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I. BACKGROUND 

A. PURPOSE 
Navy leadership is interested in initiatives that can potentially increase the 

responsiveness of campaign analysis. Simulation-based campaign analysis is used to 

measure risk for investment options in how best to equip, organize, supply, maintain, 

train, and employ our naval forces. The Synthetic Theater Operations Research Model 

(STORM) is a stochastic simulation model used to support campaign analysis by the U.S. 

Navy, Marine Corps, and Air Force. Building, testing, running, and analyzing campaign 

scenarios in STORM is a complex, time-consuming process. A simulated campaign may 

span months, involve scores of ships and battalions, hundreds of aircraft and installations, 

all executing thousands of interconnected missions involving numerous events in time 

and space. Creating, testing, and approving the inputs for a single design point (DP) 

requires a significant investment in analysts’ time and computing resources. 

Consequently, there are limits on the number of DPs that can be produced, executed, and 

analyzed during a study’s timeframe.  

The purpose of this research is to assess state-of-the-art methods in computational 

experimental design and other technologies with a goal of improving the timeliness, 

breadth, and robustness of future Navy studies using STORM. The long-term objectives 

are to apply cutting-edge sequential and adaptive design of experiment (DOE) methods in 

the selection of DPs to minimize the number of modeling runs required for meaningful 

comparisons, and to develop an understanding of the conditions in which these 

sophisticated designs are useful in comparison to traditional baseline and excursion 

modeling. The DOE methods should ensure control over variation so that insights gained 

through analysis are meaningful, timely, and defensible. In this initial phase, we present 

three approaches (sequential, comparative, and focused) and describe opportunities for 

their use on STORM scenarios that are either unclassified, mature classified scenarios, or 

working scenarios.  We recommend applying a mix of all three methodologies to a 

classified scenario in the future. 
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B. STORM CAMPAIGN MODEL 
The Synthetic Theater Operations Research Model (STORM) is a data-driven, 

multi-sided, stochastic computer simulation of military operations covering the air, space, 

land and maritime domains, including full logistics, energy, maintenance, intelligence, 

surveillance, and reconnaissance (ISR), and weather impacts (Group W, 2021).  STORM 

is designed to provide campaign analysts with the ability to examine issues involving the 

utility and effectiveness of combat power in a theater-level joint warfighting context. 

STORM is sponsored by Headquarters US Air Force Studies, Analyses and Assessments. 

 STORM is a closed-form analytical campaign simulation, meaning that an analyst 

does not operate in the loop during run time.   The model runs orders of magnitude faster 

than real time and has been used for force structure, force employment, and system trades 

studies (Group W, 2021).  Being stochastic in nature, a set of replications is typically 

performed for a given case, and therefore, for any metric or data element, a range of 

outcomes is expected over the replications.  

 Having been designed to capture warfare at the campaign level, this means: (1) 

physical entity representation is often aggregated, (2) geography and time are represented 

on a large scale, for example, at the theater or multi-theater level and spanning weeks or 

months vice days, and (3) the model is capable of representing a wide breadth of 

missions, capturing the outcome of complex interactions for the duration of large-scale, 

joint force operations. 
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II. DESIGN OF EXPERIMENT METHODOLOGY 

 
A. INTRODUCTION 

The Simulation Experiments & Efficient Designs (SEED) Center uses the 

metaphor of “data farming' to describe iterative design and analysis of computer 

experiments.  Just like a farmer cultivates their plot of land to maximize yield, a data 

farmer intentionally and effectively manipulates simulation inputs using sound 

techniques from the design of experiments (DOE) literature, in order to maximize 

information yield.  The idea is that the data farmer “grows” data needed for their analysis, 

according to their carefully designed experimental plan.  If the plan for conducting model 

runs is not well-designed, several pitfalls can occur, which would severely limit the 

information that can be gained.  Among these pitfalls are (1) basing analytic 

recommendations upon the output of only a few runs of a model; (2) confounding 

experiment variables (called factors), meaning that the effects of factors on the response 

cannot be untangled; and (3) failing to detect an interaction effect, meaning that the effect 

that a factor has on the response depends on the value of the factor(s) it interacts with. 

Experimental design has been used for decades, within a wide variety of fields, 

but technological breakthroughs in computing power and efficient designs have better 

positioned decision makers to conduct experiments on their (increasingly complex) 

simulation models in a more timely matter. Quite simply, data farming makes possible 

the completion of experiments that otherwise would not have been feasible due to the 

amount of time required. It enables the simultaneous variation of a large number of 

inputs, such as force sizes, concept of operations or employment, weapon capabilities, 

environmental conditions, etc., in an efficient manner. This makes possible the estimation 

of models relating multiple outputs (e.g., casualties, number of platforms out of action, 

achievement of conditions necessary to advance the campaign, etc.) to the inputs that 

were varied.  By applying sound design of experiment techniques to simulations, analysts 

drastically improve their ability to extract valuable information, gain a better 

understanding of the solution space, and therefore better support decision making. 
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For a relatively concise, yet thorough and recently updated, introduction to 

designing computer simulation experiments, see (Sanchez et al., 2021).  We will present 

a few main points, along with a brief discussion of selected design types, in the next 

section. 

