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1.0 SUMMARY 
The goal of DARPA’s Active Interpretation of Disparate Alternatives (AIDA) program is to pro-
duce a system that can develop or provide multiple hypotheses (alternative interpretations) of 
events and statements from unstructured sources.  Such a system would be able to both digest 
multiple accounts for news of events, situations, and claims and uncover the underlying common 
truth, despite the highly variable representation of the information and therefore propose how 
much events might be portrayed.  To achieve this, the system aggregates knowledge from multiple 
languages and modalities to build an explicit representation that can be queried to produce hypoth-
eses about said events with appropriate provenance for the claims.  A classic example of this task 
might include merging characterizations like ``killed” versus “murdered” or “freedom fighter” 
versus “terrorist”.  Fundamentally, in either case there is a death, a cause, and a party responsible. 
These details can be mapped to knowledge entities (locally or via WikiData).   
The OPERA system (for Operations-oriented Probabilistic Extraction, Reasoning, and Analysis) 
developed jointly by CMU and USC/ISI is an integrated solution to the challenges of DARPA’s 
AIDA program. It combines the following (TA1/2/3 are technical focus areas of the AIDA pro-
gram): 

• High-performance media analysis (TA1) for text, speech, and image/video data 

• Semantic representation and reasoning support (TA1 and TA2) 

• Cross-medium and cross-language integration (TA2) 

• Hypothesis creation, management, and hypothesis exploration (TA3) 

• Integration framework (computational and semantic) 
 

The system also produces standardized representations for sharing with other teams that digest 
either of TA1 or TA2 predictions.  Given that all required components of such a system are still 
active areas of research, the creation of a single system (pipelined or otherwise) has the potential 
for a substantial rate of compounded errors.   An incorrect entity impacts the creation of a role or 
event, which in turn limits cross-document, cross-medium, or cross-language clustering, and ulti-
mately prevents the creation of a unified hypothesis.   
 
Early versions of the system created had strong abstraction boundaries for limited information 
sharing between systems and relied on a custom LDC ontology.  Later incarnations benefited from 
allowing for the output of extractors to be coupled with raw text strings and embedding vectors.  
These prove especially advantageous in the presence of large-scale language models that encode 
world knowledge, and when aligning predictions to an open-domain ontology, like that of Wiki-
Data. Importantly, these changes strengthen the resulting system and increase robustness for use 
in real deployment settings. 
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2.0 INTRODUCTION 
The goal of DARPA’s Active Interpretation of Disparate Alternatives (AIDA) Program was to 
develop a multi-hypothesis semantic engine that can generate explicit alternative interpretations 
of events, situations, and trends from a variety of unstructured sources. Such events might be nat-
ural disasters or international conflicts where analysts are often quickly inundated with large 
amounts of noisy, conflicting and possibly deceptive information, which makes it difficult to un-
derstand what is relevant and how to respond appropriately. The AIDA engine must be capable of 
automatically extracting knowledge elements from multiple languages and media sources, aggre-
gate information derived from those sources, and generate and explore multiple alternative hy-
potheses about ongoing events, which can then be presented to and interactively explored by a user 
such as an intelligence analyst. 
 
CMU’s role in this collaboration focused on TA1 and TA2 – the creation of inter- and intra-docu-
ment or modality representations. 

• Intra-document Within individual documents, the system must produce accurate extractions 
of entities, events, and relations.  This thresholds for precision vs recall must be appropriate 
for rich hypothesis formulation without undue noise propagation.  Extractors need also oper-
ate in multiple languages and from vision.  Both high precision expert annotated approaches 
and high recall learning based techniques are employed here. 

• Inter-document Once local knowledge entities are built, they are clustered across document 
and modality to begin unification of like evidence. 
 

USC/ISI’s role in this collaboration was to design and develop representation mechanisms and 
software components to provide the following high-level functionalities: 

• Common Semantic Repository which provides a representation formalism, ontologies, re-
pository, inference engine and APIs to store, access, map, disambiguate and link knowledge 
elements (KEs) generated by TA1 modules or entered directly by analysts. 

• Hypothesis Generation and Management to generate and manage semantically coherent 
hypotheses that are supported to some minimal degree by evidence available to OPERA, and 
to record and manage alternatives and allow backtracking and retraction under guidance of 
the Hypothesis Reasoner. 

The AIDA program was very ambitious in its goals and posed extremely difficult technical as well 
as engineering challenges to the various teams addressing them. Given all the different input mo-
dalities, languages, media types, source and extraction noise, and requirements for knowledge el-
ement extraction, inference, linking, querying, cross-component and cross-team integration, con-
tainerization and end-to-end system automation, the resulting systems turned out to be extremely 
complex and difficult to build, test and debug, particularly in an academic, non-commercial re-
search environment.  The final components amount to massive code-bases, each in the 10s of 
thousands of lines.  A large portion of this very sizable code base focuses on engineering and 
integration issues, which often turned out to be more important for overall system performance 
than the many interesting technical problems that also had to be solved. 



 
Approved for Public Release; Distribution Unlimited. 

3 

 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
This section is broken down into four main sections, corresponding to the above innovations and 
components. 

3.1 Intra-Document: Multilingual Extraction of Entities and Events 
Event and entity extraction are the seed for the entirety of AIDA.  Specifically, we have both a 
learned model and a high precision approach (COMEX). 
 
3.1.1 COMEX 
COMEX is a shallow semantic parser that uses hand-crafted rules instead of machine learning to 
transform incoming text into KE structures.  We leverage cross-lingual domain knowledge to pro-
duce these rules and reconcile normalizations.  We extract common patterns for phrasings and 
write rules for such templates (e.g. “X verb Y” for common verbs).  For entities, we can also use 
cultural saliency to resolve ambiguities (e.g. Moscow being the Russian capital, not a city in Ohio, 
when referenced in Russian or Ukrainian texts). 
Specifically, The COMEX system aims to produce KE frames from the output of off the shelf 
parsers (e.g.  StanfordNLP and the Universal Dependency parser UDPipe 1.2).  Event trigger terms 
are manually mapped to the ontology (either by direct matching of a manually curated list of trigger 
words, or using English triggers in translation or through WordNet/dictionary lookup). We per-
form some annotation, starting with LDC’s seedling corpus and adding our own manual annota-
tion.  Shallow semantic / conceptual extraction is a form of rule-based inference. The rules are 
attached to lexical entries or to ontology nodes, and the lexical entries are attached to ontology 
nodes. The ontology and lexical entries are semi-manually created from the training data. The 
COMEX ontology is a superset of the NIST/LDC ontology, augmented as needed for shallow 
semantic frames. The COMEX ontology supports far greater detail than even the AIDA program 
ontology and allows multiple inheritance. A fragment is shown below.  
Lexical links connect wordsenses to ontology concepts. They provide rules for instantiating and 
connecting concepts into a mention graph. The semantic requirements for slot fillers are specified 
in the ontology. While there may be numerous lexical items, the number of different rules is small 
thanks to the semantic similarity of many entities and the expressive power of the rule notation. 
An example definition is shown in Figure 1.  These rules are handle constructed in each language, 
guaranteeing high precision.  Coverage is improved by use of automatic machine translation. Az-
ure translation services allows for English language models to be run on other languages and pro-
vides gloss alignments for projecting back to the original source text.  This allows for accurate 
detection of events and filling of argument roles.  We will leverage this approach as a slightly 
noisier but high recall approach for all TA1 extractors.   
Finally, to aid in the efficient construction of COMEX rules, we extract minimal cases from the 
available texts.  These simple examples (a verb and its necessary arguments) are base cases that 
can be efficiently converted to rules and which generalize to more complex or compound sentences 
thanks to accurate syntactic parsers that handle long-range dependencies. 
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Figure 1: Example lexical item for the event "attack" 

 
 
3.1.2 ML Extraction 
We use learned models for both entities and events.  For our entity model, we leveraged multilin-
gual-BERT (Devlin et al 2018), a pre-trained multilingual language model as the backbone.  Then, 
training data with a similar ontology to AIDA is collected and preprocessed. Specifically, we build 
a coarse-to-fine hierarchy to mirror LDC. For the most fine-grained levels, we lack training data 
due to natural sparsity. 
For events, we employ a two-step approach for the implicit argument detection, which enhances 
our event pipeline and makes it able to collect more arguments, including certain implicit ones that 
can go across sentence boundaries. More specifically, given an event trigger, we first detect all the 
possible head words of its arguments, with the intuition that the head words of the argument spans 
already contain enough information for the argument linking. In a second-step, we expand from 
the head words to the full spans. We train our system on the recent RAMS dataset and get a F1 
score of around 70 if given gold argument spans and around 40 if not. This module can be directly 
integrated in our event pipeline after the basic sentence-level processing.  Events are also processed 
with a multilingual BERT backbone.  This approach works best with English and Spanish.  We 
further enhance the models by translating English text and aligning the ontology to the new tokens.  
This augmentation strategy leverages the superior size and quality of English data. 
For English and Spanish our system is trained on TAC KBP 2015-2017. Since we have non-Eng-
lish languages, preprocessing is kept minimal apart from tokenization. No linguistic features or 
annotations (e.g. dependency edges or POS tags) are used to augment the input. This also allows 
us to easily produce shared featurization across languages.  This same multilingual BERT is than 
applied to Russian and Ukrainian in a zero-shot manner at test time. 
To encode the input, we use a series of in-context mention pairs connected with [SEP].  The inputs 
are arranged as  <left-context1> <mention1> <right-context1> [SEP] <left-context2> <men-
tion2> <right-context2>, with the left and right contexts being capped at 128 tokens. An additional 
binary task layer (linear+sigmoid) is added to predict whether the mention pair is coreferent or not 
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coreferent. Rather than <mention1>/<mention2> just being the mention token sequence, we aug-
ment it with non-textual attribute information available as part of the input, such as mention type. 
This is done by way of html tag-enclosed sequences placed before or after the mention text. For 
instance, the mention Gamal Abdel Nasser would be represented as Gamal Abdel Nasser <type> 
per politicalFigure HeadOfState </type> . For event mentions, the augmented information is con-
siderably more, given the presence of event arguments, realis etc. Next, to decode, as is practice, 
the scorer is not directly used to predict coreference - its probabilities are used to construct a pair-
wise similarity matrix which are then clustered together - a procedure typically called best-first-
clustering.  As noted above, we observe that using both EN+ES supervision works slightly better 
than just using ES supervision on the in-domain ES test set. Our model also generalizes reasonably 
decently to russian examples from the task set - an observation further corroborated in later quar-
ters, especially from the TA1 Leaderboard eval, where we exhibit robust performance on Russian.  
 
Merging Entities Across Teams There are two key concerns with transfer of embeddings between 
teams: When should one prediction be trusted? and How can the two embedding spaces be recti-
fied.  We looked to integrate GAIA embeddings.  Where our representation is 768 dimensional 
(standard for BERT), GAIA appears to have trained an additional transformation that outputs a 
2048 vector.  This vector is produced by two 1024 vectors which we assume to lie in the same 
space and therefore pool to 1024.  Next, we will estimate a linear projection {W,b} : Xgaia → Xaida 
using L1+L2-regularized linear regression. For training an alignment we require “seed” pairs. We 
consider entities from both spaces which have the same refKB Id - the inductive bias is that the 
mean entity embedding should remain invariant on projection. In other words, we minimize 
L(Xr

gaia , Xr
aida) . The number of pairs we get this way is not as many as those in the multilingual 

mapping case - they’re about 1-2% of the total cumulative number of entities.  Given that the 
number of supervised examples is still fewer than the number of parameters (1025*768), we go 
for a parsimonious parameterization, with an additional L1 penalty to encourage sparsity.  This 
approach gives us non-trivial cross-clusters (i.e the GAIA and AIDA entities aren’t  just simply 
clustered into two disparate sets of clusters), and at least 5-10% of the non-singleton clusters are 
heterogeneous (containing one entity from both sets). Specifically, for the final results received 
from our submission at the time of the post-eval remedial hackathon, of 6,526 non-singleton clus-
ters formed, 381(i.e 5.83%) were heterogeneous. 
 
Linking to WikiData After extracting the entities, we first employ BLINK (Wu et al 2020), an 
entity linking python library that uses Wikipedia as the target knowledge base, to link these entities 
to Wikipedia, then the wikipedia items are converted to their corresponding wikidata nodes. Since 
BLINK is a fine-tuned BERT architecture, it is relatively slow and not predictable. To ensure some 
entities of interest in this domain can be linked to the correct qnode, some simple rules are added. 
If linking process can not be done be these rules, BLINK will be used then. 
 
 
3.1.3 Question Answering for Claim Frames 
In our TA1 text Information Extraction (IE) pipeline, we also develop an initial claim frame ex-
traction module, which takes the previously extracted IE graphs and extracts initial claim frames 
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as answers to the queries. Specifically, we divide this by two major steps, which are described 
below. 
In the first step, we utilize a Question Answering (QA)-based model to directly deal with the que-
ries themselves and extract the X variables. For each of the query templates, we first convert it to 
a question according to syntactic rules: 1) Locate the Noun Phrase (NP) that contains the “X”, 
replace things with “Wh” words and move to the front. For example, for the query of “Treatment 
X cures COVID”, we identify the NP of “Treatment X” and replace it with “What treatment”. 2) 
For the cases where the NP is not the subject of the main sentence, we further change the word 
order according to English grammar, for example, from “Where coronavirus was created?” to 
“Where was coronavirus created?”. We find that these simple rules are enough to handle most of 
the queries that we have and we can have reasonable questions for them. In the second step, we 
utilize a QA model to extract the answer, which we treat as the X variable. With the above con-
versions, the inputs are exactly the same as a standard QA problem: a question and a paragraph 
(we chunk the document into several groups of sentences which we feed at one time). Nevertheless, 
the outputs will be slightly different since we want to score our extracted entities or events, there-
fore we output a binary probability score for each token and train the model with binary loss. At 
testing time, we re-rank all the entities and events by the scores of the tokens inside their mentions 
and decide the final results with certain thresholds. With the around 500 English documents in the 
practice set, we are able to extract around 3k answers for the queries, which we form as our initial 
claim frames. In the next steps, we plan to adapt the model to the covid domain with domain-
specific datasets. 
 
In the second step, we aim to fill in the other parts of the claim frames, of which the epistemic 
status and the claimer are the most important fields. For the epistemic status, we plan to utilize a 
Natural Language Inference (NLI) model to judge the polarity (positive or negative) of the ex-
tracted answer according to the query template. We can form a premise by taking the surrounding 
context of the answer mention and put the filled template as the hypothesis. In this way, we can 
judge the polarity of the extracted template. For the judgement of certainty, we will utilize our 
labels obtained from our FactBank model. For the extraction of the claimer, we plan to perform 
another round of QA, and simply query with the question of “Who said that …”, which is a straight-
forward way to identify the claimer. We will start with these simple schemes and later extend to 
more advanced techniques. 
 
