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Executive Summary 

A systematic literature review was conducted to examine the current literature (published 
between 2010 and 2021) surrounding the use of physiological measures to identify operator’s 
cognitive state. The operator states of interest were those that pose significant risks to Army 
aviators, specifically, workload, fatigue, inattention, stress, and hypoxia. Additionally, studies 
that took place in applied and / or mobile contexts were sought in order to ensure the greatest 
likelihood of operationally relevant work. From this review, thirty-two eligible studies were 
identified. From these studies, it was determined that workload, fatigue, and inattention show the 
greatest promise for detection through physiological metrics. However, this is in part due to the 
number of studies available for review. For instance, only one study was eligible where hypoxia 
was the cognitive state of interest. Additionally, based on the papers reviewed, 
electroencephalogram (EEG) and eye metrics appear the most promising metrics for identifying 
these various operator cognitive states. Further work, however, is needed to validate some of 
these measures within true operational contexts. Specifically, based on the literature to-date, it is 
unknown how well some of these measures would hold up in a rotary-wing environment, where 
the sensors would be exposed to vibrations and extreme temperatures. Also, many of the sample 
sizes were small. Further work is also needed to determine whether the findings from these 
papers generalize to a larger population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

This page is intentionally blank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

Acknowledgements 

This research was supported in part by an appointment to the Research Participation 
Program at the U.S. Army Aeromedical Research Laboratory administered by the Oak Ridge 
Institute for Science and Education through an interagency agreement between the U.S. 
Department of Energy and the U.S. Army Medical Research and Development Command. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

This page is intentionally blank. 

 



vii 

Table of Contents 

Page 
Executive Summary ....................................................................................................................... iii 
Acknowledgements ..........................................................................................................................v 
Introduction ......................................................................................................................................1 
Methods............................................................................................................................................2 

Eligibility.. ...........................................................................................................................2 
Procedure.. ...........................................................................................................................3 

Results ..............................................................................................................................................5 
Workload…..........................................................................................................................5 
Fatigue……………………………………………………………………………………11 
Inattention/distraction/vigilance ........................................................................................15 
Stress/Overload ..................................................................................................................19 
Hypoxia…………………………………………………………………………………..22 

Discussion ......................................................................................................................................25 
Conclusion .....................................................................................................................................28 
References ......................................................................................................................................29 
 
List of Tables 

1. Keywords Used in Literature Search ...........................................................................................2 
2. Inclusion and Exclusion Criteria ..................................................................................................3 
3. Literature Search and Review Results .........................................................................................4 
4.Overview of Study Characteristics by Cognitive States ...............................................................5 
5. Summary of Workload Studies ....................................................................................................7 
6. Fatigue (Includes Drowsiness/Alertness) ..................................................................................13 
7. Inattention/Distraction/Vigilance ...............................................................................................17 
8. Stress/Overload ..........................................................................................................................21 
9. Hypoxia ......................................................................................................................................25 
 

 

 

 

 

 

 

 

 



viii 

This page is intentionally blank. 

 



1 

Introduction 

Operator state monitoring of Army aviators is an ongoing research area within the U.S. 
Army Aeromedical Research Laboratory (USAARL). The goal of this line of research is to 
identify physiological markers that can be used to identify an aviator’s cognitive state in real-
time. Much of the research to-date has focused on identifying operator workload, specifically 
when a state of overload is reached (e.g., Feltman et al., 2020; Aura et al., 2021). However, other 
states have also been explored, such as vigilance (e.g., Kelley et al., 2020) and hypoxia (e.g., 
Temme et al., 2016). Within these studies, the physiological measures used to correlate with 
cognitive state included electroencephalograph (EEG), electrocardiograph (ECG), 
electrooculography (EOG), eye tracking, pulse oximetry (SpO2), and respiration. These 
measures have been chosen and used within USAARL studies due to their association with these 
cognitive states, as well as the ease of use within the flight simulator environment (e.g., wireless 
connectivity, integration with other equipment). However, recent years have seen an influx of 
research conducted on this topic, particularly research conducted within similar settings. These 
settings include a variety of flight and driving simulators, ambulatory studies, and even real 
driving and flight. Additionally, researchers are using a variety of physiological measures to 
capture varying operator states. Indeed, multiple recent reviews summarizing many of these 
topics are available, with the majority focused specifically on mental workload (e.g., Weelden et 
al., 2022; Charles & Nixon, 2019; Tao et al., 2019; Pagnotta et al., 2022).  

Missing in the current literature, however, is a review of which physiological measures have 
demonstrated promise in identifying a range of operator cognitive states of interest to 
USAARL’s research program. Such cognitive states that Army aviators are and will likely be 
prone to experiencing within current and future aircraft include but are not limited to mental 
workload (overload and underload), physiological and cognitive fatigue, distraction and / or 
inattention, and the need to maintain vigilance. Cognitive states included in this review such as 
hypoxia and stress are frequently considered physiological states, while fatigue can be 
interpreted from both a cognitive and physiological perspective. Due to the shared effects on 
operator performance, these types of physiological states and other traditional cognitive states 
were grouped together and referred to as operator states and/or cognitive states for the purposes 
of this review. In addition, which types of settings (e.g., driving simulator, real flight) these 
measures have been evaluated within is oftentimes overlooked in reviews. In order to identify 
which operator states have shown the most promise of identification through physiological 
measures, and which physiological measures hold promise for integration within the flight 
environment, a systematic literature review was conducted. The objective of this review was to 
identify the types of psychophysiological metrics that most reliably detect changes to operator 
state and use that information to determine sensor types to pursue for evaluation within 
USAARL’s operator state monitoring research program. 
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Methods 

Literature searches were conducted using Google Scholar, PubMed, and EBSCO. The use 
of Google Scholar aimed to capture “grey literature,” such as proceedings papers, in order to 
have a more expansive search. Keywords used for literature searches included physiological 
terms (electrocardiogram, functional near infrared spectroscopy [fNIRS], etc.) and operator 
states such as workload, stress, and fatigue. Table 1 lists the search terms used. Due to 
inconsistencies of terminology across multiple scientific fields, additional terms were introduced 
to help limit the search results. The inclusion of grey literature from Google Scholar further 
contributed to inconsistencies with terminology.  

