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Overview

Sensitivity testing is a type of testing in which a stressor (independent variable) is continuous, and
the response (dependent variable) is binary. Ballistic limit testing is a type of sensitivity testing
where the stressor is the velocity of a kinetic energy threat, and the response is penetration (either
a partial or complete penetration) of an armor target (ref. 1). During ballistic limit testing, both the
threat velocity and the penetration response are recorded for each shot. Then, the data are
analyzed to model the probability of complete penetration as a function of threat velocity (ref. 2).

A generalized linear model (GLM) is a generalization of an ordinary linear model that allows for
dependent variables with errors that are not normally distributed. A GLM with a binary dependent
variable attempts to model the response probability with a cumulative distribution function (CDF).
Logistic regression models are a type of GLM that models the data using the logistic CDF. The
link function for logistic regression is given by the logit function:

1nlf;p = XB 1

Where:

p is probability

X is the matrix form of the independent variables
B is the vector of linear parameters

Estimates for the linear parameters, known as maximum likelihood estimates (MLE), are
determined by maximizing the likelihood function:

L=ILip] (1 —p)'™ )
Where:
L is the likelihood
pi is the i probability value

yi is the i" response either 0 or 1

In practice, it is often easier to maximize the log-likelihood function. The log-likelihood function
for the logistic regression model combines equations 1 and 2 and is given by the following:

InL = ¥[yiX;.p — In(1 + eXi-F)] ©)
Where, X is the i row of the X matrix.
There is no closed form solution to maximizing the log-likelihood function. Therefore, the MLE

are solved iteratively using Fisher scoring, an iteratively reweighted scoring algorithm. The first
derivative of the log-likelihood function is given by:

9Ink ;‘;L = XTs (4)
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S is known as the score function. The score function in logistic regression is given by the
following:

Si=yi—pi (5)

Fisher scoring uses the negative expectation of the second derivative of the log-likelihood
function, known as the Fisher information matrix, which is given by the following:

—E (";‘T“ZL) = XTWX (6)

Where, W is a diagonal matrix of weights given by the following equation:

Wi =pi(1—py) (7)
The Fisher scoring algorithm is given by the following:

plEt = gl + (XTWx)~1XTS (8)

Where, t denotes the iteration number. This algorithm is repeated until the change in the
log-likelihood is sufficiently small.

The simplest model for ballistic limit testing is the univariate model. An example of the univariate
model is shown in Figure 1. The data used to construct this plot are presented in Appendix A,

Table A-1. Note that these and all data presented in this paper are simulated and do not represent
the results of any military test of armor. The univariate logit function is given by the following:

Int = By + fx ()
Where:

Bo is the intercept
B1 is the slope
X is the velocity of the kinetic energy threat

2
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Figure 1. Example of the logistic regression model.

In sensitivity testing, it is often desirable to use the location-scale parameterization instead of the
linear parameterization (ref. 3). The logit link function for the univariate problem using the
location-scale parameterization is given by the following:

b _XH
ll’lg— S (10)

Where:

M is the location parameter
s is the scale parameter

The V50 (velocity at which there is a 50% probability of penetration) in ballistic limit testing is
equivalent to p for the logistic CDF (and other symmetric CDFs). Sigma, o, is a
reparameterization of s is given by the following:
o= %s (12)

Maximum likelihood estimates are known to have small sample bias. Firth’s logistic regression
may be used to reduce this bias (ref. 4). Another advantage to Firth’s logistic regression is it can
be used to determine a unique solution when there is separation in the data. In ballistic limit
testing, separation in the data is often described as there being no zone of mixed results (i.e., no
overlap in partial and complete penetrations). Finally, penalized likelihood ratio tests, based on
Firth’s logistic regression, may be used to improve the accuracy of statistical tests which is the
focus of this paper.
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Firth’s logistic regression penalizes the logistic regression score function to reduce the first order
bias. The modified score function is given by the following (ref. 5):

Si =S8 —hy(p; —1/2) (12)
Where:

S; is the i"" element of the modified score
hi is the i diagonal element of the hat matrix:

H=wY2x(xTwx)~xTw/? (13)

This modification to the logistic regression score function is equivalent to penalizing the logistic
regression log-likelihood function with Jeffrey’s invariant prior (ref. 6).

InL* = Zi[ini-B - ln(l + eXi'ﬁ)] + %lnlll (14)
Where:

L* is the penalized likelihood
|I] is the determinant of the information matrix.

Due to the complexity of taking derivatives of the determinant of the information matrix, the first
order information matrix (i.e., the information matrix used in logistic regression) is often used in
the iteratively reweighted scoring algorithm in Firth’s logistic regression. This algorithm is given
by the following:

ﬁt+1 — ﬁt + (XTWX)_IXTS* (15)

Though tedious, a modified information matrix may be used for the univariate model. The

iteratively reweighted scoring algorithm using the modified information matrix is given by the
following:

pttl = pt 4+ (1)~ 1xTs* (16)
10%1n|I| 1 92In]|I|

P R R L (17)
- 1 82 In|I| 5 13%In1|
2Wx = oman W T2

a2l (a1l 2
azln|1|_| 0% ( )

9Bo
N E 4o
5 I 82|11 a1 ||
0°In|l| _ "'gdB1 8B0dB1 (19)
08001 112
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%I _ (il
2|1l _ I |a;;2 (aﬁl)

aﬁf |1|2 (20)
aWu

i — Wy (1 - 2p) (21)
’w 2 2

aBz Wu(l zpi) - ZWii (22)
all aW” owy; ow;

o= Wy B 578 — 25 Wiy B 57 + T Wi (23)

9B 9Bo

all aw” oWy awu

S = IWy X ThxF - 2 X W B 52 + S Wx? B2 (24)

’w *Wi;
aBO ZWllZ aﬂZ ZZWll‘le aﬁZ +ZVVl.lx Z aﬂg
awu awu oW 2
+2R R SR — 2 ( a—ﬁoxi) (25)
a2|1] _ _ 2wy 2 .
aﬂoaﬁ1_z llz aﬁZ ZZWllle aﬁZ +ZVVl.lx Z aﬁZ l
OWii 35 OWy _ aWu 2 oWi;
L op, X 2 og, T Lap, X L ap, M (26)
a21| 2w, 82 W” 92wy
aﬁ% = Z Wii Z aﬂzu 14 2 Z Wux 22 x + Z Wux Z aﬁgu
awu aw ow

123 T R0 — 2 (257 ) (27)

Sequentially Optimal Test Methods

Sequential test methods are often used to select target velocities in ballistic limit testing. Early
methods were very simple such that they could be easily conducted on range without the use of
computers but were statistically inefficient. Newer methods including ones based on optimality
criteria are more efficient but require the use of computers. Due to the increased availability of
personal computers and laptops, the use of these more complex methods has become more
prevalent. While many optimality criteria exist, Neyer’'s SenTest is software that provides methods
based on D-optimality and c-optimality (ref. 7).