 

B. DISCUSSION OF SELECTED DESIGNS 
There are many design types; we select a few to describe in this section that we 

have found particularly useful for simulation experiments. 

1. Full factorial 
Perhaps the most commonly known design is a gridded, factorial design called the 

full factorial. The full factorial tests every possible combination of a set of factors.  From 

an information standpoint, this design is ideal, but the issue is when a model has a large 

number of input variables the number of required runs increases exponentially. This 

exponential increase is known as the curse of dimensionality.  As we will discuss, 

efficient designs can break the curse. 

 

2. Fractional factorial and central composite designs 
A fractional factorial design is a reduced version of the 2k full factorial design, 

testing k factors at two levels each, at notional “low” and “high” values, requiring only a 

fraction of the number of design points that would have been required for the full 

factorial.  These designs come in various sizes, and resolutions.  The basic idea is that in 

return for increased efficiency (fewer design points), one must trade off some ability to 

estimate interactions. This may be acceptable, particularly if the goal is to perform a 

screening experiment, in order to separate the vital few from the trivially many.   

It is beyond the scope here to delve into further detail, but we frequently use the 

resolution V fractional factorials (R5-FFs) because they allow the linear main effects and 

two-way interactions of many factors to be investigated simultaneously, without 

confounding.  Expanding these R5-FFs to central composite designs provides some 

information about nonlinear behavior in simulation response surfaces and permit 

orthogonal estimation of full second-order metamodels. 
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3. Very large resolution V fractional factorial designs 
These so called very large resolution V fractional factorial designs are able to 

simultaneously estimate all main effects and two-way interactions without confounding 

for up to 120 factors, many more than are available in the classic literature. These designs 

can be used for screening on both main-effects and two-way interactions, as well as for 

exploring binary factors.  

Design generators for these are available for download at the SEED Center for 

Data Farming web site (https://harvest.nps.edu) as portable cross-platform Ruby 

(https://www.ruby-lang.org/) scripts. The method has also been implemented in the R 

package FrF2Large (https://rdrr.io/cran/FrF2/man/FrF2Large.html).  

 
4. Nearly orthogonal Latin hypercube 
An alternative to the full factorial design, ideal for a set of continuous-valued 

factors, is the nearly orthogonal Latin hypercube (NOLH). Developed by Cioppa and 

Lucas in 2007, the NOLH design is an efficient, flexible, and space-filling design that 

minimizes correlations among variables (Cioppa and Lucas, 2007). Correlations among 

variables can mask or confound effects. The NOLH designs have space-filling properties 

similar to those of full factorial designs, but require fewer runs to achieve comparable 

space-filling results. A convenient Excel workbook NOLH template can be downloaded 

from https://harvest.nps.edu. It contains worksheets for designs of various sizes.  The 

largest design can accommodate up to 29 factors using 257 DPs. 

 

5. Nearly orthogonal and balanced (NOB) designs  
The nearly orthogonal and balanced (NOB) design is similar in principle to the 

NOLH, in that it is space-filling, efficient, and flexible with respect to analyses that can 

be performed on the resulting data, but unlike the NOLH, it was explicitly designed to 

handle a mix of factor types (nominal, discrete, continuous). Though rounding is possible 

with the NOLH design, it works best with a set of continuous factors, as the rounding can 

significantly increase the pairwise correlations.   

A design generator developed by (Vieira Jr et al. 2013) allows for the creation of 

designs of various sizes.  An Excel workbook NOB template, available on the SEED web 

https://www.ruby-lang.org/
https://rdrr.io/cran/FrF2/man/FrF2Large.html
https://harvest.nps.edu/
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site, can accommodate 10 blocks of 20 k-level factors (k=2,3,…11) plus 100 continuous 

factors, requiring only 512 design points.  

6. Sequential designs 
In contrast to a single-stage design, sequential design methodology works by first 

testing a set of DPs, using information gained to determine which DPs to try next, and 

repeating until some stopping criterion is met.   

Methods for adaptive experiments can generally be classified under two separate 

categories: objective seeking and global fitting (Erickson et al., 2021). Objective seeking 

experiments aim to find a single point that optimizes a function, while global fitting 

methods aim to fit a model that estimates a surface over its entire domain. An example of 

a strategy to determine the next DPs to be tested, given the set already collected, is to add 

points where the metamodel uncertainty is highest. Sampling in a sequential manner, vice 

all at once in a single-stage design, can be particularly valuable when each design point 

requires significant time and effort to create and/or have lengthy run time.  

There also exist hybrid algorithms that combine global fitting and optimization.  

Selection of next points may also be based on a gradient descent algorithm and/or use 

value criteria (Erickson et al., 2021).   

7. Nested designs 
In a nested design, the levels of one factor depend on the value of the factor it is 

nested within. For example, say there may be two main variants of each of two surface 

vessel platforms, but the two platforms are significantly different from one another, as are 

each of its variants.  In this case, each surface vessel may have two variants, named ‘A’ 

and ‘B’, but each vessel’s variants bear no similarity to one another, even though they are 

similarly named with the labels of A and B.   In this case, the Variant factor would be 

nested within the Surface Vessel factor, and in this case, the analysis would not consider 

a full two-way interaction between Variant and Surface Vessel.  One would instead 

analyze the effect of Variant only within each category of Surface Vessel. 