Table 1. Keywords Used in Literature Search 
Physiology Terms Operator States Additional Terms  

Physiological indices Workload Operator state 
monitoring 

Sensors Underload  Cognitive state 
monitoring 

Physiology  Overload State monitoring 
Psychophysiology  Fatigue Real-time monitoring 
Pulse measurement Distraction  
Blood pressure Inattention  
Respiration Vigilance  
Eye tracking Engagement   
Pupillometry Stress  
Electrooculogram Cognitive state  
Electrocardiogram Mind-wandering  
Heart rate Boredom  
Heart rate variability   
Electroencephalograph   
fNIRS   

Eligibility  

To be included in the systematic review, studies needed to meet the following criteria: an 
experimental design with manipulation of a cognitive state, must have had a sample between the 
age range of 18-50, in a mobile context (i.e., aircraft, driving simulator), and of a healthy non-
abnormal population. Exclusion criteria included studies using a non-mobile context (i.e., 
desktop simulator), non-English language, unhealthy or abnormal population, sample under the 
age of 18 or over the age of 50, or non-experimental design papers. Inclusion and exclusion 
criteria are summarized in Table 2. 
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Table 2. Inclusion and Exclusion Criteria 
Criteria Included Excluded 

Date 
Published 

2010 - 2021 Any prior to 2010 

Language English Language  Non-English Language 
Test 

Population 
Age: 18 - 50 years Age: under 18 years and above 

50 years 
 Race: Any Race: None 
 Gender: Males and 

Females 
Gender: None 

 Healthy Unhealthy or abnormal  
 Nationality: Any Nationality: None 

Study 
Design 

Peer-reviewed articles, 
proceedings papers, 
conference papers, 

technical reports with 
experimental designs 

Non-experimental designs, 
review papers (meta-analyses), 

descriptive or case studies; 
theoretical or position papers, 

editorials, book reviews 
Study 

Context 
Mobile context (flying, 

driving, simulators) 
*Non-mobile context (desktop 

simulators) 
Note. Approximately four non-mobile context articles were included 
due to similarity of study content. 

 

Procedure 

A research team located potentially relevant studies using search criteria above            
(see Table 1). The team then reviewed titles and abstracts for each search result to deem pre-
eligibility, and then requested full-text versions of potentially relevant articles. Following the 
first screening, articles were then reviewed by multiple team members for eligibility. The initial 
search results included 8586 of items, followed by the removal of 2229 duplicate citations. 
Approximately 5230 of articles or papers were deemed ineligible by title and abstract. An 
additional 1037 results were judged to irrelevant or ineligible by abstract. A total of 90 full-text 
articles were retrieved for a full review of eligibility by multiple team members. The final 
number of included articles for this report was 32. Table 3 shows the literature search and review 
results. 
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Table 3. Literature Search and Review Results 
Search results  
(January 2022) 

8586 

Duplicated citations 2229 
Judged irrelevant or 

ineligible by title 
5230 

Judged irrelevant or 
ineligible by abstract 

1037 

Full-text articles retrieved 90 

Included studies 32 

 
Data extracted from each of the 32 studies included target population, study location, 

cognitive state manipulation, mobile context details, study outcomes and tasks, use of 
physiological equipment, data analysis, and the overall study quality such as clarity of 
descriptions of methods and results sections, as well as transparency of analyses. Microsoft 
Excel spreadsheets were used to organize extracted study information.  

 
Of special note, one study (Huang et al., 2016) was removed from the final report. This 

study evaluated a closed-loop EEG system where fatigue was monitored via EEG and an 
auditory alert was delivered when fatigue was detected. Although very similar to the goals of this 
report, Huang et al.’s article focused on evaluating the efficacy of the alerting system. Thus, it 
was excluded from the report, but deserves a special note. 
 
 
 
 
 
 
 
 
 
 
 

This space is intentionally blank.  



5 

Results 

Extracted data were summarized and evaluated for general themes. Of the 32 eligible 
pieces of literature, the majority examined workload (16) (three of which were within non-
mobile contexts), followed by fatigue (8), inattention/distraction (4), and stress/overload (3) and 
one non-mobile context looking at hypoxia (Rice et al., 2019). Table 4 summarizes the overall 
characteristics of studies for each cognitive state, while the following sections describe the 
physiological measures used.  

Table 4.Overview of Study Characteristics by Cognitive States 
  Workload 

(n = 16) 

Fatigue / 
Drowsiness 

(n = 8) 

Inattention / 
Distraction 

(n = 4) 

Stress / 
Overload 
(n = 3) 

Hypoxia 
(n = 1) 

Text 
Category 

Peer Review 14 8 4 3 1 
Non-Peer Review 2 - - - - 

Subject 
Population 

University Students 6 - - - - 
Military Personnel 2 - - 3 1 

Other/Unclear 9 8 4 - - 

Study 
Context 

Simulator (i.e., vehicle, 
airframe) 11 8 3 - - 

Real Vehicle / Airframe 1 - - - - 
Non-Vehicle Mobile          

(i.e., walking) 1 - 1 3 - 

Non-Mobile Context 3 - - - 1 
Note. Non-peer reviewed texts included proceedings/conference papers (4) and technical reports (1). 
 

The majority of articles measured these cognitive states using EEG (17 total), followed 
by ECG/heart monitoring (14 total), and then EOG/eye tracking technology (9 total). Additional 
physiological metrics included across studies were fNIRS, Galvanic skin response 
(GSR)/electrodermal activity (EDA)/skin conductance, respiration rate, salivary amylase levels, 
blood pressure, blood glucose/blood lactate, and blood oxygen. Detailed results are reported by 
cognitive state within the following sections. The vast majority of studies used fixed-based 
simulators with only seven using motion-based or real vehicle monitoring. 

