
 
 
 
 

 ARL-TR-9635 ● JAN 2023 
  
 
 
 

 
 
 
Multiscale and Multimodal Characterization of 
Mobile Sensor Data 
 
by Alexander F Danvers, Lidia S Obregon, Esther M Sternberg, 
Matthias R Mehl, and Evan C Carter 

 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 



 

 

NOTICES 

 

Disclaimers 

 

The findings in this report are not to be construed as an official Department of the 

Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 

endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-9635 ● JAN 2023 

 

 
 
Multiscale and Multimodal Characterization of 
Mobile Sensor Data 

 
Evan C Carter 
DEVCOM Army Research Laboratory 

 
Alexander F Danvers, Lidia S Obregon, Esther M Sternberg, and  
Matthias R Mehl 
University of Arizona 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 



 

ii 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the 

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 

valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

January 2023 

2. REPORT TYPE 

Technical Report 

3. DATES COVERED (From - To) 

10 January 2021–29 September 2022 

4. TITLE AND SUBTITLE 

Multiscale and Multimodal Characterization of Mobile Sensor Data 

5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

 
5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

Alexander F Danvers, Lidia S Obregon, Esther M Sternberg, Matthias R Mehl, 

and Evan C Carter 

5d. PROJECT NUMBER 

 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

DEVCOM Army Research Laboratory 

ATTN: FCDD-RLA-FA 

Aberdeen Proving Ground, MD 21005 

8. PERFORMING ORGANIZATION REPORT NUMBER 

 

ARL-TR-9635 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 

 
11. SPONSOR/MONITOR'S REPORT NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release: distribution unlimited.  

13. SUPPLEMENTARY NOTES 

ORCID ID: Evan C Carter, 0000-0001-7471-8769 

14. ABSTRACT 

Physiological and behavioral processes unfold on multiple time scales. Traditional time-series analysis tools are designed to 

capture stationary, single-scale processes, which may miss important information. Several methods have been proposed in 

recent decades to capture multiscale properties of time series, such as detrended fluctuation analysis. This report examines the 

way that multiscale measurement of physiology and behavior fits passive sensing data from the Fitbit Charge 4 mobile sensor. 

Physical activity and heart rate (HR) data from a large, long-term study of office workers were analyzed using traditional 

time-series analyses and a newly developed multiscale method: multiscale regression analysis. These analyses were conducted 

at the day and month level. Results indicate that multiscale analyses lead to substantial improvements in model R2 over single-

scale analyses for autocorrelation analyses of HR and steps (13% to 108% increase) and for the cross-correlation or coherence 

between HR and steps (21% to 88% increase). Multiscale analyses that led to better fit statistics were most advantageous 

when considering physical activity as compared with HR. Overall results suggest that physiology and behavior in daily life are 

better captured by estimating multiscale rather than single-scale processes. 
15. SUBJECT TERMS 

multiscale regression analysis, time series, fractal analysis, passive sensing, heart rate, HR, physical activity, Humans in 

Complex Systems 

16. SECURITY CLASSIFICATION OF: 
17. LIMITATION 
       OF  
       ABSTRACT 

UU 

18. NUMBER 
       OF  
       PAGES 

23 
 

19a. NAME OF RESPONSIBLE PERSON 

Evan C Carter 
a. REPORT 

Unclassified 

b. ABSTRACT 

Unclassified  

c. THIS PAGE 

Unclassified  

19b. TELEPHONE NUMBER (Include area code) 

(240) 478-9295 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



 

iii 

Contents 

List of Figures iv 

List of Tables iv 

1. Introduction 1 

1.1 Multiscale Measurement of Heart Rate 1 

1.2 Multiscale Regression Analysis 2 

1.3 The Present Study 5 

2. Methods, Assumptions, and Procedures 5 

2.1 Participants and Procedures 5 

2.2 Measures 5 

2.3 Analyses 6 

3. Results and Discussion 8 

3.1 HR Data 8 

3.2 Steps Data 9 

3.3 Multimodal Data 10 

4. Conclusions 13 

5. References 14 

List of Symbols, Abbreviations, and Acronyms 16 

Distribution List 17



 

iv 

List of Figures 

Fig. 1 Illustration of multiscale approach ........................................................ 3 

Fig. 2 Illustration of multiscale regression ...................................................... 3 

Fig. 3 Average R2 by scale for multiscale autoregressive analyses ................ 8 

