 
with similar throughput. This is the path that we modeled to compare the effect of 
possible UCCL implementation.

The Model of the UCCL Interfaces

Our notional model includes the adjudicator, common processing hardware, and 
antenna each as nodes. UCCL would be implemented for each in such a way that their 
inputs and outputs are compatible with a UCCL. This means that all steps in Figure 
5.1, with the exception of the antenna’s RF transmission, are candidates for using 
UCCL. As mentioned previously, we examined the likely longest path and explored 
the impact of UCCL across these three steps:

1. The antenna setup message is sent from the common processing hardware to 
the adjudicator.

2. The access request is sent from the common processing hardware to the adju-
dicator. 

3. The access configuration enabling message is sent from the adjudicator to the 
antenna.
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Because these steps happen sequentially, we could calculate their time to occur 
independently and sum them to get the total time. The internal processing time for 
these steps—that is, the time to handle internal data processes not having to do with 
interpreting received data—is dependent on the specific equipment and design of the 
hardware and software and was unknown to us. As this was outside our concern, we 
abstracted these times to a fixed value, tinternal, that represents the summation of the 
time for all internal processing.

We calculated the time to complete a data transfer and interpretation step, n, as

By summing these individual times for the traditional and possible UCCL packet 
sizes, we could determine the time difference between these options:

If we wanted to jam some percentage of the communications signal, f, as men-
tioned previously, then we could conclude that the time left after accounting for this 
percentage, the internal processing time, and txfer is the time left for the signal to propa-
gate (first from the source to the System platform, then from the System platform to 
its target). And the time to propagate is the distance traveled divided by the speed of 
light, at which the RF signal propagates (the maximum jammable distance). This gives 
us Equation 5.4, which we can rearrange to derive Equation 5.1.

Modeling Assumptions

The notional signal to be jammed is a frequency-hopping communications signal with 
a pulse length of 1 ms. It is commonly assumed that successful jamming requires the 
ability to jam at least one-third of the pulse.2

We assumed that the System platform is equidistant from the source of the com-
munications signal and its intended point of jamming. Because we could not know 
the exact geometry of this setup, we chose this simple representation that allows easy 

2  Richard Poisel, Modern Communications Jamming: Principles and Techniques, Washington, D.C.: Artech 
House, 2011.

txfern =
packet  size

transfer  speed
+ packet  size operations needed  per  bit

processor  speed
 .

t xfer= n t xfern∑

2×
d jam

c
= (1– f )×t pulse – t internal – t xfer

5.2

.     5.3

.   5.4
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comparison between our cases. To keep this simple geometry, we also did not account 
for issues related to factors such as curvature of the Earth and, instead, envisioned an 
infinitely flat expanse over which we compared our cases.

Because we could not be sure of the specific capabilities, we further assumed that 
the time to process information and move from one communications step to the next 
for the antenna, common processing hardware, and adjudicator is similar. We estimate 
the sum total of this time for the process we investigate as 0.1 ms. 

Table 5.1 lists the modeling parameters and assumptions.

Modeling Results and Critical Step Analysis

The analysis encompasses the entire intra-pulse jamming sequence, because it is com-
posed of a small number of rapid steps, and all need to be accomplished in a spe-
cific order for successful jamming. In the context of this mission thread, each step 
is critical. We explored four different UCCL candidates: an FFB 47-byte UCCL, a 
general-purpose binary 115-byte UCCL, a compressed XML 785-byte UCCL, and an 
uncompressed XML 2,577-byte UCCL. These should not be interpreted as estimates 

Table 5.1
Modeling Parameters

Parameter Units Value

Internal “black box’” processing time for all 
systems combined

ms 0.1

Message size–baseline bytes 4 or 16

Message size–UCCL bytes 47, 115, 785, or 2,577

Number of operations required per bit — 200 to 10,000

Processor speed mips 10,000 to 300,000

Pulse length ms 1

Ratio of distance to source versus distance to target — 1

Signal propagation speed m/s 3 x 108

Successful jam ratio — 1/3

Wired bandwidth GbE 1 or 40

NOTE: GbE = Gigabit Ethernet; MIPS = million instructions per second; ms = millisecond(s); m/s = meters 
per second.
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of overhead for each implementation approach within the System, but rather as a range 
of possible input values. Implementations of each approach will differ and depend 
on several design decisions that are beyond the scope of this study. Hence, when we 
reference performance of an XML implementation as compared with an FFB, we are 
referring to these representative values of message sizes and not actual XML or FFB 
implementations of a standard. We then compare these with an assumed base case of 
header sizes of around 5–25 bytes. We then varied the processor speed from 10,000 to 
300,000 mips and the number of operations needed per bit from 200 to 10,000. Note 
that while we do not have estimates of the operations per bit required for each format, 
in general it would be increasing going from FFB, general purpose, to XML, to com-
pressed XML. Figure 5.2 showcases these results. 

A typical IP header processing complexity factor is around 100 operations per 
bit, while typical signal processing complexity factors are 10,000 operations per bit or 
more.3 We explored the range of processing complexity factor up to 10,000, assuming 
that the processing algorithms must have been designed with maximum computa-
tional efficiency in mind. These results should be used to understand the trade space 
for these types of systems, and not as performance numbers for a specific system. In 
our notional example and under the assumptions stated above, the System platform 
can jam a communications signal at a distance of at least 50–60 km for almost all 
ranges of values for processor speed and required number of operations per bit. Indeed, 
in many of the cases we explored, the jammable distance was greater than 80 km. An 
FFB 47-byte value may reduce this distance by anywhere from 10 to 30 km in most 
cases, and more in select cases where a large number of operations per bit is required 
or processor speed (or available additional processing power) is very low. In the most 
extreme of these cases, the system fails to complete its objective. The general-purpose 
binary value of 115 bytes continues this trend, with the jamming being impossible 
because of delays in transferring and interpreting data for a number of cases in which 
the number of operations per bit is high and processing speed is low. Finally, the com-
pressed and uncompressed XML values make this mission impossible except in cases in 
which we need very few operations per bit and have a very fast processor—and in most 
of those cases, our performance is still severely degraded compared to the base case.

The source of this degradation must come from one of two sources: the time 
required to transport the data or the time required to process and interpret them once 
received. Because the communication links in this example are rated at more than 1 
GbE (due to our assumption that they are hardwired links), we can conclude that they 

3  R. S. Tucker and K. Hinton, “Energy Consumption and Energy Density in Optical and Electronic Signal 
Processing,” IEEE Photonics, Vol. 3, 2011.
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Figure 5.2
UCCL Integration Results: Maximum Jammable Distance
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are not a source of delay. The data can move from one subsystem to another in a neg-
ligible amount of time. Instead, it is the processing and interpretation of the message 
once received that causes the delay in initiating the jamming and the resulting poten-
tial decrease in effectiveness.

Conclusions

This chapter describes a case of a system with very short reaction times that is opti-
mized for speed. Adding a modest amount of interface overhead will affect operational 
performance, but the effects could be manageable. However, as the overhead increases, 
we would expect to see significant operational performance degradation. These types 
of submillisecond system responses would require a very carefully tailored interface or 
a much-reduced overhead version of UCCL. Therefore, implementing standard inter-
faces in these types of systems is higher-risk and requires very careful and detailed 
engineering analysis to ensure that these operational performance trade-offs are carried 
out successfully.

In the next chapter, we look at a vehicle APS. This system requires slower reac-
tion times, in which delays may have a less pronounced effect on mission performance.
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CHAPTER SIX

Active Protection System Mission Thread

The MADIS is a family of APSs providing air defense capabilities to protect a ground 
maneuver force on the move against such threats as unmanned aerial systems (UAS) 
and fixed-wing and rotary-wing aircraft.1 MADIS is designed to operate on a pair of 
tactical vehicles working together: one Stinger variant (Mk1) and one Counter-UAS 
variant (Mk2). The Mk1 vehicle is equipped with a turret-launched Stinger missile 
with EW capabilities, a direct-fire weapon, electro-optical/infrared (EO/IR) sensors, 
and shoulder-mounted Stinger missiles. The Mk2 is equipped with a a turret-launched 
counter UAS kinetic weapon, EW capabilities, 360-degree radar, direct-fire weapon, 
EO/IR sensors, and Beyond Line of Sight gateway/server capability. The Army is devel-
oping a similar integrated weapon system, although without linking multiple vehicles.2

The Mk1 vehicle interfaces with the Mk2 vehicle via the Adaptive Networking 
Wideband Waveform.3 The Mk2 communicates with the Common Aviation Com-
mand and Control System to access the common tactical picture (CTP), engagement 
commands, and weapons alert states. This link is provided via Link 16 running the 
Joint Range Extension Application Protocol. The CTP includes information about 
hostile, neutral, and friendly tracks from national, theater, and tactical sensor feeds.

