
Preserving Memory Safety in Safe Rust during
Interactions with Unsafe Languages

by
Elijah E. Rivera

S.B. Computer Science and Engineering
Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2021
© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2021
Certified by. .

Dr. Howard Shrobe
Principal Research Scientist, MIT

Thesis Supervisor
Certified by. .

Dr. Hamed Okhravi
Senior Staff Member, MIT Lincoln Laboratory

Thesis Supervisor
Certified by. .

Dr. Nathan Burow
Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor
Accepted by .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is

unlimited. This material is based upon work supported by the Assistant Secretary

of Defense for Research and Engineering under Air Force Contract No. FA8702-15-

D-0001. Any opinions, findings, conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the

Assistant Secretary of Defense for Research and Engineering.

2

Preserving Memory Safety in Safe Rust during Interactions

with Unsafe Languages

by

Elijah E. Rivera

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Rust is a programming language that simultaneously offers high performance and
strong security guarantees. However, these guarantees come at the cost of strict com-
piler checks that sometimes prevent necessary code patterns. The unsafe keyword
allows developers to bypass these compiler checks, and is used in both pure Rust
and mixed-language applications. But the use of unsafe undermines the security
guarantees of Rust that make it an attractive option in the first place.

We first demonstrate that within a real-world pure Rust application, many uses
of unsafe can be eliminated,or reduced to formally verifiable standard libraries. We
then present Galeed, a system for isolating and protecting the Rust heap from access
by other programming languages using Intel’s Memory Protection Key (MPK) tech-
nology. We demonstrate both the effectiveness and efficiency of Galeed on Firefox, a
web browser written in Rust and C++.

Thesis Supervisor: Dr. Howard Shrobe
Title: Principal Research Scientist, MIT

Thesis Supervisor: Dr. Hamed Okhravi
Title: Senior Staff Member, MIT Lincoln Laboratory

Thesis Supervisor: Dr. Nathan Burow
Title: Technical Staff, MIT Lincoln Laboratory

3

4

Acknowledgments

I would like to give thanks first and foremost to God, who has made provision for

me in every step of my life’s journey. “[T]o the only God our Savior, through Jesus

Christ our Lord, be glory, majesty, dominion and authority, before all time and now

and forever. Amen” (Jude 25 NASB) [1].

Thank you Dr. Howard Shrobe and Dr. Hamed Okhravi for overseeing the work on

this thesis project and for providing funding for it. Thank you Dr. Nathan Burow for

invaluable supervision, assistance, and feedback throughout the research and writing

processes. Thank you Dr. Samuel Jero and Samuel Mergendahl for your additional

support through technical assistance and suggestions.

Thank you Prof. Armando Solar-Lezama and James Koppel for your personal and

professional support. From my sophomore year to now, you have enabled my research

and academic careers to thrive, and I am grateful for the guidance you have provided.

Thank you Marcelo and Deborah Rivera. Thanks Mom and Dad, for being my

best advocates throughout my academic career. Thank you for supporting my work,

both financially and personally, and for pushing me ever higher into my learning and

growth.

Thank you to Sloan Kanaski, Ebenezer Sefah Jr., John Robertson, Paul and Carla

Grobler, and Judy Richie. You were there through some dark moments in my MIT

career, and have been willing to sit with me in those moments and challenge the lies

that I was speaking over myself. Thank you to Lydia Yu and Erica Liu for being

willing to listen, to question, and to sit with me and play music to keep our sanity

during a global pandemic.

Thank you to those whose names I could not fit in this space. There are not enough

words to express how grateful I am to everyone who has had a hand in making me

the student, teacher, researcher, and man of God that I am today.

5

6

Contents

1 Introduction 13

2 Background & Threat Model 19

2.1 Rust . 19

2.2 MPK . 21

2.3 Threat Model . 22

3 Managing Internal Unsafety 23

3.1 Data Structures and Interior Mutability 24

3.2 Refactoring Out unsafe . 26

3.3 Summary . 27

4 Galeed for Heap Isolation 29

4.1 Design . 31

4.1.1 Heap Splitting . 32

4.1.2 Access Policy . 32

4.2 Implementation . 33

4.2.1 Initial Allocation . 33

4.2.2 Access . 33

4.3 Summary . 34

5 Pseudo-pointers 35

5.1 Design . 36

5.1.1 Pseudo-pointer Properties . 37

7

5.1.2 Rust API . 38

5.1.3 External Function Transformation 38

5.2 Implementation . 39

5.2.1 Pseudo-pointers . 40

5.2.2 Rust API . 41

5.2.3 External Function Transformation 41

5.3 Summary . 42

6 Benchmarks 43

6.1 Refactoring Unsafe Rust . 43

6.2 Galeed for Heap Isolation . 44

6.2.1 Proof-of-concept . 45

6.2.2 libpref . 45

6.3 Pseudo-pointers . 47

7 Discussion 49

7.1 Active Rust Development . 49

7.1.1 Inline Assembly . 49

7.2 Tock Data Structures . 50

7.3 Memory Protection Keys . 50

7.4 libmpk . 51

7.5 Firefox . 52

7.6 Prototypes . 52

7.6.1 Performance . 53

7.6.2 Automation . 53

7.6.3 Type Support . 53

7.6.4 Source Code Dependence . 54

8 Related Work 55

8.1 Formal Reasoning about Rust . 55

8.2 Isolation . 56

8

8.3 Compile-time Transformations . 57

9 Conclusion 59

9

10

List of Figures

3-1 Interior mutability example . 25

3-2 Safe Rust rewriting example . 26

4-1 Memory access in Rust-C++ mixed applications 30

4-2 Protections on memory accesses via MPK 31

4-3 Rust inline assembly code for MPK permission switching 34

5-1 Intended accesses in Galeed . 35

5-2 Pseudo-pointers in Galeed . 36

5-3 Transforming an example C++ function to use pseudo-pointers 41

6-1 Galeed microbenchmarks . 44

6-2 Galeed libpref benchmarks - Rust component 46

6-3 Galeed libpref benchmarks - all function calls 46

6-4 Pseudo-pointer microbenchmarks . 48

11

12

Chapter 1

Introduction

Many modern-day systems are written in C or C++. These include operating sys-

tem (OS) kernels such as the Linux kernel [33] or Windows NT [35], mainstream

web browsers like Mozilla Firefox [38] and Google Chrome[21, 20], and even other

languages’ compilers and interpreters (e.g. Python [47]). Unfortunately, C and C++

have little to no enforcement of type or memory safety, and as a result are vulnerable

to a host of different types of memory errors.

Memory errors in programs are a major source of errors and exploitable vulner-

abilities dating at least as far back as 1996 [44]. At BlueHat Israel 2019, Microsoft

disclosed that in the past decade, memory errors have comprised ∼ 70% of discovered

vulnerabilities in their products [36]. Google has recently come to the same conclusion

after analyzing their own security vulnerabilities since 2015 [22]. We say something

is memory safe if it successfully prevents these memory errors [60]. We can subdivide

these errors into two categories: spatial errors, temporal errors. A spatial error occurs

when a pointer is dereferenced to a memory address outside of its original bounds,

while a temporal error is either a use-after-free (i.e. accessing memory after it has

been deallocated/freed) or use-before-initialization (i.e. accessing memory before it

has been properly initialized).

Many research projects have produced tools which help in detecting/mitigating

these errors [9, 29, 56], but nonetheless memory errors remain prevalent in codebases,

in everything from operating systems to web browsers. Memory safety bugs are

13

frequently vulnerable to exploitation, leading in some cases even to attacks involving

arbitrary code execution [6, 57].

Memory safety is also closely related to type safety, the prevention of type errors.

A type error occurs in memory when a memory location is treated as having a certain

type, but is then written to with data that does not represent a valid member of that

type. In 1978 Robin Milner famously claimed and then proved that "well-typed

programs cannot go wrong" [37] in a sound type system. There have been multiple

major vulnerabilities discovered due to a lack of soundness in the type system of

C [44, 43].

The programming language Rust guarantees strong memory and type safety for

programs in the language [51], guarantees which have recently been formalized and

verified by the RustBelt project [26]. Rust’s guarantees rely on its ownership system,

which implements memory safety as a subset of its type system. By encoding infor-

mation about the kinds of reference to an object and the lifetime of the object into

the type system, Rust is able to utilize existing type checking techniques to statically

ensure that programs that compile meet the memory safety guarantees above, and to

do so with little to no cost to performance [61, 7]. This combination of safety and

performance has proven attractive to the systems community, prompting an increased

in the popularity of Rust [27].

Rust’s type system is conservative, that is, sound but incomplete. The Rust

type-checker is sound, in that it will never accept a program that is not well-defined

within the language model, and thus will not violate the safety guarantees of that

model. Rust’s type system is incomplete in that the Rust type-checker will reject

some programs during compilation as false negatives, programs that are considered

incorrect by the type-checker but which are actually valid in the underlying language

model. Many operations required in low-level systems programming violate the rules

of the type-checker but do not necessarily violate the underlying safety model.

In operating systems, these operations include memory-mapped I/O operations,

inline assembly code, direct pointer arithmetic and related instructions, and some

other data structures with complex ownership requirements. These operations are

14

prevented by different type-checker restrictions and therefore do not compile. For

example, memory-mapped I/O operations often necessitate writing directly to a spe-

cific constant memory address. However, the Rust type system prevents direct access

to any specific memory address, to protect against mutating a piece of data that is

potentially pointed to somewhere else in the program.