 
3.1.4 Multimodal Representations 
The available multimodal content shifted throughout the program.  We began with a focus on video 
and speech data, but later shifted with the program to primarily focus on images.   

3.1.4.1 Audio 
For all video content we employ Automatic Speech Recognition (ASR) to extract speech. We use 
several Kaldi based systems, individually. For the Ukrainian recognizer, we use LDC2018E73 and 
LDC2018E74 (126.3 hours of training data), for Russian LDC2018E75 (43.5 hours of training 
data), and for English a dataset of 1700 hours from Switchboard Fisher and 2000 hours of medical 
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conversations. In our experiments, these configurations performed best overall on diverse test data. 
Language ID is done by comparing the language model perplexities, with the most fluent (lowest 
perplexity) being chosen as the correct language.  The results are: Russian: 34.8% WER and 
Ukrainian: 32.9% WER 

3.1.4.2 Faces 
To determine if an image or video is corroborating content in the text, we extract entities from the 
images to be aligned.  
For object detection we first obtain bounding boxes through a Faster-RCNN (Ren et al., 2015) 
model pre-trained on the MS-COCO dataset (Lin et al., 2014).  The object detection model is then 
fine-tuned on the Visual Genome dataset (Krishna et al., 2017). The class pool size for this dataset 
is 1600 different object classes. The performance achieved through this work is close to the current 
state-of-the-art on the VQA V1 challenge. We use the region-proposal network to extract type-
specific bounding boxes. Then to classify the objects found within the detected bounding boxes 
we used an Inception V3 (Szegedy et al., 2016)  with a class pool filtered from Freebase Entities 
and Google KG.  
 

 
Figure 2: OPERA visual processing pipeline 

 
To recognize the whole image semantics, as with the object detection and classification module, 
we took the same approach by using an Inception V3 model pre-trained on the ImageNet dataset 
and fine-tuned with 3-scaled Open Image dataset. The class pool is 500 after filtering once again 
from Freebase Entities and Google KG.  
The visual pipeline uses a two-stage mapping for parsing the concepts from the aforementioned 
Freebase Entities and Google KG. In the first stage, we map from 500 concepts to a 220 visual 
type pool defined by Columbia-RPI-CMU, which later on in the second stage, we map the 220 
visual types to the AIDA ontology. This final mapping is manually defined.  
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Our visual pipeline also includes an optical character recognition (OCR) module that is not cur-
rently being used. For this module we adopt an end-to-end two-stage OCR model to extract char-
acters or text in an image. The model has a text-alignment layer is proposed to extract sequence 
features within a detected quadrilateral of multi-orientation. A character attention layer is applied 
to for decoding. At the time, this model achieved state-of-the-art performance on the ICDAR2013 
and ICDAR2015 challenges.  
Finally, the visual pipeline can detect faces and re-identify them based on a reference database 
formed from Google Images queries. The reference database is built by downloading the top im-
ages from Google Images of the persons found in a list of domain names detected by our system’s 
Named Entity Recognizer (NER) on domain text. The faces are then detected on the images and 
video keyframes by using an MT-CNN model pre-trained on the Menpo dataset and recognized 
by processing the images through Oxford’s VGGFace2 model, from which we obtain a vector 
representation of the faces. Face similarity is obtained by calculating the L2 distance among the 
vector. To recognize the faces, we use a nearest-neighbor metric. 
In a 10% randomly selected subsample of last year’s LDC2018E52 AIDA Scenario 1 Seeding 
Corpus testing data we found that the face recognizer achieves an F1 score = 0.827. 
As the program progressed, we began utilizing Microsoft celebrity detection API, which was ef-
fective with heads of state and other prominent individuals.  The initial pipeline remains the same, 
but now we can retrieve a second vote for certain individuals.   
 

3.1.4.3 Charts 
A new phenomenon in the COVID space was chart processing.  Charts contain information ideally 
expressed in tables, but not available to us in that form as the bars and labels are more intuitive for 
humans. We implemented the chart-to-text work of Obied and Hoque (2020) to run on our domain.  
This provides summaries of the charts to be used as additional documents within the broader sys-
tem.  Note, that this does not handle general visual reasoning as we were initially assuming would 
be required in this domain (hence QA work), but relies very heavily on OCR style extractions from 
the images.  This follows the general paradigm of images corroborating rather than supplementing 
the knowledge found in text. 
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Figure 3: Example Chart Parse for producing a document from the key facts and trends 

 
Once the summary is produced, it can be used as a standard document by the text-based pipelines 
in our system.  

3.1.4.4 Extraction of Open-Domain and Novel Concepts 
To extract events and relevant entities in images, our primary pipeline assumes ResNet pretrained 
backbones and detectors. Given the caption “Medical personnel wearing personal protective 
equipment out of concern for the coronavirus remove a person from an ambulance near an en-
trance to Massachusetts General Hospital, in Boston” the first phrase grounds to the left heat map 
while the second to the right.  Note that while generally accurate, a number of issues arise related 
to precision and overly broad categorizations.  This is a natural result of receptive fields, even 
when cropped more narrowly (a secondary process). A second issue of concern to what extent the 
pretrained detector is limiting the regions of interest. The detector, as is standard, is pretrained on 
ImageNet categories – which are not reflected here (i.e. there is no label for PPE or most verbs). 
We therefore explored a novel patch based vision-language alignment model trained using Masked 
AutoEncoders (MAE). Specifically, we extend the paradigm introduced by ViLT (Kim et al, 2021) 
which uses a combination of image-text matching and masked language modeling to a novel MAE 
initialization. 
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Figure 4: Example COVID image 

 

 
Figure 5: CNN Based Attribution 

 
Patch visual transformers convert the image into small 16x16 or 32x32 pixel patches that take the 
place of visual tokens for which the model learns embeddings and cross-modal alignment.  Where 
ViT trains the model discriminatively to predict a visual class, the MAE loss (Masked Image Mod-
eling here)  focuses on reconstruction of local patches so the patches retain local visual information 
and context. This provides better representations for the language to align with. This model exhib-
its a number of beneficial properties over our previous visualizations. First, the patches do not 
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require local coherence.  In the aligned branch or leaves, individual patches can be isolated for 
more accurate predictions.   
 

 
Figure 6: Example Text-to-Patch alignment 

 
The secondary goal of a model trained directly on these alignments, is to provide a richer alignment 
model for large scale retrieval.  Specifically, if a QNode contains an image, then entities in both 
the document and the qnode should ideally be linked via their visual appearance. To this end we 
introduce both an evaluation domain/test bed in WebQA (Chang et al 2022) and a novel 
Knowledge augmented transformer (Gui et al. 2022).  We used CLIP (Radford et al, 2021) as part 
of our retrieval mechanism, and then take the corresponding WikiData as a document that can be 
integrated with a question for information extraction via GPT-3.  
 
To begin building models that actually progress on knowledge based multimodal QA, we con-
structed a model which aggregates knowledge from detections, implicit model parameters, and 
explicit knowledge bases.  Given a source image like the plane presented here, 1. a detection can 
be run for an ImageNet class (a very limited set).  2. A caption and detection tags can be passed to 
a large language model like GPT-3 to get “common sense” knowledge.  Given a question like 
“What type of plan is this?”, GPT-3 provides the most likely answer (e.g. jet). And 3. regions of 
the image can be presented to a retrieval mechanism like CLIP to compare against the multimodal 
content of a knowledge source like WikiData.  CLIP believes that the most similar entities are the 
Avro Shackleton, MC-130 Hercules, and P-3B Orion – all military plans and two with substantial 
fuselages.   Multimodal retrieval remains the primary bottleneck for advances.  In Figure 6 we 
show how performance on the popular Outside Knowledge Visual Question Answering (OK-
VQA) benchmark scales with the number of retrieved entities for two different backbones.  Note, 
that it is not clear how much benefit can be gained from increasingly large pools if the retrieval 
model is not able to accurately identify the necessary sources. 
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Figure 7: OK-VQA performance based on retrieval backbone 

 
We introduced a new knowledge based benchmark to explore the strength/limitations of these 
techniques.  An example query, answer, and set of sources from our WebQA resource are presented 
in Figure 7.  Because this testbed contains ground truth source selection – the content required by 
humans to answer the question – we can evaluate the retrieval mechanism directly.  We find that 
CLIP is a fundamental bottleneck due to its two unimodal encoders.  Crossmodel encoders perform 
much better on retrieval tasks but are computationally infeasible to run at scale, O(n^2) as com-
pared to O(2*n) for very large values of n.   
 

 
Figure 8: Example open-domain cross-modal retrieval 
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This is further motivation for building better joint encoders, as noted above.  We continued to 
adapt this patch alignment and began to see promising results on the image in Figure 4. Specifi-
cally, we can juxtapose Figure 9 with Figure 10.  These figures contain the same image but now 
the model identifies different patches when we reference the entities that are medical personal in 
PPE versus when we reference the event of “removing”.  The latter focuses on the stretcher itself. 
 

 
Figure 9: Patches for the phrase “Medical personnel wearing personal protective equipment” 
 
 

 
Figure 10: Patches for "remove a person from an ambulance" 

 

3.2 Inter-document KB aggregation 
The goals of this component are to: (1) merge the individual per-document knowledge bases (mini-
KBs) into a single graph via cross-document event and entity linking, and (2) to match knowledge 
extracted from a visual media document to knowledge extracted from text, and create co-reference 
links across documents in different media.  We create and deploy technology to perform corefer-
ence of entity and event KEs drawn from different text documents (and hence also different lan-
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guages).  The basic approach is to represent each coreference chain as an embedding vector pro-
duced with BERT – initial versions relied on FastText.  Rather than aggregating token representa-
tions, a single ``sentence” representation is built for the entire chain. For example: 

[START] Ukraine   Ukraine government   Ukraine [END] 
These vectors can then be clustered (agglomerative) to link mentions across documents.  We fur-
ther bias the clustering by leveraging the entity links in the KB (aka entities that known to be 
similar).  Below we show that both FastText lexical embeddings and native BERT representations 
perform comparably, but FastText alone degrades quickly, and additional sentential context around 
entities was generally weaker.  Though there may be a path to leveraging this information.  

 
Figure 11: Coref performance using different embedding methods. 

 
To confirm that we are not just doing sophisticated string matching, we performed a simple exper-
iment.  Instead of using FastText or BERT, we simply used a large 0/1 feature vector representing 
all character-trigrams in the mention chain:  

[Ukrainian president Yanukovich] yesterday announced ... 
—>{Ukr, kra, rai, ain, ini, nia, ian, an p, … } 

This resulted in lower F1 scores than the learned methods, indicating they are capturing more than 
lexical overlap. 
 
Efficiency A core challenge in this clustering process is the time complexity of execution.  Every 
chain in every document is eligible for clustering, which explodes the computational requirements. 
Manual constraints are imposed to create smaller viable comparisons.  Additionally, the merger of 
two entities also implies the merger of relations.  The code must maintain bookkeeping for the 
prediction confidences and provenance of the original components. 
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Hyperparameters There is no ground truth clustering that can be determined at this stage. Instead, 
we can set intuitive guides for the entropy we would expect at different levels of the ontology or 
across sizes.  For example, keeping the number of singletons low but also the cluster size low (low 
entropy).  These are at odds as all singletons would be the perfect low entropy configuration for 
size but also not a useful clustering. 
 
An additional note, is that while throughout the program a substantial number of new model ar-
chitectures with increased scaling were introduced.  We did not see noticeable differences from 
the basic BERT configuration.  This lends evidence to the theory that the models are aggregators 
but not imbuing substantial prior or external knowledge to the final representations.  
 
3.2.1 Listicles 
One common problem is that many “documents” do not adhere to a traditional structure of prose 
with relevant context.  In fact, “listicles” are a common resource, as they link broad categories of 
topics and entities.  Unfortunately, this also creates false context as now entities that are adjacent 
to one another in the list are conflated inappropriately. A particularly nefarious version of this is 
when there are multiple events in the news which are discussed in a single article, perhaps as one 
is conceptually similar to the other, they are contemporaneous, or for editorial purposes.  However, 
this provides evidence that two events should be linked.  At a low-level this makes entity/event 
recognition fail due to complex coreferents.  Afterwards, Once unrelated entities/events are 
grouped together under the same coreference cluster even in one or few documents, the errors 
propagate as the cross-document clustering is designed not to split within-document chains. 
We identify that approximately 0.5% of documents contain this structure, though propagate 
widely.  In articles which are constructed of bulleted lists, we may find 100s of events (e.g. assas-
sinations) all become linked to a single cluster.  These super clusters break the entire pipeline.  To 
address this, we create a set of synthetic documents from a single document.  This allows for the 
local coreference chains to process unperturbed.   Specifically, we rely on a package “textsplit” 
https://github.com/chschock/textsplit.  One concern, is that this approach does introduce yet an-
other hyperparameter for thresholding the splits. The best approach we found was to nearly equate 
a paragraph with a document, therefore setting a “reasonable” threshold for local consistency.  The 
goal is to avoid single sentence segmentations without merging where inappropriate.  A similar 
balancing act to cluster entropy concerns. 

3.3 Common Semantic Repository 
The Common Semantic Repository provides a representation formalism, ontologies, repository, 
inference engine and APIs to store, access, map, disambiguate and link knowledge elements (KEs) 
generated by TA1 information extraction modules or entered directly by analysts. 

https://github.com/chschock/textsplit
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3.3.1 OPERA Interchange Format 
At the heart of the Common Semantic Repository (CSR) is the OPERA Interchange Format (OIF). 
OIF is a frame-based representation and interchange language based on JSON-LD1 used by all 
components of the OPERA system. OIF uses an easy to read and manipulate JavaScript Object 
Notation (JSON) syntax, while at the same time being a legal Resource Description Framework 
(RDF) syntax which makes it easy to process and query with RDF/SPARQL engines like 
Blazegraph. 
Picking the right data model and representation language at the beginning of a project is always a 
difficult decision, fortunately, OIF turned out to be a resounding success. The familiar JSON syn-
tax allowed OPERA team members to easily ingest and generate data in OIF, even if they were 
not familiar with RDF-style data and knowledge representation (as was true for most of them), and 
without having to use any libraries which are often somewhat arcane and difficult to use. Never-
theless, since JSON-LD is really just another RDF syntax, all the tools from the RDF ecosystem 
were immediately applicable. For example, it was easy to write and execute complex structured 
queries over large sets of OIF documents using a triple store such as Blazegraph. OIF also stood 
the test of time and could adapt to new representation requirements as they emerged over the course 
of the project (for example, to represent TA3 claim frames as needed during the last phase of 
AIDA). 
A main design goal of our language was to remain as light-weight and readable as possible. We 
felt that an interchange language should tread lightly in terms of representational commitment to 
not force the CSRs and other producers and consumers into any specific direction. It should pri-
marily allow components to tell each other what they need to know, without biasing them too much 
on how to represent that information internally. 
We also proposed OIF as a candidate for the program-wide interchange language but lost out to 
an RDF-based representation based on multi-layered annotation graphs which eventually became 
the AIDA Interchange Format (AIF). AIF relies heavily on reification to achieve its goals which 
led to very verbose and complex representations that plagued performers and evaluators through-
out the program. We strongly believe that a simpler, JSON-based representation such as OIF would 
have been a better choice. 

