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Mechanochemical nitration of aromatic precursors

e Previous SERDP-funded work established possibility of
mechanochemical nitration:

MoO
C,Hg + NaNO; —= C,H,(NO,) + NaOH

Lagoviyer, O.S., Krishtopa, L., Schoenitz, M., Trivedi, N.J., Dreizin, E.L. Journal of Energetic Materials pp. 1-11 (2017)
Lagoviyer, O.S., Schoenitz, M., Dreizin, E.L. Journal of Materials Science 53, pp. 13690-13700 (2018)

e What processes govern this reaction?

=» Conduct experiments with systematically varied reactants:
— Different catalysts, nitrating toluene
— Nitrating different precursors

— Different nitrates as nitronium sources




Equipment

e Retsch PM400-MA planetary mill
— 4 X 500 mL milling jars
— Custom temperature control
e General reactant amounts
— aromatic precursor: 0.5 mL (0.25 mL -8 mL)

— nitrate salt: 1.67 g (0.4g—-16 g)
— metal oxide catalyst: 41.63 g #

e Exploratory experiments used batch reactor v

e Scale up expected to rely on attrition milling enabling semi-batch or continuous
synthesis




Organic
Precursor

Experimental Protocol

Original protocaol:

direct milling of all reactants

Reaction Solvent Analysis

Milling Extraction (GC/MS)

- Initial testing suggested that initial
homogenization of the solids
Improves outcome
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Part 1. Effect of catalyst on nitration of toluene

- Different inorganic oxide catalysts: Mo, W, V, Mn, Ti, Fe, Al, Bi

- range of acid strengths (Lewis and Bransted) of surface sites
- Toluene precursor
- NaNO;, nitrate salt/nitronium source

Table 1
Materials tested as catalysts for mechanochemical nitration of toluene.
Material Supplier and nominal purity Relative Acidity, [38] Type of acidity [37]
Molybdenum oxide, MoO, Alfa Aesar, 99.95 % 535 Medium Bronsted + Strong Lewis sites
Tungsten oxide, WO5 Alfa Aesar, 99.95 % 5.05
Vanadium oxide, V,05 Acros organics, 99.6 % 454
Manganese oxide, MnO, Alfa Aesar, 99.9 % 3.65 Not specified
y- alumina, Al,03 Alfa Aesar, 99.9 % 2.28 Strong Lewis sites™
Titanium oxide, TiO, Alfa Aesar, 99.9 % 3.05 Medium Lewis sites
Iron oxide, Fe,O4 Alfa Aesar, 99.5 % 25
Bismuth oxide, BioO3 Alfa Aesar, 99 % Medium Lewis + Basic sites”
Zeolite HZSM-5, Si/Al 38 ACS chemicals Bronsted + Lewis sites”

Zeolite HZSM-5, Si/Al 360

* Alumina phase was not specified in ref. [38].
® Acidity values not stated in literature.
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Evaluation of premilling:
Development of catalyst & nitrate
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‘ NaNOs3, 100 % peak

Intensity, a.u.

Evaluation of premilling: A )
Development of catalyst & nitrate |

XRD: nitrate no longer crystalline HH
enough to be detected after

premllllng 10 15 20 5

5

600 —C— MoO3
—&— MoO3+NaNO3

- Catalyst also shows signs of
decreased crystallinity
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N
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Overall results: Mononitrotoluene yields
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Pre-milling time and
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Effect of reaction milling time

100
dMo0O,, WO;: pre-
milling the catalyst is
not important
= A weak trend of yield

increasing with the
reaction time

80

dMoO,+NaNO;: yield
reaches a plateau
after 15 minutes

= Nearly complete
conversion

Yield of nitrotoluene in %
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Findings guiding further work:

e MoO,; most suitable catalyst, to be used for further work

e Premilling for 2 h gives most consistently high yields

— becomes part of standard protocol

Part 1. Catalyst




Systematic variation of
reactant proportions

2 experimental series,

varying nitrate/toluene
reactant ratios v,

\toluene variable
nitrate const., 1.67 g

= toluene = const.