For user applications, another set of operations which break the rules of the Rust

type-checker involve the use of the Rust Foreign Function Interface (FFI) to interact

with other languages, especially C/C++. In large pre-established codebases, developers

cannot simply rewrite the entire system at once in Rust. Issues of both scale and

backwards compatibility are guaranteed to arise. Instead, many of these codebases

are being ported over to Rust in small increments (e.g. Firefox [39]). Individual

components are rewritten in Rust, and then the FFI is used to connect the Rust

component to the rest of the codebase. The FFI makes designated Rust functions

externally available to non-Rust components, and enables the use of externally defined

functions within the Rust component. However, by default the Rust compiler cannot

reason about the safety of functions not written in Rust, and therefore will refuse to

compile.

To get around these restrictions, Rust provides a backdoor in the form of the

keyword unsafe. In Rust, unsafe signals to the compiler that the programmer is

writing code that he/she knows will not pass the Rust type-checker. The burden of

verifying that the code adheres to memory-safety and type-safety falls back onto the

programmer. This means that code that includes a dependence on unsafe ultimately

has the same level of guarantee as pre-Rust solutions: “hopefully the programmer is

correct.”

Unfortunately, this backdoor does not just undermine the guarantees of code that

contains unsafe sections inserted by the programmer. Since unsafe forces the compiler

to ignore certain checks, any values modified within or returned by unsafe code could

break all type and memory safety guarantees, even once passed to safe code. Once

unsafe is used, everything it transitively interacts with is also necessarily unsafe.

15

Worse, many of the Rust standard library data structures also contain some

amount of unsafe code. Any code that relies on these data structures also now has

a similar lack of the earlier formal guarantees. Now even though we started with

a language that is statically safe, using even just the Rust standard libraries can

potentially violate this safety. The previously mentioned RustBelt project [26] also

includes formal correctness proofs for many of data structures that use unsafe within

the Rust standard libraries. Rustbelt also provides mechanisms for producing formal

correctness proofs for unsafe user-defined structures, which could otherwise under-

mine memory safety guarantees in the same way as the standard library structures.

The following body of work shows how we can still preserve the memory safety

guarantees of safe Rust in the presence of unsafe code. We show that we can of-

ten protect safe code in Rust-only applications by simple refactoring, and that we

can protect safe Rust code in mixed applications by using newly available hardware

technology and our newly developed code transformations.

We investigate extending the formal mechanisms of RustBelt’s proof system to

data structures in Tock [32], an embedded operating system written solely in Rust

but which has multiple uses of unsafe. We find that uses of unsafe within custom

Tock data-structures can be refactored to use structures from the RustBelt-verified

standard library, and these refactored structures still compile to the same assembly

instructions as their original counterparts.

We then continue trying to preserve Rust memory safety guarantees, turning our

attention to Rust’s interactions with other languages. We focus on Firefox, a web

browser in the process of migrating from C++ to Rust [39]. We propose Galeed, a

method for isolating and protecting the Rust heap from independent access by any

other programming language using Intel’s Memory Protection Key (MPK) technol-

ogy [25], followed by a method of safely passing structures on the heap from Rust to

C++ without compromising memory safety. Together, these approaches help preserve

the memory guarantees of the Rust portions of applications that use both Rust and

another language (e.g. Firefox), even in the presence of malicious code.

16

In this thesis, we review the necessary background concepts and related work

that this body of work builds off of (chapter 2). We explore first ways of protecting

safe Rust from code written in unsafe Rust, and the results of our attempt to apply

these techniques to Tock (chapter 3). We then propose and prototype Galeed, a

method for protecting the memory integrity of safe Rust from interactions with other

programming languages via full memory isolation (chapter 4), followed by methods for

automatically transforming external functions to respect Galeed’s new heap isolation

model of interaction (chapter 5). We review initial microbenchmarks for both of

these prototypes (chapter 6), and discuss factors that led to our design decisions and

future work to be pursued (chapter 7). Finally, we present related work in the space

(chapter 8).

17

18

Chapter 2

Background & Threat Model

In the rest of this thesis, we will assume familiarity with two projects which we based

our work off of: the Rust programming language, and Intel’s Memory Protection

Keys. This chapter explains details of these projects necessary to contextualize the

rest of our work, and then closes with a discussion of our threat model for this project.

2.1 Rust

Rust [52] is a programming language that offers low-level control and high perfor-

mance, while still also being able to offer type safety, memory safety, and automatic

memory management. Rust does this by making memory safety a property that

is statically checked at compile-time in the same way that type safety is. In fact,

memory safety is built into the type system for Rust via the ownership system.

In Rust, variables “own” their resources, including allocated memory [53]. When a

variable goes out of scope, it is responsible for freeing its owned resources. To prevent

memory leaks and double-frees, every resource has exactly one owner. Ownership can

be transferred to another variable, which invalidates future accesses to the first owner.

If we want to access a resource without taking ownership of it, we can borrow it.

Borrowing gives us a reference to a resource. We can either borrow a resource im-

mutably or mutably. There can be any number of immutable references to a resource,

but if there is a mutable reference, no other references can exist until the mutable

19

reference is done being borrowed (i.e. goes out of scope). All of these properties are

checked at compile-time by the Rust borrow-checker (a subset of the type-checker),

and a program which violates any of them will not compile.

To make sure that borrowed references are always valid, Rust also includes the

concept of lifetimes. In Rust every resource has an associated lifetime, which is the

length of time for which it exists. References are not allowed to exist beyond the

lifetime of the original resource, a restriction also checked by the borrow-checker.

This restriction prevents use-after-free errors.

The combination of these static properties ensures that programs which success-

fully compile are guaranteed to be memory safe. Having these properties be statically

checked also means that Rust does not incur the costs associated with runtime checks,

which allows for performance on par with its closest counterpart, C++ [61, 7].

Rust has made claims to memory and type safety from its inception, and these

claims have been mostly proven, first with Patina [49] and then more thoroughly with

the RustBelt project [26]. RustBelt formalizes a machine-checked safety proof for a

“realistic subset” of Rust. The project then extends that proof to semantically verify

the safety properties of some Rust core libraries which are forced to use unsafe to

avoid the compile-time restrictions of the Rust borrow-checker. They also provide

an extensible interface to this proof system, which allows developers to check what

verification conditions are required of new Rust libraries before they can be considered

safe extensions to Rust.

Rust’s combination of performance and guaranteed safety has contributed to its

increasing popularity of within the programming community, with many projects

being written or re-written all or at least partly in Rust [16, 39, 31, 5, 27]. Our work

focuses on two such real-world applications. Tock [32] is an open-source embedded

operating system whose kernel and drivers are all written entirely in Rust for security

purposes. Firefox [38] is a web browser developed by Mozilla Corporation. Firefox

was originally written in C++, but has begun the process of migrating to Rust [39].

As mentioned in chapter 1, for many applications the Rust compile-time checks can

often be too restrictive when trying to write certain patterns in programs, especially

20

in low-level systems or when interfacing with other languages. To allow developers

to bypass compile-time checks, Rust includes the keyword unsafe. unsafe bypasses

compiler checks including the borrow-checker, which means that memory safety is no

longer guaranteed in the presence of unsafe.

2.2 MPK

Intel Memory Protection Keys (MPK) [25] is a new technology which is currently

only available on Intel Skylake or newer server-class CPUs. MPK enables quick

switching of read/write permissions on groups of pages from userspace. Each page

in the page table is tagged with a protection key. Built-in system calls are available

to change which protection key is assigned to a page. Permissions for the protection

keys are stored in a new register called the PKRU, and new assembly instructions are

available to read from or update the PKRU while in userspace. This means that we

can execute a single assembly instruction to toggle read/write permissions on a group

of pages all at once. ERIM [65] showed that updating permissions takes between 11-

260 cycles, which corresponds to an overhead of <1%. libmpk [46] (discussed below)

also confirmed a <1% overhead cost for using MPK, and was able to show that

using MPK enables performance improvements of >8x when compared to traditional

mprotect system calls for process-level permissions.

libmpk [46] is an open-source C library meant to serve as a software abstraction

around the MPK hardware technology. It claims to provide “protection key virtu-

alization, metadata protection, and inter-thread key synchronization.” The library

has API calls for initialization, allocating/freeing pages, and setting page group per-

missions. Additionally, libmpk provides an additional set of API calls specifically for

setting up a heap within a given page group and then allocating/freeing memory from

that heap.

21

2.3 Threat Model

Our project focuses on mitigating threats explicitly caused by interactions between

safe Rust and another unsafe language (either unsafe Rust or C/C++) in mixed-

language applications. We assume that the underlying hardware, operating system

(OS), and compiler layers are not faulty, compromised, or otherwise malicious. We

recognize additional potential threats if these assumptions do not hold, but as these

threats exist independently of the cross-language boundary we are investigating, we

consider these threats out of scope.

We not assume that the underlying infrastructure is secured, but we also assume

that it is providing certain standard protections: data execution prevention (DEP),

address space layout randomization (ASLR), and stack canaries.

In our work in chapters 4 and 5, we assume that before we implement our pro-

tections, an attacker writing the code in the unsafe portion of a mixed-language

application can write code which dereferences any arbitrary memory address. Prior

work has shown that in this situation memory safety (and thus application safety)

can be violated [45]. The goal of our work is to implement protections such that we

prevent the violation of memory safety by limiting the read/write capabilities of the

attacker.

22

Chapter 3

Managing Internal Unsafety

We investigate the use of unsafe in Rust-only applications via a case study using

the operating system Tock [32] which is written entirely in Rust. In Tock, we see

3 different types of uses of unsafe: inline assembly, memory-mapped input-output

(MMIO), and interior mutability in data structures.

In Rust, inline assembly is written as an embedded domain-specific language

(DSL) using the asm! macro. It does not follow the same syntax or semantics as

Rust, instead essentially functioning as a separate unsafe language. We treat inline

assembly as a special case of our general approach to interactions with other unsafe

languages (which we discuss in chapters 4 and 5), and we discuss limitations on this

characterization in section 7.1.1.

