

AFRL-RH-FS-TR-2022-0019

Human Laser Skin Dose-Response Model, Version 2

Elharith Ahmed Edward A. Early Brian J. Lund **SAIC**

Chad A. Oian Semih S. Kumru Robert J. Thomas **711th Human Performance Wing Airman Systems Directorate Bioeffects Division Optical Radiation Bioeffects Branch**

December 2022

Interim Report for January 2019 – December 2022

Distribution Statement A: Approved for public release; distribution is unlimited. The views expressed are those of the author and do not necessarily reflect the official policy or position of the Department of the Air Force, the Department of Defense, or the U.S. government.

Air Force Research Laboratory 711th Human Performance Wing Airman Systems Directorate Bioeffects Division Optical Radiation Bioeffects Branch JBSA Fort Sam Houston, Texas 78234

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporations; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the AFRL Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

"Human Laser Skin Dose-Response Model, Version 2 "

(AFRL-RH-FS-TR- 2022- 0019) has been reviewed and is approved for publication in accordance with assigned distribution statement.

MARIE.1381070391 Date: 2022.12.12 16:09:07 -06'00' FERRIS.LYNDSEY. Digitally signed by

FERRIS.LYNDSEY.MARIE.1381070391

LYNDSEY M. FERRIS, LtCol, USAF, BSC Chief, Optical Radiation Bioeffects Branch

_______________________________________ Date: 2023.01.29 09:21:03 -06'00' MILLER.STEPHANI pigitally signed by E.A.1230536283 MILLER.STEPHANIE.A.1230536283

STEPHANIE A. MILLER, DR-IV, DAF Chief, Bioeffects Division Airman Systems Directorate 711th Human Performance Wing Air Force Research Laboratory

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute an official position of the U.S. Government.

Defense, or the United States Government. **13. SUPPLEMENTARY NOTES**

14. ABSTRACT

The increased use of lasers in outdoor, uncontrolled environments requires a generalized human dose-response model for skin injuries to achieve improved fidelity for risk assessment. Experimental data and simulation results are the basis for the developed model, which includes effects from pain to minimal visible lesions to 3rd-degree burns. The model covers the spectral range from 400 nm to 2000 nm and the temporal range from 1 µs to 10 s. Construction of the model captures the essential bio-physical features contributing to human susceptibility to laser injury of the skin, including variability between humans and the effect of the angle of incidence.

15. SUBJECT TERMS

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

THIS PAGE INTENTIONALLY LEFT BLANK

Table of Contents

LIST OF FIGURES

LIST OF TABLES

 INTRODUCTION

The increased use of lasers in outdoor environments is driving the need for a risk-based approach for laser hazard analyses. For indoor environments, safety with no possibility of injury is the criterion for the analysis; however, for outdoor environments, risk is the more appropriate criterion. While there is a finite probability of injury, this probability needs to be estimated and within an acceptable range. The transition to a risk-based approach to laser hazard analyses requires improved fidelity in models used to assess the risk.

An important model in such a risk-based approach is the probability of skin injury resulting from a laser exposure, quantified by a dose-response model. This model uses a cumulative log-normal distribution to calculate the probability of injury for a given dose. A log-normal distribution has two parameters – the mean and the standard deviation. The mean is the dose that results in a 50 % probability of injury, while the standard deviation quantifies the width of the distribution. The mean effective dose spans effects from sub-threshold (pain) to threshold (minimum visible lesion) to supra-threshold $(2nd$ - and $3rd$ -degree burns) and the standard deviation accounts for variability between humans and uncertainties in the model. For laser hazards, these parameters are functions of wavelength, exposure duration, and effect.

The following begins with an overview of the dose-response model, including the components of the model. Subsequent sections derive and discuss the three components of the model: 1) a new ED⁵⁰ model for the skin developed from porcine experimental data, 2) a model for the slope resulting from human variability and uncertainties, and 3) a model for effect from the angle of incidence. The first two components address the mean and standard deviation, respectively, required for a log-normal dose-response model. The third component addresses the reduced dose resulting from the angle of incidence. The next two sections detail calculation of the effective dose and a probability of injury, followed by a section applying the model to an example. The final section provides a summary of the human skin dose-response model.

The significant changes from the previous version of this technical report [1] are: removing the explicit dependence on beam diameter by averaging the radiant exposure over the limiting aperture; including sub-threshold effects of sensation and pain; and updating the burn degree types to current descriptions and definitions.

 DOSE-RESPONSE MODEL OVERVIEW

The dose in a dose-response model is typically termed the effective dose with symbol *ED*. For skin, *ED* is a radiant exposure with units J/cm^2 . The effective dose for which there is a 50 % probability of injury is termed *ED*50. Similarly, the effective doses for 16 % and 84 % probabilities of injury are termed ED_{16} and ED_{84} , respectively. The slope *S* is

$$
S = \frac{ED_{84}}{ED_{50}} \quad \text{or} \quad S = \frac{ED_{50}}{ED_{16}} \tag{1}
$$

The output of the dose-response model is the probability of injury *P,* given by the cumulative lognormal distribution

$$
P(q) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{q} exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx = \frac{1}{2} erfc\left[\frac{-(q-\mu)}{\sqrt{2}\sigma}\right]
$$
(2)

where

$$
q = \log_{10}(ED),\tag{3}
$$

$$
\mu = \log_{10}(ED_{50}),\tag{4}
$$

$$
\sigma = \log_{10}(S). \tag{5}
$$

The logic flow of the human laser skin dose-response model is summarized in Fig. 1, which illustrates the components, inputs, and data flow to arrive at a probability of injury using the quantities in Eqs. (3) to (5). The model is a function of inputs of wavelength λ , exposure duration *T*, $1/e^2$ beam diameter D_2 , irradiance *E*, and burn degree. Note the burn degree also includes sensation and pain. There are two aspects to the complete model, the mean effective dose *ED*₅₀ and the slope *S*. Both have models that are functions of wavelength, and a function of exposure duration in the case of the mean effective dose. The human laser skin dose-response model covers the wavelength range from 400 nm to 2000 nm.

The ED_{50} model determines the mean effective dose for a minimum visible lesion (MVL) as a function of the exposure conditions, and the ED_{50} Calculation combines this with the burn degree selected to determine the *ED*50. Likewise, the slope model determines the slope for a MVL as a function of wavelength, and the slope calculation combines this with the burn degree selected to determine the final slope. The effective dose *ED* is a function of the exposure duration *T*, the incident irradiance E, and the $1/e^2$ beam diameter D_2 . The probability of injury calculation includes a component due to variability in the angle of incidence, which modifies Eq. (2). The output of the model is a probability of injury for a laser exposure to the human skin.

The following sections detail all the modules shown in Fig. 1. The ED_{50} , slope, and angle models capture the essential physical features involved in each, but these individual modules can be refined in the future as more empirical and modeling results are available and included.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Figure 1. The components of the dose-response model, inputs, and data flow. The components are the ED⁵⁰ and slope, the ED⁵⁰ and slope calculations, and the angle model and probability calculation. The inputs are the wavelength λ **, exposure duration T,** $1/e^2$ **beam diameter** D_2 **, irradiance E, and burn degree.**

 ED⁵⁰ MODEL

3.1 Introduction

The ED⁵⁰ model is a generalized form for the *ED*50, also known as the damage threshold, across all applicable wavelengths, exposure durations, and beam diameters. Unlike the case with retina *ED*⁵⁰ data, the skin *ED*⁵⁰ data is sparse. For consistency, the sources of data used to model the *ED*⁵⁰ were further limited to those generated by Air Force Research Laboratory (AFRL) personnel or collaborators [2-6] using Yucatan mini-pigs at near-infrared (NIR) wavelengths (1000 nm to 2000 nm) with a MVL requirement 24 hours after exposure. As will be shown, the ED_{50} model scales the maximum permissible exposure (MPE) in the ANSI Z136.1 American National Standard for Safe Use of Laser [7] across all applicable wavelengths and exposure durations.

Values for skin MPE are defined as the average radiant exposure H over a limiting aperture D_f of 0.35 cm, with units of J/cm^2 , for exposure durations less than 10 s [7]. Longer exposure durations have an MPE defined as the average irradiance *E*. The sources of skin data typically report *ED*₅₀ in terms of energy Q or radiant exposure, and all report spot sizes as $1/e^2$ beam diameters D_2 . Appendix A provides the reported *ED*⁵⁰ values for all sources of data used in the following, along with the calculated average radiant exposure.

For Gaussian beams, the peak radiant exposure H_{peak} is

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

$$
H_{\text{peak}} = \frac{8}{\pi} \frac{Q}{D_2^2} \,, \tag{6}
$$

and the average radiant exposure H_{avg} over the limiting aperture is

$$
H_{\text{avg}} = \frac{H_{\text{peak}}}{2} \left(\frac{D_2}{D_f}\right)^2 \left\{ 1 - \exp\left[-2\left(\frac{D_f}{D_2}\right)^2\right] \right\} \,. \tag{7}
$$

For flat-top beams with diameter *D*,

$$
H_{\text{peak}} = H_{\text{avg}} = \frac{4}{\pi} \frac{Q}{D^2} \,. \tag{8}
$$

Radiant exposure in terms of irradiance is

$$
H = E \cdot T \tag{9}
$$

and energy in terms of power Φ is

$$
Q = \Phi \cdot T \tag{10}
$$

where *T* is the exposure duration.

3.2 Exposure Duration Dependence

The ANSI Z136.1 standard MPE has a $T^{1/4}$ exposure duration dependence [7]. The experimental data have a similar trend with exposure duration, as shown in Fig. 2. Therefore, a $T^{1/4}$ exposure duration dependence for the *ED*₅₀, based on the MPE trend, is reasonable.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Figure 2. Exposure duration dependence of the *ED***⁵⁰ from experimental data. Fits to a power law are shown** for selected wavelengths and for the $T^{1/4}$ dependence.

