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1.0SUMMARY

The Center of Excellence in Research and Education for Big Military Data Intelligence (CREDIT)
has been established at Prairie View A&M University in April 2015 with $5 million funding plus
an additional $1 million in 2020 from the Office of the Under Secretary of Defense for Research
and Engineering (OUSD(R&E)). The mission of the CREDIT center is to accelerate research and
education in predictive analytics for science and engineering to transform our ability to effectively
address and solve many complex problems posed by big data, and train our students to become

next generation data scientists and engineers.

CREDIT center hosts a multi-disciplinary team of faculty researchers from Electrical and Com-
puter Engineering and Computer Science, research scientists and postdocs, and many graduate and
undergraduate research assistants at Prairie View A&M University (PVAMU), an HBCU. The
core facilities have been built that include the Deep Learning Lab and the Cloud Computing Lab.
The team and computing resources in the CREDIT center allow the team to solve many challeng-
ing problems in big data analytics and artificial intelligence and the CREDIT center is leading the
curriculum development in big data science and deep learning at PVAMU. CREDIT center has
actively collaborated with many academic institutions, government agencies and industry partners
to address the challenges in big data analytics and train the workforce for the future data-centric
economy. It has played an important role in promoting PVAMU to become an R2: Doctoral Uni-
versities - High research activity institution by Carnegie Classification of Institutions of Higher

Education recently.

During the funding period of this project, the team of the CREDIT center at Prairie View A&M
University and our collaborators at the Stony Brook University and the University of Nevada Reno
had completed all proposed research, education, and outreach activities. Significant research re-
sults have been obtained. Specifically, (i) forty-five (45) journal papers, two book chapters were
published, and (i1) one hundred and four (104) peer-reviewed conference papers (including two
best paper award) were published and presented, plus (iii) three (3) journal papers were submitted

and under review. The detailed list of publications is given in Appendix A.

The highlights of the technical contributions are summarized as follows: In research thrust 1, a

customized domain-specific big data analytics cloud for CREDIT research has been built. The
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concept of integrating HPC state-of-the-art technology into big data analytics for performance and
scale has been proposed. It has been implemented and tested in a Distributed Volumetric Data
Analytics Toolkit on Apache Spark. In research thrust 2, an efficient privacy preserving intelligent
edge computing framework has been proposed and implemented. In order to achieve robust data
collection and aggregation, computation offloading has been proposed to jointly optimize commu-
nications and computing. Then a multitask learning approach has been applied to computation
offloading optimization that reduce the inference time by 4-order of magnitude while achieving
better accuracy. In research thrust 3, the feasibility of using Dempster-Shafer Theory (DST) and
Dezert-Smarandache Theory (DSmT) for big data processing has been explored and a detection
framework to mitigate the effect of uncertainty using Evidence Theory (DST - DSmT) and Kull-
backLeibler (KL) divergence for distance measures is proposed and studied. In the case of limited
labeled data, the proposed semi-supervised learning can obtain high inference accuracy using even
very limited labeled data, which is a promising solution for real-time machine learning applica-
tions. In research thrust 4, a novel multi-task learning based deep learning model has been designed
and tested for object identification and target tracking on UAVs. It achieved real-time processing
(> 20 fps) and high IoU (> 60%) during real world experiments. Furthermore, a cloud-based big
data visualization system is built and achieved real-time data visualization on cloud. The detailed
background, literature review, problem formulation, proposed approaches and methods, and ex-

periments and results analysis are provided in chapters 2-4 of this report.