3.3.1.1 Framework 
OIF’s basic representational structures are frames represented as nested key/value lists in JSON-
LD. Using JSON syntax allows us to easily represent nested structures and to associate confidences 
and meta-information with minimal reification. Using JSON-LD further enables simple definition 
of name spaces and datatypes plus preserving relatively easy translation to traditional RDF while 
still maintaining our readability goal. There is a large amount of tool support available for both 
JSON and also JSON-LD, but even without that, it is very easy to write simple readers and gener-
ators. The same is not true for RDF in any of its standard notations. 
We distinguish between the following core frame types in OIF: 

• Evidence frames encode pieces of source material and corresponding probabilistic interpre-
tations from a single extraction software component 

 
1 json-ld.org 

file://vmware-host/Shared%20Folders/Linux-AIDA/contract/reports/final/json-ld.org
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• Instance frames group coreferent evidence frames into knowledge elements (KEs) such as 
entities, events and relations that cluster coreferent mentions into a knowledge graph 

• Hypothesis frames are sets of semantically coherent frames relevant to some topic or higher-
level narrative of interest 

• Auxiliary frames are document objects that describe some aspects of the hierarchical struc-
ture of source documents, frame collections and other OPERA-internal frames 

OIF frame objects are generally divided into a meta-information section with an object ID, docu-
ment provenance, engine provenance, document extent, etc., and an interpretation section that de-
scribes the higher-level semantics of the object. The latter will often be soft or probabilistic with 
multiple interpretations possible. 

JSON-LD objects use context definitions (indicated by a @context keyword) which control the 
interpretation of elements in the body of an object. Contexts are a powerful mechanism for defining 
how the body of a JSON-LD object gets translated into RDF, while retaining maximum brevity 
and readability of the JSON structures. For OIF we employ the following two contexts: 
1. frames.jsonld describes the various object types defined and used by OIF 
2. resources.jsonld defines a number of resource name space mappings for OIF data 
Below we give an example for a mention-type object, since those are best-understood and have 
been used and formalized in many related efforts in the past. For a more complete overview of 
OIF frames the reader is referred to the appendix (4.1). Textual mentions are evidence provided in 
some source document for the (hypothetical) existence of an object of some type such as an entity. 
For this reason, we represent mention information in OIF with evidence frames which describe 
pieces of source material and corresponding probabilistic interpretations by a single extraction 
component. For example, entity mentions from a document are linked to their text span in a docu-
ment, images are linked to an image file and a bounding box, etc. 
Here is an example for an entity mention for the text "Ukraine" in one of the  Bellingcat investi-
gative stories on the crash of Malaysia Airlines flight 17. JSON and JSON-LD do not define a 
comment syntax, but for ease of exposition, we use a Python-style #-syntax below to annotate the 
meaning of certain fields. 

{"@context": ["http://www.isi.edu/isd/LOOM/opera/jsonld-contexts/resources.jsonld", 
              "http://www.isi.edu/isd/LOOM/opera/jsonld-contexts/ail/0.3/frames.jsonld"], 
 # syntactic type of a JSON-LD object or subobject: 
 "@type":     "entity_evidence", 
 # string identifying the software component that created this object: 
 "component": "opera.EDL", 
 # a globally unique, readable object ID: 
 "@id":       "data:ment-bellingcat-text-cmu-r2-11-2-4", 
  
 # document extent relative to closest enclosing reference object: 
 "provenance": {"@type": "text_span",  
                "reference": "data:sent-bellingcat-cmu-r2-11-2",  
                "start": 149, "length": 7, 
                # surface text string of this mention: 
                "text": "Ukraine", 
                # sentence containing this mention: 

http://www.isi.edu/isd/LOOM/opera/jsonld-contexts/ail/0.3/frames.jsonld
http://www.isi.edu/isd/LOOM/opera/jsonld-contexts/resources.jsonld
https://www.bellingcat.com/news/uk-and-europe/2014/11/08/origin-of-the-separatists-buk-a-bellingcat-investigation/
https://www.bellingcat.com/news/uk-and-europe/2014/11/08/origin-of-the-separatists-buk-a-bellingcat-investigation/
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                "parent_scope": "data:sent-bellingcat-cmu-r2-11-2"}, 
  
 # interp captures the meaning of this entity mention such as its type and referent; 
 # values of interpretation slots can either be hard and unqualified, or softened 
 # via confidence values or possible alternative interpretations: 
 "interp": {"@type": "entity_evidence_interp", 
            # type of the described entity from some agreed-upon vocabulary: 
            "type":  "tac:GPE", 
            # links to external databases and resources (Freebase, Wikipedia, etc.): 
            "xrefs": [{"@type": "db_reference", "@id": "freebase:m.07t21"}], 
            # link to frame representing the entity for this mention: 
            "entity": "data:ent-bellingcat-cmu-r2-42", 
            # part-of-speech: 
            "pos":   "NAM"} 
} 

In the example a hard semantic type of tac:GPE was used (a geopolitical entity type taken from 
one of the early program ontologies), however, often we will be unsure about the correct type of a 
KE. To represent soft or alternative interpretations in OIF, we can wrap values in slot facet objects 
which contain the original hard value with some additional annotations such as a confidence or 
probability. Alternative interpretations can be captured via xor and similar facets. See the appendix 
(4.1) for more details on that. 
3.3.2 RDF translation and querying 

We use the rdflib Python package to translate OIF frames into RDF N-triples format which can 
then be loaded directly into our Blazegraph triple store. Each JSON dictionary object becomes an 
RDF subject URI based on its @id field or through introduction of a blank node if no explicit ID 
is provided. Key value pairs are then asserted as predicate/object triples about the respective sub-
ject ID. Lists are treated as sets by default and simply become multi-valued assertions, but mapping 
onto ordered lists is also possible through special context directives. 
Once loaded, OIF frames can be queried with SPARQL as in the example below where we access 
entity mentions based on their extraction component and semantic type. The unnamed nested ob-
jects such as interp become blank nodes in the RDF translation, but they are hidden in the query 
below by using a path syntax such as ail:interp / rdf:type: 

>>> bg.ppquery( 
        """SELECT * WHERE 
                { ?entity ail:component "opera.EDL" . 
                  ?entity ail:interp / rdf:type tac:GPE . 
                  ?entity ail:provenance / ail:text ?text . 
                }""") 
 
?entity=data:ment-bellingcat-text-cmu-r2-11-2-4  ?text=Ukraine   
>>> 
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3.3.3 Knowledge Aggregator inference and integration toolkit 
The Knowledge Aggregator (or KAgg) is a toolkit developed by USC/ISI to address a number of 
different tasks in the OPERA system. At its core it is based on a logic-based knowledge represen-
tation and reasoning system called PowerLoom2 that provides an expressive predicate logic repre-
sentation language, several deductive and abductive inference mechanisms, contextual and hypo-
thetical inference, inference justifications and truth maintenance, and database integration. For 
OPERA PowerLoom was integrated with a triple store and graph database called Blazegraph3 to 
support storage and querying of very-large-scale structured and heterogeneous data, while at the 
same time supporting PowerLoom’s sophisticated logic-based inference. PowerLoom and 
Blazegraph are then wrapped in a set of Python tools that support data format translation, TA1 
mini-KB generation, TA2 KB generation and various integration tasks such as cross-media link-
ing. KAgg relies on TA1 extraction outputs as well as TA1 and TA2 cross-language and cross-
media coreference and linking information provided by other OPERA components to assemble 
TA1 and TA2 KBs. 

3.3.3.1 TA1 mini-KB generation 
For this task KAgg accepts the TA1 engines’ JSON output and stores the results into OPERA’s 
central semantic repository (CSR) using Blazegraph database technology. Mini-KB generation 
produces consistent per-document KBs in OPERA OIF and TAC-KBP AIF formats for each doc-
ument in the corpus. An important advantage of this scheme is scalability, since it allows us to use 
more expensive inferencing on a smaller, focused, per-document basis, which in addition can be 
performed in parallel, since documents can be processed independently. The disadvantage is that 
it prevents us from performing more fine-grained adjudication of conflicts when looking across 
documents. This phase takes entity, event and relation mentions together with equivalence infor-
mation from within-document coreference and EDL links as input, and then links equivalent men-
tions into KE instances which form an initial raw knowledge base. However, once equivalences 
are introduced, type information from equivalent mentions starts propagating which can com-
monly lead to conflicts. To address this, all annotations coming from text extraction components 
are treated as separate  instance, type, relation and event hypotheses. When a conflict is detected 
(e.g., an entity having both type PER and ORG), we aggregate the underlying evidence and adjudi-
cate based on component provenance and confidence values. For example, a type inferred from a 
relation argument constraint is viewed as weaker evidence than a type predicted by an entity de-
tector, even if they have the same confidence value, since relation detection is a more difficult task. 
Finally, the refined TA1 mini-KB is output as a set of instance and provenance frames in OPERA’s 
OIF format. 

3.3.3.2 TA2 KB generation 
For this task, document-level TA1 mini-KBs are combined into a global raw KB which is then 
merged, refined and deconflicted. A main challenge here is scale, since we have to integrate and 
refine O(10,000) or more mini-KBs. For this reason, KAgg’s TA2 KB generator performs most of 
its work with the help of the Blazegraph triple store. Since TA1 KBs are represented in OPERA’s 

 
2 https://www.isi.edu/isd/LOOM/PowerLoom/ 
3 https://www.blazegraph.com/ 

https://www.isi.edu/isd/LOOM/PowerLoom/
https://www.blazegraph.com/


 
Approved for Public Release; Distribution Unlimited. 

20 

 

JSON-LD format (which is just another RDF syntax), they can be directly loaded into a Blazegraph 
instance. We also load cross-document coreference information produced by OPERA’s TA2 clus-
tering components. Now a large set of queries is run to retrieve KE instances and merge them 
based on the TA2 coreference information. During such merges type conflicts might emerge which 
at the moment are resolved strictly based on majority vote. Merging of entities might also lead to 
merging of relations and necessitates a host of other bookkeeping operations such as aggregation 
of confidences, propagation of provenance, merging of informative justifications, etc. At the end, 
a set of merged and deconflicted KE frames is output in OPERA JSON-LD format to represent the 
TA2 KB. 

3.3.3.3 Translation and integration 
To translate OPERA KBs into the required TAC-KBP AIF format (AIDA Interchange Format), 
KAgg provides a number of translators that are used for TA1, TA2 and TA3 data and result trans-
lation. KAgg also has a number of other tools to facilitate integration such as, for example, a multi-
media linker that links visual and audio-extracted frames with text frames based on reference KB 
links, and a DBPedia tool to perform cross-language Wikipedia and Freebase linking. 

3.3.3.4 Blazegraph backend 
We experimented with a number of different database backend technologies to support storage and 
querying of very-large-scale structured and heterogeneous data, while at the same time allowing 
sophisticated logic-based inference provided by our PowerLoom KR&R system to be applied to 
this data. Some of the candidate systems we considered are listed here (a ‘*’ means we had past 
experience from using those systems): 

• RDBMS: MySQL*, Postgres*, Oracle* 

• NoSQL: MongoDB, Neo4J, Elasticsearch, Lucene*, RethinkDB, Crate DB,... 

• RDF: Fuseki*, Parliament*, GraphDB, STARDOG, Blazegraph, RDF4J, AllegroGraph,... 

• Other: Dremio, Apache Drill, Google’s Dremel, Vertica,… 
After some initial analysis we took a closer look at Elasticsearch, Elasticsearch + Dremio and 
Blazegraph.4 
Elasticsearch uses JSON-document oriented storage using Lucene which immediately fits our 
OPERA data model based on JSON-LD, it is easy to define mappings, has fast ingest, structured / 
unstructured and combined search and efficient data & index storage. Its biggest drawback was 
that it did not have good join-query support. 
Dremio is based on a suite of Apache tools such as Calcite, Arrow and Drill. It has a very powerful 
SQL engine that allows one to run queries over any combination of Elasticsearch, HBase, Mon-
goDB, Oracle, Postgres, Hive, S3, JSON, NAS, files, etc. (no RDF at the time we looked at it). Its 
biggest problem was fairly high latency, which resulted in O(100) ms query times for simple count 
queries, which stems from its focus on very large data lakes, parallelization, and cross-source data 

 
4 This analysis was conducted in 2018 and might not hold anymore for the most recent versions of these systems. 
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integration. This made it less suited for integration with PowerLoom inference which requires very 
nimble API calls and fast query times. 
While there was no obvious winner among the technologies we investigated, our use of JSON-LD 
for the OPERA CSR and interchange language steered us towards a solution that fluently sup-
ported RDF. For this and other reasons, we eventually decided to use a triple store and graph 
database called Blazegraph.5 Blazegraph has a number of features that make it well-suited for our 
purposes: 

• RDF/SPARQL and Apache TinkerPop APIs 

• Supports 50B edges on a single machine, 1T+ edges scale-out in a cluster 

• Used by WikiMedia to implement the SPARQL endpoint for Wikidata, a large-scale 
knowledge graph with over 1.4B edges, various commercial clients, “allegedly” the basis for 
Amazon’s Neptune graph database6 

• REST API, direct-call Java-based SESAME API 

• Can get close to “bare metal” for fast PowerLoom integration 

• Fast ingest, lookups, querying 

• 2 min to load 7.3M triples, 0.7ms random 2-step lookup on embedded server through direct-
call Java API (using an SSD drive) 

• JSON support through JSON-LD to RDF mapping 

• Open source, GPLv2 
After settling on Blazegraph, we wrote a Python library to support easy interaction, querying, ex-
perimentation and integration with Blazegraph. 