The memory model assumed by MMIO code is inherently different from the stan-

dard Rust memory model, which makes it difficult to make claims about memory

safety. There are approaches being separately developed within our group to handle

this specific use case [24], so we treat it as out of scope here.

Our project will focus on the third type of unsafety: interior mutability in data

structures. We show that we can increase the memory safety of Tock by refactor-

ing data structures to eliminate uses of unsafe. We can do so by making use of

similar related structures already in the Rust standard libraries and verified by the

the RustBelt project [26]. In this chapter, we explain the use cases for these data

structures within Tock, and why they were originally written with unsafe. We then

23

demonstrate that a refactoring is possible which preserves memory safety guarantees

while still compiling to the same bytecode.

3.1 Data Structures and Interior Mutability

The Tock operating system is an event-driven application, where multiple callback

functions can be registered. Each callback function requires a separate writable refer-

ence to the object on which to issue a callback. By default, this would be disallowed

by Rust’s borrow-checking rules, which prohibit having multiple mutable references

to a single object.

We get around this problem in Rust by introducing interior mutability, or the

ability to mutate internal values even when given an immutable reference to the

structure. Interior mutability is such a common pattern in Rust programs that it

was added to the Rust standard library via a struct named Cell. Cell exposes

a safe Rust interface for interior mutability, but it does so internally using many

unsafe internal functions which operate on an internal representation struct named

UnsafeCell. This nested abstraction allows for all unsafe code to be localized within

the implementation of the Cell interface, instead of requiring the unsafe keyword in

every usage of the interface. The Cell interface in the standard library was proven

safe as part of the RustBelt effort.

Tock borrows this nested pattern for many of its core data structures to en-

able specific variations on Cell’s interior mutability, using combinations of Cell and

UnsafeCell to create similar interfaces that are “safe” to use but are implemented

using unsafe under the hood. The core interface is called TakeCell, and the other

interior mutability data structures are explained to be specializations of TakeCell,

optimized for different types of contained data [62]. These data structures are used

in many places across the codebase, providing a container around mutable memory.

24

MyStruct
5x =

Original
Program

1. Initialize immutable
MyStruct with x = 5

2. Get value of x
3. Get value of x
4. Set x = 6
5. Get value of x

MyStruct
Cellx =

Cell

_value =

MyStruct

TakeCellx =

TakeCell

_value =

5

Some(5)

MyStruct
5x =

Original
Program

1. Initialize immutable
MyStruct with x = 5

2. Get value of x
3. Get value of x
4. Set x = 6
5. Get value of x

MyStruct
Cellx =

Cell

_value =

MyStruct

TakeCellx =

TakeCell

_value =

5

None

Result: 5

Result: 5

Result: Some(5)

MyStruct
5x =

Original
Program

1. Initialize immutable
MyStruct with x = 5

2. Get value of x
3. Get value of x
4. Set x = 6
5. Get value of x

MyStruct
Cellx =

Cell

_value =

MyStruct

TakeCellx =

TakeCell

_value =

5

None

Result: 5

Result: 5

Result: None

MyStruct
5x =

Original
Program

1. Initialize immutable
MyStruct with x = 5

2. Get value of x
3. Get value of x
4. Set x = 6
5. Get value of x

MyStruct
Cellx =

Cell

_value =

MyStruct

TakeCellx =

TakeCell

_value =

6

Some(6)

Runtime Error!

MyStruct
5x =

Original
Program

1. Initialize immutable
MyStruct with x = 5

2. Get value of x
3. Get value of x
4. Set x = 6
5. Get value of x

MyStruct
Cellx =

Cell

_value =

MyStruct

TakeCellx =

TakeCell

_value =

6

None

Runtime Error!

Result: 6

Result: Some(6)

Figure 3-1: Interior mutability example in Cell and TakeCell

The key difference between Cell and TakeCell is that getting data of a Cell is

done by copying, while getting data out of a TakeCell is done by moving the data.

After getting data from a Cell the data is still there, whereas in a TakeCell it is

missing, at least until the caller puts it back after operating on it. This is illustrated

in fig. 3-1.

25

3.2 Refactoring Out unsafe

Knowing that Cell is proven correct enables a simple option for the memory safety of

these other data structures: refactor to not use unsafe and/or UnsafeCell, instead

relying only on the already-proven Cell.

(a) Before - unsafe code

(b) After - safe code

Figure 3-2: The is_none() method of TakeCell, both before and after rewritting
the method in safe Rust. Screenshots are of Compiler Explorer [19], which compiles
the Rust on the left to the assembly instructions on the right.

We demonstrate that the desired interior mutability for TakeCell is made possible

directly through Cell by taking ownership of the value, changing it, then putting it

back. These operations can all be achieved with combinations of methods of Cell,

instead of having to perform operations directly with UnsafeCell. The code for

TakeCell was written using unsafe to ensure performance by operating directly on

the underlying pointer, functionality which is exposed by UnsafeCell. However, in

fig. 3-2 we show that the Rust compiler optimizations are able to recognize the safe

pattern and reduce it down to the same set of assembly instructions (see section 6.1).

26

3.3 Summary

In looking at Tock, an operating system written in Rust, one of the main uses of

unsafe is to enable interior mutability in data structures. We demonstrate that at

least one such data structure can be refactored, eliminating the use of unsafe without

loss of performance. We leave the application of this technique to the remaining data

structures as future work and potentially a target for automation.

27

28

Chapter 4

Galeed for Heap Isolation

Much of the current usage of Rust is not limited to Rust-only applications. Instead

we see a migration pattern: a longstanding codebase written in a different unsafe

language (most often C/C++) is converted piece-by-piece to the equivalent Rust code.

The ubiquitous web browser Firefox, our target application for the next few chapters,

started their migration from C++ to Rust in 2016 [39]. Mozilla, the maintainers of

Firefox, list Rust’s memory safety as one of the top considerations for the switch [39].

Mixing Rust with another language (e.g. C++) breaks the Rust memory safety

model, even leaving the combined mixed-language application vulnerable to exploit [45].

C++ is not bound by the Rust memory model, nor does it have to obey the restrictions

of the Rust compiler. Calling into C++ from Rust breaks any promises of memory

safety, and thus such calls must always be marked as unsafe in Rust. Unlike our

solution for Tock in chapter 3, we cannot refactor away unsafe as we do not have a

formally verified abstraction of C++ to fall back on as we do for Rust.

In a mixed Rust-C++ application, there are 4 possible patterns of memory access:

Rust code accessing Rust-allocated memory, Rust code accessing C++-allocated mem-

ory, C++ code accessing C++-allocated memory, and C++-code accessing Rust-allocated

memory (fig. 4-1). Rust code accessing Rust memory should never be able to break

Rust memory safety (by definition). Additionally, Rust memory safety is independent

of accesses to C++ memory.

29

Heap

Rust
allocated
memory

Rust code

C++ code

C++
allocated
memory

Figure 4-1: Possible patterns of memory access in Rust-C++ mixed-applications

In contrast, C++ accessing Rust memory (the red arrow in fig. 4-1) could cause

any number of violations to Rust memory safety guarantees, up to and including full

hijacking [45]. We separate these memory accesses further into two cases: intended

and unintended accesses. An intended access occurs when C++ is explicitly given the

location of some part of Rust memory by Rust code and then accesses that Rust

memory, while any other access is considered unintended. We assume that if Rust

does not explicitly give the other language a memory address, it does not expect the

other language to modify its memory, and this assumption holds for our target of

Firefox.

In this chapter, we focus on preserving memory safety in the presence of unin-

tended accesses. We assume a lack of intended accesses for the rest of this chapter,

and then modify the design to allow for intended accesses in chapter 5.

In order to preserve Rust memory safety in the Rust component of a mixed-

language application, we must isolate and restrict Rust memory such that it cannot

be accessed by a component written in another language. If only Rust can access

Rust memory, Rust memory safety is preserved. In this chapter we propose Galeed

as one way to enforce memory isolation using Intel’s Memory Protection Key (MPK)

technology. We present both a design and prototype implementation of Galeed, with

results and benchmarks discussed in chapter 6.

30

4.1 Design

MPK (see section 2.2 for more details) enables quick switching of read/write per-

missions on groups of memory pages from userspace. Previous work has shown that

using MPK to enforce different levels of isolation is a viable strategy [65, 23, 54], and

libmpk [46] even provided a software abstraction for MPK for general-purpose use.

Galeed’s approach to Rust memory isolation is to make sure that all of the pages

of Rust-allocated memory are in the same page group, and then to use MPK to set

permissions on these pages in such a way that external functions are unable to access

the Rust memory. If only the given Rust component can access its own memory, and

accesses from other non-Rust components to Rust memory are forbidden by MPK,

then the program must stay consistent with the Rust memory model despite executing

untrusted code in another language.

HeapRust
allocated
memory

Rust code

C++ code
C++

allocated
memory

Heap

Heap

MPK Protection

Figure 4-2: Protection via page-level memory isolation and MPK-enabled permis-
sions switching

In this work we focus on isolating the Rust component’s heap, leaving stack isola-

tion to future work. General memory safety for non-Rust components is out of scope

of this work, and well studied in literature [58, 40, 41, 55].

31

4.1.1 Heap Splitting

All Rust heap allocations must be made in the same group of pages, in order for

permissions to be controlled by a single MPK key. All pages within this group must

be set to the same MPK key. Permissions on these pages should initially be set to

allow all read/write access, since we start in safe Rust with these allocations, and

Rust should always be allowed to access its own memory. Allocations that happen

in other programming languages should not be able to allocate memory in any of the

same pages that Rust is allocating, so that our page-level permissions apply only to

Rust memory.

