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Overview 
 
Sensitivity testing is a type of testing in which a stressor (independent variable) is continuous, and 
the response (dependent variable) is binary.  Ballistic limit testing is a type of sensitivity testing 
where the stressor is the velocity of a kinetic energy threat, and the response is penetration (either 
a partial or complete penetration) of an armor target (ref. 1).  During ballistic limit testing, both the 
threat velocity and the penetration response are recorded for each shot.  Then, the data are 
analyzed to model the probability of complete penetration as a function of threat velocity (ref. 2). 
 
A generalized linear model (GLM) is a generalization of an ordinary linear model that allows for 
dependent variables with errors that are not normally distributed.  A GLM with a binary dependent 
variable attempts to model the response probability with a cumulative distribution function (CDF).  
Logistic regression models are a type of GLM that models the data using the logistic CDF.  The 
link function for logistic regression is given by the logit function: 
 

 ln
𝑝

1−𝑝
= 𝑋𝛽 (1) 

 
Where: 
 
p is probability 
X is the matrix form of the independent variables 
β is the vector of linear parameters 
 
Estimates for the linear parameters, known as maximum likelihood estimates (MLE), are 
determined by maximizing the likelihood function: 
 

 𝐿 = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)

1−𝑦𝑖
𝑖  (2) 

 
Where: 
 
L is the likelihood 
pi is the ith probability value 
yi is the ith response either 0 or 1 
 
In practice, it is often easier to maximize the log-likelihood function.  The log-likelihood function 
for the logistic regression model combines equations 1 and 2 and is given by the following: 
 

 ln 𝐿 = ∑ [𝑦𝑖𝑋𝑖•𝛽 − ln(1 + 𝑒𝑋𝑖•𝛽)]𝑖  (3) 

 
Where, Xi• is the ith row of the X matrix. 
 
There is no closed form solution to maximizing the log-likelihood function.  Therefore, the MLE 
are solved iteratively using Fisher scoring, an iteratively reweighted scoring algorithm.  The first 
derivative of the log-likelihood function is given by: 
 

 
𝜕 ln𝐿

𝜕𝛽
= 𝑋𝑇𝑆 (4) 
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S is known as the score function.  The score function in logistic regression is given by the 
following: 
 
 𝑆𝑖 = 𝑦𝑖 − 𝑝𝑖 (5) 
 
Fisher scoring uses the negative expectation of the second derivative of the log-likelihood 
function, known as the Fisher information matrix, which is given by the following: 
 

 −𝐸 (
𝜕2 ln 𝐿

𝜕𝛽2 ) = 𝑋𝑇𝑊𝑋 (6) 

 
Where, W is a diagonal matrix of weights given by the following equation: 
 
 𝑊𝑖𝑖 = 𝑝𝑖(1 − 𝑝𝑖) (7) 
 
The Fisher scoring algorithm is given by the following: 
 

 𝛽{𝑡+1} = 𝛽{𝑡} + (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑆 (8) 
 
Where, t denotes the iteration number.  This algorithm is repeated until the change in the  
log-likelihood is sufficiently small. 
 
The simplest model for ballistic limit testing is the univariate model.  An example of the univariate 
model is shown in Figure 1.  The data used to construct this plot are presented in Appendix A,  
Table A-1.  Note that these and all data presented in this paper are simulated and do not represent 
the results of any military test of armor.  The univariate logit function is given by the following: 
 

 ln
𝑝

1−𝑝
= 𝛽0 + 𝛽1𝑥 (9) 

 
Where: 
 
β0 is the intercept 
β1 is the slope 
x is the velocity of the kinetic energy threat 
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Figure 1.   Example of the logistic regression model. 
 
 
In sensitivity testing, it is often desirable to use the location-scale parameterization instead of the 
linear parameterization (ref. 3).  The logit link function for the univariate problem using the 
location-scale parameterization is given by the following: 
 

 ln
𝑝

1−𝑝
=

𝑥−𝜇

𝑠
 (10) 

 
Where: 
 
µ is the location parameter 
s is the scale parameter 
 
The V50 (velocity at which there is a 50% probability of penetration) in ballistic limit testing is 
equivalent to µ for the logistic CDF (and other symmetric CDFs).  Sigma, σ, is a 
reparameterization of s is given by the following: 
 

 𝜎 =
𝜋

√3
𝑠 (11) 

 
Maximum likelihood estimates are known to have small sample bias.  Firth’s logistic regression 
may be used to reduce this bias (ref. 4).  Another advantage to Firth’s logistic regression is it can 
be used to determine a unique solution when there is separation in the data.  In ballistic limit 
testing, separation in the data is often described as there being no zone of mixed results (i.e., no 
overlap in partial and complete penetrations).  Finally, penalized likelihood ratio tests, based on 
Firth’s logistic regression, may be used to improve the accuracy of statistical tests which is the 
focus of this paper. 
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Firth’s logistic regression penalizes the logistic regression score function to reduce the first order 
bias.  The modified score function is given by the following (ref. 5): 
 
 𝑆𝑖

∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 
Where: 
 
𝑆𝑖
∗ is the ith element of the modified score 

hii is the ith diagonal element of the hat matrix: 
 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 
This modification to the logistic regression score function is equivalent to penalizing the logistic 
regression log-likelihood function with Jeffrey’s invariant prior (ref. 6). 
 

 ln 𝐿∗ = ∑ [𝑦𝑖𝑋𝑖•𝛽 − 𝑙𝑛(1 + 𝑒𝑋𝑖•𝛽)]𝑖 +
1

2
𝑙𝑛|𝐼| (14) 

 
Where: 
 
L* is the penalized likelihood 
|𝐼| is the determinant of the information matrix. 
 
Due to the complexity of taking derivatives of the determinant of the information matrix, the first 
order information matrix (i.e., the information matrix used in logistic regression) is often used in 
the iteratively reweighted scoring algorithm in Firth’s logistic regression.  This algorithm is given 
by the following: 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑆∗ (15) 
 
Though tedious, a modified information matrix may be used for the univariate model.  The 
iteratively reweighted scoring algorithm using the modified information matrix is given by the 
following: 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝐼∗)−1𝑋𝑇𝑆∗ (16) 
 

 𝐼∗ = [
∑𝑊 −

1

2

𝜕2 ln|𝐼|

𝜕𝛽0
2 ∑𝑊𝑥 −

1

2

𝜕2 ln|𝐼|

𝜕𝛽0𝜕𝛽1

∑𝑊𝑥 −
1

2

𝜕2 ln|𝐼|

𝜕𝛽0𝜕𝛽1
∑𝑊𝑥2 −

1

2

𝜕2 ln|𝐼|

𝜕𝛽1
2

] (17) 

 

 
𝜕2 ln|𝐼|

𝜕𝛽0
2 =

|𝐼|
𝜕2|𝐼|

𝜕𝛽0
2−(

𝜕|𝐼|

𝜕𝛽0
)
2

|𝐼|2
 (18) 

 

 
𝜕2 ln|𝐼|

𝜕𝛽0𝜕𝛽1
=

|𝐼|
𝜕2|𝐼|

𝛽0𝜕𝛽1
−
𝜕|𝐼|

𝜕𝛽0

𝜕|𝐼|

𝜕𝛽1

|𝐼|2
 (19) 
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𝜕2 ln|𝐼|

𝜕𝛽1
2 =

|𝐼|
𝜕2|𝐼|

𝜕𝛽1
2−(

𝜕|𝐼|

𝜕𝛽1
)
2

|𝐼|2
 (20) 

 

 
𝜕𝑊𝑖𝑖

𝜕𝛽0
= 𝑊𝑖𝑖(1 − 2𝑝𝑖) (21) 

 

 
𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 = 𝑊𝑖𝑖(1 − 2𝑝𝑖)

2 − 2𝑊𝑖𝑖
2 (22) 

 

 
𝜕|𝐼|

𝜕𝛽0
= ∑𝑊𝑖𝑖 ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
2 − 2∑𝑊𝑖𝑖𝑥𝑖 ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖 + ∑𝑊𝑖𝑖𝑥𝑖

2∑
𝜕𝑊𝑖𝑖

𝜕𝛽0
 (23) 

 

 
𝜕|𝐼|

𝜕𝛽1
= ∑𝑊𝑖𝑖 ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
3 − 2∑𝑊𝑖𝑖𝑥𝑖 ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
2 + ∑𝑊𝑖𝑖𝑥𝑖

2∑
𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖 (24) 

 

 
𝜕2|𝐼|

𝜕𝛽0
2 = ∑𝑊𝑖𝑖 ∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖

2 − 2∑𝑊𝑖𝑖𝑥𝑖 ∑
𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖 + ∑𝑊𝑖𝑖𝑥𝑖

2∑
𝜕2𝑊𝑖𝑖

𝜕𝛽0
2  

+2∑
𝜕𝑊𝑖𝑖

𝜕𝛽0
∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
2 − 2(∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖)

2
 (25) 

 

 
𝜕2|𝐼|

𝜕𝛽0𝜕𝛽1
= ∑𝑊𝑖𝑖 ∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖

3 − 2∑𝑊𝑖𝑖𝑥𝑖 ∑
𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖

2 +∑𝑊𝑖𝑖𝑥𝑖
2∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖 

+∑
𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
3∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
− ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
2∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖 (26) 

 

 
𝜕2|𝐼|

𝜕𝛽1
2 = ∑𝑊𝑖𝑖 ∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖

4 − 2∑𝑊𝑖𝑖𝑥𝑖
3∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2 𝑥𝑖

2 +∑𝑊𝑖𝑖𝑥𝑖
2∑

𝜕2𝑊𝑖𝑖

𝜕𝛽0
2  

+2∑
𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖 ∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
3 − 2(∑

𝜕𝑊𝑖𝑖

𝜕𝛽0
𝑥𝑖
2)

2
 (27) 

 
Sequentially Optimal Test Methods 
 
Sequential test methods are often used to select target velocities in ballistic limit testing.  Early 
methods were very simple such that they could be easily conducted on range without the use of 
computers but were statistically inefficient.  Newer methods including ones based on optimality 
criteria are more efficient but require the use of computers.  Due to the increased availability of 
personal computers and laptops, the use of these more complex methods has become more 
prevalent.  While many optimality criteria exist, Neyer’s SenTest is software that provides methods 
based on D-optimality and c-optimality (ref. 7). 
 
