
© 2022 1[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.
© 2022

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Assuring your DevSecOps Pipeline

using MBSE

Timothy A. Chick

CERT Systems Technical Manager, CMU-Software Engineering Institute

Adjunct Faculty Member, CMU-Software and Societal Systems Department (S3D)

© 2022 2[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Document Markings

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official

Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering

Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR

PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,

TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright

notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting

formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering

Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM22-1142

© 2022 3[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Agenda

About DevSecOps

Challenges associated with DevSecOps

• Challenge 1: Connecting process, practice, and tools

• Challenge 2: Cybersecurity of pipeline and product

Addressing the Cybersecurity challenges with MBSE

© 2022 4[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

About DevSecOps

© 2022 5[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Today: Program Office Whac-A-Mole

In June of 2020 a generally successful DoD program

completed an 8 week “Hardening the Software Factory”

effort in order to address accumulated technical debt

and to address insufficient security and operations

practices due to the narrow focus on speed of delivery.

These things occur, even in small relatively successful

programs, when technical debt and insufficient security

and operational practices are in place due to lack of

knowledge, experience, and reference material to fully

design and execute an integrated DevSecOps strategy

in which all stakeholder needs, including

cybersecurity, are addressed.

While playing Whac-A-Mole is inevitable, instead of

missing the holes, or constantly hitting the same hole, the

key is to fill in the holes.Winning in Features and Effectiveness, but

Losing in Defensibility and Stability

© 2022 6[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps: Modern Software Engineering Practices and Tools that

Encompass the Full Software Lifecycle

DevSecOps is a cultural and engineering practice that breaks down

barriers and opens collaboration between development, security,

and operations organizations using automation to focus on rapid,

frequent delivery of secure infrastructure and software to production.

It encompasses intake to release of software and manages those

flows predictably, transparently, and with minimal human

intervention/effort [1].

A DevSecOps Pipeline attempts to seamlessly integrate “three

traditional factions that sometimes have opposing interests:

• development; which values features;

• security, which values defensibility; and

• operations, which values stability [2].”

Not only does one need to balance the factions. They must do so in a

way that balances risk, quality and benefits within their time,

scope, and cost constraints.

[1] DevSecOps Guide: Standard DevSecOps Platform Framework. U.S. General Services Administration.
https://tech.gsa.gov/guides/dev_sec_ops_gui de. Accessed 17 May 2021

[2] DevSecOps Platform Independent Model, https://cmu-sei.github.io/DevSecOps-Model/

© 2022 7[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

An Enterprise View

All DevSecOps-oriented enterprises are driven by

three concerns:

• Business Mission – captures stakeholder

needs and channels the whole enterprise in

meeting those needs. It answer the questions

Why and For Whom the enterprise exists

• Capability to Deliver Value – covers the

people, processes, and technology necessary

to build, deploy, and operate the enterprise's

products

• Products – the units of value delivered by the

organization. Products utilize the capabilities

delivered by the software factory and

operational environments.

© 2022 8[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Challenges Associated with

DevSecOps

© 2022 9[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Challenge 1: connecting process, practice, and tools

Creation of the DevSecOps (DSO) pipeline

for building the product is not static.

• Tools for process automation must work

together and connect to the planned

infrastructure

• Infrastructure and shared services are

often maintained across multiple

organizations (Cloud for infrastructure,

third parties for tools and services, etc.)

• Processes, practices, and tools must

evolve to meet the needs of the products

being built and operated

© 2022 10[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Many valid approaches to implementation1

George Box is famously quoted as saying, “All models are

wrong but some are useful.” The same can be said for the

various Agile and DevSecOps methods, as much of the

material around Agile and DevSecOps assumes a

simplification or idealization of a model development team.

The key to successful Agile and DevSecOps implementation

is understanding how you will instantiate the Agile manifesto,

Agile principles and DevSecOps principles.

The principles have implications for the characteristics of the

lifecycle that can be used. But there’s still more than one

valid way of implementing the principles…

© 2022 11[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Many Valid Approaches to Implementation2

• The family of Agile and DevSecOps methods has grown since 2000 to

incorporate techniques that address team, project, and enterprise levels of

scaling.

• Hybrids of multiple methods and techniques are common practice in both

industry and government.