3.3 Beam Diameter Dependence

The experimental data, with ED_{50} expressed as the average radiant exposure over the limiting aperture, has an inconclusive dependence on beam diameter. There should be no dependence on beam diameter for short exposure durations, while longer exposure durations should show a decrease with increasing beam diameter as thermal diffusion and boundary losses become relevant. Results from the Scalable Effects Simulation Environment (SESE) support this trend with exposure duration. SESE is a computer program that models the thermal response of tissue to incident laser radiation by performing time-dependent simulations in a three-dimensional spatial domain [8]. The relevant physical, optical, and thermal properties of the skin tissue layers required as inputs to SESE are listed in Table 1. Threshold radiant exposures for $1st$ -degree burns as a function of beam diameter are shown in Fig. 3 for exposure durations of 0.1 s and 2 s. As postulated, the longer exposure duration has a greater dependence on beam diameter than does the shorter exposure duration.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Property	Epidermis	Dermis	Fat
Thickness (mm)	0.082	2.7	15
Optical Absorption Coefficient (1/m)	35	17	103
Reduced Scattering Coefficient (1/m)	1740	1540	894
Water Fraction	0.3	0.8	0.2
Density (kg/m^3)	1210	1060	850
Specific Heat $(J/(kg K))$	2244	3663	2070
Thermal Conductivity ($W/(m K)$)	0.20	0.49	0.16
Blood Perfusion Rate $(1/s)$	θ	1.25×10^{-3}	1.25×10^{-3}

Table 1. Skin tissue layer optical and thermal properties.

Figure 3. Simulated threshold radiant exposures for 1st-degree burns as a function of beam diameter for the **indicated exposure durations, with fits to a power law.**

3.4 MVL ED⁵⁰

The MVL *ED*₅₀ for skin, expressed as the average radiant exposure over the limiting aperture, scales as $T^{1/4}$ for exposure duration, as detailed Section 3.2. The remaining step is to assign a value to the MVL *ED*⁵⁰ based on the ratio of experimental values to the MPE. The most extensive experimental data was collected at a wavelength of 1070 nm [2]. The ratio of the average radiant exposure to the MPE, over all beam diameters and exposure durations, is provided in Table 2. The average ratio is 12.0 with a standard deviation of 3.76, with the largest ratio of 29.96 excluded.

The ratio at a wavelength of 1070 nm, and other wavelengths [3-6], along with another experiment at 1070 nm [9], are shown in Fig. 4. The ratios at wavelengths of 1214 nm and 1319 nm are significantly less than 12.0, while those at the longer wavelengths of 1940 nm and 2000 nm are in agreement with the ratio at 1070 nm, as is the most-recent data by DeLisi at a wavelength of 1070 nm [9]. Investigations of the origin of the discrepancy at wavelengths in the 1200 nm to 1300 nm range yielded no conclusions, although possibilities are incorrect MPEs or the influence of water content and absorption. The agreement of ratios at wavelengths near 1000 nm and 2000 nm provides confidence in using a value of 12.0 to scale the MPE to the MVL *ED*50. Since porcine experimental subjects have skin properties comparable to those of humans, there is no adjustment from a non-human to a human $ED₅₀$, in contrast to the adjustment in the retinal human dose-response model [10].

D_2	\overline{T}	$H_{\rm avg}$	MPE	$H_{\rm avg}/\rm MPE$
(cm)	(s)	(J/cm ²)	(J/cm ²)	
0.6	0.01	20.5	1.74	11.80
0.6	0.07	57.0	2.83	20.13
0.6	10	293.0	9.78	29.96
1.1	0.01	30.7	1.74	17.64
1.1	0.1	43.1	3.09	13.92
1.1	10	156.2	9.78	15.97
1.9	0.05	33.1	2.60	12.74
1.9	0.25	50.6	3.89	13.01
1.9	10	105.0	9.78	10.74
2.4	0.01	20.2	1.74	11.60
2.4	0.025	18.6	2.19	8.51
2.4	0.25	23.9	3.89	6.15
4.7	0.025	24.5	2.19	11.18
4.7	0.1	30.6	3.09	9.90
4.7	0.25	33.8	3.89	8.70
9.5	0.25	31.7	3.89	8.15
			Average	12.0
			Standard Deviation	3.76

Table 2. Experimental data at a wavelength of 1070 nm used to scale the MPE to the ED ₅₀.

Figure 4. Ratio of experimental *ED***⁵⁰ to MPE over ranges of exposure duration at each wavelength.**

The ED₅₀ model for skin MVL is therefore

$$
MVL ED_{50}(\lambda, T) = 12.0 \times MPE(\lambda, T). \qquad (11)
$$

The agreement between model and experiment is illustrated in Fig. 5 at a wavelength of 1070 nm as a function of exposure duration. While the Vincelette data [2] was used to determine the ratio of *ED*⁵⁰ to MPE, the excellent agreement between model and experiment for other sources of data [9, 11, 12] provides high confidence in the model.

Figure 5. Time dependence of *ED***⁵⁰ at 1070 nm for experimental data, the MVL** *ED***⁵⁰ model, and the MPE.**

3.5 Supra-Threshold ED⁵⁰

An MVL is equivalent to a first-degree burn. Laser illumination can also cause more severe burns, termed supra-threshold effects [13]. A first-degree burn affects only the epidermis, has redness without blistering, and heals without scarring. Second-degree burns are partial-thickness and divide between superficial and deep. The former affects the epidermis and the papillary layer of the dermis, while the latter affects down to the reticular layer of the dermis. The former has redness with blistering and heals without scarring, while the latter is pale with blistering and scars upon healing. A third-degree burn is full-thickness, affects the entire epidermis and dermis layers, has a white to black appearance, and heals with significant scarring.

The Arrhenius damage integral Ω quantifies damage in simulations, with $\Omega = 1$ signifying irreversible damage [14, 15]. The SESE simulation determined threshold powers for each burn degree, using the criteria in Table 3, for a range of exposure durations and beam diameters. These threshold powers are detailed in Appendix B. The ratios of supra-threshold powers to the power for a 1st-degree burn are shown in Fig. 6 for all simulation conditions. The sections of data correspond to fixed beam diameters, with increasing exposure duration within each section. Fits for averages over diameter as a function of time are shown in Fig. 7 and quantified in Table 4. The standard deviations in Table 4 are those of the differences between simulated and fit ratios.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Table 3. Simulation burn criteria.

Burn	Criteria
$1st$ -Degree	$\Omega = 1$ at top of epidermis
$2nd$ -Degree Superficial	$\Omega = 1$ to top of dermis
2 nd -Degree Deep	Ω = 1 to 1/3 of dermis thickness
$3rd$ -Degree	$\Omega = 1$ to bottom of dermis

Figure 6. Ratio of burn degree powers to power for 1st -degree burn over ranges of exposure durations and beam diameters.

Figure 7. Average ratio of burn degree powers to power for 1st -degree burn over ranges of exposure durations, and power law fits.

	Supra-threshold Power Ratio to MVL Power				
Burn Severity	Average	Standard Deviation $(\%)$			
$2nd$ -superficial	1.16 $T^{0.033}$				
$2nd$ -deep	1.58 $T^{0.19}$				
2rd	2.25 $T^{0.34}$				

Table 4. Supra-threshold ratios for burn severities.

The supra-threshold *ED*₅₀ is

$$
ED_{50} = \alpha \cdot \text{MVL } ED_{50},\tag{12}
$$

where α corresponds to the average for the supra-threshold burn severity in Table 4.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

3.6 Sub-Threshold ED⁵⁰

Pain precedes injury and elicits an avoidance response. For example, accidentally touching a hot object causes a person to remove their hand automatically and rapidly from the object. Even with this response, a burn can occur. A similar reaction occurs when laser illumination is the source of heat for a burn. The reaction time from onset of pain (when nerve endings in the dermis reach 43 °C) to avoidance movement is at least 100 ms [16] and can be longer. If a person is free to move, this reaction time sets an upper limit on exposure duration. Therefore, the time of onset of pain is important for assessing possible injuries from laser exposure.

Sub-threshold effects are sensation of warmness and pain. The radiant exposures causing these effects are less than that for an MVL, hence the term sub-threshold. Experimental data on sensation and pain is very sparse. Therefore, the goal is to use the available data to scale subthreshold effects to the MPE, similar to the approach for the MVL threshold. The relevant experimental data for this approach is summarized in Table 5 and detailed in Appendix C.

				Measured Threshold			
Source	Wavelength	Exposure Duration	Beam Diameter	Sensation	Pain	MVL	$2nd$ -Degree Superficial Burn
Stoll [17, 18]	Broadband	$1 s - 35 s$	15 mm		X		X
Arendt- Nielson [19]	488 nm, 515 nm, $10.6 \mu m$	50 ms $-$ 500 ms	3 mm	X	X		
Tata $[20]$	2000 nm	0.25 s – 2.5 s	0.5 cm, 1.5 cm	X		X	
DeLisi ^[21]	1070 nm	3 ms , 100 ms	3 mm , 7 mm			X	X

Table 5. Experimental data sources for indicated thresholds.

The results of Arendt-Nielsen [19] are the model to scale sensation and pain to the other effects of MVL and supra-threshold injuries. Arendt-Nielsen provides power thresholds for sensation and pain at Argon laser wavelengths of 488 nm and 515 nm for a 3 mm uniform beam diameter and exposure durations from 50 ms to 500 ms. These thresholds, with exposure durations in milliseconds, are

$$
\Phi(T) = \begin{cases} 50.2 \ T^{-0.78} \ W & \text{Sensation} \\ 64.1 \ T^{-0.68} \ W & \text{Pain} \end{cases} . \tag{13}
$$

Converting Eq. (13) to average radiant exposure over the 3 mm beam diameter with exposure duration in seconds yields

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

$$
H(T) = \begin{cases} 3.25 \ T^{0.22} \ \text{J/cm}^2 & \text{Sensation} \\ 8.27 \ T^{0.32} \ \text{J/cm}^2 & \text{Pain} \end{cases} \tag{14}
$$

The MPE at visible wavelengths and the exposure durations [7] is 1.1 $T^{0.25}$ J/cm². Applying the scaling from MPE to MVL and $2nd$ -degree superficial burn from Sections 3.4 and 3.5, the average radiant exposure thresholds for these effects are

$$
H(T) = \begin{cases} 13.2 \, T^{0.25} \, \text{J/cm}^2 & \text{MVL} \\ 15.3 \, T^{0.217} \, \text{J/cm}^2 & 2^{\text{nd}} - \text{degree} \, \text{Superficial} \end{cases} \tag{15}
$$

Stoll [17, 18] provides exposure duration data from 1 s to 35 s for pain and $2nd$ -degree superficial burns for a broadband source with a 15 mm beam diameter and fixed irradiances. These data, converted to radiant exposure and fit to a power law, are

$$
H(T) = \begin{cases} 2.9162 \ T^{0.2553} \ \text{J/cm}^2 & \text{Pain} \\ 5.4353 \ T^{0.2838} \ \text{J/cm}^2 & 2^{\text{nd}} - \text{degree} \ \text{Superficial} \end{cases} \tag{16}
$$

Tata [20] provides peak radiant exposure threshold data for both sensation and MVL at a wavelength of 2000 nm for $1/e^2$ beam diameters of 0.5 cm and 1.5 cm and exposure durations from 0.25 s to 2.5 s. DeLisi [21] provides peak radiant exposure data for MVL and $2nd$ -degree superficial burns at a wavelength of 1070 nm for $1/e^2$ beam diameters of 3 mm and 7 mm and exposure durations of 3 ms and 100 ms. The resulting average radiant exposures for both data sources are provided in Appendix C.