D-optimal methods select stressor values that maximize the determinant of the information matrix.
This method is recommended when the goal of the test is to estimate both the V50 (velocity at
which the probability of penetration is 50%) and sigma (slope of the response curve). Neyer's
D-optimal method starts with a modified binary search to break separation. Then subsequent
stressor levels are those that maximize the determinant of the information matrix (eq. 6) with the
MLE for the model parameters recalculated between each shot. A flow chart for this method is
shown in Figure 2. MuMin and MuMax are the initial parameters intended to bound the estimate
of mu. SigmaGuess is the initial parameter for the estimate of sigma. MaxS is the maximum
stressor level. MinS is the minimum stressor level. MinX is the minimum velocity resulting in a
complete penetration. MaxO0 is the maximum velocity resulting in a partial penetration.
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Figure 2. Flow chart for the Neyer D-Optimal Method.
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A penalized D-optimal method is proposed in this paper. This method is recommended when
Firth logistic regression is the planned analysis method and when the goal of the test is to estimate
both the V50 and sigma. This test method uses the same modified binary search as the Neyer
D-Optimal method to include the use of the first order information matrix before separation is
broken (i.e., a zone of mixed results (ZMR) is achieved). The first order information matrix is
initially used because points that maximize the modified information matrix tend to lie outside of
those for the first order information matrix. Therefore, the use of the first order information matrix
would be expected to break separation more quickly. After separation is broken, subsequent
stressor levels are those that maximize the determinant of the modified information matrix (eq.
17). Additionally, different clipping rules are used. Clipping rules are intended to prevent extreme
values for desired stressor levels when wild estimates for the model parameters are calculated.
This can sometimes happen early in testing. The parameter estimates are then “clipped” and less
extreme desired velocities are returned by the algorithm.

ompre < 0 } 3 o

oyupLg > MaxS — MinS = 0 = MaxS — MinS 28)

1 = median(MinS, ppyp|s, MaxS) 29)
Where:

oupLg 1S the maximum penalized likelihood estimate for sigma
tpmpLE|s 1S the profile maximum penalized likelihood estimate for p given sigma

C-optimal methods attempt to minimize the variance of a linear combination of parameters. This
method is recommended when the goal of the test is to estimate an extreme quantile, such as the
V10 (velocity at which there is a 10% probability of penetration). Neyer’'s c-optimal method starts
with a modified binary search to break separation. However, this method is based on the
c-optimal algorithm instead of the D-optimal algorithm. Then subsequent stressor levels are those
that minimize the variance of the extreme quantile of interest with the MLE for the model
parameters recalculated between each shot. The variance of the extreme quantile, X,, is given
by the following:

Var(X,) = XX"Wx)~1 X" (30)
X=[1 X (31)
A flow chart for this method is shown in Figure 3.

A penalized c-optimal method is proposed in this paper. This method is recommended when Firth
logistic regression is the planned analysis method and when the goal of the test is to estimate an
extreme quantile, such as the V10. This test method uses the same modified binary search as
the Neyer c-Optimal method to include the use of the first order information matrix before
separation is broken (i.e., a ZMR is achieved). As with the D-optimal method, the first order
information matrix is initially used, because points that minimize the variance using the modified
information matrix tend to lie outside those for the first order information matrix. Therefore, the
use of the first order information matrix would be expected to break separation more quickly. After
separation is broken, subsequent stressor levels are those that minimize the variance of the
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extreme quantile using the modified information matrix (eq. 17).
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Likelihood Ratio Test (LRT)

The likelihood ratio test is a statistical test comparing the likelihoods of two nested models. The
null model is nested in the alternative model, meaning that the null model is similar to the
alternative model but may be missing one or more parameters. Alternatively, one of the
parameters in the null model is set to a constant or function of the other parameters as in profile
likelihood. The test statistic for the likelihood ratio test, is given by the following:

A= Dy — D, (32)
Where:

A is the test statistic for the likelihood ratio test which is approximately x?-distributed with degrees
of freedom (df) equal to the difference in the number of parameters between the null and
alternative models.

Do is the deviance for the null model.

D, is the deviance for the alternative model.

Deviance, D, is given by the following equation:
D=-2InL (33)
One-Sample LRT on V50
The null and alternative models are given by the following (ref. 8):
Ho: B(x — po), V50 =V50, (34)
Hy: Bo + Pix, V50 # V50, (35)

Both the null and alternative models may be fit using standard logistic regression techniques. The
test statistic is approximately x2-distributed with one df.

Figure 4 presents an example of the one-sample LRT on V50. The left plot displays the example
data and response curves for the null and alternative models. The right plot displays the LRT test
statistic as a function of V50 under the null model. For this example, the value for V50, is
2300 ft/s resulting in a A of 7.44 and p-value of 0.006. A copy of the data used for this example
is presented in Table A-1.

Figure 5 presents an example of the one-sample LRT on V50 when there is separation in the
data. The left plot displays the example data and response curve for the null model. A unique
solution for the alternative model cannot be determined since any step function between the
highest partial and lower complete would maximize the likelihood function. Instead, the rectangle
indicates this gap between the highest velocity partial and lowest velocity complete penetration.
The right plot displays the LRT test statistic as a function of V50 under the null model. For this
example, the value for V50 is 2300 ft/s resulting in a A of 11.66 and p-value of 0.0006. Note the
shape of the curve where there is a gap in the data. Again, since any step function in the gap
maximizes the likelihood (minimizes the deviance), the profile likelihood is discontinuous at the
highest partial and lowest complete penetration. For this reason, the Penalized Likelihood Ratio

9

UNCLASSIFIED



Test (PLRT) is preferred for data with separation. A copy of the data used for this example is
presented in Table A-2.
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Figure 4. Example of the one-sample LRT on V50.
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Figure 5. Example of the one-sample LRT on V50 with separation.
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Two-Sample LRT on V50

The null and alternative models are given by the following (ref. 8 and 9):

Hy: =2, V50, = V50, (36)
Hy: EUD ys0, # vs0, (37)

Where:

0 is the shift in V50 between the two samples under the alternative model
d is the design variable indicating which sample
€ is the shift in the scale parameter between the two samples

The alternative hypothesis may be presented in linear parameters and solved using standard

logistic regression techniques.

Hy: Bo + f1x + fod + Bzxd (38)

The null model, however, is more challenging. Since the null model uses profile likelihood in the
linear parameterization, it is possible for there to be local maxima and minima. The first step is
to set Wo equal to values between V50, and V50, and solve for the profile maximum likelihood
estimates (PMLESs) for s and € given that value for po. This approach is an application of profile

likelihood. The iteratively reweighted scoring algorithm is given by the following:

ol = 68+ ((2) wan) " (22)'s (39)
0 =[] (40)
= (@1)
75~ [or 5 @2
%= v “
ey (44)

The second step is to set the initial guesses for y, s, and € that maximize the log-likelihood from
the first step. Then, iteratively solve for the PMLEs for 4, s, and € using equation 39. The following

equations should be used in support of the algorithm.

U
0, = H (45)
&
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n=* (46)

T s+ed

on _[on on 9n

6, [Em ds 65] (47)
ani _ 1

a_ s+ed; (48)

Note that equations 43 and 44 may still be used. The test statistic is approximately x2-distributed
with one df. The method may be easily extended to one factor with multiple levels.

Figure 6 presents an example of the two-sample LRT on V50. The left plot displays the response
curves for the null and alternative models for samples A and B. The right plot displays the LRT
test statistic as a function of V50 under the null model. The resulting test statistic is 1.41and
p-value is 0.234. A copy of the data used for this example is presented in Table A-3.
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Figure 6. Example of the two-sample LRT on V50.