Workload 

A total of 16 included articles measured workload. Of the 16, three used non-mobile 
contexts but were included due to the similarities in study inclusion criteria (e.g., real-time 
workload monitoring). Seven of the 16 studies used EEG, nine used ECG/heart monitoring, four 
used eye tracking, two used skin conductance, two used respiration, and one used fNIRS. The   
n-back task was commonly used to manipulate workload conditions as a secondary task, and 
those studies used both visual and auditory versions (Unni et al., 2017; Tarabay & Abou-Zeid, 
2018; Yang et al., 2021). The n-back task was typically used in motor vehicle simulator studies, 
which accounted for approximately half of the total number of studies assessing workload. Other 
commonly used manipulations for workload included varying amounts of traffic density, visual 
conditions such as fog, and external distractions such as music (Blonco et al., 2018; Heikoop et 
al., 2017; Stuiver et al., 2014). 
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The remaining studies consisted of flight simulation, and typically used varying flight 
maneuvers to manipulate workload conditions or used changes in flight conditions such as day 
vs. night and weather, which included limited visibility vs. clear skies (Feltman et al., 2020; Feng 
et al., 2018). Three studies used air traffic control simulators (Bernhardt et al., 2019; Arico et al., 
2016; Raduntz et al., 2020). Two studies included real flight. One was in a fixed-wing aircraft 
(Wilson et al., 2021), and the second used real-life helicopter air rescue scenarios (Schoniger et 
al., 2020). 

Only two (Blonco et al., 2018; Wilson et al., 2021) of the 16 studies developed and 
evaluated the performance of classifiers. Both used only EEG inputs for the classifiers and 
reported up to 100% accuracies in identifying workload conditions. The remaining studies 
evaluated whether the physiological measures significantly differed between workload 
conditions. While three studies (Feng et al., 2018; Unni et al., 2017; Feltman et al., 2021) also 
investigated the relationships between physiological measures and performance and / or 
subjective measures. Table 5 below summarizes all workload studies. 

This space is intentionally blank. 
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Table 5. Summary of Workload Studies 

Reference Device Description  Task Used to Induce 
Workload 

n (Gender), 
Age         

(range or 
M[SD]) 

Physiological Outcome 
Measures Method of Analysis Outcomes 

Blonco et al. 
(2018) 

Flight Simulator 
(Prepar 3D v1.4, 
Lockheed Martin 

Coporation) 

Flight task with 
degraded weather 

21 (21M),    
19-23 yrs 

EEG with 13 classifiers with 
features extracted from four 

sites: Fz, FCz, Cz, Pz 

Evaluated performance of 
classifiers 

Classification accuracies ranged from 
45.91% to 100% 

       

Tarabay & 
Abou-Zeid 

(2018) 

DriveSafety DS-600c 
simulator               

(full Ford cab) 

Urban road situations 
(pedestrians, sudden 
stops, traffic lights) 

with auditory             
n-back task 

80 (53M),    
age not 
reported 

 

Heart rate via ECG 
(average, SD, min/max) 

Skin Conductance (average, 
SD, min/max) 

Wilcoxon Signed-Ranks 
test compaing physiological 

measures and task 
performance between 

conditions 

Significant differences between 
treatment and condition phase for 

min/max heart rate and skin 
conductance levels indicating higher 

workload with n-back task 

       

Liu et al. 
(2020) 

Fixed-based flight 
simulator 

Embedded secondary 
task on flight dispalys 

21 (19M),   
20.6 yrs 

 

Eye tracking (blink 
frequency, mean gaze time) RM ANOVAs  comparing 

phases of flight 

Blink frequency differed between 
take off and straight phase and 

between turns. Average gaze time 
had main effect of display and flight 

phase 

       

Wilson et al. 
(2021) 

Real aircraft         
(four-seat, single 

engine) 

Directed flight 
maneuvers 

10, gender and 
age not 
reported 

EEG (Delta [1-4 Hz], Theta 
[4-8 Hz], Alpha [8-13 Hz], 

Beta [13-30 Hz]) 

Classified high and low 
workload based on SVM 

classifier with 5-fold cross-
validation 

SVM classifier had 100% precision 

       

Heikoop et al. 
(2017) 

Southampton 
University fixed-based 

driving simulator 
Jaguar XJ Saloon 

Monotonous 
automated driving vs. 

voluntary reading, 
listening to music, 
etc., vs. detecting 

number of red cars 
during session 

22 (14M),     
19-45 yrs      
(M = 29.6,    
SD = 6.8) 

 

ECG (heart rate, heart rate 
variability, SDNN, LF/HF) 

 
Eye tracking (PERCLOS) 

RM ANOVAs compared 
physiological variables 

among three driving 
conditions 

LF/HF ratios were lower in the 
voluntary task compared to the 

detection task 

       

Feng et al.  
(2018)* 

Flying rocker 
simulator with HUD 

No manipulation, 
looked at naturally 
occurring workload 

11 (11M),   
20.6 yrs 

Eye tracking (fixation 
frequency and average time, 

mean saccade time, blink 
rate and mean, pupil 

RM ANOVA (3 flight 
phases); Pearson 
correlations of 

Main effect of workload on 
physiological measures: 

 



8 

Reference Device Description  Task Used to Induce 
Workload 

n (Gender), 
Age         

(range or 
M[SD]) 

Physiological Outcome 
Measures Method of Analysis Outcomes 

throughout phases of 
flight  

diameter) 

ECG (mean NN, LF element) 
 

EDA (mean phasic and 
tonic) 

physiological measures and 
flight performance  

Eye Tracking: higher fixation time, 
lower saccade frequency & higher 
saccade time high workload; blink 

time decreased with increasing 
workload; smaller pupil diameter 

during low workload 
 

ECG variables: NN decreased with 
increasing workload; LF/LHF higher 

during low workload 
 

EDA phasic was lower during cruise, 
EDA tonic was higher during landing 

 
Positive correlations with pupil 

diameter, skin conductance, fixation 
time. Negative correlations with 

fixation frequency, saccade frequency 
and time, blink rate 

       

Yang et al. 
(2021) 

Monach University 
Accident Research 
Centre (MUARC) 

advanced fixed-based 
driving simulator 

Secondary tasks while 
driving                     

(n-bask task, texting, 
or both combined)  

57 (38M),       
(M = 31,       

SD = 11.1) 
 

ECG for heart rate and heart 
rate variability     (16 
outcome variables) 

Linear mixed effect models 
of heart rate during four 
driving conditions of n-

back, baseline, text-
messaging, and n-back with 

text-messaging 

10/16 HRV variables significantly 
increased with increased cognitive 
demand across conditions (SDNN, 

CVNN, triangular index, VLF power, 
LF power, HF power, total power, 

CSI, modified CSI, CVI) 