8. Combining designs 
Designs can be combined in interesting and useful ways. For instance, if 
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factor ranges are kept the same (or symmetric about a central baseline design point), two 

or more orthogonal designs can be concatenated and still maintain orthogonality—an 

example would be adding an R5-FF design to a NOB design to provide more sampling 

near the corners of the input factor space.  

If we classify and separate the factors into decision factors (controllable in the 

real world) and noise factors (uncontrollable in the real world), we can either construct a 

crossed design from separate designs for the two factor classes, or construct a single 

combined design. Crossing a decision factor design (say with m design points) with a 

noise factor design (say with n design points) means that the n noise design points will be 

repeated for each of the m decision design points, resulting in m x n total design points.  

Crossing can be computational expensive, but allows a full “apples to apples” 

comparison of results, since each of the decision design variations is run over the exact 

same noise variations.  

It is more important to use any good design than to use a particular design. 

While the NOB designs (and other designs based on Latin hypercube (LH) designs) we 

commonly use were developed with an explicit interest in reducing the maximum 

pairwise correlation among main effect estimates, other designs are available 

in various software packages, including the DOE menu in statistical software JMP 

(https://www.jmp.com/), several R packages for creating maximin or spacefilling 

LH designs (http://CRAN.R-project.org/), and custom design software 

(http://www.statease.com/dx10.html).  
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III. APPLYING DOE TO STORM 

A. TWO TYPES OF DESIGN POINTS 
The overarching research objectives are to apply design of experiment (DOE) 

methods in the selection and creation of design points to minimize the number of 

STORM runs required for meaningful comparisons and to determine how best DOE 

methods can complement traditional baseline and excursion modeling. The following 

questions will guide the research: 

• How much variation in design points (DPs) can modelers explore before the level 
of effort exceeds the benefit? 

• What variations in capabilities or force structure provide the best information to 
be prepared to answer future questions from decision makers? 

• How should we include existing STORM results in the selection process of new 
DPs to sequentially and efficiently explore the most important variations? 

 

For our purpose in this research, we describe two types of DPs:  

• Those that require a significant investment in analysts’ time and computing 
resources, e.g., that reflect qualitatively different operational policies or C2 plans. 
There are limits on the number of these “major” DPs that can be produced, 
executed, and analyzed during a study’s timeframe. 

• Those that involve changes to quantitative inputs that are more straightforward to 
articulate and implement, such as quantitative model inputs that can vary over 
specified ranges. Running experiments involving these types of DPs may still 
require time, but they generally do not have such long lead times. 
 

The “major” DPs are of most interest to N81 because of the extensive development time 

and cost required. The potential utility of our research will be to better understand the 

relationships between STORM input variables and STORM outputs, and to determine the 

effectiveness of sequential DOE for achieving this understanding. 
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B. THREE APPROACHES 
The application of DOE methods to the selection and creation of new DPs may 

help to streamline the study process and reduce the number of modeling runs required for 

meaningful comparisons.  Three types of approaches are possible. One or more of these 

can be used, as determined by the team. 

The first approach, a sequential approach, could be used to suggest future “major” 

DPs involving the difficult-to-change inputs. This would involve qualitative inputs that 

are not as amenable to automatic exploration, but require substantial time and effort to 

instantiate new major DPs. Determination of specific DPs to instantiate would be 

driven by needs/expertise/questions of N81 following deep dives into analysis and 

interpretation of previous major DPs. The DOE comprised of these new DPs will be 

very efficient, i.e., a limited number of new DPs will be created. The sequential DOE 

approach means that a deep dive into analysis and interpretation (by the team) will occur 

after each new major DP is created. If the results indicate that changes to the DOE are 

needed, or that further DP exploration is unlikely to be worth the effort, the initial DOE 

plan will be altered or halted as appropriate. 

The second approach, a comparative approach could be used to aid in verification 

and validation efforts and help identify reasonable factor ranges or settings. This involves 

structured parameter variation for (some of) the easier-to-change, quantitative factors and 

thresholds. It can provide guidance on factor ranges and combinations for which STORM 

does or does not produce credible output. If a working scenario is selected, comparisons 

can be used within the sequential approach: iterating over smaller DOEs can assist 

in verification/validation efforts during the (longer process of) creation of a new 

major DP.  

The third approach, a focused approach involving one or more existing DPs could 

provide guidance regarding appropriate metrics, factor ranges or levels, or sensitivity 

levels. This does not involve creation of new major DPs. Analysis of experiments 

involving an existing major DP may help reveal how much variation in other DPs is 

worth exploring. For example, DOE could be used to efficiently identify ranges for 

selected inputs for which the STORM output is relatively stable, or ranges beyond 

which the STORM output is not credible. Other features or components to explore 
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would be guided by general needs that N81 has identified. For example, one challenge in 

a long-term study is the need to wait for certain types of data (perhaps coming from 

higher classification levels) before doing analysis. With a focused approach, we 

could explore what type(s) of experiments might provide useful intermediate 

information regarding STORM’s sensitivity to components where data are uncertain 

or at a classification level above SECRET. These methods or lessons learned might 

transfer over to working scenarios, so N81 could gain insights from experiments 

conducted while waiting for input from others on certain components of the STORM 

database. 

