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1. Introduction

In the early stages of a new munition design process, it is desirable to quickly up-
date the controller as the aerodynamics and mass properties evolve. This allows for
timely evaluation of closed-loop maneuverability and system performance metrics
to provide input for the overall system development, including the lifting and sta-
bilizing surface sizing, control surface properties, actuation system requirements,
and sensor specifications. This research explores methodologies to rapidly design
effective flight control for high-speed guided munitions to enable desired operation
across an expanded flight envelope.

Previous work investigated the use of a gain scheduled three-loop autopilot for
a tail-controlled, high-speed projectile.1,2 This work was focused on streamlining
and automating the gain scheduling process and has resulted in a significant im-
provement to the flight control design time line compared to the legacy approach.
This work continues our investigation into alternative control strategies for tail-
controlled, high-speed projectiles by exploring the application of dynamic inver-
sion control as a systematic, physically derived alternative to gain scheduling. We
particularly wish to explore the hypothesis here that dynamic inversion controllers
offer straightforward design and implementation for flight dynamics that are well
characterized across the flight envelope, acting as a baseline, bolt-on architecture
for new projectiles.

Dynamic inversion controllers have been widely used in a variety of applications,
including flight control.3,4 Crucially, tail-controlled projectiles, such as the one con-
sidered here, often exhibit nonminimum phase dynamics in the desired control vari-
able. Under dynamic inversion, the plant zeros become the plant poles.5 Lee et al.5

treat this issue with a modified feedback architecture, while Kutluay and Yavrucuk6

consider an additional loop to mitigate the unstable transmission zero. Robustness
has been addressed using a time scale separation scheme7 or with adaptive augmen-
tation.8

Before discussing the design of the dynamic inversion controller applied in this
work, we first present the airframe dynamics for the considered projectile.
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2. Projectile Flight Dynamics

In this section, we provide a brief overview of the nonlinear flight dynamics for
a generic tail-controlled projectile. More details can be found in Bryson and Gru-
enwald.2 We begin by noting the relevant reference frames and coordinate systems
needed to describe the position and orientation of the projectile. As shown in Fig. 1,
the earth reference frame is used as the inertial frame located at the launch location
with the x-axis pointing toward the target and the body-fixed reference frame is
fixed at the center-of-gravity (CG) location on the body of the projectile.

The orientation of the body-fixed frame can be given with respect to the fixed earth
reference frame using a ZYX Euler sequence of rotations, where the three Euler
angles for roll, pitch, and yaw, are given by φ, θ, and ψ, respectively. Using this
transformation, the kinematic equations for translational velocity can be given asẋẏ

ż

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


uv
w

 , (1)

where sφ = sin(φ), cφ = cos(φ), and so forth, the states [x, y, z]T are the CG
positions relative to the earth inertial frame, and [u, v, w]T are the body-fixed trans-
lational velocities.

x
E

y
E

z
E

ψ

θ

x
by

b

z
b ϕ

Fig. 1 Illustration of a generic projectile with a body-fixed frame relative to an earth reference
frame (inertial frame)

The dynamics of the Euler angles can be described by the body-fixed angular rates
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as the following kinematic equationsφ̇θ̇
ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


pq
r

 , (2)

where [p, q, r]T are the body-fixed angular rates acting in the roll, pitch, and yaw
planes, respectively, and tθ = tan(θ).

The projectile flight dynamics are based on the standard rigid body 6-degree-of-
freedom equations of motion. The three translational degrees of freedom are gov-
erned by Newton’s second law and described by the body-fixed translational veloc-
ities given by

 u̇v̇
ẇ

 =
1

m


FX −mgsθ

FY +mgsφcθ

FZ +mgcφcθ

−
 0 −r q

r 0 −p
−q p 0


uv
w

 . (3)

Here m is the mass of the projectile, g is the gravitational acceleration, and FX , FY ,
and FZ are the aerodynamic forces acting on the projectile body in the x, y, and
z direction, respectively. The three rotational degrees of freedom are governed by
Euler’s law and described by the body-fixed angular rates given by

ṗq̇
ṙ

 =

I
−1
x 0 0

0 I−1y 0

0 0 I−1z



Ml

Mm

Mn

+

I
−1
x (Iy − Iz)qr
I−1y (Iz − Ix)pr
I−1z (Ix − Iy)pq

 , (4)

where Ix, Iy, and Iz are the components of inertia around the x, y, and z axes, and
Ml, Mm, and Mn are the external moment components resulting from the aero-
dynamic moments. The inertia matrix is considered to be diagonal with no cross-
coupling owing to the symmetric nature of the considered projectile bodies.