The supra-threshold effects in Section 3.5 are scaled from the MVL radiant exposure threshold, which in turn is scaled from the MPE. Can sub-threshold effects also be scaled from the MPE? Validating this premise requires comparison of ratios of radiant exposures for the different effects between the model detailed in Eqs. (14) and (15) and experimental data. The sources of data, exposure durations, and radiant exposures for this comparison are given in Table 6, along with the corresponding ratios of radiant exposures. Ratios are the appropriate quantity for comparison because of the different wavelengths involved. The good agreement between ratios for each set of experimental data, with individual ratios within 10 % of the average over both, validates the scaling of sub-threshold effects from the MPE.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

	Source					
	Stoll	Model	Tata	Model	DeLisi	Model
				Exposure Duration (ms)		
		250		250		100
Effect				Radiant Exposure $(J/cm2)$		
Sensation			1.027	2.40		
Pain	2.05	5.31				
MVL			4.53	9.33	150.3	7.42
$2nd$ -Degree Superficial	3.67	11.3			221.9	9.28
Ratios						
$2nd$ -Degree / Pain	1.8	2.1				
MVL / Sensation			4.4	3.9		
$2nd$ -Degree / MVL					1.5	1.3

Table 6. Radiant exposures and ratios for comparison of sub-threshold model with experimental data.

Applying the entire range of scaling to a wavelength of 1070 nm yields the following *ED*⁵⁰ radiant exposure thresholds, which are also illustrated in Fig. 8. For sub-threshold effects, Eq. (14) is multiplied by the ratio of the MPE at 1070 nm to that at visible wavelengths, yielding

$$
ED_{50}(T) = \begin{cases} 16.3 \ T^{0.22} \ \text{J/cm}^2 & \text{Sensation} \\ 41.4 \ T^{0.32} \ \text{J/cm}^2 & \text{Pain} \end{cases} \tag{17}
$$

For the MVL, which is equivalent to a $1st$ -degree burn,

$$
ED_{50}(T) = 66 T^{0.25} \text{ J/cm}^2. \tag{18}
$$

For supra-threshold effects,

$$
ED_{50}(T) = \begin{cases} 76.6 T^{0.22} \text{ J/cm}^2 & 2nd - \text{degree Superficial} \\ 104.3 T^{0.06} \text{ J/cm}^2 & 2nd - \text{degree Deep} \\ 148.5 T^{-0.09} \text{ J/cm}^2 & 3rd - \text{degree} \end{cases}
$$
 (19)

Figure 8. *ED***⁵⁰ threshold radiant exposures for indicated effects from MPE to 2nd -degree superficial burn.**

 SLOPE MODEL

Skin susceptibility to laser damage is a bio-physical process, so variability among humans contributes to the slope model. The human population has a range of skin pigmentation density, but the amount of pigment does not always directly relate to susceptibility. Skin contains multiple chromophores such as melanin, hemoglobin, water, and fat. The concentration of melanin determines skin color, with very low concentrations for light complexioned Caucasian skin (Type I) to high concentrations for black African skin (Type IV) [22]. The other chromophores also contribute to susceptibility and attempts to model human variability based on absorption by these chromophores were unsuccessful. The approach by Jacques [23] resulted in excessive variability at short wavelengths due to melanin content, and suffered from complexity and insufficient data, so was not pursued further.

Fortunately, the spectrophotometry group at the National Institute of Standards and Technology (NIST) recently measured and reported the spectral reflectance $\rho(\lambda)$ of human skin for 100 participants in the study [24]. The range of skin spectral reflectance is shown in Fig. 9, where there is obviously greater variability at wavelengths less than 1000 nm than at longer wavelengths. Also, note the decrease in variability at the shortest wavelengths, in contrast to expectations based

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

on only melanin concentration, which should have greatest variability at these wavelengths. Since thermal damage is proportional to the energy absorbed by the skin, the important quantity is the spectral absorptance $\alpha(\lambda)$,

$$
\alpha(\lambda) = 1 - \rho(\lambda). \tag{20}
$$

Figure 9. Spectral reflectance of human skin from NIST data.

The human skin reflectance data [24] did not include information on skin color or demographics. Therefore, the maximum and minimum values of absorptance at each wavelength are assumed to be one-standard deviation values of a Gaussian distribution. Using Eq. (1), the slope *S* is therefore

$$
S = \frac{\alpha_{max}}{\alpha_{mean}} \text{ or } S = \frac{\alpha_{mean}}{\alpha_{min}}.\tag{21}
$$

Taking the geometrical mean yields the slope *S*^A due to variability in human skin absorptance,

$$
S_A(\lambda) = \sqrt{\frac{\alpha_{max}(\lambda)}{\alpha_{min}(\lambda)}}.
$$
\n(22)

The maximum and minimum spectral absorptance of human skin using the NIST data is listed in Appendix D, and the resulting standard deviation σ_A is shown in Fig. 10. Variability is greatest at visible wavelengths.

Figure 10. Spectral absorptance of human skin from NIST data.

Variability in scaling and the beam diameter dependence also contribute to the slope, and the standard uncertainties for these sources of variability are listed in Table 7.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

			Standard Deviation
Source of Variability	Standard Uncertainty (%)	Symbol	Value
MPE Scaling		$\sigma_{\!M}$	0.117
Supra-Threshold Scaling		$\sigma_{\!+}$	
$2nd$ -Degree Partial			0.013
$2nd$ -Degree Full			0.017
$3rd$ -Degree			0.045
Sub-Threshold Scaling		σ	0.041

Table 7. Sources of variability with values and standard uncertainties, and corresponding standard deviations.

The slope *S* for each source of variability is one plus the standard deviation expressed as a fraction. For example, the slope for MPE Scaling is $1 + 0.31 = 1.31$. The standard deviation σ for each source of variability used in the dose-response model is given by Eq. (5) and is also listed in Table 7 with its corresponding symbol. These standard deviations add in quadrature for the final standard deviation. Therefore, for an MVL *ED*₅₀, the standard deviation is

$$
\sigma^2 = \sigma_A^2 + \sigma_M^2 \,, \tag{23}
$$

while for a supra-threshold *ED*₅₀, the standard deviation is

$$
\sigma^2 = \sigma_A^2 + \sigma_M^2 + \sigma_+^2 \,, \tag{24}
$$

and for a sub-threshold *ED*50, the standard deviation is

$$
\sigma^2 = \sigma_A^2 + \sigma_M^2 + \sigma_-^2 \,. \tag{25}
$$

5.0 ANGLE OF INCIDENCE MODEL

The angle of incidence θ_1 reduces the effective dose. The effective dose as a function of angle *ED* (θ_i) is

$$
ED(\theta_i) = ED(0) \cdot \cos \theta_i \tag{26}
$$

resulting in

$$
q = \log_{10}(ED(\theta_i)) = \log_{10}(ED(0)) + \log_{10}(\cos\theta_i). \tag{27}
$$

Since the angle of incidence reduces the effective dose, the probability of injury decreases for a fixed effective dose, as illustrated in Fig. 11. Alternatively, the effective dose for a given probability of injury increases with increasing angle of incidence.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Figure 11. Probability of injury as a function of normalized effective dose for the indicated angles of incidence.

If the angle of incidence is known, Eq. (26) applies. If the angle of incidence is unknown, knowledge of or assumptions about the surface are required. Two tractable surfaces are flat and spherical.

For a flat surface, assuming the incidence direction is uniform over the hemisphere above the surface, the average cosine of the angle of incidence is

$$
\langle \cos \theta_i \rangle = \frac{\int_0^{2\pi} \int_0^{\pi/2} \cos \theta \sin \theta \, d\theta \, d\phi}{\int_0^{2\pi} \int_0^{\pi/2} \sin \theta \, d\theta \, d\phi} = \frac{1}{2} \,. \tag{28}
$$

The average *ED* is therefore $\frac{1}{2}$ *ED*(0), so for the average *ED* to equal the *ED*₅₀, *ED*(0) = 2 *ED*₅₀.

The probability of injury averaged over all incident directions, with $\theta_i = \theta$, is

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

$$
P(q) = \frac{\int_0^{2\pi} \int_0^{\pi/2} \frac{1}{2} \operatorname{erfc} \left[\frac{-(q + \log_{10}(\cos \theta) - \mu)}{\sqrt{2}\sigma} \right] \sin \theta \ d\theta \ d\phi}{\int_0^{2\pi} \int_0^{\pi/2} \sin \theta \ d\theta \ d\phi} \ . \tag{29}
$$

Making the substitution $x = \cos \theta$,

$$
P(q) = \frac{1}{2} \int_0^1 \text{erfc}\left[\frac{-(q + \log_{10}(x) - \mu)}{\sqrt{2}\sigma}\right] dx
$$
 (30)

A spherical surface is slightly more complicated, and likely more realistic for skin. Assume illumination is uniform over the cross-section of the sphere. The angle of incidence a distance *r* from the center of a spherical surface with unit radius is

$$
cos\theta_i = \sqrt{1 - r^2} \,. \tag{31}
$$

The average cosine of the angle of incidence is

$$
\langle \cos \theta_{\mathbf{i}} \rangle = \frac{\int_0^{2\pi} \int_0^1 \sqrt{1 - r^2} \, r \, dr \, d\theta}{\int_0^{2\pi} \int_0^1 r \, dr \, d\theta} = \frac{1/3}{1/2} = \frac{2}{3} \,. \tag{32}
$$

In this case, for the average *ED* to equal the *ED*₅₀, $ED(0) = \frac{3}{3}$ $\frac{3}{2}ED_{50}$.