 

C. SELECTING FACTOR TYPES AND RANGES 
The first step in designing an experiment is determining the set of factors to be 

varied and their respective levels or ranges. There are many strategies for deciding on an 

input space to be explored.  For example, a sensitivity analysis that varies factors plus or 

minus 10-20% of their baseline values may be selected to determine if any key measures 

are highly sensitive to these changes.  Alternatively, a broader “what if” type of 

experiment that varies factors more broadly, beyond what is considered possible today, 

might be performed to determine where the so called ‘knees in the curve’ occur.   

Another approach would be to conduct a structured search for solutions 

(campaign strategies and tactics) that are robust to disruptions or other sources of 

uncertainty.  Such a study might also provide insight about how new technologies (e.g., 

unmanned vehicles or new weapons systems), perhaps combined with an alternative force 

structure and tactics, might simultaneously lead to mission success. 

These approaches might also be combined, for example, by varying some factors 

over broad ranges, other factors over more narrow ranges, and combining into a single or 

crossed design. 
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D. APPROACHES FOR HANDLING CONSTRAINTS IN INPUT SPACE 
 

1. Functions of inputs as factors 
Factors need not correspond directly to simulation inputs. Taking an example 

from (Sanchez et al., 2022), suppose two inputs are the mean times μ1 and μ2 required for 

a specific agent to process messages from class 1 and class 2, respectively, where 

message class 2 is considered more complex than message class 1. Varying μ1 and μ2 

independently may either result in unrealistic situations where μ1 > μ2, or require the 

analyst to select narrow factor ranges. Instead, we could use μ1 as one factor to represent 

the capabilities of the agent, and vary the ratio μ2/μ1 over a range of interesting values 

(say, 1.1 to 2.0) to represent the relative difference in message complexity.   

This same idea could also apply to the speeds over which to vary a slower, larger 

platform and an inherently smaller, faster platform.  For example, the slower platform’s 

speed might be varied over 15 to 25 knots, while the faster platform’s speed is varied as a 

ratio that is 2 to 4 times that of the slower platform. 

 

2. Mixtures 
There are several options for varying factors that constitute a mix, for example, 

factors that represent a mix of munition types.  Briefly, these include: (1) vary all but one 

of these independently and determine the last one’s value such that the total number of 

munitions is fixed; (2) vary all factors independently and apply cost-benefit analysis to 

the results; (3) use a space-filling design that satisfies a constraint, where satisfying the 

constraint could just mean deciding which DPs NOT to run from, e.g., an NOLH or 

NOB; (4) use some ratios as factors as discussed in the previous sub-section; or (5) use a 

classical mixture design or other special-purpose design. 

 

3. Related or correlated factors 
A desired set of factors may contain some that are related to other factors, i.e., 

they are not independent. Some options for handling related, dependent, or correlated 

factors are: 
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• Lock-step factors for all entities in a particular group.  For example, perhaps 
every unmanned surface vessel of a particular class has the same capabilities. 

• Vary distributional parameters as factors, rather than separate factors for each 
individual.  For example, a distributional factor might capture a range of 
performance values, such as phit, of a weapon.  This presumes that the model is 
capable of receiving distributional parameters as input. 

• Lock-step some factors so they vary together. For example, perhaps we spread out 
a fixed number of munitions across platforms, or, perhaps weather conditions 
degrade multiple capabilities. 

• Nest factors. As discussed in the previous section, this means that the levels of a 
factor are tied to the level of the factor it is nested within. 

• Use qualitative factors. This might mean implementing “big” changes that vary 
several things together, like a “scenario” factor.   

• Start with a full design, but remove design points that correspond to illogical or 
infeasible design points. It may be useful, however, to evaluate design points that 
stretch initial intuition about infeasibility, however, since (1) intuition may not be 
correct due to complex interactions within the scenario, and (2) evaluating does 
not mean endorsing.  Casting a wider net in exploration may be more useful than 
unnecessarily limiting options. If design points are removed, plots and 
correlations of the factors should be checked to ensure that the output will still be 
suitable for the analysis intended, i.e., factors do not become highly correlated 
with each other. 

• Generate a custom design. Statistical and special-purpose design software can be 
used to generate designs of various types that take user-specified constraints into 
account. 

 

E. INITIAL DISCUSSION ABOUT EXPERIMENTAL FACTORS AND 
POTENTIAL APPROACHES 

During the kickoff meeting held in December 2021, an initial set of possible anti-

surface warfare experiment factors was discussed.  The set appears in Figure 1, a scan of 

an unclassified meeting handout. It was quickly decided to drop the sub-launched 

munition factors, so those are shown lined out, and meant that we would restrict our 

attention to the Navy air-launched and surface-launched anti-ship munitions. 
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Figure 1. Handout from kickoff meeting that described potential anti-surface 
experiment factors.  

 

The discussion we had with N81 before the project was terminated delved into 

fleshing out the dependencies between the identified variables.  This information is 

needed to determine which factors would be varied independently, which would be 

varied in a dependent (related) manner, and which may be dropped from initial 

consideration because of the complexity involved in manipulating that input. 