D-optimal methods select stressor values that maximize the determinant of the information matrix.  
This method is recommended when the goal of the test is to estimate both the V50 (velocity at 
which the probability of penetration is 50%) and sigma (slope of the response curve).  Neyer’s  
D-optimal method starts with a modified binary search to break separation.  Then subsequent 
stressor levels are those that maximize the determinant of the information matrix (eq. 6) with the 
MLE for the model parameters recalculated between each shot. A flow chart for this method is 
shown in Figure 2.  MuMin and MuMax are the initial parameters intended to bound the estimate 
of mu.  SigmaGuess is the initial parameter for the estimate of sigma.  MaxS is the maximum 
stressor level.  MinS is the minimum stressor level.  MinX is the minimum velocity resulting in a 
complete penetration.  Max0 is the maximum velocity resulting in a partial penetration. 
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Figure 2.   Flow chart for the Neyer D-Optimal Method. 
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A penalized D-optimal method is proposed in this paper.  This method is recommended when 
Firth logistic regression is the planned analysis method and when the goal of the test is to estimate 
both the V50 and sigma.  This test method uses the same modified binary search as the Neyer 
D-Optimal method to include the use of the first order information matrix before separation is 
broken (i.e., a zone of mixed results (ZMR) is achieved).  The first order information matrix is 
initially used because points that maximize the modified information matrix tend to lie outside of 
those for the first order information matrix.  Therefore, the use of the first order information matrix 
would be expected to break separation more quickly.  After separation is broken, subsequent 
stressor levels are those that maximize the determinant of the modified information matrix (eq. 
17).  Additionally, different clipping rules are used.  Clipping rules are intended to prevent extreme 
values for desired stressor levels when wild estimates for the model parameters are calculated.  
This can sometimes happen early in testing.  The parameter estimates are then “clipped” and less 
extreme desired velocities are returned by the algorithm. 
 

 
𝜎𝑀𝑃𝐿𝐸 < 0

𝜎𝑀𝑃𝐿𝐸 > 𝑀𝑎𝑥𝑆 −𝑀𝑖𝑛𝑆
} ⇒ 𝜎 = 𝑀𝑎𝑥𝑆 −𝑀𝑖𝑛𝑆 (28) 

 

 𝜇 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑖𝑛𝑆, 𝜇𝑃𝑀𝑃𝐿𝐸|𝜎 ,𝑀𝑎𝑥𝑆) (29) 

 
Where:  
 
𝜎𝑀𝑃𝐿𝐸 is the maximum penalized likelihood estimate for sigma 
𝜇𝑃𝑀𝑃𝐿𝐸|𝜎 is the profile maximum penalized likelihood estimate for µ given sigma 

 
C-optimal methods attempt to minimize the variance of a linear combination of parameters.  This 
method is recommended when the goal of the test is to estimate an extreme quantile, such as the 
V10 (velocity at which there is a 10% probability of penetration).  Neyer’s c-optimal method starts 
with a modified binary search to break separation.  However, this method is based on the  
c-optimal algorithm instead of the D-optimal algorithm.  Then subsequent stressor levels are those 
that minimize the variance of the extreme quantile of interest with the MLE for the model 
parameters recalculated between each shot.  The variance of the extreme quantile, Xp, is given 
by the following: 
 

 𝑉𝑎𝑟(𝑋𝑝) = 𝑋⃗(𝑋𝑇𝑊𝑋)−1𝑋⃗𝑇 (30) 

 

 𝑋⃗ = [1 𝑋𝑝] (31) 
 
A flow chart for this method is shown in Figure 3. 
 
A penalized c-optimal method is proposed in this paper.  This method is recommended when Firth 
logistic regression is the planned analysis method and when the goal of the test is to estimate an 
extreme quantile, such as the V10.  This test method uses the same modified binary search as 
the Neyer c-Optimal method to include the use of the first order information matrix before 
separation is broken (i.e., a ZMR is achieved).  As with the D-optimal method, the first order 
information matrix is initially used, because points that minimize the variance using the modified 
information matrix tend to lie outside those for the first order information matrix.  Therefore, the 
use of the first order information matrix would be expected to break separation more quickly.  After 
separation is broken, subsequent stressor levels are those that minimize the variance of the 
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extreme quantile using the modified information matrix (eq. 17).  Additionally, the same clipping 
rules are used as in the penalized D-optimal method. 
 
 

 
 

Figure 3.   Flow chart for the Neyer c-Optimal Method.  
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Likelihood Ratio Test (LRT) 
 
The likelihood ratio test is a statistical test comparing the likelihoods of two nested models.  The 
null model is nested in the alternative model, meaning that the null model is similar to the 
alternative model but may be missing one or more parameters.  Alternatively, one of the 
parameters in the null model is set to a constant or function of the other parameters as in profile 
likelihood.  The test statistic for the likelihood ratio test, is given by the following: 
 
 ∆= 𝐷0 − 𝐷1 (32) 
 
Where: 
 
Δ is the test statistic for the likelihood ratio test which is approximately χ2-distributed with degrees 
of freedom (df) equal to the difference in the number of parameters between the null and 
alternative models. 
D0 is the deviance for the null model. 
D1 is the deviance for the alternative model. 
 
Deviance, D, is given by the following equation: 
 
 𝐷 = −2 ln 𝐿 (33) 
 
One-Sample LRT on V50 
 
The null and alternative models are given by the following (ref. 8): 
 
 𝐻0:  𝛽(𝑥 − 𝜇0),   𝑉50 = 𝑉500 (34) 
 
 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑉50 ≠ 𝑉500 (35) 
 
Both the null and alternative models may be fit using standard logistic regression techniques.  The 
test statistic is approximately χ2-distributed with one df. 
 
Figure 4 presents an example of the one-sample LRT on V50.  The left plot displays the example 
data and response curves for the null and alternative models.  The right plot displays the LRT test 
statistic as a function of V50 under the null model.  For this example, the value for V500 is  
2300 ft/s resulting in a Δ of 7.44 and p-value of 0.006.  A copy of the data used for this example 
is presented in Table A-1. 
 
Figure 5 presents an example of the one-sample LRT on V50 when there is separation in the 
data.  The left plot displays the example data and response curve for the null model.  A unique 
solution for the alternative model cannot be determined since any step function between the 
highest partial and lower complete would maximize the likelihood function.  Instead, the rectangle 
indicates this gap between the highest velocity partial and lowest velocity complete penetration.  
The right plot displays the LRT test statistic as a function of V50 under the null model.  For this 
example, the value for V500 is 2300 ft/s resulting in a Δ of 11.66 and p-value of 0.0006.  Note the 
shape of the curve where there is a gap in the data.  Again, since any step function in the gap 
maximizes the likelihood (minimizes the deviance), the profile likelihood is discontinuous at the 
highest partial and lowest complete penetration.  For this reason, the Penalized Likelihood Ratio 
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Test (PLRT) is preferred for data with separation.  A copy of the data used for this example is 
presented in Table A-2. 
 
 

 
 

Figure 4.   Example of the one-sample LRT on V50. 
 
 

 
 

Figure 5.   Example of the one-sample LRT on V50 with separation. 
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Two-Sample LRT on V50 
 
The null and alternative models are given by the following (ref. 8 and 9): 
 

 𝐻0:  
𝑥−𝜇

𝑠+𝜀𝑑
,   𝑉501 = 𝑉502 (36) 

 

 𝐻1:  
𝑥−(𝜇+𝛿𝑑)

𝑠+𝜀𝑑
,   𝑉501 ≠ 𝑉502 (37) 

Where: 
 
δ is the shift in V50 between the two samples under the alternative model 
d is the design variable indicating which sample 
ε is the shift in the scale parameter between the two samples 
 
The alternative hypothesis may be presented in linear parameters and solved using standard 
logistic regression techniques. 
 
 𝐻1:  𝛽0 + 𝛽1𝑥 + 𝛽2𝑑 + 𝛽3𝑥𝑑 (38) 
 
The null model, however, is more challenging.  Since the null model uses profile likelihood in the 
linear parameterization, it is possible for there to be local maxima and minima.  The first step is 
to set µ0 equal to values between V501 and V502 and solve for the profile maximum likelihood 
estimates (PMLEs) for s and ε given that value for µ0.  This approach is an application of profile 
likelihood.  The iteratively reweighted scoring algorithm is given by the following: 
 

 𝜃0
{𝑡+1}

= 𝜃0
{𝑡}

+ ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆 (39) 

 

 𝜃0 = [
𝑠
ε
] (40) 

 

 𝜂 =
𝑥−𝜇0

𝑠+𝜀𝑑
 (41) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (42) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝜂𝑖

𝑠+𝜀𝑑𝑖
 (43) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖𝜂𝑖

𝑠+𝜀𝑑𝑖
 (44) 

 
The second step is to set the initial guesses for µ, s, and ε that maximize the log-likelihood from 
the first step.  Then, iteratively solve for the PMLEs for µ, s, and ε using equation 39.  The following 
equations should be used in support of the algorithm. 
 

