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 ABSTRACT 

 

Microglial-Neurovascular Interactions and Neuronal Function at High Altitude 

 

Kathleen Anne Guzek Whiting, PhD, 2022 

 

Thesis directed by:  Dr. Zygmunt Galdzicki, Professor, Department of Anatomy, 

Physiology and Genetics, Neuroscience, Molecular and Cell Biology 

 

Millions of people worldwide live at high altitude without evolutionary 

adaptation, and millions more travel to and stay at high altitudes for work or recreational 

activities that result in chronic exposure to this austere environment. Chronic high 

altitude exposure is characterized by hypobaric hypoxia, where a low pressure low 

oxygen environment reduces the availability of oxygen for respiration and distribution 

throughout the body. Compromised tissue oxygenation has long lasting effects even after 

return to normoxic conditions, causing a range of physiological disturbances including 

cognitive dysfunction. During the acute stages of exposure, the body and the central and 

peripheral nervous systems undergo short term acclimatization processes relying on 

increased heart rate, respiration and vasodilation to improve oxygen delivery.  

Prolonged stays at high altitude are associated with enhanced brain angiogenesis, 

blood-brain barrier disruption, and altered metabolic profiles in the brain and periphery, 

as well as presence of inflammatory markers leading to memory deficits and cognitive 

decline. Previous preclinical research in the laboratory identified increased phagocytic 
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activity of microglia in mice after chronic 12 week simulated high altitude exposure, as 

well as an increase in brain vasculature and evidence of blood-brain barrier leakage. 

There was also an effect of high altitude on brain glucose metabolism, altered 

hippocampal transcriptional profiles, and behavioral deficits relating to hippocampal 

mediated learning and memory. Functional impairments following shorter (3 week) high 

altitude exposure are hypothesized to be influenced by region-specific neurovascular and 

inflammatory interactions, and the studies presented here explore those connections. 

It is hypothesized that high altitude exposure induces angiogenesis in the brain 

and disruption of the blood-brain barrier, leading to an altered microenvironment that 

negatively impacts microglial and neuronal activity. The first part of this dissertation 

focuses on assessing brain angiogenesis through structural quantification of brain 

vasculature using high resolution micro-CT imaging, identifying increased whole brain 

vascular volume and branching. Experiments investigate further the interaction of 

vasculature and inflammatory response by assessing loss of blood-brain barrier integrity 

as evidenced by the increased presence of blood components in the extracellular space 

following chronic high altitude exposure. This leakage demonstrates a compromised 

blood-brain barrier, leading to inflammation, which may be influenced in part by the 

activity of microglia. Microglia are known to play a role in maintaining neurovascular 

integrity. Depletion of microglia to assess their role in blood-brain barrier maintenance 

revealed increased leakage consistent with existing findings. Remodeling of the 

neurovasculature after high altitude exposure may increase the magnitude of blood-brain 

barrier disruption, contributing to a pro-inflammatory microenvironment which may 

negatively impact microglia activity. 2-photon ex vivo imaging of CX3CR1-GFP+/- mice 
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(a transgenic mouse line expressing GFP in microglia) exposed to high altitude reveals 

sex and region-specific changes in microglia chemotactic activity in response to vascular 

and microglial ablation, indicating different mechanisms relating to process tip speed and 

proliferation play a role in the brain’s adaptation to high altitude. These results indicate 

that high altitude causes an increase in the density of the neurovasculature and leads to 

blood-brain barrier disruption, creating a unique microenvironment that contributes to the 

activation of microglia and their response profiles. Alterations in microglia activity may 

have far-reaching effects on the stability of neuronal circuitry, contributing to functional 

deficits after high altitude exposure. 

It is also hypothesized that cognitive deficits arising from vascular dysfunction 

are mediated by microglia and their interactions with neuronal circuitry. The second part 

of this dissertation explores how these changes in vascular and microglial function 

following 3 week high altitude exposure may influence and contribute to memory 

deficits. Attenuation of synaptic plasticity as measured by decreased capacity to elicit 

long-term potentiation in the CA1 hippocampus is identified in male mice after 3 weeks 

at high altitude; however, the same effect is not identified in females. The presence of 

microglia may be an important factor in long-term potentiation, since microglia are 

known to interact with synapses. To understand the signaling cascades that may be 

involved in long-term acclimatization and potentially play a role in altered microglial and 

neuronal activity, markers of inflammation, angiogenesis and metabolism are assessed. 

Region specific changes in brain protein cytokines are identified, indicating differing 

mechanisms of acclimatization or unique regional characteristics influence cytokine 

signaling. Since the brain experiences high levels of oxygen and glucose consumption, 
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glucose metabolism is an important component of normal brain function and may be 

indicative of hypoxic stress and its effect on cognitive functioning after high altitude 

exposure. Peripheral glucose levels decrease after high altitude exposure, as well as 

following microglia depletion, further supporting the role of microglia in regulating 

glucose homeostasis in the brain and with possible implications for susceptibility to 

hypoxic stress and inflammation. Future studies will investigate how this disruption of 

the primary energy source for neurons may impact functional outcomes. The role of 

microglia in modulating this effect is complex, and additional studies are necessary to 

fully understand how sex specific mechanisms and microglia function contribute to the 

degradation of neural circuitry in the inflammatory environment induced by high altitude.   

Current available treatments to mitigate the effects of high altitude exposure are 

only effective in addressing acute symptoms relating to cardiovascular and pulmonary 

stress. The current studies show that functional deficits associated with long term 

hypobaric hypoxia involve the interaction of microglia and neurovascular components, in 

a region and sex specific manner. Future research should investigate how this may inform 

the development of therapeutics to improve cognitive outcomes after chronic exposure 

and to address reversibility. 
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CHAPTER 1: Introduction 

High altitude is characterized by hypobaric hypoxia, reducing oxygen availability 

for blood and tissue absorption with serious implications for cardiovascular, metabolic 

and cognitive functioning (23; 54; 134; 135; 161). Substantial research has characterized 

the physiological role of hypoxia in response to high altitude but the effects on the brain 

remain to be elucidated (100). 

Clinical research has revealed significant changes in cardiovascular and brain 

glucose metabolism, and persistent cognitive deficits have also been identified in 

climbers after high altitude exposure (54; 134; 135); (161). Short term high altitude 

exposure can cause long-term neurophysiological impairments including diminished 

manual dexterity and hand-eye coordination and evidence suggests individuals living at 

high altitude suffer from marked deficits in memory functioning and general cognition 

(380).  

Previous investigations in mouse models have demonstrated neurological changes 

following chronic high altitude exposure, including alterations in myelination, 

inflammation and vascularization (63; 64). Transcriptional data have identified changes 

in inflammatory, angiogenic and metabolic pathways following high altitude exposure 

(63). This may disproportionally affect brain regions that are more sensitive to the impact 

of hypoxic stress on cell function and survival, or regions requiring additional metabolic 

demand for vascularization and/or inflammatory activity. Furthermore, behavioral tests 

have identified distinct hippocampal memory dysfunction following high altitude, 

suggesting the induction of maladaptive mechanisms affecting neuronal circuitry and 

detrimental for normal cognitive functioning (63). It is hypothesized that a key 
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component of this maladaptive shift is related to the dysfunctional chemotactic activity of 

microglia in their interactions with the neurovasculature. Due to the clear evidence that 

hypoxia causes serious shifts in inflammatory profiles and neuronal activity in a region 

dependent manner and the implications this has for the role of metabolism, the neuronal 

and molecular basis for changes in cognitive functioning after chronic high altitude 

exposure are investigated here. 

The overarching hypothesis of this dissertation is that chronic hypobaric 

hypoxia causes angiogenesis and blood-brain barrier disruption, creating an 

inflammatory microenvironment. This microenvironment is influenced by 

angiogenic markers, cytokine signaling and altered glucose metabolism, 

contributing to a maladaptive shift in microglia activity which influences neuronal 

function leading to cognitive deficits (Fig. 1). Of particular interest is the investigation 

into vascular, metabolic, microglial and neuronal mechanisms after 3 weeks high altitude 

exposure, as the brain has transitioned from acute to chronic acclimatization.  

HIGH ALTITUDE 

High altitude is considered any elevation over 2500 m above sea level; over 140 

million people worldwide live permanently at high altitude, and many of them born at sea 

level are not genetically adapted, and approximately 40 million additional individuals 

frequently spend several hours to days at a time in these extreme environments for work 

or recreation (230; 261). The low pressure low oxygen environment of high altitude has 

considerable effects on human physiology (38; 277; 311; 358; 359). Although 

atmospheric oxygen concentrations remain at ~21% regardless of altitude, air density 

decreases with increased elevation (so O2 molecules are spaced farther apart and fewer 
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molecules are present within the same volume of air), requiring increased ventilation to 

improve the level of oxygen inhalation but still resulting in hypoxia. While acute 

adaptation to high altitude does lead the body to undergo compensatory mechanisms like 

increased heart rate and respiration rate (201; 284), failure to acclimatize following 

ascent can lead to serious complications such as acute mountain sickness, high-altitude 

cerebral edema and high-altitude pulmonary edema (116; 117; 170; 203). Prolonged 

reduction in oxygen absorption by blood and tissue has serious implications (54; 161; 

253; 380). 

Reduced barometric pressure at high altitude results in decreased partial pressure 

of oxygen and causes low blood oxygen saturation which can lead to adverse acute 

neurological consequences and the persistence of impaired cognitive function following 

extended exposure (27; 266; 310; 362). Individuals at high altitude experience a variety 

of symptoms including sleep disturbance, memory and attention deficits, and challenges 

with fine motor coordination (28; 37; 148; 161; 169; 245; 277; 287; 380). Depressive 

symptoms may develop in association with declining mood at high altitude, but the 

etiology of these emotional changes is unclear (71; 241). These functional impairments 

are likely associated with maladaptive mechanisms involving inflammation, metabolic 

changes, oxidative stress, and vascular adaptation (83; 89; 237; 241; 262; 265; 360). 

NEUROVASCULATURE 

The neurovasculature provides blood to the organs of the body and is the main 

source of oxygen and nutrients; this vast network of arteries, capillaries and veins 

maintain cellular homeostasis throughout the body (99; 276). While vessels undergo 

acute functional changes resulting from constriction and dilation in response to stimuli, 
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vascular remodeling occurs when blood vessels undergo a structural change as an 

adaptive process in response to hemodynamic conditions, potentially contributing to 

pathophysiology of disease (85; 224).  

Angiogenesis is the process by which new capillaries sprout from existing vessels, 

often in response to oxidative stress indicating the need for extension of the vasculature 

to improve access to oxygenated, nutrient-rich blood (138; 156). It plays a crucial role in 

adaptive and maladaptive processes, including tissue regeneration and tumor growth 

(162). Preclinical data shows that high altitude exposure causes increased brain 

vascularization (63).  

Increased systolic pressure of pulmonary arteries at high altitude can contribute to 

the acute development of diffuse high altitude pulmonary edema, where uneven 

vasoconstriction causes increased capillary permeability and pressure which results in 

fluid accumulation in the lungs (212; 298). Headache is the most common complication 

of high altitude exposure, occurring in 80% of individuals at elevations over 3000 m, and 

cerebral vasodilation induced by hypoxia is thought to be the primary cause (47). 

Hypoxia has been shown to increase cerebral blood perfusion, with variations in dynamic 

cerebrovascular reactivity between regions (62; 307). Hypobaria during high altitude 

exposure is associated with greater sensitivity of cerebrovascular reactivity to CO2 

compared to normobaric hypoxia, potentially affecting brain oxygen delivery and 

vasodilation induced by altitude associated hypercapnia (2) . After extended exposure to 

chronic hypoxia at high altitude, cerebral blood flow can return to baseline levels with the 

increased capacity of blood to carry oxygen due to higher blood hematocrit and 

hemoglobin levels (6; 309; 363; 386). 
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Increased endothelial activation contributes to proinflammatory response at high 

altitude (43; 95). Increased stress and blood pressure (as experienced at high altitude) can 

lead to changes in regional vascular remodeling and breakdown of the blood-brain 

barrier, contributing to cerebral vasculature damage (like arterial atherosclerosis, vessel 

resistance/stiffness, increased vessel wall thickness, endothelial damage, etc.) and altered 

hemodynamics (88). Further evidence shows endothelial cell metabolism is a driver of 

angiogenesis under hypoxic stimulation (366). 

Blood-Brain Barrier  

The blood-brain barrier is the interface between the central nervous system and 

peripheral circulation, providing a regulatory avenue for nutrient and waste exchange 

(128; 320). Integrity and function of the blood-brain barrier is maintained by the 

neurovascular unit, comprised of endothelium, neurons, astrocytes, microglia and 

pericytes, with complex tight junction proteins regulating transportation of solutes across 

the barrier (20; 124; 128; 365). This is in contrast to peripheral vasculature, which is 

fenestrated and does not exhibit the high level of selectivity that is found in brain 

vasculature. Disruption of the blood-brain barrier can affect the transport of molecules 

between the blood and brain, as well as induce aberrant angiogenesis and inflammatory 

responses leading to progressive neuronal dysfunction (308; 391). Neuronal activity and 

neurovascular coupling ensures rapid increases in regional blood flow to quickly supply 

more nutrients and remove metabolic waste when necessary (149). Disruption of the 

neurovascular unit is associated with pathogenesis of neurodegenerative diseases 

including dementia and Alzheimer’s disease (157; 258; 274; 308; 320; 379; 391). 

Moreover, hypoxic conditions have been shown to disrupt blood-brain barrier integrity 
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and activates microglia, contributing to inflammatory profiles which lead further to 

impaired cognitive and motor function (84; 387).  

MICROGLIA 

Microglia are the resident macrophage of the central nervous system; these 

dynamic cells are constantly maintaining homeostasis and surveilling the extracellular 

environment by extending and retracting their processes (17; 137; 242; 324; 334). During 

development, microglia help to sculpt neural circuits by targeting synapses for 

elimination and promoting synapse formation (231; 293). In the adult brain, microglia 

contribute to synchronization of neuronal activity (4). Microglia contribute to the 

maintenance of neuronal network stability, providing structural protection of neuronal 

dendrites following network perturbation from seizure hyperexcitability (92). They 

participate in the functional regulation of neurons and glial cells through modulating 

neurotransmitter release and glutamate exchange, excitation/inhibition balance and 

synaptic pruning/phagocytosis, as well as interacting with vasculature by contributing to 

blood-brain barrier maintenance and the neurovascular unit (131; 183; 242; 324; 337). 

Resting microglia make direct contact with neuronal synapses at a rate modulated by 

neuronal activity levels to contribute to homeostatic maintenance, and microglial calcium 

signaling responds to alterations in neuronal activity (338; 346). Microglia exhibit region-

specific phenotypes, exhibiting a spectrum of distinct functional states, and research has 

demonstrated that these diverse characteristics are established and maintained by local 

cues (17; 72). In addition to regional specificity of microglial populations, there are also 

subsets of microglia which are spatially associated with the vasculature (“juxtavascular 

microglia”), establishing constant contact with blood vessels and closely communicating 
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with neighboring astrocytes; these microglia exhibit rapid and unique reactive 

transformation in response to brain lesions (17; 232). 