We briefly discussed pros and cons of varying munitions with a single “type” 

(categorical) factor versus with a set of independent performance or characteristic factors. 

We decided that we might treat the air-launched munitions as categorical type but treat 

the surface-launched munitions with a set of more-broadly-varied factors.   

 With the air-launched munitions treated as a type factor, we might still vary its 

performance parameters over narrow ranges, or these might simply vary lock-step with 

the type. The purpose of varying parameters over narrow ranges would be to capture 

reasonable variation of these within a given type. With the surface-launched munitions 

more broadly defined, for example, to represent a generic future missile, we would vary 

performance parameters over a broader range.  
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The next step in the project would have been to create a table or graph specifying 

how changes to a given factor propagate into STORM’s individual data files.  In other 

words, we would need to specify all the parameter elements in STORM’s various .dat 

files that need to change to accommodate a change in this factor and also understand any 

explicit or implicit dependencies involved.  Our conjecture at the point of project 

conclusion was that munition types are more tightly bound to the platform carrying the 

munition, i.e., the missile is in effect the munition (the lethal part), so it might be more 

straight-forward to construct a generic missile. At least in the baseline data, there is a 

one-to-one correspondence with the platform/air munition.  

Again, having a complete understanding of dependencies, necessary or desired, is 

a precursor to selecting a starting design.  We next describe our limited understanding of 

these dependencies at project conclusion, as a starting point for future work. We discuss 

these by potential factor. 

1. Kinematic Range. This factor represents the range of the munition and 

would likely be treated as independent within the limits of current to projected future.  

We would need to identify if it corresponds to one or more parameter elements or if it is 

derived within the model given other factors such as payload weight and fuel burn rate.   

2. Flight Profile.  Initial discussion indicated that N81 considers flight 

profile to be dependent on range. For example, achieving a certain speed threshold comes 

with trading off some range.  Also may just be two levels of this.  It appears that the 

STORM typeairmunit.dat file defines flight profile (linear or ballistic), speed, signature, 

and navigation system. There also may be parameters in the typeaa.dat file to modify. 

The profiles in the typeairmunt.dat file only look applicable to terminal flyout, i.e., after 

leaving the carrying platform on the way to the target. 

3. Phit. This factor, representing the probability of hit of the munition, would 

be varied in an independent manner. 

4. Surface to Air (S2A) survivability. This represents the munition’s 

susceptibility to being intercepted. As yet undetermined, should this be treated as being 

related to the profile, for example, to represent speed, whether or not it is sea-skimming 

or can perform evasive maneuvers. 
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5. Discrimination. This represents the ability to correctly identify the 

highest priority target in the formation it is attacking, meaning did it correctly go after the 

carrier instead of a lower-priority ship type.  This factor would be varied in an 

independent manner. 

6. Required Salvo. This factor represents the salvo size requirement 

determined by the model in order to have high probability of achieving a mission kill of 

the intended target.  It is important to note that the user can not directly manipulate salvo 

size.  Instead, the weapon planner assigns this as a function of the munition’s phit and a 

‘max packages’ input.  So for example, a missile with low phit but high max packages 

would likely be assigned a high required salvo.  A missile with a high phit and low max 

packages would likely be assigned a lower required salvo.  It seems this is also dependent 

on the vulnerability of the intended target.  Our initial conclusion here was to vary the 

max packages as the factor and perhaps determine if, in the post-processing, we can grab 

the value of required salvo assigned by the planner for each run. 

7. Number Carried. This factor represents the number of the munition 

carried by the individual platform, i.e., aircraft or ship.  Our initial discussion determined 

that this factor would be varied over small ranges, as makes sense for the particular 

platform.  So for example, a specific aircraft might carry two or four of one munition type 

but six or eight of another. We had not yet discussed the possibility of including mix 

factors. 

8. Concept of Operations (CONOPS).  It was discussed that there would 

only be two levels of this factor to consider at first, tied to the kinematic range of the 

munitions.   NAVAIR conducted a study in which they varied CONOPS over two levels 

for the carrier, and it was discussed that this study could make use of their files. At the 

time of project end, N81 had requested the files from NAVAIR. It was not yet clear 

whether the CONOPS changes were entirely resident within the navalc2.dat file or if they 

involved changes to other files as well. 

 

F. OPTIONS FOR INITIAL SMALLER-SCOPED EXPERIMENT 
Since the discussion about dependencies in section E were not yet fully resolved, 

and to potentially accommodate a smaller scope of work effort due to N81 loss of 
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contractor support and COVID-related restrictions, we discussed two possibilities for 

conducting a smaller initial experiment. This initial effort would serve to both provide 

insight as well as to work the process involved and come to a better understanding about 

time required to develop and run cases. 

1. Sensitivity analysis of a subset of the original factors 
We could perform a sensitivity analysis design over the five factors listed in Table 

1. These factors were chosen because they were part of the original set of identified 

variables and are likely straightforward to manipulate.  Because of the sensitivity analysis 

nature of the factor ranges, it is deemed unlikely that leadership would determine that a 

major CONOPS change is required.  