Fig. 4 Histograms of R2 differences for single-scale versus multiscale 
autoregressive analyses ......................................................................... 9 

Fig. 5 Model R2 by scale for day vs. month multiscale regressions ............. 11 

Fig. 6 Case-by-case R2 difference for day vs. month multiscale regression . 12 

 

List of Tables 

Table 1 Analysis outline .................................................................................... 6 

Table 2 Comparison of average R2 values for the models investigated ........... 12 

 



 

1 

1. Introduction 

Human behavior and physiology operate on multiple time scales with multiple 

interacting components including mental and physiological processes. Traditional 

methods of analyzing time-series data assume that data operate at a single time 

scale; that is, the data-generating process exists at a single time scale, so the patterns 

of interest are observable when measured at a given rate. These traditional methods 

will therefore often miss key properties of real-world human data, potentially 

obscuring important effects and leading to worse model fit and poor prediction 

performance. For example, heart rate (HR) data are often studied using multiscale 

methods (Peng et al. 1995), and results from numerous studies indicate that cardiac 

interbeat intervals are best characterized by multiscale rather than single-scale 

measures (Peng et al. 1995; Perkiömäki et al. 2000; Hu et al. 2010).  

Several methods for characterizing multiscale properties of time-series data, 

including methods that capture the associations between multiple time series, have 

been developed in recent years. These methods have been applied in fields such as 

psychology, economics, geophysics, and urban planning (Yuan et al. 2015), but 

they have not yet been applied to large, long-term studies of people in their daily 

lives. Datasets of this scope are becoming more common as technological 

advancements make sophisticated data collection systems more accessible, and 

given the likely importance of multiscale processes reflected in such data, a 

marriage of multiscale modeling with data collected over a long time period and 

“in the wild” is an important step.  

Here we aim to identify the gains in model fit from using these multiscale and 

multimodal methods on a large, long-term dataset of passively sensed human data. 

Ultimately, such methods may facilitate a low-cost, accurate assessment of the 

health, readiness, and psychological state of Soldiers, potentially improving 

decision making by commanders and forming the basis of adaptive technology such 

as artificial intelligence that can act as teammates rather than tools.  

1.1 Multiscale Measurement of Heart Rate 

HR fluctuates over time according to activity, health, and fitness. Researchers have 

found that unique insight into physiological and mental functioning can also be 

gained by analyzing patterns of variability in HR throughout a task, day, or even a 

baseline resting period. HR variability (HRV), a measure of the breathing-related 

variability around average HR, gives insight into the functioning of the sympathetic 

and parasympathetic nervous systems (van Ravenswaaij-Arts et al. 1993). 

Critically, the common measures used to study HRV examine the variability at one 
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scale, such as the standard deviation (SD) of the interbeat interval of normal sinus 

beats or the root mean square of successive differences between normal heartbeats 

(Shaffer and Ginsberg 2017). In contrast, fractal measures are used to analyze HRV 

on multiple time scales, and studies of cardiac activity have shown that healthy 

hearts display fractal properties characteristic of complex systems, whereas certain 

pathological states show a lack of these properties (Peng et al. 1995).  

Measurements used to capture these properties, such as detrended fluctuation 

analysis (DFA) or multifractal DFA (MF-DFA), specifically attempt to quantify 

HRV occurring across the multiple time scales to capture regularities between 

degree of variability and scale of measurement and assess the fractal nature of the 

HR. Findings from the fractal HR literature have found that measures extracted 

from DFA are distinct from and can actually provide better predictive accuracy than 

traditional HRV measures in select tasks, especially as prognostic markers (Peng et 

al. 1995; Sen and McGill 2018). Furthermore, these measures are of particular 

interest because they naturally fit into theoretical conceptualizations that span 

multiple time scales and potentially have an effect on HR. For instance, we might 

expect that HR is influenced by overall patterns of health, such as sleep quality, 

nested in local patterns of mood, like an acute stressful event, and more immediate 

events like responding to a surprising stimulus. Therefore, in principle, multi-time-

scale fractal measures should capture dynamic properties in HR that are missed by 

traditional, one-scale analysis. 

1.2 Multiscale Regression Analysis 

Early groundbreaking work on multiscale properties of HR used techniques like 

DFA and MF-DFA, which characterize the relationship between variability and 

scale of measurement. In DFA, a series of time scales are selected for analysis. 