       

Stuiver et al. 
(2014) 

ST Software fixed-
based driving 

simulator 

Virtual driving in high 
and low traffic density 

with no fog or fog 
conditions 

15 (7M),      
20-25 yrs 

 

ECG (HR, HRV) 
 

Systolic finger blood 
pressure 

RM MANOVAs compared 
physiological variables 
among four different 

conditions 

Blood pressure increased with fog in 
high density traffic condition and a 
decrease in HRV was seen with low 
traffic condition compared to high 

traffic with fog present 

       

Unni et al. 
(2017) 

German Aerospace 
Center virtual reality 
fixed-based driving 

simulator 

Speed regulation   n-
back task (5 level) 

were completed during 
driving 

19 (17M),     
19-32 yrs      
(M = 25.2,     
SD = 3.7) 

ECG (heart rate, root mean 
square of successive 

differences [RMSSD]) 
 

Linear mixed effects 
analysis evaluated             

n-back conditions with HR 
& HR. Multivariate lasso 

Heart rate increased wile heart rate 
variability decreased with increasing 
n-back levels. Pearson’s correlation = 

0.61 for fNIRS (group level; 
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Reference Device Description  Task Used to Induce 
Workload 

n (Gender), 
Age         

(range or 
M[SD]) 

Physiological Outcome 
Measures Method of Analysis Outcomes 

 fNIRS (HbO, HbR) regressions using fNIRS 
HbR to predict n-level, 

Pearson correlations from 
regressions 

individual level analyses completed 
but not reported here) 

       

Feltman et al. 
(2021) 

UH-60 Black Hawk 
full-motion simulator 

Two sets of flight 
scenarios: 1) light vs. 
dark conditions and 2) 

high volume radio 
calls vs. low volume 

radio calls 

23 (23M), 
age 

(M = 36,             
SD = 4.99) 

EEG (PSD values for theta, 
alpha, beta, engagement 

index ratio of beta to [alpha 
+ theta]) 

RM ANOVAs and paired 
samples t-tests compared 

physiological and 
performance variables 
between conditions. 

Correlational analyses 
evaluated relationships 

between physiological and 
performance variables. 

Worse performance including 
airspeed and altitude deviations in 

high workload conditions with beta 
values being sensitive between 

workload conditions 

       

Schöniger 
(2020) 

No device, real-life 
rescue missions of a 
German helicopter 
emergency medical 

service 

Real-life air rescue 
missions with 3 

emergency operations 
per day 

20 (17M),           
(M = 44.95,        
SD = 4.80) 

 

ECG (HR, HRV, SDNN, 
RMSSD LF/HF ratio) 

RM ANOVAs comparing 
ECG values across phases 
of emergency operations 

No significant differences in HR 
indices between three operations, 
while HRV rises significantly at 

beginning stages of an emergency up 
until the landing at an operation site 

Feltman et al. 
(2019) 

UH-60 Black Hawk 
full-motion simulator 

Manipulated visibility 
to create high and low 
workload conditions 

during flight scenarios 

32 (29M),    
22-47 yrs      

(M = 31.31,   
SD = 6.82) 

 

EEG (PSD values for theta, 
alpha, beta, workload 

metric, engagement index 
ratio of beta to [alpha + 

theta]),  
 

ECG (HR, HRV, LF/HF 
ratio) 

 
 Respiration monitor (RR) 

Series of hierarchical 
multiple linear regression 
models using workload 

manipulation and 
individual difference 

variables to predict flight 
performance and 

psychophysiological 
measures 

Individual difference measures to 
include daytime sleepiness, sleep 
quality, and chronotype predicted 

multiple performance and 
psychophysiological measures 

       

Hidalgo-
Munoz et al. 

(2019) 

IFSTTAR-LEPSIS 
driving simulator 

(Peugeot 308 cabin 
surrounded by video 
projection screens) 

Performed two 
workload conditions 

(high vs. low) in either 
a sitting condition, or 

simulated driving 
condition 

18 (10M),   
22.7 yrs      

(SD = 1.4) 
 

ECG (HR, SDNN, RMSSD, 
pNN20, pNN50, LF, HF, 

LF/HF) 
 

Respiration (BR 
[inspirations/minute], mid-

Two-way ANOVA (sitting 
vs. driving; high vs. low 

workload) comparing 
physiological measures 

Increase in HR while driving 
compared to sitting for high-
workload condition. RMSSD, 

pNN20, and pNN50 all decreased in 
high workload condition for driving 

compared to sitting. LF and HF 
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Reference Device Description  Task Used to Induce 
Workload 

n (Gender), 
Age         

(range or 
M[SD]) 

Physiological Outcome 
Measures Method of Analysis Outcomes 

band spectral power [0.07-
0.14 Hz], high band spectral 

power [0.15-0.50 Hz]) 

power decreased under high-
workload condition while driving, 
while LF/HF ratio increased with 
driving. No difference between 

workload conditions was seen for BR 
and there was a significant main 

effect for mid-band between 
workload conditions 

       

Aricó et al. 
(2016)* 

Air traffic controller 
simulator 

Number of aircraft and 
type of clearances, and 
number/trajectory of 

interfering flights 
created easy, medium, 

and hard conditions 

12 (gender not 
reported), age             
(M = 40.41,  
SD = 5.54) 

EEG (PSD values – theta 
and alpha) were used to 
develop an EEG-based 

workload index 

ANOVA comparing the 
workload index across 
workload conditions 

Significant effect between the three 
levels where score related to 

difficulty conditions (i.e., lower score 
for easy compared to medium, 

medium lower compared to hard, and 
easy lower compared to hard) 

       

Bernhardt et 
al. (2019) 

High fidelity air traffic 
controller simulator 

Number of aircraft 
arriving/departing, and 

presence/absence of 
issuing uncontrolled 

aircraft IFR clearances 

47 (45M), 
20.97 yrs 

EEG (commerical 
engagement index, mean 

workload index) 
 

Eye tracking (pupil 
diameter) 

Linear mixed effects 
models incorporating 
individual difference 

measures to determine 
differences in workload 

phases 

The commercial workload index 
varied with the workload phases; the 

engagement index differentiated 
participant experience levels; pupil 

diameter varied with workload phases  

       