Microglial Chemotaxis 

Depolarization of microglia membrane potential, as well as decreased 

extracellular calcium concentrations, affects microglia morphology, surveillance activity, 

and decelerates chemotactic response kinetics (166). Rapid extension of process tips 

towards sites of damage/injury relies on signal transduction involving ATP-mediated 

hyperpolarization via P2Y12 receptor activation and THIK-1 channel opening (69; 166; 

210; 323). Microglia have been shown to respond to neuronal hyperexcitation, where 

glutamate binding to NMDA receptors on neurons facilitates calcium influx and ATP 

release which triggers microglial process extension via P2Y12 binding to provide 

inhibitory tone to neuronal circuitry (93). In a mouse model of epilepsy, microglial 

motility and process velocity during basal activity was preserved even after neuronal 

hyperexcitation, but territory of basal surveillance was increased and directed process tip 

velocity towards a purinergic agonist source was elevated (18). Activated microglia 

following injury use similar molecular mechanisms as those used during development to 

target and displace inhibitory synapses in cortical neurons to promote neuroprotection 

and mediate presynaptic stripping (57). 

Microglia Depletion through CSF1-R Inhibition 

Microglia survival depends on signaling through colony-stimulating factor 1 

receptor (CSF1-R), which controls the production, differentiation and function of 

macrophages (178; 188). The use of CSF1-R inhibitors results in depletion of microglia 

populations, with nearly complete depletion within 1-2 weeks of continuous inhibitor 
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administration and full repopulation of the brain possible within 2-3 weeks of ceasing 

CSF1-R inhibitor treatment (67; 108). Microglia depletion does not seem to have a 

deleterious effect on healthy cognition and behavior (67). When microglia are 

repopulated in the brain following depletion, their distinct regional phenotypes are 

reestablished (72). While microglia activity has an initially protective role in CNS injury 

and disease response, limiting damage and phagocytosing toxins and waste, the 

development of a chronic inflammatory profile can contribute to maladaptive local brain 

pathology and neurodegeneration (67; 173; 280; 283; 352; 369). For this reason, studies 

have explored the benefits of resetting microglia populations using CSF1-R inhibitors to 

halt runaway inflammation and improve functional outcomes after injury or disease (67). 

This research has shown that abnormal microglial morphology and activity in disease 

models associated with impaired cognition and neurophysiogical deficits like decreased 

spine density and impaired activity can be rescued through microglia depletion (67; 269).  

Microglia and Hypoxia 

High altitude causes the release of peripheral and central inflammatory cytokines 

which increase the number of activated microglia in the brain and exacerbate impaired 

motor and cognitive abilities (63; 176). Microglia and neuroinflammation under hypoxic 

conditions are also implicated in the pathophysiology of pulmonary hypertension through 

blunted synaptic activity of sympathetic neuronal circuitry (250). Following transient 

cerebral ischemia, microglia experience prolonged contact with synapses and facilitate 

the pruning of synaptic buttons, indicating a role in hypoxia induced turnover of synaptic 

connection with possible implications for cognitive deficits (346). Microglia respond to 

damage-associated cues and show metabolic flexibility by shifting to glutamine 
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consumption when glucose is unavailable, allowing them to maintain critical phagocytic 

and surveillance activity in energy deprived environments (33). Hypoglycemia has no 

independent impact on microglia morphology or motility during surveillance of brain 

parenchyma and damage-sensing response, but may be vulnerable to combined hypoxia 

and hypoglycemia (33; 206). Indeed, upregulation of HIF-1 genes after hypoxia 

negatively impacts microglial mitochondrial metabolism, contributing to microglial 

dysfunction in neurodegenerative diseases like Alzheimer’s (219). Of particular 

relevance, studies have demonstrated that chronic hypoxia induces blood-brain barrier 

disruption throughout the CNS in a region-specific manner and that microglia play a 

crucial role in maintaining vascular integrity, with reactive microglia aggregating around 

leaky vessels (120-122). Depletion of microglia with a CSF-1R inhibitor increased 

hypoxia induced cerebrovascular leak and loss of endothelial tight junction proteins (120-

122). Regions undergoing the greatest degree of angiogenesis after hypoxia also 

exhibited the most level of blood-brain barrier disruption, indicative of vascular leakage 

possibly being a byproduct or a driver of angiogenic remodeling (120-122).  

Microglia Mediate/Modulate Neuronal Activity 

In addition to their role in phagocytosing dying neurons, pruning synapses and 

producing ligands to promote neuronal health and communication, microglia also 

modulate neuronal activity primarily by suppressing neuronal over-activation (19; 356). 

Neuronal intercommunication involves electrochemical events and molecular processes, 

where the functional properties of neural and glial networks and the release of signaling 

factors between these cells elicit functional and structural changes in synaptic activity to 

facilitate cognitive performance (327). The main interface for neuronal communication is 
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the synapse, where exchange of signaling molecules dictate the activity of neuronal 

circuitry (314). Synaptic changes can be measured through the induction of long-term 

potentiation by the delivery of high-frequency tetanic stimulation or long-term depression 

by delivery of low-frequency stimulation and this has become a standard approach to 

assess hippocampal circuitry and their synapses (35; 36; 132; 153; 220; 222). The 

changes in synaptic strength elicited by artificial induction of long-term potentiation and 

long-term depression in the hippocampus are considered to demonstrate the capacity of 

the brain for spatial memory formation and erasure (34; 35; 221; 240; 292). The negative 

feedback control activity of microglia on synaptic activity is region-specific and relies on 

microglia sensing extracellular ATP and converting it to adenosine, which then acts at 

neuronal synapses to increase inhibitory tone (19). Microglia also rescue neurons from 

excitotoxicity by preventing excess depolarization through migration of microglial 

processes towards swollen axons where microglia-axon contact facilitates removal of 

debris and membrane repolarization back to resting potential, thus preventing neuronal 

damage due to hyperactivity (151). Interestingly, while microglia promote synaptic 

activity and enhance neuronal synchrony during healthy homeostatic surveillance 

activity, inflammatory activation of microglia actually contributes to impaired network 

synchronization, suggesting a role of inflammation and immune response in cognitive 

functioning (4). 

Microglia play a protective role in the presence of neuroinflammation by 

preserving synaptic plasticity through Sirt2 signaling, without which NMDA-mediated 

long-term potentiation in the hippocampus is impaired (289). However, microglia 

activation has also been shown to cause deficits in long-term potentiation through the 
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release of proinflammatory cytokines like TNF-α and IL-1β (191). Under inflammatory 

conditions, microglia shift to aerobic glycolysis and stabilize HIF-1α, producing 

proinflammatory cytokines that contribute to inhibition of long-term potentiation (378).  

Crosstalk between microglia and neurons can also affect microglial morphology, 

with the induction of long-term potentiation causing an increase in the number of 

microglial processes and increased duration of microglial process contact with dendritic 

spines (264). Neuronal hyperexcitability can lead to excitotoxicity and disruption of local 

ATP microgradients which in turn negatively impacts microglial motility and phagocytic 

efficiency, triggering an uncoupling of critical phagocytosis apoptosis mechanisms (1). 

MOLECULAR PATHWAYS IN THE BRAIN IMPACTED BY HIGH ALTITUDE 

High altitude exposure induces an increase in plasma VEGF levels due to hypoxic 

regulation, but circulating VEGF is not associated with pathogenesis of acute mountain 

sickness (77). Inflammation and hypoxia share significant crosstalk in regulation of 

transcriptional responses (265). Inflammatory mediators like IL-6 contribute to 

development of high altitude complications like pulmonary edema, but do not seem to be 

the direct cause of pathophysiology (298). Oxidative stress drives adaptation to high 

altitude, but oxidative stress damage is shown to be closely related to acute mountain 

sickness severity and excessive reactive oxygen species generation under hypoxic 

conditions can contribute to a reduction in capillary perfusion of oxygenated blood, 

precipitating the development of maladaptive neurological consequences (15; 142). 

Mechanisms of chronic high altitude adaptation involve many molecular pathways 

including oxidative stress, inflammation (IL-1β, IL-6, TNF-α, NF-kB), protein kinase 

activation (ERK5, p38α and PKCα), and hypoxia signaling (HIF-1α and SDF-1) (172; 
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176; 261; 262; 348; 377). HIF-1α has been shown to modulate inflammatory response 

and glial activity following ischemic brain damage, controlling the progression of 

neurological symptoms (10). HIF expression in the carotid bodies and CNS supports 

ventilatory acclimatization to hypoxia during chronic exposure most likely through 

autonomic feedback, with activation of VEGF and erythropoietin pathways involved in 

reducing metabolic oxygen demands and modulating physiological control circuits (236; 

271; 272). 

Metabolism Pathways Impacting Brain Function at High Altitude 

Evolutionary genetic adaptation to high altitude (relevant for Tibetan, Andean and 

Ethiopian populations) relies on variations in oxygen transport to improve blood flow to 

vital organs and efficiency of oxygen utilization, so it is reasonable to explore the role of 

metabolic shift in acclimatization to chronic high altitude exposure (233; 303). Energy 

metabolism is affected by the hypoxic conditions of high altitude exposure (237-239). 

Improved biochemical coupling at the mitochondrial inner membrane may enhance 

oxygen efficiency at high altitudes, and downregulation of electron chain complexes may 

ameliorate the effects of increased reactive oxygen species production (238). Adaptation 

of skeletal muscle mitochondria in high-altitude native deer mice as well as in the 

acclimatization of Everest climbers shows a shift to enhanced aerobic performance 

contributing to hypoxia resistance (174; 214). Glutamine supplementation may improve 

mood and cognition after high altitude exposure by mitigating hypoxia-induced 

inflammation and providing an additional source of energy as the precursor of glucose 

(78).  
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Neuronal Activity and Hypoxia 

Oxygen is critical for cell survival, and exposure of the brain to hypoxia leads to a 

number of adverse effects including neuron apoptosis (46). The metabolic stress induced 

by hypoxia can contribute to neurodegeneration (260). Models of sleep apnea use chronic 

intermittent hypoxia exposure and demonstrate memory impairment and disruption of 

adult neurogenesis as well as attenuation of NMDA-dependent long-term potentiation, 

possibly through activation of adenosine receptors at the synapse (13; 155; 182). During 

periods of low glucose exposure paired with hypoxia, long-term potentiation is impaired 

through nitric oxide release and aberrant NMDA receptor activation at the synapse (392). 

Prenatal hypoxia is also known to produce memory deficits and impair synaptic plasticity 

(389). Hypoxia has been used as a preconditioning treatment to induce a neuroprotective 

state following transient ischemic stroke by increasing extracellular levels of adenosine 

and cerebral blood flow; upregulation of the adenosine transporter ENT1 prevents this 

neuroprotection (65). Reducing HIF-1α accumulation and inhibiting IL-1β production by 

microglia rescues long-term potentiation in proinflammatory conditions (378), suggesting 

how microglia may be involved potentially in cognitive deficits after hypoxia or high 

altitude exposure. 

CURRENT TREATMENTS FOR HIGH ALTITUDE EXPOSURE 

Current Treatments for High Altitude Exposure 

While slow ascent or pre-acclimatization with staged ascent have been shown to 

have some benefit in preventing acute mountain sickness (24; 26; 29; 74; 116; 202), any 

efficacy for reducing the maladaptive consequences of chronic exposure has not been 

demonstrated. Pharmacological prophylactic and acute treatment interventions primarily 
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rely on acetazolamide, dexamethasone, and ibuprofen (82; 87; 118; 152; 189; 197; 202; 

203; 254).  

Carbonic anhydrase inhibitors 

Carbonic anhydrase inhibitors  

Acetazolamide is a carbonic anhydrase inhibitor, which is thought to prevent/treat 

acute mountain sickness through metabolic acidosis, improved arterial oxygenation, and 

opposition of hypocapnic alkalosis from the hypoxic ventilatory response (171; 321). It 

has been shown to decrease hematocrit and serum erythropoietin, as well as increasing 

arterial oxygen saturation and cerebral tissue oxygenation (285; 336). Studies have shown 

that acetazolamide inhibits angiogenesis and expression of aquaporin-1 after hypoxia, 

and that it can inhibit the expression of aquaporin-4 and prevent its redistribution along 

astrocytic endfeet after traumatic brain injury and ischemic stroke, thereby improving 

glymphatic function and sleep (105; 125; 281; 282; 335; 339; 371). Carbonic anhydrase 

inhibitors have been found to reduce the effects of ischemic stroke and intracerebral 

hemorrhage by reducing microglia activation, decreasing tissue damage and improving 

functional outcomes (75; 112). However, research also shows that acetazolamide impairs 

fear memory consolidation by decreasing amygdalar long-term potentiation (374).  

Steroidal anti-inflammatories 

Dexamethasone is a glucocorticoid with anti-inflammatory and 

immunosuppressant effects which contribute to improved arterial oxygenation and 

enhanced ventilator response, ultimately improving cognition and maximal aerobic 

capacity as well as suppressing plasma erythropoietin levels (185; 190; 247; 322). The 

potential role of dexamethasone in regulating angiogenesis is unclear, with studies 
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demonstrating both inhibition and induction of angiogenic mechanisms (51; 56; 96; 165; 

200). Dexamethasone decreases permeability of cerebral vasculature for macromolecules 

and has a stabilizing effect on blood-brain barrier integrity, with prevention of 

glucocorticoid receptor degradation in brain endothelial cells having a protective effect 

after traumatic brain injury (129; 328). There is also some evidence that aquaporin-4 

expression may be mediated by glucocorticoid activity (80; 111; 354). The potential 

implications for glymphatic function may explain certain effects of dexamethasone on 

decreasing sleep and preventing the elimination of synapses by microglia as associated 

with alterations in microglia phenotypes and function (60; 257). 

Nonsteroidal anti-inflammatories 

Ibuprofen is a non-selective cyclooxygenase inhibitor, and while it ameliorates 

headache symptoms associated with acute mountain sickness and has been shown to 

prevent overall incidence of the illness partially by blocking increased hypoxic 

ventilatory response, it does not have a significant effect on blood cytokines or blood and 

tissue oxygenation relating to altitude exposure (25; 189; 204). Some studies have shown 

that ibuprofen can reduce angiogenesis and cell proliferation while modulating VEGF 

levels (5; 248; 326; 361). Ibuprofen administration can prevent some microglia activation 

in the acute stages of hypoxia acclimatization, but these effects are not maintained during 

chronic exposure (73). There is also evidence that COX-2 inhibition through ibuprofen 

administration can help restore memory function in a model of mouse model of 

Alzheimer’s disease by preventing the suppression of hippocampal long-term 

potentiation by amyloid-beta protein plaque accumulation (160), but high dose 
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administration of ibuprofen in C57BL/6 mice actually led to decreased long-term 

potentiation amplitude (106).  