4.1.2 Access Policy

Rust should always be allowed full permissions to access its own memory. The Rust

compiler checks provide the memory safety protection that we need in safe Rust, and

when using unsafe we should refer to the work mentioned in chapter 3.

Any time Rust is about to call an external function, we must first turn off all

access permissions on Rust memory. Any time Rust returns from calling an external

function, we immediately turn back on the permissions. While execution is controlled

by the other language, permissions must remain off, ensuring that only Rust has

permission to access its own memory.

Since any user-space application can modify the PKRU (the MPK permissions

register), additional care is required to ensure that the external language does not turn

its permissions back on. The previous MPK isolation projects all present additional

techniques for solving this problem which we could adopt and reimplement, including

CFI [2], binary scanning [65, 23], hardware watchpoints [23], and system call filtering

via sandbox [54]. We leave this part of the implementation for future work.

32

4.2 Implementation

We implemented a prototype for Galeed, specialized to interactions between Rust

and C++. We also include the code for our implementation at https://github.com/

eerivera/rivera-meng-appendix [50].

Our implementation currently relies on manually inserted code annotations. In

this implementation, we attempt to lay groundwork for future development and au-

tomation. We believe that automation and minimal annotation will be key to adop-

tion of these techniques in well-established codebases, and where possible, we attempt

to outline a path to full automation.

4.2.1 Initial Allocation

libmpk (section 2.2) provides, among other things, a heap API for allocating mem-

ory within a page group. We replace the standard Rust allocator with calls to this

API (namely mpk_alloc() and mpk_free()), after updating it to match new typing

information in the Linux kernel headers.

Rust provides machinery for writing a custom allocator that can be imported as a

crate and used in place of the default. Our prototype does not separate the allocator

into its own crate out of convenience, but doing so would allow a developer to switch

to this allocator with a handful of lines of code.

In order to ensure that libmpk is properly initialized and has a page group assigned

to it, we also must include a one-time call to mpk_create(). We note additional

subtleties and difficulties when using the libmpk interface in section 7.4.

4.2.2 Access

libmpk restricts all access to newly allocated memory by default. We removed the

line of code that did this, so that Rust by default has full access permissions in its

own memory.

Code to switch MPK permissions is included on either side of all external function

call sites, which have currently been manually identified. The code immediately

33

https://github.com/eerivera/rivera-meng-appendix
https://github.com/eerivera/rivera-meng-appendix

preceding the call site switches selected permissions off, and the code immediately

following the call site switches all permissions back on. We currently switch the Rust

memory permissions to read-only at all call sites, but permissions could be selected

at each call site by swapping named constants.

1 asm!("rdpkru", in("ecx") ecx, lateout("eax") eax, lateout("edx") _);

2 eax = (eax & !PKRU_DISABLE_ALL) | PKRU_ALLOW_READ;

3 asm!("wrpkru", in("eax") eax, in("ecx") ecx, in("edx") edx);

Figure 4-3: Rust inline assembly code for MPK permission switching

We use the previously mentioned Rust asm! macro to directly call the assembly

instructions rdpkru and wrpkru for reading from and writing to the PKRU register

which holds the MPK permissions (fig. 4-3). Note that the inline assembly code for

switching permissions at any given call site is independent of any local variables or

names present at that site. This means that if one could manually identify all external

function call sites, one could easily insert the correct code into either end of the call

site. Depending on the analysis mechanism chosen, this could be done at either the

Rust or LLVM levels.

4.3 Summary

Using MPK we design and implement Galeed, a mechanism for memory isolation

between Rust language components and the rest of a mixed-language application.

We do this by isolating the Rust heap into a separate page group, and managing

permissions on this page group across language components. In doing this, we can

be confident that our strategy for preserving memory strategy is as strong as MPK.

See section 7.3 for a discussion of MPK strengths and weaknesses.

34

Chapter 5

Pseudo-pointers

Heap

Rust
allocated
memory

Rust code

C++ code

Heap
MPK Protection

p

*p

*p

Figure 5-1: Intended accesses are restricted by default by Galeed

In the previous chapter Galeed intentionally excluded intended accesses, i.e. times

when C++ is explicitly given the location of some part of Rust memory by Rust code

and then accesses that Rust memory. This most commonly occurs in FFI function

calls, by passing as an argument a pointer to a structure in memory instead passing

directly by value. In fact, this pattern is employed by many Firefox modules, often

due to performance or storage considerations. When we strictly enforce the heap

isolation mechanisms, we prevent the external function from accessing the memory

pointed to by the passed pointer (fig. 5-1).

35

In this chapter, we present an option for data flow between that does not require

breaking the safety guarantees provided by Galeed’s heap isolation in chapter 4. In-

stead, when external functions need access to Rust memory, we will force the external

function to request that Rust make the change in its own memory, a request that

Rust can safety-check and reject. We present a design for both the interfaces and

underlying machinery required in both the Rust and external functions, followed by

a proof-of-concept implementation of this design specialized to Rust and C++. Our

benchmark results are discussed in chapter 6.

5.1 Design

Heap

Rust
allocated
memory

Rust code

C++ code

Heap
MPK Protection

p

id(p)

id pointer

id(p) *p

Figure 5-2: In our design, C++ uses pseudo-pointers (e.g. id(p)) to request that
Rust dereference Rust memory

We introduce pseudo-pointers, i.e. identifiers that Rust passes to an external func-

tion instead of pointers. Rust keeps an internal mapping of pseudo-pointers to real

pointers. Any time a non-Rust component attempts to dereference a Rust pointer, it

must present a valid, non-expired pseudo-pointer to Rust via an exposed API, along

with the information for the change it wishes to make (if applicable). Rust verifies

36

that the pseudo-pointer is valid and non-expired. In the case of a write request, Rust

also verifies that the value to write represents a valid member of the type associated

with the memory location. Once verified, Rust executes the request. Since only Rust

directly accesses Rust memory, we can keep our heap isolation in place and protect

memory safety (fig. 5-2).

We break the design into 3 components to discuss further: necessary properties

of these pseudo-pointers, the API which Rust exposes to other external components;

and requirements on external functions.

5.1.1 Pseudo-pointer Properties

Pseudo-pointers need to have certain properties in order to function correctly as safe

pointer identifiers: uniqueness, automatic expiration, and forgery protection.

Pseudo-pointers must be unique to the memory they represent: each pseudo-

pointer must represent exactly one real memory location, and each memory location

must be represented by at most one pseudo-pointer. Not only is this necessary for

being able to look up the corresponding memory location, but it is also necessary to

comply with the Rust borrow-checker.

Pseudo-pointers must automatically expire when the corresponding memory is

freed at the latest. If a pseudo-pointer is still treated as valid and used to access

memory even after its corresponding memory location has been freed, we have violated

Rust memory safety with a use-after-free error.

Pseudo-pointers must be difficult to guess or forge. Ideally this applies even be-

tween different runs of the same program, which requires some level of randomization.

It should be noted that while forging a valid pseudo-pointer could potentially cause

information leaks or even information replacement (both major security risks), nei-

ther one has the possibility of breaking memory safety, since the operations are still

controlled by safe Rust and are valid operations within the Rust memory model.

Pseudo-pointer management should be automated, and transparent to the devel-

oper. This is not a requirement for correct functionality, but is still critical in the

push to incorporate these safety changes into existing applications. The more of the

37

process that can be automated, the lower the burden on the developer. A fully au-

tomated transparent system for introducing and using pseudo-pointers reduces the

surface area for potential mistakes back to at most the surface area of the original

program.

5.1.2 Rust API

Pseudo-pointers are functionally useless without the corresponding external-facing

Rust API, consisting of functions which can be called by another language in order

to read from or write to the memory represented by a pseudo-pointer. For any given

structure that will be used in the FFI, the Rust API will have a getter and setter for

each field within that struct. The function names for these getters and setters will be

automatically generated using a naming strategy that includes both the struct type

and the field name. These functions will either be nops or raise errors when asked to

perform a memory operation that is inconsistent with its current internal understand-

ing of that memory location, including both type errors and expired pseudo-pointers.

These functions must also be entirely in safe Rust, where compile-time and run-time

checks automate most of this for us.

5.1.3 External Function Transformation

Pseudo-pointers are passed in place of pointers in every call to an external function,

to avoid ever passing a Rust memory location to another language. Before each

external function call, we create a pseudo-pointer for the pointer that would normally

be passed, and pass that instead. We invalidate the pseudo-pointer once the function

returns, for the reasons mentioned in section 5.1.1.

If we rewrite calls to external functions to use pseudo-pointers, we will also need

to rewrite the external functions themselves to accept and use these pseudo-pointers

everywhere that they would have had a real pointer instead. Pointer dereferences and

writes need to be converted into the equivalent Rust API calls from section 5.1.2.

38

Ideally, these rewrites can be done automatically, which would once again mitigate

the burden on the developer. In fact, full automation of these external rewrites would

allow us to secure calls to large existing legacy libraries with little to no change,

allowing for this technique to be used in cases like migration from a legacy codebase

in an unsafe language (e.g. Firefox, originally in C++). Additionally, since developers

are often hesitant to make changes (even automated ones) to working legacy code,

these rewrites should be able to be performed at compile time instead of modifying

the source file.

Aliasing in unsafe languages could stand as a barrier to the full automation above,

as it may be impossible to completely determine the full set of pointer dereferences for

a Rust object. We note that ours is a conservative approach prioritizing guaranteed

safety. In cases where alias analysis fails and a pointer dereference is not transformed,

that pointer dereference will be disallowed by MPK permissions and will not violate

memory safety. A human-in-the-loop system could be designed for such situations, to

enable quick debugging and additional annotations to guide the analyzer. We leave

this as future work.