Nrr 6

NNNNNNNNNNNNN toluene const., 1.5 mL
nitrate variable

Q premilled/not premilled o : 80

mole fraction D Z— N a N 03
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Toluene varied; 1.67 g NaNO3 NaNO;j varied; 1.5 ml toluene

EffECt Of N a N 0 tO I u ene ratio , O Premilled MoQO; (30 min) B Premilled MoO; (30 min)
3 )

© Premilled NaNG; and MoO3 (120 min)

©
MNT yield « oo T
e Varied toluene: 2 0007 |
£ o
= A clear peakin yield for a range g 0.006 - o
of NaNO,/toluene ratios g 0.005
® O
= Better seen for pre-milled 5 0003 F
NaNO,+MoO, > 0002 - -
= e ‘ ‘ e O
= Corresponds to a toluene spread 0-000 ) 10
over catalyst in a very thin layer Nitrate to toluene mole ratio

= Close to monolayer

e Varied NaNO,
" No effect

e Toluene amount (layer
thickness) matters
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Toluene varied; 1.67 g NaNOj3 NaNO; varied; 1.5 ml toluene
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Effect of NaNO;/toluene ratio;

Toluene varied; 1.67 g NaNOs3 NaNO;j varied; 1.5 ml toluene

O Premilled MoO; (30 min) B Premilled MoO; (30 min)
© Premilled NaNGy and MoOj3 (120 min)
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Discussion: nitration occurs on surface of catalyst

e Reaction was not detected
— for catalysts with low acidity

— for zeolites: interior of the pores where the reaction might be taking place is poorly
accessible

e For all three successful catalysts, MNT yield scales
— with acidity
— With surface area of the catalyst

e Pre-milling the catalyst powder has a limited effect on nitration
— The catalyst is milled again during the reaction

e The effect of pre-milling is stronger when both catalyst (MoO;) and the solid
reactant (NaNO;) are pre-milled together

Part 1. Catalyst




Complete toluene conversion to MINT observed

High yield with short 15-min reaction time
— 70% conversion measured
— Close to 20% of toluene could have evaporated
— Close to 10 % could be unaccounted for

High yield is only observed when NaNO, was pre-milled with the catalyst for 120 min.

— Homogenizing NaNO; and the catalyst was the rate-limiting process when the powders were
not pre-milled together

For pre-milled MoO; + NaNO;, mechanochemical reaction occurs fast, but some time is
still required

— Toluene must be distributed over the catalyst surface
— New catalyst surface becomes continuously available during milling

Part 1. Catalyst




Mechanism of mechanochemical nitration
e Toluene is nitrated reacting with nitronium complexes attached to

acid sites
— para MINT isomer is preferentially produced ©\d/
= Consistent with the present high p/o ratios NO> NO,
NaOH cl)—
Mo>_ mo*

e Both yield of MNT and selectivity are reduced simultaneously when
the amounts of toluene are increased
— Excess of toluene may be blocking acid sites from nitronium

— Formation of nitronium involves interaction of dissolved NaNO, with Bronsted
acid sites

= blocked acid sites may lead to a less effective production of nitronium slowing
down nitration

Part 1. Catalyst




Part 1: Summary

e Mechanochemical nitration of toluene occurs on surface of catalyst
— High acidity, high surface area lead to high yield

e Complete conversion of toluene achieved in short 15-min reaction time
— Pre-milling catalyst and nitrate prior to reaction accelerates mechanochemical nitration

e Toluene is nitrated reacting with nitronium complexes attached to acid sites
— High p/o ratio
— Low byproducts

e Both yield of MNT and selectivity are high for small amounts of toluene (close to
monolayer on catalyst surface)

Part 1. Catalyst




Part 2. Nitrating different aromatic precursors

e \Various
with wide range of aromatic NO, 3.72
activation Cl _0.66
and other properties H O
C,H; 0.9
e MoQO, as oxide catalyst CH, 1.02
(CH3), 2.04
e NaNO, nitrate salt/nitronium OH 2.22
source OCH, 4.68

