
1
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Softw are Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Tools for Vulnerability Analysis
and Automated Code Repair

Robert Schiela

2
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Document Markings

Copyright 2023 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an o fficial Government position, policy, or
decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-
IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyrig ht notice for non-US
Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.
Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute a t permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM23-0051

3
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Context

Analysis Types

• Source Code Analysis – mostly static

• Program Analysis – static and dynamic

Process

• Identify

• Analyze

• Mitigate

• Measure (findings, risk)

Recent Work: Automating the Processes…

4
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Progress

Our foundational work:

• Secure Coding Security Standards: language specific guides

• Source Code Analysis Lab (SCALe) Static Code Analysis

Recent Developments:

• Combine with broader Architectural profile: Code Risk Estimation Worksheet (CREW)

Recent Research:

• Automatically improve false-positive rates (Type I errors) of static analysis findings

• Automatically repair code

- High confidence it is a problem

- High confidence the change will not introduce a negative impact to the program

- Ideally: high confidence we fix the problem

• Detecting malicious injects in code

5
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Secure Coding Research

Rapid Adjudication of Static Analysis Alerts During Continuous Integration

• Automated predictions to improve prioritization of source code analysis using machine learning
and information from multiple analysis tools over multiple iterations.

Automated Code Repair (ACR)

• Fixing code based on anti-patterns and patterns for repair, rather than just alerting developers
and testers to a potential defect.

• Applying source code analysis techniques to binary code for analysis and repair

Semantic Equivalence Checker for Binary Static Analysis

• Evaluating the effectiveness of using source static analysis tools on decompiled binary.

Automated Repair of Static Analysis Alerts (FY23-24)

• Automatically change code (or propose code changes) to resolve simple findings from Static
Analysis tools, even if false positives. (reduce manual analysis when no cost)

Detecting Inserted Malicious Code with Information Flows (FY23-24)

• Develop tool to detect exfiltration of sensitive data and sensitive operations driven by external
input

6
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Additional Research

Automated Support (ML) for Program Understanding

• Reverse Engineering support

• Defect Identification

• ChatGPT…

Binary Analysis

• Pharos

• Ghidra

Lower System Level Code Analysis (Firmware, UEFI…)

Software Understanding for National Security (SUNS 2023) Workshop

7
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Backup

8
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

s
cs

Prioritizing Alerts

Analyzer

Analyzer

Analyzer

Codebases

Today

Project Goal

Image of woman and laptop from http://www.publicdomainpictures.net/view-image.php?image=47526&picture=woma n-and-la ptop “Woman And Laptop”

Classification algorithm development for CI systems, that
precisely and with high recall, classifies at least

as many manually-adjudicated meta-alerts as:

Expected True Positive (e-TP) or
Expected False Positive (e-FP),

and
the rest as Indeterminate (I)

Problem: too many (meta-)alerts

Solution: automate handling

Alerts

(Meta-
alerts)

9
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Prioritizing Alerts

Research progression:

• FY16 – Prioritizing Vulnerabilities from Static Analysis with Classification Models: Proof

of concept of Machine Learning for Prioritizing Static Analysis Results

• FY17 – Rapid Expansion of Classification Models to Prioritize Static Analysis Alerts:

Adding open source test suite code for data

• FY18-19 – Rapid Construction of Accurate Automatic Alert Handling System:

Reference Model & Reference Prototype: Source Code Analysis Integrated Framework

Environment (SCAIFE)

• FY20-21 - Rapid Adjudication of Static Analysis Alerts During Continuous Integration:

Support for Continuous Integration (automated triggers & iterative data)

10
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Automated Code Repair (ACR) tool as a black box

Input: Buildable codebase

Output: Repaired source

code, suitable for committing

to repository

We support C and plan to

have limited support for C++

printf(
name);

printf(
"%s",
name);

ACR Tool

Envisioned use of tool

• Use before every release build

• Use occasionally for debugging builds

• Intended for ordinary developers

• Can be a tool in the DevOps toolchain

• Can be used for legacy code and for new code

11
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Automated Code Repair

Hypothesis: Many violations of rules follow a small number of anti-patterns with

corresponding patterns for repair, and these can be feasibly recognized by static analysis.

• printf(attacker_string)  printf("%s", attacker_string)

Research progression:

• FY16 Integer Overflow: (start + i)  UADD (start, i)

• FY17 Inference of Memory Bounds (out of bounds reads like HeartBleed):

abort or warning

• F18-20 - Memory Safety: Fat Pointers

• FY21 - Combined Analysis for Source Code and Binaries for Software Assurance:

Semantic Equivalence Checking of Decompiled Code (LLVM Focus)

• FY22 - Decompilation for Software Assurance: Analysis and Repair of Correctly

Decompiled Functions (Ghidra Focus)

12
Tools for Vul Analysis and ACR
© 2023 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited
distribution.

Source Code Repair Pipeline

2. Record
AST↔IR

mapping

4. Map repaired IR
back to AST

Abstract
Syntax

Tree (AST)

Intermediate
Representation (IR)

Source
Code

1. Record
Source↔AST

mapping

5. Map repaired AST
back to source

map map

3. Perform analysis
and repair at IR

level