PowerLoom / Blazegraph integration 
We also built a full integration with PowerLoom that allows us to transparently map PowerLoom 
relations onto complex SPARQL queries that call out to Blazegraph and that transparently translate 
results between RDF and PowerLoom representations. In this way relations and rules can be de-
fined that are used by PowerLoom inference just like other native logic rules, but that in fact do 
their work by calling out to the query engine of the underlying Blazegraph store. This integration 
has a number of important features: 

• Combines PowerLoom inference capabilities with large-scale Blazegraph data storage and 
querying 

• Allows application of PowerLoom ontologies and rules to arbitrary mix of Blazegraph and 
native PowerLoom data 

• Enables KR&R functionality such as inference explanation and hypothetical, multi-contex-
tual reasoning over triple-store data 

 
5 www.blazegraph.com 
6 https://en.wikipedia.org/wiki/Blazegraph 

http://www.blazegraph.com/
https://en.wikipedia.org/wiki/Blazegraph
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• Allows export of inference results to external components via materialization and Blazegraph 
API 

The implementation uses PowerLoom’s Python API to connect the C++ version of PowerLoom 
with Blazegraph’s REST and direct-call Java APIs. It dynamically maps RDF URIs onto Power-
Loom logic objects via namespace-to-module mappings. The following example shows how a 
Framenet frame Arrest qualified by a Framenet URI in RDF data is mapped onto a corresponding 
PowerLoom logic object qualified by a PowerLoom module: 

http://framenet.icsi.berkeley.edu/1.5/Arrest  =>  FRAMENET/Arrest 

These mappings allow assertions in RDF space and in PowerLoom-space to seamlessly interact, 
which means we can easily augment them, map them, add rules for certain types of inferences, etc. 
A new PowerLoom Blazegraph query specialist (a computed predicate) calls out to Blazegraph via 
SPARQL queries and then maps back results. Initial bindings to query variables are pushed down 
to the Blazegraph query engine for most efficient select queries. Memoization and caching is used 
for efficient query reuse during inference. 
For example, here is a PowerLoom relation definition based on a rule that queries Blazegraph and 
seamlessly integrates that with type restrictions and normalization relations. Note that the variables 
?link, ?type, etc. following the SPARQL query in the query-blazegraph clause might have initial 
bindings depending on where this is called within a query or inference tree. These bindings are 
used to instantiate the respective SPARQL query variables before the query is run to ensure it to 
be maximally selective: 

(defrelation csr-coref-link-frame (?link ?type ?argtype ?arg ?comp ?score) 
   :documentation “Select non-singleton CSR coref frames of ?type." 
   :<<= (exists (?comp_ ?types) 
           (and (rdbms/bind-as  
                   (setof aida/|event_coreference| aida/|entity_coreference|) ?types) 
                (rdbms/query-blazegraph blazegraph  
                   "SELECT distinct ?link ?type ?comp_ ?score ?argtype ?arg 
                    WHERE { ?link rdf:type ail:relation_evidence . 
                            ?link ail:component ?comp_ . 
                            ?link ail:interp ?interp . 
                            ?interp rdf:type ?types . 
                            ?interp rdf:type ?type . 
                            ?interp ail:score ?score . 
                            ?interp ail:args ?arg_ . 
                            ?arg_ rdf:type ?argtype . 
                            ?arg_ ail:arg ?arg . 
                            FILTER EXISTS {?interp ail:args ?arg2_ . 
                                           FILTER(?arg_ != ?arg2_) } 
                   }" ?types ?link ?type ?comp_ ?score ?argtype ?arg) 
                (normalized-component ?comp_ ?comp)))) 

3.3.4 Chameleon 2.0: Integrating Neural and Symbolic Reasoning in PowerLoom 
All AIDA tasks such as TA1 information extraction, TA2 knowledge base construction and TA3 
hypothesis generation and management pose very significant technical challenges. AIDA systems 
addressing these tasks need to handle large and complex ontologies, representation of and infer-
encing with domain knowledge, noise and uncertainty, as well as handling of vector representa-
tions such as text or image embeddings. There is no system available today that “can do it all”. 
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Our own PowerLoom knowledge representation and reasoning system which is at the core of the 
Knowledge Aggregator toolkit can already handle many of these challenges, but not all of them. 
By itself it is primarily focused on structured representations and logic-based inferencing. In this 
section we describe our work on Chameleon 2.0 which adds the missing pieces to PowerLoom to 
create this unified functionality. 
PowerLoom’s Chameleon 2.0 reasoner combines traditional symbolic reasoning in a first-order 
logic framework with neural network learning and inference to make PowerLoom’s inference 
more general, flexible and robust. PowerLoom7 is a logic-based knowledge representation and 
reasoning system that allows the representation of complex knowledge in a declarative, logic-
based language and supports a variety of reasoning mechanisms to make implicit knowledge ex-
plicit. It has a query engine to retrieve asserted and logically implied statements from the 
knowledge base, provides persistent storage, a context and module system to organize large KBs, 
and has an extensive API for integration into other applications. 
The basic representational units are predicates for types and relations taken from some ontology. 
Facts describe instances in terms of the ontology and rules specify relevant dependencies, con-
straints, computations, axioms, and so on. A knowledge base is then the sum of ontology plus facts 
plus rules. Logical inference makes implicit relations explicit. For example, Figure 12 shows how 
from a small base of facts and a simple domain rule we can infer the approximate location of some 
entity. 
 

 
Figure 12: Rule-based logical inference in PowerLoom 

 
While these constructs allow one to build very complex and sophisticated knowledge bases (e.g., 
(Lenat 1995)), a main and valid criticism of the approach has been its rigidity and brittleness along 
a number of dimensions: 
1. Hard truth values: something is either true or false, there are no gradations 
2. Complete preconditions: if just one of the preconditions in a rule cannot be satisfied, the rule 

cannot be applied 
3. Fixed vocabulary: if an instance or relationship does not fit into any of the predefined types 

and relations, it cannot be represented 

 
7 http://www.isi.edu/isd/LOOM/PowerLoom/ 
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4. Fixed, limited rule set: the rules are generally hand-coded and always incomplete, new rules 
are often difficult to add without disturbing other inference paths 

There is a large body of research that tries to address these issues, for example, fuzzy logic (Zadeh 
1975) and probabilistic logics such as MLNs and PSL (Richardson and Domingos 2006; Bach et 
al. 2017) allow truth values to be soft or probability estimates, non-deductive inference such as 
abduction can address missing preconditions (Stickel 1990), and ontology and rule learning ap-
proaches such as inductive logic programming can automatically learn or extend vocabulary and 
rule bases. These approaches are often focused primarily on probabilistic inference which can lead 
to inefficiency, since KB evaluation needs enumeration of large number of rule groundings. These 
systems also lack a lot of the machinery to build large knowledge-based systems such as query 
language, incremental updates, explanation, etc. They also generally do not handle embeddings. 
PowerLoom’s partial matcher is an abductive inference engine that supports soft truth values and 
that can handle unsatisfied preconditions. It has been applied to support debugging of large KBs 
(Chalupsky and Russ 2002) as well as for case-based reasoning (Moriarty 2000) and activity recog-
nition from noisy data (Adibi et al. 2004). For example, if in the rule in Figure 12 only the first 
three conjuncts were satisfied, we might conclude the located-near relation with a score of 0.75 
using a simple weighted average as shown in Figure 13. 
 

 
Figure 13: Partial-match inference in PowerLoom 

 
To avoid such ad-hoc score computation schemes, Moriarty and McGregor (Moriarty and Mac-
Gregor 2000) developed the first version of Chameleon (1.0) which made these computations more 
principled and learnable from data. To do so, a neural network was associated with each rule which 



 
Approved for Public Release; Distribution Unlimited. 

25 

 

would take the current soft truth values of the antecedent clauses as inputs and then computed a 
corresponding soft result value. Figure 14 shows how this is done for our running example. 
 
 

 
Figure 14: Partial-match inference with Chameleon 1.0 

 
The networks were trained on possibly recursive partial match proof trees derived from training 
examples to minimize the total error over all examples. Back-propagation of error from one rule 
network to another was performed through the connections in the proof tree. Depending on the 
training examples, the networks would learn different weight combination semantics, thus the 
name Chameleon. Figure 15 shows a larger inference tree and how inference results change after 
some training has been performed. The dotted red line indicates error back-propagation. 
 

 
Figure 15: Chameleon 1.0 inference tree 
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Chameleon 1.0 provided a very significant neural-inference extension to PowerLoom long before 
neuro-symbolic reasoning became the buzz-word it is today. Nevertheless, it had a number of 
significant limitations: 

• Soft truth values but “hard” vocabulary 

• Learning at the type and predicate level only 

• Fixed neural network structure and implementation 

• Fixed rule-combination strategies 

• No explanation 
For Chameleon 2.0, we reimplemented and extended the existing Chameleon system along a num-
ber of dimensions. We particularly focused on the following aspects (not all of which are finished 
yet): 

• Soften type / predicate vocabulary through embeddings 

• Learning at instance level through embeddings and arbitrary instance vectors (e.g., images) 

• Flexible neural network structure and inference through integration with TensorFlow 

• Learn rule-combination strategies, e.g., to handle defaults with exceptions 

• Provide explanation capability leveraging PowerLoom’s proof tree explanation 

3.3.4.1 Softening vocabulary through embeddings 
Maybe the most significant restriction of Chameleon 1.0 was that network inputs are handled 
purely at the clause level. In our example rule above, the associated network’s input 4 would 
simply consider the soft truth of (drone ?inst) but nothing about a specific instance such as entity-
42 binding the variable ?inst. As such, vocabulary such as drone is still “hard”, either satisfied or 
not, albeit softened through inference and weight computations. For Chameleon 2.0, we are intro-
ducing embedding relations that allow for rich high-dimensional similarity spaces that can be taken 
into account by rule networks. An overview of this approach is given in Figure 16. 
 

 
Figure 16: Chameleon 2.0 inference exploiting image embeddings 
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Here embedding-of is a user-defined PowerLoom relation that given an instance ?x can look up or 
compute an embedding vector ?e. When Chameleon encounters this rule for the first time, it looks 
up meta-information such as dimensionality and type of the embedding vector, as well as how to 
access the actual numeric information, and then builds the appropriate network with inputs acti-
vated by the embedding vector’s dimensions in addition to the soft truth value information as be-
fore. Multiple embedding relations can be defined which can take one or more input arguments. 
Embeddings might come from natural language resources such as Word2Vec (Mikolov et al. 
2013), other media inputs such as images or video, or be computed directly from knowledge 
graphs. Arbitrary neural network vectors from a system such as Img2Vec can also be used (as 
illustrated in Figure 16). Meta-information about the particular embedding relation tells the net-
work builder how to take such vectors into account. 
Embedding relations are functions whose input arguments need to be defined to compute the em-
bedding, which will be ensured by PowerLoom’s clause optimizer. Moreover, even though they 
are antecedent clauses in the rule, their truth value will be ignored by the neural network machin-
ery. 

3.3.4.2 Integration with TensorFlow 
Chameleon 1.0 was written long before the deep learning revolution of the last decade or so. There-
fore, it used its own, hand-coded implementation of multi-layer perceptrons coded directly as part 
of the PowerLoom code base. To allow us to take advantage of all the latest and greatest neural 
network architectures, inference mechanisms and high-performance CPU and GPU computation, 
we integrated Chameleon with TensorFlow. The overall architecture of this integration is shown 
in Figure 17. 
 

 
Figure 17: Chameleon 2.0 system architecture 

 
Using TensorFlow allows us to leverage all the high-performance parallelism, GPU support and 
learning machinery provided by TensorFlow, but it also opens the door to construct arbitrarily 
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complex networks whose structure could be controlled not just by the shape of rules but by arbi-
trary logical and/or Chameleon inference. 
Integrating a system such as TensorFlow with PowerLoom’s inference engine has its challenges. 
One very significant one is that Chameleon inference operations and neural network computations 
are tightly interleaved. This leads to one network operation at a time in sequence which is very 
inefficient when using TensorFlow due to the significant overhead on each invocation. What we 
need instead are large batches of neural network operations, but such batches are not easy to come 
by. Our current solution is to use a queuing algorithm that exploits training example parallelism. 
Instead of one inference tree at a time, we propagate through many or all of them in parallel, 
exploiting that the same rule networks are invoked in different trees and places. When a rule net-
work has all its inputs available, it adds those to its batch queue. When batch queues are full or 
nothing else can be done without propagating, batches execute in TensorFlow and dependent goals 
are notified of updates, and so on. This enables us to run efficiently on CPUs and GPUs as well. 

3.3.4.3 Status and discussion 
To date we have completed a first fully functioning version of Chameleon 2.0 that is integrated 
with TensorFlow and that performs neuro-symbolic inference in a tight integration between the 
various systems. We successfully tested Chameleon 2.0 on standard learning tasks and imple-
mented demos that show a number of interesting capabilities (e.g., to perform multi-modal word 
sense disambiguation combining rules, text and image embeddings). Despite our best intentions, 
Chameleon 2.0 was in the end not being used by any of the systems we built for the various AIDA 
evaluations. Many other pressures and frequent changes in requirements made it difficult to focus 
on these more research-oriented aspects of our work. 
Chameleon 2.0 is not yet finished and we are still working on a number of topics such as learnable 
rule combinations, explanation, integration with PyTorch, and others. For example, when a partic-
ular relation can be inferred by multiple rules, Chameleon 1.0 uses an ad-hoc combination strategy 
such as “max” or “noisy-or” to combine evidence from different rules. For 2.0 we are generalizing 
this to allow the system to use rule networks to learn how to combine multiple pieces of positive 
and negative support. This allows the system to learn, for example, how to handle conflicting rules 
such as “birds fly” but “penguins do not”. 
Another important topic is inference explanation. Neural networks are highly opaque and their 
inferences difficult to explain. Logic proofs on the other hand are structured and can be rendered 
into useful explanations. For Chameleon 2.0 we plan to extend PowerLoom’s explanation machin-
ery to additionally describe pertinent aspects of the neural networks’ score computations, e.g., 
where they significantly deviate from a more standard logic-based interpretation of a rule. This is 
helped by the fact that we are dealing with a somewhat modular system of many small neural 
networks that are only sparsely connected and associated with small, generally “understandable” 
rules, compared to the case of a single, complex multi-layered neural network where everything is 
connected to everything else. 
3.3.5 Transition to Wikidata 
During the last phase of the AIDA program, the shared program ontology used by all performers 
was transitioned from the sizable yet limited annotation ontology developed primarily by LDC, to 
a DARPA version of Wikidata (or DWD). Wikidata (Vrandečić and Krötzsch 2014) is a popular, 
broad-coverage knowledge graph (KG) which contains circa 100 million entities described with 
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over 1.4 billion statements.8 One of the reasons for the switch was the hope that a very large, 
broad-coverage ontology such as Wikidata, that is actively used and developed by a large world-
wide user community, might survive beyond a single DARPA program and be reused in other 
efforts beyond AIDA. 
Wikidata is a single KG that contains both a large ontology of entity, event and relation or property 
types, and a large number of items or instances described by these types. The ontology portion of 
Wikidata is quite large with over 2.5 million entity and event types and around 10,000 different 
property types. It is also not a true ontology, rather an open taxonomy developed by many inde-
pendent editors that is both redundant and incomplete, and also contains major flaws such as ter-
minological cycles. Nevertheless, the richness of the Wikidata ontology was a great value and 
provided new opportunities for information extraction systems to map unstructured content such 
as text onto a structured vocabulary. 
Use of such a large ontology opened the new challenge that systems might pick many similar but 
equally valid types to classify entities, events and relations, which makes it more difficult to eval-
uate correctness relative to a gold standard or human assessment. For example, both Q5 (human) 
and Q215627 (person or being with personhood) and various other types might be chosen for 
something that previously was simply typed as PER. It was therefore assumed and mandated by 
program management from the start, that type “correctness” be evaluated by some automated 
means such as a similarity measure, rather than based on comparison to a gold standard or human 
judgment. 
The change of ontology had two major impacts on our CSR software components: 
1. Components actively using ontological information such as our KAgg TA1 mini-KB gener-

ator had to be adjusted to work with the new types and hierarchy information coming from 
Wikidata. 