 𝜃0 = [
𝜇
𝑠
𝜀
] (45) 
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 𝜂 =
𝑥−𝜇

𝑠+𝜀𝑑
 (46) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝜇

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (47) 

 

 
𝜕𝜂𝑖

𝜕𝜇
= −

1

𝑠+𝜀𝑑𝑖
 (48) 

 
Note that equations 43 and 44 may still be used.  The test statistic is approximately χ2-distributed 
with one df.  The method may be easily extended to one factor with multiple levels. 
 
Figure 6 presents an example of the two-sample LRT on V50.  The left plot displays the response 
curves for the null and alternative models for samples A and B.  The right plot displays the LRT 
test statistic as a function of V50 under the null model.  The resulting test statistic is 1.41and  
p-value is 0.234.  A copy of the data used for this example is presented in Table A-3. 
 
 

 
 

Figure 6.   Example of the two-sample LRT on V50. 
 
 
LRT on V50 with Multiple Factors 
 
Although this method may be extendable to any number of factors and levels, the two factor each 
at two levels model is described here.  The alternative model is given by the following (ref. 10): 
 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
 (49) 

 
The alternative hypothesis may be presented in linear parameters and solved using standard 
logistic regression techniques. 
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 ln
𝑝

1−𝑝
= 𝛽0 + 𝛽1𝑑1 + 𝛽2𝑑2 + 𝛽12𝑑12 + 𝛽𝑥𝑥 + 𝛽1𝑥𝑑1𝑥 + 𝛽2𝑥𝑑2𝑥 + 𝛽12𝑥𝑑12𝑥 (50) 

 
There are three null models including the two main effects and the one interaction.  These null 
models are given by the following: 
 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿1 = 0 (51) 

 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿2 = 0 (52) 

 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿2𝑑2)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿12 = 0 (53) 

 
The null models, however, are more challenging to solve.  Since the null models use profile 
likelihood in the linear parameterization, it is possible for there to be local maxima and minima.  
There are two possible approaches.  The first is the grid approach in which the log-likelihood for 
many combinations of parameters is evaluated and pick the best initial guess.  However, this 
method is very time consuming and completely impractical for more complex models.  The second 
approach is using a Latin hypercube with multiple starts.  The Latin hypercube is a space filling 
design and is used to produce the initial guesses.  The Fisher scoring algorithm is then performed 
for each initial guess.  This method is preferred though is not without its challenges.  Most initial 
guesses will not be good resulting in failure to converge on a solution.  Therefore, computational 
issues will have to be addressed.  For the first null model (δ1=0) the following equations are used. 
 

 𝜃0
{𝑡+1}

= 𝜃0
{𝑡}

+ ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆 (39) 

 

 𝜃0
𝑇 = [𝜇 𝛿2 𝛿12 𝑠 𝜀1 𝜀2 𝜀12] (54) 

 

 𝜂 =
𝑥−(𝜇+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
 (55) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝜇

𝜕𝜂

𝜕𝛿2

𝜕𝜂

𝜕𝛿12

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀1

𝜕𝜂

𝜕𝜀2

𝜕𝜂

𝜕𝜀12
] (56) 

 

 
𝜕𝜂𝑖

𝜕𝜇
= −

1

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (57) 

 

 
𝜕𝜂𝑖

𝜕𝛿2
= −

𝑑2,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (58) 

 

 
𝜕𝜂𝑖

𝜕𝛿12
= −

𝑑

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (59) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝜂𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (60) 

 

 
𝜕𝜂𝑖

𝜕𝜀1
= −

𝜂𝑖𝑑1,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (61) 
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𝜕𝜂𝑖

𝜕𝜀2
= −

𝜂𝑖𝑑2,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (62) 

 

 
𝜕𝜂𝑖

𝜕𝜀12
= −

𝜂𝑖𝑑12,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (63) 

 
The test statistic is approximately χ2-distributed with one df.  This approach is repeated for design 
variable δ2 and interaction δ12. 
 
An example of the likelihood ratio test table is present in Table 1.  Figure 7 presents an example 
of the LRT on V50 with multiple factors for the first null model (δ1=0).  The top-left plot displays 
the response curves for the null and alternative models.  The top-right plot displays the test 
statistic versus µ under the null model with PMLEs for parameters δ2, δ12, s, ε1, ε2, and ε12 
calculated for each value of µ.  Likewise, the bottom-left plot displays the test statistic versus δ2 
with PMLEs for parameters µ, δ12, s, ε1, ε2, and ε12 calculated for each value of δ2.  Finally, the 
bottom-right plot displays the test statistic versus δ12 with PMLEs for parameters µ, δ2, s, ε1, ε2, 
and ε12 calculated for each value of δ12.  The resulting test statistic for the first null model is 1.34 
and p-value is 0.246.  A copy of the data used for this example is presented in Table A-4. 
 
 

TABLE 1.   EXAMPLE LIKELIHOOD RATIO TEST TABLE 
 

Factor df χ2-Stat P-Value 

d1 1 1.34 0.246 

d2 1 0.08 0.772 

d1*d2 1 1.87 0.172 
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Figure 7.   Example of the LRT on V50 with two factors each at two levels. 
 
 

One-Sample LRT on Sigma 
 
The null and alternative models are given by the following: 
 

 𝐻0:  𝛽0 +
𝑥

𝑠0
,   𝑠 = 𝑠0 (64) 

 
 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑠 ≠ 𝑠0 (65) 
 
Both the null and alternative models may be fit using standard logistic regression techniques.  The 
test statistic is approximately χ2-distributed with one df. 
 
Figure 8 presents an example of the one-sample LRT on sigma.  The left plot displays the example 
data and response curves for the null and alternative models.  The right plot displays the LRT test 
statistic as a function sigma under the null model.  For this example, the value for σ0 is 40 ft/s 
resulting in a Δ of 2.47 and p-value of 0.116.  See eqn. 11 for the relationship between s and σ 
for logistic regression.  A copy of the data used for this example is presented in Table A-5. 
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Figure 8.   Example of one-sample LRT on sigma. 
 
 
Two-Sample LRT on Sigma 
 
The null and alternative models are given by the following: 
 
 𝐻0:  𝛽0 + 𝛽1𝑑 + 𝛽2𝑥,   𝑠1 = 𝑠2 (66) 
 
 𝐻1:  𝛽0 + 𝛽1𝑑 + 𝛽2𝑥 + 𝛽3𝑑𝑥,   𝑠1 ≠ 𝑠2 (67) 
 
Both the null and alternative models may be fit using standard logistic regression techniques.  The 
test statistic is approximately χ2-distributed with one df. 
 
Figure 9 presents an example of the two-sample LRT on sigma.  The left plot displays the 
response curves for the null and alternative models for samples A and B.  The right plot displays 
the LRT test statistic as a function of σ under the null model.  The resulting test statistic is 0.21 
and p-value is 0.643.  A copy of the data used for this example is presented in Table A-6. 
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Figure 9.   Example of two-sample LRT on sigma. 
 
 
One-Sample LRT on V10 
 
The null and alternative models are given by the following: 
 
 𝐻0:  𝑞0 + 𝛽(𝑥 − 𝑉100),   𝑉10 = 𝑉100 (68) 
 
 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑉10 ≠ 𝑉100 (69) 
 

 𝑞0 = ln
𝑝0

1−𝑝0
= ln

0.1

0.9
 (70) 

 
Both the null and alternative models may be fit using standard logistic regression techniques.  The 
test statistic is approximately χ2-distributed with one df. 
 
Figure 10 presents an example of the one-sample LRT on V10.  The left plot displays the example 
data and response curves for the null and alternative models.  The right plot displays the LRT test 
statistic as a function V10 under the null model.  For this example, the value for V100 is 2000 ft/s 
resulting in a Δ of 4.91 and p-value of 0.027.  A copy of the data used for this example is presented 
in Table A-7. 
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Figure 10.   Example of one-sample LRT on V10. 
 
 
Two-Sample LRT on V10 
 
The null and alternative models are given by the following: 
 

 𝐻0: 𝑞0 +
𝑥−𝑉10

𝑠+𝜀𝑑
,   𝑉101 = 𝑉102 (71) 

 

 𝐻1: 𝑞0 +
𝑥−(𝑉10+𝛿𝑑)

𝑠+𝜀𝑑
,   𝑉101 ≠ 𝑉102 (72) 

 
The alternative model may be presented in linear parameters and solved using standard logistic 
regression techniques.  Recall equation 38: 
 
 𝐻1:  𝛽0 + 𝛽1𝑥 + 𝛽2𝑑 + 𝛽3𝑥𝑑 (38) 
 
The null model, however, is more challenging.  Since the null model uses profile likelihood in the 
linear parameterization, it is possible for there to be local maxima and minima.  The first step is 
to set V100 equal to values between V101 and V102 and solve for the PMLEs for s and ε given 
that value for V100.  This approach is an application of profile likelihood.  The iteratively reweighted 
scoring algorithm is given by equation 39. 
 