5.2 Implementation

We implement the above extension to Galeed’s design specialized to Rust/C++ inter-

actions, noting that our strategy would be effective in securing Rust calls to external

functions in many other languages. We keep this extension separate from our previous

Galeed prototype, with integration as future work.

For our prototype, we only implement pseudo-pointers for user-defined structs

that are intended to be passed across the language boundary. For primitives like

booleans, integers, and floating-point numbers, we would normally expect these to

be passed by value directly. For other constructs in the language and/or standard

library, further work is required to implement the necessary transformations.

As in the last chapter, this implementation will also focus very heavily on automa-

tion and developer convenience, for the same adoption reasons previously mentioned.

39

In places where we currently rely on manual entry, we also lay out a path to more

complete automation.

5.2.1 Pseudo-pointers

Pseudo-pointers are implemented as a transparent struct containing a single field,

the id of the pseudo-pointer as a signed 32-bit integer. The struct also contains a

PhantomData field that is the type of the data being pointed to. PhantomData is

used in Rust for fields that exist at compile time but not at run time. This allows us

to make distinctions in code between pseudo-pointers that represent different types,

while still having confidence that they will still compile down to 32-bit identifiers once

all of the compiler checks are passed.

We also define a specific map struct for pseudo-pointers, including a function that

takes a Rust struct, adds it to the map, and returns the corresponding pseudo-pointer,

and the reverse function that takes a pseudo-pointer, removes it from the map, and

returns the Rust struct. Every time a struct is added to the map, it will be added

with a different id, and every time a struct is retrieved, that id becomes invalid.

This prevents external functions from attempting to access a struct after Rust has

reclaimed it.

It is worth noting that creating pseudo-pointers using this interface requires having

ownership of the object. One cannot just have a writable reference to the object. This

is how we ensure temporal memory safety, as Rush requires the object’s lifetime must

extend for at least as long as it is in the map.

Pseudo-pointer support is implemented as an attribute macro that can be added

to a struct. This attribute macro creates the global map that will hold all pseudo-

pointers of this struct type. Additionally, the macro automatically creates the API

that will be exposed to external functions, as described in the next section. In our

prototype, we add this attribute manually to structs being passed to external func-

tions, but it is easy to imagine a static analysis tool that could find external function

call sites at compile time, determine which structs get passed to those functions, and

automatically add the attribute to those structs.

40

5.2.2 Rust API

The attribute macro is able to generate getter and setter functions for each field of a

struct by name. The macro has access to the type information of each field, so these

functions are able to carry that type information in their return value and arguments

respectively.

These functions use the pseudo-pointer provided as an argument, and go to the

appropriate pseudo-pointer map to request access. If the pseudo-pointer is valid, the

function proceeds as expected, either reading or writing the appropriate value. If

the pseudo-pointer is invalid, the function will panic. We could just as easily have

failed silently with a nop, but for prototype purposes we felt that it was better to be

immediately alerted of the violation and to halt to prevent further violations.

In addition to generating the getter and setter functions based on the name of a

field, we also generate equivalent functions based on that field’s position in the struct.

This enables some of the low-level automation described in the next section.

5.2.3 External Function Transformation

1 int add5(MyStruct* const p) {

2 p->x += 5;

3 }

4

(a) Before

1 int add5(ID<MyStruct > const p) {

2 x = get_x_in_MyStruct(p);

3 set_x_in_MyStruct(p, x+5);

4 }

(b) After

Figure 5-3: Transforming an example C++ function to use pseudo-pointers

In order to use this new pseudo-pointer interface, external C++ functions that once

accepted pointers to structs in memory must be modified to instead accept pseudo-

pointers, and operations on those pointers must be replaced with the appropriate Rust

API getters and setters above. Figure 5-3 shows an example of this transformation.

Instead of placing the burden on developers to manually perform these transfor-

mations, we choose to automate this transformation process. We introduce a module-

level pass into the LLVM compiler which is enabled by a command-line flag. This

41

pass transforms identified functions by replacing the expected pointer argument with

a pseudo-pointer argument. It then traces uses of that argument through the func-

tion, replacing load instructions with calls to the correct getter function and store

instructions with calls to the setter function. The information needed to determine

the correct function can be found in the type information that LLVM preserves.

Currently we rely on manual annotations to determine which functions to trans-

form and which structs within those functions to turn into pseudo-pointers. If we have

the ability to automatically identify call sites on the FFI boundary, we can automate

this annotation process, subject to the limitations discussed in section 5.1.3.

5.3 Summary

We can enable external functions to have access to Rust memory by requiring them

to go through Rust every time they want to access memory, and allowing Rust to

accept/reject such a request. Our prototype enables automatic transformations on

both sides of the language boundary, which translate unsafe direct memory accesses

into safe function calls back to Rust. This allows us to preserve the Rust memory

safety previously protected by MPK-enabled heap isolation.

42

Chapter 6

Benchmarks

Chapters 3 to 5 have all laid out different code transformations which can strengthen

the overall memory safety guarantees of the program. In this chapter we evaluate

our safety claims and calculate the performance overhead costs for our prototype

implementations of all of these code transformations.

6.1 Refactoring Unsafe Rust

In chapter 3 we demonstrate our claim that data structures in Tock can be rewritten

using only safe Rust. We do so by taking a structure called TakeCell as a case study

and rewriting it. Upon making the code changes to use only safe Rust, we compile

the TakeCell module down to LLVM and compare it to the compiled LLVM from

before the changes. We find that the Rust compiler optimizations are able to correctly

recognize the safety patterns and transform the code into the appropriate memory

accesses, and so in fact the two LLVM bytecode files were identical (see fig. 3-2 for

an example). This means that for TakeCell, there is 0% overhead to write in a safe

way. We were able to demonstrate this to the maintainers of Tock, and successfully

had our pull request accepted.

43

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

75

100

125

150

175

200

225

250

of
 c

yc
le

s t
ak

en
 p

er
 o

pe
ra

tio
n

with MPK
without MPK

(a) Single Read

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

70

80

90

100

110

120

of

 c
yc

le
s t

ak
en

 p
er

 o
pe

ra
tio

n

with MPK
without MPK

(b) Single Write

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

70

80

90

100

110

120

of

 c
yc

le
s t

ak
en

 p
er

 o
pe

ra
tio

n

with MPK
without MPK

(c) Write then Read

Figure 6-1: Galeed microbenchmarks

6.2 Galeed for Heap Isolation

In chapter 4 we present Galeed which isolates Rust heap memory from another lan-

guage’s heap memory using Intel MPK. We implemented a prototype of Galeed to

work at the Rust/C++ boundary. MPK is still a new hardware technology. At the

time of writing, it is only available on the newest line of Intel’s server-class CPUs

44

(Skylake). Our university was able to grant us remote headless use of one such ma-

chine, but we did not have the full access that we would like. While we can still

be convinced of our safety claims in this section, our performance evaluations have

higher deviations than we would prefer.

6.2.1 Proof-of-concept

We created a small proof-of-concept application using Rust and C++, where the C++

side has a “library” of functions which took in a pointer from Rust and read from

or wrote to that location in memory. We are able to show that disabling read/write

permissions at callsites of external functions in Rust using Galeed is enough to force

a segmentation fault in the appropriate corresponding C++ function before it has the

chance to access Rust memory.

We evaluate the performance overhead of Galeed per function call using mi-

crobenchmarks (fig. 6-1). We find that Galeed protections add an overhead of ∼50

cycles on average, which is consistent with prior work using MPK [65, 46].

6.2.2 libpref

Convinced that our proof-of-concept works, protects the Rust memory safety guar-

antees, and does so with an acceptable performance overhead, we implement Galeed

again within Firefox. We target the libpref module within Firefox, which is used to

parse a file to collect user preferences. We use Firefox’s own libpref module test suite

as benchmarks. We discard 5 of the tests which failed on the machine even when

running Firefox unmodified. Preliminary troubleshooting indicates that these test

failures are due to the headless mode of our server access.

Once again, we were able to show that disabling permissions at external function

callsites using Galeed is enough to force a segmentation fault. Additionally, we found

that enabling read-only permissions at these callsites is actually sufficient to allow

Firefox to run normally and to pass the suite of tests for libpref. Read-only access

is sufficient to show that Rust memory safety is not broken. Memory errors can still

45

occur with read-only access from the C++ component, but such errors are contained to

the C++ component and cannot affect the Rust component’s internal memory model.

0 20 40 60 80 100
function call (sorted by # of cycles taken)

0

1

2

3

4

5

of

 c
yc

le
s t

ak
en

1e7
original
with Galeed

(a) Cycle counts - Rust function calls

0 20 40 60 80 100
function call (sorted by overhead)

0.6

0.8

1.0

1.2

ov
er

he
ad

(b) Galeed overhead - Rust function calls

Figure 6-2: Galeed libpref benchmarks - Rust component

0 10000 20000 30000 40000 50000
function call (sorted by # of cycles taken)

0.0

0.2

0.4

0.6

0.8

1.0

of

 c
yc

le
s t

ak
en

1e8
original
with Galeed

(a) Cycle counts - all function calls

0 10000 20000 30000 40000 50000
function call (sorted by overhead)

0

1

2

3

4

5

ov
er

he
ad

(b) Galeed overhead - all function calls

Figure 6-3: Galeed libpref benchmarks - all function calls

46

We ran the test suite 1,000 times with the libpref module as written, and 1,000

times again after adding Galeed, and we compare the results here. The test suite

is written in JavaScript, with Firefox machinery allowing it to hook directly to C++

function calls. Only a subset of these C++ function calls directly call the Rust com-

ponent (the preference parser). In order to attempt an accurate comparison, we time

each function hooked by the test suite using rdtscp and report the cycle count for

each invocation of the function. We present results both specifically for the parser as

well as the overall test suite.