2. The very large scale of Wikidata demanded new methods to effectively interact with it during 
TA1, TA2 and TA3 processing. 

The next sections give some details on how we addressed these issues. 

3.3.5.1 Adapting KAgg for Wikidata 
Any software that uses an ontology in some non-trivial way to exploit type hierarchies, relation 
argument types, type compatibility, disjointness or more complex domain rules, becomes intri-
cately linked to that ontology. For this reason, swapping in one ontology for another is generally 
a non-trivial exercise that involves touching many places in the code and doing lots of redevelop-
ment and retesting. Standard good software engineering practices such as modularization and ab-
straction of well-defined APIs do not apply in this context, since ontologies are generally large 
non-modular collections of highly interlinked definitions that do not have small, well-defined API 
surfaces. This means they cannot be easily swapped in and out compared to, for example, some 
authentication module that has a small, well-defined API. 
Our KAgg module was no exception. Particularly for TA1 processing, it used a number of ontol-
ogy-specific schemes to model entities, events and relations and to define type compatibility and 

 
8 https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements 
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disjointness to filter noisy extractions. These representations all had to be adjusted or replaced due 
to the transition to Wikidata. 
The initial step in our team-wide transition within OPERA was to have all our TA1 entity, event 
and relation extractors generate Wikidata types instead of the old types from the LDC annotation 
ontology. For some types this was fairly straight forwards and could be done using a mapping 
developed by the Cross-Program Ontology (XPO) committee. For others, models had to be re-
trained to find new distinctions that were not relevant before. 
This new vocabulary was quite complex and diverse. We observed over 6,000 different Wikidata 
type symbols in our TA1 dry run and evaluation data, and the underlying ontology structure sup-
porting these types was complicated and difficult to exploit. Adapting our old methods of type-
based checking and filtering was not an option given available resources. For this reason, we elim-
inated all that for Phase-3 and simply passed through Wikidata types, leaving only a handful of 
places where actual Wikidata type names surfaced in the code. Our AIF-to-OIF-to-AIF translators 
also had to be adjusted to support this new vocabulary, eventually allowing us to generate TA1 
and TA2 KBs based on the new ontology as required. 

3.3.5.2 PowerLoom / KGTK - Kypher integration 
The second challenge from the transition to Wikidata was the unprecedented scale of the KG we 
had to work with, which was much larger than what we had addressed previously by using 
Blazegraph as the database backend for the CSR (see 2.2.4). Experience from working on the team 
of USC/ISI’s KGTK project had shown that loading an RDF translation of Wikidata into 
Blazegraph can take 7-10 days on a high-end compute server, requiring about 1 TB of disk space. 
This was not an acceptable footprint for our AIDA evaluation pipelines. Alternatively, we could 
have used ISI’s DWD Wikidata SPARQL endpoint, however, this resource was shared among 
AIDA performers and would have likely led to serious performance bottlenecks. While ISI’s 
SPARQL service had a much larger query timeout compared to the public Wikidata endpoint, just 
a few bad queries by us or others could have brought the service to its knees which was too much 
of a risk to take. 
Instead, we chose to go a different route and use a local installation of the Knowledge Graph 
Toolkit (KGTK) (Ilievski et al. 2020) with its Kypher query engine to host and query Wikidata. 
From separate work on the KGTK project (Chalupsky et al. 2021) we knew that this was a viable 
and much more efficient and reliable option to provide sophisticated access to DWD for our CSR 
than using RDF and Blazegraph. 
To provide access to this local KGTK-based installation of DWD Wikidata, we built a full inte-
gration between PowerLoom and KGTK’s knowledge graph data model and its Kypher query 
engine, somewhat similar to what we had done before for Blazegraph. This allowed us to trans-
parently map PowerLoom relations onto complex Kypher queries that call out to KGTK and that 
transparently translate results between KGTK and PowerLoom representations. In this way rela-
tions and rules can be defined that are used by PowerLoom inference just like other native logic 
rules, but that in fact do their work by calling out to the Kypher query engine with its SQL-based 
graph cache mechanism to store large-scale knowledge graphs. 
The Knowledge Graph Toolkit (KGTK) (Ilievski et al. 2020) is a comprehensive framework for 
the creation and exploitation of large hyper-relational KGs, designed for ease of use, scalability, 
and speed. KGTK represents KGs in tab-separated (TSV) files with four columns: edge-identifier, 



 
Approved for Public Release; Distribution Unlimited. 

31 

 

head, edge-label, and tail. All KGTK commands consume and produce KGs represented in this 
format, so they can be composed into pipelines to perform complex transformations on KGs. 
KGTK provides a suite of import commands to import Wikidata, RDF and popular graph repre-
sentations into the KGTK format. We exploited these tools to easily translate OPERA KBs in OIF 
format into KGTK format. This could be done more or less out of the box by using KAgg’s existing 
OIF-to-RDF/NTriples format translator first and then using KGTK’s import-ntriples command to 
translate further into KGTK format. All we had to do in addition was to handle the mapping of 
RDF namespaces onto short prefixes similar to the way prefixes can be used in RDF’s Turtle 
format. For example: 

http://framenet.icsi.berkeley.edu/1.5/Arrest  =>  framenet:Arrest 

Kypher (kgtk query) is one of 55 commands available in KGTK. Kypher stands for KGTK Cypher 
(Chalupsky et al. 2021). Cypher (Francis et al. 2018) is a declarative graph query language origi-
nally developed at Neo4j which uses an ASCII-art pattern language that makes it easy even for 
novices to express complex queries over graph data. Kypher adopts many aspects of Cypher’s 
query language, but has some important differences. Most importantly, KGTK and therefore Ky-
pher use a hyper-relational quad-based data model that explicitly represents edges as first-class 
objects which is more general than the labeled property graph (LPG) model used by Cypher. This 
is also an important feature when translating and querying AIDA KBs in KGTK format. To im-
plement Kypher queries, they are translated into SQL and execute on SQLite, a lightweight file-
based SQL database that is very efficient and scalable. 
Kypher queries are designed to look and feel just like other file-based KGTK commands. They 
take tabular file data as input and produce tabular data as output. There are no servers and accounts 
to set up, and the user does not need to know that there is in fact a database used underneath to 
implement the queries. A cache mechanism makes multiple queries over the same KGTK files 
very efficient. In fact, the graph cache for DWD is “only” about 110 GB and can easily be installed 
and queried on a laptop. This is large but many times smaller than what we would have needed for 
a Blazegraph installation. 
The integration between PowerLoom and KGTK / Kypher has a number of important features: 

• Combines PowerLoom inference capabilities with Wikidata-scale data storage and querying 

• Allows application of PowerLoom ontologies and rules to arbitrary mix of KGTK / Wikidata 
and native PowerLoom data 

• Enables KR&R functionality such as inference explanation and hypothetical, multi-contex-
tual reasoning over KGTK / Wikidata 

• Allows export of inference results to external components via materialization and Kypher 
API 

The implementation uses PowerLoom’s Python API to connect the C++ version of PowerLoom 
with KGTK which is written in Python. Specifically, the KGTK Kypher API is used to call out to 
Kypher from PowerLoom’s inference engine. The integration also dynamically maps namespace 
prefixes (originally translated from RDF namespace prefixes) onto PowerLoom logic objects via 
namespace-to-module mappings. The following example shows how a Framenet frame Arrest 
qualified by a Framenet prefix in KGTK data is mapped onto a corresponding PowerLoom logic 
object qualified by a PowerLoom module: 
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framenet:Arrest  =>  FRAMENET/Arrest 

These mappings allow assertions in KGTK space and in PowerLoom-space to seamlessly interact, 
which means we can easily augment them, map them, add rules for certain types of inferences, etc. 
A new PowerLoom query specialist (a computed predicate) calls out to KGTK via Kypher queries 
and then maps back results. Initial bindings to query variables are pushed down to the Kypher 
query engine for most efficient select queries. Memoization and caching is used for efficient query 
reuse during inference. 

For example, here is a PowerLoom relation definition based on a rule that queries DWD’s p279star 
table, which is a precomputed table for fast test of sub/superclass relationships. In DWD Wikidata, 
P279 represents the sub/superclass relationship similar to RDF’s rdfs:subClassOf. Note that the 
variables ?node1 and ?node2 following the Kypher query in the query-kypher clause might have 
initial bindings depending on where this is called within a query or inference tree. These bindings 
are used to instantiate the respective Kypher query variables before the query is run to ensure it to 
be maximally selective. In fact, in the definition below we enforce that at least one of the two node 
variables is bound, since otherwise the result set would be the whole table with close to 90 million 
entries: 

(defrelation dwd-p279star-edge (?node1 ?node2) 
  :<<= (and (or (bound-variables ?node1) 
                (bound-variables ?node2)) 
            (rdbms/query-kypher dwddb 
               "-i p279star 
                    --match 'p279star: (x)-[]->(y)' 
                    --where ' x=?node1 and y=?node2 ' 
                    --return 'x, y'" 
               ?node1 ?node2))) 

Then we can use these rules in PowerLoom queries or other rules to define a custom domain model 
based on DWD Wikidata. For example, here we retrieve five of the superclasses for Q121998 
which is the occupation “ambassador”. Note that these are just five random superclasses out of the 
full set of 61 superclasses for this type, they are not ordered by specificity here: 

|= (retrieve 5 (and (dwd-p279star-edge "Q121998" ?super) 
                    (dwd-english-label ?super ?label))) 
There are 5 solutions so far: 
#1: ?SUPER="Q103940464", ?LABEL="continuant" 
#2: ?SUPER="Q1162163", ?LABEL="director" 
#3: ?SUPER="Q1190554", ?LABEL="occurrence" 
#4: ?SUPER="Q11997597", ?LABEL="representative" 
#5: ?SUPER="Q1207505", ?LABEL="quality" 

For scalability reasons, we map all DWD Wikidata identifiers onto strings and therefore no 
namespaces are shown in the results above. In the next query we access the top-level slots of a 
Phase-3 TA3 claim frame which does show some of the mapped namespaces. Note how nested 
objects such as the content of the claim frame point to (the KGTK representation of) anonymous 
blank nodes: 

|= (retrieve all (?l ?v) 
             (and (= ?claim DATA/|claim-L0C04958D-text-cmu-r202111202356-0|) 
                  (aidakb-kb-edge ?id ?claim ?l ?v))) 
There are 9 solutions: 
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#1: ?L=/XMLNS/AIL/|claim_template|, ?V=/XMLNS/DATA/C322 
#2: ?L=/XMLNS/AIL/|component|, ?V="opera.cf.qa" 
#3: ?L=/XMLNS/AIL/|content|, ?V=|_:njPZiLDVEgkj8xoGXaFV27:c14n124| 
#4: ?L=/XMLNS/AIL/|document|, ?V=/XMLNS/DATA/L0C04958D 
#5: ?L=/XMLNS/AIL/|epistemic_status|, ?V="unknown" 
#6: ?L=/XMLNS/AIL/|importance|, ?V=1 
#7: ?L=/XMLNS/AIL/|label|, ?V="Pro-Kremlin outlets claimed the United States was behind the spread of 
coronavirus in China." 
#8: ?L=/XMLNS/AIL/|sentiment|, ?V="neutral-unknown" 
#9: ?L=/XMLNS/RDF/|type|, ?V=/XMLNS/AIL/|claim| 

For the final Phase-3 evaluation runs we built a KGTK version of DWD using the relevant DWD 
files provided in KGTK format by USC/ISI’s KGTK project. Specifically, we used the claims, 
labels, p279star and pagerank graph files of DWD-v2 which is a DWD Wikidata snapshot taken 
on 2021/02/15. The resulting Kypher graph cache for this data was approximately 110 GB. Note 
that we get significant savings from only importing what we need, for example, we do not need to 
load references, descriptions, aliases, statement qualifiers, etc., allowing us to create a custom KG 
for our application that does not contain any unnecessary bloat. For each KAgg TA3 run, we also 
translate all of the TA1 mini-KBs used as input into KGTK format first and then load it into KGTK 
Kypher, which for the evaluation runs results in a graph cache of about 6.5 GB. 

3.3.5.3 KGTK similarity service 
We also employed the KGTK similarity service provided by USC/ISI’s KGTK project for some 
of our KAgg TA3 processing. This service is very resource intensive. It needs about 400 GB of 
disk space to store all the required database and embedding files, and also needs a large-scale 
compute server to operate effectively. For this we decided to simply use its Web-API instead of 
trying to host it locally, since that would have been very expensive. This service was also less 
critical to our processing and less prone to unexpected crashes, since it did not execute arbitrary 
user queries. For this reason, using the Web-based API constituted a much smaller risk than using 
the DWD SPARQL endpoint. 
Figure 18 shows the KGTK similarity GUI9 with some example similarities for DWD QNode 
Q1930187 which represents the occupation of “journalist”. The KGTK similarity service used by 
the GUI computes various different similarity measures that are either ontology-based such as 
Class or JC (for Jiang-Conrath), embedding-based such as ComplEx, TransE and Text, or aggre-
gation measures such as TopSim. Each measure captures different aspects of similarity and leads 

 
9 https://kgtk.isi.edu/similarity 
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to different rankings which is why we chose TopSim for our work, since it aggregates the different 
measures along multiple dimensions for more robust similarity values. 
 

 
Figure 18: Exploring similarities to "journalist" in the KGTK similarity GUI 

 
The various similarity measures shown in Figure 18 can also be accessed programmatically 
through a Web API.10 For our KAgg TA3 processing we use this API in conjunction with our 
KGTK DWD backend to explore high-PageRank neighbors of a seed concept that have some min-
imal similarity to the seed for the purposes of query expansion. For example, here is a Python call 
that retrieves additional descriptors for QNode Q1930187 using these mechanisms: 

    >>> getQnodeDescriptors("Q1930187")  
    {'media professional', 'author', 'journalist'} 

3.4 Hypothesis Generation and Management 
3.4.1 Overview 
USC/ISI’s Knowledge Aggregator (or KAgg) toolkit initially focused heavily on the TA1 and TA2 
areas of AIDA, but as the program progressed, it became more and more involved in the TA3 area 
of hypothesis generation as well. Initially, the main pathway within OPERA for creation of hy-
potheses was a system called HypGen which used a novel Belief Propagation system based on 
factor graphs to represent and reason with interpretation alternatives and larger hypotheses. Start-
ing with that there were three distinct phases of KAgg development and application for TA3 which 

 
10 https://kgtk.isi.edu/similarity_api 

https://kgtk.isi.edu/similarity_api


 
Approved for Public Release; Distribution Unlimited. 