Now we introduce the wind reference frame, depicted in Fig. 2, which is defined
by the instantaneous orientation of the relative wind velocity vector, denoted as
~V ≡ ~VCG/E , with respect to the body-fixed frame. The relationship between the
wind frame and the body-fixed frame is made through the aerodynamic angles:
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angle of attack, α, and angle of sideslip, β. In addition, the airspeed of the projectile
is given by the magnitude of the velocity vector ~V and can be written as

V =
√
u2 + v2 + w2, (5)

and the aerodynamic angles can be written in terms of the body-fixed component
velocities as

α = arctan
(w
u

)
, (6)

β = arcsin
( v
V

)
. (7)

x
b

y
b

z
b V⃗CG

α

β

Fig. 2 Wind reference frame relative to the body-fixed reference frame. Angle of attack and
angle of sideslip relate to the projectile’s CG velocity vector.

With the full 6-degree-of-freedom equations of motion defined, we now note the
common practice of linearizing and decoupling the dynamics into the longitudinal
and lateral-directional modes. For the purpose of this report, we consider the short-
period mode of the longitudinal dynamics. The short-period mode is described by
the dynamics of angle of attack α and pitch rate q. Using Eqs. 3 and 4, along with
the appropriate forces and moments, and Eq. 6, the short-period dynamics can be
written asα̇

q̇

 =

 Zα
V

1

Mα +Mα̇
Zα
V

Mq +Mα̇

α
q

+

 Zδq
V

Mδq +Mα̇
Zδq
V

 δq. (8)

Here, δq is the control input for pitch motion, and the terms Zα, Mα, Mα̇, Mq, Zδq ,
and Mδq are dimensional derivatives and given in Table 1 where Q = 1

2
ρV 2 is the

dynamic pressure (ρ being the air density), S = π
4
D2 is the aerodynamic reference

area, and D is the projectile diameter. The stability and derivative coefficients given
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by CZα , Cmα , Cmα̇ , Cmq , CZδq , and Cmδq are obtained from aerodynamic modeling
of the forces and moments on the projectile.

Table 1 Dimensional derivative terms

Zα = QS
m CZα Zδ =

QS
m CZδq

Mα = QSD
Iy

Cmα Mα̇ = QSD
Iy

D
2V Cmα̇

Mq =
QSD
Iy

D
2V Cmq Mδ =

QSD
Iy

Cmδq

Since the control objective will be to follow a desired acceleration command, we
note here that the projectile’s specific vertical acceleration Az = −FZ/m can be
written as

Az =
[
−Zα 0

]α
q

+
[
−Zδq

]
δq, (9)

where the negative sign is used by convention so a positive angle of attack supplies
a positive vertical acceleration.

3. Dynamic Inversion Control

3.1 Brief Overview of Dynamic Inversion Control for Flight Control

Consider the class of systems described by the coupled ordinary differential equa-
tions

ẋ = Ax+Bu

y = Cx+Du.
(10)

Here, x(t) ∈X is the state vector, u(t) ∈ U is an input, and the output is y(t) ∈ Y .
The state vector is an n-dimensional vector evolving in X ≡ Cn. Accordingly, the
inputs evolve in the m-dimensional space U ≡ Cm and the outputs in p-dimensional
space Y ≡ Cp.

The aim of dynamic inversion generally is to include the inverse of the system
dynamics in the control so that the closed loop properties of the dynamics may
be set according to desired performance characteristics. Conceptually, the system
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dynamics must appear in some form in the control vector u. If the matrix D is
nonzero and has a right inverse D† 3 DD† = I , it can be seen that setting the
control input to

u = D†(v − Cx), (11)

yields the closed loop dynamics

ẋ = Ax+B(D†(v − Cx)) (12a)

= (A−BD†C)x+BD†v (12b)

with the output

y = Cx+DD†(v − Cx) (13a)

= v. (13b)

Accordingly, the system is decoupled (yi = vi) and the output can be explicitly set
with the “virtual” control vector v.