 𝜃0
{𝑡+1} = 𝜃0

{𝑡} + ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆 (39) 

 

 𝜃0 = [
𝑠
ε
] (40) 
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 𝜂 = 𝑞0 +
𝑥−𝑉100

𝑠+𝜀𝑑
 (73) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (42) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝑥𝑖−𝑉100
(𝑠+𝜀𝑑𝑖)

2 (74) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖(𝑥𝑖−𝑉100)

(𝑠+𝜀𝑑𝑖)
2  (75) 

 
The second step is to set the initial guesses for V10, s, and ε that maximize the log-likelihood 
from the first step.  Then, iteratively solve for the PMLEs for V10, s, and ε using equation 39.  
However, the following equations should be used in support of the algorithm. 
 

 𝜃0 = [
𝑉10
𝑠
𝜀

] (76) 

 

 𝜂 = 𝑞0 +
𝑥−𝑉10

𝑠+𝜀𝑑
 (77) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑉10

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (78) 

 

 
𝜕𝜂𝑖

𝜕𝑉10
= −

1

𝑠+𝜀𝑑𝑖
 (79) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝑥𝑖−𝑉10

(𝑠+𝜀𝑑𝑖)
2 (80) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖(𝑥𝑖−𝑉10)

(𝑠+𝜀𝑑𝑖)
2  (81) 

 
Figure 11 presents an example of the two-sample LRT on V10.  The left plot displays the response 
curves for the null and alternative models for samples A and B.  The right plot displays the LRT 
test statistic as a function of V10 under the null model.  The resulting test statistic is 1.43 and  
p-value is 0.232.  A copy of the data used for this example is presented in Table A-8. 
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Figure 11.   Example of two-sample LRT on V10. 
 
 

Penalized Likelihood Ratio Test (PLRT) 
 

The penalized likelihood ratio test is a statistical test comparing the penalized likelihoods of two 
nested models (ref. 11).  The null model is nested in the alternative model, meaning that the null 
model is similar to the alternative model but may be missing one or more parameters.  
Alternatively, one of the parameters in the null model is set to a constant or function of the other 
parameters as in profile penalized likelihood.  The test statistic for the penalized likelihood ratio 
test, is given by the following: 
 

 ∆∗= 𝐷0
∗ − 𝐷1

∗ (82) 
 

Where: 
 

Δ* is the test statistic for the penalized likelihood ratio test which is approximately χ2-distributed  
 with degrees of freedom equal to the difference in the number of parameters between the null  
 and alternative models. 
𝐷0
∗ is the penalized deviance for the null model. 

𝐷1
∗ is the penalized deviance for the alternative model. 

 

Penalized deviance, D*, is given by the following equation: 
 

 𝐷∗ = −2 ln 𝐿∗ (83) 
 

One-Sample PLRT on V50 
 

The null and alternative models are given by the following: 
 
 𝐻0:  𝛽(𝑥 − 𝑉500),   𝑉50 = 𝑉500 (34) 
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 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑉50 ≠ 𝑉500 (35) 
 
The alternative model may be fit using standard Firth logistic regression techniques.  Since the 
penalized likelihood is in part a function of the information matrix, the dimensionality of the 
information matrix has a large impact on the penalized likelihood calculation.  Therefore, care 
must be taken when fitting the null model for the purposes of the penalized likelihood ratio test.  
The iteratively reweighted scoring algorithm is given by the following: 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝑋0
𝑇𝑊𝑋0)

−1𝑋0
𝑇𝑆∗ (84) 

 
 𝑋0 = 𝑥 − 𝑉500 (85) 
 
 𝑆𝑖

∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 
The test statistic is approximately χ2-distributed with one df. 
 
Figure 12 presents an example of the one-sample PLRT on V50.  The left plot displays the 
example data and response curves for the null and alternative models.  The right plot displays the 
PLRT test statistic as a function of V50 under the null model.  For this example, the value for V500 
is 2200 ft/s resulting in a Δ* of 4.28 and p-value of 0.039.  A copy of the data used for this example 
is presented in Table A-9. 
 
 

 
 

Figure 12.   Example of one-sample PLRT on V50. 
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Two-Sample PLRT on V50 
 
The null and alternative models are given by the following: 
 

 𝐻0:  
𝑥−𝜇

𝑠+𝜀𝑑
,   𝑉501 = 𝑉502 (36) 

 

 𝐻1:  
𝑥−(𝜇+𝛿𝑑)

𝑠+𝜀𝑑
,   𝑉501 ≠ 𝑉502 (37) 

 
The alternative hypothesis may be presented in linear parameters and solved using standard Firth 
logistic regression techniques. 
 
 𝐻1:  𝛽0 + 𝛽1𝑥 + 𝛽2𝑑 + 𝛽3𝑥𝑑 (38) 
 
The null model, however, is more challenging.  Since the penalized likelihood is in part a function 
of the information matrix, the dimensionality of the information matrix has a large impact on the 
penalized likelihood calculation.  Additionally, since the null model uses profile likelihood in the 
linear parameterization, it is possible for there to be local maxima and minima.  The first step is 
to set µ0 equal to values between V501 and V502 and solve for the profile maximum penalized 
likelihood estimates (PMPLEs) for s and ε given that value for µ0.  The iteratively reweighted 
scoring algorithm is given by the following: 
 

 𝜃0
{𝑡+1} = 𝜃0

{𝑡} + ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆∗ (86) 

 
 𝑆𝑖

∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 

 𝜃0 = [
𝑠
ε
] (40) 

 

 𝜂 =
𝑥−𝜇0

𝑠+𝜀𝑑
 (41) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (42) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝜂𝑖

𝑠+𝜀𝑑𝑖
 (43) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖𝜂𝑖

𝑠+𝜀𝑑𝑖
 (44) 

 
The second step is to set the initial guesses for µ, s, and ε that maximize the penalized likelihood 
from the first step.  Then, iteratively solve for the PMPLEs for µ, s, and ε using equation 86.  
However, the following equations should be used in support of the algorithm. 
 

 𝜃0 = [
𝜇
𝑠
𝜀
] (45) 
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 𝜂 =
𝑥−𝜇

𝑠+𝜀𝑑
 (46) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝜇

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (47) 

 

 
𝜕𝜂𝑖

𝜕𝜇
= −

1

𝑠+𝜀𝑑𝑖
 (48) 

 
Note that equations 43 and 44 may still be used.  The test statistic is approximately χ2-distributed 
with one df.  The method may be easily extended to one factor with multiple levels. 
 
Figure 13 presents an example of the two-sample PLRT on V50.  The left plot displays the 
response curves for the null and alternative models for samples A and B.  The right plot displays 
the PLRT test statistic as a function of V50 under the null model.  The resulting test statistic is 
0.23 and p-value is 0.630.  A copy of the data used for this example is presented in Table A-10. 
 
 

 
 

Figure 13.   Example of two-sample PLRT on V50. 
 
 
PLRT on V50 with Multiple Factors 
 
Although this method may be easily extendable to any number of factors and levels, the two factor 
each at two levels model is described here.  The alternative model is given by the following: 
 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
 (49) 

 
The alternative hypothesis may be presented in linear parameters and solved using standard 
logistic regression techniques. 
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 ln
𝑝

1−𝑝
= 𝛽0 + 𝛽1𝑑1 + 𝛽2𝑑2 + 𝛽12𝑑12 + 𝛽𝑥𝑥 + 𝛽1𝑥𝑑1𝑥 + 𝛽2𝑥𝑑2𝑥 + 𝛽12𝑥𝑑12𝑥 (50) 

 
There are three null models including the two main effects and the one interaction.  These null 
models are given by the following: 
 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿1 = 0 (51) 

 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿2 = 0 (52) 

 

 ln
𝑝

1−𝑝
=

𝑥−(𝜇+𝛿1𝑑1+𝛿2𝑑2)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
, 𝛿12 = 0 (53) 

 
The null models, however, are more challenging.  Since the penalized likelihood is in part a 
function of the information matrix, the dimensionality of the information matrix has a large impact 
on the penalized likelihood calculation.  Additionally, since the null models use profile penalized 
likelihood in the linear parameterization, it is possible for there to be local maxima and minima.  
There are two possible approaches.  The first is the grid approach in which the penalized 
likelihood for many combinations of parameters is evaluated and the best is selected as the initial 
guess.  However, this method is very time consuming and completely impractical for more 
complex models.  The second approach is using a Latin hypercube with multiple starts.  The Latin 
hypercube is a space filling design and is used to produce the initial guesses.  The Fisher scoring 
algorithm is then performed for each initial guess.  This method is preferred though is not without 
its challenges.  Most initial guesses will not be good and computational issues will have to be 
addressed.  For the first null model (δ1=0) the following equations are used. 
 