Radüntz et al. 
(2020) 

Air Traffic Controller 
Simulator 

Eight scenarios with 
varying workload; 

number of aircraft and 
an exceptional event 

(pilot request for 
prioritization) 

21(19M),      
38 yrs         

(SD = 11) 

EEG (developed Dual 
Frequency Head Maps-

workload index [DFHM-
index]) 

Correlations of DFHM-
index across scenarios with 

same traffic loads; RM 
ANOVA comparing 

scenarios with and without 
exceptional event  

Correlations demonstrated stability of 
DFHM-index within scenarios of 
same traffic loads; DFHM-index 

increased with increased workload 

*Note. We highlighted only the outcomes of interest for this review. SVM = support vector machine, CVNN = coefficient of variation of successive NN intervals, SDNN = standard deviation 
of NN intervals, NN = normal-to-normal, RMSSD = root mean square of successive NN intervals, LF/HF = low frequency/high frequency, VLF = absolute power of the very-low-frequency 
band, CSI = cardiac sympathetic index, CVI = cardiac vagal index, PERCLOS = percentage eyes closed, HUD = heads-up display, CVI = , CSI = , RR = respiration rate, HR = heart rate, 
HRV = heart rate variability, Hz = hertz, BR = breathing rate, , RM MANOVA = repeated measures multvariate analysis of variance, RM ANOVA = repeated measures analysis of varaince, 
HbO = Oxyhemoglobin , HbR = Deoxyhemoglobin, IFR = instrument flight rules. 
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Fatigue 

A total of eight studies assessing fatigue were included in the review. A large portion of 
articles synonymously used other terms such as drowsiness and alertness. Most studies looking at 
fatigue used real-vehicle simulators (e.g., actual vehicles made into simulators) and manipulated 
fatigue by using various types of sleep deprived conditions (Jackson et al., 2016; Zhang et al., 
2017; Hu et al., 2012; Sommer & Golz, 2010; Ahn et al., 2016). The remaining studies used 
monotonous driving conditions or controlled driving scenarios such as steady traffic (Chaung et 
al., 2010; Xu et al., 2018; Wang, Guragain, et al., 2019). One study utilized a train simulator 
(Zhang et al., 2017), while none of the included studies examined flight.  

Six of the included studies used EEG, one used ECG, four used ocular metrics (e.g., eye 
tracking and/or EOG data), and one used fNIRS. Based on the overall findings of the review, eye 
tracking data as an operator monitoring technique was used most frequently to assess fatigue 
compared to all other cognitive states. 

Five of the eight studies developed classifiers or algorithms from the collected 
physiological data. The goal of all classifiers/algorithms was to determine the likelihood of 
accurately classifying the participants’ fatigued state. Classification accuracies were generally 
good, ranging from 62 % (Hu et al., 2012) to 90.70% (Zhang et al., 2017). The remaining studies 
examined the relationships between the physiological measures and subjective and performance 
measures (Jackson et al., 2016; Sommer et al., 2010; Wang et al., 2019a). Notably, Zhang et al. 
(2017) included the assessment of a wearable EEG device that could potentially be integrated 
within a working environment.  
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Table 6. Fatigue (Includes Drowsiness/Alertness) 

Reference Task Used to Induce 
Fatigue Device Description 

n (Gender), 
Age [range or 

M(SD)] 

Physiological Outcome 
Measures Method of Analysis Outcomes 

Chuang et al. 
(2010) 

Simulated 
monotonous freeway 

driving 

Motion driving 
simulator 

6 (gender not 
reported),    
19-23 yrs 

EEG (30 independent 
components consisting of 

power spectra from occipital 
area) 

Assessed performance of 5 
classifiers in relation to 

driver reaction time: ML = 
Gaussian Maximum 

Likelihood; kNN = k-
nearest-neighbor classifier; 

SVM = support vector 
machine; BPN = back 

propagation neural 
network; RBFNN = Radial 

basis function neural 
network 

kNN = highest accuracy with 89.4% 
+/- 2.7 

       

Jackson et al. 
(2016) 

24-hour sleep 
deprivation 

AusEd fixed-based 
driving simulator 

22 (3M),      
18-26 yrs,     
(M = 20.8,    
SD = 1.9) 

Ocular metrics (PERCLOS, 
% time with eyes closed 

[%TEC], John’s drowsiness 
scale [JDS]) 

Friedman’s test (Baseline 
vs. sleep deprivation) of 

ocular metrics; Spearman’s 
correlations between 

ocular, performance and 
subjective measures 

Significant increase in time period of 
long eyelid closure in the sleep 

deprivation condition, no difference 
seen for PERCLOS; % TEC 

correlated with PVT and crashes in 
simulator; JDS correlated with 

subjective fatigue ratings 
       

Zhang et al. 
(2017) 

Unspecified sleep 
deprivation with 

testing between 0400-
0600 hrs 

High speed fixed-
based train 
simulator 

10 (7M),      
19-42 yrs 

EEG (Developed a 
drowsiness index using 

theta, alpha and beta PSD 
values from sites O1 and 

O2) 

Evaluated classification 
accuracy, sensitivity and 

false positive rate of 
drowsiness index across 

two study conditions 
(drowsiness vs. alertness) 

Accuracy: up to 90.70%, Sensitivity: 
up to 86.80%,     False positives: 

down to 5.40% 

Xu et al. 
(2018) 

Highway driving with 
medium traffic starting 

at 1400 hrs 

reZY-31D fixed-
based car simulator 

10 (10M),   
22.4 yrs 

Ocular Metrics (duration of 
fixation in AOI, pupil 

diameter) 

Evaluated classifier using 
fuzzy k-nearest neighbor 

with average fixation time 
and pupil area as single 
features, then combined. 