• This is one reason it’s so difficult to say a program is “Agile” or “doing

DevSecOps correctly,” or not.

• To succeed, you must select the correct techniques, regardless of chosen

methods, to meet your organization’s and customer’s goals, objectives, and

missions.

© 2022 12[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Selecting the Appropriate Techniques

Three Fundamental Factors

1. Identifying the ability of the organization to adopt new techniques

- Successful adoption requires the absorption of associated costs, as well as

expending the required time and effort.

2. Determining the suitability of Agile and DevSecOps practices in the

development of a given product or system

- Development and product characteristics play a large role in determining the

suitability of a particular agile technique.

- The desired product qualities also play a role in determining appropriate agile

technique

3. Determining the suitability of Agile and DevSecOps practices for the

organization developing the product or system

Adapted from Sidky, Ahmed; James Arther, Determining the Applicability of Agile Practices to Mission and Life-critical Systems,

Proceedings of the 31st IEEE Softw are Engineering Workshop (SEW 2007). pp 3-12.

© 2022 13[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Challenge 2: Cybersecurity of Pipeline and Product

The tight integration of Business Mission,

Capability Delivery, and Products, using integrated

processes, tools, and people, increases the attack

surface of the product under development.

Managing and monitoring all the various parts to

ensure the product is built with sufficient

cybersecurity and the pipeline is maintained to

operate with sufficient cybersecurity is complex.

How do you focus attention to areas of greatest

concern for security risks and identify the attack

opportunities that could require additional

mitigations?

© 2022 14[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Software Assurance (SwA)

DoD definition:

“the level of confidence that software is free from vulnerabilities, either intentionally

designed into the software or accidentally inserted at anytime during its lifecycle, and

that the software functions in the intended manner.”

[CNSS Instruction No. 4009; DoDi 5200.44 p.12]

SwA Curriculum Model definition:

Application of technologies and processes to achieve a required level of confidence that

software systems and services function in the intended manner, are free from

accidental or intentional vulnerabilities, provide security capabilities appropriate to the

threat environment, and recover from intrusions and failures.

[Mead, Nancy; Allen, Julia; Ardis, Mark; Hilburn, Thomas; Kornecki, Andrew; Linger, Richard; & McDonald, James. Software

Assurance Curriculum Project Volume I: Master of Software Assurance Reference Curriculum. CMU/SEI-2010-TR-005. Software

Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415]

© 2022 15[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Risk

The perception of risk drives assurance decisions

• Assurance implementation choices (policies, practices, tools, restrictions) are

based on the perception of threat and the expected impact should that threat

be realized

• Perceptions are primarily based on knowledge about successful attacks

- the current state of assurance is largely reactive

- successful organizations learn from attacks and figure out how to react and recover

faster and be vigilant in anticipating and detecting attacks

• Misperceptions are failures to recognize threats and impacts – “how could it

happen to us?” or “it could not happen here!”

© 2022 16[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Interactions

Highly connected systems require alignment of risk across all

stakeholders and systems otherwise critical threats will be unaddressed

(missed, ignored) at different points in the interactions.

• There are costs to addressing assurance which must be balanced against the

impact of the risk.

• Risk must also be balanced with other opportunities/needs (performance,

reliability, usability, etc.).

• Interactions occur at many technology levels (network, security appliances,

architecture, applications, data storage, etc.) and are supported by a wide

range of roles.

© 2022 17[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Trusted Dependencies

Your assurance depends on other people’s decisions and the level of

trust you place on these dependencies:

• Each dependency represents a risk

• Dependency decisions should be based on a realistic assessment of the

threats, impacts, and opportunities represented by an interaction.

• Dependencies are not static and trust relationships should be reviewed to

identify changes that warrant reconsideration.

• Using many standardized pieces to build technology applications and

infrastructure increases the dependency on other’s assurance decisions.

© 2022 18[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Attacker

There are no perfect protections against attacks.

There exists a broad community of attackers with growing technology

capabilities able to compromise the confidentiality, integrity, and availability of

any and all of your technology assets, and the attacker profile is constantly

changing.

• The attacker uses technology, processes, standards, and practices to craft a

compromise (socio-technical responses).