 𝜃0
{𝑡+1} = 𝜃0

{𝑡} + ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆∗ (86) 

 
 𝑆𝑖

∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 

 𝜃0
𝑇 = [𝜇 𝛿2 𝛿12 𝑠 𝜀1 𝜀2 𝜀12] (54) 

 

 𝜂 =
𝑥−(𝜇+𝛿2𝑑2+𝛿12𝑑12)

𝑠+𝜀1𝑑1+𝜀2𝑑2+𝜀12𝑑12
 (55) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝜇

𝜕𝜂

𝜕𝛿2

𝜕𝜂

𝜕𝛿12

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀1

𝜕𝜂

𝜕𝜀2

𝜕𝜂

𝜕𝜀12
] (56) 

 

 
𝜕𝜂𝑖

𝜕𝜇
= −

1

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (57) 

 

 
𝜕𝜂𝑖

𝜕𝛿2
= −

𝑑2,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (58) 

 

 
𝜕𝜂𝑖

𝜕𝛿12
= −

𝑑

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (59) 
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𝜕𝜂𝑖

𝜕𝑠
= −

𝜂𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (60) 

 

 
𝜕𝜂𝑖

𝜕𝜀1
= −

𝜂𝑖𝑑1,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (61) 

 

 
𝜕𝜂𝑖

𝜕𝜀2
= −

𝜂𝑖𝑑2,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (62) 

 

 
𝜕𝜂𝑖

𝜕𝜀12
= −

𝜂𝑖𝑑12,𝑖

𝑠+𝜀1𝑑1,𝑖+𝜀2𝑑2,𝑖+𝜀12𝑑12,𝑖
 (63) 

 
The test statistic is approximately χ2-distributed with one df.  This approach is repeated for design 
variable δ2 and interaction δ12. 
 
An example of the penalized likelihood ratio test table is present in Table 2.  Figure 14 presents 
an example of the PLRT on V50 with multiple factors.  The top-left plot displays the response 
curves for the null and alternative models.  The top-right plot displays a contour plot of δ2 versus 
µ with color indicating the likelihood ratio test statistic and δ12 fixed at the PMPLE under the null 
model.  Likewise, the bottom-left plot displays a contour plot of δ12 versus µ with color indicating 
the likelihood ratio test statistic and δ2 fixed at the PMPLE under the null model.  Finally, the 
bottom-right plot displays a contour plot of δ12 versus δ2 with color indicating the likelihood ratio 
test statistic and µ fixed at the PMPLE under the null model.  Additionally, PMPLE of parameters 
s, ε1, ε2, and ε12 were determined for each point in each of the contour plots.  The resulting test 
statistic is 0.84 and p-value is 0.359.  A copy of the data used for this example is presented in 
Table A-11. 
 
 

TABLE 2.   EXAMPLE PENALIZED LIKELIHOOD RATIO TEST TABLE 
 

Factor df χ2-Stat P-Value 

d1 1 0.84 0.359 

d2 1 0.08 0.781 

d1*d2 1 0.18 0.671 
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Figure 14.   Example of the PLRT on V50 with two factors each at two levels. 
 
 

One-Sample PLRT on Sigma 
 

The null and alternative models are given by the following: 
 

 𝐻0:  𝛽0 +
𝑥

𝑠0
,   𝑠 = 𝑠0 (64) 

 

 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑠 ≠ 𝑠0 (65) 
 

The alternative model may be fit using standard Firth logistic regression techniques.  As before, 
since the penalized likelihood is in part a function of the information matrix, the dimensionality of 
the information matrix has a large impact on the penalized likelihood calculation.  The iteratively 
reweighted scoring algorithm is given by the following: 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝟏𝑇𝑊𝟏)−1𝟏𝑇𝑆∗ (87) 
 

 𝑆𝑖
∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 

Where, 1 is a vector of ones to solve for the intercept β0.  The test statistic is approximately  
χ2-distributed with one df.  
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Figure 15 presents an example of the one-sample PLRT on sigma.  The left plot displays the 
example data and response curves for the null and alternative models.  The right plot displays the 
PLRT test statistic as a function of sigma under the null model.  For this example, the value for σ0 
is 100 ft/s resulting in a Δ* of 2.51 and p-value of 0.113.  A copy of the data used for this example 
is presented in Table A-12. 
 
 

 
 

Figure 15.   Example of one-sample PLRT on sigma. 
 
 

Two-Sample PLRT on Sigma 
 

The null and alternative models are given by the following: 
 

 𝐻0:  𝛽0 + 𝛽1𝑑 + 𝛽2𝑥,   𝑠1 = 𝑠2 (66) 
 

 𝐻1: 𝛽0 + 𝛽1𝑑 + 𝛽2𝑥 + 𝛽3𝑑𝑥,   𝑠1 ≠ 𝑠2 (67) 
 

The alternative model may be fit using standard Firth logistic regression techniques.  The following 
equations are used to solve for the null model. 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝑋0
𝑇𝑊𝑋0)

−1𝑋0
𝑇𝑆∗ (84) 

 

 𝑋0 = [𝟏 𝒅 𝒙] (88) 
 

 𝑆𝑖
∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 

The test statistic is approximately χ2-distributed with one df. 
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Figure 16 presents an example of the two-sample PLRT on sigma.  The left plot displays the 
response curves for the null and alternative models for samples A and B.  The right plot displays 
the PLRT test statistic as a function sigma under the null model.  The resulting test statistic is 1.84 
and p-value is 0.175.  A copy of the data used for this example is presented in Table A-13. 
 
 

 
 

Figure 16.   Example of two-sample PLRT on sigma. 
 
 
One-Sample PLRT on V10 
 
The null and alternative models are given by the following: 
 
 𝐻0:  𝑞0 + 𝛽(𝑥 − 𝑉100),   𝑉10 = 𝑉100 (68) 
 
 𝐻1:  𝛽0 + 𝛽1𝑥,   𝑉10 ≠ 𝑉100 (69) 
 

 𝑞0 = ln
𝑝0

1−𝑝0
= ln

0.1

0.9
 (70) 

 
The alternative model may be fit using standard Firth logistic regression techniques.  Again, since 
the penalized likelihood is in part a function of the information matrix, the dimensionality of the 
information matrix has a large impact on the penalized likelihood calculation.  Therefore, care 
must be taken when fitting the null model for the purposes of the penalized likelihood ratio test.  
The iteratively reweighted scoring algorithm is given by the following: 
 

 𝛽𝑡+1 = 𝛽𝑡 + (𝑋0
𝑇𝑊𝑋0)

−1𝑋0
𝑇𝑆∗ (84) 

 
 𝑋0 = 𝑥 − 𝑉100 (89) 
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 𝑆𝑖
∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 
The test statistic is approximately χ2-distributed with one df. 
 
Figure 17 presents an example of the one-sample PLRT on V10.  The left plot displays the 
example data and response curves for the null and alternative models.  The right plot displays the 
PLRT test statistic as a function of V10 under the null model.  For this example, the value for V100 
is 2200 ft/s resulting in a Δ* of 2.85 and p-value of 0.091.  A copy of the data used for this example 
is presented in Table A-14. 
 
 

 
 

Figure 17.   Example of one-sample PLRT on V10. 
 
 
Two-Sample PLRT on V10 
 
The null and alternative models are given by the following: 
 

 𝐻0: 𝑞0 +
𝑥−𝑉10

𝑠+𝜀𝑑
,   𝑉101 = 𝑉102 (71) 

 

 𝐻1: 𝑞0 +
𝑥−(𝑉10+𝛿𝑑)

𝑠+𝜀𝑑
,   𝑉101 ≠ 𝑉102 (72) 

 
The alternative hypothesis may be presented in linear parameters and solved using standard 
logistic regression techniques. 
 
 𝐻1:  𝛽0 + 𝛽1𝑥 + 𝛽2𝑑 + 𝛽3𝑥𝑑 (38) 
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As before, the null model is more challenging.  Since the penalized likelihood is in part a function 
of the information matrix, the dimensionality of the information matrix has a large impact on the 
penalized likelihood calculation.  Additionally, since the null model uses profile likelihood in the 
linear parameterization, it is possible for there to be local maxima and minima.  The first step is 
to set V100 equal to values between V101 and V102 and solve for the PMPLEs for s and ε given 
that value for V100.  The iteratively reweighted scoring algorithm is given by the following: 
 

 𝜃0
{𝑡+1} = 𝜃0

{𝑡} + ((
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑊

𝜕𝜂

𝜕𝜃0
)
−1

(
𝜕𝜂

𝜕𝜃0
)
𝑇
𝑆∗ (86) 

 
 𝑆𝑖

∗ = 𝑆𝑖 − ℎ𝑖𝑖(𝑝𝑖 − 1 2⁄ ) (12) 

 

 𝐻 = 𝑊1 2⁄ 𝑋(𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊1 2⁄  (13) 
 

 𝜃0 = [
𝑠
ε
] (40) 

 

 𝜂 = 𝑞0 +
𝑥−𝑉100

𝑠+𝜀𝑑
 (73) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (42) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝑥𝑖−𝑉100
(𝑠+𝜀𝑑𝑖)

2 (74) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖(𝑥𝑖−𝑉100)

(𝑠+𝜀𝑑𝑖)
2  (75) 

 
The second step is to set the initial guesses for V10, s, and ε that maximize the log-likelihood 
from the first step.  Then, iteratively solve for the PMPLEs for V10, s, and ε using equation 86.  
However, the following equations should be used in support of the algorithm. 
 

 𝜃0 = [
𝑉10
𝑠
𝜀

] (76) 

 

 𝜂 = 𝑞0 +
𝑥−𝑉10

𝑠+𝜀𝑑
 (77) 

 

 
𝜕𝜂

𝜕𝜃0
= [

𝜕𝜂

𝜕𝑉10

𝜕𝜂

𝜕𝑠

𝜕𝜂

𝜕𝜀
] (78) 

 

 
𝜕𝜂𝑖

𝜕𝑉10
= −

1

𝑠+𝜀𝑑𝑖
 (79) 

 

 
𝜕𝜂𝑖

𝜕𝑠
= −

𝑥𝑖−𝑉10

(𝑠+𝜀𝑑𝑖)
2 (80) 

 

 
𝜕𝜂𝑖

𝜕𝜀
= −

𝑑𝑖(𝑥𝑖−𝑉10)

(𝑠+𝜀𝑑𝑖)
2  (81) 
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Note that equations 74 and 75 may still be used.  The test statistic is approximately χ2-distributed 
with one df.  The method may be easily extended to one factor with multiple levels. 
 