Each corresponds to a number of data points to consider at a time. For example, if 

the scale is 10 points, the time series is divided into non-overlapping windows of 

10 points each. In each window the time series is detrended using a linear trend, 

and then the variance of the points in that window is estimated. The variance of all 

windows at that scale is then summed, giving an overall estimate at that window 

size. The procedure is repeated for multiple scales/window sizes. The association 

between scale and the different variance estimates obtained is then estimated. This 

is the Hurst exponent, and it can be used in other analyses to predict outcomes of 

interest or differentiating between experimental conditions. Notably, this approach 

is limited to considering a single time series.  

A more recent development in multiscale time-series analysis is multiscale 

regression analysis (MRA; Likens et al. 2019), which extends the logic of DFA 
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from examinations of variance across time scales to examinations of regression 

coefficients across time scales. Multiscale regression proceeds in much the same 

way as the DFA: A set of time scales to analyze is chosen (Fig. 1) and the data are 

divided into windows of that size (e.g., 10 data points). The two time series—

referred to as the predictor and the criterion—are detrended (simulation studies 

suggest a quadratic trend is best; Likens et al. 2019), and a regression coefficient 

predicting the criterion is estimated in each window. The average of these 

regression coefficients across all windows at a given time scale is taken as the 

association at that time scale (Fig. 2). This is repeated at all time scales of interest, 

and the relationship between time scale and regression coefficients can be 

estimated. 

 

Fig. 1 Illustration of multiscale approach 

 

Fig. 2 Illustration of multiscale regression 
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Beyond offering a way to estimate the relationship between time scale and 

regression coefficients, multiscale regression also captures the strength of 

association at each time scale. The coefficient of determination (R2) value for each 

window at a given time scale can be estimated and averaged to give an overall R2 

at that scale. These R2 values provide an estimate of model fit at each time scale, 

allowing for a comparison to single-scale methods. For example, analyses of motor 

coordination found that, when people were balancing on a force plate, the 

association between ankle and hip motion was strongest at slower time scales 

(Likens et al. 2019). The association between ankle and shoulder motion was 

strongest at faster time scales. 

The association or coherence between HR and physical activity has theoretical 

importance in psychophysiological research (Brouwer et al. 2018). Physical 

activity tends to increase HR, as during walking or exercising (Murray et al. 1985; 

Boulay et al. 1997; Nystoriak and Bhatnagar 2018). When a person is physically 

active, the cardiovascular system mobilizes to meet a systematic demand for more 

blood supply, which causes cardiac output, blood pressure, and HR to increase. 

Furthermore, as factors such as exercise intensity increase, HRV decreases 

(Michael et al. 2017). 

In addition to physical activity, HR can also be elevated due to psychological 

factors, such as stress or engagement (Friedman and Thayer 1998; Thayer and 

Sternberg 2006). This observation has led numerous psychophysiologists to 

propose estimating the “excess” HR, or the residual of HR predicted by physical 

activity, as a potential measure of psychological influences on the heart (Brouwer 

et al. 2018; Brown et al. 2018). Several results have found that measures of excess 

HR are associated with psychological variables such as stress (Lambiase et al. 2012; 

Verkuil et al. 2016). Coherence between HR and activity—such as the activity of 

facial muscles—also plays an important role in theories of emotion (Mauss et al. 

2005; Brown et al. 2020). 

The coherence between HR and physical activity has typically been modeled using 

standard regression and time-series techniques that, as noted, assume stationarity 

and effects at a single time scale. Given that HR is influenced by processes 

operating at multiple time scales, however, a natural next step is to examine how 

the association between HR and physical activity changes across multiple time 

scales. Finding multiscale influences of physical activity and HR would suggest 

that the body self-organizes to adapt to extended periods of high (or low) activity 

as well as changes at shorter, more immediate scales in response to activity. Cross-

correlation analysis was used to analyze two time series at a single scale, while 

multiscale regression analysis was used to analyze two time series at multiple time 

scales. 
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1.3 The Present Study 

We conducted an analysis of HR and physical activity time series using a large-

scale mobile sensor dataset. The Fitbit Charge 4 device was used as the mobile-

sensing device for data collection in this study due to its widespread availability 

and inexpensiveness. The data used in this study were preprocessed by established 

Fitbit signal processing algorithms. We did not attempt to develop or validate any 

novel signal processing algorithms for the data analysis.  