The CREDIT center has maintained close collaborations with program managers and researchers
from DOD and has made great effort to contribute to the workforce development for the DOD and
the nation. There have been large number of graduate and undergraduate students actively partic-
ipated the research activities in the CREDIT center, and ten (10) doctoral students and thirty-four
(34) masters students and more than a hundred undergraduate students supported by the CREDIT
center graduated. All of the graduated students have excellent jobs at government agencies and
private industry such as AFRL, NAVSEA, IBM, Intel, Microsoft, Apple, Amazon, HPE, and Dell.
All the students conducting research in the CREDIT center have gained deep knowledge and ex-
tensive training on Al, machine learning, and big data analytics. They have published significant
research results in high quality journals and they have demonstrated outstanding capabilities to
solve very challenging real world problems. For example, the CREDIT team including six of our

graduate research assistants supervised by the PI (Qian) and Co-PI (Obiomon) participated the Al
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Tracks at Sea Challenge organized by the US Navy in Fall 2020. The CREDIT team won the
FIRST place out of 31 participating universities including top research universities across the
country. In addition to students becoming full time employees in DOD, more than twenty ROTC
students have been trained with data analytics skills in the CREDIT center. Furthermore, many
students from the CREDIT Center have participated the Summer Intern program offered by the
DOD.

The research infrastructure has been greatly improved with the establishment of the CREDIT cen-
ter. Specifically, the Deep Learning Lab has been developed with 4 NVIDIA DGX-1 systems to-
taling 32 P100 GPUs with more than 112,000 CUDA cores, plus 4 Dell storage servers with
120TB. The Cloud Computing Lab hosts a high performance computer cluster with 4 racks con-
sisting of 56 IBM dual-core blade servers, 8 HP 16-core nodes, 24 IBM 16-core nodes with GPUs,
as well as a 4 Dell nodes for setting up cloud virtual machine farm. These high performance com-
puting facilities provide valuable opportunities for faculty and students to access state-of-the-art

equipment to explore cutting edge technologies.

The CREDIT center has been leading the curriculum development at PVAMU to ensure the stu-
dents receive ample mentoring and training, and the center and PVAMU stay at the forefront of
Al and big data education. Specifically, a Deep Learning for Artificial Intelligence Certificate
Program had been developed and approved by the Texas A&M University System and the Texas
Higher Education Coordinating Board (THECB). The first cohort of fourteen (14) students just
received the certificate in 2021. The CREDIT center has also carried out many outreach activities,
such as organizing an annual Workshop on Mission-Critical Big Data Analytics, a seminar series,

and CREDIT center summer camp for high school students.

Leveraging the research and education capabilities of the CREDIT center, many new grants have
been obtained recently built on the momentum of active research and made the center sustaina-
ble. With the strong support of the government agencies especially DOD and our academic and
industrial partners, the team is confident that the CREDIT center will further improve its re-
search and education capacity and continue to train students especially underrepresented minori-
ties to be highly qualified workforce and contribute to DOD missions and the nation for years to

come.
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2.0INTRODUCTION

The research objective of this project is to amplify the power of predictive data analytics and
develop a comprehensive, integrated, and scalable data analysis and inference infrastructure.
The CREDIT center’s mission is to accelerate research and education in predictive analytics for
science and engineering to transform our ability to effectively address and solve many complex

problems posed by big data specifically for military applications.

Today’s military intelligence analysts are faced with the monumental and escalating task of han-
dling massive volumes of complex data from multiple sources. This includes sensor data, mobile
social network data, surveillance data (such as images and videos from UAVs or satellites), and
public domain data. An example scenario is given in Fig.1. The data must be aggregated, evalu-
ated, correlated, and ultimately used to support a commander’s time-critical decisions and ac-
tions. However, currently there is lack of capability to process huge volume of data from hetero-
geneous sources in military operations [1, 2]. There exist many challenges such as (1) A real-
time computing platform for military big data where massive amounts of data are distributed
across locations need to be designed and optimized; (2) Heterogeneous data have to be aggregated
in a hostile environment and properly stored; (3) Distributed situational awareness and decision
making need to be accomplished with minimum delay; (4) Massive datasets and sophisticated

results must be presented for easy perception by analysts.

