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EXTENDED ABSTRACT 

Traditional software safety techniques rely on validating software against a deductively 
defined specification of how the software should behave in particular situations. In the case 
of AI systems, however, specifications are often implicit (e.g., in the case of expert systems 
and rules engines, where behavior is induced by describing facts and deduction rules and 
allowing an inference engine to recombine them according to pre-set combination 
schemas) or inductively defined (e.g., in machine learning systems, the goal is to identify 
and repeat as predictions patterns in aggregated data sets, and the specification is implicitly 
derived from the data set and perhaps some parameters of the model describing or 
extracting the patterns). Methods that extract insights from data-driven analytics are 
similarly inductively defined and are subject to sampling error since practical datasets 
cannot provide exhaustive coverage of all possible events in a real physical environment, 
which usually has an unbounded set of possibilities. Thus, traditional software verification 
and validation approaches may not apply directly to these novel systems, complicating the 
operation of systems safety analysis (such as implemented in MIL-STD 882E). However, 
AI offers advanced capabilities, and it is desirable to ensure the safety of systems that rely 
on these capabilities. When AI tech is deployed in a weapon system, robot, or planning 
system, unwanted events are possible. There are several techniques that can be used to 
support the evaluation process for understanding the nature and likelihood of unwanted 
events in AI systems and making risk decisions on naval employment. This research 
considers several of those techniques, and evaluates which ones are most likely to be 
employable, usable, and correct. Techniques include software analysis, simulation 
environments, and mathematical determinations. 
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I. INTRODUCTION 

Artificial Intelligence (AI), a suite of technologies which widen the scope of tasks that 
can be automated productively, has captured the attention of the defense community 
around the globe. AI creates opportunities for automation in applications that were 
previously thought to require close human supervision, offering advanced capabilities 
and new efficiencies. Yet important questions remain:  

• If we delegate tasks thought to require careful human oversight to machines, do 
we jeopardize safety and effective control?  

• How can we test and evaluate technologies that stretch or exceed previously 
understood limits of functionality?  

• How do humans navigate the interface with machines to build teams more capable 
than purely human efforts or purely automated tools?  

• If AI is fundamentally epistemically limited (as all models and computational 
tools are) by expressing only rigid rule-driven behavior (perhaps stochastically), 
how can we assess performance in an open world, as practical data sets are 
necessarily limited?  

• What can be done to manage ethical and policy problems attendant to novel 
automation?  

Because these questions do not have straightforward or widely accepted answers, AI 
complicates the operation of standard system functionality and safety assessments, such 
as the acceptance criteria in the DoD Directive 5000-series processes or the operation of 
MIL-STD 882E-driven analysis.  
Our work organizes what is known about these questions in service of building concrete 
safety and assessment frameworks for AI systems. We determine what existing methods 
do and do not establish with respect to the requirements of AI assessments, describe areas 
where existing techniques do not meet those requirements as well as what would be 
needed to cross the gap, and propose techniques and practices for applying emerging 
tools to the problems of safety of and for AI.  
A. CHALLENGES IN VERIFYING SAFETY FOR AI SYSTEMS 
Traditional software safety techniques rely on verifying software against a deductively 
defined specification of how the software should behave in particular situations. 
Specifications are defined either extensionally, by defining the input/output relation of a 
program, or intensionally, by defining the rules or methods of computation a program 
must use. Verification, then, is the problem of comparing the behavior of the real system 
to the specification. The complementary problem of validation aims to establish that the 
specification captures goals and intentions of system stakeholders.  
However, in the case of AI systems, specifications are often implicit or inductively 
defined. In the case of expert systems and rules engines, the specification is implicitly 
provided by a set of facts and deduction rules, and behavior is induced by allowing an 
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inference engine to recombine them according to pre-set combination schemas. In 
machine learning systems, the goal is to identify patterns in the data and to use then to 
make predictions about situations that have not yet been observed. The specifications for 
these systems are inductively defined by choosing a data set and the parameters of the 
training objective used to derive the model from the data. Although models such as linear 
and higher-order programs may include an explicit objective function, this does not 
specify what behavior is recommended or effected beyond that it must comport with 
optimal loss according to that objective.  In both cases the models are complex, and it is 
difficult to draw general conclusions about their associated behavior, which may have 
unintended aspects [1].  
Rather than defining behaviors directly or even providing rules for behaviors, AI systems 
structure possible behaviors and then use related desiderata and their structure to 
determine behaviors automatically. Methods that extract insights from data-driven 
analytics are similarly inductively defined, since specifying what is to be counted in an 
analytic or even setting thresholds on an analytic for when actions should be 
taken subordinates behavioral outcomes to the measured values in data sets. Thus, 
traditional software verification and validation approaches may not apply directly to these 
systems. For example, without an explicit specification, what does one validate or verify 
against? Emerging techniques could bridge portions of this gap, for example by defining 
and bounding the regions in which optimal solutions are sought, which enables strong 
claims of the form “any inductively defined behavior within the specified bounds will be 
safe” subject to the bounds established and the meaning of “safe” for that system. 
However, even such strong claims may not be enough to guarantee safe operation, as the 
claims rest on assumptions that are difficult to validate and often sit on shifting ground 
[2].  
B. HIDDEN SUBJECTIVITY OF DATA-DRIVEN DECISIONS 
Often, data-driven decision-making is cited as the paradigmatic ideal of efficiency and 
objectivity. But data are subject to biases that may be introduced by choice of 
sampling methods or other systematic measurement errors.  Data-driven modeling thus 
requires assumptions about both how data do and do not reflect reality and about the 
robustness of generalization that is possible from a finite set of assumptions and data 
instances. We consider how to analyze the validity of these assumptions using 
approaches drawn from statistics, the emerging field of data and model bias analysis, and 
the established fields of construct validity and reliability. Data bias and its management 
are particularly relevant to ethical and policy questions around data-driven AI techniques 
such as machine learning. 
Data-driven systems are limited epistemically: because data sets necessarily depict a 
finite, limited representation of the world, performance in real scenarios is necessarily 
lower than performance estimates produced in laboratory or test and evaluation settings. 
Even stipulating the impossible claim that available data perfectly operationalize the 
desired target variable, practical datasets cannot provide exhaustive coverage of all 
possible events in a real physical environment, which often has an unbounded set of 
possibilities. Safety concerns include the following questions: 
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• By how much does performance degrade for real-world data feeds, and can we 
bound this deterioration either over time or across deployment scenarios?  

• Can this loss of performance be caused by an adversary?  

• To what extent are epistemic guarantees subject to time bounds (that is, how do 
we know when data sets are out of date due to drift of real-world characteristics or 
possible sudden disruptive events)?  

We review in Section IV, specifically drift and its management in Section IV.B.1 and 
robustness to generalization and adversarial perturbation in Section IV.G the framing of 
these problems and work to date on solutions to separate the fundamental limitations 
from the issues that can be overcome through careful design and analysis.  
C. EFFECT OF HUMAN SUPERVISION ON AI SAFETY 
Human intervention is often offered as a solution for mitigating adverse AI 
behaviors. The thinking is that if a human oversees the system (“human-on-the-loop”) or 
makes decisions that lead to practical effects based on the recommendation of AI 
(“human-in-the-loop”), the human will correct misbehaviors and emergent activities of 
the automation. However, this approach discounts much knowledge in the domain of 
human-machine interaction and the vast literature on safety system effectiveness, which 
show that human supervisors of automated systems are often ineffective due to problems 
such as interface/mode confusion, automation dependency, alarm or vigilance fatigue, 
and deterioration of human skills due to lack of practice.  
These automation bias problems are manageable, but their management requires an 
understanding of how they manifest in different types of AI systems and what is known 
about quantifying, qualifying, and responding to them. Existing work on “explainable” or 
“interpretable” AI supports such a response, but often focuses too narrowly on 
introspection about the behavior of a model, ignoring the broader epistemic trust 
questions raised above. In Section IV.C, we outline problems that can occur in human-
machine teams and can increase the risks of adverse behaviors or undesired events. We 
also review briefly the extensive work on mitigation and management of these issues, 
focusing our analysis on the specific problems encountered in military AI applications 
and the ways in which expert human-factors engagement can improve the risk and safety 
profile of AI.  
D. BALANCING RISKS AND BENEFITS OF AI 
AI offers advanced capabilities, driving its adoption. The US National Security 
Commission on AI argued forcefully that adopting AI must be a national military 
imperative to maintain competitive advantage [3]. If, however, we adopt AI that is fragile 
or misbehaves, that very adoption could lead to an erosion of competitive advantage 
[4]. It is desirable to ensure the safety and efficacy of systems that rely on these 
capabilities, and to adopt those systems that are safe and effective.  
When AI technology is deployed in a weapon system, robot, or planning system, 
unwanted events are possible. Many techniques can assess the risk of unwanted system 
behaviors, so that appropriate mitigations can be applied in the final system. The National 
Institute of Standards and Technology is presently engaged in an effort to systematize AI 
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risks and risk mitigations into an AI Risk Management Framework (AI RMF) [5]. 
Section IV describes a hazard analysis across our taxonomy of AI system architectures 
and design paradigms. This analysis allows us to examine what such a framework must 
cover and compare these requirements to existing NIST frameworks in cybersecurity and 
privacy to maximize the likelihood that the new AI RMF will provide a successful tool 
for system evaluation.  
E. TRUST AND ASSURANCE CASES FOR AI 
Safety and efficacy risks in AI systems give rise to limitations on the trustworthiness of 
those systems for particular purposes. These limitations can lead to situations where 
systems are pulled or barred from deployment in contexts where they could provide new 
capability or add enormous value. Systems can also be deployed but then ignored or 
disabled by operators wishing to maintain effective control commensurate with their 
responsibility for outcomes.  
Trust is a key dimension both at the individual human-system interface level and at an 
organization-wide governance level. In Section IV.H, we consider how trust questions 
manifest organizationally by examining techniques that support oversight and review in 
AI system development and operation, supporting existing DoD policies such as 
Directive 3000.09 governing “Autonomy in Weapons Systems” [6], operative safety and 
acquisitions standards, and the DoD AI Principles. For example, the principle of 
traceability suggests a need to review both individual and organizational decision-making 
that leads to the structure of the system in general in addition to specific AI system 
outcomes [7].  
Risk and performance analyses are important for AI systems not only because 
they enable safe and effective deployment of new and enhanced capabilities, but also 
because we cannot reap the benefits of new capabilities without understanding attendant 
limitations and possible means for mitigating attendant risks. Allies, partners, and the 
public at large demand these answers. At present, assurance cases for building justified 
confidence in AI systems are ad hoc. This report systematizes requirements for and 
approaches to developing these arguments.   
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II. A TAXONOMY OF AI SYSTEM ARCHITECTURES 

We begin by describing the basic nature of AI system structure. To taxonomize AI 
systems, we offer a series of essential differentiations and dimensions along which 
systems vary from each other. Our goal is to enable generalization with sufficient view of 
the structure of these systems to perform our hazard analysis below; our taxonomy is a 
model and, like all models, is necessarily incomplete and ill-fitting in some cases. Below, 
we describe the essential questions of our taxonomy with some exemplary systems along 
the spectrum of answers available to each. 

 

A. DATA-DRIVEN VS. MODEL-DRIVEN DESIGN 
Development and evaluation of both AI systems and classical software systems depends 
on choices about how they represent the system’s goals and functionality with respect to 
the rest of the world. These choices form the core world model espoused by the system. 
World models often involve explicit data sets but need not. For example, in traditional 
software systems, data is present implicitly – a world model informs requirements, the 
flow-down of requirements into design, and performance or acceptance testing, which 
includes choices like “what level of performance is acceptable?”. Although all systems 
are based on choices about how to represent the world, the nature of those choices can 
differ.  
In systems where data is an explicit part of the process (e.g., data science and analytics; 
machine learning; systems that make use of databases), decisions about the correct world 
model are often driven by choosing the data or defining its properties:  