The probability of injury averaged over all incident directions is

$$
P(q) = \frac{\int_0^{2\pi} \int_0^1 \frac{1}{2} \operatorname{erfc} \left[\frac{-(q + \log_{10}(\cos \theta_i) - \mu)}{\sqrt{2}\sigma} \right] r \, dr \, d\theta}{\int_0^{2\pi} \int_0^1 r \, dr \, d\theta} \tag{33}
$$

Using Eq. (31) and making the substitution $x = 1 - r^2$,

$$
P(q) = \frac{1}{2} \int_0^1 \text{erfc}\left[\frac{-\left(q + \log_{10}\left(x^{1/2}\right) - \mu\right)}{\sqrt{2}\sigma}\right] dx \tag{34}
$$

 ED CALCULATION FOR SWEPT SOURCE

The effective dose ED is a spatially averaged radiant exposure with units of $J/cm²$, to correspond to the units of MPE for skin. The peak irradiance E_{peak} and exposure duration *T* typically characterize the exposing laser beam. The average irradiance *E*avg is given by Eq. (7), with *E* substituted for *H*. For a stationary exposure, such as with experiments used to determine an *ED*50,

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

the exposure duration is the time interval over which the laser was illuminating the skin. An equivalent exposure duration is required if the laser sweeps over the skin. Effects from lasers depend on the energy deposited over a time interval. In general, the radiant exposure *H* for a timevarying irradiance is

$$
H = \int E(t) dt . \tag{35}
$$

If the time dependence of the irradiance is Gaussian, with time interval T_2 between the times when the irradiance is $1/e^2$ of its peak value E_{peak} ,

$$
E(t) = E_{\text{peak}} \cdot \exp\left[-2\left(\frac{2t}{T_2}\right)^2\right].
$$
 (36)

With this time-dependence of the irradiance, and assigning a maximum exposure duration T_{max} , Eq. (35) becomes

$$
H = \int_{-T_{\text{max}}/2}^{T_{\text{max}}/2} E_{\text{peak}} \cdot \exp\left[-2\left(\frac{2t}{T_2}\right)^2\right] dt \tag{37}
$$

Now,

$$
\int_0^x \exp[-u^2] du = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) . \tag{38}
$$

Using a change of variables $u = 2\sqrt{2}\frac{t}{r}$ $\frac{1}{T_2}$ and the symmetry of a Gaussian function, Eq. (37) becomes

$$
H = 2E_{\text{peak}} \frac{T_2}{2\sqrt{2}} \int_0^{\sqrt{2T_{\text{max}}}} r_2 \exp[-u^2] du = E_{\text{peak}} \frac{\sqrt{\pi}}{2} \frac{T_2}{\sqrt{2}} \text{erf}\left(\sqrt{2} \frac{T_{\text{max}}}{T_2}\right). \tag{39}
$$

Therefore, the exposure duration *T* for which the energy deposited during the exposure is given by $H = E_{avg} \cdot T$ is

$$
T = \frac{\sqrt{\pi}}{2} \frac{T_2}{\sqrt{2}} \operatorname{erf}\left(\sqrt{2} \frac{T_{\text{max}}}{T_2}\right). \tag{40}
$$

If $T_{max} \gg T_2$ then $= \frac{\sqrt{\pi}}{2\sqrt{2}}$ $rac{\sqrt{n}}{2\sqrt{2}}T_2$, while if $T_{max} \ll T_2$ then $T = T_{max}$.

In all cases, the effective dose is

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

$$
ED = H_{\text{avg}} = E_{\text{avg}} \cdot T \,. \tag{41}
$$

7.0 PROBABILITY CALCULATION

Calculating the probability of injury *P* uses an extension of Eq. (2.2) to account for a variable angle of incidence,

$$
P(q) = \frac{1}{2} \int_0^1 erfc \left[\frac{-(q + Log(x^n) - \mu)}{\sqrt{2} \sigma} \right] dx , \qquad (42)
$$

where the shape of the surface determines the value of *n*. For a flat surface, $n = 1$, while for a spherical surface, $n = \frac{1}{2}$. If the angle of incidence is known, then $n = 0$ and the effective dose is given by Eq. (26). Probabilities of injury for different surface shapes are shown in Fig. 12.

Figure 12. Probability of injury as a function of normalized effective dose for indicated surface shapes.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

 EXAMPLE OF INJURY PROBABILITY CALCULATIONS

As an example to illustrate calculating probabilities of injury, consider a laser exposure at a wavelength $\lambda = 1070$ nm. The laser has a peak irradiance $E_{\text{peak}} = 500 \text{ W/cm}^2$, a $1/e^2$ beam diameter $D_2 = 5$ cm, and sweeps over the skin with an exposure duration of $T_2 = 500$ ms. This exposure duration is the time interval between irradiances of $1/e^2$ of the peak irradiance. What are the probabilities for all injuries, and for different angle of incidence models?

Since the beam is sweeping, the exposure duration *T*, is given by Eq. (40). While retinal exposures have a $T_{\text{max}} = 250$ ms due to saccades and the blink reflex, no such exposure limit applies to the skin so $T_{\text{max}} = \infty$ and $T = 313$ ms. The MPE for a wavelength $\lambda = 1070$ nm and exposure duration $T = 313$ ms, from the ANSI Z136.1 standard [7], is MPE = 4.11 J/cm², so the MVL *ED*₅₀, using Eq. (11), is $ED_{50} = 49.4$ J/cm². Since the wavelength is 1070 nm, the ED_{50} s for all injuries are calculated using Eqs. (17) to (19), yielding the results given in Table 8.

Injury	$ED_{50} (J/cm^2)$	μ
Pain	28.6	1.456
MVL (1 st -degree)	49.4	1.694
$2nd$ -degree superficial	59.3	1.773
$2nd$ -degree deep	97.3	1.988
$3rd$ -degree	164.8	2.217

Table 8. *ED***⁵⁰ and logarithm for the example for the listed skin injuries.**

From Appendix D, the minimum and maximum human skin absorptance at 1069 nm are 0.3769 and 0.4912, respectively, so using Eq. (22) slope $_4 = \sqrt{0.4912/0.3769} = 1.142$, so $\sigma_A = 0.058$. The standard deviations and slopes for each injury are given in Table 9. Note the standard deviation values are calculated using Eq. (23) to (25), and the slope values are derived from these.

Injury	$\sigma_{\!A}$	$\sigma_{\!M}$	σ	$\sigma_{\scriptscriptstyle +}$	σ	Slope
Pain	0.058	0.117	0.041		0.137	1.371
MVL (1 st -degree)	0.058	0.117			0.131	1.352
$2nd$ -degree superficial	0.058	0.117		0.013	0.132	1.355
$2nd$ -degree deep	0.058	0.117		0.017	0.132	1.355
$3rd$ -degree	0.058	0.117		0.045	0.138	1.374

Table 9. Slope and logarithm for the example for the listed skin injuries.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

The average irradiance, *E*avg, by substituting into Eq. (7), is

$$
E_{\text{avg}} = \frac{E_{\text{peak}}}{2} \left(\frac{D_2}{0.35 \text{ cm}} \right)^2 \left\{ 1 - \exp \left[-2 \left(\frac{0.35 \text{ cm}}{D_2} \right)^2 \right] \right\} = 497.6 \text{ W/cm}^2 \,. \tag{43}
$$

The effective dose, using Eq. (41) and the values for E_{avg} and *T* is ED = 155.9 J/cm², yielding $q =$ 2.193. The probabilities for each injury and angle of incidence model are given in Table 10. As expected, the probability of injury decreases with increasing severity and decreasing average cosine of the angle of incidence.

Angle of Incidence Model						
Injury	Normal	Sphere	Flat			
Pain	1.0	0.964	0.812			
MVL (1 st -degree)	1.0	0.884	0.673			
$2nd$ -degree superficial	0.999	0.831	0.607			
$2nd$ -degree deep	0.940	0.557	0.360			
$3rd$ -degree	0.431	0.147	0.087			

Table 10. Probabilities for each skin injury type and angle of incidence model for the example.

Burn injuries are progressive, meaning burns of less severity precede those of a given severity. For example, a person with a $2nd$ -degree superficial burn injury also experienced a $1st$ -degree burn during their exposure prior to the more severe burn. The fraction of an exposed population suffering from a burn injury is important, and obtained from the probabilities of injury and their progressive nature. The fraction *f* of a population with a burn injury indexed by *i* is

$$
f_i = P_i - P_{i+1} \tag{44}
$$

where *P* is the probability of injury and $i+1$ is the index of the next-most-severe burn. If there are *N* severities of burn, and zero indexes no injury, then

$$
f_0 = 1 - P_1 \text{ and } f_N = P_N . \tag{45}
$$

Applying Eqs. (44) and (45) to the probabilities in Table 10 results in the population fractions shown in Table 11. Here, zero indexes no pain and *N* indexes a 3rd-degree burn. Note each column sums to one, and the fractions can vary non-monotonically with burn severity.

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

Angle of Incidence Model						
Injury	Normal	Sphere	Flat			
None	$\mathbf{\Omega}$	0.036	0.188			
Pain	0	0.080	0.139			
MVL (1 st -degree)	0.001	0.053	0.066			
$2nd$ -degree superficial	0.059	0.274	0.247			
$2nd$ -degree deep	0.509	0.410	0.273			
$3rd$ -degree	0.431	0.147	0.087			

Table 11. Fraction of exposed population for each skin injury type and angle of incidence model for the example.

9.0 SUMMARY

A general model for human laser skin dose-response was developed and presented, with the objective of improving the fidelity of models used to assess the risk of skin injury from exposure to laser radiation. The model covers the spectral range from 400 nm to 2000 nm and the temporal range from 1 µs to 10 s. Experimental data and simulation results are the basis of the model, which includes effects from pain to minimal visible lesions to $3rd$ -degree burns. The model was constructed to capture the essential bio-physical features contributing to human susceptibility to laser injury of the skin, including variability between humans.

The human laser skin dose-response consists of three component models – those for the *ED*50, the slope, and the angle of incidence. The ED₅₀ model includes dependencies on wavelength and exposure duration. It scales the ANSI Z136.1 safety standard MPE to an MVL *ED*₅₀ to achieve both wavelength and exposure duration dependence. All effective doses are the average radiant exposure over the limiting aperture of 3.5 mm diameter. The MVL *ED*₅₀ is further scaled to a supra-threshold ED_{50} for $2nd$ - and $3rd$ -degree burns, while the MPE is scaled to a sub-threshold *ED*₅₀ for pain. The slope model includes variability in skin optical absorptance between humans and uncertainties in the ED₅₀ model due to scaling and beam diameter dependence. The effective dose depends on the angle of incidence, and the angle of incidence model accounts for two tractable situations. It assumes a uniform probability of direction and calculates an average resulting probability of injury specific to a flat or spherical surface.