Compared performance in a 
normal and fatigued-states 

Mean accuracy of classifier with the 
combined features (AOI and pupil 

diameter) was 88.75% 

       



14 

Reference Task Used to Induce 
Fatigue Device Description 

n (Gender), 
Age [range or 

M(SD)] 

Physiological Outcome 
Measures Method of Analysis Outcomes 

Hu et al. 
(2012) 

Sleep deprivation for 1 
night; completed 45-
90 mins of driving 

Swedish National 
Road and Transport 
Research Institute 

(VTI) moving based 
driving simulator 
(3rd generation) 

40, (gender 
and age not 
reported) 

EEG (delta, theta, beta, 
alpha, dominant frequency, 

average power of dom. Peak, 
central of gravity frequency, 
frequency variability, mean 

power frequency) 

Evaluated classifiers that 
included 75 EEG features 
to predict fatigued state 

The 75-features model had sensitivity 
of 62%, and specificity of 74% in 

detecting fatigue 

       

Sommer & 
Golz (2010) 

Drove overnight 
(2330-0830 hrs) for 40 

min segments 

Real car simulated 
driving 

16, (gender 
and age not 
reported) 

EEG (PSD values ranging 
from 1-23 Hz from sites FP1, 

FP2, C3, Cz, C4, O1, O2, 
A1, A2)  

 
EOG (PERCLOS) 

Correlations between KSS 
scores with PERCLOS, 

lane deviations and 
PERCLOS, and PERCLOS 
vs. EEG/EOG for KSS via 

discriminate analysis 

Significant correlations and 
EEG/EOG better predicted mild or 

strong fatigue than PERCLOS  

       

Wang, 
Guragain, et 

al. (2019) 

Man-machine 
intervention while 
auto-driving vs. no 
intervention; auto-

driving manipulation 
was to induce fatigue 

JT/T378 fixed-
based vehicle 

simulator 

12 (10M),     
31 yrs         

(SD = 1.6) 
 

EEG (beta, alpha, theta from 
14 total sites within frontal, 

central, and posterior 
regions) 

t-test between ratio of 
beta/(theta + alpha) during 
normal driving and man-
machine response mode 

(MRM) 

There was a smaller downward trend 
of the beta ratio in the MRM 

condition compared to non-MRM, 
suggesting the MRM intervention 

reduced onset of fatigue 

       

Ahn et al. 
(2016) 

Well-rested condition 
with 7+ hours of sleep 

vs. sleep deprived 
condition where 

participants stay up all 
night 

Fixed-based driving 
simulator 

11 (10M),      
age               

(M = 26.6,    
SD = 1.4) 

 

EEG (PSD values for delta, 
theta, alpha, beta, gamma; 

ratio of beta to alpha) 
 

EOG (rate of eye blinks) 
 

fNIRS (amplitudes of HbO, 
HbR) 

 
ECG (QRS-complex, RR-

peal intervals) 

Developed algorithm from 
EEG, ECG and fNIRS 

features to classify well-
rested vs. sleep-deprived 

conditions 

t-test between rested and 
fatigued condition had 

significant differences for 
alpha and beta 

Found highest classification 
accuracies for combination of EEG, 

ECG, and fNIRS. No difference seen 
for EOG. 

Note. ECG = electrocardiography, EEG = electroencephalography, GSR = Galvanic skin response, fNIRS/NIRS = functional , PSD = power spectral density, PVT = psychomotor 
vigilance task, HR = heart rate, HRV = heart rate variability, LF = Low frequency, HF = High Frequency, PERCLOS = percentage eyes closed, RMSSD = root mean square of successive 
differences, SDNN = standard deviation of normal-to-normal intervals, HbO = oxy-hemoglobin concentration, HbR = deoxy-hemoglobin concentration, AOI = area of interest 
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Inattention/distraction/vigilance  

Four studies assessing inattention or synonymously distraction and/or vigilance were 
included based on eligibility. Attention was typically manipulated by the interjection of 
intermittent tasks such as texting, or flight maneuver instructions, or with changes in typical 
traffic patterns (Dehzangi & Taherisadr, 2018; Harrivel et al., 2016). The most common 
physiological metric/device used within the inattention literature was GSR (two studies) and 
EEG (two studies). Respiration was also used by Harrivel et al. (2016), whereas Rahman et al. 
(2021) only used fNIRS.  

Three of the studies developed and evaluated the performance of classifiers in predicting 
inattention. Performance ranged from 43% to 95% (Wang, Li, et al., 2019) for an EEG-only 
classifier. Other classifiers included one using GSR (maximum accuracy of 93%; Dehzangi et 
al., 2018), and a combined EEG and GSR model (89% accuracy; Harrivel et al., 2016). Rahman 
et al. (2021) found differences in oxy-hemoglobin concentration (HbO2) based on task 
conditions, suggesting a relationship between HbO2 and inattention/vigilance performance.  
Table 7 below summarizes inattention studies. 
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Table 7. Inattention/Distraction/Vigilance 

Reference Task Used to Induce 
Inattention Device Description 

n (Gender), 
Age         

[range or 
M(SD)] 

Physiological Outcome 
Measures Method of Analysis Outcomes 

Dehzangi & 
Taherisadr 

(2018) 

Participants texted 
while driving during 

scenarios with 2 
minute durations 

Real vehicle 7 (7M),        
20-40 yrs 

Galvanic Skin Responses 
(GSR) (used convolutional 
neural networks [CNN] to 

identify features for 
inclusion in classifier) 

Evaluated performance of 
developed classifier (note, 
it is unclear what features 
were extracted and used in 

the classifier) 

Achieved maximum prediction 
accuracies of 93.28% in detecting 

inattention  

       

Harrivel et al. 
(2016) 

Flight scenarios in 
fixed-based simulator 
with benchmark tasks 

Fixed-based flight 
simulator 

12 (11M), age 
not reported 

 

EEG (8 mono-polar EEG 
signals) 

 
ECG (HRV) 

 
GSR (skin conductance) 

 
Respiration 

EEG, ECG, GSR, and resp. 
were used to generate 

normalized classifier input 
features 

Model with EEG + GSR = 89% 
accuracy, Model with EEG only = 

82%. Both models were reliable for 
distinguishing lower workload and 
channelized attention benchmark 

states 

       

Rahman et al. 
(2021) 

Completed cognitive 
tasks with or without 
self-paced walking 

No device used 

19 (6M),      
18-35 yrs      
(M = 21.5,    
SD = 3.6) 

fNIRS (∆HbO2, ∆HbR) 

RM ANOVA for ∆HbO2 

and ∆HbR across single 
motor condition, single 
cognitive condition, and 

dual condition 

Significant differences in ∆HbO2 
where dual task was greater than 
single motor in right hemisphere. 