• What information will be gathered?  
• By what sensing mechanism?  
• How will categories be defined?  
• What should be done when values are missing or lie outside defined ranges? 
• If data are to be labeled by system outputs, how will labels be generated, when, 

and by whom?  
• How long will data be retained and who should have access for what purposes? 
• How quickly will data and categorizations become obsolete and how often will it 

be updated? 
Validating the world model of a data-oriented system requires considering the 
measurement properties of that data [8]. Measurement properties define the relationship 
between the world model operationalized by choices in a system’s design, 
implementation, or operation and the abstract construct that represents the system’s goals 
or desired outcomes. For observable, physical properties such as length, measurement is 
straightforward: length can be operationalized by measuring against standard lengths 
using tools such as a ruler, tape, or LIDAR. Each has known problems which contribute 
to error in both systematic and random ways [9]. Some constructs are not directly 
observable, such as the risk a vehicle part will fail, but can be operationalized by methods 
such as comparing the distribution of past failures to observable features of the part of 
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interest that are expected to have a causal connection to potential vehicle failures, such as 
the age and operational history of the part. Choices made about operationalization are 
important because they can introduce bias or blindness to certain outcomes in the world 
model of a system [10], as we discuss below in our hazard analysis. Regardless, data 
themselves are a model of the world, chosen by measurement and thus not a direct 
representation of reality. (That is, although the data themselves are not chosen, the 
measurement methods are, and thus the world model of the system as a whole is 
constructed of these choices.) The frameworks of construct validity and construct 
reliability provide strong grounding for understanding measurement issues in AI systems 
[10]. 
In other situations, the development of a system’s world model is driven less by choices 
about data or measurement activities and more by choices about how the system is built 
or should function. Of course, all systems require both sorts of choices – the distinction 
here is about the frame in which the system is designed and the primacy of the classes of 
architectural decisions.  
For example, an expert system that recommends next steps in diagnosing faults in a 
complex vehicle engine might be based on fault trees or maintenance manuals generated 
by experts. In such cases, data are still present – the manuals and fault trees reflect 
information gathered from experts. Yet in these cases, we think in terms of “model-
driven engineering” where choices about the model (choices about how to relate faults to 
observable features and how to compose these into decision trees, for example) are more 
important than choices about data (for example, it is unlikely that the methodology for 
gathering expert knowledge affects the design of this system in detail – experts may 
disagree about how faults are expressed in observable features, but the set of faults the 
system must recognize and the set of observable features is likely quite stable across 
experts and data collection methods).  
In understanding hazards, it is important to recognize that such systems still reflect 
measurement and modeling choices about the world and to look beyond the details of the 
system to see the world model beneath and validate it appropriately. Many rule-driven 
systems obscure their nature as models: natural language models often rely on grammars 
to break streams of language into their constituent parts, but these grammars cannot 
distinguish distinct linguistic structures that yield the same sequence of tokens even if the 
contextual meaning of the structures can be quite different [11]. To resolve these 
ambiguities, such systems often use belief ontologies that define concept categories and 
relationships. In focusing attention on the choice of parsing rules and ontology structures, 
these systems obscure foundational measurement questions such as how the language 
being parsed does or does not represent the constructs of interest to the system. (For 
example, most systems are applied in a specified context or deployed for a specified 
purpose, and the performance of the parsing rules on language matching that context or 
for achieving the system’s purpose is what matters in validating that the rules and 
ontologies are acceptable. However, the fact that parsing rules/ontologies seem to be 
freestanding rules obscures the choices made in developing, evaluating, and accepting 
them – they model the world just as much as data-driven architectures do.) 
It should be noted that model-driven architectures are more like traditional 
declarative/deductively defined engineered systems than data-driven architectures are. 
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While they do not have a full declarative specification, model-driven architectures consist 
of fully declared components and so are more easily amenable to assurance arguments of 
the standard verification and validation form (as the process of choosing, evaluating, and 
accepting model structures provides leverage for V&V). By contrast, data-driven systems 
inherit the uncertainty of their data and its measurement processes. While it is possible to 
declare what about the world to sense and how, the relationships defined by the fruits of 
this data gathering are necessarily left implicit. In a model-driven architecture, it is at 
least possible to define and limit these relationships by construction, while this presents 
challenges in many data-driven architectures. 
One especially important gap between model-driven engineered systems and the 
validation of their world models arises in the management of model parameters and 
hyperparameters that represent choices made about the points in its operating space 
where the system’s behavior changes. For example, the passing threshold for a class, the 
adjudication of which items belong in particular data classes, or the level of overall or 
subclass-disaggregated accuracy at which a system is deemed appropriate to use are all 
parameters that must be chosen. These same questions arise in data-driven system 
architectures, but their relevance to the system’s performance is clearer in a relative 
sense, since data-driven system behavior is naturally mediated by parameter choices 
while in model-driven architectures these parameters become part of the modeling 
choices made. (That is, choosing a parameter is a modeling decision, while in a data-
driven paradigm one might set the parameter either according to some feature of the data 
or simply as the parameter that optimizes the chosen objective.) An interesting (and open) 
line for future research is the extent to which developers of systems in different 
categories recognize and actively choose to manage the risk of validation gaps between 
their modeling choices (either in a data-driven or model-driven architecture) and the 
system’s context of operation. That is, do developers notice gaps between the world 
model they are constructing and the reality their systems will eventually need to deal 
with? Mishap risk can depend on these parameter choices, and their management is tricky 
in all systems. We note these choices as especially difficult for model-driven system 
architectures, where the correct parameter value might depend on latent consequences of 
modeling decisions made implicitly during model-driven design. For example, standard 
grammars for language detection have been shown to fail when presented with novel 
dialects and tokenizing grammars might not perform equally well across different strata 
within language corpora [12]. 
Another issue that falls along the dimension of data-driven vs. model-driven design is the 
stochasticity of the resultant model. When models are overtly data-derived, questions like 
“what is the distribution of possible models available” are straightforwardly answered 
using bounds on measurement error and other sources of nondeterministic uncertainty. 
Epistemic error management is more challenging but possible through a combination of 
overt measurement modeling and bootstrapping of confidence or prediction bands for the 
generated model. We describe these issues further in Section IV.A.  
Model-driven architectures, which are more amenable to verification and validation, may 
be stochastic in nature as well, either by virtue of stochasticity introduced during the 
modeling process (e.g., stochasticity resulting from the distribution of rules or 
parameters) or because deterministic response to stochastically defined inputs yields 
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stochastic output (i.e., explicitly deciding to depend on a source of uncertainty – many 
software programs, for example, derive entropy from the low-order bits of their startup 
time, which may be useful to avoid complete determinism but also insufficient to provide 
security against an adversary who has a prior on the startup time or who can observe it). 
Here, determining the parameters of the distribution of outputs is much more challenging 
and may require new assumptions in the system’s world model, such as distributional 
assumptions about inputs. It is important to make plain the dependence on distributional 
assumptions when validating a system’s world model, since making unwarranted 
assumptions increases the distance between the model and reality, possibly introducing 
failure modes or increasing failure likelihood. Although many methods are general in the 
sense that they do not declare explicit distributional assumptions or appear structurally 
different when different assumptions are taken, world models generally presume some 
assumptions about the distributions of relevant environmental events, and claims of 
distribution-independence should be evaluated carefully. When coupled with real-world 
inputs, all models should be considered to have some stochastic component, even models 
that work on purely deterministic rules such as expert systems. A claim that the variance 
is small enough that stochasticity can be disregarded is an assurance claim that requires a 
supporting argument. 
An additional set of world model gap concerns arises from the fact that the world is non-
static, but once developed most systems are at least somewhat fixed in structure or 
behavior. The points of intervention for maintaining the currency of an AI system, and 
the ability to detect drift of a system’s world model from underlying reality, depend on 
the AI system’s architecture (e.g., data-driven vs. model-driven). Additionally, 
architectural choices can affect the rate of drift. Especially when production cycles are 
long or requirements determination is far separated from system delivery and use, it is 
natural to expect some gap between the system’s established, mostly fixed world model 
and the changing state of reality. This can happen before or after validation or 
measurement modeling exercises, and managing drift must be an ongoing, active process. 
In some cases, this drift might even be affected by the system itself, a problem known as 
endogeneity. Feedback (positive or negative) based on the presence of the system can 
arise when the features a system measures are affected by its outputs. For example, a 
system that recommends diagnosis and debugging steps for a complex vehicle engine will 
lead technicians to perform maintenance activities according to the system’s 
recommendations, which will affect the data used to develop or validate future systems or 
future versions of the extant system.1 This feedback creates an implicit system-belief 
state that can drift away from the underlying reality. In the complex engine maintenance 
example, systematically following the maintenance recommendations can lead to more 
frequent maintenance activities in a self-reinforcing way (e.g., technicians perform the 
maintenance because it is recommended, but it is recommended because data show these 
are the steps technicians take prior to successful resolution of problems). This 
reinforcement can mask the performance of alternative models: even if less frequent 

 

1 A non-military example comes from real estate, where the prices people are willing to pay for homes are 
heavily influenced by freely available automated valuation models available on popular websites, but the 
prices reported by these models are heavily affected by the prices people actually paid for homes. 
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maintenance activities would not lead to more frequent engine failures, the system will 
not recommend this; even if a different set of debugging activities would lead to a 
quicker resolution, these paths remain unexplored because the system has affected the 
activities of the technicians. In general, claims about world model validation must be 
scoped to a period of time and require an argument about the extent to which concept 
drift and feedback affect validation. Such drift of system-belief states can sometimes 
result in rare but sudden and potentially catastrophic corrective transitions, such as stock 
market crashes, when the gap between belief-state and reality becomes large enough for 
the system to become unstable. We explore concrete mitigation strategies for managing 
drift in Section IV.B.1. 
We find that those systems where architectures are primarily driven by choices about data 
make overall verification more challenging while making interventions that support 
validation easier. Policies against which to verify must be assumed in such systems, but 
also such systems are straightforwardly amenable to interrogation of their measurement 
properties and perhaps explicit measurement modeling. By contrast, when system 
architecture is driven by modeling choices, overall verification is more straightforward, 
but validation requires investigation into the latent choices driven implicitly by modeling 
decisions. It is clearer in such cases what to verify against (because there have been 
explicit choices), but assumptions about the system’s world model may be obscured (by 
those same choices). In these cases, because interventions that reduce the epistemic gap 
between a system’s world model and reality require modification to the system, it can be 
harder to correct problems when discovered.  
As shown in our hazard analysis in section IV of this report, there is not a complete 
assurance story for either type of system at present; more research is required to fill in 
gaps in the AI assurance space. 
 
B. DIRECT AUTOMATION VS. DECISION SUPPORT 
Systems are often described by their degree of “autonomy”. Some systems, such as those 
responsible for e-mail delivery, yield their intended effects directly without human 
intervention. Other systems serve in decision support roles, such as those highlighting 
certain features of an image presented to a medical radiologist and are designed to 
support a human decision-maker. Often, this distinction is reduced to the core question of 
where the locus of agency sits: is there a “human-in-the-loop” or not? Fears that placing a 
slow, fallible human between machine-generated reactions and real-world effects may 
introduce dangerous delays lead to designs where humans supervise direct-effect systems 
in a so-called “human-on-the-loop” architecture. All these categorizations can be 
understood as a spectrum of degree and nature of human involvement in intended 
outcomes.  
Although it is tempting to suggest that systems which have humans involved in their 
chain of effect are more tightly controlled than systems that give direct effects, this is a 
gross oversimplification.  
First, even when humans are involved in the causal chain leading to a system’s effect, it 
is difficult to disentangle human agency and system structure; many failure analyses 
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struggle with the question of whether an unintended event was a system failure or 
operator error. Humans may confidently follow the system even when it is wrong or may 
disregard unexpected system recommendations even when they are correct.  
Second, it is clear on reflection that all AI systems involve humans to at least some 
extent: humans create the systems and direct them to a goal. Systems in operation are 
supervised for their fidelity to the goals of the operators. The operative question, 
therefore, is not whether or even to what extent humans are involved in the causal chain 
leading to system behaviors, but whether the humans involved can respond adequately 
when those behaviors are undesirable.  

• Can humans override individual decisions?  
• Do operator-level concerns factor in the system structure and architecture? 
• Can they stop an unintended effect before it is reified by the system?  
• Will humans notice when the system has entered a degraded or failed state, and 

can they rectify this?  

The example of an e-mail delivery system makes this point plain: although the system is 
“autonomous” once it is operating, well controlled e-mail systems provide metrics to 
their operators about how much harmful mail is being blocked, how much overall mail is 
being delivered, and other relevant statistics that characterize the work of running a safe 
and functional e-mail service. In the case of an increase in failures, the operators and 
controllers of a system might change the structure (e.g., by purchasing a spam filtering 
appliance or blacklisting problematic sending servers), might change operational 
parameters (e.g., decreasing the threshold at which various mitigations to overwhelming 
traffic are applied), or might take follow-up actions to rectify system errors (e.g., 
removing phishing e-mails designed to steal end-user log-in credentials from those users 
inboxes after delivery). What matters is not whether humans are involved (they always 
are), but what affordances the system provides them in terms of an action space and 
situational awareness to respond to and (when necessary) override the system’s 
behaviors. 
Accepting that humans are always in the loop highlights the complications introduced by 
humans acting as system components.  
First, as noted above, humans presented with a system’s hints about their choice of action 
may be confused about the state of the world by those very hints, either not knowing how 
to interpret the information provided to support their decision or not knowing whether 
they should be confident enough to override the machine. Studies show that humans rate 
the quality of machine-provided advice as lower than human-provided advice regardless 
of its actual quality, but also follow that advice more often [13].  
Second, humans may be confused about how to respond to machine guidance, either not 
understanding the state of the machine and how it will respond to their input or simply 
not understanding how to give feedback appropriate to the situation [14]. For example, in 
both the at-sea collision of the USS John S. McCain in 2017 and the loss of Air France 
Flight #447 in 2009, trained and experienced crews operating at a high level of safety 
discipline nevertheless misinterpreted signals from the systems they were operating in 
ways that led to fatal, catastrophic mishaps.  