In order to establish and enhance the ability for more effective and efficient big data processing, a
multidisciplinary team of researchers (PI: Lijun Qian, Co-PIs: Lei Huang, John Fuller, Xiangfang
Li, Pamela Obiomon, Yonggao Yang) from Prairie View A&M University (PVAMU) collaborat-
ing with a team from Stony Brook University and the University of Nevada Reno establish “Center
of excellence in Research and Edu- cation for big military Data InTelligence (CREDIT)”. The
CREDIT center address these fundamental challenges and bring together sensing, perception, and
decision support for mission-critical applications of the DOD. Specifically, an integrated compu-

ting, communication, and information fusion approach has been proposed and developed. Four
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research thrusts have been carried out: (1) System architecture design for a real- time military big

data cloud computing system; (2) Secure and robust data
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Figure 1: A collaborative information aggregation and processing concept for near-real-time
detection and decision making

collection and aggregation using edge computing and computation offloading; (3) Novel machine
learning and deep learning algorithms for automatic detection using high-dimensional dataset and
semi-supervised learning in the case of limited labeled data; (4) Visualization of massive datasets
in real-time on cloud and experiments to validate the research results. Together they provide study

of relationships among objects and events of interest within a dynamic environment and leverage
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data in a particular functional process or application to enable context-specific insight that is ac-
tionable. The proposed design and methods have been validated by extensive simulations and ex-

periments using UAV for object detection and tracking as a case study.

In general, majority of today’s big data research has been focusing on generating, documenting,
organizing, and managing data in public and private repositories [3—5]. However, how to exploit
those data is essential for many mission critical applications. The US military has an ever increas-
ing need to obtain intelligence through big data analysis, such as monitoring live video feeds and
searching large volumes of archived data for activities of interest. For current operations, more
analysts are assigned to watch the same video stream simultaneously. However, analysts are a
scarce resource within the military and future datasets are expected to be more sophisticated.
Clearly, designing automated search and detection could provide dramatic payoffs in the effec-
tiveness and efficiency of military operations. Because of the predominant effect of time sensi-
tivity of information for war fighters in the theaters with the greatest potential for conflict, the
proposed research will focus on time-sensitive data analytics, which analyzing both streaming
data such as real-time video streams and archived data such as an image database in an automatic

and timely fashion.

In many mission critical applications, the ability to perform analysis on the data is constrained by
the increasingly distributed nature of modern data sets. Highly distributed data sources present
challenges due to diverse natures of the technical infrastructures, creating challenges in data ac-
cess, integration, and sharing. Cloud computing is offering an attractive means to acquire compu-
tational and data services on an “as needed" basis, which addresses the need for elasticity in many
practical scenarios. The distributed nature of data sources also creates additional challenges due to
the limitations in moving massive data through channels with limited bandwidth, especially in a
hostile environment. Hence, we propose an integrated design of secure and robust data aggrega-
tion and cloud computing based processing for military big data analysis. Furthermore, challenges
exist in better visualizing massive data sets. While there have been advances in visualizing data
through various approaches, better methods are required to analyze massive data, particularly data
sets that are heterogeneous in nature and may exhibit critical differences in information that are
difficult to summarize. Thus, an interactive visualization approach is proposed. In this context, a

collaborative information aggregation and processing concept for near-real-time event/anomaly

Approved for Public Release; Distribution Unlimited.
6



detection and decision making is proposed in this project (see Fig.1), where a military cloud is
overlaid on the Internet and draws data from variety of sources including proprietary data from
static sensor systems, surveillance devices on UAVs, input from soldiers' mobile networks, geo-

graphic and social network information from public cloud, etc.

As illustrated in Fig.1, when the massive data stream into the military cloud, the cloud needs to
dynamically allocate sufficient resources to store and process the data. In order to meet the real-
time requirement, we need to explore how to better distribute data and tasks over cloud infrastruc-
ture, how to enable elastic computing to meet the dynamic computation workloads, as well as to

how to efficiently utilize the additional accelerators to speedup intra-node tasks (research thrust

).