Observed relative rates in liquid phase nitration using H,SO, and HNO4 at 25°C
[1] C. Hansch, A. Leo, R.W. Taft, Chemical Reviews, 91 (1991) 165-195

Part 2: precursor




Reaction rate — substituent effects

* High yield of nitro
products observed for
most precursors in
short time

« Initial nitration rate
roughly scales with the
activation

* Nitration slows down
in time or even
reversed for some
precursors

80
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Regioselectivity changes with milling time
7

U High p/o ratio at 30 min

for anisole is not 6

associated with increased - I

yield
e may suggest selective
decomposition of
ortho isomer

P/O ratio

L P/O ratios for other
precursors consistent with

literature
 Reactions on surface

of catalyst
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Yield vs. molar reactant ratio: toluene
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L Excess of nitrate limits nitroproducts, possibly through blockage of active sites
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Yield vs. mol. react. ratio:
benzene, chlorobenzene

O Near complete conversion
observed when reaction is
precursor-limited

O Nitration attains a plateau, does not
approach the limit when the reactants
are nitrate-limited

O Small traces of dinitrated products
formed with chlorobenzene

= Also observed for other precursors
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Regioselectivity

L. —@— Toluene
O Selectivity increases for 3 | —1— Chlorobenzene

both toluene and
chlorobenzene when
the reaction becomes
limited by the available
precursor

P/O ratio
N
I

O Implication: reaction is

favored when it occurs 1 10
in a thin |ayer Of Nitrate to precursor molar ratio

precursor on surface

of the catalyst
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Which precursor properties control mechanochemical nitration?

e Model milling as a simplified nitration reaction
Precursor (P) — Nitrated product (NP)

— 15t order reaction:

u dﬂ:—k-Cpé k=—ln( —C£>-t‘1

dt Cpo
— Test correlation of rate constant, k, with precursor properties
— Statistical approach, i properties considered
— Use linear models:

u ln(k) = ln(ko) + Zi a - Ci
;: precursor properties, a;: linear coefficients

— Coefficients a; determined using least-squares fitting

Part 2: precursor




Heats of formation Viscosities Steric factors
Relati Heat of
Active elative ) cato Dipole Proton Gas loniz.
Reactant rou rate Density | vapor, moment affinit basicit ener
groip log k/k, reactant A- Ligand y y gy
reactant | product | Kinematic |Dynamic Repulsive
factor )
energies
kcal/m
kJ/mol kJ/mol mm?2/s cP g/mL kJ/mol Debye ol kcal/mol kJ/mol kJ/mol eV
Nitro- . .
NO, -3.72 -48.2 -66.4 solid solid 1.1 74.8 1.35 1.10 18 815.2 782.7 9.46
toluene
Chloro-
cl -0.66 11.5 -48.74 0.92 1.021 1.11 41 1.69 0.53 3.3 753.1 724.6 9.07
benzene
Benzene H 0 49 12.5 0.647 0.567 0.876 33.9 0 0 0 750 725.4 9.24
Ethyl
C,H, 0.90 27 -13.22 0.669 0.579 0.866 41 0.59 1.79 34 788 760.3 8.77
benzene
Toluene CH, 1.02 12 -48.2 0.62 0.538 0.867 37 0.332 1.74 17 784 756.3 8.83
p-Xylene (CH,), 2.04 -24.4 -5.62 0.93 0.800 0.86 42 0 3.48 34 812.1 766.8 8.44
Phenol OH 2.22 -165 -207 solid solid 1.07 69.7 1.224 0.60 10 817.3 786.3 8.49
Anisole OCH;, 4.68 -120 -197 0.99 0.985 0.995 44 1.262 0.75 31 839.6 807.2 8.20