 11 

This illustrates the second complication of humans: as human power in a system is 
multiplied by automation, less human attention is of necessity spread over more system 
behavior. This means that humans become less aware of system behavior and less 
familiar with it, even while they are more critical to the oversight of that behavior, 
the so-called “paradox of automation” [15]. This makes humans involved in the operation 
of a safety-critical system less the locus of agency and more the putative locus of blame 
when the system fails, or what Elish calls “moral crumple zones” [16]. 
From a safety analysis perspective, it is thus important to determine not just if humans are 
involved in the system but to what end, and whether they have the power to understand 
and affect the behaviors of the system or whether they are held captive by its structure. 
C. OPEN VS. CLOSED-WORLD SYSTEMS 
Beyond the problem of measurement raised above, which relates the world-model of a 
system to reality, there is the problem of the horizon of any finite model, which must 
necessarily only describe a finite number of states of the world. The problem is that the 
real world has no such bound on possible states.  
All automated systems will eventually encounter situations in operation that were not 
foreseen during development or evaluation. How well will such systems perform in these 
situations? The answer is generally that AI systems are fragile when asked to generalize, 
especially for situations that are not covered by available data and prior experience. We 
discuss this in more detail in the hazard analysis of Section IV.A and describe the 
capabilities and limitations of known mitigation techniques. However, the fundamental 
problem remains. 
Thus, safety analysis must determine whether the system in operation will encounter a 
closed world, in which the number and kinds of outputs is naturally bounded (e.g., 
identifying known personnel allowed to enter a facility) or an open world, where the 
space of outputs the system might be called on to give is not limited a priori (e.g., 
matching characteristics of an individual – such as facial imagery – to the open ended 
question of identifying that person). For example, in the problem of classifying objects in 
an image, AI systems typically will be built to select among a set of predetermined 
categories. Say there are n such categories – in real operation, there is no assurance that 
the system will not see an object which does not fit into one of the existing categories or 
that it will not see at least n + 1 kinds of objects. Yet in either case such a system must 
fail, unless one of the categories represents “none of the above” and the classification 
method provides special support for this outcome [45]. And even in that case, bounding 
either the system’s uncertainty that it has chosen the correct class out of the n available or 
the system’s overall performance on the concrete answer “unknown class” is 
epistemically challenging due to the fundamental limitations described above in Section 
I.B. 
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III. A TAXONOMY OF ASSURANCE MODELS 

Our goal in defining safety for AI systems is to define properties we want the systems to 
exhibit or not exhibit and then to convince a skeptical expert that these properties will 
hold or will not hold under an assumed set of operating conditions. The result of this 
analysis is assurance of the truth of the property, a belief by a skeptical expert that the 
property will hold under the desired conditions as intended. Experts must be able to see 
as much of the system’s details as are necessary to achieve assurance. These skeptical 
experts could be part of the design or test teams, representatives of oversight entities such 
as review and certification bodies or higher command echelons, or expert stakeholders in 
an organization. We model the consumer of assurance arguments as knowledgeable but 
skeptical of the system’s behaviors and performance. Assurance to a non-expert or an 
outsider follows indirectly from the position of the expert in the assurance argument plus 
the structure of the system. For example, airworthiness arguments are made to an aviation 
engineer audience but presented to the FAA under the DO-178 process (for software) or 
to a competent safety panel as part of the MIL-STD 882 systems safety process; end-user 
assurance derives from the correct operation of these processes rather than direct 
comprehension of the assurance arguments (that is, assurance arguments need not be 
directly understandable to pilots or weapons systems operators, so long as the acceptance 
process for assurance arguments is itself trustworthy). 
Assurance is a structured form of belief communication: an assurance case states the 
desired properties in the form of claims, which may be broken into supporting sub-
claims. Each claim or sub-claim is then backed up with technical argumentation. The 
arguments are supported by evidence derived from the system or underlying accepted 
theory or background world knowledge. 
Assurance arguments and evidence can come from a variety of sources throughout a 
system’s lifecycle. The simplest form of evidence is experience – if a system has been 
used before for a particular purpose successfully or if a component has been part of a 
system for a long time, this can serve as evidence that the use or component is safe or 
satisfies the desired assurance property. Care must be taken to avoid confusing lack of 
experienced problems with lack of any problems – a risk of experience-based assurance 
arguments is that rare phenomena may not be well-supported by a system, but experience 
does little to demonstrate this (especially when performance is aggregated). In such cases, 
operational experience may need to be augmented with fault testing that focuses on 
simulated conditions explicitly designed to evoke phenomena that could trigger rare but 
severe hazards. An example of this kind of augmentation is use of the Chaos Monkey tool 
[17], which is used to deliberately inject computer crashes to test the resiliency 
mechanisms in large cloud computations. 
Another risk of experience-based arguments is that risks may not manifest in prior 
operations or that operations can drift slightly but successfully from the safe envelope, 
leading to an incorrect belief that the lack of problems in available experience reflects 
forward-looking safety or that small excursions from the safe performance region are 
acceptable on an occasional basis. This normalization of deviance can lead to situations 
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where systems are regularly operated outside safe conditions on the basis of experience-
driven assurance arguments [18]. 
For AI systems, their novelty and short deployment histories in tightly scoped situations 
can preclude experience-based arguments, but this will change as the technology matures 
and experience is gained in using it. However, AI systems are always limited by the fact 
that their behavior is implicitly or inductively defined based on finite experience and 
must generalize to handle new and unseen situations or combinations of input. As all 
systems will generalize imperfectly, there is some amount of generalization error 
(sometimes referred to as irreducible error or epistemic error) that results from the gap 
between the features the model measures and the variables that actually control the 
construct or target variable of interest. As noted above, decisions about how variables are 
measured and how target constructs are operationalized have an outsized influence on 
controlling epistemic error. Some approaches exist to placing upper bounds on the 
amount of epistemic error, described in the section on hazard analysis and mitigation, but 
this is an area where more research is certainly needed. Malik provides an excellent 
survey of methodological limitations in AI systems, focused specifically on machine 
learning approaches [19]. 
A useful practical example of this phenomenon comes from acute-care medicine: several 
machine learning systems have long been created to predict the onset of sepsis in ICU 
patients.2 While these tools were initially lauded for their ability to improve detection and 
management of the condition [20], [21], they have all proved sensitive to problems with 
generalization and drift [22]–[24]: either the scores become less useful over time in the 
same clinical context (perhaps because the behaviors of doctors change as staff rotate out 
over months and years) or do not apply well across contexts (e.g., a score that works well 
in one hospital does not work as well in a different hospital). Investigations into what 
drives this loss of performance suggest a variety of causes: overdependence on specific 
features; differences in the way that care teams make and record decisions leading to 
novel gaps in the system’s world model across time and space; and even variations in 
culture and the capacity for involved humans to “repair” the tool into their work practices 
while accounting for its deficiencies. A separate assurance difficulty is raised by this 
example: because the tool is an aid to professional judgement, its use does not depend on 
an approval or assurance process (because the discretion of involved professionals 
captures all behaviors of the tool). Yet we know that the tool changes that judgement and 
thus that unaided professional judgement is not comparable with the human-machine 
team. 
Another common path to building assurance in a system is through structured test and 
evaluation at the time of system or prototype acquisition. Test and evaluation processes 
evaluate a system at a snapshot in time to determine capability. By necessity, testing can 
only establish properties which are testable, that is for which a test scenario and suitable 
performance measure can be established. Often, such properties and associated test 
scenarios are enumerated in a test plan. Test and evaluation, especially with a robust test 

 
2 Sepsis is a common, treatable, but dangerous condition that results in a large fraction of in-hospital 
mortality due to the subtle nature of accurate diagnosis. 
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plan against which system designers and developers can establish visibility into the 
desired metrics, can provide strong evidence that a system meets its functional 
specification. For software systems, test plans might specify testable metrics the software 
should reveal in a test state; some development methodologies are even “test-driven”, 
meaning that tests are used as ad-hoc specification of program functionality.  
Non-functional properties such as cybersecurity, information privacy, and many 
properties desired of AI systems are notoriously difficult to test because they are not 
directly observable – in the language of measurement introduced above, these properties 
are not easily operationalized into useful measurements. For this reason, test and 
evaluation methods are limited in an epistemic sense. This limitation is well-captured by 
the engineering aphorism that “tests reveal the presence of problems, but not their 
absence”. This is especially true for software, for which the fundamental limitation of 
decidability implies that tests cannot establish the truth of a property even though they 
can provide counterexamples. Test and evaluation methods are generally applied in a post 
hoc manner – test plans can communicate to designers and developers what test scenarios 
will be considered, but the tests themselves operate on a real system or component. 
Limitations of test and evaluation are of particular concern for systems that are delivered 
in a finished configuration, ready for use. Acquisitions requirements should be carefully 
scoped to support whatever information is needed to build assurance arguments that 
cannot rest on functional testing. 
For AI systems, testing often relies on aggregated performance analysis across a set of 
test vectors or known test cases. This can worsen the epistemic limitation of testing 
methods as the generalization error cannot be measured directly in this way. Even 
methods such as cross-validation on held-out data do not provide more than an optimistic 
estimate of this error [19]. Further, aggregation can mask poor performance on classes of 
operational scenarios and even reverse the direction of correlation between input and 
target variables. We discuss these risks and the extent to which they can be mitigated in 
our hazard and mitigation analysis. 
Beyond testing, assurance can be gained through structured systemic evaluation of a 
system in operation. In the world of AI systems, such evaluation is often referred to as 
algorithm auditing or simply auditing. Audit-oriented methods suffer the same epistemic 
limitations as testing and may further suffer from lack of visibility into the system’s 
structure. However, audits have the critical benefit that, unlike tests, the scope of review 
can be adaptive to findings. Further, external audit by a trusted oversight body can bridge 
the gap between assurance convincing to developers and assurance convincing to outside 
stakeholders [25]. 
If test and evaluation methods are applied only post hoc, are there methods that can 
provide assurance prospectively? Yes. Design-level information can feed into an 
assurance case as a source of claims, arguments, and evidence. For example, so-called 
“by design” methods which aim to establish properties within a system’s design may 
provide automatic structuring of claims, arguments, and evidence. Encrypting data and 
maintaining custody of the key separate from the ciphertext, for example, can serve as an 
argument in support of a data security claim. Observe that this claim is not a functional, 
testable claim – it is quantified over all possible adversaries of a certain structure and 
power, subject to the assertion that the adversary does not access the encryption key. This 
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sort of prospective, design-oriented argument can augment assurance cases to expand the 
scope of epistemically grounded claims available but does so at the cost of adopting 
explicit assumptions.  
This is an acceptable tradeoff: if assumptions are clear, the system’s safety in a particular 
operating scenario can be better assessed and assured overall, even if little can be said 
about what the system’s behavior will be outside the assumed performance envelope.  
This kind of conditional assurance is common in automated control systems. For 
example, if the interval between service requests is no less than a specified minimum 
inter-arrival time and there are no hardware failures, a software and system design with 
fixed computing resources can be shown to guarantee a response within a specified 
maximum delay even in the worst case. Note that without these assumptions, no 
guarantee is possible: if the rate at which service requests arrive is not bounded, it is 
possible to overwhelm the finite processing rate of any given implementation and cause 
some transactions to miss their deadlines. This is one of the reasons defenses against 
distributed denial of service attacks are so difficult.  
The example also illustrates another difficulty: in closed-world conditions, such as in 
controlled laboratory or factory environments, conditional assurance cases can be quite 
useful and practical. However, in open-world conditions such as the contested 
environments expected for many applications of AI desired by DoD, systems must 
provide alternatives for what to do when adversaries deliberately create conditions that 
violate the performance envelope assumed in a conditional assurance case. This may 
involve monitoring the truth of the assumptions and triggering actions external to the AI 
system when violations are detected. This forms a concrete connection between assurance 
cases and the design of tactics, training, procedures, and backup systems that may include 
human actions and hardware safety interlocks. If the assumptions on which a conditional 
assurance case is based have been made explicit and can be operationalized, this 
approach makes it possible to have a runtime warning system that indicates when the 
people in a human-machine team should come to high alert based on observed evidence. 
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IV. HAZARD AND MITIGATION ANALYSIS 

We explore the range of unintended behaviors of AI systems described in the literatures 
of research and practice to understand the scope of hazards which might reasonably be 
expected and foreseen when developing an AI system. For each class of hazard, we 
further summarize the state of knowledge about how it can be detected and avoided or 
managed and mitigated. Armed with knowledge of possible AI system harms and the 
foresight to identify and mitigate them, developers of AI systems can be better prepared 
to assess the safety properties and functionality of their own systems. 
A. ISSUES OF GENERALIZATION AND MEASUREMENT 
As indicated above, AI systems model the world in several ways at once and the fidelity 
of that model is critical to their functionality. All data-driven AI system behaviors are 
based on the idea that the future of the present will be like the future of the past. This is 
unlikely to be true for events of concern to DoD. Only the future of the past is 
represented in available data. Thus, data-driven systems will fail to account for changes 
in the world or new scenarios not previously experienced. Such systems do not take 
abrupt time-varying phenomena into account. Yet there are possible real-world state 
transitions likely to have large effects on patterns of events in the world. For example, if 
an adversary develops a new vehicle or weapons system, an image processing system 
used as part of intelligence collection or target identification and discrimination will not 
be able to recognize the new capability even as a new capability. This problem manifests 
in several ways. 