We find an average overhead of <1% using Galeed for the Rust component (fig. 6-

2), with an even lower average overhead in the application overall (fig. 6-3). We do

see some variance stemming from earlier mentioned constraints on our MPK machine

access, and further work is needed to confirm that this is the primary cause. Nev-

ertheless, we are confident in this assessment of the data, as it aligns with results in

prior work using MPK [65, 46].

6.3 Pseudo-pointers

In chapter 5 we augment Galeed by replacing pointers being passed across the lan-

guage boundary with pseudo-pointers, identifiers that could be be used to request in-

formation from Rust memory through function calls without needing direct memory

access. We implement a prototype that works for Rust/C++. The Rust transforma-

tions are inserted manually, but the C++ transformations are performed automatically

by a custom pass in the LLVM compiler. Due to the resource limitations on MPK

machines mentioned in the previous section, we chose to implement and benchmark

this prototype separate from the previous Galeed prototype.

We developed another proof-of-concept application very similar to section 6.2.1,

where the C++ side has a “library” of functions which took in a pointer to a Rust struct

and read from and/or wrote to that struct. We are able to show that the compiled

unit for this application had replaced all pointer dereferences and writes for the Rust

struct with the corresponding Rust function calls for that struct. Rust pointers were

never accessed from C++, while other pointers not from Rust were left unaffected.

47

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

20

30

40

50

60

70

80

of
 c

yc
le

s t
ak

en
 p

er
 o

pe
ra

tio
n

using pseudo-pointers
using pointers

(a) Single Read

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

20

30

40

50

60

70

80

of

 c
yc

le
s t

ak
en

 p
er

 o
pe

ra
tio

n

using pseudo-pointers
using pointers

(b) Single Write

1 2 3 4 5 6 7 8 9 10
of times operation was performed (x100k)

20

40

60

80

100

120

of

 c
yc

le
s t

ak
en

 p
er

 o
pe

ra
tio

n

using pseudo-pointers
using pointers

(c) Write then Read

Figure 6-4: Pseudo-pointer microbenchmarks

We evaluate the runtime performance overhead of adding these additional function

calls using microbenchmarks (fig. 6-4). We found that there is ∼3x overhead for each

individual read/write operation; however, when operations are chained the overhead

is not ∼6x as expected but instead ∼4.5x, indicating that the compiler toolchain is

inserting additional optimizations post-transformation.

48

Chapter 7

Discussion

There are a number of factors that affect the scope of our current and future work.

We discuss some of them here.

7.1 Active Rust Development

Constant changes to the Rust language and standard libraries mean that verification

of features will necessarily lag behind language development. In the past year since

we first proposed the TakeCell changes mentioned in section 3.1, the previously

discussed Cell library added new methods which RustBelt has not yet been updated

to verify. Developers seeking to only use formally verified libraries must be aware of

the time delay between language implementation and formal verification, and plan

accordingly. Some projects using Rust have pinned themselves to a specific release,

to avoid other difficulties with a constantly changing language. This strategy can be

adopted to close the gap between implementation and verification.

7.1.1 Inline Assembly

Another ongoing change in the Rust language is its handling of inline assembly via the

asm! macro. The details of this macro have not been finalized, and inline assembly

is still only available on “nightly” builds of Rust. We treat inline assembly like a

49

different language in chapter 3 because it is, with different syntax and semantics,

and is necessarily unsafe. However it is also unlike every other language that Rust

can interact with, because it does not do so through external function calls (i.e. the

Foreign Function Interface, or FFI). The assembly memory model requires knowledge

of the underlying architecture in a way that most other modern languages do not.

Some of our memory isolation principles might still apply, and we believe it would be

interesting future work to see what analysis could be done on Rust’s inline assembly

once finalized.

7.2 Tock Data Structures

Due to the similarity of TakeCell to all of the other interior mutability data structures

in Tock [62], we strongly believe that almost all of the data structures could be

rewritten using the strategies presented in chapter 3. However, we did not invest

the time in doing so. We instead recognize that rewriting interfaces in a way that

satisfies the borrow-checker, using only standard library code that has been verified,

may mean that the code is potentially more difficult and time-consuming to read or

write. We choose to leave this as a potential target for automation in future work, or

as a suggestion for expansion of the RustBelt project.

7.3 Memory Protection Keys

We rely on Intel Memory Protection Keys (MPK) to enable/disable permissions on

groups of pages, which in turns helps to enforce isolation between Rust and other

languages. MPK is a new hardware technology, and is currently only available in

the newest Skylake server CPUs. The assembly instructions used to read and adjust

MPK permissions trigger segfaults in Intel machines that do not have MPK. This

means that solutions such as ours that rely on MPK for memory safety will have to

wait at least a few years while the hardware catches up to the consumer market.

50

MPK by itself has been shown to not be a perfect solution to memory isola-

tion. The PKRU register (used to manage MPK permissions) can be written from

userspace, opening the door for a malicious agent to adjust its own permissions. This

has prompted projects such as ERIM [65], Hodor [23], and Donky [54], built on top

of MPK to strengthen the protections it provides by preventing execution of PKRU

instructions. ERIM and Hodor do this by analysing the compiled binary to find

these instructions, while Donky provides a runtime sandbox which safely controls

the PKRU. Vulnerabilities have been found in the above approaches [8], and finding

solutions to these MPK vulnerabilities will be critical in ensuring the memory safety

claims of this thesis.

7.4 libmpk

Our solution relies not only on MPK, but on the open-source project libmpk [46], a

software abstraction developed around MPK. libmpk is implemented as a C library,

and we currently rely on their heap abstractions for allocation and deallocation of

memory by calling that library in our allocator. We trust these abstractions by

necessity in our prototypes, but in future work these abstractions should be rebuilt

in Rust and optimized for performance.

One reason that these abstractions should be rebuilt is that they are currently bro-

ken. When first working with libmpk, we attempted to use it as-is. Unfortunately,

libmpk has not been maintained since its paper was published in 2019, and function

definitions needed to be updated to reflect changes in the Linux kernel. Additionally,

the heap abstractions do not work if following the calling convention mentioned in

the paper, and one cannot use both the general libmpk library and the heap abstrac-

tions at the same time. The general mpt_init() function allocates all MPK keys to

itself, to then virtualize and distribute across pages as requested. However the heap

initialization function mpk_create() does not acquire a virtual key created by the

above function, but instead tries to request a hardware MPK key directly via system

call. This request fails because mpt_init() already holds all possible hardware keys,

and the program segfaults.

51

We modified the heap abstractions to successfully initialize required data, and then

used solely these abstractions. Multiple research projects have shown that memory

allocator design has an impact on performance [12, 34, 15]. We are not experts in

memory allocation, and almost certainly introduced a performance overhead when

implementing our modifications. Future work should include an updated memory

allocator that is natively aware of MPK.

As MPK hardware becomes more prevalent going forward, we hope that more

developers will take an interest in using the technology for memory isolation. We

hope to see libmpk or an equivalent come up-to-date and address some of the current

shortcomings, to give developers software-level abstractions for these protections.

7.5 Firefox

For our mixed-language solutions, we targeted Firefox as a case study. Firefox has a

large codebase written in C++, that is slowly being migrated to Rust. Memory safety

is cited as one of the main reasons for the switch, which makes it an exceptionally apt

target for us as we consider how to preserve Rust memory safety. However, working

with such a large multi-language codebase brings complications.

One of the largest barriers to progress when working with Firefox has been their

build system infrastructure. Large amounts of code are automatically generated from

configuration files, which themselves are written in different custom languages. This

makes it difficult to manually insert small adjustments along the process, including:

linking external libraries (e.g. libmpk), enabling LLVM settings on certain files (e.g.

enabling our pseudo-pointer transformation), or just manually inserting sanity checks

during development. These challenges are common to most large codebases.

7.6 Prototypes

In chapters 4 and 5, we made multiple choices to bound the scope of our prototypes.

Here we discuss these decisions, and some of the work needed to push these prototypes

to production-readiness.

52

7.6.1 Performance

In our prototypes, we intentionally focused on preserving memory safety first, some-

times to the detriment of performance. In the Galeed prototype, we rely on the

unoptimized libmpk library for our memory allocation and deallocation steps. In the

pseudo-pointer prototype, we replace C++ pointer access with external function calls,

performing this step before either compiler has a chance to potentially optimize some

of these accesses away. And in both prototypes, we made no attempts to allow for

LLVM’s cross-language link time optimization (LTO).

A high performance overhead is a barrier to industrial acceptance. For many

applications, the current overhead of our pseudo-pointer implementation is simply

unacceptable. We do believe that much of this overhead can be optimized away, and

all of these potential optimization targets should be investigated.

7.6.2 Automation

In chapters 4 and 5 we make multiple attempts to call out opportunities for automa-

tion, with the end goal being a fully automated compiler process that requires little

to no developer input. We have already achieved this on the C++ end with the LLVM

pass that automatically replaces Rust struct pointers with pseudo-pointers and in-

serts the correct function calls, but many opportunities are still available on the Rust

side.

Automation reduces the developer burden, which in turn also increases the likeli-

hood of widespread acceptance. It also reduces the opportunities for developer errors

like forgetting to insert permissions switching at a call site, further strengthening our

safety claims.

7.6.3 Type Support

In our pseudo-pointers prototype, we currently support flat user-defined structs. This

covers a large amount of use cases, but must be expanded to accomodate current

Rust/C++ interactions. For example, right now we do not support strings, which is

53

a large portion of the use cases in the parsing modules that Firefox has migrated to

Rust so far. To promote adoption, we should be able to handle most if not all of the

current types of pointers flowing across the language boundary.