Data Analysis

e 13 solvent properties considered
e experimental results for 6 different precursors
- set of equations is underdetermined

e selection:
— fit at most 5 = (6-1) coefficients/solvent properties at a time

— do not simultaneously fit coefficients/solvent properties that are highly correlated
= gas basicity & proton affinity
= kinematic & dynamic viscosity
= different measures of steric hindrance

e 1120 parameter combinations remain

— ranking of statistical significance using logarithmic likelihood of the model fit (highest is
best), and the Akaike’s information criterion [0(AIC.), lowest is most prudent = “best”]

Part 2: precursor




Ranking models

10 8
3 independent 5 independent variables, o Major differences in how
variables, 7 degrees of freedom ' ) .
ol 17 ¢ models fit according to how
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C) L ]
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(@) {2 .
5 O = differences between
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1 10 100

Models in order of decreasing significance
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Predictions by the top model vs. experiments
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Sum of model weights, 6<2

Influential individual factors

Activation factor, k/ky —
d“Parameter Importance” calculated as sum of Gas basicity |ﬁ

model weights of the individual parameters for ~ nemaieviscosty

all models with 5, c,<2 A, [

Steric A f
(5 models) teric A factor

AHs, NP

AHt p

Importance for mechanochemical nitration:

M

lonization energy

QActivation factor has the strongest effect Proton sty [ l

Dynamic viscosity

L Gas basicity, kinematic viscosity are likely Den
. ensity I
im portant Dipole moment I
L Effects of density, dipole moment, steric energy Steric energy
on nitration rate are insignificant 00 01 02 03 04 05

Sum of model weights up to models
with 5 adjustable parameters
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Influential factor combinations Model weights

0.000 0.005 0.010 0.015 0.020

dGrou PS of {Activation factor, k/ky; Gas basicity; AHyap, p} —

factors
identified in

the best {Kinematic viscosity; lonization energy; Proton affinity} —

{Steric A factor; AH; Np; AHs p}

ranked models
rank the

same as tOp {Activation factor, k/ky; Gas basicity; Dynamic viscosity} _—‘_l
models {Kinematic viscosity; lonization energy; Activation factor, k/ky} _—‘
QActivation, gas basicity, heat of vaporization, stericA .. .. .. . . . . . .,

factor, heat of formation of nitro product and heat of 000 00z~ 0.04 006 008

: : : : Sum of model weights up to models
format/op c_)f precursor likely need to be considered in a with 5 adjustable parameters
mechanistic model

{Activation factor, k/ky; Gas basicity; Kinematic viscosity}
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Part 2. Summary
0 Near complete mechanochemical nitration achieved with a broad range of aromatic
precursors using MoO, as catalyst

= Small amounts of dinitrated products observed in all cases when mononitrated products
formed

U Selectivity observed is mostly consistent with earlier work using MoO, as catalyst; abnormally
high selectivity is observed in certain experiments

0 Extended milling may reduce yield of nitro products

U Processing experimental data suggests that mechanochemical nitration rate depends on

properties of aromatic precursor: activation, gas basicity and kinematic viscosity are
most influential

O Results of data processing indicate potential avenues for process optimization, e.g., by
varying temperature of mechanochemical nitration

Part 2: precursor




Part 3. Using different nitrate salts as nitronium sources

e Nitrates varied

— different cation charge Nitrate Mass in g for reactant ratio,
— different cation electronegativity (moles of NO3™)/(moles of C7Hs)
) . 2 4 6 8
— different hydration states NaNO; 080 160 240 320
e Reactant ratio varied KNOs3 095 191 286 3.82

Ca(NO3)24H0O 1.11 222 333 444
Cu(NO:3)»2.5H20| 130 2.60 3.90  5.20
Bi(NO3);'5H,O | 1.52  3.04 458  6.16
e Toluene precursor, Mn(NO3),'6H.O | 1.18 236 3.54 472

constant amount

— expressed as (NO;)/toluene
— implies equiv. values of (NO,)/catalyst

e MoO,; oxide catalyst,
constant amount

Part 3: nitrate




Effect of nitrate on premilling step

70 .
« Gradual changes only Material
o 60 —/v— Cu(NGz)
~” — A Bi(NO3)3
€ 50 —O— NaNOs
° Anhydrous (Na, K) g 0 — @ Mn(NO3),
nitrates show opposite S 0 Calog,
trend compared to 8 2
hydrated nitrates (Cu, Bi, & 20|
Mn, Ca) 10 f |