SUMMARY 

High altitude exposure is characterized by at least a 6% reduction in available 

oxygen for absorption by blood and tissue through hypobaric hypoxia, with serious 

implications for cognitive, cardiovascular, and metabolic functioning. The physiological 

consequences of acute high altitude exposure are well documented, but the persisting 

effects of extended stay at high altitude are underexplored.  People frequently travel to 

high altitude locations for work and recreation, and every day millions of people fly in 

airplane cabins which are not pressurized to sea level conditions. Prolonged high altitude 

exposure is known to cause long-lasting cognitive effects, so the potential impact of high 

altitude on modern society is quite considerable. Therefore, it is crucial to explore the 

mechanisms behind these maladaptive processes, in order to mitigate the danger of high 

altitude to health and wellness. 

Microglia play a critical role in neuronal function through synaptic pruning and 

response to myelin degradation, and microglial-vasculature interactions are implicated in 

some neurodegenerative conditions. Angiogenesis and vascular remodeling in response to 

oxidative stress at high altitude increases the opportunity for blood-brain barrier 

disruption, which may create an extracellular environment promoting inflammation and 

degeneration. This altered extracellular milieu may impact microglia activity and the 

nature of their interactions with neurovasculature, contributing to the deterioration of 

axonal integrity and synaptic transmission associated with persistent cognitive deficits 

after high altitude. It is hypothesized here that high altitude disrupts microglial 
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function and their pathophysiological interactions with neurovasculature, impacting 

neuronal pathways associated with cognitive function (Fig. 1). To test this hypothesis, 

the following specific aims were pursued: 

Specific Aim 1: Characterize whole brain and region-specific changes in 

neurovascular structure and integrity after high altitude. These experiments test the 

hypothesis that adaptation to high altitude exposure induces structural changes to the 

neurovasculature including blood-brain barrier disruption. Changes in neurovascular 

diameter, length and tortuosity are assessed through micro-CT imaging of BriteVu 

perfused vessels. Immunohistochemistry identifies compromised blood-brain barrier 

integrity. To determine how microglia may influence vascular response to high altitude, 

experiments are replicated in mice whose microglia were depleted during high altitude 

exposure through administration of CSFR1-inhibitor PLX5622 in chow (see Methods). 

Specific Aim 2: Identify region-specific changes in dynamic microglial 

functional interactions with neurovasculature in response to high altitude exposure. 

These experiments test the hypothesis that microglial chemotaxis is primed by high 

altitude exposure, differentially affecting the inflammatory response to vascular or 

cellular damage depending on the brain region. Microglia chemotaxis in response to 

vessel ablation or cell ablation is recorded using ex vivo 2-photon imaging, measuring 

speed of microglia process response. Analyses focus on the cortex and hippocampus. 

Specific Aim 3: Determine the role of microglia in functional 

neurophysiological hippocampal deficits after high altitude. These experiments test 

the hypothesis that maladaptive microglial activity after high altitude exposure negatively 

impacts properties of neuronal circuitry and contributes to spatial memory impairments 
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found following high altitude exposure.  Associative long-term potentiation (LTP) 

required for spatial memory formation is measured through field excitatory postsynaptic 

potential (fEPSP) to assess Schaffer collateral synapses in the CA1 hippocampus. To 

determine how microglia may influence neuronal response to high altitude, experiments 

are replicated in mice whose microglia were depleted during high altitude exposure 

through chow administration of CSFR1-inhibitor PLX5622.  
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Figure 1. Mechanistic hypothesis of high altitude exposure acclimatization.   
Hypobaric hypoxia causes increased vascularization and inflammation (A), 
inducing leakage and disruption of the blood-brain barrier (B) that creates an 
inflammatory microenvironment which impairs neuronal function (blue) 
mediated by microglial (green) interactions at the synapse (C) leading to 
cognitive deficits. Created with BioRender.com   
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CHAPTER 2: Materials and Methods 

GENERAL METHODS 

Animals 

Institutional Animal Care and Use Committee (IACUC) approval was obtained 

under experimental protocol APG-21-847/ APG-19-744/APG-18-847 and breeding 

protocol APG-20-687. Male and female C57Bl/6J mice were obtained from Jackson Lab 

(#000664, Jackson Laboratories, Bar Harbor, ME) to arrive at the Uniformed Services 

University of the Health Sciences (USUHS) at 7 weeks of age, housed separately with 5 

littermates per cage in the USUHS animal facility. For experiments requiring 

heterozygous CX3CR1+/GFP mice, male homozygous B6.129P2(Cg)-Cx3cr1tm1Litt/J 

breeders (transgenic line of mice on C57Bl/6J background expressing GFP in 

microglia/immune cells) were acquired from Jackson Lab (#005582, Jackson 

Laboratories, Bar Harbor, ME) and housed in the USUHS animal facility where they 

were bred with female C57Bl/6J mice to produce litters of heterozygous CX3CR1+/GFP 

mice. All experimental mice were housed on a reverse 12 hour light cycle with lights on 

at 6pm. CX3CR1+/GFP mice entered the high altitude simulation chamber at 

approximately 20 weeks old (used for 2-photon experiments), while all other 

experimental C57Bl/6J mice entered the chamber at 8 weeks old. Mice in the high 

altitude chamber were group housed in their conventional home cages, while mice 

exposed to sea level conditions were kept in conventional cages in a separate reverse light 

cycle room to prevent noise interference from the chamber pump. We have previously 

determined that the noise attenuation within the chamber prevents exposure of high 

altitude mice to significant noise interference from the chamber pump. 
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High Altitude Simulation 

A modified Vicker’s hypobaric chamber altered by Reimers System Inc. (Lorton, 

VA) reduces atmospheric pressure to ~7.4 psi using a vacuum pump (Welch Model 

2585B or 2067B-01) (Fig. 2a). The chamber achieved a simulated altitude of 5000 m 

(high altitude, equivalent to inspired PO2 of 78 mmHg, 10-11% O2, ~60% SpO2), with 

ascent and descent procedures at a rate of 200 m per minute. This altitude was used based 

on previous identification of behavioral phenotypes in the mouse model elicited by this 

altitude consistent with cognitive deficits observed clinically(63; 64), specifically relating 

to hippocampal mediated memory impairment(161). The chamber was located in the 

USUHS animal facility in the common vivarium to ensure consistent environmental 

parameters across conditions. Chamber altitude was monitored using a digital manometer 

to ensure differential pressure of 7.4 psi (AZ Instrument Corp., Taichung City, Taiwan). 

Routine weekly cage maintenance and animal husbandry was performed at sea level, and 

mice were monitored daily for signs of distress. Mice remain in the chamber for 3-4 

weeks high altitude exposure, while sea level mice are housed in the vivarium for the 

same amount of time (Fig. 2b). 

Microglia Depletion 

For experiments examining the direct role of microglia, pharmacological 

depletion of microglia is achieved with relatively new pharmacological tool CSF1R 

inhibitor PLX5622 obtained under material transfer agreement (Plexxikon, Inc., 

Berkeley, CA) administered through diet (1200 mg/kg chow). This method of depletion 

was selected due to ease of administration and brain penetrance, effectiveness in 

accomplishing robust and sustained depletion in the whole brain over a known time-
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course of treatment, and specificity in depleting microglia (305).  This dose was 

established in the literature as sufficient to induce microglia depletion within 1-2 weeks 

(67; 72). Mice were maintained on the PLX5622 or control AIN-76A diet (Research 

Diets, Inc., New Brunswick, NJ) throughout high altitude or sea level exposure, so acute 

adaptation to high altitude occurred with intact microglia populations (Fig. 2b). 

Preliminary experiments confirmed previous findings in the literature that 2 weeks of 

PLX5622 diet administration is sufficient to deplete nearly all microglia (Fig. 3) (72). It 

was previously verified that mice at high altitude eat the same amount of chow on 

average as those at sea level, and consumption of PLX5622 and control AIN-76A chow 

is the same. The control diet is nutritionally identical to the treatment diet. 

METHODS USED TO ASSESS VASCULATURE 

BriteVu and micro-CT Imaging 

This method was selected for the stability and high contrast of the perfusion agent 

and the ability to perform subsequent super high resolution micro-CT imaging of the 

samples for quantification by a cutting edge vessel tracing software. Mice were 

euthanized under heavy isoflurane anesthesia by transcardial perfusion with 1x PBS 

followed by 30 mL of an 18% BriteVu contrast agent solution (1:4.5 dilution) mixed with 

1.5% BriteVu Enhancer (Scarlet Imaging, Murray, UT), maintained at 65-70°C. Perfused 

animals were chilled in ice for at least 1 hour before dissection to ensure solidification of 

the intravascular contrast agent. Brains were post-fixed in 4% PFA for 48 hours within 

the skull before craniotomy and transfer to 1x PBS. Brains were scanned at a high 

resolution 2.98 µm isotropic voxel image size using X-ray acquisition settings of 50 kVp, 

201 µA, and 0.5 mm Al filter with exposure time of 2099 ms per frame and 4 frames 
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averaged at each projection angle, 360° rotation and 0.2° steps, using a Bruker SkyScan 

1172 micro-CT (Microphotonics, Allentown, PA). Bruker’s CTVox 3D visualization 

software was used for 3D reconstruction of vasculature image stacks with no smoothing 

and a 0.54 mm Hamming filter, with 20% beam hardening correction and 10% ring 

artifact correction applied. Quantification of cerebral vasculature data obtained from 

micro-CT scanning was performed using Vesselucida 360 software (v2021.1.3, MBF 

Bioscience, Williston, VT). 3D vascular network reconstructions were automatically 

traced using identical settings across animals: voxel scooping algorithm with seed 

sensitivity set to 90 and seed density set to dense with refinement filter for seed validity 

set to 3, tracing sensitivity set to 90 and maximum gap tolerance allowed.  

Parameters measured for morphological assessment were total average length, 

surface area, and volume, average vessel tortuosity, and average length and volume and 

tortuosity by binned vessel diameters. These were selected to give insight into potential 

role of angiogenesis in high altitude acclimatization. Samples were included in analysis 

based on visual inspection to determine quality of perfusion (conducted on the biological 

sample and the resulting micro-CT images) as well as to verify successful scanning and 

reconstruction of the sample (as determined by checking for vessel doubling or poor 

stitching of micro-CT image stack). 

To determine possible region-specific roles in high altitude cerebrovascular 

adaptation, the cortex, hippocampus and cerebellum of the 3 µm resolution micro-CT 

datasets was analyzed. Brain regions were isolated by co-registration of the micro-CT 

image stacks to an MRI mouse brain atlas template, where the micro-CT volume 

orientation was transformed to the MRI template, and subsequently masked to provide 
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separate volume datasets for the cortex, hippocampus, and cerebellum. This mapping and 

masking process was performed using MatLab (Mathworks, Inc., Natick, MA, USA), and 

then the isolated regions were analyzed using Vesselucida as described above. Successful 

masking was determined through visual inspection based on our knowledge of the 

regional vascular architecture. 

Immunohistochemistry 

Following micro-CT scanning of brains perfused with BriteVu contrast agent, 

samples were sent for coronal brain section cutting by Histoserv Inc. (Germantown, MD) 

and stored in the dark at -80° C until staining and imaging. Slide mounted brain slices (20 

µm thick) were washed 5 minutes in 4% PFA and twice 10 minutes each in 1x PBS 

before 1 hour incubation with 3% non-fat dry milk blocking solution and overnight 

incubation of primary antibodies for labeling extravascular albumin and fibrinogen in 

0.3% Triton X-100 in 1x PBS solution containing 3% non-fat dry milk with rabbit 

polyclonal anti-mouse serum albumin (Cat#ab19196, Abcam, Cambridge, MA) diluted 

1:200 and sheep polyclonal IgG anti-human fibrinogen cross reactive with mouse 

(Cat#4440-8004, Bio-Rad Laboratories, Inc., Hercules, CA) diluted 1:200. After rinsing 

slides with 1x PBS twice 10 minutes each, slides were incubated with secondary 

antibodies goat anti-rabbit IgG H&L (AlexaFluor 594) (Cat#A-11037, ThermoFisher 

Scientific, Inc., Invitrogen/Life Technologies Corporation, Eugene, OR) and donkey anti-

sheep IgG H&L (AlexaFluor 488) (Cat#A-11015, ThermoFisher Scientific, Inc., 

Invitrogen/Life Technologies Corporation, Eugene, OR) both diluted at 1:200. Sections 

were coverslipped with ProLong Gold antifade reagent with DAPI (P36931; 

ThermoFisher Scientific, Inc., Life Technologies Corporation, Eugene, OR). Images were 
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acquired using an Axio Scan.Z1 (Carl Zeiss Microscopy, LLC, Thornwood, NY). Images 

were analyzed using ImageJ. Quantitative analysis of integrated fluorescent density was 

performed using ImageJ. 

MICROGLIA CHEMOTAXIS AND MOLECULAR METHODS 

Ex-vivo 2-photon imaging and novel 4D method for quantitative tip dynamic 
analysis 

This is a live cell imaging modality in intact brain slices that are perfused with 

aCSF; this method was selected instead of in vivo imaging because it facilitates 

assessment of microglia dynamics in the hippocampus, which exceeds the possible depth 

of imaging that can be achieved through cranial windows of live mice. CX3CR1+/GFP 

mice were tail-vein injected with sterile filtered, undiluted DyLight 594 labeled 

Lycopersicon Esculentum (Tomato) Lectin from Vector Labs (Burlingame CA, Cat# DL-

1177) 30 minutes prior to sacrifice by CO2 inhalation (to prevent an interaction of 

anesthetic on microglial activity). 400-μm thick coronal sections were cut in ice-cold 

(~4°C) dissection solution (high-sucrose aCSF containing (in mM): KCl, 2; 

NaH2PO4·H2O, 1.25; MgSO4·7H2O, 2; MgCl·6H2O, 1; NaHCO3, 26; CaCl2·2H2O, 1; D-

glucose, 10; sucrose, 206, bubbled with a mixture of 95% O2 / 5% CO2) on a Leica 

VT1200S Vibratome (Buffalo Grove, IL) and incubated for 30 minutes at 36°C in normal 

aCSF (containing (in mM): NaCl, 126; KCl, 3, NaH2PO4·H2O, 1.25; MgSO4·7H2O, 2; 

NaHCO3, 26; CaCl2·2H2O, 2; D-glucose, 10; sucrose, 20, bubbled with a mixture of 95% 

O2 / 5% CO2). Brain slices were kept at room temperature for up to 8 hours. For imaging, 

the slices were mounted into a tissue slice chamber (Warner Instruments, LLC., Hamden, 

CT) and perfused with temperature-controlled normal aCSF (~30⁰ C). A ZEISS 7MP 

microscope was used to perform 2-photon fluorescence microscopy approximately 80 μm 
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below the surface of the slice. The microscope system used a pulsed infrared laser 

(Chameleon Vision2, Coherent, Santa Clara, CA) with a tunable wavelength range from 

680-1080 nm and a peak power output of 3.3 W at 800 nm. Fluorescence was detected 

with non-descanned detectors (NDDs) equipped with a 525/50 nm bandpass for green 

detection (GFP) and a 605/70 nm bandpass for red detection (tomato lectin). Imaging was 

done using a 40x water immersion objective (NA = 1.0) and controlled with Zeiss ZEN 

image acquisition software. We recorded activity in the hippocampus in striatum 

radiatum layer beneath CA1, and in the cortex in layers 3-5 of the primary motor and 

posterior parietal association areas (depending on slice), enabling us to perform 

experiments in the same slice. For microglia ablation experiments, the cell soma was 

targeted for maximum laser power exposure in order to destroy the cell (confirmed by 

loss of GFP fluorescence throughout the cell body and processes). For vessel ablation 

experiments, a ~10 μm length of target capillary was exposed to maximum laser power 

until the vessel ruptured. Subsequently, 20-30 frame stacks (1 μm step size) were 

acquired, and the 4D movement of processes analyzed. 