Figure 18 presents an example of the two-sample PLRT on V10.  The left plot displays the 
response curves for the null and alternative models for samples A and B.  The right plot displays 
the PLRT test statistic as a function of V10 under the null model.  The resulting test statistic is 
0.61 and p-value is 0.434.  A copy of the data used for this example is presented in Table A-15. 
 
 

 
 

Figure 18.   Example of two-sample PLRT on V10. 
 
 

Simulation Setup 
 

To generate data, four methods were used.  To evaluate MLEs and LRTs for V50 and sigma, the 
Neyer D-Optimal Method was used as described in Figure 2.  A penalized version of the D-optimal 
method that uses the modified information matrix was used to evaluate PMLEs and PLRTs for 
V50 and sigma.  To evaluate MLEs and LRTs for V10, the Neyer c-Optimal method was used as 
described in Figure 3 with one exception.  The binary search method from the Neyer D-Optimal 
method was used until separation was broken because this method tended to outperform the 
binary search method from the Neyer c-Optimal method.  To evaluate PMLEs and PLRTs for V10, 
a penalized version of the c-Optimal method was used.  Again, the binary search method from 
the Neyer D-Optimal method was used.  A total of 10,000 simulated runs were completed for each 
test method.   
 

Outputs of the simulations include relative mean square error (MSE) for V50, sigma, and V10 and 
relative median bias for sigma and V10.  The V50 is unbiased for balanced designs.  Quantile-
quantile (Q-Q) plots are used to evaluate the performance of the statistical tests.  Both LRT and 
PLRT are approximately chi-square distributed.  The Q-Q plots display the proportion of the 
simulated runs that result in p-values below the alpha level of the test as a function of alpha when 
the null hypothesis is true.  An accurate statistical test would lie on the ideal line. 
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For each test, the sample size was varied between 20 and 100 in increments of 10.  For each 
sample size for the one-sample tests, the null and alternative models were compared for all 
10,000 datasets for both the statistical test methods (LRT and the PLRT) when the null model 
was true.  For the two-sample tests, datasets were paired resulting in 5000 tests for each 
statistical test method and sample size.  For the multiple factor tests on V50, the datasets were 
put into groups of 4 resulting in 2500 tests for each statistical test method and sample size. 
 
For a sample size of 20, there were 7 instances using the Neyer D-optimal method that separation 
was not broken.  For the one-sample tests, the test was conducted in general accordance with 
the example presented in Figure 5.  For the two-sample tests, the test was conducted in general 
accordance with ARL-TR-7088 (ref. 8).  For the LRT with multiple factors, the situation was 
sufficiently complex, such that no attempt was made to complete the test when one of the samples 
did not have a ZMR.  Therefore, for the LRT with multiple factors, there were only 2493 tests 
conducted. 
 
Simulation Results 
 
Figure 19 presents the performance with respect to V50 of logistic regression and Firth logistic 
regression using Neyer’s D-Optimal method and a penalized D-optimal method, respectively.  
Specifically, the plot shows the inverse of the relative MSE of V50 versus sample size.  The 
inverse of the relative MSE is presented because the relationship is approximately linear with 
sample size.  The result using logistic regression is labeled logit for the link function for logistic 
regression.  The result for the Firth logistic regression is labeled Firth.  As shown, the MSE on 
V50 for logistic regression is less than the MSE for Firth logistic regression for all sample sizes 
evaluated in the simulation. 
 
 

 
 

Figure 19.   MSE for V50. 
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Figures 20 through 22 present Q-Q plots for the one-sample, two-sample, and multiple factor (two 
factors each at two levels) tests on V50.  As shown, as sample size increases, both methods 
approach the ideal line.  Additionally, the PLRT generally outperformed the LRT with respect to 
accuracy.  Note that for the multiple factor tests on V50, the tests on the two main effects and the 
interaction each have one degree of freedom.  Therefore, the results were combined in the Q-Q 
plot.   
 
 

 
 

Figure 20.   Q-Q plots for the one-sample test on V50. 
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Figure 21.   Q-Q plots for the two-sample test on V50. 
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Figure 22.   Q-Q plots for the test on V50 with multiple factors. 
 
 

Figure 23 presents the performance with respect to sigma of logistic regression and Firth logistic 
regression using Neyer’s D-Optimal method and a penalized D-optimal method, respectively.  The 
left plot shows the relative median bias of sigma versus sample size.  As shown, Firth logistic 
regression outperformed logistic regression with respect to relative median bias for the sample 
sizes investigated.  The right plot shows the inverse of the MSE of sigma versus sample size.  As 
shown, both methods performed similarly with respect to MSE. 
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Figure 23.   Relative median bias and MSE for sigma 
 
 
Figures 24 and 25 present the Q-Q plots for the one-sample and two-sample tests on sigma, 
respectively.  As shown, as sample size increases, the performance of both test methods 
approaches the ideal line.  Additionally, the PLRT generally outperformed the LRT. 
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Figure 24.   Q-Q plot for one-sample test on sigma. 
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Figure 25.   Q-Q plot for two-sample test on sigma. 
 
 

Figure 26 presents the performance with respect to V10 of logistic regression and Firth logistic 
regression using Neyer’s c-Optimal method and a penalized c-optimal method, respectively.  The 
left plot shows the relative median bias of V10 versus sample size.  As shown, Firth logistic 
regression outperformed logistic regression with respect to relative median bias for the sample 
sizes investigated.  The right plot shows the inverse of the MSE of V10 versus sample size.  As 
shown, logistic regression outperformed Firth logistic regression with respect to MSE. 
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Figure 26.   Relative median bias and MSE for V10. 
 
 

Figures 27 and 28 present the Q-Q plots for the one-sample and two-sample tests on V10, 
respectively.  As shown, as sample size increases, the performance of both test methods 
approaches the ideal line.  Additionally, the PLRT generally outperformed the LRT. 
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Figure 27.   Q-Q plot for one-sample test on V10. 
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Figure 28.   Q-Q plot for two-sample test on V10. 
 
 

Conclusions 
 
Firth’s penalized likelihood reduces bias in the location-scale parametrization.  Additionally, 
penalized likelihood has desirable properties when separation has not been broken.  However, 
the MSE of the V50 and V10 were increased.  Therefore, bias reduction may not always be 
desirable for point estimation. 
 
For each statistical test, penalized likelihood ratio tests were more accurate than likelihood ratio 
tests.  In practice, power analysis is recommended to determine the trade-offs between increased 
test accuracy and power. 
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APPENDIX A.   EXAMPLE DATA 
 
 

TABLE A-1.   EXAMPLE DATA FOR THE  
RESPONSE CURVE PRESENTED IN  
FIGURE 1 AND ONE-SAMPLE LRT  

ON V50 PRESENTED IN  
FIGURE 4. 

 
Velocity, ft/s Penetration 

2400.0 0 

2600.0 1 

2500.0 1 

2352.7 1 

2205.2 0 

2266.3 0 

2458.9 1 

2306.4 0 

2431.4 0 

2496.7 1 

2335.3 1 

2267.2 0 

2477.8 1 

2293.1 0 

2456.2 1 

2310.8 0 

2441.4 1 

2323.0 0 

2431.4 0 

2326.3 0 

 
 

TABLE A-2.   EXAMPLE DATA FOR THE  
ONE-SAMPLE LRT ON V50 FOR GAP  

DATA PRESENTED IN FIGURE 5. 
 

Velocity, ft/s Penetration 

2200 0 

2305 0 

2310 0 

2347 0 

2351 0 

2378 0 

2401 1 

2414 1 

2455 1 

2460 1 
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TABLE A-3.   EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON V50  
PRESENTED IN FIGURE 6. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 0 B 2400.0 0 

A 2600.0 1 B 2600.0 1 

A 2500.0 1 B 2500.0 1 

A 2352.7 1 B 2352.7 0 

A 2205.2 0 B 2450.0 1 

A 2266.3 0 B 2343.6 1 

A 2458.9 1 B 2285.8 0 

A 2306.4 0 B 2460.9 0 

A 2431.4 0 B 2554.8 1 

A 2496.7 1 B 2305.9 0 

A 2335.3 1 B 2515.0 1 

A 2267.2 0 B 2336.0 0 

A 2477.8 1 B 2491.0 1 

A 2293.1 0 B 2355.3 0 

A 2456.2 1 B 2475.5 0 

A 2310.8 0 B 2519.4 1 

A 2441.4 1 B 2364.7 0 

A 2323.0 0 B 2374.6 1 

A 2431.4 0 B 2512.9 0 

A 2326.3 0 B 2565.0 1 

A 2463.4 1 B 2323.5 0 

A 2337.2 0 B 2546.3 1 

A 2453.7 1 B 2340.4 1 

A 2345.2 0 B 2292.6 0 

A 2446.0 1 B 2548.6 1 

A 2351.0 1 B 2309.5 0 

A 2443.9 1 B 2533.1 1 

A 2330.5 0 B 2323.4 0 

A 2436.9 1 B 2520.4 1 

A 2336.7 0 B 2335.1 0 
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TABLE A-4.   EXAMPLE DATA FOR THE LRT ON  
V50 WITH MULTIPLE FACTORS  