Of course, there may be no feedthrough matrix D. In such cases, derivatives of the
output y until there is a feedthrough term on a given output derivative y(d)

y(d) =


yd11

yd22
...
ydrr

 = Fx+ Eu (14)

where F and E are matrices generated by the relevant Lie derivative

Fi =

Ci di = 0

CiA
di di ≥ 1

, Ei =

Di di = 0

CiA
di−1B di ≥ 1.

(15)

The rth derivative resulting in a nonzero E is the relative degree of the system.
Dynamic inversion controllers are especially favorable for flight control because the
relative degree of the system tends to be ≤ 1. The virtual control v now prescribes
the desired behavior of the output derivative v = y

(d)
desired. A system with relative
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degree r has the closed loop behavior

ẋ = (A−BE†rF )x+BE†rv (16a)

y(d) = v (16b)

and the closed loop output dynamics are once again decoupled and may be pre-
scribed according to v.

Interested readers should explore additional literature5,9–12 for a broader theoretical
treatment of both linear and nonlinear dynamic inversion approaches for flight con-
trol. It suffices to say for the control of this tail-controlled projectile, linear dynamic
inversion controllers of low relative order are sufficient to set the closed loop dy-
namics across the flight envelope. With this brief overview complete, we proceed
to synthesizing the dynamic inversion controller for the example projectile.

3.2 Dynamic Inversion Approach for Projectile Longitudinal Dynamics

Dynamic inversion control architectures are amenable to multivariate dynamics,5,13

such as those in Eq. 8. However, a dynamic inversion approach is not appropriate
here because the Az dynamics have an unstable transmission zero throughout the
flight envelope and are therefore nonminimum phase. Because the open loop zeros
become closed loop poles under dynamic inversion,5 unmodified dynamic inver-
sion controllers for the Az loop will destabilize the system dynamics, so we cannot
simply invert the Az dynamics to generate a deflection command δq. Accordingly,
we choose to use a time scale separation scheme here. Time scale separation ap-
proaches are desirable because they allow for the design of low-order controllers,
simplify the control scheme conceptually, and have been shown to be more robust
than multivariate controllers that do not use time scale separation.7 It is typical to
consider the actuator dynamics of a projectile as the fastest for time scale separation
purposes.12 The body angular rates are the next fastest, followed by the angle of at-
tack or acceleration rates.14 This also allows for the treatment of the nonminimum
phase dynamics.

It is worth noting that this approach uses simplified, linear equations for the non-
linear projectile dynamics. For aerospace systems, much effort is typically invested
in characterizing the dynamics across various conditions,15–17 so these nonlinear
dynamics are usually understood and incorporated into the nonlinear model. Given

7



sufficient sample points within a discretized flight envelope, the interpolated family
of linear models is representative of the nonlinear behavior across the flight en-
velope. Accordingly, our dynamic inversion controller will interpolate the aerody-
namic coefficients across the envelope to handle nonlinear behavior. This approach
is well established in the literature as dynamic inversion controllers are especially
effective when the system dynamics are well characterized.14

3.2.1 Fast Inner Loop

Here, we consider the q dynamics in the “fast” inner loop. The inner loop dynamics
extracted from Eq. 8 are

q̇ =

(
Mα +Mα̇

Zα
V

)
α + (Mq +Mα̇)q +

(
Mδq +Mα̇

Zδq
V

)
δq. (17)

Dropping small terms divided by the airspeed V and denoting Mq̃ ≡ Mq + Mα̇ as
the entire damping sum yields

q̇ = Mαα +Mq̃q +Mδqδq. (18)

The appropriate dynamic inversion controller for the dynamics in Eq. 18 is then

δq = M−1
δq

(vq −Mαα−Mq̃q) . (19)

Equation 19 does not account for actuator dynamics, which are known to degrade
control outcomes by interfering with the ability of the flight controller to access
the plant dynamics.18 Here, a first-order model is used to account for the effect of
actuator dynamics within the control design

δ̇q = ωn(δd − δq) (20)

where the deflection command δd is related to the control surface deflection δq

through the actuator bandwidth ωn. Solving for δq in Eq. 20 yields

δq = δd −
δ̇q
ωn
. (21)

If we substitute Eq. 21 into Eq. 19, we obtain

δd = M−1
δq

(vq −Mαα−Mq̃q) +
δ̇q
ωn
. (22)

8



Equation 22 yields a control scheme that accounts for actuator bandwidth. In prac-
tice, the actuator rate δ̇q may not be available as a measurement, so we will use
an internal model of the actuator of the form in Eq. 20 to feedback δ̇q. Generally,
actuator dynamics in dynamic inversion controllers may be accounted for by tak-
ing further derivatives of the output before substituting the actuator dynamics and
solving for the appropriate controller using plant states.12,19 By using an internal
model of the first-order actuator here, we simplify the controller synthesis while
still accounting for some of the actuator effects.