35 

 

stretched from a purely supportive role for HypGen, to a hybrid system to a purely KAgg-based 
solution: 
1. HypGen-based hypothesis generation using KAgg support for hypothesis KB assembly and 

AIF-translation (Phase 1 Month 9, Month 18 and Phase 2 Month 36 evaluations) 
2. Hybrid HypGen/KAgg-based document-centric hypothesis generation and refinement (Phase 

3 Month 36 Post-evaluation Hackathon) 
3. KAgg-based claim frame generation and refinement (Phase 3 Month 54 evaluation) 
Below we describe each of these phases and systems in more detail together with relevant evalua-
tion results. 
3.4.2 KAgg support for HypGen-based hypothesis generation 
Plausible hypotheses need to take into account the uncertainties in the underlying knowledge. To 
support generation, management and evaluation of hypotheses, the OPERA team at CMU devel-
oped LEAPFROG (Choudhary, Gershman, and Carbonell 2019; Hovy et al. 2018, 2019), a novel 
probabilistic Belief Propagation framework that uses factor graphs to represent interpretation al-
ternatives and larger hypotheses concisely and effectively. It works over graphs of alternative 
probabilistic interpretations for entities, events and relations. 
LEAPFROG used belief graphs as a complementary knowledge base in OPERA in all three stages: 
TA1 for mini-KB construction and its conditioning by an analyst’s hypotheses, TA2 for corefer-
ence resolution, and TA3 for hypotheses construction. Given the output of LEAPFROG as a graph 
of weighted alternatives, the TA3 module accepts a query from the user or evaluator, extracts the 
subgraphs anchored at the query’s entry point, and constructs the separate alternatives as hypoth-
eses which are then further ranked and deduplicated. This TA3 system is called Hypothesis Gen-
erator or HypGen. 
HypGen operates in two basic modes: (1) fully natively where it starts with the OPERA CSR 
coming from the various TA1 extraction components and then assembles TA3 hypotheses from 
TA1 and TA2 KBs that were built by LEAPFROG based on its probabilistic belief graph repre-
sentation and inference. In this mode all inputs and outputs are represented in OPERA’s OIF for-
mat and additionally embellished with belief graph information. (2) As part of a larger AIDA sys-
tem pipeline where a TA2 KB is the sole input provided in AIF format lacking any LEAPFROG-
specific belief graph information. 
In both modes KAgg implemented and provided a number of important support functions that 
enabled the OPERA HypGen module to participate successfully in AIDA TA3 evaluations. We 
only give a brief summary of the various support functions here: 

• translation of the AIDA domain ontology from RDF Turtle format to OPERA JSON-LD for 
use by HypGen 

• generation and use of special-purpose TA2 provenance KBs stored in Blazegraph, so relevant 
provenance objects could be added to the hypotheses generated by HypGen without requiring 
HypGen to handle these large-scale KB objects directly 

• generation of a type consistent LDC TA2 KB from LDC’s manual TA1 annotations, which 
required a new event reclustering module (M18 eval only) 
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• various patching and reformatting of hypotheses to address specific evaluation requirements, 
data problems, type and role inconsistencies and AIF validation issues 

• integration of PNNL’s SheafBox as a hypothesis reranking component (M36 eval only) 

• final translation of hypothesis KBs from OIF to AIF format 

3.4.2.1 Phase 1 Month 18 evaluation 
While all of the TA3 work in the initial phases of AIDA was performed at CMU, we give here a 
brief synopsis of the basic approach and evaluation results to provide context for later TA3-related 
work done at ISI. Given an AIDA TA2 KB created by OPERA or some other system (translated 
from AIF to OIF if necessary), HypGen basically builds hypotheses of interest bottom-up in the 
following way: 

• Starting from a user-provided statement of information need (or SIN) which simulates an 
analyst’s query, it tries to match SIN entry points to KEs in the TA2 KB based on reference 
KB IDs established by entity linking as well as relaxed string matching on names associated 
with KEs. 

• Starting at entry point matches it then tries to find connected candidate event and relation 
matches for each role in a SIN frame. 

• HypGen matching is extremely relaxed and generates event and relation candidate matches 
even if an entry point is not in requested role. 

• It then exhaustively combines linked matches via cross product generation into core hypoth-
eses (since for each role we might have multiple alternatives reported in the TA2 KB). 

• It then prunes that set based on how well hypotheses overlap with a particular SIN frame. 

• It then further grows core hypotheses with linked events & relations informed by belief graph 
inference (however, that aspect became somewhat obsolete in later evaluations, since belief 
graph information was either not generated by other performers or could not easily be passed 
through an AIDA TA2 KB). 

• Finally, once a set of hypothesis candidates is available, a collective ranking algorithm using 
Maximum Marginal Relevance (MMR) (Carbonell and Goldstein 2017) ranks the candidates 
to optimize both goodness-of-fit to a SIN but also overall hypothesis diversity. 

It is important to note that HypGen was optimized for recall. It became clear early on that given 
the high amount of noise in TA1 extractions which was further amplified when TA1 KBs were 
combined into TA2 KBs based on noisy coreference, it was extremely challenging to find any 
reasonable matches for the sometimes very complex SINs developed by the evaluation team. These 
problems were further amplified by a complex AIDA ontology and type system that might make 
two KEs look very different from each other based on type and role information, even though the 
underlying language giving rise to their extraction might have been very similar. For this reason, 
HypGen uses relaxed matching and back-off everywhere, otherwise, nothing relevant would have 
ever been found. 
This very relaxed matching is evident in the results reported in Figure 19 - Figure 21 from three 
TA3 task variants of the Month 18 TA3 evaluation. Each result is from five different team sub-
missions (only OPERA is identified) based on different types of TA2 KBs used as input. OPERA 
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results rank well for all three variants which are ranked based on coverage, that is how much (on 
average) reported hypotheses overlap with one of LDC’s prevailing theories that summarize the 
topics of different scenario narratives AIDA systems are supposed to find in the evaluation docu-
ment corpus (see (Dang 2019) for more details on the evaluation and its criteria). The high recall 
approach of HypGen generated high coverage results, even though correctness and coherence 
scores which are more precision-type measures are lower than for some of the other teams. 
 

 
Figure 19: Month 18 Evaluation Task 3a: using team's own or any TA2 KB 

 

 
Figure 20: Month 18 Evaluation Task 3a: using other teams' TA2 KB 

 

 
Figure 21: Month 18 Evaluation Task 3b: using LDC KB 

 

3.4.2.2 Phase 2 Month 36 evaluation 
For Phase 2 of the AIDA program, the evaluation domain shifted from the Ukraine-Russia conflict 
in 2014-15 to Crisis in Venezuela. This significantly affected the AIDA program ontology to han-
dle new topics such as elections and disease outbreaks. Unfortunately, during this new phase the 
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main developer of HypGen left the CMU OPERA team, at which ISI took over as the main pro-
prietor of the code base, responsible for any necessary adaptations and extensions which fell into 
the following main categories: 

• Analyzing, refactoring, cleaning up and testing of the existing code so we could start extend-
ing and further developing it 

• Adapting the code to various changes necessitated by the updated ontology and Month 36 
evaluation plan 

• Collaborating with PNNL’s HypertThesis team to integrate their SheafBox system into a sep-
arate OPERA TA3 pipeline 

• Full dockerization of HypGen and its various configuration and run scripts so it could run 
within the fully automated AIDA evaluation pipeline developed by the TA4 team 

• Preparing our Chameleon reasoner for integration into HypGen 
Since the original HypGen developer had left the project, we considered a number of options going 
forward, one of which was to start from scratch. However, since the module has quite complex 
functionality, this was really not an option given our available resources and other commitments 
for the evaluation. A lot of the original code was written under “evaluation duress” so code quality 
had suffered and a clean-up and refactoring was necessary before we could start to actually adapt 
and extend the code. This was a significant and difficult undertaking, since we had to make sure 
that we only fixed existing problems and did not introduce new ones or jeopardized the core func-
tionality. 
After this refactoring was completed, HypGen needed a number of updates particularly for the 
new ontology. Appropriate role abstractions for 577 event role types had to be defined, so those 
could be mapped onto the more abstract agent, patient, instrument, location and time roles assumed 
by HypGen. In the latest ontology events could serve as arguments to events and relations (e.g., to 
handle reporting and communications), which required appropriate generalizations in HypGen to-
gether with handling of zero-argument events which could now be arguments to events and rela-
tions. It also had to handle new temporal properties, generalizations to the schema for statements 
of information need (SINs), and various other changes. 
Another significant effort in our preparation for the Month 36 evaluation was a collaboration with 
the PNNL HypertThesis team which was suggested to us by program management. Specifically, 
we investigated how we could use PNNL’s SheafBox reasoner in our TA3 hypothesis generation 
pipeline. A core functionality of SheafBox is to partition a set of hypotheses into a set of maximally 
consistent subsets which are then ranked by a number of metrics they developed. 
Given the complexity of such a collaboration both technically as well as from an engineering per-
spective, we initially looked to see if we could simply use SheafBox as a reranking component for 
hypotheses generated by HypGen. To that end we specified an API and data format for communi-
cation between HypGen and SheafBox, investigated how to communicate rules between the two 
systems in KIF (the Knowledge Interchange Format), and implemented various low-level adjust-
ments to HypGen to address PNNL requirements such as linking entities and events to SIN varia-
bles, linking event and relation roles to their respective SIN edge IDs, and eliminating the renaming 
of KEs to make sure IDs match those from the underlying TA2 KB. Finally, we worked out a fully 
dockerized pipeline including SheafBox invocation for hypothesis reranking based on HypGen’s 
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original hypotheses. This also required some other additions such as a hypothesis resizer to deal 
with some of SheafBox’s scaling issues. In the end we decided to have two separate pipelines, one 
purely using HypGen and one with HypGen plus SheafBox, the architecture of which is shown in 
Figure 22. 
Input and output translators translate between AIDA AIF format (RDF) and OPERA’s OIF format 
(JSON-LD) which is also now what SheafBox expects and generates in this collaboration. TA2 
Merge and recluster is needed to generate TA2 KBs with singleton entity and event clusters that 
aggregate information from cluster members (this is needed by HypGen). Finally, event clusters 
are split into type-consistent subclusters to avoid role heterogeneity. 
 

 
Figure 22: Month 36 Evaluation: OPERA TA3 fully dockerized pipelines 

 
The Month 36 Evaluation required all AIDA systems to run fully automated in a docker-based 
evaluation infrastructure developed by the TA4 team. This was a very significant hurdle to climb, 
since it required a high level of “robustification” of various highly experimental code plus devel-
opment of scripts that could reliably invoke that code in a docker environment. Testing of these 
dockerized components was also very challenging, particularly once they were transferred onto 
the external evaluation infrastructure where we could not immediately observe the errors that oc-
curred and had to rely on the evaluation team to communicate any issues to us. Overall, while 
dockerization of end-to-end AIDA pipelines was an important goal of the AIDA program, it came 
with a very significant cost that preempted other important work. 
One of the casualties of the extensive engineering requirements was our plan to integrate our new 
Chameleon 2.0 reasoner into HypGen, which now has become a goal for future work. 
Figure 23 shows a summary of the Month 36 evaluation results for the TA3 task for various sub-
missions using single team runs or combining the results of multiple teams in different stages. 
Given a structured SIN using the AIDA ontology that can be paraphrased as “Who killed Paola 
Andreina Ramírez Gómez on April 19, 2017 at The Mother of All Marches protest in Venezuela?”, 
systems were tasked to derive internally consistent hypotheses related to this SIN. The evaluation 
used three high-level SINs which had several components like the example above. Systems were 
judged how well the returned results aligned with one of the previously formulated prevailing 
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theories formulated by the evaluation team (see TAC SM-KBP 2020 for more details on this eval-
uation. 
 

 
Figure 23: Month 36 Evaluation TA3: lenient micro-averaged F1 

 
The two runs that used HypGen are marked in green. Overall the scores for this evaluation were 
quite low (even with lenient matching performed by the assessors), but they were particularly bad 
for Team OPERA. Post hoc analysis revealed a number of different reasons for this such as errors 
and bugs in our data (missing event arguments, bad links to the reference KB, issues when import-
ing other teams’ TA2 KB data, etc.). We also had deficiencies in our querying, for example, miss-
ing location inference that might have led us from “El Valle neighborhood” to “Caracas” to “Ven-
ezuela”. Due to the restrictions on the number of runs teams could submit, one of the high-coverage 
runs we produced that combined OPERA TA1 data with that from another team could not get 
assessed. 
Most importantly, however, our recall-oriented very-relaxed-matching approach was susceptible 
to lossy and low-precision TA2 KBs (note that it performed best in Month 18 on the high-precision 
manually constructed LDC KB). Particularly problematic were noisy event clusters that might 
come from “listicles” (articles that combine a long list of different stories into a single document 
which confuses TA1 coreference resolution), and then TA1 coreference cluster noise that gets 
amplified in TA2 KBs once such noisy clusters get linked to each other. The good news is that this 
led us to completely rethink our approach which led to the document-centric approach described 
in the next section, and which eventually improved our results quite dramatically. 
3.4.3 Hybrid HypGen/KAgg-based document-centric hypothesis generation 
A key insight from post hoc analysis of our Month 36 evaluation results was the following: When 
assembling hypotheses HypGen was often connecting KEs that were either not strongly enough 
linked, or they were linked due to some incorrect coreference between entities or events in the 
TA2 KB. HypGen often used such weak connections as a last resort to improve recall when no 
other connections could be found. 

https://tac.nist.gov/2020/KBP/SM-KBP/index.html
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Figure 24 shows an example hypothesis for SIN E202D produced by HypGen and displayed by 
the OPERA hypothesis pretty printer. The architecture of the system is shown in Figure 25 which 
is just a different graphical view on the pipeline displayed in Figure 26 above. 
The particular information need HypGen was trying to address was “Who killed Miguel Castillo 
Bracho on May 10, 2017 at the Our Shield is the Constitution protest?”. This output is based on 
an OPERA TA2 KB over a combined OPERA + GAIA TA1 input dataset which was not assessed 
during the evaluation. The system did find KEs matching Miguel Castillo but no further linked 
events which is why he does not appear in this hypothesis. Instead, HypGen connected various 
unrelated death and demonstration events - all in Venezuela, that otherwise only matched on type 
to elements of the SIN but nothing else. Further filtering based on temporal constraints was also 
not possible, since the temporal information extracted by TA1 was too noisy. 
 