1. Probabilistic Behavior and Optimistic Performance Analysis 
Many practical AI systems, including many machine learning-based systems, are 
described not by a concrete mapping from inputs to outputs but rather by a distribution of 
outputs conditioned on a distribution of inputs (or sometimes just on a single input). The 
inherently probabilistic nature of such systems means that individual-case failures cannot 
be corrected by pointwise fixes, as might be done in a traditional software system. 
Instead, performance must be analyzed in the aggregate, as the rate or likelihood of 
correct output. Such analysis naturally manages problems of aleatoric error, in which 
noise at the level of individual data items causes those items to be misrepresented. By 
aggregating such items into a distribution and modeling the distribution, AI systems can 
perform well overall even when the noise present in a particular example is unknown or 
unclear.  
However, aggregated performance analysis yields several concrete risks. First, the nature 
of the aggregation matters. Consider a problem where the population of inputs is made up 
of several distinct subpopulations (e.g., in the task of identifying aircraft parts, parts may 
originate from one of a handful of different platforms which are substantially different, 
such as airplanes and helicopters or jet-engine aircraft vs rotor-driven aircraft). Especially 
when one subgroup is much more prevalent than another (say the system sees mostly 
fixed-wing aircraft parts but only occasionally helicopter parts), high aggregate 
performance may mask low performance on subpopulations (in our example, the model 
could get outputs wrong for all the helicopter parts but aggregate performance might still 
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be good because the number of failures is small relative to the total number of times the 
model is employed). 
This arises commonly in systems which process images of people: systems may report 
high overall accuracy but in fact show very low accuracy when considered only on dark-
skinned or female-presenting individuals (and even worse for individuals with both traits) 
[26]. Aggregated performance is optimistic in such cases, since the cost of errors for less 
common or rare inputs is averaged away by good performance for the most common 
case.  
This kind of behavior is a concern in military contexts such as surveillance, where the 
system is seeking evidence of rare events such as sightings of periscopes: available data 
will contain many more examples of empty ocean scenes than scenes containing 
adversary periscopes, and large numbers of varied real data samples of this type are not 
possible to obtain in practice. Although simulations may be used to fill this gap, there is 
no way to ensure that the distribution of the simulated data points will be the same or 
even close to that of the real data to be encountered in future situations that matter – those 
observed during actual conflicts yet to happen. 
Another case where aggregate performance causes real military risk relates to concept 
drift (see Section B.1): systems which perform well in a training or evaluation context 
risk underperformance on “rare” phenomena that may in fact be more common in the 
contexts where they will be used. Consider a targeting system tested on land in a 
temperate zone but used at sea in the tropics or near deserts: atmospheric phenomena 
such as dust clouds could be rare during evaluation but common in actual use. 
Aggregated assessment of data with disparate subcategories can even lead to deceptive 
results. Aggregation effects can create spurious correlations between variables or even 
reverse the direction of a measurable effect. This phenomenon, known under the name 
Simpson’s Paradox, arises quite commonly in real applications. For example, in 
evaluating the gender parity of graduate admissions to a large university, researchers 
discovered that the aggregate rates of admission for men and women showed that the 
school admitted women at a lower rate than men even though each graduate department 
had admitted a larger fraction of its women applicants [27]. In another case, the features 
that determined likelihood of voting for an extremist party in a democratic election 
showed reverse correlation between returns across the entire country vs. across its major 
regions [28]. 
Simpson’s paradox is a manifestation of a larger problem in data-driven sense-making: 
the problem of ecological inference. In short, the behavior of an aggregate measure over 
an entire population does not necessarily predict the behavior of the same measure on a 
structured subpopulation or an individual – there is no guarantee that the rate at which 
some phenomenon happens in a population implies that an individual experiences that 
phenomenon at the same rate or with a probability dependent on the rate. Yet assuming 
this is so is core to machine learning and most data science approaches [19]. 
Given that the relationship between the population of interest in each analysis or 
prediction and the aggregation of strata within the overall background population has 
such an outsized effect on the performance of a model, one might hope that there was an 
optimal aggregation structure available and that it would be easy to discover empirically. 
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However, this is not true: there is no natural aggregation within a population which gives 
the best or most desirable answer. This is a consequence of the lack of any natural 
clustering function for arbitrary data sets [29]. 
Managing these risks requires having access to domain knowledge. With that knowledge, 
one can perform a disaggregated performance and error analysis focusing on 
performance and error rates for each subpopulation of interest. Since there is no natural 
clustering of population membership into reasonable abstract subgroups, disaggregating 
analysis requires a priori knowledge of which groups to interrogate. A disaggregated 
analysis can compare performance numbers and error rates across groups to understand if 
overall numbers are masking poor performance in some places. Knowing where 
performance suffers, in turn, can help AI system developers determine the best 
interventions to improve performance, such as targeted acquisition of data from a 
particular population. Data scientists often conjecture that exploratory data mining in the 
form of unsupervised learning to find the natural clusters in the data associated with 
subgroups within a category may help analysts to find the relevant domain knowledge, 
but given that clustering requires choices on the part of analysts and there is often no 
natural scale on which to base those choices, it is likely that appropriate stratification can 
only be determined using domain expertise. 
Another hazard of data-driven analysis is identifying causal relationships between 
observations. Purely data-oriented analysis can only determine when variables are 
related, not why they are related or by what mechanism the relationship arises [30]. The 
relationship between identified correlations and outputs is particularly fraught in machine 
learning systems, which can construct complex proxies for the target of interest, synthetic 
variables which are highly correlated to the target in combination even if each is only 
weakly correlated.3  
Proxies are problematic as they may yield strong correlation-based performance within 
the proxy data when there is no cause-effect relation in the real world to justify that 
performance. For example, several studies purport to identify criminal tendencies in 
individuals based on their facial features using machine learning. A skeptical reader 
might observe that such findings recall the scientifically discredited discipline of 
phrenology. Upon closer inspection, all such studies have demonstrated hallmarks of 
overfitting the data, learning unrelated features such as differences in facial pose, 
clothing, or image background to distinguish between the classes (often, the data about 
the “criminal” class are acquired using mugshots and the data about the “non-criminal” 
class are acquired in natural settings or from the Internet). Whether systematic 
differences in features between data classes or other subpopulations matter for the goal of 
the AI system again requires domain knowledge and careful accounting of measurement 
decisions (i.e., knowing what properties the model is meant to operationalize).  
Correlation-based results can be further identified through testing of the validity and 
reliability of the relationship: in the criminality-from-faces example, a skeptic might ask 
whether the relationship holds over new data or over data where confounding factors 

 
3 Proxies can also arise naturally when information about the target or about some feature is encoded 
into other features. See Section IV.B on bias below. 
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such as presentation are controlled, for example in well-posed official portraits rather 
than mugshots. Malik provides exquisite detail on the risks of correlation-based reasoning 
[19]. 
As noted above, the fundamental assumption made when building AI systems using 
implicit or inductive specifications is that the patterns described by these specifications 
will hold in the future as they have in the past. This assumption is generally false, but 
making it is useful in certain cases. Like all assumptions, it must be undertaken advisedly 
and with awareness: an AI system is merely identifying and replicating patterns in an 
automated way. Those patterns break down regularly. Models are static, but the world 
changes (e.g., an adversary develops a new system with new characteristics; vehicles 
subject to predictive maintenance are suddenly deployed in new environments or on 
different operational tempos; the nature, frequency, or content of background 
communication or selected communication in an intelligence sorting application changes 
as real-world conditions change); this change is sometimes referred to as concept drift or 
model drift.  
All safety analysis is familiar with the encompassing problem of practical drift, where 
without supervision the system breaks down and ceases to follow its own rules and logics 
over time [31]. As with practical drift, the solution to managing concept drift is 
supervision and in-line control. However, for AI systems this is complicated by the fact 
that it is rare to have access, especially ongoing automated access, to “correct” behaviors 
in the wild that could be used to compare against pattern-predicted behaviors. Typically, 
if data with correct behavior labels exist, they represent a snapshot in time or some fixed 
period of time, and all labeled information will be used in creating or assessing the 
system. Once a system is in use, it requires an ongoing source of pattern validation 
information since real-world patterns may change with time. This is a hidden facet of 
many commercial systems, which rely on large corps of human workers to annotate 
operational data for validation measures [32]. Expenses associated with this activity are 
an incentive to limiting or ending it, thereby increasing future system risks. 
Related to concept drift, AI systems can cause their own gaps in representing the world 
through feedback. If the state of the world as measured by the system is affected by the 
system’s behaviors, feedback should be suspected. For example, “predictive policing” 
systems identify areas of a city where police should be sent to patrol based on historical 
crime data. But crimes are reported by police. So if police are sent to areas where crime 
was reported and not to areas where crime is not reported, the distribution of crime 
reports will become even more lopsided [33].  
Managing this risk is a form of optimization described by the multi-armed bandit 
problem – there is some value to following the model’s output and exploiting the 
information, but also exploiting only this information leaves open the danger of practical 
drift. To solve this, it is necessary also to explore the space, sometimes making 
“suboptimal” decisions which have the side effect of producing new information 
uncontrolled by the existing model. Strategies for managing the explore/exploit dilemma 
are well studied in a variety of disciplines from statistics to psychology. 
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2. Epistemic Error and Generalization 
By reproducing patterns, AI systems assume these patterns apply beyond the scenarios 
considered in generating them. This, too, presents risk. As noted above, patterns may be 
incorrect, falsely representing relationships in the world and yielding an epistemic gap 
between the model’s representation and reality. But even if we stipulate those patterns are 
valid, there is no guarantee that they continue to apply beyond the cases where they have 
been validated. Patterns must be able both to interpolate (i.e., properly handle cases 
“between” known cases) and extrapolate (i.e., handle cases beyond the domain of known 
cases).  
At a systemic level, problems of extrapolation can be limited by filtering the cases shown 
to a component or limiting operation of the system to a given operational envelope. But 
both can be problematic, especially due to the existence of so-called adversarial 
examples, samples which are close to inputs with known desired outputs but for which 
models will give different outputs [34]. Adversarial examples can be thought of as a risk 
in and of themselves, perturbations which may be chosen by an adversary to cause a 
system to misbehave or suffer failure on purpose [35]. But they can also be thought of as 
a consequence of the high dimensionality of representation in AI systems, a sort of 
inevitable curiosity of the system structure [36].  
Regardless, adversarial examples demonstrate that even inputs “close” to those handled 
well by the system can cause problems and interpolation is not necessarily easier or less 
fraught than extrapolation. Both interpolation and extrapolation are captured by the 
notion of robustness in AI, which describes the ability of a system’s patterns to 
generalize beyond cases considered in development and evaluation and to respond well to 
perturbation (either adversarial perturbation or simply generalization). By its definition, 
robustness is not directly observable. Adversarial robustness refers to the property that an 
AI system retains its robustness properties not merely against the random vagaries of the 
world but against targeted perturbation by an adversary [35]. This is a serious concern 
because all known defenses against adversarial examples have been shown to fail [37]. A 
recent advance in this area has improved the situation but there is still not an 
insurmountable defense [38]. 
AI systems tend to be quite fragile in practice, and failures of robustness are many. One 
study found that rebuilding standard benchmark datasets for image analysis using new 
images led state-of-the-art models to poor performance, suggesting that high-performing 
models were not capturing conceptual information about the data but rather “learning to 
the test”, or overfitting in order to perform well on the benchmark [39]. Recent work has 
shown that overfitting and existence of adversarial examples are inherent in the way deep 
learning attains its high performance with respect to prediction accuracy [40]. Others 
have argued that benchmarks are a fundamentally flawed way to compare performance 
because of their epistemic limitations [41].  
Bounding, or even assessing, generalization and other types of epistemic error remains an 
open challenge, although techniques such as data set augmentation, ensemble methods, 
and the aforementioned measurement-oriented validation practices can all help. 
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B. BIAS IN AI SYSTEMS 
An oft-mentioned hazard in AI systems is the presence of bias [42]. Bias has a number of 
meanings and definitions depending on context [43]. As it was first used in the context of 
AI systems, bias referred to artificially limiting the space of models a system could learn, 
such as by controlling inputs to a known envelope as imagined in Section III.A [44]. 
Another simple definition of bias is well framed by the measurement view discussed 
above: bias is a systematic deviation in a model from reality. Systematic deviations can 
happen because of error in collecting data (e.g., by failing to sample adequately or 
collecting data in a way that selects for particular characteristics) or because of modeling 
choices (e.g., by choosing parameters or other model characteristics which cause or 
reinforce this systemic deviation).  
Examples abound: the above-mentioned predictive policing example shows how 
measuring reported crime can lead to a biased picture of where actual crime happens 
[45]; a system for predicting recidivism of arrested persons used data about previously 
arrested people in that jurisdiction to create a risk score, resulting in the scores being 
higher on average for Black vs. white arrestees, a bias created jointly by the gap between 
measuring “arrests” and measuring “crimes committed” and the differential arrest rates 
for these groups in that jurisdiction [46], [47]; systems used to screen resumes for hiring 
can differentially and automatically reject minority race and gender candidates [48], [49].  
As these examples show, another common use of the term “bias” in AI systems refers 
simply to socially problematic behaviors of AI systems. Because AI systems are specified 
indirectly, such problematic behaviors can occur accidentally unless system designers, 
developers, and controllers take active measures to avoid them. Further, because the 
nature of what is socially problematic will vary based on the stakeholder concerned [50], 
such measures must be based on broad-based review processes or comprehensive policy-
making-style collaborative requirements gathering [51]. There are several good 
summaries and surveys of data and algorithmic bias issues, including Bonchi, Castillo, 
and Hajian [52]; Mulligan, et al. [50]; and Hardt, Barocas, and Narayanan [53]. 
As in the case of understanding optimism in AI performance assessments, bias problems 
can often be observed through stratified, disaggregated error analysis: where and how 
does the system make errors? Are aggregate performance statistics matched by 
performance in sensitive subgroups? (Risks of aggregated analysis were described above 
in Section IV.A.1.) Many tools exist to perform this sort of analysis, but techniques and 
procedures for deploying those tools are still nascent. Ethnographic work on AI system 
developers reveals requirements and concerns unmet by current technologies [54]–[56]. 
One major unmet need for bias management and mitigation is the gap between so-called 
“fair” AI techniques (e.g., fairness-aware data science/machine learning methods) and the 
actual goals of bias mitigation. As noted in our discussion of measurement issues, models 
are meant to operationalize well defined constructs, and anything which undermines a 
model’s ability to represent and measure a construct is suspect for undermining the 
model’s validity and reliability [10].  
Thus, “de-biasing” data or building “fair” AI systems may in fact be undesirable, since it 
reorients the problem (which is often reflective of a real problem in the world where a 
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bias exists) not as a truth under which goals must be pursued and ultimately achieved and 
instead creates a counterfactual imagined world where the bias is not present [57], [58]. It 
is not immediately obvious that optimal decisions in this counterfactual world correspond 
to optimal decisions in the real world.  
Further, it is not clear that making component-level behavior in a system “unbiased” will 
yield overall system behavior which is safe in the same way (or even that system-level 
behavior will not be problematic). Instead, it is likely best to treat decision-making in 
contexts where system-level bias is important as it would be treated outside AI systems: 
as a decision which must be made despite incomplete information or other sub-optimal 
conditions. Instead, a goal should be to identify bias and surface that information to 
system designers, developers, and controllers to aid their decision-making. Controls on 
bias could be technical, operational, or policy-driven in nature. Much work in machine 
learning and elsewhere in AI focuses on the issue of how best to operationalize “fairness” 
or some other goal of “unbiased” decision-making, but this is a false goal – fairness is 
elusive and subject to stakeholder conflict, and even if we could operationalize it, the 
resulting definition might not yield desired safe system-level behavior [50]. 
Bias is not only a problem for socially sensitive problems – it arises in military problems 
as well. A likely apocryphal story surrounds the development of an imagined early AI 
system designed to distinguish Soviet and non-Soviet tanks. As the story is told, because 
of limitations in intelligence collection, the photographs of the Soviet tanks were mostly 
taken at night while the photographs of non-Soviet tanks were taken under more 
favorable lighting conditions. In this way, an AI system which simply learned to identify 
lighting cues could perform reasonably well (on laboratory data) on the task of 
“identifying Soviet vs. non-Soviet tanks”.  
Although the system imagined in this parable likely never existed, it is easy to imagine 
versions of the same issue leading to component-wise or system-level fragility due to 
bias: a model trained on vehicles from one region (say, Eastern Europe) will not perform 
as well in other parts of the world where vehicle makes and designs are distinct (say, 
Eastern Asia) and a model aiming to do well overall might perform better for the region 
where more data were available. If certain systems or classes of target are mostly 
photographed from overhead sensors, identification systems might do poorly in ground-
based environments.  
Similarly, a recent Defense Innovation Unit challenge, xView2, aimed to create and use 
satellite imagery data to categorize damage from natural disasters automatically [59]. 
Yet, while the challenge makes use of imagery from around the world, it is not obvious 
that performance identifying damage from hurricanes in the United States will transfer to 
assessing damage from sandstorms in the Middle East, typhoons in East Asia, or 
earthquakes anywhere. In each case, the structure of buildings and neighborhoods and the 
disaster’s effects on them are quite variable. Without an argument to the contrary, it 
should be expected that the model performs well on the segment of data representing the 
largest share of the data, but might perform less well for other segments, despite data 
diversity. But in each case, high aggregate performance might mask poor outcomes for a 
subpopulation of operational interest. 
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Lastly, a famous example of survivorship bias concerns a problem of armoring RAF 
bombers during World War II; bombers needed additional shielding to survive anti-
aircraft fire but could not be armored everywhere as the added weight would reduce their 
endurance and limit their mission effectiveness. To optimize the placement of added 
plating, a group of statisticians surveyed bombers after action to determine the location of 
anti-aircraft hits, finding strong clusters of damage points on an abstracted aircraft 
outline.  
The study group realized that this data represented not a lopsided distribution of damage 
targeting, but a lopsided distribution of aircraft survival once hit. That is, the fact that few 
planes returned successfully from missions with damage to their engine housings 
indicates that the planes which were damaged at those points did not return. The key 
insight is to model anti-aircraft fire in this context as damaging planes essentially at 
random. With this insight, it becomes clear that the new armor should be added at the 
points where the minimum damage is visible in the data (as planes struck in the other 
points did not return, indicating the value of strengthening those locations).  
Survivorship bias is an instance of the broader phenomenon of treatment bias, where data 
bias arises from interventions. Bias is best interpreted in light of a causal model of the 
underlying phenomenon, underscoring the value of domain expertise in model validation 
[60]. 