Modeling the Mission Thread and Its Interfaces

MADIS is analyzed here as a generalized APS that affords protection not only to the 
tactical vehicle on which it is mounted but also to the other vehicle in a MADIS pair, 

1  U.S. Marine Corps, “Ground Based Air Defense,” webpage, undated.
2  Leonardo DRS Company, “IM-SHORAD,” webpage, 2020.
3  John Keller, “Harris to Provide Military Special Operations Radios for Sensitive and Covert Missions,” Mili-
tary and Aerospace Electronics, January 22, 2014. 
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as well as to a nearby maneuver force. Coordinating APS capabilities across multiple 
vehicles may pose networking challenges.4 The results of this analysis should be viewed 
as indicative of the family of systems and do not represent the behavior of the actual 
MADIS itself. They should be used to understand the trade space for these types of 
systems and not as performance numbers for the specific MADIS. To estimate the 
impact of the UCCL, we compute the Minimum Defeat Distance (MDD)—the small-
est launch distance of a threat at which the protection system is expected to succeed in 
intercepting the threat. The MDD is a commonly used metric to compare APSs.5 The 
MDD, measured in meters, is defined as follows:

In Equation 6.1, V is the speed of the incoming threat projectile; SRT is the system 
reaction time, comprising the time for search, recognition, and identification of the 
threat until interception by the countermeasure; and IP is the interception point, the 
required distance from the exterior of the vehicle to the point of interaction between 
the threat and countermeasure. In the analysis of APSs, the interception point depends 
only on the type of hardkill countermeasure.6 The interception point reflects the fact 
that safe, kinetic interaction with the threat requires the countermeasure to be some 
distance away from the protected vehicle when the interaction takes place. In the anal-
yses below, V is measured in m/s, SRT in seconds (s), and IP in meters (m). The inter-
ception point for eight APSs reviewed by Haug and Wagner7 varies from 1 to 30 m.

The MADIS System Interfaces

We evaluated the MADIS APS in two threat scenarios: one in which a cruise missile 
targets a maneuver force protected by a MADIS pair (Figure 6.1), and one in which 
a rocket-propelled grenade (RPG) is launched toward the Mk1 vehicle (Figure 6.2). 
Cruise missile threats appear not to be typically analyzed in the context of APSs.8 

4  B. Kempinski and C. Murphy, “Technical Challenges of the U.S. Army’s Ground Combat Vehicle Program,” 
in Isak Lundgren, ed., The Army’s Ground Combat Vehicle (GCV) Program, Hauppauge, N.Y.: Nova Science Pub-
lishers, 2013.
5  D. Haug and H. J. Wagner, “Active Hard Kill Protection Systems—Analysis and Evaluation of Current 
System Concepts,” Strategie & Technik, Autumn 2009.
6  Haug and Wagner, 2009.
7  Haug and Wagner, 2009.
8  They are notably absent from the list of threat reviews in R. Steeb, Issues for Ground Vehicle Active Protection 
Systems for the Next Decade, draft report, U.S. Army Fort Benning Maneuver Center of Excellence, 2017.

MDD =V ×SRT + IP .   6.1
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Figure 6.1
Cruise Missile Threat Scenario
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In this case, the interception point is driven by the threat type, rather than by the 
countermeasure, because interception of a cruise missile payload may result in a wide 
damage area. For this reason, the interception point assumed in the cruise missile sce-
nario is much larger than in usual APS scenarios (500 m).

In both scenarios, the countermeasure is assumed to be a small missile whose 
velocity is the same as that of a Stinger missile (750 m/s).9 This assumption is con-
sistent with the use of missiles in some APSs (e.g., Quick Kill).10 Neither scenario is 
explicitly described among GBAD capabilities.11 The cruise missile and RPG threats 
might be dealt with by different countermeasures, or the flow of information between 
tactical vehicles could be different from what is assumed in this analysis. 

The Model of the UCCL Interfaces

The flow of information differs between the cruise missile and RPG use cases, result-
ing in different ways to model SRT. Each case is described separately below. 

Cruise Missile Threat

Figure 6.1 illustrates the cruise missile threat scenario. The mission vignette starts with 
a cruise missile being launched toward the Maneuver Force (1). An AWACS detects the 
incoming cruise missile (2) and relays that information via the CTP to the MADIS 
Mk2 vehicle (3). The Mk2, in turn, transmits that information to the Mk1 (4), which 
launches a countermeasure to intercept the cruise missile (5). The notional UCCL runs 
on a three-node network (AWACS Mk2 Mk1) in this scenario.

SRT is defined as:

9  See “FIM-92 Stinger MANPADS Man-Portable Surface-to-Air Missile System,” fact sheet, Army Recogni-
tion.com, November 13, 2020. 
10  “Hardkill APS Overview,” Below the Turret Ring blog, January 7, 2017.
11 U.S. Marine Corps, undated.

SRT = DT + ea + ta Mk 2 + dMk 2 + pMk 2 + eMk 2 + tMk 2 Mk1 + dMk1 + pMk1 + c .   6.2
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DT is the detection time for a surveillance radar, set to 100 ms.12 Detection is 
assumed to be on an airborne platform, given the known difficulty of detecting low-
flying missiles from the ground.13

ea is the time for encryption, on the airborne platform, of the message relayed to 
the Mk2. This time is computed as a function of message size, in bits, and encryption 
speed. Encryption speed is set to 200 Mbps, based on an existing standard.14

          is the time to transmit the message from the airborne platform to the Mk2 
via Link 16. This time is a function of message size and bandwidth of Link 16, set here 
to 115.2 kbps.15

dMk2 is the time needed to decrypt the message received on the Mk2. This time 
depends on message size and decryption speed, set again to 200 Mbps.

pMk2 is the time to process the incoming data from the airborne platform on the 
Mk2 vehicle. We make no specific assumptions about the nature of the processing 
but note that it would include at least tracking an incoming threat and determining 
whether it will pass through a protected area.16 Processing time is computed by mul-
tiplying the message size in bits with an estimate of the number of operations per bit 
and dividing the result by the processor speed (in mips). The number of operations 
per bit depends on the kind of processing performed on the data. For example, a pre-
vious report estimates the number of operations per bit to process internet headers to 
be at least 100, and potentially much larger.17 We treat this estimate as a lower bound 
and, instead, set the number of operations per bit to 100,000 as an upper bound, for 
processing either headers or data. The mips is set to 49,360, corresponding to an Intel 
Core i7 7500U.18 As a worst-case analysis, it is assumed that the Mk2 vehicle needs to 

12  Simon Kingsley and Shaun Quegan, Understanding Radar Systems, Vol. 2, Chennai, India: SciTech Publish-
ing, 1999.
13  Defense Industry Daily staff, “JLENS: Co-ordinating Cruise Missile Defense—and More,” Defense Indus-
try Daily, February 13, 2017; Lee O. Upton and Lewis A. Thurman, “Radars for the Detection and Tracking of 
Cruise Missiles,” Lincoln Laboratory Journal, Vol. 12, No. 2, 2000. 
14  General Dynamics Mission Systems, “TACLANE-Micro (KG-175D) Encryptor,” fact sheet, 2020. 
15  Viasat, “MIDS-LVT Terminals,” webpage, 2021.
16  Viasat, 2021.
17  Tucker and Hinton, 2011, p. 828. In this reference, the number of operations per bit for internet packer header 
recognition is reported to be on the order of 100, and on the order of 10,000 and higher for a single signal pro-
cessing application. We set it to 100,000 given that multiple data and signal processing algorithms are required 
in our system. 
18  “Instructions per Second,” Wikipedia entry, webpage, updated February 22, 2021.

ta Mk 2
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decrypt the message from the AWACS and encrypt it again to send it to the Mk1. The 
time for encryption on the Mk2, eMk2, is set to the same value as ea.

tMk 2 Mk1 is the time to transmit the message from the Mk2 to the Mk1 via the 
Adaptive Networking Wideband Waveform link. This time is a function of message 
size and radio bandwidth, set to 500 kbps.19

 dMk1 and pMk1 are the times to decrypt and process the message on the Mk1 and 
are set equal to dMk2 and pMk2, respectively.

c is the time for the countermeasure from the Mk1 to reach the interception point. 
We assume a worst-case scenario where the Mk1, the maneuver force, and the cruise 
missile launch point form a single line, with the maneuver force located somewhere 
in the middle. Compared with other geometrical placements, this entails the longest 
possible interception path for the countermeasure. In this setting, the countermeasure 
needs to traverse the distance between the Mk1 and the maneuver force and then to 
the interception point. Without further constraining information, the distance from 
the Mk1 and the interception point is assumed to be 500 m. The time to cover the 
distance is computed as the ratio of that distance to the speed of the countermeasure. 

Rocket-Propelled Grenade Threat

Figure 6.2 illustrates the RPG scenario. The mission vignette starts with an RPG 
being launched toward the Mk1 (1). The Mk2 vehicle detects the incoming RPG (2) 
and informs the Mk1 vehicle (3). The Mk1 vehicle then launches a countermeasure to 
intercept the RPG (4). The notional UCCL runs on a two-node network (Mk2 Mk1) 
in this scenario.

The calculation of SRT is considerably simplified, relative to that for the cruise 
missile threat: 

Here, time for DT is set to 100 ms, which is on the low end—although not the 
lowest—of SRTs for various APSs reviewed in Haug and Wagner (2009). All other 
quantities are determined as in the cruise missile case, except for c. The interception 
point is set to 30 m, consistent with typical values used for RPG threats. We assume 
the same countermeasure as in the cruise missile case—a projectile with the velocity of 

19  Mark Turner and Ken Dingman, “Developing SCA Based Wideband Networking Waveforms,” presentation 
slides, Harris Corporation, 2011.

SRT =DT + eMk 2+ tMk 2→Mk1+d Mk1+ pMk1+ c .  6.3
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a Stinger missile. The Quick Kill system, for example, uses guided or unguided mis-
siles as countermeasures for RPGs.20 

Equation 6.3 and the geometry displayed in Figure 6.2 are consistent with two 
RPG scenarios:

1. The RPG is targeted at the Mk1 vehicle, but that vehicle’s sensors are disabled. 
In this case, the Mk2 vehicle provides auxiliary sensing capabilities to the Mk1.