Notice, inserting the actuator approximation Eq. 21 into Eq. 18 yields

q̇ = Mαα +Mq̃q +Mδq(δd −
δ̇q
ωn

) (23)

and we may now insert the dynamic inversion controller in Eq. 22 into Eq. 23 to
realize

q̇ = Mαα +Mq̃q +Mδq

(
M−1

δq
(vq −Mαα−Mq̃q) +

δ̇q
ωn
− δ̇q
ωn

)
(24a)

= Mαα +Mq̃q + (vq −Mαα−Mq̃q) (24b)

= Mαα−Mαα +Mq̃q −Mq̃q + vq (24c)

= vq. (24d)

Of course, the ability to reduce the dynamics to Eq. 24d is sensitive to how accurate
the aerodynamic coefficients and actuator models are for a given point in the flight
envelope. Now, the question is how to assign the control input v. Following Kutluay
and Yavrucuk6 and Tipàn et al.,3 state feedback is used to set the desired closed loop
bandwidth. One of the advantages of the dynamic inversion approach here is the
ability to carefully set closed loop properties in order to meet design requirements.20

Accordingly,

vq = ωq (qd − q)︸ ︷︷ ︸
eq

(25a)

= ωqeq (25b)

where ωq is the desired closed loop bandwidth for the q loop and qd is the desired

9



angular rate from the α loop. The closed loop system dynamics are then simply

q̇ = ωqeq. (26)

3.2.2 Slow Outer Loop

The α dynamics have a lower relative control effectiveness when compared to the q
dynamics and so they form the slow outer loop of this time separation scheme. The
α dynamics parsed from Eq. 8 take the form

α̇ =
Zα
V
α + q +

Zδq
V
δq. (27)

In this application Zδq is dropped and treated as a disturbance since Zα >> Zδq

α̇ =
Zα
V
α + q. (28)

The dynamic inversion controller for this loop is

qd = vα −
Zα
V
α, (29)

which substituted into Eq. 28 yields

α̇ =
Zα
V
α + vα −

Zα
V
α (30a)

= vα. (30b)

Following the low-order control design in Eq. 25b, we set the desired vα as

vα = ωα(αd − α) (31)

where ωα is the desired closed loop bandwidth for the α loop and αd is the desired
angle of attack from the Az guidance filter, resulting in the control law

qd = ωα(αd − α)− Zα
V
α. (32)

10



3.3 Body Acceleration Loop

In order to track reference commands from the projectile guidance law, an αd com-
mand must be generated from the body acceleration Az dynamics. However, a dy-
namic inversion approach is not appropriate here because the Az dynamics have an
unstable transmission zero throughout the flight envelope and are therefore nonmin-
imum phase. Because the open loop zeros become closed loop poles under dynamic
inversion,5 unmodified dynamic inversion controllers for the Az loop will destabi-
lize the system dynamics.

3.3.1 Proportional Integral α Command Generator

From Kutluay and Yavrucuk,6 a physically derived scheme can be implemented.
The Az dynamics from Eq. 9 are

Az = −Zαα− Zδqδq. (33)

As in Eq. 28, Zδq is dropped such that

−Z−1α Az = α (34)

yielding a physically “scheduled” gain for converting Az commands to α com-
mands. Of course, we should not expect this conversion to be perfect, so an integral
controller is also included to the reference tracking error

αd = −Z−1α Az +Ki

∫ t

0

(Az(τ)− Az,d(τ))dτ (35a)

αd = −Z−1α Az +Ki

∫ t

0

eAz(τ)dτ. (35b)

This scheme is represented graphically in Fig. 3. The projectile guidance system
delivers a desired body acceleration command Az,d. A desired angle of attack αd is
produced by the “α command generator,” which utilizes the control law in Eq. 35b.
αd is then used as the input to the slow dynamic inversion loop, which controls the
α dynamics via the synthesized law in Eq. 32. This slow loop in turn commands
the fast dynamic inversion q loop, which ultimately synthesizes a control surface
deflection δd that accounts for first-order actuator dynamics per Eq. 22.