1. Concept Drift, Distributional Shift, and Domain Drift 
Another critically important source of bias to understand is shift in characteristics of the 
real world over time. A model may perform well and even be robust to transposition from 
laboratory data to real-world scenarios at the time the model was created, but models are 
inherently static reflections of their development processes. Machine learning systems 
merely digest training data into best-fit functions, relating cases similar to those seen 
previously to an appropriate similar output such as a classification or a score. Yet the 
relationship between prior cases and desired outputs can and often must change: the 
shape and styling of vehicles evolves across model years and the changing popularity of 
vehicle types (and so a tool which identifies vehicles must be updated to reflect this 
change); the language used in online conversation changes almost daily (thus a tool 
which predicts how popular an online post will be must be constantly refreshed); world 
events affect the importance of facets of strategic and tactical decision-making (for 
example, the word “pandemic” was a term of art for specialists in 2019 but a household 
banality in 2020 and after – language data reflect word use, so models trained prior to the 
SARS-CoV-2 pandemic that began in 2019 will not reflect realistic usage in the years 
after). These problems are often described under the banner of concept drift [61], [62], 
the idea that as the underlying world changes, the world model of any given system will 
become outdated and require updating and adaptation. More specifically, changes in the 
underlying distribution of data driving a system’s world model are referred to as 
distribution shift (sometimes, covariate shift) and can be measured and potentially 
mitigated through traditional approaches to the explore/exploit tradeoff in the multi-
armed bandit and Markov decision process models [63]. Distribution shift can also mask 
the appropriate choice of baseline distribution against which to compare: imagine 
measuring the mean-time-to-failure of a temperature-sensitive aircraft component before 
and after the warehouse in which it was stored experienced a temperature anomaly. 
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Clearly, the distribution of failures will change, and if the distribution after the anomaly 
is modeled using the data from before, the model will under-rate the likelihood of failure. 
And worse than the model suffering concept drift, analysis which can only see the post-
anomaly distribution will not be able to know that the pre-anomaly distribution represents 
the failure distribution for new parts. This problem is common for environmental 
measurements in particular: measurements of the abundance of animal or plant species in 
an area speak only to the abundance at the time of the census and will not reflect changes 
in abundance from a decade or a century earlier. The constant change of reality 
challenges the notion of a “normal” level for many kinds of measures and complicates the 
question of validating a model (since the world against which the model must be 
validated is itself changing). 
One common approach to providing needed adaptation is to make systems learn from 
their experience through online learning, which takes additional information available 
into account when performing optimization or making predictions [64]. However, making 
a model adaptable in the field adds a novel dimension of risk, namely that the model’s 
self-updating capacity will reduce its performance on rare instances or instances seen 
many update epochs in the past, a phenomenon known as catastrophic forgetting [65], 
[66], a problem that occurs in human cognitive models of the world as well as 
computational tools. Approaches to mitigating this phenomenon include coalescing 
learned parameters at key points and protecting them against future update, for example 
by bounding the rate at which they can be changed by online learning processes.  
In some cases, real world distribution shifts follow known seasonal patterns. For 
example, grocery stores have learned to stock more pumpkins before Halloween and 
more turkeys before Thanksgiving. This kind of time-dependence can be handled in 
machine learning systems by including the time of year of the measurement as one of the 
attributes of the data.  
Unpredictable events that can change real-world characteristics are more challenging. 
Improved mitigations for this kind of distribution shift are needed, particularly for 
military applications in which surprise has value. 
C. TEAMING/AUTOMATION BIAS AND INTERFACE ISSUES 
It is often suggested that human involvement in decision-making can cure hazards or at 
least control them in automated or autonomous systems. Such a claim, however, is belied 
by literature on the human factors of automation. Here, we survey the major issues in 
human-machine teaming hazards.  
Together, these problems are often described as automation bias [67]. We disaggregate 
them to discuss automation overdependence, including problems of inattention; mode 
confusion, including problems of interface design; and issues of trust in automation, 
including problems of when operators do and do not pay attention to recommendations of 
automated decision-support technologies or autonomous systems. 
For all these issues and all problems of automation bias, we must view their dynamics in 
light of the primary human-systems interaction conundrum: the paradox of automation or 
the problem of “automation ironies” [15]. In short, when work in a system is automated 
away from human workers, the power of humans to create system behaviors and outputs 
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is generally extended (if automation reduced system performance, it would likely not be 
implemented). This often means that fewer humans end up responsible for more system 
behavior and output.  
Thus, humans become individually more critical to the system and more responsible for 
its behaviors and outputs while simultaneously less aware of the system’s state, as 
compared to work done without using an automated system. As a result, humans are de-
skilled regarding the system control actions they are now more critical in applying.  
Consider as an example the containerization of shipping vs. the older break-bulk system 
of cargo loading. In containerized shipping, a relatively small number of humans 
(compared to the number of longshoreman needed to load/offload break-bulk cargo) have 
minimal interaction with each piece of a much larger pool of cargo moving through the 
system. Unwanted activities, such as smuggling, are now separated from operators by 
abstraction in the structure of the system (a cargo crane operator has little idea of what is 
in a container, beyond knowing where it should be lifted from and where it should be 
placed afterwards). Thus, the system has traded efficiency of one kind (the movement of 
tons of cargo per unit cost) for problems of a different kind (inability to survey/scan the 
cargo for undesired contents, spoilage, or damage). 
Managing the automation paradox requires the establishment of system structures 
amenable to control interventions that avoid and mitigate undesired behaviors. Such 
sociotechnical control structures form the basis of modern safety assessment and 
program development [68]. 

1. Automation Complacency and Overdependence 
Humans who supervise automated systems are likely to suffer cognitive fatigue in this 
work, not because the work is taxing, but because it is monotonous and holding attention 
presents a challenge.  
For example, consider the problem of a security guard monitoring camera feeds. The 
guard no longer needs to patrol the area to surveil it, but inattention to rare-but-interesting 
events is likely to make detecting problems a challenge despite the guard’s extended 
capacity to oversee their bailiwick. Instead, the guard is likely to develop a belief that the 
baseline view where no reportable events are happening is the current situation.  
This automation complacency can also affect operators of vehicles using so-called 
“Advanced Driver Assistance Systems” (ADAS), who may lose capacity for supervising 
the vehicle as they give over authority to the vehicle to operate itself in ordinary 
conditions [69]. Many ADAS and other vehicle control automation systems hand off 
control to operators when ordinary conditions abate [70]. However, when operators have 
diminished situational awareness and control capacity due to complacency from not 
having been involved in normal operation, they are unprepared to receive this hand-off.  
This issue is at the forefront of policy debates surrounding vehicle autonomy before 
regulators around the world. Automation complacency not only leads to diminished 
capacity due to inattention and lack of situational awareness, but also to longer-term de-
skilling of operators, who do not have the opportunity to practice the tasks they are 
supervising and thus may take inappropriate actions when control is handed off. 
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A classical counter-argument to issues of automation complacency is that they can be 
solved by careful human-system interface design such that operators receive timely and 
appropriate feedback and can avoid complacency [71]. Others have argued that because 
automation-based interventions are primarily qualitative in effect, function-allocation-
driven methods for separating human and machine duties must necessarily fail [72]. 
Instead, mitigation likely lies between these views: careful assessment of system structure 
and the allocation of functions coupled with appropriate interface design to support 
operators and effective communication between humans and machines can support the 
development of safe, effective systems. However, automation complacency undermines 
the baseline claim that human oversight is sufficient for system control. 

2. Mode Confusion and Effective Interface Design 
Another issue that causes mishaps in human-machine teams is confusion on behalf of 
human or machine components about the state and future actions of the other 
components, a problem referred to as mode confusion. Combined with the related 
problem of automation complacency, mode confusion is the primary driver of accidents 
in human-machine teams.  
A well-studied example is the loss of Air France Flight 447 [73], a commercial Airbus 
A330 flight which crashed into the Atlantic just after crossing the equator during a transit 
from Rio de Janeiro to Paris. A survivable failure of the air speed sensor led the aircraft’s 
autopilot to disengage and transferred the fly-by-wire system from “normal flight law”, in 
which the angle of attack is limited by software control, to “alternate flight law”, in 
which the angle of attack is unrestricted.  
The pilot, though trained and experienced, spent several minutes attempting to “power 
out” of a stall that resulted from throttle slowing prior to autopilot shutdown (by pulling 
up and throttling up). Though an appropriate maneuver for the A330 at a limited angle-
of-attack, in alternate flight law (and at night over ocean, when attitude indications are 
limited to instruments) the pilot took the angle of attack higher than the plane’s thrust 
capacity could handle to regain airspeed and stop losing altitude. Worse, a problem in the 
interpretation of extreme values led the aircraft’s “stall” indication to turn off when the 
plane was nosed exceptionally high, causing a situation where the falling aircraft would 
appear to enter a stall when the angle of attack was reduced. Although cockpit voice 
recorder data indicate that the pilot not flying read the mode transition off the aircraft’s 
cockpit console correctly and that this transition was acknowledged properly by the pilot 
flying, confusion over how to respond to the scenario is clear in the minutes between the 
autopilot disengagement and ultimate crash into the ocean. 
A similar set of problems occurred in the at-sea collision of the USS John S. McCain 
(DDG 56) with the M/V Alnic MC, a chemical tanker, in the heavily trafficked area near 
the Strait of Malacca. The McCain’s bridge crew adjusted their throttle to handle contact 
with the Alnic MC but did not realize that their integrated bridge and navigation system 
(IBNS) was set so that the McCain’s twin screws were not “ganged” (i.e., locked to the 
same throttle setting). Thus, while intending to reduce speed for a passing maneuver, the 
bridge crew had inadvertently put the ship into a turn.  
Subsequent efforts to recover the situation failed due to confusion about whether the 
active control console was the main helm or the lee helm. As a result, the McCain swung 
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athwart the Alnic MC and was struck alongside, resulting in 10 fatalities and an estimated 
$223 million in damage to the ship. 
Managing mode confusion requires similar attention to human-system interface design, 
appropriate feedback without engendering complacency, and human-factors analysis of the 
system as fully constituted to determine training and doctrinal requirements. Unlike 
automation complacency, mode confusion can be lessened by training and experience. 