2. The RPG is targeted at the Mk2 vehicle and is detected by that vehicle’s sensors, 
but the vehicle is out of countermeasures to intercept the threat. In this case, the 
Mk2 vehicle provides targeting coordinates to the Mk1 vehicle and instructs it 
to intercept the threat. This could happen, for example, if multiple RPGs were 
simultaneously fired at the Mk2 and the vehicle had already launched all loaded 
countermeasures. In this case, the Mk1 provides the Mk2 with an improved 
capability to deal with salvos.

The second scenario—the ability to respond quickly to multiple incoming 
threats—is probably most relevant to APS systems, because long reload times signifi-
cantly increase the MDD.21

Modeling Assumptions

The MDD is defined as the distance between the threat’s launch point and the tar-
geted force. In the cruise missile scenario, this is the distance from the maneuver force 
to the point of launch of the cruise missile. In the case of the RPG, it is the distance 
from the Mk1 vehicle to the point of launch of the RPG.

The speed of the threat (V in Equation 6.1) is defined using information available 
in the literature. Table 6.1 lists three examples each for cruise missile and RPG threats. 
Threats highlighted in gray—Kh-59ME for cruise missiles and RPG-29 for RPGs—
were used in the current numerical studies. Only the reported speeds are used in our 
calculations. The maximum operational ranges are used to check that the resulting 
MDDs are within reasonable use ranges.

The MDD is computed with Equations 6.1 or 6.2, for increasing message sizes 
and number of operations per bit. The message size corresponds to the sum of the sizes 
of the data and of the header. The size of the headers is varied from 0 to 256,000 bits. 
The size of the data is set to 47 bytes, which corresponds to the mean size of FFB mes-

20  “Hardkill APS Overview,” 2017.
21  The reload time of 1.5 seconds for the Trophy system is estimated to increase the MDD to 450m in the case 
of RPG-7 threats. See “Hardkill APS Overview,” 2017.
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sages reported elsewhere in the context of the analysis of typical implementations of 
message formats.22

For reference, the smallest useful message would need to convey at least the 
instant position (latitude, longitude, altitude) and velocity of the threat along each 
spatial dimension, for a total of six coefficients. If each coefficient were encoded as a 
Double Double (128 bits), the total data size would be 96 bytes. 

Finally, we make the following simplifying assumptions on the geometry of the 
scenario:

1. The missile turret on the Mk1 already points toward the threat (i.e., the turret 
does not need to be rotated to adjust either azimuth or elevation).

2. For the RPG scenario, there are no occluding obstacles between the threat and 
the MADIS system that might impair detection by the Mk2 vehicle.

3. The threats follow a straight-line trajectory to their target and move at a con-
stant, maximum velocity.

22  Rutledge et al., forthcoming.

Table 6.1
Threat Types

Threat Class Threat Speed (m/s) Range Source

CM Hermes 1,300 100km Deagle.com, homepage, 
undated-a.

Hongniao-1 (H1-A) 274 600km Missile Defense Project, “Hong 
Niao Series (HN-1/-2/-3),” Missile 
Threat, database, Center for 
Strategic and International 
Studies, August 12, 2016, last 
modified November 26, 2019

Kh-59MEa 292 115km Deagle, undated-a

RPG RPG-7 with PG7VR 100 200m Maxim Popenker, “Modern 
Firearms,” webpage, undated 
(range); Haug and Wagner, 2011 
(velocities)

RPG-7 basis type 200 200–500m

RPG-29 450 500m

NOTE: CM = cruise missile.
a The Kh-59ME is an export variant of the Kh-59 that can destroy both ground and surface ship targets 
(GlobalSecurity, “Raduga Kh-59 (AS-13 Kingbolt) and Kh-59M (AS-18 Kazoo),” webpage, updated 
October 18, 2015), in contrast to the Kh-59MK (Deagle, “KH-59,” webpage, undated-b), which is 
designed to destroy exclusively ships.
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Table 6.2 summarizes the parameters used in modeling.

Modeling Results/Critical Step Analysis

Since the APS sequence is composed of very few rapid steps and all must be accom-
plished in a specific order for successful interception, this analysis encompasses the 
entire sequence, and no separate critical-step analysis was done. In the context of this 
mission thread, each step is a critical step. 

Keeping data size constant and varying header size and number of operations 
per bit, we computed the MDD results in the surfaces depicted in Figures 6.3 and 
6.5 for cruise missile and RPG threats, respectively. The message sizes corresponding 
to the four data formats in Table 6.3 are overlaid as horizontal cross-sections on the 
surfaces. These should not be interpreted as estimates of overhead for each implemen-

Table 6.2
Modeling Parameters

Parameter Units Value

DT ms 100

Encryption speed Mbps 200

Decryption speed Mbps 200

Link 16 bandwidth Kbps 115.2

ANW2 bandwidth Kbps 500

Processor speed mips 49,360

Number of operations per bit to process data and 
header

operation 0 to 100,000

Interception point (RPG) m 30

Interception point (CM) m 500

Threat velocity (RPG) m/s 450

Threat velocity (CM) m/s 292

Countermeasure velocity m/s 750

Header size bits 0 to 256,000

NOTE: CM = cruise missile; ANW2 = Adaptive Networking Wideband Waveform.
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tation approach, but as a range of possible input values. APS implementations of each 
approach will differ and depend on several design decisions that are beyond the scope 
of this study. Hence, when we reference performance of an XML implementation as 
compared with an FFB, we are referring to these representative values of message sizes 
and not to actual XML or FFB implementations of a standard representing real APS 
system message sizes.

Table 6.3
Four Data Formats

Data Format

Message 
Size 

(Bytes)

XML 2,577

Compressed XML 785

General-purpose binary (GPB) 115

FFB 47

Figure 6.3
MDD as a Function of Operations per Bit and Header Size for Cruise Missile Threats
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Figures 6.4 and 6.6 illustrate the MDD broken down into “phases of engage-
ment” for cruise missile and RPG threats, respectively, for the four data formats. The 
highest number of operations per bit is assumed (i.e., the data shown correspond to the 
MDD measured at the right side of each horizontal cross-section). The breakdown is 
across the six phases defined in Table 6.4.

Cruise Missile Threats

Figure 6.3 shows the MDD surface for cruise missile threats according to the Kh-
59ME velocity profile. Even when header size and number of operations per bit are at 
their highest, the resulting MDD ( 2,000m) is well within the operational range of 
this kind of threat (115km). The same figure shows the XML, XML compressed, GPB, 
and FFB values for message sizes as horizontal lines.

Figure 6.4 displays the components of the MDD for the four data formats, 
assuming the highest number of operations per bit. A GPB value has a barely notice-

Figure 6.4
MDD Breakdown Across Phases of Engagement for Cruise Missile Threats
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Table 6.4 
Definitions of the Phases of the MDD

Phase Definition (CM) Definition (RPG)

Detection V DT V DT

Communications V(ta Mk2+tMk2 Mk1 )
Encryption V(ea+dMk2+eMk2+dMk1) V(eMk2+dMk1)

Processing V(pMk2+pMk1) VpMk1

Countermeasure Vc Vc

Interception point IP IP

Figure 6.5
MDD as a Function of Operations per Bit and Header Size for RPG Threats
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able impact on the MDD relative to the FFB value. The Standard XML value, in par-
ticular, incurs a large penalty due essentially to communications latency, resulting in 
an increase of nearly 400m in the MDD relative to the FFB value.

RPG Threats

Figure 6.5 shows the MDD surface for RPG threats based on the RPG-29 velocity 
profile. Even when header size and number of operations per bit are at their highest, 
the resulting MDD ( 140 m) is well within the operational range of this kind of threat 
(500 m).

Figure 6.6 displays the components of the MDD for the four data formats, 
assuming the highest number of operations per bit. As for the cruise missile case, the 
impact of the GPB value is barely noticeable on the MDD relative to an FFB value. A 
Standard XML value incurs a large penalty, increasing MDD by nearly 40m relative 
to FFB for that message size. The relative contribution of communications delay to the 

Figure 6.6
MDD Breakdown Across Phases of Engagement for RPG Threats
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MDD is smaller than in the cruise missile case because of the added hop over Link 16 
in the latter case. 

RPGs are a typical focus of APS systems;23 hence, it is possible to comment on 
the suitability of the MDDs obtained in this case study in the light of publicly avail-
able requirements. APS tests were conducted at the Naval Surface Warfare Center, 
Dahlgren Division in March 2006 with threats launched at 100m.24 A threat range 
of 100m was also assumed in a previous study on survivability in urban operations.25 
Assuming 100m as a requirement, we show in Figure 6.6 that, at the highest number of 
operations per bit considered, only Standard XML and compressed XML values fail to 
remain below the required MDD. Figure 6.6 shows that compressed XML might fall 
below the 100m requirement for low-enough number of operations per bit.

Another comparison that can be drawn is with the MDD of the Quick Kill 
system, another APS that relies on missile countermeasures.26 The MDD for Quick 
Kill was previously calculated at 187.5m for RPG-29 threats, which exceeds all MDDs 
reported in Figure 6.5.27 Hence, despite added latency caused by the network, the 
MADIS configuration in this scenario would still be preferable to having each vehicle 
carry an independent Quick Kill system with these performance parameters.