While the model for human laser skin dose-response presented here captures the essential biophysical features, the process of quantifying these features indicated many possible future improvements. Scaling the MPE to an MVL *ED*₅₀ based on sparse experimental data is just one example. Categorizing the bio-physical features as relating to human variability or to scaling helps to organize future improvements. The simple model for human variability, based on skin reflectance, should be significantly expanded by the use of first-principles laser-tissue interaction

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

simulations. With the proper optical and thermal properties of skin tissue layers, the simulation should approximate the human skin reflectance data shown in Fig. 12 and then provide insight on various parts of the body with different tissue layer thicknesses. This high-fidelity simulation would also improve the scaling factors for supra-threshold effects, as would additional experiments evaluating these effects. Carefully chosen and executed experiments could also refine the scaling of MPE to MVL *ED*50, and the dependence on beam diameter. While there was sufficient experimental data to derive scaling values, additional high-quality experiments would refine and provide more confidence in these values.

10.0 REFERENCES

- 1. E. Ahmed, E. A. Early, B. J. Lund, and R. J. Thomas, "Human Laser Skin Dose-Response Model," AFRL-RH-FS-TR-2020-0018 (2020).
- 2. R. Vincelette, G.D. Noojin, C.A. Harbert, K.J. Schuster, A.D. Shingledecker, D. Stolarski, S.S. Kumru, and J.W. Oliver, "Porcine Skin Damage Thresholds for 0.6 to 9.5 cm Beam Diameters from 1070-nm Continuous-Wave Infrared Laser Radiation," J. Biomed. Opt. 19, 035007 (2014)
- 3. B. Chen, "Experimental and Modeling Study of Thermal Response of Skin and Cornea to Infrared Wavelengths Laser Irradiation," Ph.D. Dissertation, The University of Texas at Austin (2007).
- 4. J.W. Oliver, R. Vincelette, G.D. Noojin, C.D. Clark, C.A. Harbert, K.J. Schuster, A.D. Shingledecker, S.S. Kumru, J. Maughan, N. Kitzis, G.D. Buffington, D.J. Stolarski, and R.J. Thomas, "Infrared Skin Damage Thresholds from 1319-nm Continuous-Wave Laser Exposures," J. Biomed. Opt. 18, 125002 (2013).
- 5. J.W. Oliver, D.J. Stolarski, G.D. Noojin, H.M. Hodnett, C.A. Harbert, K.J. Schuster, M.F. Foltz, S.S. Kumru, C.P. Cain, C.J. Finkeldei, G.D. Buffington, I.D. Noojin, and R.J. Thomas, "Infrared Skin Damage Thresholds from 1940-nm Continuous-Wave Laser Exposures," J. Biomed. Opt. 15, 065008 (2010).
- 6. B. Chen, D.C. O'Dell, S.L. Thomsen, B.A. Rockwell, and A.J. Welsh, "Porcine Skin *ED*⁵⁰ Damage Thresholds for 2,000 nm Laser Irradiation," Lasers Surg. Med. 37, 373 (2005).
- 7. American National Standards Institute, "American National Standard for Safe Use of Lasers, ANSI Standard Z136.1-2014," Laser Institute of America (2014).
- 8. B.G. Zollars, G.J. Elpers, A.L. Goodwin, E.A. Early, N.J. Gamez, and R.J. Thomas, "Scalable Effects Simulation Environment (SESE) Version 2.5.0," AFRL-RH-FS-TR-2019-0016 (2019).
- 9. M.P. DeLisi, M.S. Schmidt, A.F. Hoffman, A.M. Peterson, G.D. Noojin, A.D. Shingledecker, A.R. Boretsky, D.J. Stolarski, S.S. Kumru, and R.J. Thomas, "Thermal Damage Thresholds for Multipe-Pulse Porcine Skin Laser Exposures at 1070 nm," J. Biomed. Opt. 25, 035001 (2019).
- 10. E. Ahmed, E. Early, P. Kennedy, and R. Thomas, "Human Laser Retinal Dose-Response Model," AFRL-RH-FS-TR-2018-0006 (2018).
- 11. R.J. Rockwell, Jr. and L. Goldman, "Research on Human Skin Laser Damage Thresholds," United States Air Force Aerospace Medical Division, DERM-LL-74-1003 (1974).

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

- 12. Li Zhoazhang, "Laser Safety, Protection Standards Reviewed," Yingyong Jiguang 3, 141 (1986).
- 13. E. M. Renz and L. C. Cancio, "Acute Burn Care" in E. Savitsky and B. Eastridge, *Combat Casualty Care, Lessons Learned from OEF and OIF*, Borden Institute, Fort Detrick, Maryland (2012).
- 14. M. L. Denton, E. M. Ahmed, G. D. Noojin, A. J. Tijerina, G. Gamboa, C. C. Gonzalez, and B. A. Rockwell, "Effect of Ambient Temperature and Intracellular Pigmentation on Photothermal Damage Rate Kinetics," J. Biomed. Opt. 24, 065002 (2019).
- 15. E. M. Ahmed, G. D. Noojin, and M. L. Denton, "Damage Integral and Other Predictive Formulas for Nonisothermal Heating during Laser Exposure," J. Biomed. Opt. 27, 035001 (2022).
- 16. C.-y. Lyu and R.-j. Zhan, "Accurate Analysis of Limiting Human Dose of Non-Lethal Laser Weapons," Defence Technology 18, 678-688 (2022).
- 17. A. M. Stoll and L. C. Green, "The Relationship Between Pain and Tissue Damage Due to Thermal Radiation," NADC-MA-5808 (1958).
- 18. A. M. Stoll and M. A. Chianti, "A Method and Rating System for Evaluation of Thermal Protection," NADC-MR-6809 (1968).
- 19. L. Arendt-Nielsen and P. Bjerring, "Sensory and Pain Threshold Characteristics to Laser Stimuli," J. Neurology, Neurosurgery, and Psychiatry 51, 35-42 (1988).
- 20. D. Tata, V. I. Villavicencio, M. C. Cook, T. E. Dayton, C. D. Clark, C. A. Moreno, J. A. Ross, J. S. Eggers, P. Kennedy, D. Christensen, and J. Notabartolo, "Infra Red Laser Induced Skin Damage and Perception," AFRL-HE-BR-TR-2005-0139 (2005).
- 21. M. P. DeLisi, A. M. Peterson, L. A. Lile, G. D. Noojin, A. D. Shingledecker, D. J. Stolarski, C. A. Oian, S. S. Kumru, and R. J. Thomas, "Suprathreshold Laser Injuries in Excised Porcine Skin for Millisecond Exposures at 1070 nm," J. Biomed. Opt. 23, 125001 (2018).
- 22. T. B. Fitzpatrick, "Sun and Skin," Journal de Medecine Esthetique 2, 33 (1975).
- 23. S. L. Jacques, "Optical Properties of Biological Tissues: A Review," Phys. Med. Biol. 58, R37 (2013).
- 24. C. C. Cooksey, D.W. Allen, and B.K. Tsai, "Reference Data Set of Human Skin Reflectance," J. Res. Natl. Inst. Stan. Tech. 122, 26 (2017).

Distribution Statement A: Approved for public release; distribution is unlimited. CLEARED: PA CASE # AFRL-2023-0511. The opinion expressed on this document, electronic or otherwise, are solely those of the authors. They do not represent an endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

APPENDIX A. ED⁵⁰ Experimental Data

Research papers with *ED*⁵⁰ results for skin exposures report those values using a variety of quantities. The references cited in Section 3 use energy, power, or radiant exposure for *ED*₅₀. In addition, the calculations of radiant exposure are not consistent. The following tables present the data reported in the references and the process to calculate all values of *ED*⁵⁰ as radiant exposure averaged over a limiting aperture with a diameter of 3.5 mm.

All the experimental data in this Appendix was obtained using Yorkshire mini-pigs and single pulses, and all report exposure durations and $1/e^2$ beam diameters. The sections are arranged by increasing wavelength, with relevant experimental parameters and calculations detailed. The average and standard deviation of the ratio of average radiant exposure to MPE are also included for each set of experimental data.

A.1 1070 nm

A.1.1 Primary

Reference: Vincelette [2]

Calculation of H_{avg} : *ED*₅₀ reported in energy *Q*, so calculation of H_{peak} and H_{avg} uses Eqs. (6) and (7)

D_2	\overline{T}		$H_{\rm peak}$			MPE	$H_{\rm avg}/\rm MPE$
(cm)	(s)	Q_{50} $\left(J\right)$	(J/cm ²)	$H_{\rm avg}$ (J/cm ²)		(J/cm ²)	
0.6	0.01	4.0	28.3	20.5		1.74	11.80
0.6	0.07	11.1	78.5	57.0		2.83	20.13
0.6	10	57.1	403.9	293.0		9.78	29.96
1.1	0.01	16.1	33.9	30.7		1.74	17.64
1.1	0.1	22.6	47.6	43.1		3.09	13.92
1.1	10	82	172.6	156.2		9.78	15.97
1.9	0.05	48.6	34.3	33.1		2.60	12.74
1.9	0.25	74.2	52.3	50.6		3.89	13.01
1.9	10	154	108.6	105.0		9.78	10.74
2.4	0.01	46.6	20.6	20.2		1.74	11.60
2.4	0.025	43	19.0	18.6		2.19	8.51
2.4	0.25	55.3	24.4	23.9		3.89	6.15
4.7	0.025	213.3	24.6	24.5		2.19	11.18
4.7	0.1	267	30.8	30.6		3.09	9.90
4.7	0.25	295	34.0	33.8		3.89	8.70
9.5	0.25	1125	31.7	31.7		3.89	8.15
						Average	12.0
					Standard Deviation		3.76

Table A.1. Experimental data, calculated average radiant exposure, and ratio to MPE for Ref. [2]

Note: the average of H_{avg} /MPE does not include the ratio for $D_2 = 0.6$ cm and $T = 10$ s due to its anomalously large value.

A.1.2 Secondary

Reference: DeLisi [3]

Calculation of H_{avg} : *ED*₅₀ reported in radiant exposure *H*, stated as the energy divided by the $1/e²$ beam area. The peak radiant exposure is twice this value, and calculation of H_{avg} uses Eq. (7).