3. Trust in Automation 
Beyond managing the confusing aspects of the human-system interface, human-machine 
teaming can be viewed through the (relatively) simpler lens of trust: do humans believe 
the machine components of a system will behave as expected and are they willing to rely 
on this belief? Trust is a psychological property of the involved human or of outside 
human stakeholders (e.g., lack of discrimination in a criminal justice risk management 
score is relevant not only to people in the criminal justice system but also to ordinary 
citizens who may be concerned about equality of opportunity). As such, trust is not a 
property that can be built into a system or even necessarily assessed and validated 
through assurance processes.  
Instead, assurance processes can only assess the extent to which a system’s design is 
supportive of trust or creates the conditions for formulating trust, a system capability 
referred to as trustworthiness. Most simply, assurance can identify cases where trust 
would be undermined and flag them for remediation.  
An important hazard for any new technology is that it may not be adopted even if 
adoption could improve progress towards the potential adopter’s goals. Trust is generally 
a prerequisite for adoption – if stakeholders do not believe that a system will advance 
their goals, they will seek alternative means. AI systems can fail to engender trust by 
lacking assurance, by performing poorly, or by seeming to perform poorly by 
mishandling common cases or overwhelming humans with false alarms.  
Alarm fatigue, a condition in which human operators ignore guidance from automation 
because they consider the guidance low quality, is a common problem for automated 
systems. Operators in a security operations center (SOC) or network operations center 
(NOC) are quite familiar with the volume of alerts and information that must be 
processed to perform their jobs. Many of these alerts represent minimal risk events but 
must be reviewed anyway because they may represent higher risk events under certain 
circumstances not captured by the automation. If systems raise alarms repeatedly and 
operators determine repeatedly that the alarms are false alarms, operators are likely to 
start ignoring the alarm.  
Famously, in construction and mining settings, the alarms that sound when vehicles are 
backing are so common they get treated by workers as background noise. In 2009, a train 
on the Washington, DC metro system collided with a stopped train despite the presence 
of automated train control capable of detecting trains on the same track segment and 
forcing them to stop. The accident caused 9 fatalities and over 80 injury casualties. Prior 
to the accident, an alarm was sounded to train dispatchers that a faulty track circuit 
existed at the location of the accident and a stopped train would not be detected. But 
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dispatchers were overwhelmed by such alarms, which happened at the rate of 
approximately 8,000 per week and were not treated as unusual [74].  
Managing alarm fatigue requires assessing the tradeoffs between false-positive and false-
negative alarms and their consequences and possibly adjusting alarm thresholds to tune 
how often operators observe such alarm failures. Accuracy is a key performance 
parameter in this context, since reducing erroneous alarms reduces the opportunity for 
fatigue. Assessment of the effects of false alarm rates on human workers is a key factor in 
risk mitigation decisions for this type of hazard. 
All automated systems, including AI systems, operate according to pre-determined rules 
that, at the most flexible, map inputs into distributions over outputs. These rules are fixed 
into the structure of the system and its components and cannot adapt as context changes. 
Thus, machines are often faulted for operating without concern for context.  
Trust, therefore, requires that a system be capable of incorporating context on an as-
needed basis [75]. Context can be incorporated by enabling human overrides of system 
decisions either at the moment of decision or after. Managing context also requires that 
mechanisms be present where stakeholders in the system can identify situations where 
context was insufficiently well handled and the system’s controllers can act based on this. 
When the effects of system behavior are not reversible (such as when the system controls 
the use of lethal force), post-hoc rectification of mistakes is not possible, so pre-action 
confidence must be correspondingly higher to enable trust. 
D. AI SYSTEM SECURITY AND SUPPLY CHAIN SECURITY 
Increasing concern surrounds security problems in AI systems, ranging from the 
manipulation of the data representing and controlling the system’s world-model to 
manipulation of the system’s components themselves to manipulating system inputs [76].  
Another class of risks not captured with immediacy by this taxonomy is risk to AI system 
supply chains and dependencies. Much of that risk is inherited from the software nature 
of AI systems and mitigations fall along the same lines as mitigations for software supply 
chain security risks.  
Here, we consider risks that are specific to AI systems, especially to data-driven ones as 
machine learning is often the technology of interest for adopters of AI and because data 
control the world-model of even model-driven system architectures. AI systems, and 
especially data-driven AI systems, carry a number of information security and privacy 
risks [77]. 

1. Data Poisoning and Manipulation 
As AI systems are specified and evaluated using indirect framing of a world-model, they 
rely more heavily on the integrity of data representing that indirect framing. If data are 
modified in such a way that it changes the world-model of the resulting AI system, this is 
referred to as data poisoning.  
Data poisoning is an example of a violation of data integrity, an important element of 
information security recognized classically. However, while good tools exist to manage 
data integrity across time and space, those tools are not used as widely or as effectively as 
tools for data confidentiality.  
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Unlike data breaches, in which the release of confidential data can be seen and identified, 
it is often difficult to obtain evidence for attacks on data integrity. The extent to which 
cybersecurity compromises of AI systems or their supply chains leads to attacks on 
integrity is largely unknown.  
The simplest approach to managing data poisoning risks is to control data integrity across 
the lifecycle of data. However, an absolutist approach such as this is not necessarily 
consistent with the flexible decision-making goals of AI applications or the risk-based 
approach to hazard management commonly used for safety program development and 
administration. Thus, the machine learning community has developed measures for 
determining how effectively an adversary can poison data with the goal of corrupting the 
behavior of resulting models, allowing the risk of system behavior corruption to be made 
amenable to assurance argumentation [78].  
However, a complete assessment of data integrity risk is likely advisable regardless of 
such mitigations, as many assumptions underlie the bounds provided and those 
assumptions require justification. 

2. Model Manipulation and Extraction 
Integrity attacks can be performed on models as well, although direct modification of 
model source code and parameters is generally considered under the bailiwick of AI 
system supply chain security. However, the risk posed by models to the disclosure of 
underlying data is a separate hazard.  
Direct disclosure of data obviously reveals information contained in the data, but models 
depend on the data and thus are informationally related to it. Thus, even giving an 
adversary the opportunity to query a model with partial data can be enough to allow 
inference of other possibly sensitive data in other inputs or in the model’s training data. 
Research shows that such leakage is possible in practice, and in targeted ways [79].  
The proposition that models contain information is not on its own surprising – if they did 
not, their performance at predictive tasks would be no better than random. What is 
interesting is that this information can be extracted efficiently. This problem impacts not 
only AI systems but even systems designed to protect the security of the underlying data, 
such as encrypted databases that still allow queries to be constructed over the encrypted 
data [80], and the efficiency of extraction attacks is quite high. 
This is significant for Navy applications because extracted knowledge of the models used 
by deep learning applications can be used to construct adversarial examples that can be 
used to attack the AI systems. It may also mean that the ability to interact with an AI 
system is sufficient to reveal information about sensitive data used to construct it. 

3. AI-Specific Supply-Chain Security Issues 
Beyond the ordinary supply chain risks of any software [81], AI systems have 
particularly extensive and brittle supply chains and care must be taken to establish the 
sources of risk attendant to this fact. AI development often uses a large footprint of 
library code which is under-evaluated for cybersecurity risk; many data processing and 
AI development infrastructure tools lack basic security capabilities such as the ability to 
authenticate clients or control access to portions of the data. In cases where these 
capabilities are added over and above the system’s design, care must be taken to 
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determine whether the composition functions at a system level in all and only the 
intended ways. It is likely that novel library code should only be introduced carefully into 
secure computing environments, which limits the capability available in those 
environments. This is an area of active research and it is under-attended by the 
community. Managing the risk/benefit tradeoff of additional functionality vs. marginal 
security risk represents a challenge in any information system. Unlike system safety 
frameworks, tools for assessing cybersecurity risks (such as the RMF) are not known to 
improve outcomes or reduce system hazards. 

4. Privacy as an AI System Hazard 
AI systems, by their nature, identify and extract patterns in the world to develop new and 
better approaches to achieving their systemic goals. As a result, much has been written 
about privacy in automated systems, especially AI systems, over decades [82].  
However, privacy as constituted in the literature is generally about the informational 
autonomy and control of individuals. From a DoD perspective, individual privacy may be 
beneficial because of compliance requirements or as a structure for supporting trust in 
programs and processes. But often, DoD’s operational concerns require privacy where 
benefits accrue to individuals only by dint of their relationship with an organization.  
Information in patterns identifiable in data can reveal facts such as changes in operational 
tempo (which might reveal sensitive operational security information such as impending 
operations), organizational charts and hierarchies, or even reveal classified facts that are 
inferable at high confidence from data that seem non-sensitive.  
Frameworks for evaluating and managing privacy risk, such as the NIST privacy 
framework, only barely consider these risks and only when evaluators read the risks into 
the framework, making use of the framework’s flexibility to add concerns rather than 
shed them [83]. More emphasis on these issues together with supporting policy may be 
advisable. 
E. FORMAL VERIFICATION OF AI SYSTEMS 
Although the non-declarative nature of AI system specification makes traditional 
specification-oriented formal verification methods difficult to apply, that does not mean 
that some progress has not been made. Indeed, several different lines of effort show 
interesting and useful results even at the scale of usable realistic systems. We discuss 
approaches made to-date, contextualizing them in the larger system safety problem as we 
have framed it. 

1. Verifying Model-Driven Architectures 
a. Verification for Expert Systems 

A classical form of AI is the so-called expert system, which uses a database of facts 
combined with rules of inference to build new conclusions automatically. Because the 
developer of an expert system has control over the set of facts to include and the decision 
rules by which the system can extract behaviors and recommendations, it is possible to 
ask questions about the detection of anomalous outputs or the completeness of the output 
set according to various metrics [84]. In specific, validation and the issue of model gap 
management remains paramount for these systems, as any metric of completeness must 
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carry assumptions about the proper modalities for representing the world. Although 
expert systems represent the world symbolically, interpreting their recommendations can 
prove difficult – a decision reduced to a large decision tree can clearly be traced through 
the tree node-by-node, but such a tracing does not explain why the tree has its particular 
structure and only provides instrumental contrastive reasons for why a decision is not 
different, located elsewhere in the tree [85]. 
Expert systems are often used for decision support, to replace or augment human 
expertise. An important case is diagnosis and triage during vehicle maintenance – a 
system might diagnose a problem based on symptoms or recommend the next 
investigative/diagnostic procedure to run. If a system is incorrect, not only could that 
harm readiness by extending service periods but it could increase the cost of maintaining 
vehicles, so verification and validation are both of critical importance (i.e., the system 
must both accurately represent vehicle failures and diagnose interventions at the correct 
point in a vehicle’s maintenance and lifecycle history). Expert systems also show the 
limit of focusing on verification and validation (whether in a formal sense or not) in 
terms of evaluating a system for higher-order properties such as credibility to users and 
other stakeholders (e.g., a maintenance diagnosis system must not only garner the trust 
and use of mechanics and maintenance technicians but also vehicle operators, program 
sponsors, and ultimately commanders who are responsible for unit readiness). Such 
higher-level and whole-system assessments depend on V&V, of course, in the sense that 
V&V failures will undermine higher level judgements. But formal verification on its own 
does not furnish credibility or positive evaluations of things like value for sponsors [86]. 
In our taxonomy, expert systems use a model-oriented architecture despite relying 
heavily on the contents of the knowledge store for their actual behavior and function. For 
this reason, as noted above, it is straightforward to reason about failures since specific 
behaviors of an expert system are straightforwardly traced, but it can remain challenging 
to establish whether the knowledge base itself is prospectively correct even when it is the 
focus of verification and validation efforts [87]. In this way, we see that the distinction 
between data-oriented and model-oriented architectures is not necessarily clean (model-
oriented architectures are often at least post-hoc interpretable, however). Instead, 
verification of the knowledge base must proceed from external knowledge of the 
structure of the domain. It is from this structure that the soundness and completeness of 
the facts in the knowledge base can be attested, measured, and confirmed. Without such 
domain assumptions, there is little meaning to claims of verification or validation. Thus, 
even expert systems and model-driven AI tools must carry assumptions about their 
domain of operation to be assessed for safety. Beyond soundness and completeness of the 
data with respect to real-world knowledge, knowledge in an expert system can be 
redundant (representing the same fact about the world in multiple imprecise ways when 
one precise statement would be preferable) or inconsistent (representing a fact about the 
world in two incompatible ways, such as labeling distinct items with the same item in a 
knowledge ontology or labeling the same item in distinct ways). All these can lead to 
problems with the correctness of the system’s behavior.  
Having established both the domain dependence and the modalities of failure, it becomes 
possible to gather “meta-knowledge” against which to verify and validate the knowledge 
in the expert system. Domain-independent V&V is also a known approach, based on 
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heuristic detection of anomalies, or unusual uses of the knowledge schema. Anomalies 
are only potential errors – they may be intended behaviors (this recalls the concept of the 
“normal accident” or “system accident”, a rare behavior allowed by a system’s design 
which is harmful, unintended, and the result of insufficient safety control [88]). Anomaly 
detection often relies on simple checks, such as for consistency, completeness, and 
correctness of the rules in the knowledge base. For example, a correctness check might 
examine generated statements for the lack of circular reasoning, or chains of rules which 
feed back to the same knowledge state. Although the techniques identified above can be 
helpful, they do not constitute a complete verification framework, and do not provide 
absolute guarantees of safety. 