Conclusions

APS performance is driven by threat, operational context, and the performance of the 
component systems—not by additional overhead of a UCCL. For stressing cases of 
higher-end threats, and for very tight MDD performance requirements, one should 
do a careful, detailed engineering analysis to ensure that these operational perfor-
mance trade-offs are carried out successfully. For example, we see that neither Standard 
XML nor compressed XML satisfy a 100-m MDD requirement for high-speed RPG 

23  Andrew Feickert, “Army and Marine Corps Active Protection System (APS) Efforts,” Washington D.C., 
August 30, 2016.
24  Committee on Armed Services, Tactical Air and Land Forces Subcommittee, Combat Vehicle Active Protection 
Systems, in U.S. House of Representatives, 109th Congress, second session, Washington, D.C.: U.S. Government 
Publications Office, September 1, 2006.
25  L. Wong, “Systems Engineering Approach to Ground Combat Vehicle Survivability in Urban Operations,” 
thesis, Naval Postgraduate School, Monterey, Calif., 2016.
26  Peter Ramjug, “Raytheon’s Quick Kill Active Protection System Defeats One of the Most Lethal Armor-
Piercing Rocket Propelled Grenades,” press release, Raytheon Co., January 9, 2013.
27  Haug and Wagner, 2009.
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threats under the assumptions modeled. But a GPB interface seems to have minimal 
impact on operational performance, even under a wide set of assumptions. No clear 
MDD requirement is available for cruise missile threats, but the analysis shows that a 
UCCL—even if poorly defined—would not exert a driving influence on the MDD. 
In most cases, interface inefficiencies are not likely to be the main contributor to the 
MDD, even assuming unrealistically high overhead sizes. A carefully designed UCCL 
should be able to meet operational performance needs under a wide range of cases. 
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CHAPTER SEVEN

Ballistic Missile Defense Mission Thread

Missiles designed to fly a ballistic trajectory threaten territory far from their launch 
sites and are hard to defeat but have key periods of vulnerability that a layered defense 
system exploits.1 All ballistic trajectories have an initial period of powered flight (the 
boost phase), at the end of which the missile orients and releases one or more reentry 
vehicles (RVs), decoys, and other debris into a parabolic uncontrolled flight deter-
mined primarily by the force of gravity (the midcourse phase) until they reenter the 
Earth’s atmosphere and encounter the dynamic forces of wind and atmospheric drag 
(the terminal phase). While it may be desirable to intercept a ballistic missile during 
the boost phase while it is still over adversary territory, powered flight is quite short 
(typically between 1 and 6 minutes, depending on the missile), leaving little time to 
detect and establish a good estimate (called a track) of its future position. Intercepting 
an RV during the midcourse state is made simpler by the lack of forces perturbing the 
trajectory (the forces of gravity being relatively well known), but it is often difficult to 
distinguish the RV and its associated warheads from decoys and debris because they 
all tend to move similarly under the slight forces of gravitational pull. Also, depend-
ing on range to the target, the missile may not leave the atmosphere or may leave it 
only briefly, meaning that not all missile attacks offer the opportunity for midcourse 
intercept. Intercepts during the terminal phase provide more opportunities to discrimi-
nate decoys and debris from the actual warhead(s), but also more disturbance forces 
to complicate the task of establishing accurate track estimates. The National Academy 
of Sciences notes that the discrimination task becomes easier between 70 and 100 km 
above sea level, but that the track estimation task becomes much harder below 40 km.2 

1  Kenneth Werrell provides a historical overview of the challenges of BMD in “Hitting a Bullet with a Bullet: A 
History of Ballistic Missile Defense,” Airpower Research Institute Research Paper 2000-02, Air University Col-
lege of Aerospace Doctrine, Research and Education, Maxwell Air Force Base, Ala., 2000.
2  National Research Council, Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems 
for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives, Washington, D.C.: National Academies 
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Of course, all of the above becomes much harder if we need to defend against multiple 
incoming attacks.

Figure 7.1 illustrates the overall approach used for BMD in the United States 
today. The first step is to detect and classify the missile threat, typically the task of 
long-range radars and satellite-based infrared detectors.3 Each sensor that detects a 
missile launch transmits measurement information to a C2 battle management center 
(C2BMC), where it is combined with other information (such as the local gravity field, 
winds aloft, threat unique parameters, etc.) to predict the forward trajectory and cue 
downstream sensors closer to the predicted destination. The cued sensors initiate a 
search for the missile using the track predictors and, if it is found, begin to transmit 
their track data to the C2BMC. These additional track data from different geometries 
greatly improve the accuracy of the predicted trajectory. After the RV is released, the 

Press, 2012.
3  Shorter-range radars may be of use in the boost phase if launch sites are near borders or if the radars are 
ship-mounted.

Figure 7.1
The BMD Kill Chain
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sensor network provides data on each object in the threat cloud, and the C2BMC can 
begin to run algorithms to try to distinguish the warheads from decoys and debris. 

Terminal sensors, which for theater defense are often radars co-located with an 
interceptor such as the U.S. Terminal High Altitude Area Defense (THAAD) or Aegis 
systems, are cued to acquire the target for intercept. Upon authorization to shoot, the 
interceptor is launched toward the target. After a target is intercepted, a variety of sen-
sors are used to gather information to assist in assessing the probability of kill (Pkill). 
This enables a shoot, look, shoot operations concept if time allows. 

When considering how a UCCL could impact the BMD mission, we need to 
address the three underlying factors that impact the degree of difficulty of that mis-
sion. The first is the overall timeline predicated on the range to target. The time-
line to detect and defend against a short-range attack—for example, from North to 
South Korea—is much shorter than the timeline to detect and defend against a long-
range missile attack on the U.S. homeland.4 The second factor is whether the missile 
is launched from a known fixed site that has been precisely characterized in terms of 
position and local gravity field versus from a mobile launcher whose initial position 
must be determined from sensor data. The last factor is the quantities of warheads and 
decoys (or other penetration aids) deployed by the missile. As these increase in number, 
it becomes harder to find the lethal warheads amid the threat cloud.5 

In considering how a UCCL could affect the BMD mission, we defined a stress-
ing case to consider: 

• tactical BMD traveling at 5 km/second for 3,500 km, assumed boost phase of 1 
minute with a total travel time of ~11 minutes

• launched from a mobile or previously unknown site
• sophisticated penetration aids that cannot be discriminated until the kill vehicle 

is 25 m from the target and the target is less than 70 km above sea level.6 

4  An ICBM travels roughly 7 km/second and covers a 10,000-km range (23 minutes of flight time). Tactical 
ballistic missiles are generally defined as those traveling less than 5 km/second over a 3,500-km range (11 minutes 
of flight time). Werrell, 2000, p. 60.
5  Dimensions of threat are derived from Gompert and Isaacson, 1999.
6  Werrell states that the Iraqi Scud missiles used in the Gulf War “made good use of high-fidelity East German 
decoys, which reportedly could not be distinguished from the real items at distances greater than 25 yards.” 
While discrimination has undoubtedly improved in the intervening years, we hypothesize that so have decoys 
and so used the 25 meters in defining our stressing case. Werrell, 2000, p. 36.
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Modeling the BMD Mission Thread

Having defined a stressing case, the next step in understanding how a UCCL could 
affect the BMD mission thread is to build a model of the mission interfaces that allows 
us to vary characteristics of interest to our research. To fully realize the advantages of 
an any sensor, any shooter architecture for tactical BMD may require a UCCL that 
facilitates ad hoc or preplanned integration of sensors and shooters on the battlefield. 
In that case, complex protocols are required to maintain synchronization and smooth 
reliable interactions between systems. The following list describes a few of those poten-
tial protocols, each of which adds messages and complexity to the interfaces of an SoS:

• If the set of systems that will interact is not fully predetermined, a discovery proto-
col allows new systems to be discovered and join into the SoS. The more diverse 
the set of systems allowed to join, the more complex this discovery protocol will 
be. 

• For BMD, clock synchronization across the SoS is critical if tracks are to be 
interpreted correctly and if discrimination algorithms are to correctly identify 
the warhead among decoys and debris. Therefore, any UCCL that supports the 
BMD mission thread will require a high-accuracy time synchronization protocol. 

• The SoS will also need a means to agree upon a geospatial reference frame, often 
implemented by a reference frame synchronization protocol. 

• A QoS protocol might also be needed, as we saw in the case of DDS in Chapter 
Three. 

All of the inefficiencies described above will require additional data to flow 
between systems and to be processed by each system. We model these inefficiencies 
using three variables:

1. header overhead Bh, in bits. This is the added information that enables address-
ing each element of the SoS—which we will call a node—and identifying it by 
mission and/or capabilities.

2. additional data to be exchanged, Datam,k. This term accounts for additional data 
(e.g., larger common data fields or extra synchronization protocols) exchanged 
between any two nodes m and k.

3. Additional data transformations, DataTRm,k. This term accounts for additional 
processing time needed to transform data between coordinate systems, units of 
measure, or formats.
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A mission thread is modeled as a directed graph D = (V,E) with nodes uk and 
edges {(um, uk)} that equal 0 if two nodes do not have a communications path between 
them and 1 if a path exists. Each node is either a sensor node, a shooter node, or a C2 
node. We model the communication between any two connected nodes m and k as 
a path with a data rate, DRm,k, in bits per second. At each node k, we model a CPU 
and an encryption/decryption device.7 While all extra data must be processed by the 
CPU (and optionally by the encryption/decryption device), not all processing is the 
same. For example, processing headers is less computationally expensive than signal 
processing algorithms. Hence, we use separate complexity factors for processing head-
ers (HCFk) versus more general data (DCFk). The number of transforms that need to 
be executed on the additional data is modeled by NT, and the complexity of processing 
those transforms is modeled as TCFk.8 Total additional delay from implementation of 
a standard interface is then a function of (1) extra CPU cycles to process and/or trans-
form the data, (2) extra time needed for encryption/decryption processing cycles, and 
(3) extra time needed to transmit the data on the wire. The equations for these factors 
are given below: 

• The extra CPU cycles to process and/or transform the data at node k are given by 
the equation,

CPUCyclesk = Bh  × HCFk + Datam,k × DCFk + NT × DataTRm,k × TCFk.