D_2 (cm)	T $(\rm s)$	H_{50} (J/cm^2)	$H_{\rm peak}$ (J/cm^2)	$H_{\rm avg}$ (J/cm^2)		MPE (J/cm ²)	$H_{\rm avg}/{\rm MPE}$
1.04	0.01	17.8	35.6	31.9		1.74	18.3
1.04	0.1	33.2	66.4	59.4		3.09	19.2
0.973	10	83.7	167.4	147.5		9.78	15.1
						Average	17.5
					Standard Deviation		2.17

Table A.2. Experimental data, calculated average radiant exposure, and ratio to MPE for Ref. [3]

A.2 1214 nm

Reference: Chen [4]

Calculation of H_{avg} : *ED*₅₀ reported in power Φ , so convert power to energy using Eq. (10), then calculate H_{peak} and H_{avg} using Eqs. (6) and (7)

D_2 (cm)	\overline{T} (s)	Φ_{50} $\mathrm{(J)}$	$H_{\rm peak}$ (J/cm ²)	$H_{\rm avg}$ (J/cm ²)	MPE (J/cm ²)	H_{avg}/MPE
0.6	0.981	8.6	59.7	43.3	5.47	7.9
0.6	3.05	3.66	79.0	57.3	7.27	7.9
0.6	9.81	1.3	90.2	65.4	9.73	6.7
0.8	0.981	14.1	55.0	45.7	5.47	8.4
0.8	9.81	1.76	68.7	57.1	9.73	5.9
1	0.981	23	57.5	51.0	5.47	9.3
	3.05	$\overline{7}$	54.4	48.2	7.27	6.6
1	9.81	2.67	66.7	59.2	9.73	6.1
					Average	7.34
					Standard Deviation	1.21

Table A.3. Experimental data, calculated average radiant exposure, and ratio to MPE for Ref. [4]

A.3 1319 nm

Reference: Oliver [5]

Calculation of H_{avg} : ED_{50} reported in energy Q, so calculation of H_{peak} and H_{avg} uses Eqs. (6) and (7)

D_2 (cm)	T (s)	Q_{50} $\mathrm{(J)}$	$H_{\rm peak}$ (J/cm ²)	$H_{\rm avg}$ (J/cm ²)	MPE (J/cm ²)	$H_{\rm avg}/\rm MPE$
0.61	0.25	6.25	42.8	31.3	3.9	8.7
0.61	-1	6.22	42.6	31.2	5.5	8.7
0.61	2.5	7.38	50.5	37.0	6.9	9.1
0.61	10	9.11	62.3	45.7	9.8	9.6
0.97	0.25	13.38	36.2	31.9	3.9	10.5
0.97		13.7	37.1	32.6	5.5	10.6
0.97	2.5	15.1	40.9	36.0	6.9	10.8
0.97	10	18.7	50.6	44.6	9.8	11.4
					Average	9.92
					Standard Deviation	1.06

Table A.4. Experimental data, calculated average radiant exposure, and ratio to MPE for Ref. [5]

A.4 1940 nm

Reference: Oliver [6]

Calculation of H_{avg} : *ED*₅₀ reported in energy *Q*, so calculation of H_{peak} and H_{avg} uses Eqs. (6) and (7)

A.5 2000 nm

Reference: Chen [7]

Calculation of H_{avg} : ED_{50} reported in energy Q, so calculation of H_{peak} and H_{avg} uses Eqs. (6) and (7)

D_2	\overline{T} (s)	Q_{50} $\mathrm{(J)}$	$H_{\rm peak}$ (J/cm ²)	$H_{\rm avg}$ (J/cm ²)	MPE (J/cm ²)	$H_{\rm avg}/\rm MPE$
(cm)						
0.483	0.25	2.62	7.1	4.4	0.40	11.2
0.483	0.5	1.49	8.1	5.0	0.47	10.7
0.483	$\mathbf{1}$	0.93	10.2	6.3	0.56	11.2
0.483	2.5	0.41	11.2	6.9	0.70	9.8
0.965	0.25	8.46	5.8	5.1	0.40	12.8
0.965	0.5	4.94	6.8	5.9	0.47	12.6
0.965	1	2.88	7.9	6.9	0.56	12.4
0.965	2.5	1.41	9.6	8.5	0.70	12.0
1.465	0.25	16.09	4.8	4.5	0.40	11.4
1.465	0.5	8.46	5.0	4.7	0.47	10.1
1.465	1	5.02	6.0	5.6	0.56	10.1
1.465	2.5	2.46	7.3	6.9	0.70	9.8
					Average	11.2
					Standard Deviation	1.11

Table A.6. Experimental data, calculated average radiant exposure, and ratio to MPE for Ref. [7]

APPENDIX B. Simulation Data

Table B.1. Threshold powers for burn degrees determined from simulations and ratios to 1st -degree burn powers

35

APPENIX C. Sub-Threshold Data

C.1 Broadband

References: Stoll [17] and Stoll [18]

Calculation of *H*: Convert irradiance *E* in cal/(cm² s) to J/cm² using 1 cal = 4.184 J, then calculate H using Eq. (9)

C.2 2000 nm

Reference: Tata [20]

Calculation of H_{avg} : ED_{50} reported in radiant exposure *H*, stated as the energy divided by the $1/e²$ beam area. The peak radiant exposure is twice this value, and H_{avg} is calculated using Eq. (7).

D_2 (cm)	T (s)	H_{50} (J/cm ²)	$H_{\rm peak}$ (J/cm ²)	$H_{\rm avg}$ (J/cm ²)	MPE (J/cm ²)	$H_{\rm avg}/\rm MPE$
0.5	0.25	2.46	4.92	3.14	0.40	7.85
0.5	0.50	5.46	10.92	6.96	0.47	14.8
0.5	1.0	5.08	10.16	6.48	0.56	11.6
0.5	2.5	5.50	11.0	7.01	0.70	10.0
1.5	0.25	2.39	4.78	4.53	0.40	11.3
1.5	0.50	2.51	5.02	4.76	0.47	10.1
1.5	1.0	2.98	5.96	5.65	0.56	10.1
1.5	2.5	3.65	7.30	6.92	0.70	9.9

Table C.2. Experimental data, calculated average radiant exposure, and ratio to MPE for *ED***⁵⁰ for Ref. [20]**

Table C.3. Experimental data, calculated average radiant exposure, and ratio to MPE for sensation on the hand for Ref. [20]

$\,D_2$ $\rm (cm)$	$\overline{ }$ (s)	H_{50} (J/cm ²)	$H_{\rm peak}$ (J/cm^2)	$H_{\rm avg}$ (J/cm^2)	MPE (J/cm^2)	$H_{\rm avg}/\rm MPE$
1.5	$0.25\,$	0.542	1.084	1.027	0.40	2.56
1.5	っょ ر…	1.02	2.04	1.93	0.70	2.76

C.3 1070 nm

Reference: DeLisi [21]

Calculation of H_{avg} : ED_{50} reported in radiant exposure H , stated as the energy divided by the $1/e²$ beam area. The peak radiant exposure is twice this value, and H_{avg} is calculated using Eq. (7).

APPENDIX D. Human Skin Spectral Absorptance Range

	Absorptance			Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
250	0.9263	0.9563	379	0.7053	0.9508
253	0.9269	0.9569	382	0.7011	0.9502
256	0.9281	0.9574	385	0.6984	0.9496
259	0.9295	0.9581	388	0.6967	0.9488
262	0.9312	0.9587	391	0.6963	0.9480
265	0.9328	0.9593	394	0.6971	0.9474
268	0.9341	0.9593	397	0.6993	0.9466
271	0.9351	0.9597	400	0.7028	0.9459
274	0.9357	0.9598	403	0.7066	0.9452
277	0.9367	0.9599	406	0.7102	0.9446
280	0.937	0.9600	409	0.7137	0.9437
283	0.9368	0.9602	412	0.7171	0.9430
286	0.9365	0.9603	415	0.7197	0.9422
289	0.9351	0.9604	418	0.7217	0.9415
292	0.9331	0.9605	421	0.723	0.9408
295	0.9314	0.9606	424	0.7238	0.9400
298	0.9299	0.9609	427	0.7229	0.9391
301	0.9275	0.9611	430	0.7194	0.9381
304	0.9169	0.9611	433	0.7136	0.9370
307	0.9039	0.9610	436	0.7051	0.9358
310	0.8905	0.9609	439	0.6939	0.9343
313	0.875	0.9607	442	0.68	0.9326
			445		
316	0.8574	0.9605	448	0.6656	0.9307
319	0.8388	0.9601		0.652	0.9286
322	0.8224	0.9594	451	0.6407	0.9266
325	0.8083	0.9586	454	0.6312	0.9248
328	0.7958	0.9579	457	0.6229	0.9228
331	0.7856	0.9573	460	0.6155	0.9212
334	0.777	0.9568	463	0.6094	0.9195
337	0.7699	0.9564	466	0.6043	0.9178
340	0.7645	0.9562	469	0.5999	0.9164
343	0.7596	0.9559	472	0.5965	0.9150
346	0.7555	0.9556	475	0.5939	0.9135
349	0.7515	0.9552	478	0.5913	0.9122
352	0.7475	0.9550	481	0.5895	0.9110
355	0.7434	0.9546	484	0.5866	0.9097
358	0.7393	0.9541	487	0.5833	0.9082
361	0.7348	0.9538	490	0.5795	0.9067
364	0.7309	0.9534	493	0.5752	0.9053
367	0.727	0.9528	496	0.5716	0.9036
370	0.7232	0.9522	499	0.569	0.9021
373	0.7192	0.9516	502	0.5657	0.9006
376	0.7128	0.9515	505	0.5626	0.8992