We focus on three key comparisons: 1) single modality versus multimodal analysis, 

2) single time scale versus multiscale, and 3) short- versus long-time scale (i.e., 

day-level versus month-level). We focus on HR in the single modality analyses and 

the association between HR and physical activity in the multimodal analyses. We 

use traditional time-series methods—the autocorrelation function (ACF) and cross-

correlation function (CCF)—for the single time-scale analyses and MRA for the 

multiscale analyses. For the comparison of short- and long-time scales, we repeat 

these analyses with data binned at either the day- or month-level.  

2. Methods, Assumptions, and Procedures 

2.1 Participants and Procedures 

Participants were 206 office workers from an office in Silicon Valley who 

participated in a longitudinal study that lasted 60 days. After data cleaning 

(described in the following), the average number of days of data used for each 

person in the study was 56. 

During the 60-day study, participants were instructed to wear mobile sensors while 

at work. Participants wore the sensors on different sets of days since enrollment in 

the study was rolling and not all participants were in the study at the same time. To 

preserve ecological validity and naturalistic sampling of participants’ daily life in 

the office, there were no specific instructions given to participants regarding 

behavioral procedures or expectations.  

2.2 Measures 

Participants were given a Fitbit device (Fitbit Charge 4) to wear throughout the day. 

The Fitbit uses photoplethysmography (PPG) to non-invasively capture HR data by 

detecting blood volume changes from the skin. Fitbit technology estimates HR 

based on the raw PPG data and an internal processing algorithm. Data was 

measured at the minute-by-minute scale due to practical constraints with both 

Fitbit’s activity output and the quality of the data. Mobile sensor data are noisy, so 



 

6 

estimates of HR at the individual beat level can sometimes be inaccurate. 

Smoothing over multiple heartbeats occurring in a given minute creates more 

reliable and stable estimates and allows for more accurate analysis. 

Physical activity in the present study was operationalized using step counts 

recorded from the Fitbit Charge 4 device. All minutes of physical activity analyzed 

were matched to those of the HR, using the same rules for cleaning (see data 

trimming section). 

When conducting day level analyses, we wanted to capture only data where the 

participant was awake and active. To estimate the period of time at which the 

participant was awake, we used the first time an individual recorded five steps in a 

minute as the start of the day and the time an individual last recorded five steps in 

a minute as the end of the day. This simple operationalization removes the extended 

periods of sleep where an individual rarely moves at all, a period with very different 

dynamics from daily activity. For month-level analyses, all data—including data 

from overnight—was included. 

2.3 Analyses 

We compared single to multiscale, uni- to multimodality, and short to long time 

scales. Table 1 outlines the analysis method used to conduct each comparison. 

Unimodal analyses were conducted separately on HR and step-count time series. 

Multimodal analyses were conducted on the two together. All analyses are repeated 

at the day and month level. All comparisons were made using the model fit statistic, 

the R2, often interpreted as the percent of variance explained.  

Table 1 Analysis outline 

Modality 
Scale 

Single Multi 

Uni ACF DFA 

Multi CCF MRA 

Single Scale, Single Modality. The ACF was used to analyze single modality data 

on a single time scale. The ACF is typically used at multiple lags. A range of lags 

1 to 10 were estimated, and as is typical in this type of mobile sensor data, ACF for 

HR and steps were highest at lag-1 in almost all cases. This was therefore chosen 

as a common reference point (see Results section). 

Multiscale, Single Modality. DFA was used to analyze data from a single variable 

across multiple time scales. The DFA method analyzes a single time series at 

multiple window sizes. These window sizes are typically evenly spaced along a 
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log-base-2 scale, and enough data to reach 1024 points (210) are typically 

recommended for this analysis. (Note that a full day’s data, recorded in minutes, 

yield 86,400 points—more than an adequate sample for DFA.)  

DFA typically examines variance as a function of scale without consideration of 

time lags. However, to facilitate the comparison of this type of multiscale, single 

modal analysis with the rest of the analyses used, we modified the DFA procedure 

so that it involves estimation of the lag-1 autocorrelation as a function of scale. Also 

note that it is common for DFA to use log-2 scales for time points (e.g., 8, 16, 32 

points). However, for a more accurate comparison with MRA (see the following), 

the same time scales employed in that analysis were also used for the multiscale, 

single modality analysis. The scales analyzed were therefore a range of 10 to 200 

min in increments of 5 min. 