2. Verification in Reinforcement Learning 
In cyber-physical systems, a successful approach to controller learning comes from 
reinforcement learning, a technique in which the controller maximizes its total reward 
when each action is assigned a value under a reward function. Reinforcement learning 
systems tend to perform well in unconstrained, unmodeled, open-world environments, 
but because of their unconstrained nature do not provide any meaningful guarantees of 
safety or even bounded control [89]. 
To sidestep this problem, work on verification in reinforcement learning often uses 
runtime monitoring so that the controller can be treated as having a nondeterministic 
policy with multiple safe actions. Verification, rather than showing that the optimal 
control policy is safe, merely confirms the set of safe actions at a particular state and 
confirms that the runtime monitor will intercept the system’s action if it is not deemed 
safe (thereby allowing normal optimization within the reinforcement learning process to 
solve the optimization problem). This is the paradigm of “Justified Speculative Control” 
which pairs a formally verified controller and an ordinary reinforcement learning 
algorithm in a sandbox in such a way that proofs about the verified controller transfer to 
the optimized reinforcement learning model [89]. This technique forms the basis for 
application of a wide variety of formal methods and shows promise in safety analysis and 
verification for even real-scale cyber-physical systems [90]. 
As with expert systems, while careful architecture and proof construction techniques can 
make systems amenable to verification, validation for these systems remains an important 
and difficult problem, due to the fundamental model gap issues identified in Section II 
and especially Section II.C. 

3. Verifying Data-Driven Architectures and Machine Learning Models 
The model gap issues of model-driven architectures are substantial, although detected 
failures at least correspond to interpretable behaviors of the model. By contrast, machine 
learning models use a data-driven architecture: instead of specifying the contours of the 
model and leaving the implicit portion of the behavior to the operation of the model, data-
driven architectures specify only the data and the processing methods to be used 
(typically, optimization of some objective function). Here, failures of correctness may not 
be obviously attributable to these choices, and failures are often attributed to “bad data” – 
data that are incomplete, biased, or otherwise mismeasure the world and reify some kind 
of modeling gap (data are better described as made rather than being found – although it 
is comforting to think of data as an objective reflection of the world, they represent a 
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model already and that model may bring in/leave out critical world knowledge [91]). 
However, the verification situation is not entirely bleak: machine learning models can 
often be verified to perform within stated performance envelopes. We describe the major 
approaches shown in the literature. 

a. Interval-Bound Propagation and Robustness Guarantees 
An important class of robustness failure in machine learning models is the failure to 
generalize appropriately. That is, models perform well on data similar to that encountered 
during training, but because they are limited to a fixed menu of output behaviors will 
choose the maximum likelihood output even when this likelihood is very low because the 
input is unlike any training examples.  
To avoid this type of failure, it would be beneficial from a verification perspective to 
define a performance envelope in which this sort of failure will not happen because data 
encountered match the training data well (this approach is very natural – many systems 
are certifiably safe only based on assumptions about when and how they will be used). 
Such an envelope could be established through input filtering – if inputs (do not) match 
filter predicates, they should be discarded or the machine learning output marked as 
possibly erroneous or even treated as an error. However, the problem of adversarial 
examples defeats this simple solution. Adversarial examples are inputs which are “close” 
to training inputs as quantified by distance measures (such that they might count as the 
same class to a human) but on which the model reports a different output [92]. For such 
examples, filtering is insufficient for defining a performance envelope (since models, 
being susceptible to adversarial examples, do not learn the filtering function). Adversarial 
examples are often presented as a kind of “attack” on systems rather than inputs with the 
property that they are misclassified despite being norm-wise close to known inputs, 
suggesting that they are less exploitable bugs in the system and more system behaviors 
that must be managed [36]. Managing them requires overcoming the problem of 
oversimplistic definitions of safety envelopes. 
One technique for establishing such a robust safety envelope for machine learning models 
is “interval bound propagation (IBP)” [93]. In specific, IBP provides a guarantee that a 
model’s output will be stable relative to norm-bounded perturbations. IBP allows a 
modeler to efficiently build models that are optimized with regard to adversarial 
perturbations. It is not a guarantee that the model is without perturbations within the 
specified norm-ball of known examples, but unlike complete methods (described below), 
it does scale to large model sizes. However, problems with model robustness are likely 
the result of problems in validation and the inclusion of non-robust features [36]. Indeed, 
sensitive dependence on incidental features drives performance issues that undermine 
even the reproducibility of machine learning results [39]. Other work has investigated the 
use of ideas from robust optimization to manage this issue [94]. However, recent work 
suggests that adversarial examples may be an inherent feature of deep learning [40]. We 
recommend further investigation of the effectiveness of these techniques in contexts 
relevant to DoD before they are incorporated into safety assurance guidelines and 
procedures for military AI systems. 
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b. Explicit Model Checking: MIP and SMT Approaches 
Although explicit specification for the input-output relation of a machine learning model 
such as a neural network is not possible a priori, the model nonetheless captures some 
function and thus it is possible to make claims about that function, such as that a certain 
class of input must be mapped onto a certain class of output [95]. Armed with an imputed 
specification which models a function, one can attempt to do explicit model checking to 
verify that a machine learning model matches the modeled specification in a complete 
and sound way. Progress in this direction has happened through the use of mixed-integer 
programs (MIPs) [96], [97] and satisfiability modulo theory solvers (SMT solvers) [98]–
[100]. An advantage of the model checking approach is that it offers complete 
verification of a claim, drawn from a general set of possible claims, over all possible 
inputs to a machine learning model. The main disadvantage is that this completeness 
limits the scalability of the verification approach. However, work in this area has been 
able to demonstrate verification of properties with some interest, such as the control of a 
flight collision avoidance system [98]; that system is still small by the standards of 
modern machine learning tools, but its behavior is rich enough that it captures a real-
world problem well. Thus, scaling the model checking verification approach could be 
achieved by pursuing simpler models that are similarly performant [101] or by finding 
refinements and approximations that retain soundness for model-checked safety 
properties [99], [100], [102], [103]. 
Many recent surveys document approaches in the domain of verification of machine 
learning and neural network systems [95], [104]–[107]. Other work applies ideas from 
formal verification to control problems in reinforcement learning [89], [90]. 
F. INTERPRETABILITY AND EXPLAINABILITY 
Much concern has been raised about the safety issues arising from the so-called “black-
box” nature of AI systems [108]. In short, the purported concern is that because AI 
system behavior is complex or not visible to those who must interact with or are affected 
by the system, it is difficult to make sense of the system’s behaviors [109]. This leads to 
two safety concerns: first, that it will be difficult to know when a behavior is not 
justifiable or might represent or lead to an unsafe state; and second that systems that are 
misbehaving will be difficult to debug or override during operations. 
As noted in Section IV.C, there are substantial issues in composing automated systems 
and human operators. Questions about interpretability and explainability are related but 
distinct – unlike the issues in Section IV.C, issues of interpretability and explainability 
have to do with the psychology of the operators rather than the structure of the system. 
Failures can occur either in the structural ways that humans and machines relate to each 
other (not affording humans sufficient situational awareness to take over the 
disengagement of automated control in a vehicle, for example) or in the perceptions of 
the operators (an operator misinterpreting why a particular decision recommendation was 
given and therefore acting incorrectly as a result) [110]. 
Beyond this, AI systems can and do acquire unsafe behaviors because of inaccuracies in 
their inductive specifications, and difficulty in explaining or interpreting system 
behaviors may present risks that manifest at the development stage. To take one well 
known example, although a neural network provided the most accurate decision 



 35 

recommendations in a project to use AI to support emergency room medical clinical 
decision-making, doctors rejected the system on the basis of not being able to understand 
the rationale behind the recommendations [111]. Specifically, the project aimed to 
recommend to doctors whether to admit a patient from the emergency department as a 
hospital patient given their pneumonia diagnosis, symptoms and medical history. Some 
pneumonia patients will recover safely at home given a course of antibiotics and bed rest. 
Others may fall into a crisis within a day and require critical care intervention to avoid 
severe risk of death. Experienced doctors have difficulty distinguishing between these 
classes of patient, and a decision aid was sought to improve sorting outcomes.  
An assessment of the proffered decision-support models revealed that a rules-based 
model predicted that the clinical feature of having asthma predicted low risk from the 
pneumonia diagnosis. Interdisciplinary consultation confirmed that this learned 
relationship is medically incorrect: asthma patients are at higher risk of complications 
from pneumonia. However, asthma patients as a group did have better outcomes in the 
data on which the AI systems had been developed. Why? It turned out that the hospitals 
from which the data were gathered had policies requiring the immediate admission of 
such patients regardless of other factors (in some hospitals, these patients were put 
directly into critical care). Because of the stronger intervention, this cohort suffered fewer 
complications overall. But because the AI systems could not observe this intervention in 
the data, they developed a large model gap that could not be detected by analyzing the 
model or the data alone. Subsequent research demonstrated tools which could provide an 
AI system with similar performance to the neural network but with greater capacity for 
interrogation and debugging [111]. 
This example shows a dichotomy in the value of explainability for contributing to 
trustworthiness in an AI system: should explanations be given to end-users, who might 
then use a kind of “common sense” to understand when the machine components of a 
system should be overridden by human judgement, or are explanations better suited as 
debugging tools that help system developers and controllers understand why failures have 
occurred. Observe that in the first of these two contexts, we encounter the human factors 
problems described in Section IV.C [112], [113]. And in the second, what development 
or operations staff require to understand failures is better captured in the broader concept 
of traceability within the assurance process [7], [114].  
However, the broad concept of explaining the behaviors of AI systems as part of 
understanding their trust and assurance properties remains important, both because it 
helps define a wide range of trust requirements for such systems [85] and because the 
large number of techniques developed under this research program show promise in 
improving AI system reliability and provide levers to dislodge the difficult problem of 
model validation [115] (as noted above and below, although verification of AI systems is 
difficult, it has proved more amenable to progress than validation in existing research and 
practice). 
It is also possible to view the distinction between the requirements for human-level 
engagement with an AI system and the value of a mechanistic description of the input-to-
output relation and workflow as a dual set of requirements which can be valuable 
simultaneously. Psychology teaches us that both sets of requirements are important to 
building the human-system interface [110], the first because humans must contextualize 
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the AI system’s behavior in order to react appropriately and the second because some 
humans require the detail of a full explanation in order to themselves form the needed 
interpretations.  
Work in this area remains important and under-developed, especially as it relates to 
assessing human-machine teams and within that especially as it relates to decision-
making and decision-support systems with automated components. In both the 
psychology and computing literatures, there is much confusion around uses of the terms 
“explainability” and “interpretability”, with many works conflating these terms in 
practice while simultaneously identifying them as distinct ideas [116]–[118]. Research on 
applying these ideas has pushed beyond such abstractions toward applications, 
particularly in the medical domain [119], and toward ideas about managing the 
generalization and common-sense application processes within the machine components 
of the system [120]. 
G. ROBUSTNESS, RESILIENCE, AND PERTURBATION DEFENSE 
A major open problem in all manner of AI systems is the problem of robustness, the 
problem of knowing whether the performance of a system will remain stable over various 
sorts of generalization (e.g., generalization to new data beyond what is used in 
development and evaluation; generalization to new-but-related domains such as new 
populations with similar features undergirded by related constructs; stability of 
performance over time as relationships operationalizing the construct of interest evolve). 
That is, robustness is the property that an AI system will remain performant even when it 
is perturbed – given unusual input or applied in situations other than those it was 
designed for.  
Robustness is a key property for safety: hazardous system states likely do not resemble 
the states for which a system’s performance has been evaluated (this is almost 
definitional – in expected states, the system’s performance has likely been assessed 
correct, while hazardous states where the system may misbehave are states that were 
unexpected even if they are allowable as states of the system [88]). Although there is no 
general technique for establishing the level of robustness afforded by a particular AI tool 
nor a universal defense for sustaining performance against the most destabilizing 
perturbations, much work has shown how to understand the envelope within which a 
model will be stable, how to improve the level of robustness an AI system provides, or 
how to detect that a tool is being asked to perform outside its safe envelope. Many 
research problems remain in this important and underattended area, however, and while 
we aim to taxonomize these questions and what is known about their solutions, we can at 
most scratch the surface of a deep, unsolved problem that represents a classical challenge 
for all sorts of modeling. The robustness problem’s difficulty underscores our focus in 
this report on explicitly examining a system’s assumptions and its world model to 
understand the applications where it may be employed safely. The opposite of robustness 
is fragility or brittleness; many AI systems are inherently brittle, and understanding in 
what ways they might catastrophically stop working is key to determining when AI 
systems can be employed usefully and reliably [4]. 
A system-level concept which is analogous to robustness is resilience, which can be 
defined in many domain-specific ways but which in general refers to a measure of a 