• The processing delay is the total extra CPU cycles divided by the processor speed:

CPUCyclesk
CPU k .

• The encryption/decryption delay is the amount of data to be sent over the chan-
nel, divided by the processing rate of the encryption. Note that the data to be 
transformed are processed locally (i.e., they are not sent over the channel) and 
thus are not included in the calculation.

7  The processing speed of each CPU is given as CPUCyclesk and the encryption/decryption speed at each node 
is modeled as CryptoRatem,k (both are specified in bits processed per second).
8  Complexity factors represents, on average, how many additional CPU cycles are required to process additional 
data. All complexity factors are specified in CPU cycles per bit.
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• The data transmission delay is also the amount of data to be sent over the channel 
but now divided by the data rate in bits per second:

• The processing delay is the total number of operations performed on all the data 
divided by the processor speed in operations per second. The total delay between 
nodes m and k is the summation of the above delays.

Delaym ,k =
Bh +Datam ,k

DRm ,k

+
CPUCyclesk

CPU k

+
Bh +Datam ,k( )
CryptoRatem ,k

• Finally, we sum all steps in the mission thread to compute total delay:

Delay = Delaym ,km ,k=1

n∑ .

These equations were implemented using the Python package NetworkX. The 
model ingests information about each node and edge in the directed graph, as well as 
the size of each message that will be sent. Other inputs to the model include the CPU 
speed, the effective bandwidth between nodes, the encryption rate, and complexity 
factors. It then reads in a starting location and a set of ordered destinations that the 
message must pass through sequentially. The model determines the shortest path to 
the next destination and records the amount of time required to transfer and process 
the message. We repeat this for every destination in the set, with the new start location 
being the previous destination. Finally, it produces graphs depicting the time required 
for each combination of messages to be passed to the final destination node over the 
range of input parameters. The sequence of messages passed from system to system is 
based on the mission threads described in Figures 7.7–7.9 later in this chapter. 

Limitations of Our Model

The BMD mission threads we modeled are extracted from publicly available informa-
tion, with the intent of understanding how different UCCL implementations might 

Bh +Datam ,k

DRm ,k

.Bh +Datam ,k( )
CryptoRatem ,k

.
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affect performance of the SoS. We did not attempt to estimate system parameters or 
create broad estimates of mission performance. For example, we did not attempt to 
estimate the data rate of each link, or the processing power of each CPU in a represen-
tative BMD deployment of systems. Instead, we assigned one CPU processing rate and 
one data rate to all nodes and node pairs, respectively, and varied them all together over 
a range of possible processing and data rates. In cases where we kept these two parameters 
constant, we used an average estimate and varied other parameters to highlight the 
dependencies between parameters. The intent was to estimate performance sensitivity to 
the parameters of interest, not to estimate the actual performance of any given BMD 
SoS. Any judgments offered relate to potential areas of performance risks and should not 
be interpreted as a validation of different designs with respect to mission performance 
requirements.9 

To root our study in the real world, we represented the range of ways a standard 
interface could be implemented (presented in Chapter Four), using four representa-
tive message sizes measured by MIT Lincoln Labs in Army field tests.10 These were 
an XML implementation of 2,577 bytes per packet, a compressed XML of 785 bytes 
per packet, a GPB based on Google proto buffers of 115 bytes per packet, and an FFB 
of 47 bytes per packet. These should be interpreted not as estimates of overhead for 
each implementation approach but simply as point values that define a range of imple-
mentation options. Actual BMD implementations of each approach would differ and 
depend on design decisions beyond the scope of this research. Hence, when we refer-
ence performance of an XML implementation as compared with an FFB, we are refer-
ring to these representative message sizes and not to actual XML or FFB implementa-
tions of a standard.

Nominal Model Inputs

When not varying a parameter, we set it to a nominal value. The nominal complexity 
factor for header and data processing was set to 100 operations per bit. This is a typi-
cal value for processing IP headers that would be needed to pass relatively simple data, 
such as a target track.11 Note that complexity factors can vary to more than 10,000 
operations per bit for signal processing algorithms,12 but we assume here that we are 

9  While a model such as ours could be used to obtain estimates of actual system performance, doing so would 
require detailed (and likely classified) system parameters, limiting the distribution of our results.
10  DeWeck, 2015.
11  Tucker and Hinton, 2011.
12  Tucker and Hinton, 2011.
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exchanging processed target tracks (i.e., we are assuming raw signal data are processed 
locally). The nominal value for CPU speed was set to 10,000 mips, roughly compara-
ble to a mid-2000s processor. The nominal data rate between nodes was set to 1 Mbps, 
typical for a DoD satellite communications system. We set the encryption/decryption 
rate at 20 Mbps, typical of a lower-end tactical device, such as the KG-175X. 

As discussed previously, we used four representative message sizes derived from 
experimental data. For each of these sizes, we varied the other modeling parameters to 
estimate how widely delay varies as a function of each parameter and each packet size. 
Finally, we made a set of runs with the data rate between nodes set to the minimum 
observed in this system—the satellite link(s) that transmits data from a Space-Based 
Infrared System (SBIRS) to a ground-based C2 node (Table 7.1). In a full nuclear scin-
tillation environment, data transmissions on these links may be as low as 75 bps.

Sensitivity to CPU Speed and Computational Complexity

BMD algorithms are often quite complex (such as those used for track estimation and 
target discrimination) and may require a high number of operations per bit of data 
processed. To understand the sensitivity of the different interface implementations to 
computational complexity, we kept all other parameters at their nominal values and 
varied the complexity factors (i.e., operations per bit required to process the message) 
over the range from 100 to 10,000 operations per bit. As shown in Figure 7.2, for 
implementations that result in a smaller packet size, total delays are relatively insensi-

Table 7.1
Modeling Parameters

Parameter Units Value

Encryption speed Mbps 20

Decryption speed Mbps 20

Nominal link data rate Mbps 1

Range of link data rate bps 75 to 2,000

Nominal processor speed mips 10,000

Range of processor speed mips 1 to 20

Nominal complexity factor Operation per bit 100

Range of complexity factor bits 100 to 15,000
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tive to computational complexity—overall mission delay stays under a fraction of a 
second. Even for the worst-case implementation we modeled (human-readable XML), 
the total delay varies on the order of a few seconds. For a mission thread like BMD that 
typically takes minutes to complete, these additional delays appear relatively inconse-
quential. We caution, however, that while we found little sensitivity of total mission 
delay to computational complexity over the range of interface implementations mod-
eled, if a specific step in the BMD process has especially complex computations and 
the CPU is operating at near capacity, then the implementation of an interface stan-
dard may indeed adversely affect the mission by requiring additional header processing 
and, thus, overwhelming the processor.

BMD systems often include legacy systems with older, lower-speed CPUs. In 
some cases, even modern high-speed CPUs can be overwhelmed by other computa-
tions that are part of the mission execution, leaving little CPU space available for mes-
sage processing. To examine the effect of CPU speed on total mission delay, we set all 
other parameters to their nominal values and varied the CPU for 1 to 20 mips, which 
corresponds to a late 1970s to late 1980s CPU processing power, or CPUs that are over-

Figure 7.2
Mission Thread Delay Versus Computational Complexity Factors  

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
0.0

0.2

0.8

0.6

0.4

1.0

Language
XML
Compressed XML
General binary
Fixed binary

Complexity factors

Ti
m

e 
(s

ec
o

n
d

s)

0



76    Universal Command and Control Language Early System Engineering Study

burdened. For the smaller packet sizes, total delays are relatively insensitive to CPU 
speed, and overall mission delay stays within seconds for all cases run (Figure 7.3). But 
for larger packet sizes, such as those we might expect from an XML implementation, 
delays are significant at very low CPU speeds. Therefore, we find that BMD mission 
performance may be adversely affected if slow or overburdened CPUs are used with an 
inefficient interface implementation. Additional study is warranted.

Sensitivity to Data Rate and Data Packet Sizes

As discussed earlier, the link from SBIRS to its ground station may drop as low as 75 
bits per second in the case of a nuclear detonation causing atmospheric scintillation. 
Given that this appears to be a worst case, we examined the additional delay to com-
plete this single step of the mission thread as a function of the message sizes that we 
might expect from different interface implementations. Results are shown in Figure  
7.4 for each interface implementation with a varying link data rate between 75 and 
2,000 bps. Under these conditions, message size has a significant impact on delay as 
the data rate of the link decreases. The information from SBIRS alerts the ground C2 

Figure 7.3
Mission Thread Delay Versus CPU Speed
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node that a missile launch has been detected and occurs during the boost phase. Typi-
cally, this boost phase lasts between 1 and 6 minutes. At the lower bound, an addi-
tional delay of 30 seconds could be significant, in that it could delay notification to 
downstream sensors that operate during the midcourse phase. At the upper bound, an 
additional 30-second delay in receipt of data from SBIRS is unlikely to affect execu-
tion of the mission. However, bandwidth-constrained links in other steps of the BMD 
mission might be more sensitive to delay. In the critical step analysis section of this 
chapter, we look at another bandwidth-constrained link—that from the radar to the 
interceptor—and discuss the impact an inefficient messaging implementation might 
have on it.