Single Scale, Multiple Modalities. The CCF was used to analyze data on a single 

time scale from two modalities. The cross-correlation between HR and physical 

activity was estimated at lags from ‒10 to +10. Negative lags correspond to activity 

leading HR, and positive lags correspond to HR leading activity. 

Multiscale, Multiple Modalities. MRA was used to analyze data from two 

modalities across multiple time scales. In this analysis, physical activity was used 

to predict HR, but our results, given as R2, would be the same if HR was used to 

predict activity. Prediction of HR from activity was used here because it was 

deemed more physiologically plausible, and our primary interest was in fit rather 

than prediction. The window sizes to be used are set by the user. Unlike a DFA, 

which is typically performed with window sizes increasing on a log-base-two scale, 

MRA and related analyses have been performed over a linearly increasing range of 

time scales. The current analyses explored scales from 10 to 200 min separated by 

increments of 5 min. At the low end, enough points need to be included to make a 

stable estimate of the association. We deemed 10 points to be sufficient for this 

purpose. At the high end there should be enough data to create several independent 

segments that can be averaged. Additionally, physiological plausibility should be 

considered. We considered 200 min (3 and 1/3 h) to be long enough that effects of 

activity on HR were likely to have dissipated. As with DFA, we implement MRA 

with a lag of 1 to make it more directly comparable to the multiscale, multimodality 

CCF. 

Day versus Month. All of the analyses described, which compare single versus 

multiscale and unimodal versus multimodal approaches, were conducted on two 

different versions of the data. One version represented the data by day, following 

the trimming rule described (to capture just the “active day”), and the other 

aggregated by the month. 
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3. Results and Discussion 

3.1 HR Data 

Day Level. We fit ACF to HR time series at the day level and the optimal lag was 

selected from among those calculated (1 to 10). As expected, in over 99.9% of cases 

(11,526 of 11,533), this was the lag-1 autocorrelation. The average R2 for the single 

scale autocorrelation was R2 = 0.848. 

For the multiscale analysis, we fit a DFA, and the optimal time scale for the lag-1 

autocorrelation was selected from among those calculated (10 to 200, in increments 

of 5). There was more variability in the optimal scale than the optimal lag. The most 

common optimal scale was 200 points (32.7%). Plotting the average R2 value for 

each time scale (Fig. 3) illustrates that the R2 values quickly approach and 

asymptote at a value close to R2 = 1.00. The optimal scale for most cases was at 

R2 = 0.99 with increasing variability explained out to the third and fourth decimal. 

This finding indicates that it is unlikely that we underestimated model fit given the 

range of scales we considered. The average optimal R2 for the multiscale analysis 

was R2 = 0.997. This is an increase of 17.5% in the average R2 values when using 

multiscale analysis (DFA) rather than single-scale (ACF). 

 
Note: Standard errors (SEs) are too small to be resolved clearly on 

this figure. Average SE of the mean is 0.0003. 

Fig. 3 Average R2 by scale for multiscale autoregressive analyses 

The difference in model fit can also be assessed at the level of the individual day 

by subtracting the best R2 for the single-scale model from the best R2 for the 

multiscale model. The average R2 difference for the single-scale versus the 

multiscale model is 0.149. This was an increase of 17.5% for the multiscale over 
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the single-scale model. The distribution of these R2 differences between single-

scale and multiscale autocorrelation estimates is illustrated in Fig. 4. 

 
Note: Positive values indicate advantage for multiscale model over 

single-scale model. 

Fig. 4 Histograms of R2 differences for single-scale vs. multiscale autoregressive analyses 

Month Level. For 100% of cases the lag-1 autocorrelation was the optimal value for 

HR when data were represented at the month level and modeled with ACF. The 

average R2 for the optimal HR autocorrelation was R2 = 0.878.  

The most common optimal scale for the month-level multiscale single-modal 

analysis was 200 points (52% of cases). As with the day level analyses, however, 

the optimal R2 appeared to asymptote to approximately R2 = 1.00 when scales 

greater than 100 were used. This suggests that using longer time scales would have 

yielded very little difference in the model comparison done here. The average R2 

for the optimal steps autocorrelation was R2 = 0.997. This is an improvement of 

13%. The average month-by-month R2 difference was 0.119. This is also an 

improvement of 13%. The distribution of differences in R2 between the single scale 

and multiscale analysis had a slightly more skewed distribution at the month level 

than the day level (Fig. 4, bottom panels). 