• Attacks are crafted to take advantage of the ways we normally use technology or

designed to contrive exceptional situations where defenses are circumvented.

© 2022 19[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Mitigating Risk with Assurance Cases

Understanding risk is hard!

Without being able to quantify, or reason around,

the cybersecurity risks associated with your

product and DevSecOps pipeline, you will not be

able to:

• properly balance between features,

defensibility, and stability

• make necessary trade-off choices to achieve

your organization’s mission and vision in a

cost-effective way

An assurance case can be used to reason

about the adequacy for both the pipeline and

the product.

• It is a structured approach used to argue that

available evidence supports a given claim

• It provides the organization with the basis for

making risk-based choices tied to assuring that

the pipeline only functions as intended.

• It provides requirements for automated systems

testing, or other evidence collection techniques.

• Actual test results provide the evidence needed

to support the assurance claims.

© 2022 21[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Structuring a DevSecOps Assurance Case

Assurance cases are composed of the following elements:

● Claims– “assertions put forward for general acceptance.

They are typically statements about a property of the

system or some subsystem. Claims that are asserted

as true without justification become assumptions and

claims supporting an argument are called subclaims

[1].”

● Arguments – “link the evidence to the claim [1]” by

stating the assumption(s) on which the claim and the

evidence are built upon.

● Evidence – “Evidence that is used as the basis of the

justification of the claim. Sources of evidence may

include the design, the development process, prior field

experience, testing, source code analysis or formal

analysis [1].”

● Defeaters – “possible reasons for doubting the truth of a

claim [2].”
[1] Bloomfield, R. E. and Netkachova, K. Building Blocks for Assurance Cases. Paper presented at the
International Symposium on Software Reliability Engineering (ISSRE), 03-11-2014 - 06-11-2014, Naples, Italy.
[2] Goodenough, John B., Charles B. Weinstock, Ari Z. Klein. Toward a Theory of Assurance Case Confidence,
CMU/SEI-2012-TR-002 September 2012.

© 2022 22[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Addressing the Cybersecurity

Challenge with MBSE

© 2022 23[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Model Based Systems Engineering

• Not yesterday’s Document-Centric Systems

Engineering!

• MBSE uses a Digital System Model* to facilitate

common system understanding and decision-

making.

• The Digital System Model* is the single

authoritative source of truth

• System and Components can be integrated at

various levels of abstraction and fidelity

• Model Views are chosen to best communicate

information to a variety of stakeholders via the

dynamic creation of multiple, consistent,

accurate views

• Impacts of changes are more easily analyzed

and evaluated
*The Digital System Model contains the most current requirements, key

mission/business operations, architecture, design details, implementation details, test

and evaluation details, and supporting documentation.

© 2022 27[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Reference Architecture/Platform Independent Model (PIM)

A PIM is a general and reusable model of a solution to a

commonly occurring problem in software engineering within a

given context and is independent of the specific technological

platform used to implement it.

A Reference Architecture is an authoritative source of

information about a specific subject area that guides and

constrains the instantiations of multiple architectures and

solutions [1].

NOTE: PSM = Platform Specific Model
[1] DoD Reference Architecture Description, https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf

https://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf

© 2022 28[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Platform Independent Model (PIM)

• is an authoritative reference to fully design and

execute an integrated Agile and DevSecOps

strategy in which all stakeholder needs are

addressed

• enables organizations to implement DevSecOps in

a secure, safe, and sustainable way in order to fully

reap the benefits of flexibility and speed available

from implementing DevSecOps principles,

practices, and tools

• was developed to outline the activities necessary to

consciously and predictably evolve the pipeline,

while providing a formal approach and

methodology to building a secure pipeline tailored

to an organization’s specific requirements

© 2022 29[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps PIM - Content Diagram

https://cmu-sei.github.io/DevSecOps-Model/

https://cmu-sei.github.io/DevSecOps-Model/

© 2022 30[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Requirements

All requirements are organized into

categories based on logical and

functional groupings:

• Governance

• Requirements

• Architecture and Design

• Development

• Test

• Delivery

• System Infrastructure

Example of Requirements Representation in Diagrams from PIM

Requirements Table Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__49c29c66-3cd5-4435-ae7c-2348500911bb

© 2022 31[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Capability/Strategic Viewpoint

A capability is a high-level concept that

describes the ability of a system to

achieve or perform a task or a mission.