PRESENTED IN FIGURE 7. 
 

d1 d2 Velocity, ft/s Penetration 

A A 2400.0 1 

A A 2200.0 0 

A A 2300.0 0 

A A 2447.3 1 

A A 2350.0 0 

A A 2456.4 0 

A A 2514.2 1 

A A 2339.1 0 

A A 2479.3 1 

A A 2365.2 1 

A A 2312.3 1 

A A 2234.1 0 

A A 2252.1 0 

A A 2471.2 1 

A A 2276.9 0 

A A 2450.7 1 

A A 2294.3 0 

A A 2436.2 0 

A A 2477.6 1 

A A 2300.5 0 

A A 2463.0 1 

A A 2313.6 0 

A A 2451.6 1 

A A 2323.6 0 

A A 2442.5 1 

A A 2331.1 0 

A A 2435.5 1 

A A 2336.9 1 

A A 2434.9 1 

A A 2315.8 0 

A B 2400.0 1 

A B 2200.0 0 

A B 2300.0 0 

A B 2447.3 0 

A B 2594.8 1 

A B 2533.7 0 

A B 2724.1 1 

A B 2665.7 1 

A B 2353.7 0 

A B 2611.9 1 

A B 2394.6 1 

A B 2298.4 0 

A B 2583.3 1 

A B 2333.0 0 

A B 2555.1 1 

A B 2537.3 1 
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TABLE A-4 (CONT) 
 

d1 d2 Velocity, ft/s Penetration 

A B 2356.4 0 

A B 2521.9 1 

A B 2370.6 1 

A B 2319.4 0 

A B 2515.8 1 

A B 2505.4 1 

A B 2335.3 0 

A B 2494.1 1 

A B 2485.7 1 

A B 2344.7 0 

A B 2478.1 1 

A B 2352.6 0 

A B 2472.4 1 

A B 2466.1 1 

B A 2400.0 1 

B A 2200.0 0 

B A 2300.0 0 

B A 2447.3 0 

B A 2594.8 1 

B A 2533.7 1 

B A 2341.1 0 

B A 2493.6 1 

B A 2368.6 1 

B A 2303.3 0 

B A 2464.7 1 

B A 2326.3 0 

B A 2446.6 1 

B A 2433.9 0 

B A 2337.0 0 

B A 2469.8 1 

B A 2350.9 0 

B A 2458.1 0 

B A 2492.6 1 

B A 2356.0 0 

B A 2481.5 1 

B A 2365.9 0 

B A 2372.1 1 

B A 2477.0 1 

B A 2350.6 0 

B A 2468.2 1 

B A 2358.5 0 

B A 2461.1 0 

B A 2483.3 0 

B A 2509.0 1 

B B 2400.0 1 

B B 2200.0 0 

B B 2300.0 0 

B B 2447.3 1 
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TABLE A-4 (CONT) 
 

d1 d2 Velocity, ft/s Penetration 

B B 2350.0 0 

B B 2456.4 0 

B B 2514.2 1 

B B 2339.1 0 

B B 2479.3 1 

B B 2365.2 0 

B B 2460.0 1 

B B 2378.7 1 

B B 2342.4 1 

B B 2295.3 0 

B B 2457.8 1 

B B 2312.2 0 

B B 2442.8 0 

B B 2481.5 1 

B B 2317.3 0 

B B 2467.0 1 

B B 2329.9 0 

B B 2455.7 1 

B B 2339.7 0 

B B 2446.9 1 

B B 2347.3 0 

B B 2440.2 0 

B B 2347.8 0 

B B 2460.4 1 

B B 2354.8 0 

B B 2453.9 1 

 
  



 
A-6 

 

UNCLASSIFIED 

TABLE A-5.   EXAMPLE DATA FOR THE  
ONE-SAMPLE LRT ON SIGMA  

PRESENTED IN FIGURE 8. 
 

Velocity, ft/s Penetration 

2400.0 0 

2600.0 1 

2500.0 1 

2352.7 1 

2205.2 0 

2266.3 0 

2458.9 1 

2306.4 0 

2431.4 0 

2496.7 1 

2335.3 1 

2267.2 0 

2477.8 1 

2293.1 0 

2456.2 1 

2310.8 0 

2441.4 1 

2323.0 0 

2431.4 0 

2326.3 0 

2463.4 1 

2337.2 0 

2453.7 1 

2345.2 0 

2446.0 1 

2351.0 1 

2443.9 1 

2330.5 0 

2436.9 1 

2336.7 0 
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TABLE A-6.   EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON SIGMA  
PRESENTED IN FIGURE 9. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 0 B 2400.0 1 

A 2600.0 1 B 2200.0 0 

A 2500.0 1 B 2300.0 0 

A 2352.7 1 B 2447.3 1 

A 2205.2 0 B 2350.0 0 

A 2266.3 0 B 2456.4 1 

A 2458.9 1 B 2319.7 0 

A 2306.4 0 B 2411.1 0 

A 2431.4 0 B 2379.2 0 

A 2496.7 1 B 2427.3 0 

A 2335.3 1 B 2453.0 1 

A 2267.2 0 B 2392.4 1 

A 2477.8 1 B 2366.2 0 

A 2293.1 0 B 2444.2 1 

A 2456.2 1 B 2375.9 0 

A 2310.8 0 B 2436.2 0 

A 2441.4 1 B 2457.7 1 

A 2323.0 0 B 2379.9 0 

A 2431.4 0 B 2450.0 0 

A 2326.3 0 B 2471.7 0 

A 2463.4 1 B 2503.2 1 

A 2337.2 0 B 2496.5 1 

A 2453.7 1 B 2491.1 1 

A 2345.2 0 B 2374.7 0 

A 2446.0 1 B 2483.2 1 

A 2351.0 1 B 2382.2 0 

A 2443.9 1 B 2476.8 1 

A 2330.5 0 B 2388.3 1 

A 2436.9 1 B 2371.2 0 

A 2336.7 0 B 2475.4 1 
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TABLE A-7.   EXAMPLE DATA FOR THE  
ONE-SAMPLE LRT ON V10  

PRESENTED IN  
FIGURE 10. 

 
Velocity, ft/s Penetration 

2400.0 1 

2200.0 0 

2300.0 0 

2447.3 0 

2237.4 0 

2281.8 0 

2310.1 1 

2665.0 1 

2207.3 0 

2227.7 0 

2244.8 0 

2259.6 0 

2272.8 0 

2284.7 0 

2295.5 0 

2305.4 0 

2314.6 0 

2323.2 0 

2331.5 0 

2339.5 1 

2285.3 0 

2292.6 0 

2299.6 1 

2249.7 0 

2256.5 0 

2263.0 0 

2269.3 1 

2547.3 1 

2237.1 0 

2242.2 0 
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TABLE A-8.   EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON V10  
PRESENTED IN FIGURE 11. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 1 B 2400.0 0 

A 2200.0 0 B 2600.0 1 

A 2300.0 0 B 2500.0 1 

A 2447.3 0 B 2352.7 0 

A 2237.4 0 B 2450.0 0 

A 2281.8 0 B 2548.7 1 

A 2310.1 1 B 2526.3 1 

A 2665.0 1 B 2437.1 0 

A 2207.3 0 B 2475.0 1 

A 2227.7 0 B 2427.3 1 

A 2244.8 0 B 2413.3 0 

A 2259.6 0 B 2418.2 1 

A 2272.8 0 B 2392.0 1 

A 2284.7 0 B 2353.8 0 

A 2295.5 0 B 2361.4 1 

A 2305.4 0 B 2311.1 0 

A 2314.6 0 B 2321.3 1 

A 2323.2 0 B 2249.6 0 

A 2331.5 0 B 2264.5 0 

A 2339.5 1 B 2275.7 0 

A 2285.3 0 B 2284.7 0 

A 2292.6 0 B 2292.3 0 

A 2299.6 1 B 2298.8 0 

A 2249.7 0 B 2304.6 0 

A 2256.5 0 B 2309.8 0 

A 2263.0 0 B 2314.5 0 

A 2269.3 1 B 2318.8 0 

A 2547.3 1 B 2322.8 0 

A 2237.1 0 B 2326.5 0 

A 2242.2 0 B 2329.9 0 
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TABLE A-9.   EXAMPLE DATA FOR THE  
ONE-SAMPLE PLRT ON V50  
PRESENTED IN FIGURE 12. 