LRT on V50 with Multiple Factors

Although this method may be extendable to any number of factors and levels, the two factor each
at two levels model is described here. The alternative model is given by the following (ref. 10):

P _ x=(p+8,d1+68,d,+812d17)
1—p S+€1d1+€2d2+£12d12

In

(49)

The alternative hypothesis may be presented in linear parameters and solved using standard
logistic regression techniques.
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InEo= By + frdy + Bydy + Pradaz + Bux + radix + PoxdyX + Przxdizx (50)

There are three null models including the two main effects and the one interaction. These null
models are given by the following:

lni _ x=(u+8,dy+612d43) ,61 =0 (51)

1-p - S+eq1dq+exdy+E12d o

p _ x—(u+81d,+815d4;)

In =
1-p S+eq1dq+exdy+e12d o

8, =0 (52)

p _  x—(ut+d,1d;+8,dy)

In =
1-p S+eq1dq+exdy+e12d o

612 =0 (53)

The null models, however, are more challenging to solve. Since the null models use profile
likelihood in the linear parameterization, it is possible for there to be local maxima and minima.
There are two possible approaches. The first is the grid approach in which the log-likelihood for
many combinations of parameters is evaluated and pick the best initial guess. However, this
method is very time consuming and completely impractical for more complex models. The second
approach is using a Latin hypercube with multiple starts. The Latin hypercube is a space filling
design and is used to produce the initial guesses. The Fisher scoring algorithm is then performed
for each initial guess. This method is preferred though is not without its challenges. Most initial
guesses will not be good resulting in failure to converge on a solution. Therefore, computational
issues will have to be addressed. For the first null model (8:=0) the following equations are used.

T -1 T

(00 = g0y ((22) w22 (o)
o =0+ ((52) wat) (%) s (39)
0 =[u 6, 812 s & & é&17] (54)

— X=(p+82dy+612d12) (55)

S+£1d1+82d2+£12d12

o _ [6_n oy on 9n On O an] (56)
96y ou 098, 08, 0s 0Og 0Ogy 0Oégp
an; 1
o _ _ 57
ou St+e1dy j+exdyite12da2 (57)
omi _ _ da,i (58)
96, Stepdyiteadyi+€12d12

oL - ° (59)
0812 S+e1dyj+Eadyi+E12dq2;
on; _ ni

s - S+€1d1'i+€2d2'i+€12d12'i (60)
omi _ _ Nidy,i 61)
dgy Ste1dyitexdaiterndin;
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i _ Nida,;

= 62
682 S+81d1‘i+€2d2'i+€12d12'i ( )
oni _ _ Nid1z,i 63)
LD St+e1dyjtexdyiteqadyn;

The test statistic is approximately x>-distributed with one df. This approach is repeated for design
variable &, and interaction &1..

An example of the likelihood ratio test table is present in Table 1. Figure 7 presents an example
of the LRT on V50 with multiple factors for the first null model (6:=0). The top-left plot displays
the response curves for the null and alternative models. The top-right plot displays the test
statistic versus p under the null model with PMLEs for parameters 6, 812, S, €1, €2, and €12
calculated for each value of y. Likewise, the bottom-left plot displays the test statistic versus &,
with PMLEs for parameters |, 012, S, €1, €2, and €1 calculated for each value of &,. Finally, the
bottom-right plot displays the test statistic versus &1, with PMLESs for parameters y, &, s, €1, €2,
and €;» calculated for each value of 812. The resulting test statistic for the first null model is 1.34
and p-value is 0.246. A copy of the data used for this example is presented in Table A-4.

TABLE 1. EXAMPLE LIKELIHOOD RATIO TEST TABLE

Factor df ¥2-Stat P-Value
d1 1 1.34 0.246
dz 1 0.08 0.772

di*d2 1 1.87 0.172
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Figure 7. Example of the LRT on V50 with two factors each at two levels.

One-Sample LRT on Sigma

The null and alternative models are given by the following:
HO: ﬁo‘{'i, S:SO (64)

Hl: ﬁo + ﬁlx, NS SO (65)

Both the null and alternative models may be fit using standard logistic regression techniques. The
test statistic is approximately x2-distributed with one df.

Figure 8 presents an example of the one-sample LRT on sigma. The left plot displays the example
data and response curves for the null and alternative models. The right plot displays the LRT test
statistic as a function sigma under the null model. For this example, the value for oo is 40 ft/s
resulting in a A of 2.47 and p-value of 0.116. See eqgn. 11 for the relationship between s and o
for logistic regression. A copy of the data used for this example is presented in Table A-5.
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Figure 8. Example of one-sample LRT on sigma.

Two-Sample LRT on Sigma

The null and alternative models are given by the following:
Ho: Bo + f1d + Box, s1 =5, (66)
Hy: Bo + f1d + Box + Bzdx, sq # 5, (67)

Both the null and alternative models may be fit using standard logistic regression techniques. The
test statistic is approximately x2-distributed with one df.

Figure 9 presents an example of the two-sample LRT on sigma. The left plot displays the
response curves for the null and alternative models for samples A and B. The right plot displays

the LRT test statistic as a function of o under the null model. The resulting test statistic is 0.21
and p-value is 0.643. A copy of the data used for this example is presented in Table A-6.
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Figure 9. Example of two-sample LRT on sigma.

One-Sample LRT on V10

The null and alternative models are given by the following:

Ho: qo + ﬁ(x - VlOO), V10 = V].OO

Hl: ﬁo + ﬁlx, V10 # V100

qo =In—

Both the null and alternative models may be fit using standard logistic regression techniques. The

Po _1p2t
0.9

test statistic is approximately x2-distributed with one df.

Figure 10 presents an example of the one-sample LRT on V10. The left plot displays the example
data and response curves for the null and alternative models. The right plot displays the LRT test
statistic as a function V10 under the null model. For this example, the value for V10q is 2000 ft/s
resulting in a A of 4.91 and p-value of 0.027. A copy of the data used for this example is presented
in Table A-7.
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Figure 10. Example of one-sample LRT on V10.

Two-Sample LRT on V10

The null and alternative models are given by the following:

x-=V10

Ho: qo + m, V101 = V102 (71)
Hy:qo + 25200 y10, 2 V10, (72)

The alternative model may be presented in linear parameters and solved using standard logistic

regression technigues. Recall equation 38:

Hy: Bo + f1x + fod + Bzxd (38)

The null model, however, is more challenging. Since the null model uses profile likelihood in the
linear parameterization, it is possible for there to be local maxima and minima. The first step is
to set V100 equal to values between V10: and V10, and solve for the PMLEs for s and € given
that value for V10o0. This approach is an application of profile likelihood. The iteratively reweighted

scoring algorithm is given by equation 39.

-1
{t+1} _ o{t o \T o an\T
O " =0 +((aeo) W690> (aeo) S (39)

0= (40)
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n=qo+ 20 (73)

s+ed
el e 2
=T (74)
[l 75)

The second step is to set the initial guesses for V10, s, and € that maximize the log-likelihood
from the first step. Then, iteratively solve for the PMLEs for V10, s, and € using equation 39.
However, the following equations should be used in support of the algorithm.

6, = V; ’ (76)
&

n=qo+ 2 (77)

75, = lvis o o) (79)

% - s+lsdi (79)

% - (Jscir_s‘:zli;)z (80)

5= e &)

Figure 11 presents an example of the two-sample LRT on V10. The left plot displays the response
curves for the null and alternative models for samples A and B. The right plot displays the LRT
test statistic as a function of V10 under the null model. The resulting test statistic is 1.43 and
p-value is 0.232. A copy of the data used for this example is presented in Table A-8.
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Figure 11. Example of two-sample LRT on V10.