11



Fig. 3 Dynamic inversion control scheme for the projectile with integral α command generator

3.3.2 Adaptive α Command Generator

Because the α command scheme here is based on a series of simplifications, an
adaptive α command generator is introduced because we expect significant sensi-
tivity to parametric uncertainty in Z−1α . We may consider an adaptive identification
scheme to continuously update the proportional term so that the integral error con-
troller in Eq. 35b may not be needed.

Consider the slow dynamic inversion loop, where the plant dynamics are

α̇ = ωα(αCMD − α) (36a)

= −ωαα− ωαZ−1α Az,CMD. (36b)

Our controller may have the wrong estimate of Z−1α

˙̂α = −ωαα̂− ωαZ̄−1α Az,CMD (37)

where Z̄−1α 6= Z−1α . We wish to implement an adaptive scheme to correct Z̄−1α
online. The adaptive gain law

˙∆Z−1α ≡ −eAzA∗z,CMDσ, σ > 0, (38)

corrects Z̄−1α online and is stable under the analysis presented in the Appendix.

This scheme is presented graphically in Fig. 4. This adaptive dynamic inversion
controller operates exactly as the scheme in Fig. 3, except for the α-command gen-
erator. While the control scheme described here is for the longitudinal dynamics, a
similar line of thinking follows for the lateral dynamics.3 With this technical treat-
ment complete, we turn to implementation details and simulation results.

12



Fig. 4 Dynamic inversion control scheme for the projectile with adaptive α command genera-
tor

4. Simulation and Implementation Results

4.1 Controller Implementation

The dynamic inversion controller is designed over a flight envelope defined by

Γ :

1.2 ≤M ≤ 3.5

|α| ≤ 12◦.
(39)

The flight envelope is discretized into a set of linear operating points and the projec-
tile is trimmed and linearized at each point yielding a set of linear models spanning
the flight envelope, according to the form of Eq. 8.

The actuator dynamics for the projectile are assumed to behave as a second-order
system [

δ̇q

δ̈q

]
=

[
0 1

−ω2
n −2ζωn

][
δq

δ̇q

]
+

[
0

ω2
n

]
(40)

δq =
[
1 0

] [δq
δ̇q

]
. (41)

Here, wn = 300 and ζ = 0.7 nominally. Recall from Eq. 22 that the dynamic
inversion controller accounts only for first-order dynamics with an internal model
of the actuator bandwidth as in Fig. 5.

The desired closed loop bandwidth for the fast inner q loop is set to ωq = 100 radi-
ans per second. The desired closed loop bandwidth for the slow outer α loop is set
to ωα = 50 radians per second. The aerodynamic coefficients are scheduled across
the relevant flight envelope for dynamic inversion. The resultant surface deflection
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command δd is fed through the second-order actuator model to a fully nonlinear
dynamic model of the projectile. Empirically, feeding back an internal model of the
actuator dynamics requires the inclusion of a first-order filter in order to achieve ac-
ceptable performance. Finally, the sensitivity parameter σ in Eq. 38 is implemented
as a linear function of the plant states for greater adaptation when the tracking er-
ror is significant. Scheduling σ does not impact the stability proof in the Appendix
since we only require σ > 0.

Fig. 5 Internal actuator model for the dynamic inversion control scheme

4.2 Nonlinear Simulation Analysis and Results

Both the proportional-integral (PI) and adaptive variants of the dynamic inversion
controller are exercised in a flight simulation to evaluate performance. The simula-
tion contains the equations of motion and a nonlinear aerodynamic model for the
projectile along with a second-order actuator model as shown in Fig. 6. Notice the
introduction of state disturbances at both the input and output of the nonlinear pro-
jectile dynamical model. The α-command generator is abstracted so as to consider
both the PI and adaptive forms of that outer loop controller.

Fig. 6 Simulation overview

An Az reference command of alternating 15 g positive and negative steps is chosen
to exercise the controller, which is refined using a first-order filter with τ = 0.125

to emulate commands from a guidance/navigation system. An initial error of −1◦
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in α is used at simulation start. The projectile flight is simulated for 10 s, starting
from Mach 3.8 at sea level, with standard atmospheric conditions.