Given the ever changing environment of battlefield, the data need to be collected reliably and
analyzed in decentralized and multi-level fashion. For instance, soldier B3 jammed from com-
municating to D2 may use cognitive radio to switch channel and report data through C2. Thus,

cognitive radio sensor network for robust data aggregation is essential (research thrust 2).

Massive data collected can be redundant or useless that need to be filtered out at an early stage,
while some useful data may be lost or missing that need to be derived or collected from other
nearby devices. For example, belief propagation may be used among tank A1, A2 and UAV CI to
process their respective collected data, then enemy targets detection can be performed with mini-
mum delay using quickest detection in the military cloud when D1 forwards the updated beliefs
from A1, A2, and C1. This proposed approach takes advantage of temporal and spatial correlations
of the data and effectively mitigate the effect of missing or incorrect data (research thrust 3). More-
over, we also propose to conduct battlefield specific visualization research in research thrust 4 to
intuitively present the massive and complex information in real-time. The theoretical results have
been validated through extensive simulations and experiments using test bed. The synergy among
the proposed research thrusts is shown in Fig.2. From the information ow perspective, various type
of data from different sources will be aggregated in a secure and robust manner and feed the cloud
computing system for real-time processing. Machine learning techniques will be applied to per-
form detection with minimum delay and low false alarm rate. Then proper decision making can be

carried out with the help of an interactive visualization tool. Together they provide real-time re-
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sponses to critical information needs, accurate knowledge extraction, and risk-aware decision mak-
ing. As a result, the collaboration among the research thrusts in the proposed architecture fulfills

the needs for effective and efficient information sharing and decision making in military opera-

tions.
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Figure 2: Synergy among the proposed research thrusts
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3.0METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Big Data Cloud Computing System
3.1.1 State-of-The-Art

The big data problem requires a reliable and scalable cluster computing or cloud computing sup-
port, which has been a longstanding challenge to scientists and software developers. Traditional
High Performance Computing (HPC) research has put significant efforts in parallel programming
models including MPI [6], OpenMP [7], and PGAS languages [8{10], compiler parallelization and
optimizations, runtime support, performance analysis, auto-tuning, debugging, scheduling, and
more. However, these efforts mostly focused on scientific computing, which are computation-in-
tensive, while big data problems have both computation- and data-intensive challenges. Hence,
these traditional HPC programming models are not suitable to big data problems anymore. Besides
scalable performance, tackling big data problems requires a fault-tolerant framework with high-
level programming models, highly scalable I/O or database, and batch, interactive and streaming

tasks support for data analytics.

MapReduce [11] is one of the major innovations that created a high-level, fault-tolerant and scal-
able parallel programming framework to support big data processing. The Hadoop [12] package
encloses Hadoop Distributed File System (HDFS), MapReduce parallel processing framework,
job scheduling and resource management (Y ARN), and a list of data query, processing, analysis,
and management systems to create a big data processing ecosystem. Hadoop Ecosystem is fast
growing to provide an innovative big data framework for big data storage, processing, query, and
analysis. However, MapReduce only supports batch processing and relies on HDFS for data dis-
tribution and synchronization, which have significant overheads for iterative algorithms. Further-
more, there is no support for streaming and interactive processing in MapReduce, which is the deal

breaker for supporting time-sensitive data processing applications.

Storm [13] originally conceived and built by the team at BackType/Twitter to analyze the tweet
stream in real time. The goal of Storm is to make it easy to write and scale complex real-time
computations on a cluster of computers. Storm guarantees that every message will be processed,
and it is able to process millions of tweet messages per second with a small cluster. Storm-YARN

enables Storm applications to utilize the computational resources in a Hadoop cluster along with
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accessing Hadoop storage resources such as HBase [14] and HDFS. Although it is scalable to
process streaming messages, Storm is not designed for batch and interactive execution, and mostly

focuses on text-based message processing.