Analysis of the 2-photon imaging datasets of microglia motility and chemotactic 

response dynamics over time was made possible through the extensive efforts of our 

collaborators at Virginia Tech, Dr. Guoqiang Yu and his graduate student Mengfan Wang 

(with significant contributions by former student Dr. Congchao Wang). Compared to 

individual tip motility data, relational tip motility data not only contain the tip motility 

information but also include the tip-cell body connectivity information. The complex 

structures are intractable to be analyzed by the common tip detection approaches. Using a 

newly-developed algorithm framework, they improved the data quality and quantification 
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performance (Fig. 4). First, the data are registered and stabilized to uniform noise 

variances for future analysis. By nonlinear transformation for variance stabilization, weak 

signals are also enhanced to improve the detection performance. Then the pre-processed 

data are segmented to foreground and background through an iterative thresholding 

approach. In each iteration, the most significant regions are segmented as foreground and 

removed from the data. It was repeated until no more significant regions can be found. 

Using a novel machine learning algorithm, they have developed a multi-scale microglia 

tip detection approach, using convex hull analysis rather than local patterns to eliminate 

the influence of microglia morphology changes on tip detection. This technique has the 

benefit of not relying on the use of deep neural networks, eliminating the need for time-

consuming annotations and instead utilizing an unsupervised approach while maintaining 

a high degree of accuracy. The algorithm calculates geodesic distance and pixel to 

convex hull distance, creating a score map for tip detection. This method has a superior 

precision and recall compared to previously existing methods, demonstrating robust 

performance even in cases of substantial microglia size and morphology variation. A 

paper detailing the specifics of the tip detection algorithm has been accepted for 

publication (351). Compared to their previous algorithm, which prioritized tip detection 

as isolated signals, the new algorithm maximizes tip detection accuracy and path tracing 

while maintaining relationship with the parent microglia cell and processes to facilitate 

more nuanced interpretation of microglia tip populations. 

The novelty of this algorithm is that it has the capacity to analyze our 4-

dimensional data sets in a fraction of the time required for manual tip detection and 

without collapsing the image stacks into maximum intensity projections, providing a 
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more accurate quantification of measures such as speed and distance. The algorithm also 

exhibits superior performance in precision and recall of tips compared to other peer 

reviewed methods in the literature (184; 192; 355). In addition to outstanding tip 

detection, the algorithm maintains the relationship of tips to the parent cell for assessment 

of cell specific influence on tip dynamics. Furthermore, the algorithm can identify the 

second wavelength channel for vasculature, allowing analysis of microglia tip dynamics 

relative to proximity to blood vessels. This will permit future analysis of unique 

populations of microglia, for instance, comparing the chemotaxis of juxtavascular 

microglia versus parenchymal microglia. 

Cytokine Analysis, Glucose Measurements and Angiogenic Markers 

Blood was collected from the submandibular vein or terminally from the heart 

before perfusion. Glucose readings were taken from the collected blood prior to 

processing for plasma using FreeStyle Lite Blood Glucose Meter (Abbott, Canada) as 

well as StatStrip Xpress Glucose Meter (Nova Biomedical, Waltham, MA) to control for 

hematocrit. Samples were centrifuged for 15 minutes at 4° C and 2000 g/rcf to separate 

out the plasma, and a 2-fold dilution was used for analysis on Meso Scale Discovery 

(MSD) plates. For protein homogenate samples, frozen brains were sliced and regions 

were micropunched (cortex, hippocampus, cerebellum) and put into T-PER (Cat#78510, 

ThermoFisher) with 1x HALT protease inhibitor (Cat#87785), smashed with a pestle, 

sonicated, centrifuged for 5 minutes at 10,000 g at 4° C, and supernatant removed. 

Protein concentrations were determined using a BCA assay and appropriate dilutions 

were calculated for 25 μg total protein per 50 μL well on the MSD plates. 
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Plasma and brain tissue cytokine analysis was performed using MSD V-PLEX 

Plus Mouse Cytokine 19-Plex Kit (Cat#K15255G, pro-inflammatory panel and cytokine 

panel measuring IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, KC/GRO, IL-10, IL-12p70, 

IL-15, IL-17A/F, IL-27p28/IL-30, IL-33, IP-10, MCP-1, MIP-1α, MIP-2, TNF-α) and U-

PLEX Mouse SDF-1α Assay (Cat#B22VB) run as recommended by the manufacturer 

and read using MSD Plate Reader model 1201 (MSD, Rockville, Maryland). These 

assays were selected because of their ability to analyze several targets in the same well 

(multiplexing) and for their higher sensitivity and broader dynamic range with low 

background and signal amplification. 

Quantitative real time RT-PCR was used to assess changes in mRNA expression 

of selected angiogenic markers shown to be upregulated after 3 and 12 weeks high 

altitude exposure in the hippocampus and amygdala through RNA-Sequencing (63). 

RNA samples from 12 week high altitude exposed mouse hippocampus (previously 

analyzed through RNA-Seq) were used to create cDNA for qPCR validation of 

angiogenic transcript expression, specifically of Flt-1, Vtn, Fn1, Vwf and SDF-1. cDNA 

was quantified on an ABI 7900 real time PCR instrument (Applied Biosystems, 

Waltham, MA) using specific TaqMan gene expression assays with amplicon lengths 50-

150 bp (Cat#4331182, Thermo Fisher Scientific, Waltham, MA). To determine transcript 

expression, cDNA was diluted 1:2.5 for SDF-1 (Mm00445553_m1) and diluted 1:5 for 

Flt-1 (Mm00438980_m1), Vtn (Mm00495976_m1), Fn1 (Mm01256744_m1) and Vwf 

(Mm00550376_m1), normalizing to endogenous control ActB (Mm02619580_g1) and 

run according to the Taqman Gene Expression Master Mix Protocol (Cat#4369016, 
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Thermo Fisher Scientific, Waltham, MA). Samples were run in triplicate for analysis of 

Ct values using the ΔΔCT following guidelines of Applied Biosystems. 

FUNCTIONAL METHODS 

Hippocampal Long-Term Potentiation 

Electrophysiological assessment of long-term potentiation through field excitatory 

post-synaptic potentials (fEPSPs) is a classic measure of synaptic plasticity that has been 

used previously in the lab. It involves the persistent strengthening of Schaffer collaterals 

synapses in the CA1 region of the hippocampus through high frequency stimulation and 

is considered to be one of the primary mechanisms underlying associative learning and 

memory. We selected this protocol for its relative simplicity in measuring functional 

synaptic changes. Mice were euthanized under heavy isoflurane anesthesia by 

transcardial perfusion with 25 mL of chilled 4° C NMDG-HEPES aCSF containing (in 

mM): NMDG, 93; HCl, 93; KCl, 2.5; NaH2PO4·H2O, 1.2; NaHCO3, 30, HEPES, 20; D-

glucose, 25; sodium ascorbate, 5; thiourea, 2, sodium pyruvate, 3; MgSO4·7H2O, 10; 

CaCl2·2H2O, 0.5 (329). Perfused animals were decapitated and the brain rapidly removed 

and placed in ice-cold (4° C) NMDG-HEPES aCSF bubbled with a mixture of 95% O2 / 

5% CO2. NMDG-aCSF reduces hypoxic damage to the brain tissue, enhancing 

preservation of neurons and overall brain slice health (16; 329). The hippocampi were 

dissected from the brain and 400-µm thick transverse slices were cut on a McIlwain 

tissue chopper (Brinkmann, Westbury, NY, USA) and transferred to a holding chamber 

for 1 hour incubation in warmed 32° C high magnesium aCSF containing (in mM): NaCl, 

124; KCl, 2.5; NaH2PO4·H2O, 1.2; NaHCO3, 24; HEPES, 5; D-glucose, 12.5; MgSO4, 4; 

CaCl2·2H2O, 2, bubbled with a mixture of 95% O2 / 5% CO2. Slices were then 
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transferred to a recording chamber (Kerr Scientific Instruments Tissue Recording 

System, Christchurch, New Zealand) and allowed to equilibrate for at least 1 hour prior to 

recording. They were constantly superfused (~1-2 mL/min) at ~32° C with standard 

recording aCSF containing: NaCl, 124; KCl, 2.5; NaH2PO4·H2O, 1.2; NaHCO3, 24; 

HEPES, 5; D-glucose, 12.5; MgSO4, 1.3; CaCl2·2H2O, 2, bubbled with a mixture of 95% 

O2 / 5% CO2.  

Field excitatory postsynaptic potentials (fEPSPs) adjusted to ~33% of maximal 

response were recorded with a glass pipette filled with standard recording aCSF, with the 

pipette tip placed in the CA1 region of the hippocampus and the stimulating electrode 

(Teflon coated platinum wire) placed in the Schaffer-collateral commissural pathway in 

the CA3 regions. The fEPSPs were digitized using a digitizer (Model TL-1) and amplifier 

(Model Axon 200B) from Axon Instruments (Axon Instruments/Molecular Devices, 

Sunnyvale, CA) and a Universal Imaging PC running WinLTP version 2.30D long-term 

potentiation acquisition software (Dr. William Anderson, Department of Anatomy, 

University of Bristol, UK) (11). Following 30 minutes of baseline recordings (1 stimulus 

every 60 s, with constant stimulus intensity (mA) to evoke approximately one third of 

maximal response), post-tetanic potentiation was induced with a single train 100 Hz for 1 

second high frequency stimulation and evoked responses were measured every 60 s for 1 

hour (194; 300).  

Recordings were averaged across 5 consecutive waveforms collected at 60 s 

intervals, with repeated-measures ANOVA used to compare differences in percent fEPSP 

slope change (mV/ms) between high altitude and sea level mice. 
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DATA ANALYSIS & STATISTICS 

Analysis of vascular density, diameter and tortuosity was processed and analyzed 

with Vesselucida software (MBF); immunohistochemistry data was processed with 

ImageJ; microglia chemotaxis was processed using a novel algorithm developed by 

collaborators from Virginia Tech. Electrophysiology data was processed using WinLTP 

(11) and Clampfit 10.7 (Axon Instruments, Molecular Devices, San Jose, CA) software. 

Statistical analyses were performed in GraphPad Prism 9.3.1 and results presented as 

mean ± standard error of the mean (SEM) unless otherwise noted. In all cases, 

significance is determined with minimum p < 0.05, and individual statistical tests and p 

values are noted in the results section and figure legends. Most data was analyzed with 3-

way or 2-way analysis of variance (ANOVA) followed by Tukey’s or Holm-Šídák 

multiple comparisons post-hoc test. In instances where there are no sex effects, male and 

female mice are grouped together for analysis. Significance markers are as follows: * = 

altitude effect, # = microglia depletion effect, $ = sex effect, r = region effect (* = p < 

0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, and so forth). Data points were 

identified and excluded as outliers if they were more than two standard deviations from 

the mean. 

Sex was not a significant factor for whole brain vasculature, so sexes were 

combined and whole brain vasculature variables were analyzed with 2-way ANOVA for 

altitude and microglia depletion factors. Sexes were also combined based on whole brain 

results for regional analyses where multiple unpaired t-tests were performed with 

correction for multiple comparisons by controlling the false discovery rate using the post-

hoc Benjamini, Krieger and Yekutieli method. Integrated density of albumin staining was 

analyzed by region using 3-way ANOVA followed by Holm-Šídák post-hoc test to 
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control for multiple comparisons between altitude, sex and depletion factors. Microglia 

chemotaxis experiments were analyzed with 3-way ANOVA of altitude, sex and region 

factors followed by Holm-Šídák multiple comparisons test. Glucose readings were 

analyzed with 2-way ANOVA for altitude and microglia depletion factors followed by 

Tukey’s post hoc test for multiple comparisons. Cytokines and qPCR data were analyzed 

with Student’s t-test. Long-term potentiation data was analyzed with a 3-way ANOVA 

for percent slope change at the 30 minute timepoint indicating a significant 3-way 

interaction effect of altitude, sex and microglia depletion, so no groups were 

consolidated, and an a priori analysis of male control diet long-term potentiation was 

performed using a 2-way Repeated Measures ANOVA. 
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Figure 2. Hypobaric chamber and general experimental timeline.   
Converted hypobaric chamber for high altitude simulation, located in the animal 
facilities at USUHS (A). General experimental timeline: high altitude or sea 
level exposure lasts 3-4 weeks; for experiments utilizing microglia depletion 
(PLX5622 treatment), administration begins at the same time as altitude 
condition exposure and continues throughout (B). 
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Figure 3. Microglia Depletion.   

Representative coronal slices from CX3CR1-GFP+/- mouse brain, demonstrating 
microglia depletion after 3 weeks PLX5622 diet administration (middle) and 3 
weeks microglia repopulation (bottom) compared to control (top). 
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Figure 4. Algorithm for 4D analysis of microglia tip detection and movement.   
As described in Wang et al. (2022). (351) 
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CHAPTER 3: Results 

HIGH ALTITUDE IMPACT ON NEUROVASCULAR STRUCTURE 

To determine the effect of chronic high altitude exposure on neurovasculature 

structure, whole brain and region-specific quantification of vasculature is performed to 

identify changes in volume and branching as indicators of angiogenesis. Blood-brain 

barrier integrity is also assessed. 