4.2.1 Nominal Simulation Results

Figure 7 plots the simulation results for both the PI and adaptive dynamic inversion
controllers, with theAz reference and result shown in a), α across the flight shown in
b), the control deflection angle shown in c), q shown in d), and Mach number across
the flight shown in e). The results from the simulation using the PI α-command
generator variant are shown in blue, with the adaptive variant shown in orange.
Both controller variants perform well in this simulation, and are able to accurately
track the Az reference command across a wide range of Mach, α flight conditions.

Fig. 7 Nonlinear simulation results for both the PI and adaptive variants of the dynamic
inversion controller tracking a given Az reference command

4.2.2 Results with Noise and Disturbances

Measurement noise and external disturbances are next included in the simulation to
evaluate the controller performance under nonideal conditions. Band-limited white
noise is added to 1) the feedback of q, α, and Az to emulate noisy sensor mea-
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surements and 2) the control deflection command signal to emulate external dis-
turbances from atmospheric turbulence and wind gusts. As shown in Fig. 8, both
controller variants perform well and are able to track the Az reference command
despite significant disturbances and degradation in the state measurements.

Fig. 8 Nonlinear simulation results with external disturbances and measurement noise for
both the PI and adaptive variants of the dynamic inversion controller

4.2.3 Results with Scheduling Parameter Errors

Given the scheduled design of the controller, with gains that vary across the flight
envelope, it is important to ensure the controller is robust to errors in estimation of
the scheduling parameters. Additionally, this example application uses Mach and α
as scheduling parameters, which are often difficult to estimate precisely from avail-
able onboard sensors. To investigate the sensitivity of the controller to uncertainties
in these estimates, an analysis is performed such that Mach and α values within the
controller are each scaled by ±40%. This results in significant look-up table index-
ing errors for each scheduled controller gain and α measurement feedback errors in
the α dynamic inversion loop, from Eq. 32. In this analysis, these errors are applied
as a fixed scaling for each simulation run (as opposed to evolving errors throughout
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the simulation). A follow-on analysis using more detailed estimation models with
varying covariance and bias is recommended, but the magnitude of the static scal-
ing errors is sufficient to give confidence in the overall robustness of the controller
to schedule parameter errors.

Results for the PI variant dynamic inversion controller with ±40% estimation error
in flight envelope parameters are shown in Fig. 9 in blue, along with the nomi-
nal simulation performance with perfect parameter estimates shown in orange for
comparison. One particular case, with Mach underestimated by 40% and α overes-
timated by 40%, generated the most significant overshoots in Az tracking. Overall,
the controller performance is only degraded slightly, despite significant estimation
errors.

Fig. 9 Nonlinear simulation results for the PI dynamic inversion controller with ±40% esti-
mation error in flight envelope parameters

Results for the adaptive controller variant with ±40% estimation error in flight en-
velope parameters are shown in Fig. 10 in blue, along with the nominal simulation
results shown in orange for comparison. The adaptive regulator is able to adjust
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to the parameter estimation errors within the first seconds of flight, and the subse-
quent tracking of the Az reference command is nearly identical to the nominal case.
Given these results, both controller variants appear robust to significant errors in
scheduling parameter errors.

Fig. 10 Nonlinear simulation results for the adaptive dynamic inversion controller with ±40%
estimation error in flight envelope parameters

4.2.4 Results with Model Parameter Errors

The dynamic inversion approach used for this controller relies heavily on the dy-
namic model of the system, given in Eq. 8, which is a simplified expression of
the true dynamics, and comprises parameters and properties that are imperfectly
known. The flight controller should be designed with robustness to this model er-
ror/uncertainty.

One source of model error is the linearization using the short-period approximation,
which neglects aspects of the nonlinear dynamics in order to simplify the dynamic
equations. In addition, the aerodynamic terms used within the model are obtained
through the blending of multiple experimental and analytical techniques (compu-
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tational fluid dynamics [CFD], wind tunnel, flight experiments, etc.); each has dif-
ferent strengths and limitations. This aerodynamic data fusion remains an area of
active research, and the aerodynamic coefficients can have significant uncertainty,
particularly in hypersonic flight regimes.

To explore the sensitivity of the controller to variations/errors in the projectile and
actuator dynamic models, a Monte-Carlo (MC) analysis is performed using the non-
linear flight simulation. An uncertainty bound is set for each parameter within the
dynamic models, as shown in Table 2. Uniform random draws are then made for
each parameter within its respective uncertainty bounds, and the controller perfor-
mance is evaluated to analyze the robustness to the specified model uncertainties.