Building on these sensitivity analyses, we focused our attention in the critical step 
analysis section on steps within the BMD mission thread that include (a) bandwidth-
constrained links and/or (b) complex data processing executing on constrained CPUs.

Figure 7.4
Single Step Delay, in Seconds, as a Function of Link Data Rate and Interface Implementation 
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Worst-Case Scenario for Impact of Latency on Medium-Range Ballistic 
Missile Tracking

In the previous section, we explored the sensitivity of delays to different parameters as 
a function of the size of message that results from some standard interface implemen-
tations. In this section, we assess the sensitivity of the BMD mission to latency (i.e., 
delay) in the transmission of data needed to form a track estimate for a typical threat 
or a delay in the transmission of the track estimate to forward elements in the mission 
thread. If unmitigated, any latency in the collection and use of these data—including 
the latency added by a UCCL—will have a direct and undesirable impact on track 
quality and, ultimately, the outcome of a missile intercept. The impact of measure-
ment (or track) latency on track quality is a complex function of sensor capabilities and 
geometry, as well as concept of operations and the phase of missile flight. 

Since latency is a known problem in BMD systems, the typical BMD system is 
designed to mitigate its effect. Sensor(s) continually share updated measurement and 
track data at a specified update rate. These data arrive at their intended destination, 
albeit with some delay. It is vital, however, that the receiving algorithms have unambig-
uous and accurate knowledge of the time at which the data were valid. Therefore, each 
critical data item includes a time stamp to enable the receiving algorithms to properly 
understand when to apply new information to correct the estimated state space of the 
target (this is often referred to as the trajectory of the target). If sensor messages become 
so large, however, that they stress the network bandwidth and result in very stale or lost 
messages, the result is effectively a sensor blackout; i.e., the tracking algorithms receive 
no measurements, in which case they continue to propagate the last known good data 
to estimate the state of the target. The longer the estimates are propagated without 
being corrected by new measurements or tracks, the more inaccurate the estimated 
tracks become. We use this sensor blackout scenario to assess the worst-case effect that 
latency can have on track quality (e.g., position error). Where possible, we identify 
latency boundaries or conditions that (1) do not affect the system and (2) require further 
and more detailed analysis to more accurately assess the impact of latency. 

To apply this analysis, consider the tracking of a medium-range ballistic mis-
sile (MRBM). A simplified flight profile of a DF-21 MRBM is considered in Figure 
7.5. The range of the missile is 1,700 km, with an apogee of 500 km and maximum 
velocity of ~Mach 12. In the nominal case, shown in the figure, no sensor blackout 
occurs, and the track algorithms regularly update the estimated position and velocity 
of the missile using newly received data to approximate the true position and velocity. 
Downstream sensors or the interceptor itself can be cued; that is, they propagate the 
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estimated trajectory forward to determine the missile’s position at a given future time 
and begin their search for the missile from that point. 

During a sensor blackout when no data are available to update the target state 
space, errors in the position estimate will build depending on its velocity, the dura-
tion of the blackout, and how far forward in time the trajectory is propagated. In the 
absence of other errors in modeling the missile’s environment, the position error can 
be described thus:

= V �( )
t=0

T
dt ,

where V is the missile velocity, ℓ is latency, and T is the trajectory propagation time 
window. 

For the trajectory shown, Figure 7.6 shows this cumulative position error for each 
message (Figure 7.6a) and for a 2-minute propagation time (Figure 7.6b), as a function 
of latency (sensor blackout):

For example, if the latency introduced in the system is 1 microsecond (blue line), 
given the velocity profile of the target, the estimated accumulated position error is on 
the order of 1 m. Similarly, a latency of 1 ms (green line) will result in an accumulated 
position error of ~10 m. However, if the latency is as large as 1s (red line), the position 
error can be as large as 1 km. Depending on the sensor that is using these data (and 
being cued by the affected sensor) and its capabilities, this position error may mean 

Figure 7.5
Flight Profile of an MRBM 
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that the downstream sensor is unable to locate the target. For instance, a latency of 
1 second (which results in approximately a 1 km position error) means that a space-
based infrared sensor with an accuracy on the order of 500 m and a very narrow field 
of view, very close to the target, is not likely to locate the target based on a cue. How-
ever, for a typical kill vehicle sensor with a field of view of about 1 degree,13 the target 
will still be in the field of view of the kill vehicle, given a 1 km uncertainty in target 
position, as long as the range to the target is greater than 58 km.

This high-level analysis shows that unless the latency introduced by the possible 
overhead required by a UCCL is on the order of 1 second, even in the scenario where 
sensor measurements or tracks are completely lost, BMD performance is not likely to 
be affected. The position error introduced by that latency is much less than the error 
that would affect the other systems that depend on the affected sensor. Several other 
factors can also contribute to this lack of impact: (1) during the midcourse phase, 
where most of the BMD systems are envisioned to operate, the missile is unpowered—

13  National Research Council, 2012.

Figure 7.6
Error in Target Position for Different Amounts of Latency 
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i.e., it is moving only under the forces of momentum and gravity, both of which are 
reasonably well modeled. Any lack of data during a fairly large time window will not 
affect the ability of the state estimators to estimate the missile’s position and velocity 
with relatively low error; (2) because a total loss of messages is unlikely due to latency 
alone, measurements and tracks will still be available as input to the state estimators, 
which can use their time stamp to properly correlate them with existing tracks. 

However, if the estimated latency introduced in the BMD system due to a UCCL 
is on the order of 1 millisecond to 1 second, and the kill vehicle is expected to have a 
sensor with a very narrow field of view and may receive a new track when fairly close 
to the target, then a more detailed analysis of the BMD system is required to properly 
model the state estimation, latency, and interactions among sensors and more accu-
rately estimate the impact of latency on track quality and eventual Pkill of the BMD 
system. 

Critical Step Analysis

Having identified interfaces in the current BMD architecture where use of a UCCL 
might be problematic or beneficial, we then turned our attention to examining a more 
generalized BMD architecture. The promise of a UCCL is that it will allow “any 
sensor, any shooter” joint operational capability. As seen in Figures 7.7–7.9, deployment 
of functions to physical items in the BMD architecture varies greatly. For instance, 
all radars can track the threat cloud, but only some can discriminate; some radars are 
designed to interface with a fire control system, but most are not. Table 7.2 maps top-
level functions of a BMD system to physical system types; a large X indicates a primary 
function that all systems of this type have, and a small x indicates a function that some 
systems of this type currently have or are discussed as having in the future. This vari-
ety exists because system designers have had to respond over time to requirements for 
varying levels of autonomy and to different threats. 

In a future conflict in which communication with a centralized C2 node is 
denied, we might imagine a BMD architecture in which any sensor with connectivity 
to the shooter (or interceptor once launched) is able to cooperatively negotiate the func-
tions each has the resources and authority to perform and dynamically reconfigure the 
system topology to complete the mission. To realize this true “any sensor, any shooter” 
paradigm, a UCCL must be viable between each possible mapping of functions to sys-
tems. Therefore, we next examine how an abstraction of the interface between each of 
these functions might affect latency, network congestion, or computational burden. 
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The Mission Thread and Its Interfaces

We considered the potential utility and cost of implementing a UCCL at each of today’s 
system-to-system interfaces as shown in Figures 7.7 to 7.9 for different phases of the 
BMD mission. This analysis provided three findings:

• The greatest potential system utility of implementing a UCCL is likely to be at 
the sensor interface and the fire control interface. 

• The interface most likely to “break” if a UCCL is implemented is that between 
the fire control system and the kill vehicle.

• A UCCL that does not treat time as a critical architectural entity would break the 
BMD mission.

Table 7.2
Mapping BMD Mission Functions to Physical Systems

BMD Function
Space 
Sensor

Land- and Sea-
Based Sensor

Battle Management 
Centera

Shooter Fire 
Control System

Interceptor 
GNCb

Detect threat 
launch

X x

Cue sensors x x X

Track threat X X x

Predict threat 
trajectory

x X x X

Identify threat x x X

Discriminate x X x x

Acquire target X X

Approve firec X X

Guide interceptor x X

a Today’s battle management centers are physically centralized. Geographic distribution or 
virtualization of the battle management function in the future may improve total system resilience.
b GNC = guidance, navigation, and control. While all kill vehicles have a GNC function, some are more 
autonomous than others. All of today’s interceptors have an on-board seeker (generally infrared) as 
part of their GNC. Prior to seeker target acquisition, the on-board GNC relies on land- or sea-based 
sensor measurements as an input to the guidance loop.
c Nominally, a human on the loop will approve the decision to fire interceptor, but some systems (e.g., 
Aegis) have a fully autonomous mode that allows the fire control system to make these decisions. This 
autonomy may be critical if the system faces a salvo of incoming warheads.
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Figure 7.7
Communication Patterns for Threat Identification, Track Estimation, and Downstream Sensor Cueing in Current BMD 
Architecture
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The BMD System Interfaces

Figure 7.7 shows the primary communications needed for boost and early midcourse 
activities to identify and track the threat and to cue downstream sensors to join the 
sensor network. As noted earlier, obtaining additional sensor measurement from dif-
ferent geometries greatly enhances track accuracies. We hypothesize that if nontradi-
tional sensors, such as those mounted on allied aircraft or ships, could be included in 
a future BMD sensor network on an ad hoc basis, the improvement in track accuracy 
and discrimination algorithm performance might be substantial. However, to achieve 
these benefits, the following must be true:

• Sensed measurements must use the same reference frame—including a time refer-
ence frame—and have a shared convention for reporting the time at which mea-
surements were valid. 