Increased neurovasculature following (3 or 7 week) high altitude exposure revealed 
by micro-CT 

Preliminary analysis of brain vasculature in C57Bl/6J male mice following 

exposure to simulated high altitude (5000 m) for 7 weeks (normal LAM food diet, no 

microglia ablation treatment) using 6.7 µm resolutiomn micro-CT imaging revealed 

significant increase in whole brain vasculature volume (Fig. 5) (Student’s t-test, n = 4 

mice per group, f(3, 3) = 28.3; p = 0.036,). Increasing resolution of X-ray micro-CT scans 

to 3 µm to assess mouse brain vasculature after 3 weeks simulated high altitude exposure 

reveal a continuation of this chronic vascular pathology as an adaptive response to 

hypobaric hypoxia, as primarily identified by an increase in whole brain vasculature 

volume and branching. Sea level and high altitude representative images of micro-CT 

reconstruction images (Fig. 6A) and subsequent traced vasculature (Fig. 6B) for 3 week 

exposure show robust visual evidence of increased vasculature. 3-way ANOVA testing 

was used to determine no significant effect of sex on brain vascularization, so males and 

females were combined for statistical analysis using 2-way ANOVA with Tukey’s post 

hoc multiple comparisons. High altitude significantly increases whole brain vasculature 

volume (f(1, 21) = 30.37; p < 0.0001,) (Fig. 9A), and number of branching nodes (f (1, 22) = 
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13.41, p = 0.001) (Fig. 9C) and endings (f (1, 22) = 11.36, p = 0.003) (Fig. 9D). To assess 

the role of microglia on vasculature in response to high altitude, microglia were depleted 

during high altitude exposure. Microglia depletion in sea level mice reduces vascular 

structural complexity, with significant decrease in vessel length (f (1, 22) = 3.392, p = 

0.038) (Fig. 9B) and number of branching nodes (f (1, 22) = 4.633, p = 0.043) (Fig. 9C), 

but mechanisms of high altitude adaptation overcome this effect (n = 5-8 mice per 

group). The effect of altitude is illustrated in Figure 7A-C (males and females combined, 

control diet only), while Figure 7D-E show that the effect of altitude may predominantly 

affect vessels in the 10-40 µm diameter range (arterioles and venules).  Increases in the 

number of branching nodes after high altitude exposure is indicative of angiogenesis to 

compensate for hypoxic stress in the brain, which is further supported by increases in 

total number of vessel endings. 

Augmented neurovasculature after 3 weeks high altitude particularly affects cortex 
and hippocampus 

To further assess if specific regions drive vascular augmentation following high 

altitude, 3 week exposure samples were masked to a brain atlas for assessment of the 

hippocampus, cortex and cerebellum (Fig. 8A). There was a significant effect of high 

altitude exposure on average total vessel volume in all three regions (Fig. 8B) 

(hippocampus p = 0.032, t = 2.944; cortex p = 0.006, t = 4.522; cerebellum p = 0.042, t = 

2.955). The hippocampus shows increased vessel length (p = 0.049, t = 2.587) (Fig. 8C), 

while the cortex shows a significant increase in tortuosity (p = 0.035, t = 0.011) (Fig. 

8D), likely reflective of angiogenesis. There was no significant impact of high altitude on 

vessel diameter or number of endings in the regions assessed. It is important to note that 

this analysis combined sexes to maximize sample size for altitude effects (multiple 
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unpaired t-tests, n = 3-4 per group, df = 5; not all brain samples were appropriate for 

region-specific analysis because the atlas registration is very sensitive to discrepancies in 

sample orientation). When looking at the degree of change in each region, the 

hippocampus exhibits the greatest fold difference in vasculature volume (Fig. 8E) and 

length (Fig. 8F), possibly showing unique adaptive mechanisms in that region. 

These results show that even at 3 weeks of high altitude exposure there is 

significant evidence of brain angiogenesis and vascular remodeling. The impact of high 

altitude on brain vasculature and previously published finding following 12 week 

exposure strongly suggest that blood brain barrier might be compromised even at the 3 

week time point (63). In order to address this possibility, integrity of the blood-brain 

barrier was assessed in the brains used for vascular analysis.   

Blood-brain barrier integrity compromised by high altitude 

Increases in albumin staining are indicative of vascular leakage, since albumin is 

typically restricted to blood. Therefore, to measure blood-brain barrier integrity, the 

integrated fluorescent density of albumin staining was evaluated in the hippocampus and 

cortex. A secondary only control was used to ensure that results are not due to 

nonspecific fluorescence. Immunohistochemistry found increased extravascular albumin 

staining after 3 weeks high altitude exposure in the hippocampus (f (1, 51) = 6.184, p = 

0.016) and cortex (f (1, 51) = 5.512, p = 0.023) (Fig. 10). Albumin staining following 

microglia depletion was significantly increased in the male cortex (f (1, 51) = 4.232, p = 

0.045), suggesting a sex-specific role for microglia in blood-brain barrier maintenance (3-

way ANOVA with Holm-Šídák multiple comparisons test, n = 4-10 slices per group). 
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These results confirm the initial hypothesis that blood-brain barrier is 

compromised and may cause exposure of brain neuroparenchyma to peripheral 

inflammatory factors circulating in the brain or may lead brain produced cytokines or 

pro-inflammatory factors to become part of blood circulation and affect other peripheral 

organs.  

HIGH ALTITUDE IMPACT ON MICROGLIA, INFLAMMATION AND MOLECULAR MARKERS 

Recent studies show that homeostatic microglia may play a critical safe-guarding 

role in the dynamic protection of BBB and neuronal activity (120-122).  In order to 

address this, microglia movement dynamics and cytokine levels are evaluated, and the 

impact of microglia on neuronal function is investigated. 

To understand how high altitude affects microglia activity and the extracellular 

environment, microglia chemotaxis is assessed through 2-photon imaging. Peripheral 

glucose as well as brain cytokine and angiogenic markers are measured to determine 

possible factors which could influence the microglia movement dynamics after high 

altitude exposure. 

Microglia movement dynamics are influenced by sex, brain region and altitude 

Analysis of microglia movement during homeostatic (pre-ablation) surveillance 

activity and directed (post-ablation) chemotactic response activity in coronal brain slices 

of transgenic CX3CR1-GFP+/- mice reveals region and sex specific characteristics of 

microglia activity, some of which are influenced by high altitude exposure. Spontaneous 

homeostatic surveillance activity is affected by sex and region (Fig. 11C), with females 

showing a greater number of microglia process tips in the hippocampus at sea level 

compared to cortex (f (1, 120) = 12.76; p = 0.0003) or to males (f (1, 120) = 12.76; p = 0.003) 
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(3-way ANOVA with Holm-Šídák multiple comparisons test, n = 4-11 slices per group). 

During directed microglia chemotaxis following laser ablation experiments (Fig. 11A), 

there is a reduction in microglia tip proliferation observed in male cortex after 3 weeks 

high altitude exposure (f (1, 112); p = 0.008, = 7.286). At sea level, male cortex shows 

greater tip proliferation than hippocampus (f (3, 112) = 7.762; p = 0.011), which is sex 

specific (f (3, 112) = 7.762; p < 0.0001) (Fig. 12A) (3-way ANOVA with Holm-Šídák 

multiple comparisons test, n = 4-11 slices per group). When looking at normalized tip 

speeds at six minutes, there was an interaction of sex, so males and females were 

analyzed separately, showing that female microglia in the cortex seem to be particularly 

sensitive to vessel ablation, showing increased tip speed at 6 minutes post ablation 

(normalized to baseline speeds) (Fig. 12B) (2-way ANOVA with Tukey’s multiple 

comparisons test, n = 8-11 slices per group, f (3, 68) = 8.045, p = 0.0001).   

These findings suggest that some of factors released by “abnormal” microglia 

may impact proinflammatory cytokines in the brain, and because of blood-brain barrier 

disruption, these changes in brain cytokine distribution may be impacted by 

mediators/factors present in peripheral circulation.   

Region-specific changes to inflammatory cytokines in brain after 12 weeks high 
altitude 

Analysis of blood serum cytokines does not reveal any significant changes in pro- 

or anti- inflammatory markers at 3 weeks, although there is a trend towards increased IL-

10 and IL-4 and decreased TNF-α, IFN-γ, MCP-1 and IL-33 (Fig. 13) (Unpaired t-tests, n 

= 5-7 per group, df = 10). Analysis of 12 week high altitude exposed brain homogenate 

shows increased IL-5 (t = 2.694), IL-6 (t = 2.874), IL-9 (t = 3.263) and IL-10 (t = 6.013) 

in the cortex, decreased MIP-1a (t = 9.857) in the cortex, and increased IL-4 (t = 3.662) 
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and MCP-1 (t = 2.895) in the hippocampus (Fig. 14), showing changes in chronic 

inflammation are affected by brain region (Unpaired t-tests, * p < 0.05, n = 3-4 mice per 

group, df = 6). 

Reduced peripheral glucose after high altitude and microglia depletion 

Glucose levels measured from peripheral blood samples of female mice show 

significantly lower blood glucose levels after 3 weeks high altitude exposure and after 

microglia depletion (Fig. 15). There is a significant main effect of high altitude exposure 

(f (1, 14) = 18.51, p = 0.030) as well as microglia depletion (f (1, 14) = 13.80, p = 0.048) on 

reducing blood glucose levels in female mice when measured with a traditional blood 

glucose meter (2-way ANOVA with Tukey’s multiple comparisons, n = 4-5 mice per 

group). Due to the potential interference of increased blood hematocrit in high altitude 

exposed animals, the same blood samples were tested with another glucose reader that 

can control for hematocrit levels. The results showed a less robust effect of high altitude 

and microglia depletion on reduced blood glucose levels. The effect of altitude is no 

longer significant, but this may be associated with the small sample size. 

Increased SDF-1a in brain regions after 3 weeks high altitude 

SDF-1α levels were measured in brain homogenate from the cortex, hippocampus 

and cerebellum. SDF-1 α was significantly increased in the cortex and cerebellum 

following 3 weeks high altitude exposure (Fig. 16A). Levels in the hippocampus appear 

elevated, which would be consistent with previous findings showing increased mRNA 

expression of SDF-1 and other angiogenic markers following 12 weeks high altitude 

exposure in the hippocampus and amygdala (as assessed by RNA-seq and qPCR; Fig. 
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16B) (63). (Multiple unpaired t-test, n = 5 mice per group, * p < 0.05, ** p < 0.01, *** p 

< 0.001, df = 8) 

HIGH ALTITUDE IMPACT ON NEURONAL FUNCTION 

To understand the effect of high altitude on synaptic plasticity, 

electrophysiological recordings are performed to give a measure of the capacity for 

learning and memory in the hippocampus. 

Reduced hippocampal synaptic plasticity after chronic high altitude 

Following the completion of long-term potentiation experiments, a 3-way 

interaction effect was detected between altitude exposure, sex and microglia depletion, 

but Tukey’s multiple comparisons post hoc test did not determine any main effects (not 

enough power due to sample size and variability). Therefore, we performed an a priori 

analysis using 2-way Repeated Measures ANOVA for the male sea level versus high 

altitude groups (with microglia intact), to test our primary hypothesis that high altitude 

impairs long-term potentiation in males, consistent with observed cognitive deficits 

identified previously through behavioral testing in male mice as well as preliminary 

experiments showing long-term potentiation impairment after 12 weeks high altitude 

exposure. A significant attenuation of synaptic plasticity is identified after 3 weeks high 

altitude exposure in the male control mice. While sea level mice demonstrated robust 

long-term potentiation (as measured by percent slope change of fEPSP after high 

frequency tetanic stimulation compared to baseline), high altitude mice failed to achieve 

long-term potentiation. (Fig. 17) (f (1,18) = 5.134, p = 0.036, n = 6-14 mice) 

It has been reported that hippocampal microglia activity although potentially 

regulated by glucose metabolism exhibits metabolic flexibility through cellular 
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reprogramming in response to changes in glucose availability (33) and inhibits 

hippocampal LTP via IL-1β and neuronal interleukin-1 receptor (378). If these 

mechanisms contribute to the reported outcome remain to be determined with CA1 area 

IL-1β measurements in the future studies.  
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Figure 5. Increased neurovasculature after 7 weeks high altitude.   

Representative images of 6.7 µm resolution micro-CT imaging of mouse brain 
vasculature (A) and subsequent vessel tracing (B) for quantification following 7 
weeks high altitude exposure. Significant increase in whole brain vasculature 
volume is observed (C). Contributions of average vessel diameter (D), whole 
brain vessel length (E), and total whole brain vessel endings (F) are not 
significant. Sample includes only male mice on normal LAM chow. Student’s t-
test, n = 4 mice per group, * p = 0.036. Mean ± SEM. 
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Figure 6. Representative images of whole brain vasculature after 3 weeks high 
altitude exposure.   
Representative images of 3 µm resolution micro-CT imaging of mouse brain 
vasculature (A) and subsequent vessel tracing (B) for quantification following 3 
weeks high altitude exposure. High altitude sample (right) show significant 
increase in vasculature compared to sea level control (left). 
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Figure 7. Increased neurovasculature following 3 weeks high altitude exposure.   
Illustrated altitude effect on increased whole brain vasculature volume (A), and 
number of vessel branching nodes (B) and endings (C), indicative of vascular 
remodeling and angiogenesis after 3 weeks high altitude. Vessels in the 10-40 
µm diameter range may drive this increase, as shown by binned vessel volume 
(D) and length (E) graphs. Data shown only from control diet (AIN-76A) mice, 
graphs A-C showing male and female combined (n = 5-8 mice per group), 
graphs D and E show male and female separated (n = 2-5 mice per group). 
Mean ± SEM. 

  



 

 48 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Hippocampus and cortex show unique adaptation to 3 week high altitude.   
Representative traces (A) for region-specific analysis revealing significant 
increased vessel volume in the hippocampus, cortex and cerebellum (B), 
increased length in the hippocampus (C), and increased tortuosity in the cortex 
(D). Hippocampus experiences the greatest fold difference in volume (E) and 
length (F). Multiple unpaired t-tests, n = 3-4 mice per group. Mean ± SEM.  
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Figure 9. Increased vascular remodeling after 3 weeks high altitude exposure is not 

initially dependent on microglia.   
3-way ANOVA showed no significant effect of sex, so male and female groups 
were combined for 2-way ANOVA with Tukey’s post hoc multiple 
comparisons. High altitude significantly increases whole brain vasculature 
volume (p < 0.0001) (A), and number of branching nodes (p = 0.0014) (C) and 
endings (p = 0.0028) (D). Microglia depletion in sea level mice reduces vascular 
structural complexity, with significant decrease in vessel length (p = 0.0376) (B) 
and number of branching nodes (p = 0.0426) (C), but mechanisms of high 
altitude adaptation overcome this effect. n = 5-8 mice per group, mean ± SEM.  
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Figure 10. Increased albumin staining after high altitude indicates blood-brain 

barrier disruption.   
Representative image of albumin staining (red) with nuclear marker DAPI 
(blue) in hippocampus of coronal section of control diet male mouse with 
microglia intact after 3 weeks high altitude (A), showing extravasation of 
albumin around vessels and into the extracellular spaces. High altitude 
significantly increases albumin staining in the hippocampus (p = 0.0162) and 
cortex (p = 0.0228). Microglia depletion significantly increases albumin 
staining in the male cortex (p = 0.0448), and females have higher sea level 
albumin on control diet than males (p = 0.0181). 3-way ANOVA with Holm-
Šídák multiple comparisons test, n = 4-10 slices per group, mean ± SEM. 
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Figure 11. Spontaneous homeostatic microglia activity is affected by sex and region. 