 

Table 1. Factors and Settings for Sensitivity Analysis DOE 

 

Though one option is to vary each variable plus or minus (say) 10%, we choose 

here to focus on potential improvement only, hence the choice to vary from baseline as 

the minimum to plus 20% as the maximum. These factors would operate as multipliers 

and would be applied independently to all air-launched, anti-surface munitions.  For 

example, say there are two munitions of interest, then DPs with the plus 20% setting 

would increase munition 1’s range by 20% and also increase munition 2’s range by 20%.  

We would not expect munition 1’s range to be equal to munition 2’s range. 

As discussed previously, there are different choices of designs available, but we 

would choose the two-level Resolution V fractional factorial, requiring 16 design points 

(DPs) to explore these 5 factors.  The Resolution V nature of the design means that it 

requires more design points than those of lower resolution, but allows for estimation of 

all main effects and two-way interactions without confounding.  Optionally, a single 

center point could be added to determine if curvature exists, though the source of the 

curvature could not be resolved without adding design points.  Given these factors and 
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ranges, though, it does seem that curvature would be unlikely and therefore, we could 

drop the center point. 

To conserve run time and storage required, we could gather key measures from 

the dbase.out files and bypass the data warehouse loads.  We believe there are already 

measures that count the number of out of action red and blue surface combatants, for 

example, but if not, it should be straightforward to add these measures.  If we do bypass 

the data warehouse loads, we would not run the STORM Automated Reporting Aid 

(SARA), since it requires data warehouses. 

 

2. Sensitivity analysis of C2 factors 
LT Devon Cobbs (2018) explored robustness of results to seven factors, including 

thresholds in the navalc2.dat file.  Last year, as part of the unclassified work effort, we 

considered the possibility of performing a similar experiment on the unclassified Punic 

scenario.  In Table 2, we identify potentially interesting threshold values to vary, as well 

as their ranges and file location (sidec2 or navalc2). 

 

Table 2. Factors and Settings for a C2 threshold experiment on Punic 

 

We could look at doing something similar on the identified classified scenario.  

We would require input on interesting thresholds to identify, and if changing these values 

required other changes outside of where they appear in the navalc2 or sidec2 files.   
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IV. EXECUTION AND ANALYSIS 

A. EXECUTING THE RUNS 
Prior to executing the runs, we first need to construct the excursions or design 

points from the agreed upon experimental design. We planned on this being in the form 

of a spreadsheet, or comma-separated value (CSV) file, where each column is a factor, 

and each row is a design point, with each cell specifying the value of that factor for that 

design point. This spreadsheet would have been generated using any of the DOE 

templates mentioned in Chapter II. 

To create the individual excursions, we planned on using a template approach, 

similar to what STORM's Experiment Manager uses. With the STORM files from the 

baseline scenario, we would have worked with N81 to identify the particular location in 

those files where the factor value was defined, then replace that value with a templated 

string, e.g., "#FACTOR1#". Then, using R or python scripts we planned on developing, 

run that script to merge the design spreadsheet with the STORM baseline files to create a 

set of excursions, where each excursion corresponds to the design point row in the 

spreadsheet.  

Depending on N81's preference, we then planned on either: (1) integrating those 

generated excursions/studies with the current system using git, or (2) proceed using the 

design artifacts (DOE spreadsheet, STORM templated files, other STORM scenario files 

not changed by the design) integrated with git, and then constructing a file structure 

similar to what STORM's Study Tool uses. The first option affords easier integration with 

the N81's current STORM infrastructure. The second option is potentially more flexible 

with respect to running multiple excursions/design points concurrently, in either a 

sequential or adaptive experimental design setting. As we developed a fuller 

understanding of N81's STORM infrastructure and preferences, we planned on discussing 

the advantages and disadvantages of each option, and where, if any, there are significant 

differences. 

To execute the runs, we initially planned on manually starting each individual 

excursion/design point for some number of replications using N81's current STORM 

infrastructure. Eventually, we planned on writing R or python scripts to 'wrap around' 



 22 

N81's scripts to start multiple excursions concurrently. This, of course, would depend on 

the computational resources available prior to starting the experimental study. Also, we 

planned on having a discussion regarding distribution of runs using an identified 

scheduler, e.g., HTCondor, OpenPBS, or any one of the other STORM-supported 

scheduler software. We have had good success with HTCondor 

(https://research.cs.wisc.edu/htcondor/) to conduct data farming experiments on our 

SEED Cluster. Distributing runs using a scheduler can provide a smoother workflow, 

with the added benefit of easily inserting other types of jobs/tasks into the workflow as 

needed, e.g., data warehouse loads and analysis tasks. 

 

B. POST-PROCESSING / KEY METRICS 
Our initial plan for post-processing the output from the experimental design was 

to use N81’s STORM Automated Reporting Aid (SARA), augmented as needed, by R or 

python scripts we would have written that would 'wrap around' any of the SARA 

scripts/code. The latter would have included, at a minimum, the ability to join/merge the 

data with the factors from the design.  