 37 

system’s ability to survive and persist in driving towards its goals even in a variable 
environment. Resilience is little-studied in the field of artificial intelligence, but systems 
which manage safety-critical applications must be analyzed for resiliency at the system 
level (which may be driven or affected by robustness at the component level – certainly, 
non-robust components can cause failures of system-level resiliency, but the converse 
may not be true). Resilient systems fail gracefully and gradually [121]. Systems generally 
require design and active management to support resilience. Resilience is not the same as 
static stability or lack of response to perturbation; rather, it is the system’s ability to 
recover normal operation after a perturbation was encountered. The study of how to 
measure and understand resilience is underdeveloped, both for AI systems and in general. 
Much of what is known about robustness comes from the study of adversarial 
robustness, or robustness against perturbations specifically designed to maximize the 
misbehavior of an AI system [34]–[36], [92], [94]. The study of so-called “adversarial 
examples”, or inputs from a valid domain which trigger adverse robustness behavior 
despite being similar to inputs on which systems are performant echoes a longer history 
of work on “evasion” of AI systems [122], such as by spam in communications systems, 
malware in computer networks, and camouflaged targets or targets deploying 
countermeasures to detection in military applications. Each of these cases is well studied, 
but study and practice in real-world applications have yielded neither complete defense 
nor fully general systems which perform well even when adversaries are allowed to 
choose inputs. Even in the space of adversarial perturbation defense for advanced 
technologies enabling the latest generation of AI systems, such as deep neural network 
machine learning, an enormous amount of study yields neither complete defense nor 
strong robustness [38]. 
What is notable about the field of adversarial example defense for machine learning 
systems is that the focus of the efforts to resolve it are focused primarily on the problems 
of generalizing defenses or on the problem of improving model generalization. Yet these 
framings are the most difficult epistemic approaches, substantially more difficult than 
attacking the problem at a systemic level. Consider evasion attacks known in earlier 
systems, such as the injection of spam into content networks and communications 
channels. It is well known that the deployment of anti-spam measures increases the 
volume of spam sent while modifying the distribution of spam approaches in order to 
maximize the adversary’s chance of evading the defense [123]. Thus, efforts to harden 
communications systems against spamming must account for the ways new defenses will 
reshape the nature of content injection. The same goes for AI systems: defense against 
adversarial inputs may be as (or more!) brittle to changes in attacker behavior as the 
initial system was to misbehavior from attacker-crafted inputs. And just as the solution to 
spam problems often lies in making the spamming activities unprofitable, there are likely 
system-level equilibria that are robust and resilient to adversarial actions. Yet such 
design-level approaches are rarely studied. We leave the vast task of summarizing what is 
known about specific adversarial attack and defense to another technical report also 
stemming from this project [38]. 
Related to assessing robustness and the risk of generalization error is the problem of 
bounding how much an AI system’s performance will be affected by generalization or 
perturbation of any kind. We stress that our core argument – that all AI systems rely at 
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least implicitly on a model of the world which should be well aligned to underlying 
constructs and assumptions – is the core mechanism by which it can be hypothesized that 
an AI system will generalize beyond the training data effectively.  
Further, understanding the assumptions and the necessary modeling gaps created by a 
system’s world model points the way to reasons a system may not generalize well. For 
example, a system which identifies the make and model of road vehicles may generalize 
poorly if applied in a different country than the one in which it was developed as vehicles 
in the new country may look very different (or the same vehicles may be badged as 
different models in the second country). But it may also perform well if the second 
country purchases many of its new and used vehicles from the same manufacturers as the 
first country. Although there is a substantial amount of research on measuring uncertainty 
in modeling of all kinds (including machine learning), the area does not provide a 
complete answer to the core question of model validation [124]. Even advanced Bayesian 
methods of uncertainty estimation cannot give a full answer, partly because their own 
assumptions must be validated and partly because viewing the problem at the component 
level does not provide the needed context to understand the way the system as a whole 
operationalizes a world-model [125]. Systems-theoretic validation approaches hold 
promise for recontextualizing component-level requirements in light of system-level 
paths to hazardous states [68]. 
Another approach to improving robustness holds that, since causal relationships are likely 
to hold up when the context of a system’s application changes or when practical drift 
modifies or invalidates system assumptions while non-causal relationships are likely to 
break down, the appropriate point at which to separate robust from non-robust models is 
the distinction between causal relationships and incidentally discovered, non-causal 
relationships such as incidental correlations. The question then becomes whether 
causality in the structure of an AI system’s world model can be inferred automatically or 
whether the concepts that underlie causality must be taken on as assumptions. There is an 
enormous literature on the automated inference of causal relationships, drawing on a long 
history in science and philosophy [126]. In specific, Pearl’s calculus of causal reasoning 
[30] has launched an entire methodological subfield in machine learning [127]. Other 
methods from statistically controlled natural experiment theory can also be applied, such 
as the theory of instrumental variable analysis [128]. This line of research has led to an 
enormous field of counterfactual causal reasoning to identify failure modes and improve 
predictive fidelity [129]. However, because counterfactual reasoning departs from the 
operationalization of an AI system’s core world model, it has only limited validity in 
many cases [130]. 
H. AUDITS, ADVERSARIAL EVALUATION, AND DOCUMENTATION 
An often-suggested class of intervention for risk management in AI systems is to audit 
the systems, either collaboratively [131], [132] or adversarially [133]–[137] (settings 
which roughly correspond to “white-box” auditing/testing, where tests can depend on 
system internals, and “black-box” auditing/testing, where tests can only depend on 
system input-output behavior). Audits are evaluations which compare a system’s 
behaviors to expectations about those behaviors, with the goal of establishing that 
systems behave as intended, and are in this way analogous to traditional software testing 
methods and serve as a tool for accountability of system behaviors and system-driven 
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outcomes [25]. For this reason, audits are driven by evidence of how a system operates or 
was constructed, and the audit outcome depends on the reviewability [138] or traceability 
[7] of the system under examination. Audit regimes drive accountability for system-level 
behaviors in a variety of domains, and have the potential to be very useful for AI systems, 
but require the development of better and more complete standards backed by scientific 
validation that their employment supports substantive system-level goals [139]. But the 
extent to which having or publicizing audit results leads to system-level changes or 
accountability for system risks and harms remains unknown [140]. 
Such evidence can come from system logs and records, but often comes from 
documentation produced during system development, which might be intended to 
communicate either facts about system behaviors or intentions about system expectations 
[141]–[145]. Documentation creates and communicates information about AI systems, 
but while high-fidelity documentation is a sign of a system operating safely, 
documentation alone is not a safety intervention: documentation can be out of date, 
incorrect, or unread, for example. And while checklisting as a tool for baseline task 
completion or risk information communication is well understood and used in a variety of 
safety-critical domains [146], there is not yet either an accepted set of baseline tasks or 
performance measures for AI systems, even in well studied and well circumscribed 
domains such as aviation. Further, documentation’s utility as an intervention has not yet 
been validated for AI systems, despite the wide array of proposed design interventions 
based on improved documentation. Some empirical work in this area has begun in the 
private sector [54], [147], but none has yet focused on AI in safety-critical domains. 
Presently, the National Institute of Standards and Technology is developing an AI Risk 
Management Framework meant to undergird audit and other system management 
processes for AI systems [5]. While the broad idea of organizational management tools 
for identifying risks and managing the structures of sociotechnical control around their 
mitigation is important and connects to management of technology-driven risks in a 
variety of domains, both safety-critical and not, the present approaches mostly consist of 
hypotheses about what makes for good risk control. It would be substantially more robust 
and reliable if these management tools were examined empirically for performance in 
both identifying and limiting risks, or at least for their performance in identifying failure 
modes and scenarios (a substantially easier and more concrete task, as losses can be 
defined and observed while risks are unobservable and require a measure to 
operationalize). In the safety world, such program effectiveness work is a common and 
expected part of closing the loop between system outcomes and program operation [148], 
[149]. 
The NIST effort is not the only AI audit and risk management effort that attempts to 
bridge the gap between the need and desire for management and mitigation of AI-driven 
risk in consequential systems and the lack of standard, accepted processes for said risk 
management. The most established is probably the Model Risk Management governance 
framework in the financial industry, governed by the Federal Reserve’s supervisory note 
SR11-7 [150]. This regime ties activities such as impact assessment [151]–[153] to 
existing organizational governance and risk control methodologies and structures [154]. 
Other extant audit and risk governance frameworks include the Government 
Accountability Office’s extension of the US Government’s “yellow book” auditing 
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standard to cover audits of AI systems [155] and nascent frameworks such as pending 
revisions to DoD safety standards such as MIL-STD 882E or software airworthiness 
standards such as the DO-178C assessment standard adopted by the FAA. Medical device 
assessment standards are also being revised to better apply to AI systems, especially data-
driven machine-learning-powered devices. For example, the FDA recently accepted a 
deep-learning based screening test for diabetic retinopathy as an approved medical device 
for use outside the direct judgement of a clinician (this framing is a bit deceptive – as a 
screening test, a positive result indicates a referral to an expert; no diagnosis is made 
purely autonomously) [156]. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
This report analyzes potential hazards associated with AI systems. We taxonomize 
available mitigations, providing a meta-survey of safety issues and their management. 
We focus especially on problems related to managing the modeling gap between the 
world as represented within an AI system and the underlying world in which they system 
must operate. Additionally, we take a whole-system view of safety, looking to AI tools 
embodied within systems and the way those systems can fail as a result of AI tool 
behaviors, rather than simply focusing on improving reliability at the component level. 
In general, safety of AI systems is difficult to assess, and many of the AI systems that 
have achieved high prediction accuracy are not robust with respect to perturbations of 
system inputs. This is a concern for safety-critical systems, particularly for applications 
that need to operate in contested environments. Examples include financial applications 
that operate on the internet and defense applications. In both cases, adversaries are 
actively and adaptively seeking ways to make the systems fail. The reasons why safety of 
AI systems is more difficult to assess than for other kinds of systems are discussed in 
Section III of this report. 
Hazards associated with AI systems and known mitigations for those hazards are 
surveyed in Section IV. There is a great deal of previous work in these areas, and 
progress has been made. However, at the time of this writing, there are no complete 
solutions for mitigating the known hazards, and much work remains to be done before 
such solutions become available. 
We conclude that AI systems are often fragile and subject to failures [4] – both our own 
systems and those of our competitors and adversaries. At the current state of the art, the 
best opportunities for achieving safe and effective applications of AI are in controlled 
environments, where closed-world models are applicable and can be verified and 
validation can be appropriately scoped, in contrast to uncontrolled environments, where 
open-world models are needed and validation is problematic. 
Although much work focuses on improving metrizable properties of AI components, our 
interest is in failures at the systemic level. For this, it is necessary to connect system level 
hazards and failures to requirements on component performance. We hypothesize that, 
while there are several major barriers to AI evaluation, some requiring foundational 
research to overcome, system safety frameworks are well suited to building these needed 
connections [157]. The existing work described in this report can then be applied to 
achieve the identified performance requirements. 
This report focuses on short- to medium-term issues and system-level safety concerns. 
See [158] for a discussion of long-term concerns, most of which are economic and 
political, with mitigations related to changes in policy and incentives. 
B. RECOMMENDATIONS FOR SAFETY ASSESSMENTS 
We recommend the following guidelines for design and safety assessment of AI systems. 
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• Adopt a whole-system approach to safety of systems containing AI technology. 
At the current time, methods for assessing AI components are immature, 
emerging approaches are difficult to apply, and are mostly practical and effective 
only in special cases with particular properties and modest complexity. Rather 
than relying on robust operation of AI subsystems, we suggest that the larger 
systems containing those components need fault-tolerant designs that provide 
fault detection mechanisms and backup systems with alternative solutions to 
cover cases where the AI components fail. Safety assessments should include 
safety cases for the effectiveness of the fault detection mechanisms and adequacy 
of the backup systems. System safety methods are known and likely suited to this 
task, but future work should explore the extent to which this hypothesis holds. 

• In the context of man-machine teaming, where human experts are used to check 
for possible failures of AI components and mitigate them, we recommend 
requiring and assessing effectiveness of training on how to respond to possible 
component failures, assessing interfaces of the systems to check that they support 
adequate situational awareness for the experts to understand what is going wrong 
in detected failures and to check that the interfaces provide means for adequate 
recovery actions. Issues of human comprehension of system actions are rarely 
issues of explainability or inscrutability, but rather issues of whether humans can 
effectively integrate AI components into their workflow within whole sytems. 
Safety assessments of such designs should also evaluate whether the rate of false 
alarms in the system is sufficiently low that operators will not routinely ignore 
system alerts. 

C. RECOMMENDATIONS FOR FUTURE WORK 
We recommend future work on the following aspects of AI safety. 

• Test the hypothesis that systems safety methods can be adapted to articulating 
performance requirements for AI components used in safety-assured systems, 
rather than focusing on the safety of the components themselves. This may 
require adapting known safety methodologies such as STPA and FMEA to focus 
on AI-specific hazard etiologies [56], [157] or inventing specific hazard 
identification methods [159] that relate to known taxonomies of AI-relevant 
hazards, such as the one presented in Section IV. 

• Find effective methods for validating AI models – checking whether they match 
the real world. This problem is poorly studied and strongly affects AI system 
safety assessments. See related discussion in section II.A. 
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