Laser targeting of micro-vessels or microglia soma for ablation elicits a ball 
formation response from nearby microglia cells (A), with arrow in second panel 
indicating site of ablation, and arrow in fourth panel showing completed ball 
formation. There was no significant effect of altitude on baseline microglia 
activity. Females overall show a greater degree of variance, and at sea level 
show increased number of tips present in the hippocampus compared to cortex 
(p = 0.0003) or to males (p = 0.0025). 3-way ANOVA with Holm-Šídák 
multiple comparisons test, n = 4-11 slices per group, mean ± SEM. 

 

 
 

 
 
 
 
 
 
 



 

 52 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Reduced microglia tip proliferation after 3 weeks high altitude. 
Analysis of microglia chemotaxis dynamics show high altitude reduces tip 
proliferation in the male cortex (p = 0.008) (A). Male cortex shows greater tip 
proliferation than hippocampus (p = 0.011), which is sex specific (p < 0.0001) 
(A). 3-way ANOVA with Holm-Šídák multiple comparisons test, n = 4-11 
slices per group. Female microglia show particular sensitivity to vessel ablation 
in the cortex, shown by increased tip speed (B). 2-way ANOVA with Tukey’s 
multiple comparisons test, n = 8-11 slices per group, mean ± SEM. 
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Figure 13. No significant change in peripheral cytokine levels after 3 weeks high 
altitude.   
Cortex (A) and hippocampus (B) significantly altered protein homogenate 
cytokine levels after 12 weeks high altitude exposure. Increased IL-5, IL-6, IL-9 
and IL-10 and decreased MIP-1a is identified in the cortex, while increased IL-4 
and MCP-1 is identified in the hippocampus. Unpaired t-tests, n = 5-7 per 
group, mean ± SEM. 
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Figure 14. Region-specific changes in cytokine levels of cortex and hippocampus 
protein homogenate after 12 weeks high altitude.   
Cortex (A) and hippocampus (B) significantly altered protein homogenate 
cytokine levels after 12 weeks high altitude exposure. Increased IL-5, IL-6, IL-9 
and IL-10 and decreased MIP-1a is identified in the cortex, while increased IL-4 
and MCP-1 is identified in the hippocampus. Unpaired t-tests, * p < 0.05, n = 3-
4 mice per group, mean ± SEM. 
 
 
 
 
 
 



 

 55 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 15. Peripheral blood glucose levels are decreased after high altitude exposure 
and after microglia depletion.   
There is a significant main effect of high altitude exposure (p = 0.0304) as well 
as microglia depletion (p = 0.0481) on reducing blood glucose levels in female 
mice when measured with a traditional blood glucose meter. 2-way ANOVA 
with Tukey’s multiple comparisons, n = 4-5 mice per group, mean ± SEM. 
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Figure 16. SDF-1a levels in protein homogenate are increased after 3 weeks high 

altitude.   
SDF-1a protein levels are significantly increased in the cortex and cerebellum 
following 3 weeks high altitude exposure (A). This is consistent with previously 
identified increase in angiogenesis marker expression after 12 weeks high 
altitude exposure (B). Multiple unpaired t-test, n = 5 mice per group, * p < 0.05, 
** p < 0.01, *** p < 0.001, mean ± SEM.. 
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Figure 17. Reduction of CA1 hippocampal LTP after 3 weeks high altitude 

exposure.   
Sample pre- (black) and post-tetanus (red) (tetanus: 100 Hz, 1 sec duration; 
Schaffer collaterals stimulated with electrode placed in CA3 area) traces for 
male sea level and high altitude control diet mice (A). Analysis using a 3-way 
ANOVA revealed a significant 3-way interaction effect of high altitude, sex and 
microglia depletion, so were performed an a priori analysis of male control diet 
mice to assess the sole effect of high altitude. While microglia depletion 
appeared to have similar effects on percent slope change as high altitude (B), we 
did not have the power to analyze these relationships. The a priori analysis 
revealed a significant reduction in percent slope change in LTP following 3 
week high altitude exposure in male control diet mice compared to sea level 
(C). 2-way Repeat Measures ANOVA, p < 0.05, n = 6-14 mice per group, mean 
± SEM. 
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CHAPTER 4: Discussion 

THE INTERSECTION OF HIGH ALTITUDE, VASCULATURE AND INFLAMMATION 

Oxidative stress and inflammatory microenvironment in the brain after high 

altitude and hypoxia exposure causes a shift in glial activity and metabolism that disrupts 

the regulatory balance of the neurovascular unit and leads to neurodegeneration (164). 

Cerebrovascular pathologies are significant factors in the development of dementia and 

neurodegenerative disorders (107; 294; 332). We have demonstrated alterations in 

vascular structure, integrity and function which contribute to the development of 

neuroinflammation after high altitude exposure. Accumulation of inflammatory 

mediators and toxins may be a primary contributor to the pathology of high altitude 

cognitive decline. 

Hypoxia is a known driver of angiogenesis and vascularization, promoting 

transcriptional regulation of signaling cascades that contribute to increasing blood flow 

and brain oxygenation (156; 390). Hypoxia also induces oxidative stress that triggers 

extensive inflammation that can have negative structural impacts on blood-brain barrier 

integrity (21; 63; 120-122). In the present study, the role of vascular extension in high 

altitude adaptation is investigated. Evidence of blood-brain barrier disruption that may 

play a role in the observed changes to microglia process tip speed and proliferation in 

response to high altitude exposure is also identified. 

Increased brain vascularization at high altitude 

The brain is the primary source of oxygen and nutrient consumption in the brain; 

while it only represents 2% of total body weight, it consumes 20% of total body oxygen 

and 15% of the body’s cardiac output (213; 278). Brain microvasculature plays a key role 
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in maintaining neurocircuitry/neuronal network homeostasis through oxygen and nutrient 

delivery and modulating inflammatory response, undergoing structural changes when 

necessary to regulate these processes (52; 145; 244). It is hypothesized that vasodilation 

is a transient adaptation mechanism during acute high altitude exposure that resolves and 

transitions to angiogenesis and vascular extension, primarily in the capillary beds. A 

significant increase in micro-vasculature in the brains of mice after high altitude exposure 

is expected. While increased vasculature after 12 weeks high altitude exposure has been 

established (63), quantification of the whole brain vasculature required the development 

of a cutting-edge scanning and analysis protocol. Preliminary quantification of 7 weeks 

high altitude exposure mice facilitated fine tuning of the quantification procedures while 

still maintaining high confidence in the presence of a high altitude effect that could be 

identified. After determining that 7 weeks high altitude increases whole brain vasculature 

volume (Fig. 5), it was important to establish how vascular remodeling occurs in the 

transitionary acclimatization period between acute and chronic exposure.  

Analysis of mouse brains after 3 weeks exposure of high altitude revealed a more 

detailed picture of vascular changes, with increases in branching nodes and vessel 

endings indicative of angiogenesis as the driver (Fig. 7). The significant increased 

volume and length of vasculature with diameters in the 10-40 µm range is consistent with 

increases in arteriole/venule vessels and likely leading to increases of the capillary bed. 

Diving deeper into the region-specific analysis shows that brain regions are experiencing 

different levels of vascular remodeling, which may indicate different mechanisms 

participating in high altitude acclimatization in different regions, or that some regions are 

more susceptible to the effects of hypoxic stress due to differences in resting state 
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activities (Fig. 8). The hippocampus shows a greater degree of increased vasculature (fold 

change of volume and length), which could mean that it is particularly suited to vascular 

remodeling most likely because of hippocampal role in spatial memories formation. It is 

interesting to note that the role of microglia in this structural vascular adaptation is not 

initially a primary component of the angiogenesis mechanisms during high altitude 

exposure, but the microglia do seem to be important for maintaining the complexity of 

the vasculature at sea level (Fig. 9). 

High altitude exposure induces chronic vascular leakage: implications for a role of 
putative inflammatory factors 

Increased albumin staining after high altitude exposure suggests chronic leakage 

across the blood-brain barrier, and the extent of this leakage appears to be region specific 

(Fig. 10). Albumin maintains colloid osmotic pressure of plasma that facilitates the flow 

of interstitial fluid into the bloodstream. It has also been shown to play a neuroprotective 

role in some models of focal and global brain hypoxia (30; 31; 86; 263; 375). Astrocytes 

will take up albumin when the brain is exposed to serum albumin, mediated by TGF-β 

receptor activity and leading to neuronal hyperexcitability (144). Microglia have been 

shown to express albumin in the hippocampus following transient cerebral ischemia 

(256). Albumin increases microglia activation and proliferation, with microglia taking up 

extravasated albumin following blood-brain barrier disruption, but microglia are also 

capable of producing albumin (3; 8; 136). Others suggest albumin produced in microglia 

may actually promote neuronal death in neurodegenerative states (45). Studies of fetal 

growth restricted lambs involving chronic hypoxia showed reduced cerebral blood flow 

and increased oxidative stress, microglia activation and blood-brain barrier disruption (as 

assessed by albumin extravasation and increased albumin positive cells in the brain) (48; 
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215). Hypoxia in late gestation sheep has shown sequestration of serum albumin by cells 

in the thalamus and cerebellum, parenchyma albumin staining particularly around vessels 

and significant upregulation of albumin reactivity within hippocampal CA1, thalamus 

and cerebellar Purkinje cells (376). Neuronal hyperactivity in a mouse model of epilepsy 

is associated with blood-brain barrier disruption and increased leakage of serum albumin 

colocalized with neurovascular unit constituents including neurons, endothelial cells and 

microglia (22). It is possible that depletion of microglia reduces inhibitory action on 

neural circuitry, potentially promoting overexcitation that could damage blood-brain 

barrier integrity and contribute to the increased albumin expression seen in the cortex and 

hippocampus even in the absence of high altitude exposure (Fig. 10). The increased 

albumin in male mice after microglia depletion may support the theory that blood-brain 

barrier leakage after high altitude exposure is not solely a byproduct of angiogenic 

remodeling and may be affected by sex differences in microglial maintenance of blood-

brain barrier integrity (122). Increased albumin staining after chronic high altitude 

exposure indicates that leakage across the blood-brain barrier results in the accumulation 

in the extracellular environment that can lead to inflammation, but this may be related to 

failed clearance of the albumin by glial cells or the glymphatic system. It demonstrates 

that integrity was compromised after high altitude exposure, but not whether the integrity 

is still compromised at a chronic timepoint. To assess this, future studies should utilize 

albumin or dextran dye injection prior to perfusion and immunohistochemical analysis to 

see the instantaneous measure of blood-brain barrier disruption. Assessment of 

endothelial tight junction proteins is also an alternative, as other studies have shown that 

1 week hypoxia causes an increase in occludin and ZO-1 expression that is impaired 
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following microglia depletion (120; 121). Identifying changes in tight junction expression 

after 3 weeks high altitude exposure would further reveal the transitional acclimatization 

impact on blood-brain barrier integrity as exposure becomes more chronic. 

Sex specific microglia chemotactic response and tip proliferation 

Our experiments analyzing microglia motility have revealed a region and sex 

specific difference in microglia homeostatic and reactive activity. Females exhibit a 

greater degree of variability in tip speed during surveillance and have a greater number of 

process tips in the hippocampus compared to the cortex or males, possibly indicative of a 

greater degree of cell ramification during spontaneous activity (Fig. 11). In response to 

laser ablation, male microglia have a greater degree of tip proliferation in the cortex, 

while females show a particular sensitivity to vessel damage in the cortex. Estrogen 

receptor expression on microglia may contribute to differential motility profiles observed 

in our 2-photon experiments (341). Estrogen has been shown to promote anti-

inflammatory microglia phenotypes, impacting microglia behavior and phagocytic 

activity and reducing neurodegeneration (195; 367). Female microglia also show a 

particular sensitivity to vessel ablation in the cortex, suggesting microglia respond to 

tissue damage using a nuanced signaling identification mechanism that goes beyond 

simple ATP sensing through purinergic signaling. Additionally, male microglia show a 

significant suppression of tip proliferation during ball formation response activity in the 

cortex after high altitude exposure, possibly relating to confusion of extracellular 

signaling gradients due to increased blood-brain barrier disruption. Most of the observed 

sex differences are only present at sea level, which suggests hypoxic stress may cause 

microglia to achieve a base level of activity dynamics which are intrinsically determined. 
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Preclinical evidence shows that males and females use different signaling mechanisms to 

overcome cellular stress of high altitude exposure, possibly involving cyclooxygenase-2 

which is implicated in sex differences and inflammation after high altitude as well as 

microglia activation (53; 66; 372). 

Metabolic and signaling pathways underlying mechanisms of high altitude 
adaptation 

The differences in microglia activity profiles seen after high altitude support the 

idea that microenvironment in this newly vascularized extracellular space is contributing 

to creating an inflammatory microenvironment which could affect glial and neuronal 

interactions. Extended exposure to reduced oxygen levels activates gene transcription of 

VEGF and HIF that facilitate the initiation of angiogenesis (156; 390). VEGF 

concentrations work as a signal to guide vascular branch patterns and the extension and 

sprouting of endothelial tip cells (90; 102; 104; 110; 267). Wnt signaling, which is critical 

for maintenance of blood-brain barrier integrity, decreases in endothelial cells after 

angiogenesis, suggesting a period of leakiness associated with vascular remodeling (59; 

90; 274; 353; 388). High altitude exposure is suspected to result in gross blood-brain 

barrier dysfunction, in part due to free radical destabilization of membranes mediated by 

lipid peroxidation, inflammation, and activation of local HIF-1α and VEGF signaling 

cascades (21; 63; 163). In addition to shifting the brain microenvironment to a 

proinflammatory profile, hypoxia also affects the transport of glucose across the blood-

brain barrier, impacting cellular metabolism (126; 168; 251). Alterations in aquaporin-4 

(water channel membrane protein) expression/distribution on astrocytic endfeet 

increasing water permeability facilitates the development of high altitude cerebral edema 

(387), which may have implications for waste clearance via the perivascular spaces. 
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Changes in the extracellular environment associated with the structural 

augmentation of the neurovasculature after high altitude may lead to regional 

inflammation with an effect on microglial and neuronal activity. This is supported by the 

increased expression of pro-inflammatory cytokines in brain homogenate after 12 weeks 

high altitude exposure (Fig. 12). Increased IL-10 is associated with hyperactivity of 

hippocampal neurons in patients with temporal lobe epilepsy, SDF-1a is involved in 

silencing tonic activity of neurons in the hippocampus, and IL-6 has a negative regulatory 

role in memory acquisition (14). Cytokine modulation relating to increased blood-brain 

barrier disruption and neuroinflammation after high altitude exposure may disrupt the 

delicate balance of neurotransmission required to maintain healthy levels of synaptic 

plasticity.  