Molar ratio, (NO3 ):toluene
[effectively the nitrate/catalyst ratio]

Specific surface areas of MoO, catalyst after
premilling with different nitrates for 120 min
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Effect of nitrate on
mechanochemical nitration

Reactant ratio trends

« Highest yield observed for molar
reactant ratio of (NO;)/toluene = 4

d Except for NaNO,

MNT vyield vs. reactant ratio
grouped by nitrate and time

Part 3: nitrate

Yield of nitrotoluene, %
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- o Cu(NO3)2
Oxidation byproduct: y
benzaldehyde | T
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Reaction time trends ’ e

« Amount of oxidation byproducts, spec.
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Oxidation byproduct:
benzaldehyde

Reactant ratio trends

No comparable highest formation rate
observed at reactant ratio of 4
— Benzaldehyde formation does not correlate with

nitration

New Jersey Institute of Technology

Benzaldehyde vs. reactant ratio,
grouped by nitrate and time

Part 3: nitrate

Oxidation to benzaldehyde, %

CU(N03)2

Reaction time, min

NOs3 : toluene molar ratio



Double nitration

Reaction time trends

e Higher nitrate amounts also result in
formation of dinitrotoluene (DNT)

e Amounts low, but well detectable

DNT vyield vs. time, grouped
by nitrate and reactant ratio

Part 3: nitrate

New Jersey Institute of Technology

Yield of dinitrotoluene, %
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Which nitrate property governs nitration rate?

« Attempts to correlate rates with cation properties showed no trends
O electronegativity
4 charge
O hydration state of the nitrate salt

Consider energy of global reactions:
- Reactions leading to corresponding hydroxides (instead of oxides)

Global reaction AH,, kd/mol
of NO,~
KNO; + C,Hg = KOH + C,H,NO, 8.5
NaNO; + C,Hg — NaOH + C,H,NO, -18.23
Ca(NO3), - 4H,0 + 2C,Hg — Ca(OH), + 2C,H,NO, + 4H,0 -58.31
Bi(NO;3)5 - 5H,0 + 3C,Hg - Bi(OH); + 3C,H,NO, + 5H,0 -110.99
2Cu(NO3), - 5H,0 + 4C,Hg — 2Cu(OH), + 4C,H,NO, + 5H,0 -118.06

Part 3: nitrate




Yield vs. energy of global nitration reaction

e Correlations observed

e Particularly consistently,
for reactant ratio 4

Part 3: nitrate

Yield of nitrotoluene, %
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Reaction rate constant vs. energy of global nitration
reaction

-1

< 0.30
eple . . (o S Reactant ratio
Model milling as simplified < 025 (NO")toluene
o : s 1< o 2
nitration reaction 3 020 p
Precursor (P) — Nitrated product(NP) 8 | |\ .  —- 6
: Lot \ B o8
15t order reaction: ©
dCp Cnp _, B ooy
P = k- Co> k=—-In(1-22).¢ 5
at Cpo B 0.05|
e Correlate rate constant, k, gl o %[ e~
' -120 -100 -80 -60 -40 -20 0 20

with reaction enhalpies

AH; of global nitration reaction, kJ/mol of NO 3

Consistent correlation for reactant ratio 4
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Regioselectivity
- para/ortho MNT isomer ) S Vet niats

ratios consistently decrease | % o NaNOg
. . . 1.2 1
with increasing - CuNOg)

10t — Ca(NO3)2

. —@— Mn(NO3), L
(NOj)/toluene reactant ratios o [bomin e BNOLY
2 —@— KNO;
S 14+
- Nodistinct dependenceon 3 |

type of the nitrate, or milling

time 1.6 Fc: t=16 min
14+
- This is an opposite trend 125
from earlier observations 10 |
where p/o ratio increased w/ 1 2 o4 5 0 78910 20

Molar ratio NO 3:toluene

Increasing reaction ratio
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Varying the reactant ratio, revisited

 Experimental series
keeping one reactant
constant:
* nitrate variable
(precursor const.)
e precursor variable
(nitrate const.)