 
Figure 24: Example hypothesis for SIN E202D produced by OPERA TA3 System 1 at the 

Month 36 evaluation 
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Figure 25: OPERA TA3 System 1 at the Month 36 evaluation 

 
Another insight was that those unrelated pieces connected by HypGen came from many different 
documents, which naturally made it difficult to assemble a coherent “story”. If we instead looked 
at events described in a single document, the descriptions and KEs extracted from it were naturally 
coherent and mostly relevant to each other. These difficulties were compounded by the AIDA 
membrane, which was a barrier introduced to prevent specific textual document information to 
flow from TA1 to TA2 and beyond to simulate security considerations an AIDA system would 
encounter in an operational setting. So, a system operating in TA2 KB space did really not have 
any strong TA1 document context to work with besides name strings and possibly embedding 
vectors. 
The post-evaluation discussion of the subpar performance of all TA3 systems in the Month 36 
evaluation led to what came to be called the Month 36 Post-evaluation Hackathon. The hackathon 
was an effort to give researchers the opportunity to explore possible solutions to these problems in 
a less structured and more free-flowing environment. One of the important outcomes of the initial 
discussions was that people wanted to “puncture the membrane” to allow more textual document 
context to flow between components, and program management eventually agreed to this request. 
Given our error analysis from above and the new opportunity to use document text in a more liberal 
way, we decided to develop a new document-centric version of HypGen whose architecture is 
shown in Figure 26. The dotted red arrow going from documents all the way to the text-based 
merger illustrates how textual information can now flow through the opened membrane. 
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Figure 26: OPERA TA3 System 2 at AIDA M36 Post-eval Hackathon 

 
Document-centric HypGen starts with the same pipeline as the original HypGen from Figure 27. 
However, the outcome this time is only a set of raw hypotheses. The KEs from all of these hypoth-
eses are then combined and split into per-document buckets which are the single-document KBs 
output by the KB Splitter. These single-document KBs are somewhat similar to TA1 mini-KBs, 
however, they are much smaller and only contain KEs that were part of one of the raw hypotheses 
generated by the initial HypGen run. One could consider them a hypothesis-relevance-filtered set 
of KEs. The main reason for this somewhat convoluted architecture is that at the time of the hacka-
thon, systems were still required to work from a TA2 KB only, and were not allowed to look 
directly at the TA1 mini-KBs that gave rise to the TA2 KB. Hence, we had to “reverse-engineer” 
a document-centric view of the TA2 KB first. This restriction was further relaxed in Phase 3 of the 
program which eventually made this unnecessary. 
Next HypGen is run again for each SIN and for each single-document KB separately which might 
lead to a number of equivalent hypotheses which should be deduplicated or merged. Our next 
innovation was to perform this deduplication in text space instead of KB space which was now 
made possible due to the opening of the membrane. This solved another problem our and other 
systems had run into before: many of the returned hypotheses looked very similar or identical to 
assessors but were not recognized as such by the system. It turns out that finding true duplicates 
in KB space is quite difficult. Things that might look very similar at the surface text level might 
wind up looking quite different in the KB, for example, an event might have been classified by 
one system as an attack and by another system as a death event. Also, nominals such as “truck” 
led to unnamed KEs that are different from each other, and it is not clear when such entites can be 
considered the same. Even if we have two structurally identical events such as “person P killed 
somebody in country C”, the prudent approach is to keep those events as separate, since we do not 
have enough information to consider them the same. It turns out that many of those problems go 
away if we compare textual descriptions of events, and once these descriptions are large enough, 
that method becomes robust enough for deduplication across documents. To do this we built a text-
based merger that constructs textual descriptions of hypotheses (using machine translation to nor-
malize non-English documents to English), and then merges hypotheses purely based on textual 
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similarity. Figure 27 shows an example textual description for a hypothesis addressing the same 
SIN E202D shown in Figure 24. 
 

 
Figure 27: Example hypothesis for SIN E202D produced by textual summarizer of OPERA 

TA3 System 2 from the Month 36 Post-evaluation Hackathon 
 
The main features of the Month-36 Post-evaluation Hackathon HypGen TA3 system can be sum-
marized as follows: 

• Uses newly available textual features for hypothesis clustering and duplicate detection 

− Summarizes events and relations based on their (machine-translated) textual prove-
nance 

− Clusters events based on textual similarity 

− Case in point: Reduces E202D mostly duplicate hypotheses from 14 to 2 

• Completely ignores TA2 cross-document coreference 

− Uses standard HypGen run to determine relevant document space 

− Re-runs HypGen against TA1-document-centric TA2 KB islands for each SIN 

− Deduplicates and merges hypotheses across runs using textual features 

− Retains within-document event coherence 

− Avoids noise blow-up from TA2 KB graph 
An interesting and somewhat counter-intuitive conclusion from all this is that we can actually use 
text to normalize highly variable structural knowledge representations (KR) used in the TA2 KB. 
This is really the opposite from KR normalizing text, which is what we usually think of as the 
purpose of KR for NLP. 
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Figure 28 - Figure 30 show evaluation results from the evaluation rerun performed after the hacka-
thon. For this rerun three sequestered SINs were used that were not shared with teams during the 
hackathon, so the results shown are true test results. Results marked in yellow (or green) with a 
postfix ‘Rerun’ are compared to results on the same SIN during the original Month 36 evaluation. 
Results for OPERA are marked in green and the improvements are quite significant, not just in 
relative performance across teams but also in terms of absolute F1 value. This demonstrates that 
document-centric hypothesis generation without use of TA2 is a successful strategy. This was also 
born out during the last Phase-3 TA3 evaluation which is described later in this report. 
 

 
Figure 28: Month 36 Post-evaluation Hackathon TA3 rerun results: E201 

 
 

 
Figure 29: Month 36 Post-evaluation Hackathon TA3 rerun results: E202C 
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Figure 30: Month 36 Post-evaluation Hackathon TA3 rerun results: E203 

 

3.4.3.1 Hypothesis refinement 
After the conclusion of the post-evaluation hackathon reruns, we implemented a number of addi-
tional refinement strategies to improve the precision of the generated hypotheses. These improve-
ments were particularly targeted towards the AIDA Black Box Evaluations in the Venezuela do-
main where system outputs were presented to analysts to evaluate the usefulness of an AIDA sys-
tem in a more realistic task setting. Specifically, we added the following refinements: 

• Removal of garbage roles, which are event and relation roles for which the system cannot 
generate some non-trivial textual description. 

• Removal of weakly connected or disconnected events and relations, which are those that do 
not have any argument connected to either a strong entry point or other well-connected KE. 

• Eliminate fragmentary hypotheses, for example, events that only have a single, trivial role 
such as a location. 

• Eliminate duplicates based on textual similarity of descriptions. 

• Rerank filtered hypotheses based on SIN coverage. 

• Add/improve handles, for example, replace empty handles with textual descriptions where 
possible (handles are text strings associated with KEs and their arguments that are used to 
generate readable textual descriptions of hypotheses for a user such as an analyst). 

• Remove unused frames that are now dangling since we removed some components and roles. 
These refinements filtered out about 75% of the original unrefined hypotheses that were returned 
by the OPERA system during the post-evaluation hackathon rerun, leaving a much cleaner, high-
precision set of results to be presented to analysts. We do not have any formal evaluation results 
for these runs, since they were executed in a separate effort by the TA4 evaluation team without 
any direct involvement of performers. 
3.4.4 KAgg-based claim frame generation and refinement 
For the final Phase-3 of the AIDA program, the evaluation domain and process changed very sig-
nificantly. The domain moved from Crisis in Venezuela to the COVID-19 pandemic, and instead 
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of corpus-level hypotheses, TA3 systems were now required to return document-level claims re-
lated to the domain, together with details such as precise semantics of a claim, claimer, location, 
time, claim medium, and so on. 
Another very significant shift was from the AIDA program ontology developed mainly internally 
by LDC with some help from performers, to the use of a DARPA version of Wikidata (or DWD). 
Wikidata (Vrandečić and Krötzsch 2014) is a popular, broad-coverage knowledge graph (KG) 
which contains circa 100 million entities described with over 1.4 billion statements.11 Use of such 
a large ontology opened the new challenge that systems might pick many similar but equally valid 
types to classify entites, events and relations, which makes it more difficult to evaluate correctness 
relative to a gold standard or human assessment. 
In this new setup claim frames play the role of hypotheses, but it is now also important to establish 
the source of a claim in addition to what it means. Claims are now by definition document centric 
(something we explored with our post-evaluation hackathon system) and are extracted by TA1 
systems, not TA3. The role of TA3 has shifted to claim clustering and deduplication, claim filter-
ing, negation and epistemic status interpretation, and the detection of inter-claim relations such as 
“supports” or “refutes”. TA3 does not anymore focus on claim assembly by querying TA2 KBs 
guided by SINs. 
The combination of these factors made it clear that our HypGen system could not be reasonably 
retrofitted for this new task. HypGen focused primarily on bottom-up hypothesis assembly from 
low-level KEs in the TA2 KB, which was now not needed anymore. Furthermore, the AIDA pro-
gram ontology was entrenched in its code and difficult to excise without breaking large amounts 
of code. For this reason, we decided to build a new TA3 system from scratch within the existing 
KAgg framework, using PowerLoom and newly available KGTK search and similarity tools 
(Ilievski et al. 2020, 2021; Chalupsky et al. 2021) to deal with the challenges of Wikidata, and 
reuse some of the text-based hypothesis deduplication ideas from the previous system. 
 

 
11 https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements 

https://grafana.wikimedia.org/d/000000175/wikidata-datamodel-statements
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Figure 31: OPERA TA3 System 3 at Month 54 evaluation overview 

 
Figure 31 gives a high-level overview of the architecture used by OPERA systems to address the 
Phase-3 evaluation tasks. Note that in this final evaluation there is no membrane at all. All TA1, 
TA2 and TA3 systems get access to all task-relevant inputs such as source documents, TA3 user 
queries, etc. Furthermore, the task is by definition document-centric, which allows us to go directly 
from TA1 to TA3 without any involvement of TA2 at all. We still output a TA2 KB, since that 
was an evaluation requirement, but we do not use that KB or TA2 KBs produced by other teams 
for any of our TA3 processing. Any necessary cross-document deduplication can be achieved 
purely based on TA1 entity linking, similarity and text-based inference. 
End-to-end generation of claim frames goes through the following steps in OPERA: 

• TA1 claim frame generation using question answering (QA) 

• TA1 input data translation and import 

• Topic-based querying and answer pool selection 

• X-Value clustering 

• Cluster ranking and within-cluster sorting 

• Query expansion, relevance filtering and result generation 
Figure 32 shows the various steps of our TA3 processing which we describe in more detail below. 
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Figure 32: OPERA TA3 System 3 at Month 54 evaluation details 

 

3.4.4.1 TA1 claim frame generation and translation 
While this is not really part of the TA3 system, we give a very brief outline of the process here. 
More details can be found in the TA1 section of the report for the CMU team. Claims are generated 
by AIDA systems based on user queries that describe some topic/subtopic combination. For ex-
ample, a user query with topic, subtopic and query template might look like this: 

    Topic:     "Curing/Preventing/Destroying the Virus" 
    Subtopic:  "Curing the virus" 
    Template:  "X cures COVID-19" 

The OPERA TA1 system built by the CMU team uses a question answering (QA) approach to find 
claims relevant to a user query by trying to find answers to the provided query template in the 
document corpus. Since query templates are not really questions but templatized abstractions of 
claims, it uses the following approach to first generate questions from the templates and then find 
relevant fillers for the X-variable slot: 

• Convert templates into questions using a rule-based converter operating on dependency trees 
resulting from parsing the template. 

− Example: “X cures COVID-19” becomes “What cures COVID-19?” 

• Use an off-the-shelf QA module to extract X variables and score the candidate answers. 

− Example: “What cures COVID-19?” might find “Lemon is effective against COVID” 
as a potential answer. 

After mini-KB assembly through the KAgg TA1 component, a resulting claim frame might look 
like this in OIF. Note that it references and links to relevant entity and event KEs such as the 
claimer and the supporting event encapsulating the core semantics of the claim: 

    { "@type": "claim", 
      "@id": "data:claim-L0C04959A-text-cmu-r202201220050-0", 
      "component": "opera.cf.qa", 
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      "claimer": "data:entity-instance-L0C04959A-r202201220050-5", 
      "claimer_text": "Facebook Messenger", 
          ..... 
      "claim_template": { 
          "@type": "claim_template", 
          "topic": "Curing/Preventing/Destroying the Virus", 
          "subtopic": "Destroying the virus", 
          "template": "X destroys COVID-19", 
          ..... }, 
      "content": [{ 
          "claim_template": "data:C306_c8gyXauW6dVZ9Vh386Gkba", 
          "value": ["data:entity-instance-L0C04959A-r202201220050-76"], 
          "score": 0.9073742628097534, 
          "text": "hot lemon juice", 
          "support": ["data:event-instance-L0C04959A-r202201220050-3"], 
          "support_text": "Facebook Messenger video falsely claims hot lemon juice can kill the coronavirus" 
          ..... 
      }],  ..... } 

3.4.4.2 TA1 input data translation and import 
The first step of claim frame generation is carried out purely within TA1 and the resulting mini-
KBs containing KEs and claim frame candidates can come either from OPERA TA1 or some other 
AIDA TA1 system that can generate claim frames. If the former, no further translation into 
OPERA OIF is needed. If the latter we need an additional AIF-to-OIF translation step to convert 
mini-KBs into OPERA format. 
To support this translation, we extended our AIF-to-OIF translator to also handle translation of 
claim frames represented in AIF format. We do this in two steps: (1) we first use our Java-based 
AIFConv translator to translate TA1 mini-KBs into OIF as done previously, simply ignoring any 
claim frames. (2) In a second step we use a new claim-frame focused translator added to KAgg to 
perform the remaining translations using the initially translated mini-KBs as a starting point. This 
separation was done purely based on pragmatic reasons, since extending AIFConv to also handle 
claim frames was deemed too time-consuming given that the original developer of AIFConv had 
left the project. 
Next, we translate TA1 mini-KBs and claim frames as well as user query claim frames (provided 
by the evaluation team) into a uniform KGTK data model (Ilievski et al. 2020)12 and import them 
into a KGTK Kypher graph cache database. This is a departure from our previous approach where 
we used an RDF triple store based on Blazegraph as the database backend for AIDA KBs. There 
is one primary reasons for this: We want to be able to transparently query and perform inference 
across TA1 mini-KBs and DWD (the DARPA version of Wikidata). DWD is very large, but using 
a KGTK translation and the KGTK toolkit it can be hosted and queried on a laptop (needing a 
110GB graph cache DB). Staying with RDF would have required us to use a KGTK service or use 
a very large compute server, but either way, query times over Wikidata-size knowledge graphs 
would have been very slow (Chalupsky et al. 2021). 

 
12 https://kgtk.readthedocs.io/en/latest/data_model/ 

https://kgtk.readthedocs.io/en/latest/data_model/
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We do not use any TA2 KBs for OPERA TA3, so nothing needs to be translated or loaded in that 
respect. We do, however, exploit TA1 entity linking on named entities to link claim frames across 
document mini-KBs. 

3.4.4.3 Month 54 evaluation conditions and ranking criteria 
Before we describe the core claim frame generation components of our TA3 system, it is helpful 
to understand the tasks the system is trying to solve, and the evaluation criteria it is trying to opti-
mize for. The Month 54 evaluation task was the following: given a user query, compute an im-
portance-ranked list of claim frames relevant to the query which can be any of the following: 
1. A fully instantiated claim frame on some topic and subtopic in AIF format (evaluation Con-

dition 5). 
2. A topic/subtopic pair in natural language with an associated template as shown in the example 

above (evaluation Condition 6). 
3. A topic in natural language without subtopic and template, for example, “COVID-19 vaccine 

is causing people to die” (evaluation Condition 7). This last condition was considered a 
stretch goal and the most difficult. 