Penalized Likelihood Ratio Test (PLRT)

The penalized likelihood ratio test is a statistical test comparing the penalized likelihoods of two
nested models (ref. 11). The null model is nested in the alternative model, meaning that the null
model is similar to the alternative model but may be missing one or more parameters.
Alternatively, one of the parameters in the null model is set to a constant or function of the other
parameters as in profile penalized likelihood. The test statistic for the penalized likelihood ratio
test, is given by the following:

A*= D — D; (82)
Where:

A* is the test statistic for the penalized likelihood ratio test which is approximately x?-distributed
with degrees of freedom equal to the difference in the number of parameters between the null
and alternative models.

Dj is the penalized deviance for the null model.

Dj is the penalized deviance for the alternative model.

Penalized deviance, D', is given by the following equation:
D*=-2InL" (83)
One-Sample PLRT on V50

The null and alternative models are given by the following:

Ho: B(x - VSOO), VSO = VSOO (34)
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H1: BO + le, VSO * VSOO (35)

The alternative model may be fit using standard Firth logistic regression technigues. Since the
penalized likelihood is in part a function of the information matrix, the dimensionality of the
information matrix has a large impact on the penalized likelihood calculation. Therefore, care
must be taken when fitting the null model for the purposes of the penalized likelihood ratio test.
The iteratively reweighted scoring algorithm is given by the following:

B =Bt + (XgWXo) 1 Xg S (84)
Xy =x—V50, (85)
S =Si—hy(pi —1/2) (12)
H=wY2x(xX"Twx)"1xTw1/? (13)

The test statistic is approximately x2-distributed with one df.

Figure 12 presents an example of the one-sample PLRT on V50. The left plot displays the
example data and response curves for the null and alternative models. The right plot displays the
PLRT test statistic as a function of V50 under the null model. For this example, the value for V50,
is 2200 ft/s resulting in a A" of 4.28 and p-value of 0.039. A copy of the data used for this example
is presented in Table A-9.
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0.5
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Velocity, ft/s V50, ft/s

Figure 12. Example of one-sample PLRT on V50.
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Two-Sample PLRT on V50

The null and alternative models are given by the following:

Hy: =2, V50, = V50, (36)
Hy: EUD ys0, # vs0, (37)

The alternative hypothesis may be presented in linear parameters and solved using standard Firth
logistic regression techniques.

Hy: By + P1x + fd + B3xd (38)

The null model, however, is more challenging. Since the penalized likelihood is in part a function
of the information matrix, the dimensionality of the information matrix has a large impact on the
penalized likelihood calculation. Additionally, since the null model uses profile likelihood in the
linear parameterization, it is possible for there to be local maxima and minima. The first step is
to set o equal to values between V50: and V50, and solve for the profile maximum penalized
likelihood estimates (PMPLES) for s and € given that value for po. The iteratively reweighted
scoring algorithm is given by the following:

-1
1) _ 63, (2 yyom) (o) o
O =0 "+ ((aeo) Wa%) (aeo) S (86)
S =58 —hy(p; —1/2) (12)
H=w*Y2X(XTwx)"1xTw?/2 (13)
S
60 =] (40)
_ X~Hlo
n s+ed (41)
on _ [on on
6_60 - [65 68] (42)
o _ _ m
E - s+ed; (43)
on _ _ dim;
E - s+ed; (44)

The second step is to set the initial guesses for |, s, and € that maximize the penalized likelihood
from the first step. Then, iteratively solve for the PMPLEs for |, s, and € using equation 86.
However, the following equations should be used in support of the algorithm.

U
0, = H (45)
&
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n=* (46)

T s+ed

on _[on on 9n

6, [Em ds 65] (47)
ani _ 1

a_ s+ed; (48)

Note that equations 43 and 44 may still be used. The test statistic is approximately x2-distributed
with one df. The method may be easily extended to one factor with multiple levels.

Figure 13 presents an example of the two-sample PLRT on V50. The left plot displays the
response curves for the null and alternative models for samples A and B. The right plot displays
the PLRT test statistic as a function of V50 under the null model. The resulting test statistic is
0.23 and p-value is 0.630. A copy of the data used for this example is presented in Table A-10.
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Figure 13. Example of two-sample PLRT on V50.

PLRT on V50 with Multiple Factors

Although this method may be easily extendable to any number of factors and levels, the two factor
each at two levels model is described here. The alternative model is given by the following:

P _ x=(p+8,d1+68,d,+812d17)
1—p S+€1d1+€2d2+£12d12

In

(49)

The alternative hypothesis may be presented in linear parameters and solved using standard
logistic regression techniques.
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InEo= By + frdy + Bydy + Pradaz + Bux + radix + PoxdyX + Przxdizx (50)

There are three null models including the two main effects and the one interaction. These null
models are given by the following:

lni _ x=(u+8,dy+612d43) ,61 =0 (51)

1-p - S+eq1dq+exdy+E12d o

p _ x—(u+81d,+815d4;)

In =
1-p S+eq1dq+exdy+e12d o

,0, =0 (52)

p_ _ x—(u+61d1+8,d3)
1-p S+eq1dq+exdy+e12d o

In ) 612 =0 (53)

The null models, however, are more challenging. Since the penalized likelihood is in part a
function of the information matrix, the dimensionality of the information matrix has a large impact
on the penalized likelihood calculation. Additionally, since the null models use profile penalized
likelihood in the linear parameterization, it is possible for there to be local maxima and minima.
There are two possible approaches. The first is the grid approach in which the penalized
likelihood for many combinations of parameters is evaluated and the best is selected as the initial
guess. However, this method is very time consuming and completely impractical for more
complex models. The second approach is using a Latin hypercube with multiple starts. The Latin
hypercube is a space filling design and is used to produce the initial guesses. The Fisher scoring
algorithm is then performed for each initial guess. This method is preferred though is not without
its challenges. Most initial guesses will not be good and computational issues will have to be
addressed. For the first null model (6:=0) the following equations are used.

-1
(e+1} _ gty ((9n\" 0\ () G
O =0 "+ ((690) Waeo> (aeo) S (86)
S; =S —hy(pi —1/2) (12)
H=wY2x(xX"wx)-1xTw1/2 (13)
0 =[u 6, 812 s & & é&17] (54)
_ x=(u+65dy+812d12)
T steidy+exdyteradiy (55)
on _[om om On Om Om On  9n
26, [au 95, 08,, 0s 0& 0z, 6812] (56)
i _ 1
o ste1dqjterdyiterading (57)
omi _ _ da,i
96, - St+eq1dyjtexdyiteqadyn; (58)
an; _ d
0812 - S+e1dyj+Eadyi+E12dq2; (59)
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on _ _ m (60)

as S+€1d1'i+82d2'i+812d12'i
% — 7']idl,i (61)
deq Ste1dyitexdyiteradyn;
% — 7']idZ,i (62)
de, Ste1dyitexdyiteradyn;
omi _ _ Nid12,i (63)
0&17 St+e1dy j+exdyite12d12

The test statistic is approximately x2-distributed with one df. This approach is repeated for design
variable d; and interaction 01».