       

Wang , Li, et 
al. (2019) 

Construction-based 
vigilance task of 

moving two metal 
tubes from one 

location to another 
with obstacles 

presented 

No device used 10 (10M), age 
not reported 

EEG (PSD values from 14 
frontal, temporal, parietal, 

occipital sites) 

Evaluated 30 EEG 
vigilance indicators (e.g., 

various ratios of PSD 
values) by using NASA-

TLX as ground truth 
measure and EEG-vigilance 

stage model as a 
benchmark; correlation 
analyses were used to 

evaluate performance of 
vigilance indicators 

Three indices resulted in the highest 
correlation coefficients for Index 6 

(θ/β), Index 19 (θ+β)/(α+у), and 
Index 26 (α/(β+у)); coefficients 

ranged from 0.43 to 0.95 

Note. ECG = electrocardiography, EEG = electroencephalography, GSR = Galvanic skin response, fNIRS/NIRS = functional , PSD = power spectral density,               HR = heart rate, 
HRV = heart rate variability, LF = Low frequency, HF = High Frequency, PERCLOS = percentage eyes closed, RMSSD = root mean square of successive differences, SDNN = standard 
deviation of NN intervals, HbO = Oxyhemoglobin , HbR = Deoxyhemoglobin 
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Stress/Overload 

The three included articles for stress/overload assessed conditions through high-stress 
scenarios in order to manipulate the cognitive state. For example, in both of their articles, 
Tornero-Aguilera et al. (2017; 2018) use pre- and post-measures of physiological metrics for 
combat Soldiers during a mock rescue mission. These physiological metrics included ECG/heart 
rate measures, blood oxygenation saturation, blood glucose levels, blood lactate, and assessed 
critical flicker fusion threshold (CFFT) (Tornero-Aguilera et al., 2017; Tornero-Aguilera et al., 
2018; Sanchez-Molina et al., 2018). Locating literature proved somewhat difficult compared to 
the other included cognitive states possibly due to stark differences in terminology used for the 
construct of stress. For example, the terms overload, arousal, and high workload stress were in 
studies that did not accurately measure stress. The three included studies were the only ones 
located that specifically used stress as a state of interest.  

Of the literature assessing stress/overload cognitive states, no known study within the 
timeframe of this review has used vehicle operator state monitoring, either real-life or via 
simulation. Nor did any of the included studies used other common psychophysiological 
equipment such as EEG or eye tracking. All three studies compared physiological measures pre- 
and post-missions. An increase in heart rate variables, as well as blood lactate levels, were 
consistently demonstrated for post-physiological measures (Tornero-Aguilera et al., 2017; 
Tornero-Aguilera et al., 2018; Sanchez-Molina et al., 2018). 

This space is intentionally blank. 
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Table 8. Stress/Overload 

Reference Task Used to Induce 
Stress Device Description  

n (Gender), 
Age         

[range or 
M(SD)] 

Physiological outcome 
Measures Method of Analysis Outcomes 

Tornero-
Aguilera et al. 

(2017) 

Pre- and Post-combat 
simulation rescue 

mission 

No device used; 
combat simulation 

performed in an 
urban area with 

one-floor buildings 

40 (gender not 
reported) 
Elite =        

28.5 yrs            
(SD = 6.38), 
non-Elite = 
31.94 yrs    

(SD = 6.24) 

ECG (HR, HRV, RMSSD, 
LF, HF) 

 
Blood oxygen saturation, 

blood glucose, blood lactate, 
lower body muscular 

strength 

Compared pre- and post- 
measures on Soldiers 

during combat mission with 
respective bivariate 

correlations 

HR variables, lower body muscular 
strength, and blood lactate increased 

after simulation in both elite and non-
elite groups. Pre skin temperature 

was positively correlated with lower 
muscular strength and negatively 

correlated with pre-HR 

       

Tornero-
Aguilera et al. 

(2018) 

Pre- and Post-combat 
simulation rescue 
mission for highly 
trained vs. lower 
trained groups. 

No device used; 
simulated combat 

mission 

49 (gender not 
reported),    
30.6 yrs      

(SD = 5.7) 

ECG (HR, HRV, RMSSD, 
LF, HF), blood oxygen 

saturation, blood glucose, 
blood lactate, lower body 
muscular strength, body 

temperature, cortical arousal 
(CFFT) 

Compared pre- and post- 
measures on Soldiers 

during combat mission with 
respective bivariate 

correlations 

Variables of HR, lower body 
muscular strength, blood lactate and 

glucose increased after combat 
simulation. Highly trained group only 

showed significant increase in 
RMSSD, LF after simulation and a 

decrease in HF compared to the lower 
trained group. 

       

Sanchez-
Molina et al. 

(2018) 

Four-person simulated 
combat training rescue 

mission 

No device, 
simulated combat 

situation 

19 (19M),   
30.1 yrs      

(SD = 5.25) 

ECG (HR, HRV, RMSSD, 
LF, HF), blood oxygen 

saturation, blood glucose, 
blood lactate, critical flicker 

frequency 

Pre- and post- analysis 
before and after simulated 

combat situation 

HR and blood lactate significantly 
increased after combat simulation, LF 

increased while HD and RMSSD 
decreased. 

Note. ECG = electrocardiography, EEG = electroencephalography, GSR = Galvanic skin response, fNIRS/NIRS = functional , PSD = power spectral density, HR = heart rate, HRV = heart 
rate variability, LF = Low frequency, HF = High Frequency, PERCLOS = percentage eyes closed, RMSSD = root mean square of successive differences, SDNN = standard deviation of 
NN intervals, HbO = Oxyhemoglobin , HbR = Deoxyhemoglobin 
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Hypoxia 

Only one study was identified where hypoxia was the cognitive state of interest. Rice et 
al. (2019) used EEG, HR and SpO2 to evaluate differences between altitude conditions. They 
found that all three measures significantly differed between altitude conditions under assessment. 
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Table 9. Hypoxia 

This space is intentionally blank. 