3.2 Steps Data 

Day Level. For 99.4% of cases, the lag-1 autocorrelation was the optimal value for 

steps. For 99.8% of cases, the optimal lag was 3 or less. The average R2 value for 

the autocorrelation of steps data was R2 = 0.476. 
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For the multiscale analysis, the optimal time scale displayed a similar pattern of 

variability as that shown in the HR autocorrelation. A time scale of 200 was selected 

in 31.6% of cases. In a plot of the average R2 by scale, it was again revealed that as 

time scale increased, values tended to asymptote toward R2 = 1.00. This indicates 

that a sufficient set of scales were considered to identify the optimal fit. The average 

R2 value for the multiscale autocorrelation of steps was R2 = 0.991. This is an 

improvement of 108%. 

The case-by-case comparison of R2 values yielded similar results. The average 

difference in R2 for a single-scale versus multiscale autoregressive analysis was 

0.515. This is an improvement of 108%. In Fig. 4 a histogram of the R2 differences 

for multiscale versus single-scale analyses shows substantial variability in the 

degree of improvement. 

Month Level. The optimal lag for the single-scale-steps autocorrelation analysis 

was 1 for all cases but one (99.8% of cases). For this case a lag of 4 was optimal. 

The average R2 value for the month-level, single-scale, autoregressive analysis of 

steps was R2 = 0.528. 

As with the month-level HR data, the optimal scale for approximately half (49.9%) 

of all autoregressive steps analyses was 200 points. This was, again, because the 

accuracy of these models asymptotes to approximately R2 = 1.00 after 100 points 

are considered. The average R2 value for the month-level, multiscale, 

autoregressive analysis of steps was R2 = 0.992. This is an improvement of 88%. 

The average case-by-case R2 difference for the month level was 0.464. This is also 

an improvement of 88%. The distribution of the R2 difference scores is plotted in 

Fig. 4. Note that this is approximately normally distributed. 

3.3 Multimodal Data 

Day Level. As a single-scale analysis at the day level we fit a CCF to the HR and 

step data, considering 10 lags in either direction. The optimal lag was selected for 

each person on each date and for 95% of person days; this was a lag of ‒1, indicating 

that steps predicted HR 1 time point later. For approximately 4% of person days 

the optimal lag was ‒2, indicating steps predicted HR 2 time points later. However, 

in less than 1% of instances was the optimal lag outside of the range from ‒3 to 0. 

These findings suggest that the global optimal lag for the CCF was accurately 

identified through this analysis. The average best R2 for the single-scale analysis 

was R2 = 0.34. 

For a multiscale analysis at the day level we fit an MRA on the HR and step data. 

As with lags in the single-scale case, the optimal scale was selected for each person 
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on each day. The optimal time scales were much more evenly distributed across the 

scales considered (10 to 200 points, increasing in increments of 5). The most 

common optimal scales for person days were 185 points (6% of cases), 200 points 

(5% of cases), and 165 points (5% of cases). Overall, the optimal scale was typically 

longer (9 of the 10 top scales were 145 points or longer). This suggests that better 

fits might have been achieved if longer scales had been considered. However, 

plotting the average R2 by time scale suggested an asymptote, so that the optimal 

R2 was approaching R2 = 0.41 (Fig. 5). If this asymptotic relationship were to hold, 

it would indicate that the approximately optimal time scale had been identified. The 

average best R2 for the multiscale analysis was R2 = 0.41, which is 21% higher than 

the average R2 for the single-scale analysis. 

 
Note: Error bars represent ±1 SE. 

Fig. 5 Model R2 by scale for day vs. month multiscale regressions 

The difference in model fit can also be assessed at the level of the individual person 

day by subtracting the best R2 for the single-scale model from the best R2 for the 

multiscale model. The average R2 difference for the single-scale versus the 

multiscale model is 0.30. This suggests that, considered at the level of an individual 

day, the multiscale model is an even larger improvement: the difference between 

the averages was only 0.07. This is an 88% increase over the average best single-

scale model. 

Investigating case-by-case differences (as opposed to average differences) also 

allows for the exploration of variability in the multiscale advantage. The SD of the 

R2 difference was SD = 0.10. A histogram of these differences is provided in Fig. 