Hypoglycemia can also impair LTP induction (290). Mice exhibit decreased 

levels of peripheral glucose. During hypoxia, a shift towards anaerobic respiration in 

processes involving cellular metabolism may increase demand for glucose and cause 

hypoglycemia, potentially contributing to reduced levels of hippocampal synaptic 

plasticity. Metabolic efficiency is affected during adaptation to chronic hypoxia, as 

corroborated by clinical positron emission tomography (PET) imaging that shows 

increased glucose uptake in the heart after high altitude exposure (54; 313), as well as 

significant changes in regional cerebral glucose metabolic rates after chronic high altitude 

exposure, with glucose metabolism observed to be increased in the cerebellum, altered in 

the thalamus and decreased in the occipital and frontal lobes (134; 227). Short term 

hypoxia has been shown to increase cerebral lactate and glucose concentrations, as well 

as increasing cerebral metabolism (340). The  impact of high altitude on blood glucose 
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levels is contradictory, with studies showing both increased and decreased glucose 

readings after altitude exposure (81; 127; 133; 167).  

Hippocampal synaptic plasticity, hypobaric hypoxia and the role of microglia 

The present study has revealed changes in synaptic plasticity expressed as 

impaired LTP in the hippocampus of male mice after 3 weeks high altitude exposure. 

Memory consolidation and learning rely on synaptic changes relating to the induction of 

LTP and LTD. Inability to elicit these lasting changing in neurocircuitry communication 

results in functional deficits. Cognitive impairment after high altitude exposure is 

clinically reported, and we have previously reported deficits in hippocampal mediated 

memory in our mouse model (63). Future studies are necessary to determine if microglia 

depletion may alter synaptic plasticity. Removal of microglia could prevent inhibitory 

activity at the synapse, causes hyperexcitability of neurons and preventing induction of 

LTP. This is supported by data showing that seizure hyperactivity of neurons in a mouse 

model of epilepsy causes excitotoxicity and also inhibits LTP (109). For male mice 

exposed to high altitude but with microglia intact, impairment of LTP could be associated 

with overactivation of microglia in a pro-inflammatory manner due to oxidative stress 

(76). Chronic hypoxia has been shown to increase endothelial fractalkine (CX3CL1) 

expression and the activation of its cleaving enzyme ADAM17, which could increase the 

distribution of soluble CX3CL1 and disrupt the normal CX3CL1/CX3CR1 axis activity 

between microglia and neurons, thereby contributing to elevations in IL-1β and 

subsequent reduction of LTP (288; 368; 373; 381). There are significance evidence 

showing important role of hypothalamus in regulation of systemic glucose 
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metabolism(273) and recent study show involvement of microglia in hypothalamic 

regulation of glucose homeostasis (364). 

The role of microglia in synaptic plasticity changes after high altitude is further 

supported by behavioral data from fear conditioning and Y-maze assays (Fig. 19). In 

contrast to the experiments presented previously, mice were depleted of microglia prior 

to high altitude exposure (or given control chow), depletion treatment continued 

throughout the 3 weeks of high altitude exposure, and then mice were brought to sea level 

and given control chow for 2 weeks to allow microglia to repopulate the brain, essentially 

resetting their activity to the pre high altitude state. Hippocampal mediated deficits in 

learning and memory after high altitude exposure were rescued by microglia 

repopulation. There is further evidence that the role of microglia in synaptic activity is 

region specific, as shown by the enhancement of amygdala mediated learning and 

memory in sea level and high altitude exposed mice. 

LIMITATIONS 

Environmental enrichment 

Several factors may influence some of the physiological changes observed in the 

studies presented here. One such consideration is the presence of environmental 

enrichment in the mouse cages. Throughout our studies we provide nestlets as a source 

material for nest building activities, but the mice are not offered any toys or additional 

structural elements to provide cognitive stimulation. Rodent studies have demonstrated 

that environmental enrichment can enhance synaptic plasticity in the hippocampus, 

affecting the capacity for induction of long-term potentiation and long term depression 

(44; 306). There is also evidence that environmental enrichment can prevent cognitive 
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impairment in a rat model of high altitude exposure, working via VEGF signaling (159). 

Future studies should explore if increasing the degree of environmental enrichment 

offered in our mouse model could have an impact on neuronal activity and behavioral 

outcomes. 

Vasculature quantification and sex differences 

Despite having the scanning resolution to image microvasculature (capillaries < 

10 µm diameter), the algorithm used for tracing did not capture many vessel segments in 

that range, possibly due to poorer contrast between signal and background (Fig. 20). It is 

likely that improving quantitative assessment of microvasculature will improve 

understanding of vessel-specific mechanisms involved in high altitude acclimatization. 

Additionally, greater sample sizes are needed to confirm that there are no sex differences 

in high altitude induced vascular remodeling and angiogenesis. Females have greater 

pools of endothelial progenitor cells, which may contribute to the ability to compensate 

for hypoxic stress with angiogenesis (94). Sex differences in microvascular morphology 

and function suggests that males and females may maintain vascular homeostasis through 

different mechanisms, possibly involving sex specific hormones (40; 68; 139; 140; 252). 

One study found that testosterone actually helps to alleviate hypertension induced by 

hypoxia at high altitude (147). 

Albumin positive cells 

 During assessment of immunohistochemical staining for albumin after high 

altitude exposure as a measure of chronic blood-brain barrier leakage, a substantial 

number of cells that appear to be albumin positive were observed. These cells seem to be 

most abundant in the thalamus, although albumin positive cells were observed in the 
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cortex and hippocampus as well. These cells were not quantified, but appeared less 

prevalent in microglia depleted samples, suggesting the possibility that the albumin 

positive cells are either microglia or that microglia facilitate the albumin accumulation on 

these cells. A 2-photon image was taken to provide an example of this albumin positive 

cell population located in the thalamus of a high altitude exposed male mouse, 

demonstrating that the albumin is present in the cytoplasm of the cells and not just on the 

membrane surface. (Fig. 18) 

FUTURE DIRECTIONS AND TRANSLATIONAL IMPLICATIONS 

Glymphatic Clearance and Sleep 

Due to the observed increases in neurovasculature and altered microglia activity 

and inflammation after high altitude exposure, assessment of the glymphatic system is a 

natural progression of this research. The glymphatic system is a perivascular waste 

clearance system which eliminates soluble proteins and metabolites from the central 

nervous system and facilitates distribution of critical compounds necessary for brain 

functioning (146; 196; 229; 246). This system is primarily active during sleep 

(particularly slow wave sleep) and utilizes pulsation of the vasculature paired with glial 

cell cooperation to aid in efficient clearance (115; 146; 246; 270; 333). Aquaporin-4 is 

the main water channel component of the glymphatic system, and increased aquaporin-4 

expression by astrocytes is associated with the development of high altitude cerebral 

edema (302; 333). Hypoxia exposure simulating an altitude of 4500 m has been shown to 

reduce total sleep time and efficiency, as well as decreasing time spent in slow-wave 

sleep and rapid eye movement (REM) sleep stages (71). Cognitive function and mood 

also declined after hypoxia in association with altered sleep patterns (71). While 
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normobaric and hypobaric hypoxia both result in altered sleep architecture, increased 

heart rate and reduced oxygen saturation, the effects of hypobaric hypoxia were more 

severe, suggesting an important role of hypobaria in high altitude acclimatization and 

possibly implicating a more robust impact on glymphatic function (130). Clinical 

investigations have used cranial magnetic resonance imaging to discover a potential link 

between enlarged Virchow-robin spaces in high altitude associated headache (7).  

Indeed, small vessel disease related dementia is associated with oxidative stress, 

chronic hypoxia, neuroinflammation, neurovascular and microvascular dysfunction, 

mitochondrial/metabolic dysfunction, and white matter damage/neurodegeneration (234). 

Impaired elimination of interstitial fluid and hypoxia contribute to white matter 

hyperintensities in dementia (209). Impairment of the glymphatic system is associated 

with sleep disturbance, neuroinflammation and tau pathology after brain injury (41; 79; 

141; 268). Increased vascularization to accommodate the need for improved oxygen 

delivery after high altitude exposure may exacerbate malfunctioning of the glymphatic 

system and related sleep disruptions. Cerebral blood flow is increased during REM sleep 

in most brain regions indicating a higher rate of energy consumption through cerebral 

metabolic rate, but cerebral synaptic activity during REM sleep is comparable to 

wakefulness and blood-brain barrier permeability to glucose is not altered to 

accommodate changes in region specific glucose metabolism (119; 205; 211; 301). The 

incidence of sleep disruption at high altitude and the increased utilization of glucose to 

compensate for oxidative stress may be indicative of additional strain on neurological 

function leading to cognitive impairment. This would be consistent with findings that 

sleep deprivation prevents rhythmic modification of perineuronal nets that are necessary 
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for memory consolidation during sleep (255). Additionally, brain injury and cognitive 

dysfunction related to diabetes and hyper- and hypo- glycemia are associated with 

vascular pathologies relating to oxidative stress and neuroinflammation, mitochondrial 

dysfunction, and impaired glymphatic clearance (123). 

Potential molecular targets 

Stromal cell derived factor 1, SDF-1, (also known as C-X-C motif chemokine 

ligand 12, CXCL12) is a ligand for the chemokine (C-X-C motif) receptors 4 and 7 

(comprising the CXCL12 axis), and transcriptionally regulated by hypoxia inducible 

factor 1 (HIF-1) (50). SDF-1 is transcriptionally upregulated in the hippocampus and 

amygdala following 3 and 12 weeks high altitude exposure (63). It is strongly 

evolutionarily conserved, with ubiquitous expression among humans, mice and lower 

vertebrates (299). It plays a critical role in development, regulating cell migration and 

vascular guidance (39; 186; 312; 330; 343).  Interneuron leading process branching 

behavior and migration speed is heavily dependent on this axis, as well as regional 

interneuron distribution and the development of inhibitory tone (177; 207; 208; 331).  

The axis is also essential for cerebellar development, regulating the chemotaxis and 

proliferation of granule cells and mediating axonal growth cone guidance (158; 199; 342; 

370).  

During adulthood, CXCL12 axis modulates synaptic transmission in the 

cerebellum, altering communication between parallel fibers and Purkinje neurons (187; 

279). It is necessary for the successful migration of endothelial progenitor cells from 

bone marrow stroma, increasing their proliferation and adhesion, and promotes 

angiogenesis (58; 175; 180; 249; 304; 349; 350). Evidence suggests that the CXCL12 



 

 71 

axis is involved in brain injury recovery and repair, enhancing remyelination and 

neuroblast migration, reducing apoptosis, and stimulating neovascularization (12; 61; 

114; 143; 181; 216-218; 315; 317). It is also implicated in regulating CNS immune 

privilege and leukocyte infiltration at the blood-brain barrier, which may influence 

interactions with inflammatory mechanisms following high altitude exposure and injury, 

as hypoxia (a critical factor in both conditions) induces substantial upregulation of 

CXCL12 (91; 113; 196; 223; 295; 296; 318). The CXCL12 axis is also involved in 

mitochondrial cell function and metabolism, another important factor in hypoxia (70; 

226; 228; 235; 383). 

CXCR4 and CXCR7 (also known as atypical chemokine receptor 3) are members 

of the G-protein coupled receptor (GPCRs) family. The receptors can exist in monomer, 

homodimer or heterodimer forms, and are involved in numerous diverse downstream 

signaling pathways (259). In areas of focal brain ischemia, CXCR4 promotes monocyte 

infiltration across the blood-brain barrier and mediates microglia response in the infarct 

area (357). SDF-1α stimulation of microglia via CXCR4 signaling after stroke 

upregulates pro-inflammatory IL-6 production (198). Interestingly, CXCR4 expression 

has been shown to increase following dexamethasone treatment, which is one of the 

current medications prescribed to reduce symptoms of acute mountain sickness (49). 

Adenosine is a metabolite that works to maintain balance between energy supply 

and demand during periods of oxygen deprivation or increased energy requirements (97). 

Hypoxia modulates the expression of adenosine receptors, promoting an angiogenic 

phenotype and contributing to vasodilation (97). Adenosine activation exerts anti-

inflammatory modulation on HIF-1 expression, reducing accumulation in astrocytes after 
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hypoxia (103). Adenosine A1 receptor signaling has also been shown to promote 

enhanced memory and long-term potentiation in a model of chronic intermittent hypoxia, 

playing a neuroprotective role to prevent cognitive dysfunction associated with hypoxia 

(382). However, hypoxia induced adenosine activation can also cause persistent synaptic 

depression through internalization of GluA1 and GluA2 leading to hippocampal 

neurodegeneration (55). Interestingly, the effect of adenosine activity is highly region 

dependent, with enhanced adenosine A1 receptor expression in the cortex shown to be 

antidepressant but overexpression in the hippocampus causing impaired long-term 

potentiation (297). We previously identified an increase in hippocampal A1R 

transcription in the hippocampus after 3 weeks high altitude exposure, which may be a 

contributing factor in our observation of reduced hippocampal long-term potentiation 

(63). 

Erythropoietin (EPO) is a hormone primarily produced by the kidneys to promote 

formation of red blood cells by the bone marrow; it can cross the blood-brain barrier, but 

is also endogenously expressed under hypoxic conditions by neurons and astrocytes in 

the brain, and EPO receptors are expressed by neurons, glia, endothelial cells and neural 

progenitor cells (243; 344). It has been used to stimulate neurogenesis and improve 

cognition, promoting anti-inflammatory signaling and regulated by HIF-1 transcription 

and exhibiting neuroprotective effects (193; 243; 291; 344; 345; 347). EPO promotes a 

balance between microglia activation, apoptosis and neurodifferentiation (42; 98). 

Microglia express EPO receptors which are involved in attenuating the production of 

inflammatory cytokines and reducing morphological changes related to microglia 

activation (325). EPO facilitates cell migration via interactions with the SDF-1 axis (179; 
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316), further implicating a role in high altitude adaptation. Erythropoietin contributes to 

sex-specific glucose sensitivity (384). EPO activity regulates metabolic and glucose 

homeostasis and contributes to promoting angiogenesis and vascular response to hypoxia 

(319). Increased vasculature in the kidneys and spleen following hypoxia induced 

angiogenesis during high altitude exposure may contribute to increased EPO production 

and recruitment of hematopoietic stem cells to induce the generation of erythrocytes for 

restoration of tissue oxygenation and thus contribute to alleviating hypoxic stress on 

cognitive function (Fig. 21). Additionally, the spleen, as a reservoir for endothelial 

progenitor cells via the SDF-1 axis, may play a crucial role in promoting the vascular 

remodeling observed after high altitude exposure (385). 