Table 2 Dynamic model uncertainty bounds

Mass
properties

m ±10%
Iy ±10%
CGx ±0.1 cal

Environment
parameters

ρ ±20%
V ±10%

Aerodynamic
coefficients

CZα ±10%
CZδ ±10%
Cmα ±20% ±0.1 cal
Cmδ ±20% ±0.1 cal
Cmq ±30%

Actuator
properties

ωn [280 : 350] rad/s

For this example, the projectile mass, m, and moment of inertia, Iy, are given an
error bound of ±10% from their nominal values. The x-location of projectile CG
is assumed to vary by ±0.1 cal. The air density, ρ, is given an error of ±20%, and
the projectile velocity, V , is given a ±10% uncertainty. These combine together to
define the uncertainty in the dynamic pressure, Q = 1/2ρV 2.

The aerodynamic force coefficients CZα , CZδ are both given an error bound of
±10%, and the error in the damping coefficient, Cmq is assumed to be ±30%, as
shown in Table 2. The aerodynamic moment coefficients are affected by the CG
uncertainty, along with an assumed additional error bound of ±20%. The effect of
the CG shift on the aerodynamic moments is taken to be cumulative with the±20%

error.

The actuator response is also assumed to be uncertain, with a ωn varying from 280

to 350 rad/s. This assumption captures uncertainties due to simplifications between
the true dynamics and the second-order modeling approximation, as well as non-
linearities in the actuator response in the presence of significant hinge moments
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due to aerodynamic forces on the control surfaces in high dynamic pressure flight
conditions.

MC simulation results for the PI variant dynamic inversion controller are shown in
Fig. 11 in blue, with the nominal simulation performance shown in orange for com-
parison. These results show some combinations of model errors result in degraded
tracking for Az commands corresponding to small α angles. The projectile in this
example is unstable at these small α angles, and the combination of the unstable
dynamics with the given uncertainty in the models results in undesired oscillations
and overshoots for some of the model error combinations given in Table 2. Over-
all, the controller appears robust to a significant proportion of the defined model
uncertainty space, particularly when controlling at higher angles of attack.

Fig. 11 MC analysis results for the PI dynamic inversion controller with model errors

MC simulation results for the adaptive variant dynamic inversion controller are
shown in Fig. 12 in blue, with the nominal simulation performance shown in or-
ange for comparison. The adaptive regulator is able to adjust to the modeling errors
within the first seconds of flight, and the subsequent tracking of the Az reference
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command is nearly identical to the nominal case (even at low-α angles) despite the
significant modeling errors.

Fig. 12 MC analysis results for the adaptive dynamic inversion controller with model errors

5. Conclusions

A scheduled, linear dynamic inversion controller was described for the autopilot
of a high-speed projectile. The dynamic inversion was applied to the short-period
dynamics of the projectile, and a time scale separation scheme was employed for
robustness. Notably, an internal model of the actuator dynamics was included to
account for actuator bandwidth limits.

The nonminimum phase acceleration dynamics of this tail-controlled projectile can-
not be safely inverted, so an outer loop was used to convert acceleration commands
into α commands. Two variants of this outer loop were investigated, one using a
conventional PI approach and another using an adaptive regulator.

Both variants of the controller were exercised using nonlinear simulation and showed
significant robustness to measurement noise, external disturbances, scheduling pa-
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rameter errors and modeling errors, with the adaptive variant providing marginally
improved tracking performance in some circumstances. The schemes presented
here offer a compelling control architecture when the plant dynamics are well
characterized. The dynamic inversion approach is particularly recommended as a
nominal architecture that may be quickly implemented for comparison with other
schemes or initial airframe testing.
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Appendix. Stability Proof
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Our model of the aerodynamic coefficient Z̄−1α may have significant parametric
uncertainty and so not be equal to the true value of the coefficient Z−1α . We wish to
implement an adaptive scheme to correct Z̄−1α online. Notice, this parametric error
introduces an error in α

eα = α̂− α (A-1)

which has dynamics

ėα = ˙̂α− α̇

= −ωαα̂− ωαZ̄−1α Az,CMD + ωαα + ωαZ
−1
α Az,CMD

= −ωαeα − ωαZ̄−1α Az,CMD + ωαZ
−1
α Az,CMD. (A-2)