An example of the penalized likelihood ratio test table is present in Table 2. Figure 14 presents
an example of the PLRT on V50 with multiple factors. The top-left plot displays the response
curves for the null and alternative models. The top-right plot displays a contour plot of &, versus
K with color indicating the likelihood ratio test statistic and &, fixed at the PMPLE under the null
model. Likewise, the bottom-left plot displays a contour plot of 81> versus p with color indicating
the likelihood ratio test statistic and &, fixed at the PMPLE under the null model. Finally, the
bottom-right plot displays a contour plot of 812 versus &, with color indicating the likelihood ratio
test statistic and p fixed at the PMPLE under the null model. Additionally, PMPLE of parameters
S, €1, €2, and €12 were determined for each point in each of the contour plots. The resulting test
statistic is 0.84 and p-value is 0.359. A copy of the data used for this example is presented in
Table A-11.

TABLE 2. EXAMPLE PENALIZED LIKELIHOOD RATIO TEST TABLE

Factor df ¥?-Stat P-Value
di 1 0.84 0.359
d2 1 0.08 0.781

di*d2 1 0.18 0.671
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Figure 14. Example of the PLRT on V50 with two factors each at two levels.

One-Sample PLRT on Sigma

The null and alternative models are given by the following:
HO: ﬁo‘{'i, S:SO (64)

Hl: ﬁo + ﬁlx, S F+ So (65)

The alternative model may be fit using standard Firth logistic regression techniques. As before,
since the penalized likelihood is in part a function of the information matrix, the dimensionality of
the information matrix has a large impact on the penalized likelihood calculation. The iteratively
reweighted scoring algorithm is given by the following:

Bt =pt+ (ATw1)~117s (87)
S =Si—hy(pi —1/2) (12)
H=w¥2xxTwx)-1xTwl/2 (13)

Where, 1 is a vector of ones to solve for the intercept Bo. The test statistic is approximately
x2-distributed with one df.
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Figure 15 presents an example of the one-sample PLRT on sigma. The left plot displays the
example data and response curves for the null and alternative models. The right plot displays the
PLRT test statistic as a function of sigma under the null model. For this example, the value for oo
is 100 ft/s resulting in a A" of 2.51 and p-value of 0.113. A copy of the data used for this example

is presented in Table A-12.
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Figure 15. Example of one-sample PLRT on sigma.

Two-Sample PLRT on Sigma

The null and alternative models are given by the following:

Ho: Bo + f1d + Box, s1 =5, (66)

Hi:Bo + B1d + Brx + B3dx, s; # s, (67)
The alternative model may be fit using standard Firth logistic regression techniques. The following
equations are used to solve for the null model.

Bt =Bt + (XgWXo) X S (84)
Xo=[1 d «x] (88)
Si =S —hy(p; —1/2) (12)

(13)

H=w¥2xxTwx)-1xTwl/2

The test statistic is approximately x?-distributed with one df.
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Figure 16 presents an example of the two-sample PLRT on sigma. The left plot displays the
response curves for the null and alternative models for samples A and B. The right plot displays
the PLRT test statistic as a function sigma under the null model. The resulting test statistic is 1.84
and p-value is 0.175. A copy of the data used for this example is presented in Table A-13.
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Figure 16. Example of two-sample PLRT on sigma.

One-Sample PLRT on V10

The null and alternative models are given by the following:

HO: qo + ﬁ(x - VlOO), V10 = V100 (68)

Hl: ﬁo + ﬁlx, V10 # VlOO (69)
0.1

qo = In 1?20 =Ings (70)

The alternative model may be fit using standard Firth logistic regression techniques. Again, since
the penalized likelihood is in part a function of the information matrix, the dimensionality of the
information matrix has a large impact on the penalized likelihood calculation. Therefore, care
must be taken when fitting the null model for the purposes of the penalized likelihood ratio test.
The iteratively reweighted scoring algorithm is given by the following:

B =B+ (XEWXo) ' XGS” (84)

XO =X — VlOO (89)
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Si =S8 —hy(p;i —1/2) (12)
H=wY2x(xTwx)1xTw/? (13)
The test statistic is approximately x2-distributed with one df.

Figure 17 presents an example of the one-sample PLRT on V10. The left plot displays the
example data and response curves for the null and alternative models. The right plot displays the
PLRT test statistic as a function of V10 under the null model. For this example, the value for V10,
is 2200 ft/s resulting in a A" of 2.85 and p-value of 0.091. A copy of the data used for this example
is presented in Table A-14.
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Figure 17. Example of one-sample PLRT on V10.

Two-Sample PLRT on V10

The null and alternative models are given by the following:

Ho:qo + 2, V10, = V10, (71)
Hy:qo + =520 y10, £ V10, (72)

The alternative hypothesis may be presented in linear parameters and solved using standard
logistic regression techniques.

Hy: Bo + f1x + fod + Bzxd (38)
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As before, the null model is more challenging. Since the penalized likelihood is in part a function
of the information matrix, the dimensionality of the information matrix has a large impact on the
penalized likelihood calculation. Additionally, since the null model uses profile likelihood in the
linear parameterization, it is possible for there to be local maxima and minima. The first step is
to set V100 equal to values between V10; and V10, and solve for the PMPLEs for s and € given
that value for V10o. The iteratively reweighted scoring algorithm is given by the following:

-1
{t+1} _ o{t} an\T ., on M\ o
b _9°+(%%)w%%> %%)S (86)
Si =S8 —hy(p; —1/2) (12)
H=wY2x(xTwx)-1xTw/2 (13)
S

0, = [s] (40)

-V10
n=qot (73)
on _ [on 9n
6_90 - [65 68] (42)
an; _ xi—V10q
s (s+ed;)? (74)
on; _ _ di(x;—V10o)
e (s+ed;)? (75)

The second step is to set the initial guesses for V10, s, and € that maximize the log-likelihood
from the first step. Then, iteratively solve for the PMPLEs for V10, s, and € using equation 86.
However, the following equations should be used in support of the algorithm.

V10
6p=1 s (76)
&

-V10
n=qo+—— (77)
 _[on @ o
6, [av10 ds de (78)
an; _ _ 1
avio  s+ed; (79)
i _  xi=V10
ds ~ (s+edy)? (80)
% _ di(x;-vV10)
e (s+ed;)? (81)
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Note that equations 74 and 75 may still be used. The test statistic is approximately x3-distributed
with one df. The method may be easily extended to one factor with multiple levels.

Figure 18 presents an example of the two-sample PLRT on V10. The left plot displays the
response curves for the null and alternative models for samples A and B. The right plot displays
the PLRT test statistic as a function of V10 under the null model. The resulting test statistic is
0.61 and p-value is 0.434. A copy of the data used for this example is presented in Table A-15.
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Figure 18. Example of two-sample PLRT on V10.

Simulation Setup

To generate data, four methods were used. To evaluate MLEs and LRTs for V50 and sigma, the
Neyer D-Optimal Method was used as described in Figure 2. A penalized version of the D-optimal
method that uses the modified information matrix was used to evaluate PMLEs and PLRTs for
V50 and sigma. To evaluate MLEs and LRTs for V10, the Neyer c-Optimal method was used as
described in Figure 3 with one exception. The binary search method from the Neyer D-Optimal
method was used until separation was broken because this method tended to outperform the
binary search method from the Neyer c-Optimal method. To evaluate PMLEs and PLRTs for V10,
a penalized version of the c-Optimal method was used. Again, the binary search method from
the Neyer D-Optimal method was used. A total of 10,000 simulated runs were completed for each
test method.