Another idea we planned on discussing that could provide faster turnaround of the 

run process (at the expense of more detailed analysis up front) is, for each design 

point/replication, to extract the Measures output from the dbase.out files as the replication 

completes. Not running a data warehouse load immediately after the run could save 

significant time in the overall process. After the experimental study concludes, or during 

any run/computer hiatus, the data warehouse loads could then be subsequently run for the 

follow-on detailed analyses. Of course, this depends on whether the Measures contain 

enough information about the run to help with any initial analysis. Again, assuming the 

Measures contain enough information, this process could be also used in a sequential or 

adaptive experimental design setting by extracting sufficient metrics and statistics to 

drive the experimental design without having to perform expensive data warehouse loads 

as part of that process.     

The Appendix contains example python code to extract Measures data from 

dbase.out files. 
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C. ANALYSIS OF EXPERIMENT DATA 
The analysis of experiment data starts with identifying the responses (output) of 

interest most pertinent to the study.  These responses may be of different types, for 

example, continuous, discrete, qualitative, transient or steady state, complete time series 

or aggregate measures such as frequencies, means, variances, or percentiles, etc.  The 

types of visualizations and analysis techniques most suitable for a given response depend 

on response type.  We expected to include both end-of-run data such as platforms out of 

action as well as time series measures that captured if and when key campaign 

progression conditions were met. 

STORM has built-in capabilities for certain types of report and graphical 

generation.  However, capabilities are typically limited to viewing certain plots for a 

small handful of cases side by side, and this was our understanding of the typical use case 

for SARA-generated plots, as well.  In contrast, we planned to use complementary 

methods for viewing and analyzing experiment data as a whole, to identify the most 

influential factors and interactions, determine maxima, minima, ‘knees in the curve’ and 

broad flat regions where results are robust.   

As part of the analysis, we planned to fit metamodels that relate an experiment’s 

inputs to responses.  Examples of metamodeling approaches include stepwise regression, 

logistic and multinomial logistic regression, partition trees, bootstrap forests, and 

Gaussian process models.  Some of these methods are considered parametric because 

they come with distributional or other assumptions, and others are nonparametric in 

nature.  We typically use a family of methods, with different strengths and limitations, to 

uncover interesting relationships.  

The fitting of metamodels should be complemented by visual representations of 

the data. Even a set of replications for a single design point can yield a variety of 

interesting insights. A diverse set of graphs appears in Morgan et al. (2018), who provide 

multi-color dashboards that display, for each replication, whether or not each of 

many user-defined success metrics are met. They also consider correlation plots of 

key metrics; present a variety of heatmaps that show conditions, events, and resource 

levels across time and replications; use cluster analysis to identify ‘good’ and ‘bad’ 
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clusters; and construct trees that show how often different events fire that allow for more 

in-depth explorations of why the clusters differ.  Part of the work would have been to 

determine how to adapt some of these methods to data coming from a designed 

experiment instead of from a single case.  

As mentioned previously, we would have considered multiple objectives.  This 

would have been necessary, given the nature of campaign analysis. For example, one 

topic discussed in preliminary meetings was how to analyze a self-correcting system. As 

a motivating example, say that significantly increasing the inventory or capability of a 

certain missile surprisingly had no appreciable effect on a key response such as red ship 

drawdown.  Could it be that the system was self-correcting such that other USN air 

sorties or assets adapted to fill the gap?  Would this have been allowed per the campaign 

plan?  Did another service, say USAF, adapt to launch sorties to fill the gap? 

STORM is a complex model, with thousands of time-space interactions occurring 

over a long period.  Fully understanding the ‘why’ behind a particular run resulting in a 

particularly good or bad outcome requires in-depth scenario and model understanding, 

and may involve doing a deep-dive into results/playbacks.  The collection of responses 

should include indicators such as when sorties need to be canceled, resources fall or stay 

below a critical threshold level, and status of key conditions that would reasonably be 

correlated with mission success and that would serve to drive campaign progression 

through its planned phases.  In short, the data collected and analyzed should provide 

quality leads in the right direction with respect to establishing reason and causality.   
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V. SUMMARY / FUTURE WORK 

Large-scale simulation models inform many important decisions within the 

Department of Defense.  The time required to create or modify these models often require 

substantial time and effort from teams of developers and analysts in close consultation 

with subject matter experts.  Recent breakthroughs in large-scale simulation experiments 

have allowed analysts and decision makers to gain a much broader and deeper 

understanding of the model behavior while avoiding the so-called ‘curse of 

dimensionality’ that makes brute force model exploration impossible.  In a nutshell, well-

designed experiments consist of carefully chosen combinations of model inputs, called 

design points. The Naval Postgraduate School’s Simulation Experiments & Efficient 

Designs (SEED) Center for Data Farming is a recognized leader in advancing the theory 

and application of large-scale simulation experiments.  Data farming is a metaphor for 

growing data from computational experiments.   

Further research is needed to address the needs of senior leaders who use models 

(such as campaign models) where some of the design points are difficult to instantiate.  

For example, some design points might reflect qualitatively different operational policies 

or command and control plans, and consequently have a long lead time and high cost.  A 

better understanding of how designed experimentation can complement the traditional 

baseline and excursion modeling process merits further research.     
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APPENDIX 

### Example python code for reading dbase.out and extracting Measures data 
 
Below is example python code to extract Measures and their values from a STORM 
dbase.out file. This could also be easily done in R and integrated into SARA (if 
functionality does not currently exist). The dbase.out file is a space-separated text file, 
with a single data record on each line. 
  