 
Velocity, ft/s Penetration 

2400.0 1 

2200.0 0 

2300.0 1 

2152.7 0 

2250.0 0 

2348.7 0 

2447.0 1 

2440.0 0 

2560.0 1 

2554.0 1 

2187.0 0 

2525.0 1 

2213.0 1 

2133.0 0 

2528.0 1 

2157.0 0 

2504.0 1 

2177.0 0 

2485.0 1 

2473.0 1 

 
 

TABLE A-10.   EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON V50  
PRESENTED IN FIGURE 13. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 1 B 2400.0 1 

A 2200.0 0 B 2200.0 0 

A 2300.0 1 B 2300.0 1 

A 2152.7 0 B 2152.7 0 

A 2250.0 0 B 2250.0 0 

A 2348.7 0 B 2348.7 0 

A 2447.0 1 B 2447.0 1 

A 2440.0 0 B 2440.0 1 

A 2560.0 1 B 2209.0 0 

A 2554.0 1 B 2419.0 1 

A 2187.0 0 B 2229.0 0 

A 2525.0 1 B 2403.0 0 

A 2213.0 1 B 2229.0 0 

A 2133.0 0 B 2439.0 1 

A 2528.0 1 B 2246.0 0 

A 2157.0 0 B 2427.0 1 

A 2504.0 1 B 2258.0 0 

A 2177.0 0 B 2267.0 0 

A 2485.0 1 B 2416.0 1 

A 2473.0 1 B 2276.0 0 
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TABLE A-11.   EXAMPLE DATA FOR THE PLRT  
ON V50 WITH MULTIPLE FACTORS  

PRESENTED IN FIGURE 14. 
 

d1 d2 Velocity, ft/s Penetration 

A A 2400.0 0 

A A 2600.0 1 

A A 2500.0 1 

A A 2352.7 0 

A A 2450.0 0 

A A 2548.7 1 

A A 2526.3 1 

A A 2437.1 1 

A A 2376.0 1 

A A 2312.0 0 

A A 2318.0 0 

A A 2525.0 1 

A A 2334.0 0 

A A 2508.0 1 

A A 2347.0 1 

A A 2310.0 0 

A A 2504.0 1 

A A 2496.0 1 

A A 2325.0 0 

A A 2485.0 1 

A A 2334.0 0 

A A 2476.0 1 

A A 2470.0 1 

A A 2342.0 0 

A A 2463.0 0 

A A 2344.0 0 

A A 2349.0 0 

A A 2478.0 1 

A A 2354.0 0 

A A 2473.0 0 

A B 2400.0 1 

A B 2200.0 0 

A B 2300.0 0 

A B 2447.3 0 

A B 2646.0 1 

A B 2696.0 1 

A B 2680.0 1 

A B 2263.0 0 

A B 2640.0 1 

A B 2300.0 0 

A B 2610.0 1 

A B 2590.0 1 

A B 2328.0 1 

A B 2580.0 1 

A B 2273.0 0 

A B 2556.0 1 
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TABLE A-11 (CONT) 
 

d1 d2 Velocity, ft/s Penetration 

A B 2542.0 1 

A B 2291.0 0 

A B 2525.0 1 

A B 2513.0 1 

A B 2303.0 0 

A B 2500.0 1 

A B 2489.0 1 

A B 2311.0 0 

A B 2479.0 1 

A B 2470.0 1 

A B 2317.0 0 

A B 2462.0 1 

A B 2455.0 0 

A B 2324.0 0 

B A 2400.0 1 

B A 2200.0 0 

B A 2300.0 0 

B A 2447.3 1 

B A 2350.0 0 

B A 2456.4 1 

B A 2319.7 1 

B A 2235.0 0 

B A 2247.0 0 

B A 2426.0 0 

B A 2481.0 1 

B A 2252.0 0 

B A 2465.0 1 

B A 2269.0 0 

B A 2452.0 1 

B A 2282.0 1 

B A 2454.0 0 

B A 2498.0 1 

B A 2235.0 1 

B A 2179.0 0 

B A 2185.0 0 

B A 2503.0 1 

B A 2200.0 0 

B A 2489.0 0 

B A 2539.0 0 

B A 2610.0 1 

B A 2604.0 1 

B A 2597.0 1 

B A 2590.0 1 

B A 2179.0 0 

B B 2400.0 1 

B B 2200.0 0 

B B 2300.0 0 

B B 2447.3 1 
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TABLE A-11 (CONT) 
 

d1 d2 Velocity, ft/s Penetration 

B B 2350.0 0 

B B 2456.4 1 

B B 2319.7 0 

B B 2411.1 1 

B B 2375.0 0 

B B 2352.6 0 

B B 2412.6 0 

B B 2443.0 1 

B B 2355.0 1 

B B 2326.0 1 

B B 2282.0 0 

B B 2288.0 0 

B B 2450.0 0 

B B 2492.0 1 

B B 2487.0 1 

B B 2287.0 0 

B B 2476.0 1 

B B 2298.0 0 

B B 2467.0 0 

B B 2497.0 1 

B B 2493.0 1 

B B 2300.0 0 

B B 2484.0 1 

B B 2309.0 1 

B B 2282.0 0 

B B 2486.0 1 
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TABLE A-12.   EXAMPLE DATA FOR THE  
ONE-SAMPLE PLRT ON SIGMA  

PRESENTED IN FIGURE 15. 
 

Velocity, ft/s Penetration 

2400.0 1 

2200.0 0 

2300.0 1 

2152.7 0 

2250.0 0 

2348.7 0 

2447.0 1 

2440.0 0 

2560.0 1 

2554.0 1 

2187.0 0 

2525.0 1 

2213.0 1 

2133.0 0 

2528.0 1 

2157.0 0 

2504.0 1 

2177.0 0 

2485.0 1 

2473.0 1 

2198.0 0 

2458.0 0 

2197.0 0 

2495.0 0 

2542.0 1 

2198.0 0 

2207.0 0 

2522.0 1 

2220.0 0 

2510.0 1 
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TABLE A-13.   EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON SIGMA  
PRESENTED IN FIGURE 16. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 1 B 2400.0 1 

A 2200.0 0 B 2200.0 0 

A 2300.0 1 B 2300.0 0 

A 2152.7 0 B 2447.3 1 

A 2250.0 0 B 2350.0 0 

A 2348.7 0 B 2456.4 1 

A 2447.0 1 B 2319.7 0 

A 2440.0 0 B 2411.1 0 

A 2560.0 1 B 2319.0 0 

A 2554.0 1 B 2452.0 1 

A 2187.0 0 B 2337.0 0 

A 2525.0 1 B 2345.0 0 

A 2213.0 1 B 2438.0 0 

A 2133.0 0 B 2462.0 1 

A 2528.0 1 B 2351.0 0 

A 2157.0 0 B 2357.0 0 

A 2504.0 1 B 2453.0 0 

A 2177.0 0 B 2475.0 1 

A 2485.0 1 B 2360.0 0 

A 2473.0 1 B 2468.0 1 

A 2198.0 0 B 2368.0 0 

A 2458.0 0 B 2373.0 0 

A 2197.0 0 B 2377.0 0 

A 2495.0 0 B 2461.0 1 

A 2542.0 1 B 2382.0 1 

A 2198.0 0 B 2460.0 1 

A 2207.0 0 B 2457.0 0 

A 2522.0 1 B 2470.0 0 

A 2220.0 0 B 2487.0 0 

A 2510.0 1 B 2509.0 1 
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TABLE A-14.   EXAMPLE DATA FOR THE  
ONE-SAMPLE PLRT ON V10  
PRESENTED IN FIGURE 17. 

 

Velocity, ft/s Penetration 

2400.0 1 

2200.0 0 

2300.0 0 

2447.3 1 

2350.0 0 

2456.4 1 

2319.7 0 

2411.1 0 

2318.0 0 

2328.0 0 

2336.0 0 

2342.0 1 

2309.0 0 

2314.0 0 

2318.0 0 

2322.0 0 

2326.0 0 

2330.0 1 

2305.0 0 

2308.0 0 

2311.0 0 

2314.0 0 

2317.0 1 

2294.0 0 

2297.0 0 

2299.0 0 

2302.0 0 

2304.0 1 

2469.0 1 

2287.0 0 
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TABLE A-15.   EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON V10  
PRESENTED IN FIGURE 18. 

 
Sample Velocity, ft/s Penetration Sample Velocity, ft/s Penetration 

A 2400.0 1 B 2400.0 1 

A 2200.0 0 B 2200.0 0 

A 2300.0 0 B 2300.0 0 

A 2447.3 1 B 2447.3 1 

A 2350.0 0 B 2350.0 0 

A 2456.4 1 B 2456.4 1 

A 2319.7 0 B 2319.7 0 

A 2411.1 0 B 2411.1 1 

A 2318.0 0 B 2375.0 1 

A 2328.0 0 B 2329.9 0 

A 2336.0 0 B 2384.7 0 

A 2342.0 1 B 2330.0 1 

A 2309.0 0 B 2295.0 0 

A 2314.0 0 B 2300.0 0 

A 2318.0 0 B 2304.0 1 

A 2322.0 0 B 2271.0 0 

A 2326.0 0 B 2275.0 0 

A 2330.0 1 B 2279.0 0 

A 2305.0 0 B 2282.0 0 

A 2308.0 0 B 2286.0 0 

A 2311.0 0 B 2289.0 0 

A 2314.0 0 B 2292.0 0 

A 2317.0 1 B 2295.0 0 

A 2294.0 0 B 2297.0 0 

A 2297.0 0 B 2300.0 0 

A 2299.0 0 B 2303.0 1 

A 2302.0 0 B 2285.0 0 

A 2304.0 1 B 2287.0 0 

A 2469.0 1 B 2290.0 0 

A 2287.0 0 B 2292.0 0 

A 2289.0 0 B 2294.0 0 

A 2292.0 0 B 2296.0 0 

A 2294.0 0 B 2298.0 0 

A 2296.0 0 B 2300.0 0 

A 2298.0 0 B 2302.0 0 

A 2300.0 0 B 2304.0 0 

A 2302.0 0 B 2306.0 1 

A 2305.0 0 B 2292.0 0 

A 2307.0 0 B 2294.0 1 

A 2309.0 0 B 2280.0 0 
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