6. This distribution has minimal skewness (0.34) but notable kurtosis (3.63). This 

increased “peakiness” of the distribution indicates that the middle of the distribution 

is a good representation of the typical difference between single and multiscale 

analyses. 
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Fig. 6 Case-by-case R2 difference for day vs. month multiscale regression 

Month Level. The average R2 of the best fitting CCF model at the month level was 

R2 = 0.33, while for the best scale MRA model the average was R2 = 0.51. This is 

an improvement of 52%, a substantially greater improvement than was gained in 

the comparable day-level analysis (21%). When examining the differences 

calculated on a case-by-case basis (e.g., subtracting each month’s best CCF R2 from 

that month’s best MRA R2), the difference was 0.17. This was a 52% improvement 

over the average best CCF, which was less than the improvement seen in the day-

level analysis (88%). Note that the distribution of R2 difference scores observed at 

the month level is similar to that of the day level but with the center of the 

distribution shifted slightly toward zero (see Fig. 6). The average R2 by scale 

observed at the month level was also very similar to that observed at the day level. 

For both analyses, the overall R2 appears to be approaching an asymptote of around  

R2 = 0.41. The full set of results described here are presented in Table 2. 

Table 2 Comparison of average R2 values for the models investigated 

Aggregation Modality 
Scale Change 

Single Multi Difference Percent 

Day 

HR 0.848 0.997 0.149 17.57 

Steps 0.476 0.991 0.515 108.19 

Multimodal 0.34 0.41 0.070 20.59 

Month 

HR 0.878 0.992 0.114 12.98 

Steps 0.528 0.992 0.464 87.88 

Multimodal 0.33 0.51 0.180 54.55 

Note. “Difference” is the average R2 for the multiscale method minus the average R2 

for the single-scale method. “Percent” is “Difference” divided by the average R2 for the 

single-scale method multiplied by 100. 
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4. Conclusions 

Fitbit data collected during the daily life of a large group of office workers were 

analyzed using multiscale versus single-scale and multimodal versus unimodal 

analyses. Minute-by-minute HR and step counts were found to have multiscale 

properties both in their autocorrelations and their associations with each other. 

Multiscale analyses were able to identify better-fitting models than single-scale 

analyses in all the cases examined: HR autocorrelation, steps autocorrelation, and 

steps‒HR coherence. These results demonstrate the importance of considering the 

multiscale properties of time-series data of human behavior. 

One practical application of these analyses is identifying an optimal time scale for 

predictive or forecasting accuracy. For autoregressive analyses of both HR and 

steps the optimal lag reached approximately R2 = 0.99 after considering 100 or 

more points. This was true at either the day or month level. This value was 

substantially higher than the value obtained when using a traditional single-scale 

autocorrelation function. This suggests that local autocorrelation analyses that 

account for about 2 h are better at forecasting than a single forecast value that uses 

all data. 

Also of note, single-scale analyses of minute-by-minute HR fit much better than 

single-scale analyses of minute-by-minute steps. This suggests that multiscale 

analyses are particularly important for appropriately characterizing physical 

activity in daily life. Step counts may have this sort of multiscale patterning because 

of the way activities are nested in time. Periods of sitting, walking around, 

gesturing, or presenting during meetings, exercising after work hours, and other 

daily life activities are likely to produce characteristic autocorrelations that last for 

the specific period of the activity—from minutes to hours. HR, on the other hand, 

may be more similar across several different daily activities, including heads-down 

work and meetings. 

For multimodal analyses, results indicated that optimal scale differed widely from 

person to person and day to day. In general, longer time scales were selected—more 

than 145 min considered. Yet the overall optimum could be closer to 2 to 3 h 

depending on the person and day. This suggests that the optimal scale of measuring 

HR and activity coherence may be an individual difference, which depends on 

characteristics of the individual and of the patterns of their daily life. 

  



 

14 

5. References 

Boulay MR, Simoneau JA, Lortie G, Bouchard C. Monitoring high-intensity 

endurance exercise with heart rate and thresholds. Medicine & Amp Science 

in Sports & Amp Exercise. 1997;29(1):125–132. doi: 10.1097/00005768 

-199701000-00018. 

Brouwer AM, Van Dam E, Van Erp JB, Spangler DP, Brooks JR. Improving real-

life estimates of emotion based on heart rate: a perspective on taking metabolic 

heart rate into account. Frontiers in Human Neuroscience. 2018;12:284. 

Brown CL, Van Doren N, Ford BQ, Mauss IB, Sze JW, Levenson RW. Coherence 

between subjective experience and physiology in emotion: individual 

differences and implications for well-being. Emotion. 2020;20(5):818. 