Reference Task Used to Induce 
Hypoxia Device Description 

n (Gender), 
Age     [range 

or M(SD)] 

Physiological outcome 
Measures Method of Analysis Outcomes 

Rice et al. 
(2019) 

Oxygen manipulations 
through ROBD 

Desktop X-Plane v 
10.5 simulator 

60(30M), 
Female age 

(M = 24,  
SD = 2.5), 
Male age 

(M = 23.8, 
SD = 1.7) 

EEG (alpha, beta, gamma 
theta from six frontal, 

central, and parietal sites) 

Heart Rate 

SPO2 

EEG - RM ANOVAs 
between electrode channels 
and altitude conditions (sea 
level, 25,000 feet, 20,000 

feet);        
HR and SpO2 – RM 

ANOVAs between altitude 
conditions 

Alpha, beta, gamma, and theta were 
all significant across all channels 

between acute and insidious altitude 
conditions; similar patterns for HR 

and SpO2 

Note. ROBD = reduced oxygen breathing device 
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Discussion 

The objective of this systematic review was to identify types of psychophysiological 
metrics that most reliably detect changes to operator state and use that information to determine 
sensor types to pursue for evaluation within USAARL’s operator state monitoring research 
program. A variety of different literature was included such as proceedings papers, technical 
reports, conference papers, and peer-reviewed articles. Of the literature included, the vast 
majority of studies used aircraft simulators and real-vehicle car simulators. To the best of our 
knowledge, only one known article used real in-flight data collection and no known studies used 
operator state monitoring with psychophysiological metrics during a real-life driving scenario. 
The number of articles using real vehicles, such as aircraft, is most likely limited potentially due 
to costs and logistics of conducting such experiments, as well as potential safety concerns. The 
current review found only two articles using a real-life vehicle based on exclusion criteria. 
Wilson et al. (2021) used in-flight state monitoring via EEG during flight maneuvers requiring 
varying workload demands. In-flight state was classified into high-workload and low-workload 
based on the EEG indices and data was collect for a total of 10 aviation students (Wilson et al., 
2021). Schöniger et al. (2020) conducted a series of real-life air rescue missions via a German 
emergency medical service helicopter, though workload was not investigated via pilot 
performance, but for the emergency physicians conducting operations.  

In terms of measured cognitive states, most studies looked at workload followed by 
aspects of fatigue/drowsiness. The most commonly reported physiological metrics across all 
cognitive states were ECG and EEG, followed by eye tracking data. Studies looking at workload 
used a mixture of within- and between-group comparisons on flight maneuvers and tasks such as 
the n-back task, and a total of 2 studies used algorithm development for classifier performances 
during flight maneuvers that ranged from 45.91-100% (Blonco et al., 2018; Wilson et al., 2021). 
The general pattern of changes in physiological measures within the workload studies included 
increases in physiological metrics like heart rate, blink rate, EDA, during tasks/scenarios that 
required high workload conditions (Feng et al., 2018; Unni et al., 2017; Yang et al., 2021, etc.). 

Studies looking at fatigue and/or drowsiness typically used EEG and eye tracking data. 
As a result, a large portion of the studies looked at algorithm development to predict a 
drowsiness state with classification accuracies ranging from 89.4% to 95% (Chaung et al., 2010; 
Yin et al., 2016; Hu et al., 2013; Zhang et al., 2017). In order to manipulate fatigue conditions, 
some studies included overnight driving, and some had prolonged periods of sleep deprivation of 
up to 24 hours (Sommer et al., 2014; Jackson et al., 2016; Ahn et al., 2016). Jackson et al. (2016) 
did not find any differences in PERCLOS between sleep deprivation conditions but did see a 
significant increase in the time of long eyelid closure in their sleep deprivation condition (24 
hours). Sommer et al. (2014) found that their EEG and EOG results were better predictors of 
mild or strong fatigue than PERCLOS. Ahn et al.’s (2016) sleep deprived condition of 
participants staying up throughout the night did not show any differences compared to the well-
rest condition for rates of blinking, but did find the combination of EEG, ECG, and fNIRS to 
provide the highest classification accuracies. They also found significant differences in alpha and 
beta between rested and fatigue conditions (Ahn et al., 2016).  
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Conclusion 

Based on the findings from the literature review, workload, fatigue, and inattention all 
show promise for detection through physiological metrics. Due to the few number of studies 
looking at stress and hypoxia, further research is needed to conclude the usefulness of 
physiological measures for detecting these states on operator cognition and performance. This 
lack of research may in part be due to differences in how researchers interpret physiological 
states vs cognitive states. EEG was the most commonly used physiological measure and was 
especially successful for detecting workload and fatigue. In addition, multiples aspects of eye-
tracking data (i.e., PERCLOS, blink rate) proved useful for fatigue detection. Though literature 
on stress was scarce, heart rate metrics showed promise. To the best of our knowledge, only one 
study used fNIR data, demonstrating a large gap in the literature that should be pursued for 
future investigations in the detection of cognitive states.  

Additionally, this review highlighted some current limitations in the field. For example, 
to the best of our knowledge, only one study used a real-time monitoring while operating an 
actual vehicle (e.g., Wilson et al., 2021). The cost and logistical concerns of using in-flight 
monitoring or driving most likely contribute to the lack of studies available. It is our 
recommendation that studies shift to using real-vehicle studies. The current literature has a large 
number of studies that use fixed-based simulators with very few that use motion-based 
simulators. Keeping cost and other logistical concerns in mind regarding the use of real-vehicle 
operator monitoring, a next logical step for the field would be to increase the number of studies 
conducted with motion-based simulators to increase the generalizability of findings. 

Lastly, the lack of consistency in cognitive state terminology may be problematic for the 
field of operator state monitoring moving forward. For example, some studies use the term 
fatigue while others use drowsiness. However, possibly the least concerning recommendation 
from this review, consistent use of terminology may contribute to more uniformity in testing of 
these cognitive states and interpretation of results. Explanations of differences between 
constructs can contribute to differences in theoretical understandings as well as execution of 
testing these cognitive constructs. In their review, Weelden et al. (2022) expressed similar 
concerns regarding heterogeneity of terminology in the aviation and neurophysiology field. A 
highlighted example of inconsistent terminology was workload with phrases such as engagement 
or arousal (Weelden et al., 2022). The operator state monitoring literature encompasses many 
disciplines of study including individuals from psychology, human factors, and neuroscience. 
More uniformity in terminology may be helpful for an area of research conducted by such a 
diverse population of investigators.  
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