Clinical directions 

In recent years the significance of the gut-brain axis has gained increasing 

attention, with gastrointestinal environment and gut microbiota recognized as having a 

significant impact on nervous system function. Evidence suggests the gut microbiome 

may contribute to variability in metabolic and physiological response to high altitude 

exposure, including severity of acute mountain sickness (150). Hypoxic and oxidative 

stress at high altitude can cause injury to intestinal barrier leading to inflammatory 

response and potentially compromising the gut microbiota (154; 225). Furthermore, 

several circulating metabolites have been identified that are released by gut bacteria and 

exert effects on components of the vascular system including endothelial cell function 

(9). This could have serious implications for angiogenesis and vasodilation function of 

vasculature in chronic high altitude adaptation response. 
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Ischemic preconditioning has been explored as a possible tool to reduce the 

maladaptive effects of high altitude exposure, with studies focusing on improving 

mechanisms of acute physiological adaptation like hypoxic ventilatory response and 

arterial oxygen saturation (32; 286). Remarkably, preconditioning paradigms range from 

short-term high altitude simulations to repeated bouts of peripheral limb ischemia (286). 

Intermittent normobaric hypoxia has been shown to facilitate acclimatization to high 

altitude by reducing inflammation (101). Evidence suggests the protective mechanisms of 

hypoxic preconditioning work through adenosine receptor 1 signaling, promoting 

recovery of hippocampal synaptic plasticity following hypoxia exposure (275). 

 Future directions may investigate how microglia depletion can be utilized as a 

treatment following high altitude exposure, to reset microglia activity and hopefully 

restore normative synaptic plasticity by interrupting the feed forward cycle of 

neuroinflammation. Perturbation of vascular adaptation mechanisms would be risky, but 

we should assess whether changes to cerebrovasculature are reversible following return 

to sea level. Given the differential impact of high altitude on males and females, further 

investigation into its effect on the reproductive cycle may be warranted. 

SUMMARY 

The experiments performed here demonstrate that chronic high altitude exposure 

induces structural neurovascular adaptation that is not initially dependent on microglia 

(Fig. 22). Robust adaptation is seen in the cortex and hippocampus, and may rely on 

different mechanisms. High altitude exposure compromises blood-brain barrier integrity, 

with different brain regions showing greater vulnerability to disruption; however the 

leakage in blood-brain barrier is not a byproduct of angiogenesis. Increased extracellular 
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inflammation affects microglia chemotaxis in a sex and region dependent manner during 

homeostatic surveillance activity and during directed reactivity. Microglia response 

dynamics are impacted primarily by changes in degree of process tip proliferation after 

high altitude and these changes are region and sex specific. Peripheral glucose levels are 

reduced under hypoxic conditions as well as following microglia depletion, suggesting a 

role of microglia in metabolic regulation. Inflammatory cytokine fluctuations including 

increased SDF-1 expression are region specific. High altitude exposure causes 

impairment of synaptic plasticity in the CA1 area of the hippocampus in males, which is 

consistent with previously reported functional deficits and may be influenced by the new 

microenvironment and microglial interactions. The signaling pathways relating to 

hypoxia induced factors are complex and interconnected, with molecular targets often 

exhibiting protective and maladaptive activity profiles. This makes it quite challenging to 

identify promising simple therapeutic targets to improve cognitive outcomes. Future 

research may focus on improving systemic function of integrated processes like sleep and 

glymphatic clearance over antagonism of individual receptor/ligand interactions. 
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Figure 18. Albumin positive cells identified through immunohistochemistry.   
Sample 2-photon image from the thalamus in control diet male mouse with 
microglia intact after 3 weeks high altitude showing albumin positive cells with 
expression in the cytoplasm, not surface membrane staining. 
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Figure 19. Behavioral deficits after 3 weeks high altitude exposure can be rescued by 

microglia repopulation.   
For the fear conditioning assay (A-C), mice are trained in an associative 
learning task to pair environmental context and auditory cue with a foot shock, 
and subsequently tested on the percent time freezing when presented with the 
same context or cue as a test of fear memory (A). The spontaneous Y-maze 
assay (D-E) tests short term spatial memory by assessing how often the mice 
explore a novel arm instead of doubling back to a previously explored are (D). 
In this figure, mice experienced microglia depletion or control diet prior to and 
during high altitude or sea level exposure, followed by 2 weeks at sea level for 
microglia repopulation. 3 weeks high altitude exposure causes deficits in 
hippocampal mediated learning and memory as seen by decreased freezing in 
the context fear condition (B). Hippocampal memory is rescued by resetting 
microglia through repopulation (E). Microglia depletion enhances amygdala 
mediated memory as shown by increased freezing in the cued condition (C). 2-
way ANOVA, Bonferroni posttests, n = 15 mice per group, df = 54, p < 0.05  
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Figure 20. Limitations of Vesselucida software for tracing capillaries in whole brain 

datasets.   
Vesselucida seed detection/validation (A) algorithms in dense vasculature data 
sets can get overwhelmed by the abundance of vessels and omit small diameter 
capillaries and microvessels in final tracings (B). 
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Figure 21. Micro-CT imaging of kidney and spleen after high altitude.   

High resolution micro-CT images of kidney (A) and spleen (B) after sea level 
(left) or 7 weeks high altitude exposure (right) and subsequent perfusion with 
high contrast agent BriteVu. Kidneys were scanned at 2.4 µm resolution and 
spleens were scanned at 6.7 µm resolution. 
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Figure 22. Summary of mechanisms behind 3 week high altitude acclimatization.   

High altitude causes angiogenesis and vascular remodeling which is not initially 
dependent on microglia activity. Blood-brain barrier integrity is disrupted at 
high altitude, with microglia (green) playing a protective role in stabilization. 
The microenvironment resulting from leakage and oxidative stress causes 
inflammatory crosstalk with mechanisms of high altitude acclimatization that 
involve metabolic regulation. Changes in the extracellular signaling 
environment and microglia activity contribute to dysfunctional neuronal (blue) 
and synaptic plasticity, leading to reduced long-term potentiation after high 
altitude that is consistent with observed cognitive deficits. The role of microglia 
in this process is further confirmed by restoration of function after microglia 
repopulation. Components of the perivascular spaces (including astrocytes, 
purple), glymphatic system and neurovascular unit are likely involved in 
chronic high altitude acclimatization. (Created with BioRender.com) 
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SUPPLEMENTAL 
MatLab Coding Script for Micro-CT Regional Analysis by Dr. Andrew Knutsen 

%% 
%%% Step 0: Update paths 
RD = '/Volumes/My Passport/BVHAFP-2_Rec/'; % folder with raw jpg 
files 
 
nm = 'BVHAFP-2'; % subject ID  
MD = ['/Users/tif/Research/microCT/' nm]; % folder to write 
processed data  
if ~exist(MD,'dir') 
    mkdir(MD) 
end 
 
AR = 
'/Users/tif/Research/microCT/ProcessingPipeline/ANTs_AffineRegist
ration.sh'; % affine registration shell script 
TRi = 
'/Users/tif/Research/microCT/ProcessingPipeline/ANTs_ApplyTransfo
rmInverse.sh'; % inverse transformation 
 
template = 
'/Users/tif/Research/microCT/ProcessingPipeline/mMaMouseT2Mod.nii
'; % template 
seg = 
'/Users/tif/Research/microCT/ProcessingPipeline/MaMouseSegMod.nii
'; % atlas labels 
 
%% 
%%% Step 1: Create subsampled micro-CT image  
cd(RD) 
lst = dir('BV*jpg'); % find JPGs in raw data folder  
 
res = 2.98; % microns per pixel 
delta = ceil(100 / res); % number of pixels in ~100 microns 
 
im0 = rgb2gray(imread(lst(1).name)); % load in the first image 
[s1,s2] = size(im0); % image dimensions 
 
% arrays dividing image into 100-micron sections 
arr1 = 1:delta:s1; 
arr2 = 1:delta:s2; 
 
% create a subsampled image in dimensions 1 and 2 based on 
maximum intensity within 100 micron volumes 
IM = []; 
H = waitbar(0/length(lst),'Create subsampled image...'); 
for ix = 1:length(lst) 
    im = rgb2gray(imread(lst(ix).name)); % read image #ix and 
convert to grayscale 
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    imSS = zeros(length(arr1),length(arr2)); % subsample image  
    ii = 0; 
    for iy = 1:(length(arr1)-1) 
        for iz = 1:(length(arr2)-1) 
            ii = ii + 1; 
            tmp = im(arr1(iy):(arr1(iy+1)-
1),arr2(iz):(arr2(iz+1)-1)); 
            imSS(iy,iz) = max(tmp(:)); % assign maximum value  
        end 
    end     
    IM = cat(3,IM,imSS); % concatenate in 3rd dimension 
     
    waitbar(ix/length(lst),H); 
end 
close(H); 
 
% subsample image in dimension 3  
arr3 = 1:delta:length(lst); 
IM_SS = zeros(size(IM,1),size(IM,2),length(arr3)); 
for ix = 1:(length(arr3)-1) 
    IM_SS(:,:,ix) = max(IM(:,:,arr3(ix):(arr3(ix+1)-1)),[],3);     
end 
 
res2 = [res res res]/1000*delta; % subsampled image resolution 
~100 microns isotropic 
cd(MD) 
 
% write NIFTIs of subsampled image before and after smoothing 
WriteNIFTI([nm '_microCT_SSmax.nii'],res2,IM_SS) 
WriteNIFTI([nm 
'_microCT_SSmax_smooth.nii'],res2,smooth3(IM_SS,'gaussian',[5 5 
5],2)); 
 
%% 
%%% Step 2: Register subsampled micro CT to MRI template and 
transform 
%%% labels to micro-CT space 
 
% load subsampled micro-CT image  
N = nifti([nm '_microCT_SSmax_smooth.nii']); 
mat = N.mat; 
CT = N.dat(:,:,:); 
clear N 
 
% create brain mask 
m = zeros(size(CT)); 
thresh = max(CT(:))*graythresh(CT(:)/max(CT(:)))*0.9; % adjust 
this is need to modify mask => change 0.9 to smaller value for 
more included, larger value for less included 
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m(CT > thresh) = 1; % anything with signal > thresh*0.9 is 
assigned 1 in the mask 
 
mD = imdilate(m,strel('sphere',3)); % dilate the mask 
mF = zeros(size(m)); 
for ix = 1:size(m,3) 
    mF(:,:,ix) = imfill(mD(:,:,ix)); % fill any holes  
end 
mE = imerode(mF,strel('sphere',3)); % erode the mask  
 
CTsmooth = mE.*CT; % apply mask to smoothed micro-CT data  
WriteNIFTI([nm '_mCT.nii'],mat,CTsmooth) % write NIFTI  
 
% make template look like micro-CT data 
ct = double(niftiread([nm '_mCT.nii'])); 
im = double(niftiread(template)); 
im_seg = double(niftiread(seg)); 
 
viewer3d(ct) 
viewer3d(im) % use viewer3d to check orientation of images  
 
im_RO = flip(flip(im,2),3);% flip(permute(im,[2 1 3]),3); % will 
need to adjust based on the data => flip and permute are commands 
to use - check help on these if needed  
im_seg_RO = flip(flip(im_seg,2),3); % flip(permute(im_seg,[2 1 
3]),3); % make this match above 
 
viewer3d(im_RO) % check RO image and adjust as needed  
 
template_RO = 
'/Users/tif/Research/microCT/ProcessingPipeline/mMaMouseT2Mod_RO.
nii'; % template 
seg_RO = 
'/Users/tif/Research/microCT/ProcessingPipeline/MaMouseSegMod_RO.
nii'; % atlas labels 
 
WriteNIFTI(template_RO,[0.1 0.1 0.1],im_RO) 
WriteNIFTI(seg_RO,[0.1 0.1 0.1],im_seg_RO) 
 
% run registration  
eval(['!bash ' AR ' ' template_RO ' ' nm '_mCT.nii ' nm 
'_MicroCTtoMRI']) % register subject to template 
 
eval(['!bash ' TRi ' ' nm '_mCT.nii ' template_RO ' ' nm 
'_MicroCTtoMRI0GenericAffine.mat BSpline']) % transform template 
to subject 
eval(['!bash ' TRi ' ' nm '_mCT.nii ' seg_RO ' ' nm 
'_MicroCTtoMRI0GenericAffine.mat MultiLabel']) % transform atlas 
labels to subject 
 
% visually inspect registration results using ITK-Snap or similar 
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%% 
%%% Step 3: Write JPGs in each of the ROIs  
 
seg = double(niftiread('sMaMouseSegMod_RO.nii')); % load atlas 
labels in subject space  
 
segArray = [1 7 8 14]; % atlas labels associated with ROIs  
segLabels{1} = 'Hippocampus';segLabels{2} = 
'Thalamus';segLabels{3} = 'Cerebellum';segLabels{4} = 'Cortex'; 
 
[X1,X2] = ndgrid(arr1,arr2); % indices associated with subsampled 
image 
[x1,x2] = ndgrid(1:size(im0,1),1:size(im0,2)); % indices 
associated with raw data  
 
amin = 0;amax = (2^8-1); % intensity range 
 
for ix = 1:length(segArray) 
    ND = [MD filesep segLabels{ix}]; 
    if ~exist(ND,'dir') 
        mkdir(ND) 
    end 
end 
 
numImages = length(lst); % total # of images  
H = waitbar(0,'Write microCT data for each ROI...'); 
tic 
ii = 0; 
for iy = 1:size(seg,3) 
    % interpolate atlas labels to raw data size  
    F = 
griddedInterpolant(X1,X2,seg(:,:,iy),'nearest','nearest'); 
    seg_hr = F(x1,x2); 
     
    sl = arr3(iy); % slice # 
    for iz = 0:(delta-1) 
        ii = ii + 1; 
        % sl_nm = lst(sl+iz).name; 
         
        if (sl+iz) <= length(lst) 
            cd(RD) % chage to directory with raw JPGs 
            im = rgb2gray(imread(lst(sl+iz).name)); % load raw 
JPG file 
             
            % slice number for writing files 
            if sl+iz < 10 
                SL = ['SL000' mat2str(sl+iz)]; 
            elseif sl+iz >= 10 && sl+iz < 100 
                SL = ['SL00' mat2str(sl+iz)]; 
            elseif sl+iz >= 100 && sl+iz < 1000 
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                SL = ['SL0' mat2str(sl+iz)]; 
            else 
                SL = ['SL' mat2str(sl+iz)]; 
            end 
             
            for ix = 1:length(segArray) % loop through all ROIs 
                ND = [MD filesep segLabels{ix}]; 
                 
                % create mask for slice "sl" based on ROI(ix) 
                m_hr = zeros(size(seg_hr)); 
                m_hr(seg_hr == segArray(ix)) = 1; 
                m_hr = uint8(m_hr); 
                 
                im_mask = m_hr.*im; % image * mask 
                 
                cd(ND) % change to processed data folder for 
ROI(ix) 
                ind = strfind(nm,'_'); 
                new = [nm '_' SL '_' segLabels{ix} '.jpg']; % new 
name => output as jp2000 file type 
                imwrite(im_mask,new) % write image 
            end 
            waitbar(ii/numImages,H); % update progress 
        end 
    end 
end 
close(H); 
toc 
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