Brown SB, Brosschot JF, Versluis A, Thayer JF, Verkuil B. New methods to 

optimally detect episodes of non-metabolic heart rate variability reduction as 

an indicator of psychological stress in everyday life. International Journal of 

Psychophysiology. 2018;131:30–36. 

Friedman BH, Thayer JF. Autonomic balance revisited: panic anxiety and heart rate 

variability. Journal of Psychosomatic Research. 1998;44(1):133–151. 

Hu J, Gao J, Tung WW, Cao Y. Multiscale analysis of heart rate variability: a 

comparison of different complexity measures. Annals of Biomedical 

Engineering. 2010;38(3):854–864. doi: 10.1007/s10439-009-9863-2. 

Lambiase MJ, Dorn J, Chernega NJ, McCarthy TF, Roemmich JN. Excess heart 

rate and systolic blood pressure during psychological stress in relation to 

metabolic demand in adolescents. Biological Psychology. 2012;91(1):42–47. 

Lickens AD, Amazeen PG, West SG, Gibbons CT. Statistical properties of 

multiscale regression analysis: simulation and application to human postural 

control. Phsica A: Statistical Mechanics and its Applications. 2019;532. 

Article no.: 121580. 

Mauss IB, Levenson RW, McCarter L, Wilhelm FH, Gross JJ. The tie that binds? 

Coherence among emotion experience, behavior, and physiology. Emotion. 

2005;5(2):175. 

Michael S, Graham KS, Davis GM, Oam GMD. Cardiac autonomic responses 

during exercise and post-exercise recovery using heart rate variability and 

systolic time intervals-A review. Frontiers in Physiology. 2017;8:301. doi: 

10.3389/fphys.2017.00301. 



 

15 

Murray MP, Spurr GB, Sepic SB, Gardner GM, Mollinger LA. Treadmill vs. floor 

walking: kinematics, electromyogram, and heart rate. Journal of Applied 

Physiology. 1985;59(1):87–91. doi: 10.1152/jappl.1985.59.1.87. 

Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. 

Frontiers in Cardiovascular Medicine. 2018;5:135. doi: 103389/fcvm.2018 

.00135 

Peng C, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents 

and crossover phenomena in nonstationary heartbeat time series. Chaos: An 

Interdisciplinary Journal of Nonlinear Science. 1995;5(1):82–87. doi: 

10.1063/1.166141. 

Perkiömäki JS, Mäkikallio TH, Huikuri HV. Nonlinear analysis of heart rate 

variability: fractal and complexity measures of heart rate behavior. Annals of 

Noninvasive Electrocardiology. 2000;5(2):179–187. doi: 10.1111/j.1542-

474x.2000.tb00384.x. 

Sen J, McGill D. Fractal analysis of heart rate variability as a predictor of mortality: 

a systematic review and meta-analysis. Chaos: An Interdisciplinary Journal of 

Nonlinear Science. 2018;28(7):072101. doi: 10.1063/1.5038818. 

Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. 

Frontiers in Public Health. 2017;5. doi: 10.3389/fpubh.2017.00258. 

Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic 

systems. Annals of the New York Academy of Sciences. 2006;1088(1):361–

372. 

van Ravenswaaij-Arts CM, Kollee LA, Hopman JC, Stoelinga GB, van Geijn HP. 

Heart rate variability. Annals of Internal Medicine. 1993;118(6):436–447. doi: 

10.7326/0003-4819-118-6-199303150-00008. 

Verkuil B, Brosschot JF, Tollenaar MS, Lane RD, Thayer JF. Prolonged non-

metabolic heart rate variability reduction as a physiological marker of 

psychological stress in daily life. Annals of Behavioral Medicine. 

2016;50(5):704–714. 

Yuan N, Fu Z, Zhang H, Piao L, Xoplaki E, Luterbacher J. Detrended partial-cross-

correlation analysis: a new method for analyzing correlations in complex 

system. Sci Rep. 2015;5:8143. doi: 10.1038/srep08143. 

  



 

16 

List of Symbols, Abbreviations, and Acronyms 

ACF autocorrelation function 

CCF cross-correlation function 

DFA detrended fluctuation analysis 

HR heart rate 

HRV heart rate variability 

MF-DFA multifractal DFA 

MRA multiscale regression analysis 

PPG photoplethysmography 

R2 coefficient of determination 

SD standard deviation  

SE standard error 
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