--python snippet, with comments 
# lines starting with '>>>' indicate a prompt,  
# followed by a variable name or expression,  
# followed by example output of that variable or expression 
import gzip 
import pandas as pd 
import re 
 
# dbase.out.1.gz is an example dbase.out compressed file from a Punic21 run 
 
fp = gzip.open("dbase.out.1.gz",'rt')  # use 't' to read in as text 
dd = fp.readlines()  # reads in all lines; will have the '\n' line ending 
# if you provide an argument to readlines, it is the number of bytes to read in, not number 
of lines! This will help if the file is large and you want to process in chunks 
 
# Preamble of dbase.out files contain mappings and data specifications 
# the first 3 characters indicate a record id; that is followed by the data specification 
# for that data record 
# Measures data are represented by 2 records: MeasureValue and Measure. 
# Here is the mapping from the example dbase.out file: 
#'+09MeasureValue  PKEY INT(8) Measure_FKEY INT(8) Time REAL MeasureValue 
REAL\n',  
#'+08Measure  PKEY INT(8) NAME CHAR(50)\n',  
 
# extract all the Measures 
f08 = [w for w in dd if w.startswith("-08")] 
 
# in the Punic21 example, there are 15 Measures 
>>> f08 
['-08 0 "Red Ground Unit Surv"\n', '-08 1 "Red SSM surv"\n', '-08 2 "Red Legacy Short-
Range Mobile SAM surv"\n', '-08 3 "Red Legacy Long-Range SAM surv"\n', '-08 4 "Red 
Medium-Range Mobile SAM surv"\n', '-08 5 "Red AC surv"\n', '-08 6 "Red Advanced 
Very Long-Range SAMs surv"\n', '-08 7 "Blue Med MCM Complete"\n', '-08 8 "SWEMP 
Naval Air To Def East"\n', '-08 9 "SWEMP Naval Air To Defensive"\n', '-08 10 "Blue 
West Med Sea Superiority"\n', '-08 11 "Blue East Med Sea Superiority"\n', '-08 12 
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"SWEMP Carrier Dead"\n', '-08 13 "Blue Med Sea Superiority"\n', '-08 14 "Blue Med 
Sea Withdrawl"\n'] 
 
 
f09 = [w for w in dd if w.startswith("-09")] 
# Here is the first 10 MeasureValue entries 
>>>f09[1:10] 
['-09 1 4 0 1.00000000\n', '-09 2 3 0 1.00000000\n', '-09 3 2 0 1.00000000\n', '-09 4 1 0 
1.00000000\n', '-09 5 0 0 1.00000000\n', '-09 6 5 0.5 1.00000000\n', '-09 7 4 0.5 
1.00000000\n', '-09 8 3 0.5 1.00000000\n', '-09 9 2 0.5 1.00000000\n'] 
 
# need to sort out measures from f08, i.e., parse the dbase.out line 
pp = r"-08 (\d+) (.+)" 
r = re.search(pp,f08[1]) 
>>> r.groups() 
('1', '"Red SSM surv"') 
>>> r.group(0) 
'-08 1 "Red SSM surv"' 
>>> r.group(1) 
'1' 
>>> r.group(2) 
'"Red SSM surv"' 
 
f08p = [re.search(pp,f) for f in f08] 
ff08 = [[r.group(1), r.group(2)] for r in f08p] 
 
ff09 = [f.replace('\n','').split(" ") for f in f09] 
 
## construct panda data frames for the actual MeasureValues (f09) and the Measure type 
(f08) 
df1 = pd.DataFrame(ff09,columns=['tag','mvid','mkey','time','value']) 
df2 = pd.DataFrame(ff08,columns=['mkey','measure']) 
 
# we then merge the 2 data frames; we can then save/post-process/analyze this data, e.g., 
# compute measure statistics, construct heatmaps, etc.  
mm = pd.merge(df2,df1) 
>>> mm 
     mkey                   measure  tag  mvid                 time       value 
0       0    "Red Ground Unit Surv"  -09     5                    0  1.00000000 
1       0    "Red Ground Unit Surv"  -09    11                  0.5  0.99878531 
2       0    "Red Ground Unit Surv"  -09    25  0.58333333333333337  0.99878531 
3       0    "Red Ground Unit Surv"  -09    31  0.66666666666666663  0.99878531 
4       0    "Red Ground Unit Surv"  -09    37                 0.75  0.99658430 
...   ...                       ...  ...   ...                  ...         ... 
1731   14  "Blue Med Sea Withdrawl"  -09  1559                   18  0.00000000 
1732   14  "Blue Med Sea Withdrawl"  -09  1603                 18.5  0.00000000 
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1733   14  "Blue Med Sea Withdrawl"  -09  1647                   19  0.00000000 
1734   14  "Blue Med Sea Withdrawl"  -09  1691                 19.5  0.00000000 
1735   14  "Blue Med Sea Withdrawl"  -09  1735                   20  0.00000000 
 
[1736 rows x 6 columns] 
--- end python snippet   
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