Suppose Z̄−1α ≡ Z−1α + ∆Z−1α . This yields

ėα = −ωαeα − ωαZ−1α Az,CMD + ωα∆Z−1α Az,CMD + ωαZ
−1
α Az,CMD

= −ωαeα + ωα ∆Z−1α Az,CMD︸ ︷︷ ︸
w

= −ωαeα + ωαw

= Aceα +Bw. (A-3)

Assign the output dynamics

ey = eAz = Az,CMD − Az
= Z−1α eα. (A-4)

The stability proof that follows relies heavily on the notion of almost strict dissipa-
tivity (ASD). The system dynamics

ẋ = Ax+Bu

y = Cx
(A-5)

are ASD if they satisfy the Kalman-Yakubovich conditions:

A∗cP + PAc = −Q

PB = C∗
(A-6)
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for some positive definite matrices P and Q. A∗c denotes the conjugate transpose of
Ac. The matrix Ac = A+BGC may stabilize A with a stable gain matrix G and is
equivalent to the closed loop matrix for the system in Eq. A-5 under the feedback
law u = Gy. The ASD property is equivalent to the open loop system having a pos-
itive definite high-frequency gain and stable minimum phase transmission zeros.1

With the error dynamics in Eq. A-3, assign the following Lyapunov function to the
eα

V1(eα) =
1

2
e∗αPeα (A-7)

where P comes from the ASD condition AP + PA = −Q and PB = C∗. This
function has the Lie derivative

V̇1 ≡ e∗αP ėα

= e∗αP (Aeα +Bw)

= e∗αPAeα + e∗αPBw

= −1

2
e∗αQeα + e∗αPBw

= −1

2
e∗αQeα + e∗αC

∗w

= −1

2
e∗αQeα + e∗Azw

= −1

2
e∗αQeα + (eAz , w). (A-8)

The adaptive gain has the Lyapunov function

V2(∆Z
−1
α ) ≡ 1

2
tr(∆Z−1α σ−1∆Z−1α

∗
). (A-9)

Accordingly,

V̇2(∆Z
−1
α ) = tr( ˙∆Z−1α σ−1∆Z−1α

∗
). (A-10)

1Balas M, Fuentes R. A non-orthogonal projection approach to characterization of almost posi-
tive real systems with an application to adaptive control. Proceedings of the 2004 American Control
Conference; 2004 July; Vol. 2. IEEE; p. 1911–1916.
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Notice, by assigning the update law

˙∆Z−1α ≡ −eAzA∗z,CMDσ, σ > 0, (A-11)

yields

V̇2(∆Z
−1
α ) = tr(−eAzA∗z,CMDσσ

−1∆Z−1α
∗
)

= −tr(eAz A
∗
z,CMD∆Z−1α

∗︸ ︷︷ ︸
w∗

)

= −(eAz , w). (A-12)

Therefore, the system composite Lyapunov function is

V (eα,∆Z
−1
α ) = V1 + V2

= −1

2
e∗αQeα + (eAz , w)− (eAz , w)

= −1

2
e∗αQeα, (A-13)

which bounds the trajectory eα(t) and ∆Zα.

Now consider the function

W (eα) ≡ 1

2
λmin(Q)||eα||2 (A-14)

and take the time derivative yielding

|Ẇ (eα)| = λmin(Q)|e∗αėα|. (A-15)

Substitute ėα from Eq. A-3 to see that

|Ẇ (eα)| = λmin(Q)
∣∣e∗α (Aceα +B∆Z−1α Az,CMD

) ∣∣. (A-16)

While Eq. A-13 bounds eα and ∆Z−1α , it does not bound Az,CMD. We employ the
assumption that as a property of the plant, the command Az,CMD is bounded. Given
this, the derivative of Eq. A-14 is also bounded, andW (eα) is uniformly continuous
by the mean value theorem. Finally, by Barbalat’s lemma2, eα(t)→ 0 as t→∞.

2Khalil HK. Nonlinear systems. Prentice Hall; 2002.
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List of Symbols, Abbreviations, and Acronyms

CG center-of-gravity

MC Monte Carlo

PI proportional-integral

ASD almost strictly dissipativity

MATHEMATICAL SYMBOLS:

Cn set of n× 1 complex column vectors

≡ equality by definition

MATHEMATICAL OPERATORS:

( ˙ ) denotes the time-derivative

(~ ) denotes a vector

(·)T denotes the transpose operator

(·)† denotes the pseudo-inverse operator

(·)−1 denotes the inverse operator
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