Outputs of the simulations include relative mean square error (MSE) for V50, sigma, and V10 and
relative median bias for sigma and V10. The V50 is unbiased for balanced designs. Quantile-
guantile (Q-Q) plots are used to evaluate the performance of the statistical tests. Both LRT and
PLRT are approximately chi-square distributed. The Q-Q plots display the proportion of the
simulated runs that result in p-values below the alpha level of the test as a function of alpha when
the null hypothesis is true. An accurate statistical test would lie on the ideal line.
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For each test, the sample size was varied between 20 and 100 in increments of 10. For each
sample size for the one-sample tests, the null and alternative models were compared for all
10,000 datasets for both the statistical test methods (LRT and the PLRT) when the null model
was true. For the two-sample tests, datasets were paired resulting in 5000 tests for each
statistical test method and sample size. For the multiple factor tests on V50, the datasets were
put into groups of 4 resulting in 2500 tests for each statistical test method and sample size.

For a sample size of 20, there were 7 instances using the Neyer D-optimal method that separation
was not broken. For the one-sample tests, the test was conducted in general accordance with
the example presented in Figure 5. For the two-sample tests, the test was conducted in general
accordance with ARL-TR-7088 (ref. 8). For the LRT with multiple factors, the situation was
sufficiently complex, such that no attempt was made to complete the test when one of the samples
did not have a ZMR. Therefore, for the LRT with multiple factors, there were only 2493 tests
conducted.

Simulation Results

Figure 19 presents the performance with respect to V50 of logistic regression and Firth logistic
regression using Neyer's D-Optimal method and a penalized D-optimal method, respectively.
Specifically, the plot shows the inverse of the relative MSE of V50 versus sample size. The
inverse of the relative MSE is presented because the relationship is approximately linear with
sample size. The result using logistic regression is labeled logit for the link function for logistic
regression. The result for the Firth logistic regression is labeled Firth. As shown, the MSE on
V50 for logistic regression is less than the MSE for Firth logistic regression for all sample sizes
evaluated in the simulation.
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Figure 19. MSE for V50.
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Figures 20 through 22 present Q-Q plots for the one-sample, two-sample, and multiple factor (two
factors each at two levels) tests on V50. As shown, as sample size increases, both methods
approach the ideal line. Additionally, the PLRT generally outperformed the LRT with respect to
accuracy. Note that for the multiple factor tests on V50, the tests on the two main effects and the
interaction each have one degree of freedom. Therefore, the results were combined in the Q-Q

plot.
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Figure 20. Q-Q plots for the one-sample test on V50.
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Figure 21. Q-Q plots for the two-sample test on V50.
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Figure 22. Q-Q plots for the test on V50 with multiple factors.

Figure 23 presents the performance with respect to sigma of logistic regression and Firth logistic
regression using Neyer’s D-Optimal method and a penalized D-optimal method, respectively. The
left plot shows the relative median bias of sigma versus sample size. As shown, Firth logistic
regression outperformed logistic regression with respect to relative median bias for the sample
sizes investigated. The right plot shows the inverse of the MSE of sigma versus sample size. As
shown, both methods performed similarly with respect to MSE.
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Figures 24 and 25 present the Q-Q plots for the one-sample and two-sample tests on sigma,
respectively. As shown, as sample size increases, the performance of both test methods

Figure 23. Relative median bias and MSE for sigma

approaches the ideal line. Additionally, the PLRT generally outperformed the LRT.
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Figure 24. Q-Q plot for one-sample test on sigma.
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Figure 25. Q-Q plot for two-sample test on sigma.

Figure 26 presents the performance with respect to V10 of logistic regression and Firth logistic
regression using Neyer’'s c-Optimal method and a penalized c-optimal method, respectively. The
left plot shows the relative median bias of V10 versus sample size. As shown, Firth logistic
regression outperformed logistic regression with respect to relative median bias for the sample
sizes investigated. The right plot shows the inverse of the MSE of V10 versus sample size. As
shown, logistic regression outperformed Firth logistic regression with respect to MSE.
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Figure 26. Relative median bias and MSE for V10.

Figures 27 and 28 present the Q-Q plots for the one-sample and two-sample tests on V10,
respectively. As shown, as sample size increases, the performance of both test methods
approaches the ideal line. Additionally, the PLRT generally outperformed the LRT.
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Figure 27. Q-Q plot for one-sample test on V10.
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Figure 28. Q-Q plot for two-sample test on V10.

Conclusions

Firth’'s penalized likelihood reduces bias in the location-scale parametrization. Additionally,
penalized likelihood has desirable properties when separation has not been broken. However,
the MSE of the V50 and V10 were increased. Therefore, bias reduction may not always be
desirable for point estimation.

For each statistical test, penalized likelihood ratio tests were more accurate than likelihood ratio

tests. In practice, power analysis is recommended to determine the trade-offs between increased
test accuracy and power.
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APPENDIX A. EXAMPLE DATA

TABLE A-1. EXAMPLE DATA FOR THE
RESPONSE CURVE PRESENTED IN
FIGURE 1 AND ONE-SAMPLE LRT
ON V50 PRESENTED IN
FIGURE 4.

Velocity, ft/s Penetration

2400.0 0

2600.0

2500.0

2352.7

2205.2

2266.3

2458.9

2306.4

24314

2496.7

2335.3

2267.2

2477.8

2293.1

2456.2

2310.8

2441.4

2323.0

24314

OO0 O|FR|IO|FR|IOFR(FP|IO|I0O|IR|IO|O(F|F|F-

2326.3

TABLE A-2. EXAMPLE DATA FOR THE
ONE-SAMPLE LRT ON V50 FOR GAP
DATA PRESENTED IN FIGURE 5.

Velocity, ft/s Penetration

2200

o

2305

2310

2347

2351

2378

2401

2414

2455

il (ellelle] o] o]

2460

A-1
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TABLE A-3. EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON V50
PRESENTED IN FIGURE 6.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 0 B 2400.0 0
A 2600.0 1 B 2600.0 1
A 2500.0 1 B 2500.0 1
A 2352.7 1 B 2352.7 0
A 2205.2 0 B 2450.0 1
A 2266.3 0 B 2343.6 1
A 2458.9 1 B 2285.8 0
A 2306.4 0 B 2460.9 0
A 2431.4 0 B 2554.8 1
A 2496.7 1 B 2305.9 0
A 2335.3 1 B 2515.0 1
A 2267.2 0 B 2336.0 0
A 2477.8 1 B 2491.0 1
A 2293.1 0 B 2355.3 0
A 2456.2 1 B 2475.5 0
A 2310.8 0 B 2519.4 1
A 2441.4 1 B 2364.7 0
A 2323.0 0 B 2374.6 1
A 2431.4 0 B 2512.9 0
A 2326.3 0 B 2565.0 1
A 2463.4 1 B 2323.5 0
A 2337.2 0 B 2546.3 1
A 2453.7 1 B 2340.4 1
A 2345.2 0 B 2292.6 0
A 2446.0 1 B 2548.6 1
A 2351.0 1 B 2309.5 0
A 2443.9 1 B 2533.1 1
A 2330.5 0 B 2323.4 0
A 2436.9 1 B 2520.4 1
A 2336.7 0 B 2335.1 0

A-2
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TABLE A-4. EXAMPLE DATA FOR THE LRT ON
V50 WITH MULTIPLE FACTORS
PRESENTED IN FIGURE 7.