Table D.1. Minimum and maximum spectral absorptance of human skin

	Absorptance			Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
508	0.56	0.8978	652	0.3417	0.7336
511	0.5578	0.8965	655	0.3405	0.7292
514	0.5565	0.8954	658	0.3394	0.7249
517	0.5566	0.8944	661	0.338	0.7204
520	0.5582	0.8935	664	0.3365	0.7158
523	0.5614	0.8929	667	0.3352	0.7112
526	0.5657	0.8926	670	0.3337	0.7065
529	0.5707	0.8923	673	0.3323	0.7020
532	0.5757	0.8918	676	0.3306	0.6973
535	0.5796	0.8913	679	0.329	0.6926
538	0.5829	0.8907	682	0.327	0.6879
541	0.5855	0.8900	685	0.3244	0.6834
544	0.5865	0.8891	688	0.3205	0.6786
547	0.5859	0.8879	691	0.3174	0.6735
550	0.5838	0.8864	694	0.3168	0.6687
553	0.5813	0.8847	697	0.3152	
			700		0.6643
556	0.5789	0.8830		0.3144	0.6602
559	0.5769	0.8811	703	0.314	0.6558
562	0.5759	0.8791	706	0.3133	0.6520
565	0.5756	0.8774	709	0.3128	0.6483
568	0.5771	0.8758	712	0.3125	0.6439
571	0.5812	0.8746	715	0.3121	0.6399
574	0.5827	0.8732	718	0.312	0.6358
577	0.5798	0.8712	721	0.3119	0.6322
580	0.5724	0.8681	724	0.3121	0.6285
583	0.5599	0.8636	727	0.3132	0.6248
586	0.5397	0.8577	730	0.3139	0.6217
589	0.515	0.8507	733	0.3151	0.6186
592	0.4908	0.8431	736	0.3167	0.6160
595	0.468	0.8354	739	0.318	0.6127
598	0.4476	0.8276	742	0.3193	0.6097
601	0.4297	0.8200	745	0.3204	0.6065
604	0.4142	0.8126	748	0.3226	0.6038
607	0.4015	0.8058	751	0.3246	0.6010
610	0.3909	0.7996	754	0.3254	0.5984
613	0.3818	0.7939	757	0.3256	0.5956
616	0.3747	0.7885	760	0.3265	0.5924
619	0.3691	0.7833	763	0.3263	0.5890
622	0.3646	0.7782	766	0.3253	0.5850
625	0.3608	0.7735	769	0.3238	0.5808
628	0.3573	0.7691	772	0.3218	0.5763
631	0.3543	0.7646	775	0.3199	0.5717
634	0.3521	0.7600	778	0.3188	0.5680
637	0.3501	0.7556	781	0.318	0.5642
640	0.348	0.7512	784	0.317	0.5611
643	0.3464	0.7468	787	0.3166	0.5580
646	0.3449	0.7425	790	0.3166	0.5547
649	0.3432	0.7381	793	0.3167	0.5515

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance				Absorptance
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
796	0.3167	0.5484	940	0.4187	0.5318
799	0.3164	0.5450	943	0.4221	0.5363
802	0.3163	0.5420	946	0.4256	0.5411
805	0.3169	0.5396	949	0.4297	0.5464
808	0.3167	0.5370	952	0.4344	0.5515
811	0.3178	0.5349	955	0.4392	0.5564
814	0.3185	0.5326	958	0.4436	0.5603
817	0.3189	0.5304	961	0.4466	0.5626
820	0.3205	0.5280	964	0.4481	0.5636
823	0.3217	0.5260	967	0.4489	0.5643
826	0.3237	0.5245	970	0.4495	0.5650
829	0.3256	0.5235	973	0.4502	0.5654
832	0.3275	0.5226	976	0.4507	0.5653
835	0.3287	0.5212	979	0.4506	0.5646
838	0.3298	0.5193	982	0.4501	0.5635
841	0.3313	0.5171	985	0.4492	0.5620
844	0.3327	0.5153	988	0.4479	0.5604
847	0.3334	0.5126	991	0.4465	0.5586
850	0.3355	0.5105	994	0.4449	0.5564
853	0.3366	0.5087	997	0.4431	0.5540
856	0.3350	0.5081	1000	0.4412	0.5517
859	0.3385	0.5081	1003	0.4396	0.5492
862	0.3423	0.5075	1006	0.4377	0.5463
865	0.3435	0.5062	1009	0.4357	0.5431
868	0.3451	0.5052	1012	0.4337	0.5399
871	0.3467	0.5045	1015	0.4317	0.5367
874	0.3490	0.5038	1018	0.4296	0.5336
877	0.3514	0.5033	1021	0.4271	0.5304
880	0.3540	0.5028	1024	0.4239	0.5272
883	0.3569	0.5025	1027	0.4207	0.5241
886	0.3599	0.5027	1030	0.4177	0.5210
889	0.3633	0.5027	1033	0.4148	0.5181
892	0.3664	0.5028	1036	0.4118	0.5152
895	0.3693	0.5030	1039	0.4085	0.5121
898	0.3726	0.5033	1042	0.4049	0.5092
901	0.3760	0.5040	1045	0.4011	0.5065
904	0.3795	0.5046	1048	0.3974	0.5039
907	0.3832	0.5054	1051	0.3934	0.5018
910	0.3873	0.5066	1054	0.3894	0.4997
913	0.3916	0.5080	1057	0.3857	0.4977
916	0.3963	0.5093	1060	0.3824	0.4955
919	0.4008	0.5110	1063	0.3793	0.4939
922	0.4046	0.5134	1066	0.3769	0.4926
925	0.4080	0.5158	1069	0.3749	0.4912
928	0.4110	0.5183	1072	0.3736	0.4903
931	0.4131	0.5210	1075	0.3725	0.4895
934	0.4148	0.5240	1078	0.3716	0.4893
937	0.4165	0.5276	1081	0.3710	0.4894

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance				Absorptance
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
1084	0.3709	0.4893	1228	0.6450	0.7046
1087	0.3716	0.4897	1231	0.6376	0.6974
1090	0.3727	0.4903	1234	0.6312	0.6908
1093	0.3741	0.4913	1237	0.6255	0.6850
1096	0.3759	0.4927	1240	0.6206	0.6799
1099	0.3778	0.4940	1243	0.6144	0.6749
1102	0.3803	0.4959	1246	0.6085	0.6708
1105	0.3830	0.4979	1249	0.6034	0.6670
1108	0.3862	0.4995	1252	0.5988	0.6637
1111	0.3894	0.5017	1255	0.5949	0.6610
1114	0.3934	0.5040	1258	0.5917	0.6591
1117	0.3980	0.5071	1261	0.5892	0.6575
1120	0.4036	0.5110	1264	0.5869	0.6563
1123	0.4114	0.5167	1267	0.5854	0.6555
1126	0.4216	0.5240	1270	0.5844	0.6554
1129	0.4351	0.5336	1273	0.5840	0.6558
1132	0.4528	0.5463	1276	0.5838	0.6569
1135	0.4740	0.5620	1279	0.5840	0.6584
1138	0.4980	0.5791	1282	0.5848	0.6603
1141	0.5230	0.5987	1285	0.5860	0.6628
1144	0.5476	0.6216	1288	0.5877	0.6658
1147	0.5695	0.6416	1291	0.5897	0.6694
1150	0.5888	0.6589	1294	0.5926	0.6735
1153	0.6052	0.6725	1297	0.5961	0.6779
1156	0.6189	0.6834	1300	0.6002	0.6834
1159	0.6284	0.6919	1303	0.6051	0.6898
1162	0.6360	0.6986	1306	0.6106	0.6962
1165	0.6416	0.7035	1309	0.6165	0.7035
1168	0.6453	0.7068	1312	0.6232	0.7113
1171	0.6478	0.7091	1315	0.6303	0.7196
1174	0.6503	0.7117	1318	0.6382	0.7283
1177	0.6534	0.7145	1321	0.6467	0.7375
1180	0.6571	0.7179	1324	0.6558	0.7468
1183	0.6617	0.7220	1327	0.6655	0.7562
1186	0.6652	0.7260	1330	0.6752	0.7655
1189	0.6683	0.7295	1333	0.6848	0.7743
1192	0.6710	0.7322	1336	0.6943	0.7828
1195	0.6724	0.7343	1339	0.7034	0.7911
1198	0.6736	0.7360	1342	0.7122	0.7988
1201	0.6746	0.7380	1345	0.7207	0.8059
1204	0.6755	0.7392	1348	0.7287	0.8121
1207	0.6759	0.7398	1351	0.7367	0.8182
1210	0.6758	0.7393	1354	0.7446	0.8239
1213	0.6742	0.7369	1357	0.7525	0.8296
1216	0.6708	0.7330	1360	0.7605	0.8353
1219	0.6664	0.7273	1363	0.7686	0.8416
1222	0.6604	0.7200	1366	0.7774	0.8481
1225	0.6529	0.7123	1369	0.7870	0.8554

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance				Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum	
(nm)			(nm)			
1372	0.7974	0.8636	1516	0.9039	0.9393	
1375	0.8080	0.8723	1519	0.9024	0.9384	
1378	0.8194	0.8815	1522	0.9009	0.9375	
1381	0.8321	0.8918	1525	0.8994	0.9365	
1384	0.8460	0.9021	1528	0.8978	0.9354	
1387	0.8592	0.9115	1531	0.8961	0.9344	
1390	0.8708	0.9194	1534	0.8944	0.9333	
1393	0.8804	0.9262	1537	0.8926	0.9322	
1396	0.8889	0.9317	1540	0.8908	0.9310	
1399	0.8960	0.9360	1543	0.8891	0.9298	
1402	0.9018	0.9392	1546	0.8874	0.9286	
1405	0.9064	0.9416	1549	0.8857	0.9273	
1408	0.9100	0.9435	1552	0.8840	0.9260	
1411	0.9128	0.9449	1555	0.8823	0.9247	
1414	0.9148	0.9459	1558	0.8808	0.9235	
1417	0.9163	0.9467	1561	0.8793	0.9223	
1420	0.9176	0.9474	1564	0.8773	0.9210	
1423	0.9186	0.9479	1567	0.8752	0.9197	
1426	0.9194	0.9484	1570	0.8730	0.9183	
1429	0.9201	0.9489	1573	0.8708	0.9169	
1432	0.9206	0.9493	1576	0.8686	0.9156	
1435	0.9209	0.9496	1579	0.8665	0.9143	
1438	0.9213	0.9499	1582	0.8646	0.9130	
1441	0.9215	0.9501	1585	0.8626	0.9116	
1444	0.9217	0.9502	1588	0.8606	0.9103	
1447	0.9218	0.9502	1591	0.8587	0.9090	
1450	0.9220	0.9504	1594	0.8569	0.9077	
1453	0.9220	0.9504	1597	0.8550	0.9065	
1456	0.9220	0.9504	1600	0.8532	0.9053	
1459	0.9219	0.9503	1603	0.8515	0.9041	
1462	0.9217	0.9501	1606	0.8498	0.9029	
1465	0.9213	0.9499	1609	0.8484	0.9018	
1468	0.9209	0.9494	1612	0.8470	0.9007	
1471	0.9204	0.9489	1615	0.8456	0.8996	
1474	0.9198	0.9484	1618	0.8444	0.8986	
1477	0.9191	0.9478	1621	0.8433	0.8976	
1480	0.9183	0.9473	1624	0.8421	0.8967	
1483	0.9174	0.9468	1627	0.8410	0.8960	
1486	0.9164	0.9463	1630	0.8399	0.8951	
1489	0.9154	0.9458	1633	0.8390	0.8943	
1492	0.9143	0.9453	1636	0.8382	0.8937	
1495	0.9132	0.9447	1639	0.8376	0.8930	
1498	0.9120	0.9440	1642	0.8370	0.8924	
1501	0.9107	0.9433	1645	0.8368	0.8919	
1504	0.9095	0.9426	1648	0.8368	0.8914	
1507	0.9082	0.9419	1651	0.8370	0.8912	
1510	0.9068	0.9411	1654	0.8375	0.8911	
1513	0.9054	0.9402	1657	0.8383	0.8911	