Regardless of the type of query, the answer the system needed to provide was always a ranked list 
of claim frames. A second part of the answer was to compute inter-claim relationships such as 
“supports” or “refutes” or “related”, however, that aspect was only assessed and evaluated for 
Condition 5. 
The most difficult aspect to understand and optimize for were the ranking criteria for the resulting 
claim frames. Some of them were straight-forward such as claim frames had to be correct (that is 
based on correct TA1 extractions), relevant to the topic (and subtopic), complete (contain all re-
quired fields such as claimer and as many optional fields as possible), and they should not contain 
duplicates. The next consideration was importance which was some combination of a user-pro-
vided ranking of claim frame fields (e.g., that claimer was more important than claim medium) 
with the systems confidence in those fields it had extracted for a claim. 
Finally, the most difficult aspect to optimize for was diversity. The claim frames returned by the 
system had to be significantly diverse and not just be minor variations along some dimension. This 
diversity could come from different values of the X-variable (e.g., “lemon juice” vs. 
“Remdesivir”), different epistemic status such as “lemon juice cures COVID” vs. “lemon juice 
doesn’t cure COVID”, different claimer, and differences in other aspects of the claim frame. While 
diversity of results is intuitively a valid goal to strive for, it was difficult to optimize for without 
any training data or gold standard. The problem was exacerbated by the fact that only a small 
number of returned claim frames would actually be assessed by LDC assessors (some number 
greater than 1 but much smaller than 50). So, whether one of those precious result slots should be 
allocated for “lemon juice” since that had a different epistemic status, vs. “Remdesivir” since that 
was a different treatment option, was not a clear-cut decision. In the end we implemented some ad 
hoc heuristics that we could not really test rigorously, but that seemed to have performed quite 
well nevertheless. 
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Full details of the evaluation conditions for the AIDA Phase-3 evaluation in Month 54 can be 
found in the NIST Phase-3 evaluation plan (Dang 2022). 

3.4.4.4 Topic-based querying and answer pool selection 
The first stage in our KAgg TA3 processing pipeline is a simple topic and subtopic-based querying 
of claim frame candidates. In this stage we try to establish a smaller pool of candidates which is 
then subject to further refinements. We select claim frames with matching topics (and subtopics), 
and filter out claim frames that are below a certain score threshold or lack any of the mandatory 
fields. This yields an initial list with 𝑂𝑂(100) to 𝑂𝑂(1000) results. We then rank this list by TA1 
claim frame importance score, which basically ranks the claim frames the extraction system was 
most confident in first. From that we select a small pool of 𝑂𝑂(100) high-scoring candidates which 
will be subject to further refinement. 
Refinement is expensive, so we pick an initial pool size big enough to contain variety but small 
enough to not be too expensive to process (we basically pick a pool size several times the size of 
the result set we are aiming for). These initial filtering steps are very significant, for example, in 
the TA3 evaluation run on OPERA TA1 data, we started with over 30,000 extracted claim frames, 
of which only about 150 were reported in the final result. 

3.4.4.5 X-Value clustering 
One of the most important processing stages is X-value clustering which groups equivalent or 
similar claims based on the retrieved X-value for a claim template. Detecting such claims allows 
us to avoid redundancy, but also enables us to find supporting claims (e.g., same or entailing claim 
from a different claimer) or refuting claims (same or entailing claim with a different truth value or 
polarity). 
When we look at the KEs instantiating X-values of claim frames, we find very high variability at 
the type level, particularly with a large and somewhat idiosyncratic ontology such as Wikidata. 
This makes it very difficult to cluster X-values purely based on type information. Instead, we use 
textual implication and equivalence on X-value descriptors determined by natural language infer-
ence (NLI) models. 
In particular, we use the following off-the-shelf Hugging Face NLI models13 and aggregate their 
entailment and similarity judgements for robustness: 

    roberta-large-mnli (entailment) 
    microsoft/deberta-xlarge-mnli (entailment) 
    bert-base-cased-finetuned-mrpc (paraphrase)   

For example, here are some clusters the system derived for X-values of claims that match this 
template: “Federal government is diverting PPE etc. from X”: 

    { the states / states / state authorities / states and hospitals / the state } 
    { the Federal Emergency Management Agency / FEMA } 
    { hospitals / doctors / the hospitals } 
    { communities / homes / other municipalities / humans } 
    { heavy-load helicopters / military aircrafts } 

 
13 https://huggingface.co/ 

https://huggingface.co/
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It can easily be seen that these clusters are heterogeneous enough to make it difficult to declare 
them equivalent based on type information alone (for example, hospitals are organizations while 
doctors are people working at those hospitals), while they are similar enough at a textual level to 
make two claims just differing in these values equivalent or at least similar. This is another exam-
ple of “text normalizing KR” as we already discussed in Section 3.3. 
When finding clusters, the system is careful not to equivalence different instances, which are X-
values that have been linked to different DWD entities by TA1 entity linking. Mapping instances 
to types is allowed, however. 
Performing NLI inference with large neural models is expensive in CPU/GPU time, moreover, we 
have to perform 𝑂𝑂(𝑁𝑁2) comparisons to find all potential equivalences in a set of 𝑁𝑁 elements. For 
this reason, it is important that the pool of claim frame candidates for a query is reasonably small, 
otherwise computing these clusters can take a very long time. 

3.4.4.6 Cluster ranking and within-cluster sorting 
After a pool of candidate claim frames has been clustered, we score and rank the clusters so we 
know which clusters to focus on during result generation. We compute a cluster score based on 
the following: 

• Size of the cluster (which uses mention frequency as a proxy for topic importance) 

• Aggregated importance scores of each individual claim frame in the cluster 

• Amplified by diversity (variance) of epistemic status values in the cluster 

We then sort elements within clusters based on the following: 

• Epistemic status, where certain truth and falsity rank above uncertain falsity and truth 

• Importance of the claimer, e.g., named country over named organization over named person, 
however, this proved difficult and for now we just rank named over unnamed claimers 

One interesting side-observation from implementing this was that classifying claimers into three 
groups of (named) country over (named) organization over (named) person using the Wikidata 
ontology proved to be quite involved. After collecting examples from training runs, it turned out 
that there were a lot of different types to consider, and that finding appropriate supertypes that 
could have been used for taxonomic inference was a significant challenge and required analysis of 
a large number of different paths in the ontology. Figure 33 presents a type cloud cartoon from 
this domain to illustrate the diversity and complexity. While this is certainly a solvable problem, 
we were pressed for time and decided on a simpler method instead. This is another example that 
using an ontology and particularly a large one like Wikidata comes with its own challenges and 
does not always immediately help. 
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Figure 33: Wikidata type cloud for claimers 

 

3.4.4.7 Query expansion, relevance filtering and result generation 
Next we list a number of additional steps needed to produce the final result. First, if we are given 
a full claim frame as a user query (as for Condition 5), we sometimes need to elaborate its natural 
language descriptors to facilitate textual inference via NLI. To do this we take the Wikidata refer-
ence and/or type of a KE, retrieve a small set of high-PageRank super classes as candidates using 
our KGTK DWD backend, then compute semantic similarity between the source node and each 
candidate using the KGTK similarity service14 and threshold for minimum similarity. For example, 
here is a Python call that retrieves descriptors for QNode Q1930187: 

    >>> getQnodeDescriptors("Q1930187")  
    {'media professional', 'author', 'journalist'} 

For Condition 5 we also compute the claim frame relation between the query claim frame and each 
result claim frame using textual entailment between the two claim frames and their epistemic sta-
tuses. For example, if claim frame A is textually equivalent to claim frame B, and A is claimed as 
true and B as false, we will say that B refutes A and A refutes B. When we generate results, we 
promote claim frames that are in an interesting relation to the query claim frame such as “supports” 
or “refutes”, leaving simply related claim frames farther down the list. 
For the final result we generate a ranking with claims that are important, relevant and diverse in 
values and epistemic status. To do that we go through the computed clusters in order of their im-
portance scores, possibly reranked according to relevance to the query claim frame. For each clus-
ter we select the most important members (representatives with differing epistemic status). If after 
the first round we still have available result slots, we start again from the top and backfill results 
up to a threshold. 

3.5 Manual Annotation Efforts 
We also participated in the manual annotation efforts for transitioning the ontology and domains. 
The first step in this process was learning a mapping between WikiData Qnodes and the existing 
LDC entities.  For this we built a list of about 7,500 Q nodes for mapping. 

 
14 https://kgtk.isi.edu/similarity_api 

https://kgtk.isi.edu/similarity_api
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We also began the process for annotation of claim frames by constructing minimal examples (aka 
simplified sentences) that should trigger all necessary components. We then evaluated how these 
align to existing resources (e.g. VerbNet, PropBank) and looked for places where concepts in the 
new COVID domain may not align to existed resources that predate the pandemic. 
Full manual claim frame annotations were performed for comparison to other teams and provided 
a groundtruth for comparison to system predictions.  Perhaps the most interesting result being not 
whether the system is able to find/build claims, but instead the selection of the most important or 
overarching claim of the document.  In manual human annotation, a document clearly has a pur-
pose with a single most important claim.  This was not true for the automated approach, which 
can, and did, extract many claims, even if they are irrelevant or superfluous. 
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4.0  RESULTS AND DISCUSSION 
While most individual components are benchmarked in their appropriate sections, we briefly dis-
cuss the final evaluation of our entire pipelines here. 

Phase 3 Month 54 TA3 evaluation results 
Figure 33 and Figure 34 present TA3 evaluation results from the Month 54 evaluation for our 
OPERA system and TA3 systems of other performers. Overall our OPERA KAgg TA3 claim 
frame generator did very well which can be seen in Figure 34 highlighted in green. When using 
TA1 extraction inputs from Team1, it scored best overall for 6 out of the 10 variants of the evalu-
ation measure, being a close second only to another team using the same TA1 extractions as input. 
When running on our own OPERA TA1, performance was in the middle of the pack but still re-
spectable. TA3 is dependent on the quality and completeness of claim frames extracted by TA1, 
and this dependency is visible here. 
The evaluation measure used here is normalized discounted cumulative gain (NDCG) which is a 
ranking measure from information retrieval designed for evaluating the quality of a ranking (such 
as a ranked list of search results). Details on how NDCG was computed from TA3 results can be 
found in the evaluation plan (Dang 2022). 
 

 
Figure 34: Month 54 TA3 evaluation results –  

NDCG (normalized discounted cumulative gain) 
 
The evaluation team computed a large number of different measures and variants to look at the 
results from different angles. We averaged over these various measures by ranking our results 
within the eight submissions for each measure, where Rank = 1 for the best score and Rank = 8 
for the worst. The average over these ranks is reported in Figure 35, which again shows that our 
OPERA submission based on Team 1 TA1 did very well and ranked best for Condition 6 and close 
to best for Condition 5. 
 

 
Figure 35: Month 54 TA3 evaluation results - average rank across measures 
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5.0  CONCLUSIONS 
The core goals of AIDA are admirable and interesting, as it aims to operationalize something that 
is generally trivial to humans.  There is synonymy and paraphrase at the lexical level, but these 
equivalences are more abstract (e.g. at the event level) from multiple views – perspectives in the 
language of the program. This multi-view representation problem is not unique to language, but 
present in many contexts or across modalities. For example, language, audio, perception, and ac-
tion may be views or ways to express the same underlying concept – even for primitive objects 
or tasks.  This is an intuitively simple statement, as we experience the world through audio and 
vision, participate in action, and communicate in language or text.  So, if every event has this 
property and a unique perspective, why then does this program reduce to text processing? And 
why is it so difficult? 

Let’s start with multimodality.  Any original event was multimodal.  The assassination was 
an event in the real world, experienced first-hand by audiences.  But we don’t have access to that 
experience, that input. Presumably, analysts don’t either.  Instead, we have interpretations and 
noisy descriptions.  The event was singular.  The parties perhaps unambiguous.  But the news 
written about it, was interpreted and contorted or contextualized.  With each subsequent article, 
the facts become harder to ascertain.  Clip-art and other pathos inducing images are used in leiu 
of the originals.  Figures are made with selections of the original scientific data, and so forth.  In 
effect, by the time AIDA gets access to documents, we (like an analyst or reader of the news) 
have a stack of splinters, which we are tasked with sifting through to reconstruct or infer the 
original. At this point, multimodal processing is all but useless, and the hypothesis formulation 
challenge immense. 

The difficulty in constructing a system (from my perspective) comes conceptually from the 
lack of a world model, and practically from pipelines and error propagation. I think these both 
manifest as the core themes of our technologies.  The easier case to discuss is the pipeline error 
propagation.  If an entity is missed, perhaps due to coreference, or its slot is incorrectly assigned 
in semantic role labeling and event parsing.  Substantial effort is required to try and recover from 
this error.  This lead to lots of bottom up and top down discussions.  Should extraction happen 
more locally to limite errors, but doing so pushes more burder on aggregation, and vice versa. 
What’s training and guiding these systems is the label space or ontology?  This leads to the KB 
design and the difficulty of aligning to those entities.  The KB/ontology are the static and impov-
erished “world model” that the system needs to adopt.  Let’s discuss a simpler case first.   

An embodied agent wants to clear the table.  How should they progress? They have a model 
of which objects fit in one another, what platters are strong enough to hold things, and so forth.  
With each action they have a prediction, thanks to their world model, of how all objects will in-
teract and from that they can work backwards and form a plan about how to achieve their goal.  
This planner, is also how we read the news.  We establish what the writer claims is occurring and 
use our model to predict which pieces, tools, steps, pre-conditions, and so forth would be neces-
sary for this to be true.  The ontology and related resources stand-in for this.  Telling us which 
events are related, which entites can fill what slots, and so forth.   It is an impressive attempt to 
outline the dynamics of the world and society. We leverage complex analytical tools to process 
the language and try to decipher these pieces and unify references. 

So, should we simply build an embodied agent to solve this? No, that’s equivalent to saying 
we need to solve AI to to solve this task.  But, I think understanding the differences between how 
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we would approach this and how our models have to, elucidates some of what the next steps 
should look like for this research agenda.  Specifically, real-time multimodal event recognition 
and captioning of a live event.  Models should be able to construct understanding of an event 
they are observing, and then reconcile those with the written descriptions provided in the news.  
This will build an anchor to a ground truth that links all the disparate surface forms they are ob-
serving.  
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OIF OPERA-internal frames 
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MAE Masked AutoEncoders 
CSR Common Semantic Repository 
RDF Resource Description Framework 
SPARQL SPARQL Protocol and RDF Query Language 
JSON JavaScript Object Notation 
AIF AIDA Interchange Format 
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