• The handover volume for the trajectory estimate must be less than the search 
volume of the cued sensors. Any differences in reference frame increase the uncer-
tainty of the handover volume and the probability that a cued sensor will fail to 
acquire the threat cloud.14 This is one more reason why the sensors need a shared 
convention regarding the definition of time.

• Measurement data must include measurement covariances unless the C2BMC 
has another source of knowledge from which to form a measurement covariance 
for each potential ad hoc sensor. We say more about the need for measurement 
covariances in the next section.

Figure 7.8 shows communication patterns needed for target discrimination. Each 
sensor report tracks for the threat cloud that includes the number of tracks and esti-
mates for the track of each object. For sensors with on-board discrimination, an esti-
mate of the lethality of each object in the threat cloud is also provided. The total set 
of information about the threat cloud is called a target object map (TOM). Midcourse 
discrimination may be the single most difficult task for a BMD system. Lethality 
becomes more observable after the objects reenter the atmosphere; however, intercepts 
at high altitude are preferred, to minimize collateral damage. Without talk-back and 
retarget capabilities onboard an interceptor, the decision between when to shoot and 
when to wait to collect more observations for discrimination will remain a very dif-
ficult one. Precision time—on the order of the clock drifts between GPS 1 pulse per 
second signals—will matter. In its 2012 report, the National Research Council noted:

14  For the stressing case defined above and under worst-case search geometries, a 1 second time uncertainty 
regarding when to initiate search introduces an additional uncertainty of 5 km in the handover volume. 
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Figure 7.8
Communication Patterns for Target Discrimination in Current BMD Architecture
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Data latency is a potential problem for the integrated battle command system 
(IBCS) that should not be ignored. [. . .] The evolutionary approach would employ 
much longer concurrent threat observation by both X-band radars and the inter-
ceptor KV’s onboard sensor over the entire engagement. The importance of the 
synergy between these concurrent observations together with [Space Launch 
System] battle space in maximizing midcourse discrimination effectiveness cannot 
be overemphasized.15

As shown in Figures 7.8 and 7.9, the C2BMC currently has the capability to task 
Aegis, THAAD, Patriot, and GMD shooters through the use of a common interface 
specification called ATOMs.16 The C2BMC-to-shooter interface is to the fire control 
system at the shooter, which in turn controls both the collocated radar (if there is one) 
and the interceptor. Using a UCCL between the fire control system and the intercep-
tor would provide minimal utility because this is a tightly coupled interface, and each 
system partitions the interface differently to meet its unique mission.17 Furthermore, if 
this interface uses the in-band RF signals of the radar as the link layer for fire control–
to–interceptor communication, the National Research Council estimates that a system 
using in-flight target updates (IFTUs) would consume up to 65 percent of the radar’s 
resources in the final seconds of flight.18 Adding more overhead from a UCCL to this 
already resource-constrained communication might indeed “break” the system design.  

While we do not recommend extending use of ATOMs for the interface between 
interceptor and fire control system, using it between the terminal radar and the fire 
control system has the potential to improve in-theater resilience. For instance, being 
able to use THAAD radar measurement to guide an Aegis missile without having to be 
connected through the C2BMC may provide greater resilience in a communications-
denied environment.

15  National Research Council, 2012.
16  The C2BMC currently uses a common control language called ATOMs within the center. Sensor and shooter 
data are converted from and to its system-unique format when it enters and/or exits the center. New shooters are 
being asked to design to the ATOMs interface for the C2BMC-to–fire control system interface, eliminating the 
need for format conversions.
17  For example, controlling a THAAD missile from a PATRIOT fire control system would require a significant 
rework of both of those systems. The effort needed might be better invested in making fire control systems more 
portable and survivable.
18  National Research Council, 2012, p. 154. 
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Figure 7.9
Communication Patterns for Interceptor Engagement in Current BMD Architecture
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Sensor Interfaces 

Today’s space sensor network is largely composed of satellites in geosynchronous and 
highly elliptical orbits that individually send their information to the ground, where it 
is synthesized with other sensor data (space or terrestrial) for threat identification and 
cueing of downstream sensors. Some analysts envision a future space sensor network 
that utilizes resilient space or terrestrial networks to gather data from multiple payloads 
in multiple orbits and perhaps even from terrestrial or air-based sensors to perform data 
synthesis and cue downstream sensors (and perhaps even interceptors)19 from space.20 
Architecturally, a fully capable sensor in such a system would produce and/or consume 
the following information:

1. threat detection event data 
2. list of currently identified objects 
3. track data for an object in the list 
4. handover volume
5. search status.

The source and destination of this information, using the functional decompo-
sition of Table 7.1, is shown in Figure 7.10. Some or all of these functions would be 
onboard the sensor itself or distributed across the physical architecture. We take a 
detailed look at three of the information items: threat detection event data, track data, 
and handover volume.

The ability of the SoS to correlate threat detection event data and track data 
will depend on a shared reference frame. For example, suppose sensor A reports an 
initial threat detected at position (latitude, longitude, altitude, time)A, and sensor 
B soon thereafter reports an initial threat detected at (latitude, longitude, altitude,  
time)B. Even if these state vectors are reported using identical reference frames (for 
example, Earth-centered inertial [ECI] for position and Universal Time Coordinated 
[UTC] for time), this information alone is not enough to determine whether this infor-
mation represents two different missiles or two reports of the same missile. To make 
that determination, we also need an assessment of the state of health for the measure-

19  Sandra Erwin, “Next Steps for the Pentagon’s New Space Sensors for Missile Defense,” Space News, January 
21, 2019. 
20  While being able to defend from space has been a recurring theme throughout the history of missile defense, 
the two principal advantages of space are (a) its field of view and (b) its relative distance from the actual conflict. 
Given ongoing development and demonstration of antisatellite technologies and even fully operationalized weap-
ons, these advantages may disappear. Therefore, in this section, we focus instead on the advantages of a distrib-
uted and fully meshed space-air-terrestrial architecture.
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ment system and the sensitivity of the measurement to errors in each dimension of 
the reference frame: The latter is often conveyed as a covariance matrix.21 We would 
also like to have the sensors tell us the velocity of the detected object to understand 
if back propagation of the detected event leads to the same launch location. Finally, 
we need each sensor to report a temporary Threat ID (to distinguish this track from 
other threats the sensor may be observing), which the SoS could replace later with an 
Assigned Threat ID. The total information needed for a threat detection event might be

Sensor ID: integer
Threat ID Type: temporary/assigned 
Threat ID: integer 
Threat State Vector: (position and velocity in three dimensions, time of validity)
Measurement Integrity: healthy/suspect/unhealthy
Measurement Covariance Matrix.

As an astute reader may have already observed, simply defining the UCCL infor-
mation needed from a sensor for threat detection leads to a number of architectural 
design decisions that could affect the sensor’s computing burden. If we go further and 
break the information into messages with syntax and format, we will also be making 
decisions that could influence congestion of the underlying meshed network. The fol-
lowing are the most significant decisions we made in defining the UCCL information:

21  A mobile sensor, such as that mounted on an aircraft or satellite, will need to know its own location with 
respect to the detected threat to calculate its measurement sensitivity. While today’s C2BMD can receive that 
information from other sources to estimate the covariance, in a distributed system of the future, the covariance 
will need to be part of the detection event data.

Figure 7.10
Key Sensor Information Flows for a Future BMD Architecture
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• Estimating the measurement covariance is the accountability of the sensor. 
An alternative option might be to have the sensor communicate all the data that 
go into a measurement covariance calculation. This would include the sensor’s 
own state vector, calibration curves of measurement accuracy versus relative 
geometry to the threat, and noise measurements in all degrees of freedom. While 
it may be a small burden today for the C2BMC to track this information for each 
sensor, in tomorrow’s architecture it would become prohibitive to share that infor-
mation across a sensor-shooter peer-to-peer distributed system. 

• In defining message syntax and format, the measurement covariance should 
be a separate message and transmitted as its inverse. Designing the SoS in 
this manner would allow for distributed state estimation using these localized 
measurement covariances.22 While distributed state estimation might be overkill 
for threat identification, using it for track estimation appears promising. For this 
reason, a UCCL might partition the sensor measurement covariance as its own 
message and specify that it be computed and transmitted as its inverse, suitable 
for use in a distributed iterate-collapse inversion (DICI) algorithm.23 

Given the limited computing power of space platforms,24 a UCCL interface for a 
space sensor might also be at a high risk of not having enough computational resources 
to execute the mission successfully and, therefore, would require a much more detailed 
study.

22  For an example of how a distributed Kalman filter could be used to estimate state in a distributed sensor 
network, see Usmam Khan and Jose Moura, “Distributing the Kalman Filter for Large-Scale Systems,” IEEE 
Transactions on Signal Processing, Vol. 56, No. 10, October 2008. This paper suggests that the inverse of the error 
covariances be distributed rather than the covariance itself. Note that transmitting full state estimates for a cen-
tralized state estimation has been shown in other distributed sensor applications to consume an unsupportable 
amount of network bandwidth.
23  A Kalman filter is an implementation of Bayesian estimation using maximum a posteriori (MAP) techniques. 
While the Kalman filter has historically been used for state estimation in missiles and missile defense, other dis-
tributed estimators using MAP techniques also use the inverse measurement covariance in their implementation 
and may be lighter-weight. An example is given in Sun Yibling, Minue Fu, and Huanshui Zhang, “Performance 
Comparison of Distributed State Estimation Algorithms for Power Systems,” Journal of System Science Complex-
ity, Vol. 30, 2017. 
24  A general rule of thumb is that the best space-based computing architectures are two or three iterations of 
Moore’s Law behind general usage computing architectures here on Earth.
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Conclusions

BMD is a thread that takes minutes to execute from launch detection to final kill. 
Additional end-to-end latencies imposed by an inefficient interface design on the order 
of seconds are unlikely to influence the successful execution of the thread. But there 
are links within the thread with very constrained bandwidth, such as the SBIRS down-
link, or the THAAD fire control link. These interfaces might require an optimized 
UCCL interface. For example, we identified a critical step in the thread that could 
affect Pkill, and that is the final sensor update to the interceptor. Latency in this step 
caused by a UCCL is unlikely to influence Pkill if elements of the BMD system have 
been calibrated for clock drift and include time of validity in sensor measurements, tra-
jectory estimates, cueing, and targeting messages. However, it may influence warhead 
discrimination. 