Velocity, ft/s Penetration
2400.0 1
2200.0
2300.0
2447.3
2350.0
2456.4
2514.2
2339.1
2479.3
2365.2
2312.3
2234.1
2252.1
2471.2
2276.9
2450.7
2294.3
2436.2
2477.6
2300.5
2463.0
2313.6
2451.6
2323.6
2442.5
2331.1
2435.5
2336.9
2434.9
2315.8
2400.0
2200.0
2300.0
2447.3
2594.8
2533.7
2724.1
2665.7
2353.7
2611.9
2394.6
2298.4
2583.3
2333.0
2555.1
2537.3

oAb 2bb b 2b bbb b 25 Ab2b bbb A5 2b 2525 1b A5 -2b b A52b bbb A5 2b bbb b A 2b A A b Ab A Ab b A=
0|00 |00 |0 |0 |0 ||| |0|W|0 |00 |0E|E> > 22> >

N =l =R E I EEE R E R E R E G E R = E R EE R R R ==l =) =)
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TABLE A-4 (CONT)

Velocity, ft/s

Penetration

2356.4

0

2521.9

2370.6

23194

2515.8

2505.4

2335.3

2494.1

2485.7

2344.7

2478.1

2352.6

2472.4

2466.1

2400.0

2200.0

2300.0

2447.3

2594.8

2533.7

23411

2493.6

2368.6

2303.3

2464.7

2326.3

2446.6

2433.9

2337.0

2469.8

2350.9

2458.1

2492.6

2356.0

2481.5

2365.9

2372.1

2477.0

2350.6

2468.2

2358.5

2461.1

2483.3

2509.0

2400.0

2200.0

2300.0

00|00 |09 |00 |00 |09 |00 |00 |00 |00 |0d (00|00 |00 |00|0d|00|00|0d|00|00|00(00|00|00|00|00(0|00|00|M@|0 W@ MW@ > > > >> > > >>>>>r >
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TABLE A-4 (CONT)

Velocity, ft/s

Penetration

2350.0

0

2456.4

2514.2

2339.1

2479.3

2365.2

2460.0

2378.7

2342.4

2295.3

2457.8

2312.2

2442.8

2481.5

2317.3

2467.0

2329.9

2455.7

2339.7

2446.9

2347.3

2440.2

2347.8

2460.4

2354.8

00|00 | 00 (00|00 |0d (00|00 |00 (00|00 |00 (00|00 |00 |00|00|00|00|00|00|00|00|00|00|m0|&

00|00 | 00 (00|00 |0d (00|00 |00 (00|09 |00 |00|0d|00|00|00|00|00|0d|00|00|00|00|00 |00 |S

2453.9
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TABLE A-5. EXAMPLE DATA FOR THE
ONE-SAMPLE LRT ON SIGMA
PRESENTED IN FIGURE 8.

Velocity, ft/s Penetration

2400.0

2600.0

2500.0

2352.7

2205.2

2266.3

2458.9

2306.4

2431.4

2496.7

2335.3

2267.2

2477.8

2293.1

2456.2

2310.8

2441.4

2323.0

24314

2326.3

2463.4

2337.2

2453.7

2345.2

2446.0

2351.0

2443.9

2330.5

2436.9
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2336.7
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TABLE A-6. EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON SIGMA
PRESENTED IN FIGURE 9.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 0 B 2400.0 1
A 2600.0 1 B 2200.0 0
A 2500.0 1 B 2300.0 0
A 2352.7 1 B 2447.3 1
A 2205.2 0 B 2350.0 0
A 2266.3 0 B 2456.4 1
A 2458.9 1 B 2319.7 0
A 2306.4 0 B 2411.1 0
A 2431.4 0 B 2379.2 0
A 2496.7 1 B 2427.3 0
A 2335.3 1 B 2453.0 1
A 2267.2 0 B 2392.4 1
A 2477.8 1 B 2366.2 0
A 2293.1 0 B 2444.2 1
A 2456.2 1 B 2375.9 0
A 2310.8 0 B 2436.2 0
A 2441.4 1 B 2457.7 1
A 2323.0 0 B 2379.9 0
A 2431.4 0 B 2450.0 0
A 2326.3 0 B 2471.7 0
A 2463.4 1 B 2503.2 1
A 2337.2 0 B 2496.5 1
A 2453.7 1 B 2491.1 1
A 2345.2 0 B 2374.7 0
A 2446.0 1 B 2483.2 1
A 2351.0 1 B 2382.2 0
A 2443.9 1 B 2476.8 1
A 2330.5 0 B 2388.3 1
A 2436.9 1 B 2371.2 0
A 2336.7 0 B 2475.4 1
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TABLE A-7. EXAMPLE DATA FOR THE
ONE-SAMPLE LRT ON V10
PRESENTED IN
FIGURE 10.

Velocity, ft/s Penetration

2400.0 1

2200.0

2300.0

2447.3

2237.4

2281.8

2310.1

2665.0

2207.3

2227.7

2244.8

2259.6

2272.8

2284.7

2295.5

2305.4

2314.6

2323.2

2331.5

2339.5

2285.3

2292.6

2299.6

2249.7

2256.5

2263.0

2269.3

2547.3

2237.1
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TABLE A-8. EXAMPLE DATA FOR THE TWO-SAMPLE LRT ON V10
PRESENTED IN FIGURE 11.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 1 B 2400.0 0
A 2200.0 0 B 2600.0 1
A 2300.0 0 B 2500.0 1
A 2447.3 0 B 2352.7 0
A 2237.4 0 B 2450.0 0
A 2281.8 0 B 2548.7 1
A 2310.1 1 B 2526.3 1
A 2665.0 1 B 2437.1 0
A 2207.3 0 B 2475.0 1
A 2227.7 0 B 2427.3 1
A 2244.8 0 B 2413.3 0
A 2259.6 0 B 2418.2 1
A 2272.8 0 B 2392.0 1
A 2284.7 0 B 2353.8 0
A 2295.5 0 B 2361.4 1
A 2305.4 0 B 2311.1 0
A 2314.6 0 B 2321.3 1
A 2323.2 0 B 2249.6 0
A 2331.5 0 B 2264.5 0
A 2339.5 1 B 2275.7 0
A 2285.3 0 B 2284.7 0
A 2292.6 0 B 2292.3 0
A 2299.6 1 B 2298.8 0
A 2249.7 0 B 2304.6 0
A 2256.5 0 B 2309.8 0
A 2263.0 0 B 2314.5 0
A 2269.3 1 B 2318.8 0
A 2547.3 1 B 2322.8 0
A 2237.1 0 B 2326.5 0
A 2242.2 0 B 2329.9 0
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TABLE A-9. EXAMPLE DATA FOR THE
ONE-SAMPLE PLRT ON V50
PRESENTED IN FIGURE 12.