MoO, proportion -
amount of available
catalyst sites
increases

reactant ratio
increases

p/o
Increases

« This implies changes in the
proportion of catalyst in
either case

p/o A
decreases<t \5
« p/o ratio is determined by
available cat. surface

Part 3: nitrate




Reaction mechanism

Toluene is nitrated reacting with nitronium complexes
- attached to catalyst surface acid sites

) : ) CH CH
- in the bulk fluid, away from these sites ’ 3
_.Nx NO
o ¥ 2
O\ |}|02
H—O NaOH o~
| + I
Mo ! Mo Mo
Step 1: Sodium nitrate forms nitronium Step 2: aromatic substitution
complexes on acid sites reaction

Part 3: nitrate




Reaction mechanism

* NO,, nitronium, can exist
= at the catalyst surface, or
" in the fluid

demonstrated in literature for
other oxide surfaces

Part 3: nitrate

0
N\ =
N
?/
: -— + .
H O=N =0 H
0. 0 o ,0
a1 Nsi/ N a1’ Nsif N

V. MALYSHEVA LUDMILA, A. PAUKSHTIS EUGENE & G. IONE
KAZIMIRA (1995) Nitration of Aromatics by Nitrogen Oxides on Zeolite
Catalysts: Comparison of Reaction in the Gas Phase and Solutions,
Catalysis Reviews, 37:2, 179-226




Reaction mechanism

Reaction at the catalyst surface
preferentially produces the para
isomer

Reaction in the bulk fluid does not
show this preference

Increased p/o ratio indicates more
reaction occurring at the catalyst
surface

Part 3: nitrate
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a b oy
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HNO, +  H* HNO.H* M0  No,* 7AY
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CHs CH,
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b HNO, ——» HNOH' 22, No,- = G 2

0
X \.\- +
H,C—N" N—CHs
\y o

Mo°* Qo= Mo® H* Mo Qo Mo°*

Joanna Adamiak, Waldemar Tomaszewski, Wincenty Skupinski,
Interaction of nitromethane with MoO,/SiO, and its influence on toluene
nitration, Catalysis Communications, Volume 29, 2012, Pages 92-95




Reaction mechanism and oxidized byproducts

Oxidation of aromatics on catalyst surface
described in literature

May necessitate multiple surface sites

Consistent with observation that benzaldehyde
amount decreases when higher amounts of
nitrates block more and more catalyst surface
sites (cf. slide 41)

Part 3: nitrate
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Angelika Bruckner (2003) Looking on
Heterogeneous Catalytic Systems from
Different Perspectives: Multitechnique
Approaches as a New Challenge for In Situ
Studies, Catalysis Reviews, 45:1, 97-150




Part 3. Summary

e Nitronium source appears to affect nitration only via energy of global
reaction

e Optimum reaction rate consistently observed for (NO,)/precursor
molar ratio of 4

e |somer ratios can be controlled by choice of reactant ratios

Part 3: nitrate




Project Summary

e Mechanochemical nitration of organic precursors requires solid catalysts with high acidity and both, Bronsted

and Lewis sites
— MoO, was the preferred catalyst

e Nearly complete mechanochemical nitration was achieved in many experiments
e Homogenizing catalyst with nitrate by premilling accelerates ensuing mechanochemical nitration
e Mechanochemical nitration with MoO, catalyst was successful for multiple aromatic compounds

e The selectivity was enhanced and the yield of the nitroproduct was increased when the volume of the aromatic

precursor was reduced while the mass of metal oxide catalyst was fixed
— The reaction preferably involves nitronium complexes attached on the catalyst surface

e Reaction depends on the aromatic activation by the functional group, gas basicity and enthalpy of vaporization
of the aromatic precursor. Additional effect by reaction enthalpies and kinematic viscosity

e The highest mechanochemical nitration rate observed for Cu(NO,), serving as the source of nitronium.

e Theyield of MNT as well as the reaction rate correlated with the enthalpy of the global nitration reaction with
the corresponding metal hydroxide as a product

e A second nitration of the aromatic ring was observed for all the precursors used

New Jersey Institute of Technology




Future work

A path is outlined to further scale-up and optimization of mechanochemical
nitration of organic compounds.