Additional considerations may influence performance. A UCCL may provide the 
opportunity to rapidly add sensors to the system. Such a diverse set of sensor geom-
etries could improve trajectory estimates and warhead discrimination, improving Pkill. 
However, throughput and congestion of the underlying network caused by an ineffi-
cient UCCL could erase these gains. For example, some elements of BMD systems are 
resource-constrained. The following are examples:

• THAAD fire control link to interceptor is bandwidth-constrained, sharing radar 
resources; a UCCL may provide little benefit and substantial risk if used for this 
interface.

• State estimation to support trajectory estimation and warhead discrimination is 
likely to become processing-constrained as additional sensors are added; a UCCL 
that supports distributed state estimation could relieve this constraint, but the 
UCCL must be efficient.

If real-time composability of the sensor-to-shooter network is desired, network 
throughput and congestion are likely to be greatly affected by a UCCL’s discovery pro-
tocol. The detailed implementation of a discovery protocol should be tailored to the 
needs of a particular mission to account for bandwidth-constrained elements of the 
system. 





93

CHAPTER EIGHT

Conclusions

There are multiple examples of implementations of standards that require trade-offs 
between interface design and performance to achieve interoperability. These examples 
involve trade-offs in performance parameters such as delays, data rates, memory use, 
and data processing. In the case of DDS, we see how a different optimized adaptation 
of a standard can address some of these issues by trading encryption, security, and 
quality of service for speed; resiliency for memory and processing requirements; and 
network reconfigurability and flexibility for network bandwidth. These should be part 
of the technical considerations when designing any new standards. 

Beyond the technical performance considerations, there are also important non-
technical considerations. These primarily are related to the economics of standards 
that can enable network effects, better retention of human capital, reduced vendor 
lock, and cheaper training and retraining. While the technical performance of any new 
standard should be examined and analyzed to ensure its technical and operational via-
bility, nontechnical considerations could lead to failed implementations of standards 
by failing to get broadly accepted in the market. This can be avoided by designing and 
implementing an effective and efficient standardization process, understanding stake-
holders and their motivations, and understanding the market and the legal and regula-
tory context within which the standardization process will take place. 

As indicated by results from past experiments and from our mission thread 
models, the implementation details of a standard interface could vary technical per-
formance by orders of magnitude. The most pronounced effect is on system delays. 
Factors that influence delays are message size, data processing complexity, transfer 
time over a communication link, and how the messages flow from system to system. 
For cases in which the operational performance requirements are not very demand-
ing, interface overhead will have only a minimal impact on operational performance. 
However, we showed that there are missions or steps within a mission where overhead 
may have a critical impact on mission performance. For instance, in the BMD thread, 
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we saw a case of a single interceptor link that is severely bandwidth-limited, and any 
additional overhead may have significant impact on operational performance. In the 
APS thread, and for some higher-end threats, we may be forced to limit the amount of 
overhead we are willing to incur. For the EW thread, even modest assumptions may 
have a significant impact on mission performance. Therefore, any attempt at imple-
menting a standard interface requires in-depth engineering analysis and careful design.

Systems implementation standards can mitigate some of the higher-risk systems 
and interfaces in some common ways:

• Focus interoperability on non–time-critical interfaces or interfaces with wide per-
formance margins that take advantage of the benefits of more or better sensor-
shooter pairing. The focus should be on areas estimated to lack strong dependen-
cies between operational performance and message delays, and at the same time 
on those that have a better chance of providing higher operational benefits.

• For interfaces that have tighter delay and timing requirements, optimize the inter-
face for compile time composability (packed versus unpacked). In other words, 
optimize the interface prior to the mission, not dynamically during the mission.

• Create a version of the standard that is applicable to performance-constrained 
systems.

When evaluating risks, consider mission-critical systems that have restrictive 
operational performance and timing requirements. Special attention should be given 
to these areas, and careful system performance analysis should be conducted to under-
stand the operational risks associated with interface inefficiencies. Areas of concern 
should be

• systems with severely restricted bandwidth links
• systems with processors that have very little available processing power
• problems that require a lot of data operations per bit of data and possibly the pro-

cessing of additional data mandated by the standard
• systems with submillisecond performance requirements.

While the modeling we performed in this analysis was intended to be a high-level 
investigation of the general trade-offs between interface inefficiencies and operational 
performance, our methodology could be applied in a more-detailed technical analysis 
of specific systems with the intent to model the real performance dependencies of the 
system by realistically modeling and evaluating its performance. The following are 



Conclusions    95

steps to evaluating the applicability of a universal standard interface to a particular 
system:

• Translate the mission-critical operational requirements into a system performance 
trade-space (e.g., delays).

• Quantify the overhead that a specific standard interface implementation would 
impose.

• Estimate the impact on operational performance and compare that with the oper-
ational requirement associated with the mission.

• Assess whether some of the impact could be mitigated by technical means—for 
example, by optimizing the particular interface or using an optimized version of 
the standard. If the issue is related to processing power, then adding more proces-
sors could be the solution. Where bandwidth is an issue, provide a higher band-
width link.

• If the impact cannot be easily or cost-effectively mitigated by technical means, 
can it be mitigated by tactics, techniques, or procedures? For example, is it pos-
sible to maintain larger operational distance from the threat? To make changes to 
force structure to mitigate the threat? To modify the way systems are employed?

• Finally, if the operational performance limitation cannot be mitigated reasonably 
and cost-effectively, then the interface in question may not be a good candidate 
for standardization.





97

APPENDIX

Publish and Subscribe Overview

Origins of the Publish-Subscribe (Pub-Sub) Model 

In early network communications, computers communicating together would do so in 
one of two ways: either a broadcast to every point on the network or a direct communi-
cation to a specific other machine. As network and message complexity increased, the 
complexity of these interactions also became difficult to manage. Significant network 
capacity would be used up creating a link between two machines only to transfer a tiny 
status message. Those two machines would be busy during their interaction, causing 
other messages sent to either one to fail. Network programmers began to store mes-
sages and retry them when such failures occurred. Adding or removing machines in 
such a network was cumbersome because each new machine needed to be aware of all 
other machines, and removing a machine meant removing its status from each other 
machine. These behaviors created three problems: significant overhead in communica-
tions, common and unpredictable retry behavior, and complex and error-prone human 
management of the network.

To solve these problems and others, the publish-subscribe networking metaphor 
was adopted. Publish-subscribe is a communications metaphor commonly used in 
modern network communications protocols. It entails the creation of a storage space 
where network messages are held until a machine needing the information becomes 
available to read them. Instead of communicating directly with each other, machines 
communicated with a core server (or servers). These core servers’ storage spaces can be 
grouped in various ways, but organizing them either by information source (e.g., for 
many machines to read the output of a weather sensor) or by topic (e.g., to allow any 
machine to report activity to a security logging service) is common. Publish-subscribe 
systems also often include a discovery subprotocol that allows a machine to be added to 
or removed from the network automatically. Publish-subscribe is not the only machine-
to-machine communications model, but it is an extremely common one.
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The Data Distribution Service 

The DDS protocol has become one of the most commonly used publish-subscribe 
standards. It was developed between 2001 and 2004 by a pair of defense contrac-
tors and has spread to be used in a wide variety of capacities beyond its beginnings in 
aerospace and defense. Today, DDS is used in the Dutch railway management system,  
Volkswagen’s smart cars, Siemens wind turbine fields in Iowa, Komatsu mining 
machines, General Electric medical scanners, and many other systems. 
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T
he U.S. Department of Defense (DoD) requires more effi cient and 

timely methods to acquire, integrate, and interoperate systems, and 

perhaps more crucially systems-of-systems (SoSs), to deter near-

peer adversaries in a rapidly evolving threat environment and prevail 

in combat should deterrence fail. Current practice for integration 

across systems generally relies on the development of interface control 

documents that describe in detail how the different systems and subsystems 

connect and interact. 

In 2019, RAND researchers were asked to participate in a multiyear effort to help 

DoD understand the challenges of creating a universal command and control 

language (UCCL) to facilitate the evolution of systems and interoperability of 

SoSs. In this report, the authors establish a conceptual framework for analyzing 

SoS performance of different sensor-to-shooter connections, combinations, 

and associated command and control constructs. The analysis shows that 

implementation details of a standard interface may contribute to interface 

overhead that changes technical performance by orders of magnitude.

Overall, while the authors found that there are cases in which mission 

performance is mainly driven by operational parameters and not the interface 

design, there are also cases in which implementing a standard interface has 

the potential to adversely infl uence mission outcomes if designers do not apply 

in-depth engineering analysis and careful design practice. This research should 

not be viewed as a study of a specifi c standard interface, but as an early system 

engineering study of how such an interface could and should be designed.
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