7.6.4 Source Code Dependence

Our prototypes all currently depend on having access to the original source code

for Rust, and at minimum the LLVM bytecode for C++. We believe this is a valid

model to consider, as most projects have all of the source code for both Rust and C++

available at compile time.

54

Chapter 8

Related Work

Below we discuss works related to our project in 3 major areas: formal reasoning about

Rust (chapter 3), code/memory isolation (chapter 4), and program transformations

for safety (chapter 5).

8.1 Formal Reasoning about Rust

Our work relies heavily on the inherent memory safety guarantees of the Rust lan-

guage. Attempts to formalize and prove these guarantees began with Patina [49]

in 2015, though the work built upon decades of prior PL theory. Patina formal-

ized a small model of Rust which did not account for unsafe, and so the RustBelt

project [26, 10] built another formalization of a realistic subset of Rust. RustBelt

used the Iris framework for concurrent separation logic [28] to prove memory safety

properties. RustBelt went even further and also verified some standard libraries

which contained unsafe. CRUST [64] also verified memory safety properties of un-

safe library code by translating Rust into C code then performing bounded model

checking. While limited, this approach did prove to be able to find memory errors in

Rust standard libraries.

There is also a body of work around verification of assembly code, which is one

of the uses of unsafe that we leave for future work. The Vale line of work [4, 18]

presents a language and framework for proving properties of assembly programs and

55

even automating those proofs. TINA [48] automatically lifts inline assembly within C

code to semantically equivalent C code, easing the burden of analysis and verification

tools.

Static analysis tools have also been built on top of Rust to preserve properties be-

yond memory safety, including the information control flow work by Balasubramanian

et al. in 2017 [3].

8.2 Isolation

There have been many research efforts into efficient and effective isolation at both

the software and hardware levels.

Many software isolation techniques rely on sandboxing untrusted code [66]. Na-

tive Client [69] specifically provides this sandboxing for untrusted browser-based ap-

plications, while Vx32 [17] allows native applications to sandbox untrusted plug-ins.

Sandcrust [30] targets the same domain as our work: applications that mix Rust and

C. Sandcrust offers protection by moving unsafe C code to execute in a new sand-

boxed process in a different addres space, and using remote procedure calls (RPC) to

communicate between the two languages. Our solution uses the Rust foreign function

interface (FFI) instead which allows for lower overhead.

Many hardware-based isolation techniques rely on additional metadata/tags on

pointers and/or memory locations [13]. CHERI [68] is an extension to the RISC ar-

chitecture that allows for fine-grained capability checking against a pre-defined mem-

ory model, which was demonstrated to be able to provide compartmentalization [67].

The Dover processor [59] uses PUMP [14, 11] infrastructure to provide programmable

metadata that is kept completely separate and inaccessible from application data at

a hardware level. Policies can be implemented to ensure a variety of properties,

including safe MMIO interactions [24].

Multiple compartmentalization projects have been built on top of Intel’s Memory

Protection Keys (MPK) [25] technology [65, 23, 54], and libmpk [46] is a software

abstraction around MPK, meant to provide easier developer access. MPK has been

shown to have vulnerabilities that these projects do not prevent [8].

56

8.3 Compile-time Transformations

The current widely-used solution for FFI between Rust and C++ is a project called

CXX [63]. CXX claims to be able to statically analyze both sides of a Rust/C++

boundary, where the Rust code is written entirely in safe Rust using references and

obeying borrow-checking rules, and then emit equivalent unsafe Rust code working

directly with pointers. This code is what is ultimately compiled into the final applica-

tion. Our project takes many cues from CXX, but ultimately felt the need to rebuild

much of our machinery from scratch. We were not comfortable emitting unsafe Rust

code and still claiming memory safety, and could not find a way to validate their

static analysis claims.

Other projects have also used compile-time transformations to strengthen safety.

AddressSanitizer [55] automatically inserts code instrumentation that, when coupled

with their runtime library, is able to detect memory safety violations in C programs.

SoftBound [40] automatically transforms C code to also record bounds metadata

on pointers, and to check/update this metadata when loading or storing pointers.

CCured [42] extends C’s type system to include pointer usage information. It uses this

information to statically verify that memory errors cannot occur, and automatically

inserts runtime checks in places where static analysis fails.

57

58

Chapter 9

Conclusion

The Rust programming language offers a combination of performance and memory

safety guarantees which is increasingly drawing developers to use it, but unsafe in

Rust can undermine claims to memory safety. In this thesis, we have shown that

we can still preserve memory safety guarantees in the presence of unsafe, in both

Rust-only and mixed-language applications.

We advocate for the refactoring of unsafe Rust in Rust-only applications into safe

equivalents, showing that Rust compiler optimizations are intelligent enough to avoid

introducing a performance cost. In situations where unsafe represents an otherwise

unavoidable compiler restriction, we rely on the increasing power of formal methods

tools such as RustBelt to help developers verify memory safety.

We also present Galeed, designed to preserve Rust memory safety in mixed-

language applications. We demonstrate that MPK can be used to isolate and protect

Rust memory from other languages within the same application, and then present an

interface for these other languages to still request access to memory, but in a way that

is ultimately still guarded by Rust’s memory model. We present initial prototypes

for Galeed, automation work in support of both of these prototypes, and potential

directions for future improvements on the path to widespread adoption of these safety

tools.

59

60

Bibliography

[1] New American Standard Bible. The Lockman Foundation, 1995.

[2] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. 4control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) (2009).

[3] Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A.,
Rakamarić, Z., and Ryzhyk, L. System programming in Rust: Beyond
safety. In Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS) (2017).

[4] Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K. R. M., Lorch,
J. R., Parno, B., Rane, A., Setty, S., and Thompson, L. Vale: Verify-
ing high-performance cryptographic assembly code. In 26th USENIX Security
Symposium (USENIX Security 17) (2017).

[5] Burch, A. Using Rust in Windows. https://msrc-blog.microsoft.com/
2019/11/07/using-rust-in-windows, 2019.

[6] Center for Internet Security. Multiple vulnerabilities in
Google Android OS could allow for arbitrary code execution. https:
//www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-
android-os-could-allow-for-arbitrary-code-execution_2019-088, 2019.

[7] Cimpanu, C. A Rust-based TLS library outperformed OpenSSL in almost ev-
ery category. https://www.zdnet.com/article/a-rust-based-tls-library-
outperformed-openssl-in-almost-every-category, 2019.

[8] Connor, R. J., McDaniel, T., Smith, J. M., and Schuchard, M. PKU
pitfalls: Attacks on PKU-based memory isolation systems. In 29th USENIX
Security Symposium (USENIX Security 20) (2020).

[9] Criswell, J., Geoffray, N., and Adve, V. S. Memory safety for low-level
software/hardware interactions. In USENIX Security Symposium (2009).

[10] Dang, H.-H., Jourdan, J.-H., Kaiser, J.-O., and Dreyer, D. RustBelt
meets relaxed memory. Proceedings of the ACM on Programming Languages
(POPL) (2019).

61

https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows
https://msrc-blog.microsoft.com/2019/11/07/using-rust-in-windows
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-android-os-could-allow-for-arbitrary-code-execution_2019-088
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-android-os-could-allow-for-arbitrary-code-execution_2019-088
https://www.cisecurity.org/advisory/multiple-vulnerabilities-in-google-android-os-could-allow-for-arbitrary-code-execution_2019-088
https://www.zdnet.com/article/a-rust-based-tls-library-outperformed-openssl-in-almost-every-category
https://www.zdnet.com/article/a-rust-based-tls-library-outperformed-openssl-in-almost-every-category

[11] De Amorim, A. A., Dénès, M., Giannarakis, N., Hritcu, C., Pierce,
B. C., Spector-Zabusky, A., and Tolmach, A. Micro-policies: Formally
verified, tag-based security monitors. In 2015 IEEE Symposium on Security and
Privacy (2015).

[12] Detlefs, D., Dosser, A., and Zorn, B. Memory allocation costs in large C
and C++ programs. Software: Practice and Experience (1994).

[13] Devietti, J., Blundell, C., Martin, M. M., and Zdancewic, S. Hard-
Bound: Architectural support for spatial safety of the C programming language.
ACM SIGOPS Operating Systems Review (2008).

[14] Dhawan, U., Vasilakis, N., Rubin, R., Chiricescu, S., Smith, J. M.,
Knight Jr, T. F., Pierce, B. C., and DeHon, A. PUMP: A programmable
unit for metadata processing. In Proceedings of the Third Workshop on Hardware
and Architectural Support for Security and Privacy (HASP) (2014).

[15] Durner, D., Leis, V., and Neumann, T. On the impact of memory allocation
on high-performance query processing. In Proceedings of the 15th International
Workshop on Data Management on New Hardware (DaMoN) (2019).

[16] Filho, W. A. Rust in the Linux kernel - Google security blog. https://
security.googleblog.com/2021/04/rust-in-linux-kernel.html, 2021.

[17] Ford, B., and Cox, R. Vx32: Lightweight, user-level sandboxing on the x86.
In USENIX Annual Technical Conference (2008).

[18] Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi,
A., and Swamy, N. A verified, efficient embedding of a verifiable assembly
language. Proceedings of the ACM on Programming Languages (POPL) (2019).

[19] Godbolt, M., et al. Compiler Explorer. https://godbolt.org/.

[20] Google. Chromium. https://www.chromium.org/Home.

[21] Google. Google Chrome. https://www.google.com/chrome.

[22] Google. Memory safety - the Chromium projects. https://www.chromium.
org/Home/chromium-security/memory-safety. Accessed on 2021-05-14.

[23] Hedayati, M., Gravani, S., Johnson, E., Criswell, J., Scott, M. L.,
Shen, K., and Marty, M. Hodor: Intra-process isolation for high-throughput
data plane libraries. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19) (2019).