First practical goal: mechanochemical synthesis of single-nitrated products of

aromatic precursors

— Use identified relationships between the process parameters, materials, and yield and reaction
rate for the nitroproducts

Challenges:

— determine conditions necessary to transfer the reaction parameters for the attritor mill
configuration

— develop methods for in-situ separation of the reaction products from the milling tools and catalyst

Other research:
— Reusing or recycling the catalyst
— A detailed mechanism of mechanochemical nitration




Supplement: ARL Effort

Leah Winhard, PI (WMRD, ARL)
Melissa Garner (ARL Summer student)

ARL’s contribution focused on the evaluation of the
mechanochemical nitration technique developed by NJIT as
viable nitration technique for a range of substrates of interest

« SOP approved

* Process applied to both commercially available substrates and
non-energetic precursors designed and synthesized at ARL

Supplement: ARL




Reaction using toluene as a substrate

NaNO 3
MoOg

’

30 min milling

NO,

Reagents/Products | Health | Fire Reactivity

Toluene (0.5 mL) 2 3 0

Sodium Nitrate (1.67 g) 2 1 3

Molybdenum (VI) Oxide 0 0 0
(41.63 q)

Nitrotoluene (0.5 mL) 2 1 0

Ethyl Acetate (15 mL) 1 3 0

Supplement: ARL




Reaction using naphthalene as a substrate

NaNO ,

MoO ¢
H

30 min milling

NO,

Reagents/Products Health | Fire | Reactivity
Napthalene (0.5 g) 2 2 0

Sodium Nitrate (1.67 g) 2 1 3
Molybdenum (VI) Oxide 0 0 0

(41.63 9)

1-Nitronapthalene (0.5 2 1 0

mL)

Ethyl Acetate (15 mL) 1 3 0

New Jersey Institute of Technology
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Additional substrates

Milling was also tested with the following list of commercially available substrates:

 Isoxazole

4 1,2-Benzisoxazole
1 Maleimide

O Pyrazole

O Pyrrole

« All reaction mixtures showed some production of nitrated products via IR.

« NMR analysis revealed low yields (<20%) of nitrated products along with unreacted
substrate and decomposition products

» For pyrazole substrate, a highly hygroscopic product was formed, and decomposed
too rapidly for accurate analysis

Supplement: ARL




Reaction using isoxazole as a substrate

NaNO .
MoOg

T

30 min milli

ng

Reagents/Products Health | Fire | Reactivity
Isoxazole (0.5 g) 0 3 0

Sodium Nitrate (1.67 g) 2 1 3
Molybdenum (VI) Oxide 0 0 0

(41.63 g)

Product ? ? ?

Ethyl Acetate (15 mL) 1 3 0

Supplement: ARL




ARL-designed precursors

e 5,5-Dihydroxymethyl-3,3’-bis-isoxazole %
e 2,2’-([3,3’-biisoxazole]-5,5’-diyl)bis(Ethan-1-ol) . .

— Both readily form their respective nitrate ester energetic compounds in high
yields (>90%) through traditional wet nitration chemistry.

— The nitrated compounds are relatively insensitive to impact and friction,
concern with milling nitrate esters prompted using very small amounts of
precursor (100 mg or less) in the milling process.

e Analysis showed some degree of nitration, yield was low

— NJIT comment: milling conditions were not optimized, e.g., no premilling
catalyst with nitrate was used

Supplement: ARL