All requirements in the DevSecOps PIM

were allocated to corresponding

capabilities.

• Capability to Requirements

Traceability Link

• Capability to Operational

Activity Traceability Link

• Capability Definitions Link

• Strategic Taxonomy High

Level

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__b785f5cf-4f26-44ad-a193-fbabb098ed48
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__fae6e797-735c-49e2-b448-35606712d9c7
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__0d5b34ef-7c21-4e66-a663-91924d4a8656
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__174b3b63-9066-41d3-ae86-5b79364244f8

© 2022 32[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Structuring a DevSecOps Assurance Case Around Capability

© 2022 33[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Operational Viewpoints

An operational model for a system describes behavior of the system to conduct enterprise operations.

The main operational processes for DevSecOps includes development process for the product, as well

as the DevSecOps process itself.

• DevSecOps Capability

Delivery Model Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__81be5267-879e-463c-a8ae-e49c2671c673

© 2022 34[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Personnel Viewpoints

Personnel viewpoints are used to model

the socio part of DevSecOps system.

• Personnel Structure –

Posts with Responsibilities

Link

• Critical Roles –

Responsibilities, Goals and

Questions

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__6e950f52-c1b1-40bb-9694-d62719c9804f
https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__222c0749-e4e8-4303-9ffa-e7f051881c15

© 2022 35[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Everyone Plays a Role in DevSecOps

Critical Roles are mapped to Operational Activities.
• Process Involvement Matrix Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__c682f34a-3ea0-4c62-82a8-f590e26323a7

© 2022 36[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Threat Scenarios

Template: Example:

© 2022 37[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Threat Scenario Generation Workshop

© 2022 38[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Example Threat Modeling Diagram for Write Code
Operational Activity

Write Code
Operational Activity
Connectivity Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__d1e17f3d-0161-4bbb-a829-80b2475a2412

© 2022 39[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Threat to Operational Activity Matrix

Threats to
Operational
Activities Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__39d192d3-69c4-41ca-8de0-3bfd9f2c9b0e

© 2022 40[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

DevSecOps Threats with Attributes

Threats Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__1d6b915b-6f0a-42b0-a6b0-f4ac2e768cc6

© 2022 41[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Capturing the Complexity of the DevSecOps System

Example of Threats

Traced to Capabilities

via Operational

Activities

Configuration

Management

Complexity Link

https://cmu-sei.github.io/DevSecOps-Model/#Diagrams__4454eb18-78b4-445c-be9d-3eca2f2bd5be

© 2022 42[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Addressing Assurance Case Defeaters

Identifying and Mitigating
Threats helps to address
Defeaters in your Assurance
Case

© 2022 44[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

The DevSecOps PIM enables Organizations, Projects,
Teams, and Acquirers to

• specify the DevSecOps requirements to the lead system integrators tasked

with developing a platform-specific solution that includes the designed

system and continuous integration/continuous deployment (CI/CD) pipeline

• assess and analyze alternative pipeline functionality and feature changes as

the system evolves

• apply DevSecOps methods to complex products that do not follow well-

established software architectural patterns used in industry

• provide a basis for threat and attack surface analysis to build a cyber

assurance case to demonstrate that the product and DevSecOps pipeline

are sufficiently free from vulnerabilities and that they function only as

intended

© 2022 45[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Summary

The use of model based systems engineering in

the design, implementation, and sustainment of

your DevSecOps socio-technical system will

assist you in building a system that is:

• Trustworthy – No exploitable vulnerabilities

exist, either maliciously or unintentionally

inserted.

• Predictable – When executed, software

functions as intended and only as intended.

• Timely – Features are delivered as the speed

of relevance.

© 2022 46[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Contact Information

Timothy A. Chick
CERT Systems Technical Manager, CMU-Software Engineering Institute

Adjunct Faculty Member, CMU-Software and Societal Systems Department

tchick@sei.cmu.edu

https://www.cylab.cmu.edu

https://s3d.cmu.edu

https://www.sei.cmu.edu

mailto:tchick@sei.cmu.edu
https://www.cylab.cmu.edu/
https://s3d.cmu.edu/
https://www.sei.cmu.edu/