Velocity, ft/s

Penetration

2400.0

1

2200.0

2300.0

2152.7

2250.0

2348.7

2447.0

2440.0

2560.0

2554.0

2187.0

2525.0

2213.0

2133.0

2528.0

2157.0

2504.0

2177.0

2485.0

2473.0

AN =l = E R IR IR === )

TABLE A-10. EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON V50
PRESENTED IN FIGURE 13.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 1 B 2400.0 1
A 2200.0 0 B 2200.0 0
A 2300.0 1 B 2300.0 1
A 2152.7 0 B 2152.7 0
A 2250.0 0 B 2250.0 0
A 2348.7 0 B 2348.7 0
A 2447.0 1 B 2447.0 1
A 2440.0 0 B 2440.0 1
A 2560.0 1 B 2209.0 0
A 2554.0 1 B 2419.0 1
A 2187.0 0 B 2229.0 0
A 2525.0 1 B 2403.0 0
A 2213.0 1 B 2229.0 0
A 2133.0 0 B 2439.0 1
A 2528.0 1 B 2246.0 0
A 2157.0 0 B 2427.0 1
A 2504.0 1 B 2258.0 0
A 2177.0 0 B 2267.0 0
A 2485.0 1 B 2416.0 1
A 2473.0 1 B 2276.0 0
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TABLE A-11. EXAMPLE DATA FOR THE PLRT
ON V50 WITH MULTIPLE FACTORS
PRESENTED IN FIGURE 14.

Velocity, ft/s Penetration

2400.0

2600.0

2500.0

2352.7

2450.0

2548.7

2526.3

2437.1

2376.0

2312.0

2318.0

2525.0

2334.0

2508.0

2347.0

2310.0

2504.0

2496.0

2325.0

2485.0

2334.0

2476.0

2470.0

2342.0

2463.0

2344.0

2349.0

2478.0

2354.0

2473.0

2400.0

2200.0

2300.0

24473

2646.0

2696.0

2680.0

2263.0

2640.0

2300.0

2610.0

2590.0

2328.0

2580.0

2273.0
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TABLE A-11 (CONT)

Velocity, ft/s

Penetration

2542.0

1

2291.0

2525.0

2513.0

2303.0

2500.0

2489.0

2311.0

2479.0

2470.0

2317.0

2462.0

2455.0

2324.0

2400.0

2200.0

2300.0

2447.3

2350.0

2456.4

2319.7

2235.0

2247.0

2426.0

2481.0

2252.0

2465.0

2269.0

2452.0

2282.0

2454.0

2498.0

2235.0

2179.0

2185.0

2503.0

2200.0

2489.0

2539.0

2610.0

2604.0

2597.0

2590.0

2179.0

2400.0

2200.0

2300.0
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TABLE A-11 (CONT)

Velocity, ft/s

Penetration

2350.0

0

2456.4

2319.7

24111

2375.0

2352.6

2412.6

2443.0

2355.0

2326.0

2282.0

2288.0

2450.0

2492.0

2487.0

2287.0

2476.0

2298.0

2467.0

2497.0

2493.0

2300.0

2484.0

2309.0

2282.0

00|00 | 00 (00|00 |0d (00|00 |00 (00|00 |00 (00|00 |00 |00|00|00|00|00|00|00|00|00|00|m0|&
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2486.0
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TABLE A-12. EXAMPLE DATA FOR THE
ONE-SAMPLE PLRT ON SIGMA
PRESENTED IN FIGURE 15.

Velocity, ft/s Penetration

2400.0 1

2200.0

2300.0

2152.7

2250.0

2348.7

2447.0

2440.0

2560.0

2554.0

2187.0

2525.0

2213.0

2133.0

2528.0

2157.0

2504.0

2177.0

2485.0

2473.0

2198.0

2458.0

2197.0

2495.0

2542.0

2198.0

2207.0

2522.0

2220.0
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TABLE A-13. EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON SIGMA
PRESENTED IN FIGURE 16.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 1 B 2400.0 1
A 2200.0 0 B 2200.0 0
A 2300.0 1 B 2300.0 0
A 2152.7 0 B 2447.3 1
A 2250.0 0 B 2350.0 0
A 2348.7 0 B 2456.4 1
A 2447.0 1 B 2319.7 0
A 2440.0 0 B 2411.1 0
A 2560.0 1 B 2319.0 0
A 2554.0 1 B 2452.0 1
A 2187.0 0 B 2337.0 0
A 2525.0 1 B 2345.0 0
A 2213.0 1 B 2438.0 0
A 2133.0 0 B 2462.0 1
A 2528.0 1 B 2351.0 0
A 2157.0 0 B 2357.0 0
A 2504.0 1 B 2453.0 0
A 2177.0 0 B 2475.0 1
A 2485.0 1 B 2360.0 0
A 2473.0 1 B 2468.0 1
A 2198.0 0 B 2368.0 0
A 2458.0 0 B 2373.0 0
A 2197.0 0 B 2377.0 0
A 2495.0 0 B 2461.0 1
A 2542.0 1 B 2382.0 1
A 2198.0 0 B 2460.0 1
A 2207.0 0 B 2457.0 0
A 2522.0 1 B 2470.0 0
A 2220.0 0 B 2487.0 0
A 2510.0 1 B 2509.0 1
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TABLE A-14. EXAMPLE DATA FOR THE
ONE-SAMPLE PLRT ON V10
PRESENTED IN FIGURE 17.

Velocity, ft/s Penetration

2400.0 1

2200.0

2300.0

2447.3

2350.0

2456.4

2319.7

2411.1

2318.0

2328.0

2336.0

2342.0

2309.0

2314.0

2318.0

2322.0

2326.0

2330.0

2305.0

2308.0

2311.0

2314.0

2317.0

2294.0

2297.0

2299.0

2302.0

2304.0

2469.0
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TABLE A-15. EXAMPLE DATA FOR THE TWO-SAMPLE PLRT ON V10
PRESENTED IN FIGURE 18.

Sample | Velocity, ft/s Penetration Sample | Velocity, ft/s Penetration
A 2400.0 1 B 2400.0 1
A 2200.0 0 B 2200.0 0
A 2300.0 0 B 2300.0 0
A 2447.3 1 B 2447.3 1
A 2350.0 0 B 2350.0 0
A 2456.4 1 B 2456.4 1
A 2319.7 0 B 2319.7 0
A 2411.1 0 B 2411.1 1
A 2318.0 0 B 2375.0 1
A 2328.0 0 B 2329.9 0
A 2336.0 0 B 2384.7 0
A 2342.0 1 B 2330.0 1
A 2309.0 0 B 2295.0 0
A 2314.0 0 B 2300.0 0
A 2318.0 0 B 2304.0 1
A 2322.0 0 B 2271.0 0
A 2326.0 0 B 2275.0 0
A 2330.0 1 B 2279.0 0
A 2305.0 0 B 2282.0 0
A 2308.0 0 B 2286.0 0
A 2311.0 0 B 2289.0 0
A 2314.0 0 B 2292.0 0
A 2317.0 1 B 2295.0 0
A 2294.0 0 B 2297.0 0
A 2297.0 0 B 2300.0 0
A 2299.0 0 B 2303.0 1
A 2302.0 0 B 2285.0 0
A 2304.0 1 B 2287.0 0
A 2469.0 1 B 2290.0 0
A 2287.0 0 B 2292.0 0
A 2289.0 0 B 2294.0 0
A 2292.0 0 B 2296.0 0
A 2294.0 0 B 2298.0 0
A 2296.0 0 B 2300.0 0
A 2298.0 0 B 2302.0 0
A 2300.0 0 B 2304.0 0
A 2302.0 0 B 2306.0 1
A 2305.0 0 B 2292.0 0
A 2307.0 0 B 2294.0 1
A 2309.0 0 B 2280.0 0
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