[24] Huang, A. Software defined memory ownership system. Master’s thesis, Mas-
sachusetts Institute of Technology, 2020.

[25] Intel. Intel®64 and IA-32 architectures software developer’s manual, 2021.

62

https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html
https://godbolt.org/
https://www.chromium.org/Home
https://www.google.com/chrome
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

[26] Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. RustBelt:
Securing the foundations of the Rust programming language. Proceedings of the
ACM on Programming Languages (POPL) (2017).

[27] Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. Safe systems
programming in Rust: The promise and the challenge. Communications of the
ACM (2020).

[28] Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A.,
Birkedal, L., and Dreyer, D. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. ACM SIGPLAN Notices (2015).

[29] Kuvaiskii, D., Oleksenko, O., Arnautov, S., Trach, B., Bhatotia,
P., Felber, P., and Fetzer, C. SGXBOUNDS: Memory safety for shielded
execution. In Proceedings of the Twelfth European Conference on Computer
Systems (EuroSys) (2017).

[30] Lamowski, B., Weinhold, C., Lackorzynski, A., and Härtig, H. Sand-
crust: Automatic sandboxing of unsafe components in Rust. In Proceedings of
the 9th Workshop on Programming Languages and Operating Systems (PLOS)
(2017).

[31] Levick, R. Why Rust for safe systems programming. https://msrc-blog.
microsoft.com/2019/07/22/why-rust-for-safe-systems-programming,
2019.

[32] Levy, A., Campbell, B., Ghena, B., Giffin, D. B., Pannuto, P., Dutta,
P., and Levis, P. Multiprogramming a 64kB computer safely and efficiently.
In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP)
(2017).

[33] Linux Kernel Organization. The Linux kernel archives. https://www.
kernel.org.

[34] Manghwani, R., and He, T. Scalable memory allocation. https://
locklessinc.com/downloads/Preso05-MemAlloc.pdf, 2011.

[35] Microsoft. Lesson 2 - Windows NT system overview. https://docs.
microsoft.com/en-us/previous-versions//cc767881(v=technet.10),
2014.

[36] Miller, M. Trends, challenges, and strategic shifts in the soft-
ware vulnerability mitigation landscape. https://github.com/
microsoft/MSRC-Security-Research/blob/master/presentations/
2019_02_BlueHatIL/2019_01-BlueHatIL-Trends,challenge,
andshiftsinsoftwarevulnerabilitymitigation.pdf, 2019.

[37] Milner, R. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences (1978).

63

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming
https://www.kernel.org
https://www.kernel.org
https://locklessinc.com/downloads/Preso05-MemAlloc.pdf
https://locklessinc.com/downloads/Preso05-MemAlloc.pdf
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions//cc767881(v=technet.10)
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01 - BlueHatIL - Trends, challenge, and shifts in software vulnerability mitigation.pdf

[38] Mozilla Foundation. Firefox. https://www.mozilla.org/en-US/firefox.

[39] Mozilla Foundation. Oxidation. https://wiki.mozilla.org/Oxidation.
Accessed on 2021-05-14.

[40] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Soft-
Bound: Highly compatible and complete spatial memory safety for C. In Proceed-
ings of the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (2009).

[41] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. CETS:
Compiler-enforced temporal safety for C. In Proceedings of the 2010 International
Symposium on Memory Management (ISMM) (2010).

[42] Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer,
W. CCured: Type-safe retrofitting of legacy software. ACM Transactions on
Programming Languages and Systems (TOPLAS) (2005).

[43] Newsham, T. Format string attacks. http://hackerproof.org/technotes/
format/formatstring.pdf, 2001.

[44] One, A. Smashing the stack for fun and profit. Phrack magazine (1996).

[45] Papaevripides, M., and Athanasopoulos, E. Exploiting mixed binaries.
ACM Transactions on Privacy and Security (TOPS) (2021).

[46] Park, S., Lee, S., Xu, W., Moon, H., and Kim, T. libmpk: Software
abstraction for Intel Memory Protection Keys (Intel MPK). In 2019 USENIX
Annual Technical Conference (USENIX ATC 19) (2019).

[47] Python Software Foundation. The Python programming language.
https://github.com/python/cpython.

[48] Recoules, F., Bardin, S., Bonichon, R., Mounier, L., and Potet,
M.-L. Get rid of inline assembly through verification-oriented lifting. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering
(ASE) (2019).

[49] Reed, E. Patina: A formalization of the Rust programming language. University
of Washington, Department of Computer Science and Engineering, Tech. Rep.
UW-CSE-15-03-02 (2015).

[50] Rivera, E. Preserving memory safety in safe Rust during interactions with un-
safe languages–source code appendix. https://github.com/eerivera/rivera-
meng-appendix.

[51] Rust Foundation. Meet safe and unsafe - the Rustonomicon. https://doc.
rust-lang.org/nomicon/meet-safe-and-unsafe.html. Accessed on 2021-05-
14.

64

https://www.mozilla.org/en-US/firefox
https://wiki.mozilla.org/Oxidation
http://hackerproof.org/technotes/format/formatstring.pdf
http://hackerproof.org/technotes/format/formatstring.pdf
https://github.com/python/cpython
https://github.com/eerivera/rivera-meng-appendix
https://github.com/eerivera/rivera-meng-appendix
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html

[52] Rust Foundation. Rust programming language. https://www.rust-lang.
org.

[53] Rust Foundation. What is ownership? - the Rust programming language.
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html. Ac-
cessed on 2021-05-14.

[54] Schrammel, D., Weiser, S., Steinegger, S., Schwarzl, M., Schwarz,
M., Mangard, S., and Gruss, D. Donky: Domain keys–efficient in-process
isolation for RISC-V and x86. In 29th USENIX Security Symposium (USENIX
Security 20) (2020).

[55] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. Ad-
dressSanitizer: A fast address sanity checker. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12) (2012).

[56] Seyster, J., Radhakrishnan, P., Katoch, S., Duggal, A., Stoller,
S. D., and Zadok, E. Redflag: A framework for analysis of kernel-level concur-
rency. In International Conference on Algorithms and Architectures for Parallel
Processing (2011).

[57] Shacham, H., et al. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In ACM conference on Computer
and communications security (CCS) (2007).

[58] Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S.,
Larsen, P., and Franz, M. SoK: Sanitizing for security. In 2019 IEEE
Symposium on Security and Privacy (SP) (2019).

[59] Sullivan, G. T., DeHon, A., Milburn, S., Boling, E., Ciaffi, M.,
Rosenberg, J., and Sutherland, A. The Dover inherently secure processor.
In 2017 IEEE International Symposium on Technologies for Homeland Security
(HST) (2017).

[60] Szekeres, L., Payer, M., Wei, T., and Song, D. SoK: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy (2013).

[61] The Computer Language Benchmarks Game. Rust vs C gcc fastest pro-
grams. https://benchmarksgame-team.pages.debian.net/benchmarksgame/
fastest/rust.html. Accessed on 2021-05-14.

[62] Tock Project Developers. Mutable references in Tock - memory contain-
ers (Cells). https://github.com/tock/tock/blob/master/doc/Mutable_
References.md. Accessed on 2021-05-14.

[63] Tolnay, D. CXX - safe interop between Rust and C++. https://cxx.rs.

65

https://www.rust-lang.org
https://www.rust-lang.org
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust.html
https://github.com/tock/tock/blob/master/doc/Mutable_References.md
https://github.com/tock/tock/blob/master/doc/Mutable_References.md
https://cxx.rs

[64] Toman, J., Pernsteiner, S., and Torlak, E. CRUST: A bounded verifier
for Rust. In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2015).

[65] Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N. O., Sammler,
M., Druschel, P., and Garg, D. ERIM: Secure, efficient in-process isolation
with protection keys (MPK). In 28th USENIX Security Symposium (USENIX
Security 19) (2019).

[66] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM symposium
on Operating systems principles (1993).

[67] Watson, R. N., Woodruff, J., Neumann, P. G., Moore, S. W., An-
derson, J., Chisnall, D., Dave, N., Davis, B., Gudka, K., Laurie,
B., et al. CHERI: A hybrid capability-system architecture for scalable soft-
ware compartmentalization. In 2015 IEEE Symposium on Security and Privacy
(2015).

[68] Woodruff, J., Watson, R. N., Chisnall, D., Moore, S. W., Anderson,
J., Davis, B., Laurie, B., Neumann, P. G., Norton, R., and Roe, M. The
CHERI capability model: Revisiting RISC in an age of risk. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA) (2014).

[69] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T.,
Okasaka, S., Narula, N., and Fullagar, N. Native Client: A sandbox for
portable, untrusted x86 native code. In 2009 30th IEEE Symposium on Security
and Privacy (2009).

66

	Introduction
	Background & Threat Model
	Rust
	MPK
	Threat Model

	Managing Internal Unsafety
	Data Structures and Interior Mutability
	Refactoring Out unsafe
	Summary

	Galeed for Heap Isolation
	Design
	Heap Splitting
	Access Policy

	Implementation
	Initial Allocation
	Access

	Summary

	Pseudo-pointers
	Design
	Pseudo-pointer Properties
	Rust API
	External Function Transformation

	Implementation
	Pseudo-pointers
	Rust API
	External Function Transformation

	Summary

	Benchmarks
	Refactoring Unsafe Rust
	Galeed for Heap Isolation
	Proof-of-concept
	libpref

	Pseudo-pointers

	Discussion
	Active Rust Development
	Inline Assembly

	Tock Data Structures
	Memory Protection Keys
	libmpk
	Firefox
	Prototypes
	Performance
	Automation
	Type Support
	Source Code Dependence

	Related Work
	Formal Reasoning about Rust
	Isolation
	Compile-time Transformations

	Conclusion