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance			Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
1660	0.8394	0.8912	1804	0.8825	0.9244
1663	0.8402	0.8915	1807	0.8824	0.9243
1666	0.8413	0.8920	1810	0.8824	0.9243
1669	0.8426	0.8925	1813	0.8823	0.9242
1672	0.8441	0.8932	1816	0.8823	0.9241
1675	0.8459	0.8940	1819	0.8823	0.9242
1678	0.8481	0.8951	1822	0.8824	0.9245
1681	0.8501	0.8964	1825	0.8826	0.9247
1684	0.8518	0.8977	1828	0.8829	0.9249
1687	0.8535	0.8990	1831	0.8834	0.9253
1690	0.8549	0.9003	1834	0.8839	0.9258
1693	0.8563	0.9017	1837	0.8847	0.9264
1696	0.8577	0.9029	1840	0.8857	0.9272
1699	0.8589	0.9041	1843	0.8871	0.9283
1702	0.8601	0.9052	1846	0.8886	0.9294
1705	0.8614	0.9063	1849	0.8906	0.9308
1708	0.8627	0.9075	1852	0.8928	0.9324
1711	0.8640	0.9086	1855	0.8953	0.9342
1714	0.8653	0.9097	1858	0.8985	0.9362
1717	0.8668	0.9107	1861	0.9021	0.9385
1720	0.8682	0.9117	1864	0.9060	0.9410
1723	0.8694	0.9127	1867	0.9104	0.9435
1726	0.8703	0.9133	1870	0.9150	0.9459
1729	0.8710	0.9138	1873	0.9196	0.9484
1732	0.8714	0.9141	1876	0.9236	0.9510
1735	0.8717	0.9144	1879	0.9272	0.9541
1738	0.8720	0.9147	1882	0.9303	0.9567
1741	0.8724	0.9151	1885	0.9328	0.9590
1744	0.8731	0.9159	1888	0.9351	0.9607
1747	0.8738	0.9166	1891	0.9372	0.9621
1750	0.8748	0.9175	1894	0.9388	0.9633
1753	0.8760	0.9185	1897	0.9403	0.9643
1756	0.8771	0.9195	1900	0.9414	0.9650
1759	0.8781	0.9204	1903	0.9424	0.9655
1762	0.8790	0.9211	1906	0.9428	0.9659
1765	0.8797	0.9219	1909	0.9431	0.9662
1768	0.8803	0.9224	1912	0.9434	0.9663
1771	0.8808	0.9227	1915	0.9437	0.9664
1774	0.8812	0.9231	1918	0.9438	0.9665
1777	0.8817	0.9234	1921	0.9439	0.9668
1780	0.8820	0.9238	1924	0.9440	0.9667
1783	0.8822	0.9240	1927	0.9439	0.9666
1786	0.8825	0.9242	1930	0.9438	0.9667
1789	0.8827	0.9244	1933	0.9437	0.9668
1792	0.8828	0.9245	1936	0.9438	0.9668
1795	0.8827	0.9245	1939	0.9439	0.9669
1798	0.8827	0.9245	1942	0.9440	0.9667
1801	0.8826	0.9244	1945	0.9441	0.9667

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance			Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
1948	0.9442	0.9665	2092	0.9330	0.9565
1951	0.9440	0.9664	2095	0.9326	0.9563
1954	0.9438	0.9663	2098	0.9320	0.9559
1957	0.9439	0.9663	2101	0.9316	0.9556
1960	0.9439	0.9662	2104	0.9313	0.9552
1963	0.9439	0.9661	2107	0.9310	0.9548
1966	0.9439	0.9661	2110	0.9308	0.9544
1969	0.9438	0.9661	2113	0.9305	0.9541
1972	0.9436	0.9661	2116	0.9301	0.9540
1975	0.9434	0.9659	2119	0.9299	0.9536
1978	0.9433	0.9658	2122	0.9298	0.9532
1981	0.9429	0.9656	2125	0.9296	0.9530
1984	0.9426	0.9654	2128	0.9293	0.9527
1987	0.9425	0.9654	2131	0.9293	0.9525
1990	0.9426	0.9653	2134	0.9291	0.9524
1993	0.9427	0.9651	2137	0.9288	0.9523
1996	0.9426	0.9649	2140	0.9288	0.9523
1999	0.9424	0.9646	2143	0.9288	0.9520
2002	0.9422	0.9644	2146	0.9288	0.9520
2005	0.9421	0.9642	2149	0.9287	0.9520
2008	0.9418	0.9642	2152	0.9288	0.9517
2011	0.9416	0.9640	2155	0.9290	0.9518
2014	0.9414	0.9638	2158	0.9289	0.9519
2017	0.9411	0.9636	2161	0.9289	0.9517
2020	0.9408	0.9634	2164	0.9288	0.9516
2023	0.9407	0.9632	2167	0.9289	0.9517
2026	0.9405	0.9630	2170	0.9290	0.9518
2029	0.9403	0.9627	2173	0.9289	0.9515
2032	0.9403	0.9625	2176	0.9289	0.9516
2035	0.9401	0.9624	2179	0.9287	0.9516
2038	0.9399	0.9621	2182	0.9285	0.9514
2041	0.9398	0.9620	2185	0.9284	0.9513
2044	0.9397	0.9618	2188	0.9282	0.9512
2047	0.9395	0.9615	2191	0.9279	0.9509
2050	0.9394	0.9612	2194	0.9276	0.9506
2053	0.9392	0.9610	2197	0.9275	0.9504
2056	0.9388	0.9607	2200	0.9271	0.9503
2059	0.9383	0.9604	2203	0.9268	0.9501
2062	0.9380	0.9602	2206	0.9267	0.9502
2065	0.9374	0.9598	2209	0.9265	0.9501
2068	0.9369	0.9595	2212	0.9265	0.9501
2071	0.9364	0.9591	2215	0.9264	0.9501
2074	0.9359	0.9588	2218	0.9262	0.9499
2077	0.9353	0.9584	2221	0.9261	0.9498
2080	0.9348	0.9581	2224	0.9261	0.9499
2083	0.9343	0.9577	2227	0.9262	0.9499
2086	0.9339	0.9572	2230	0.9262	0.9500
2089	0.9333	0.9568	2233	0.9265	0.9501

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin

	Absorptance			Absorptance	
Wavelength	Minimum	Maximum	Wavelength	Minimum	Maximum
(nm)			(nm)		
2236	0.9268	0.9502	2371	0.9408	0.9611
2239	0.9272	0.9506	2374	0.9411	0.9613
2242	0.9275	0.9507	2377	0.9412	0.9612
2245	0.9278	0.9509	2380	0.9414	0.9614
2248	0.9281	0.9512	2383	0.9420	0.9621
2251	0.9288	0.9515	2386	0.9422	0.9621
2254	0.9294	0.9518	2389	0.9415	0.9623
2257	0.9297	0.9519	2392	0.9418	0.9625
2260	0.9300	0.9523	2395	0.9421	0.9627
2263	0.9306	0.9525	2398	0.9424	0.9627
2266	0.9311	0.9529	2401	0.9430	0.9633
2269	0.9316	0.9532	2404	0.9433	0.9636
2272	0.9319	0.9535	2407	0.9432	0.9627
2275	0.9321	0.9537	2410	0.9434	0.9627
2278	0.9329	0.9538	2413	0.9440	0.9634
2281	0.9329	0.9543	2416	0.9444	0.9636
2284	0.9330	0.9546	2419	0.9437	0.9640
2287	0.9334	0.9547	2422	0.9444	0.9646
2290	0.9337	0.9550	2425	0.9438	0.9638
2293	0.9341	0.9553	2428	0.9450	0.9648
2296	0.9344	0.9553	2431	0.9453	0.9654
2299	0.9342	0.9554	2434	0.9452	0.9653
2302	0.9344	0.9555	2437	0.9455	0.9661
2305	0.9349	0.9558	2440	0.9462	0.9657
2308	0.9349	0.9563	2443	0.9465	0.9664
2311	0.9354	0.9566	2446	0.9463	0.9654
2314	0.9358	0.9567	2449	0.9467	0.9656
2317	0.9360	0.9564	2452	0.9472	0.9668
2320	0.9359	0.9568	2455	0.9468	0.9661
2323	0.9363	0.9569	2458	0.9465	0.9665
2326	0.9362	0.9574	2461	0.9466	0.9664
2329	0.9367	0.9581	2464	0.9471	0.9668
2332	0.9368	0.9581	2467	0.9470	0.9668
2335	0.9372	0.9581	2470	0.9475	0.9674
2338	0.9376	0.9583	2473	0.9474	0.9667
2341	0.9380	0.9585	2476	0.9483	0.9678
2344	0.9387	0.9589	2479	0.9464	0.9676
2347	0.9390	0.9594	2482	0.9450	0.9668
2350	0.9396	0.9595	2485	0.9487	0.9690
2353	0.9399	0.9597	2488	0.9465	0.9677
2356	0.9396	0.9596	2491	0.9452	0.9698
2359	0.9395	0.9604	2494	0.9470	0.9701
2362	0.9403	0.9605	2497	0.9457	0.9708
2365	0.9405	0.9612	2500	0.9480	0.9771
2368	0.9403	0.9605			

Table D.1 (cont.) Minimum and maximum spectral absorptance of human skin