The closest streaming processing engine comparing with Storm is Yahoo S4 [15], and other com-
parable systems include Esper [16], and Streambase [17]. They are different from Storm in built-
in data storage layer, underlying message passing library, and runtime environment. Storm also
requires an external database like Cassandra [ 18] with Storm Topologies to keep persistence. None

of the above can support big data processing other than streaming model.

Spark [19] is a quick-rising star in big data processing systems, which combines the batch, inter-
active and streaming [20] processing models into a single computing engine. It provides a highly
scalable, memory-efficient, in-memory computing, real-time streaming-capable big data pro-
cessing engine for high-volume, high-velocity and high-variety data. Moreover, it supports high-
level language Scala that combines both object-oriented programming and functional program-
ming into a single programming model. The innovative designed Resilient Distributed Dataset
(RDD) [21] and its parallel operations provide a scalable and extensible internal data structure to
enable in-memory computing and fault tolerance. There is a very active, and fast-growing research
and industry community that builds their big data analytics projects on top of Spark. However,

there is no built-in real-time scheduling in Spark.

Effective software support for emerging hardware is a key requirement to achieve scalable perfor-
mance. To embrace the heterogeneity of the hardware system in cloud environment, resource al-
location and job allocation in a cloud environment need a revisit. Lee [22,23] use Hadoop as the
data analytic system and Amazon EC2 as the cloud environment and adopt progress share as the
share metric that helps allocate resources to such an environment in a cost-effective manner. The
work in [24] adopts Dominant Resource Fairness (DRF) as the resource allocation policy and
leaves scheduling to each application. GPUs are used to obtain dramatic performance gains and
address the heterogeneous resource demands in data analytics [25]. This work leverages the Adap-
tive MapReduce scheduler, enables hardware awareness to the scheduler, and monitors tasks in
real-time and dynamically co-schedules accelerable and non-accelerable jobs on heterogeneous

cluster. Other related works to schedule tasks in a heterogeneous cluster environment include
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LATE [26] that speculatively executes tasks; [27] adopts early re-execution of outliers and net-
work-aware placement of tasks; [28] partitions input data to minimize deviation in the task execu-
tion time; and [29] proposed a scheduler that overlaps CPU-bound and I/O-bound tasks to improve

the overall utilization of the cluster.

High-level programming models are critical to allow big data applications to utilize accelerators
for boosting performance. Java and Scala based Spark application can utilize early efforts in port-
ing Java to CUDA such as JCudaMP [30]. In [30], Java is circumvented to focus on SPMD-style
parallelism suitable for accelerators by using JaMP [31], which provides OpenMP-like annotations
to Java code. Other ways to use CUDA from Java include [32], where Java's native interface is
used to call CUDA functions in C, and [33] creates a CUDA-BLAS binding for Java. The libSh
[34] assembles a kernel code by building an AST that can be used to generate CUDA or normal
threaded code. CuPP [35] creates data structures that can have different representations on hosts

and GPUs. Japonica [36] is a Java port of OpenACC.

The stream programming model was designed to represent a program to process stream data with
multiple actors that are connected via point-to-point data streams. There are programming lan-
guages and systems (e.g. Streamlt [37], Brook [38], SPUR [39], Cg [40], Baker [41], and Spidle
[42]) as well as extensions to general purpose languages such as C/C++ [43] and Java [44] that
support this programming model. The Streamlt [37] language represents a program as a set of
autonomous actors communicating through FIFO data channels. StreamFlex [44] enables stream
programming by combining streams with objects through extensions to Java. Researchers have
proposed extensions to OpenMP [7] to facilitate the expression of streaming applications by ena-
bling the expression of pipelined computations through the use of a tasking construct [43]. These

research, however, have not been adopted by the big stream data computing community.

3.1.1.1 Domain-specific Cloud for Big Data Processing and Analytics

Apache Hadoop (https://hadoop.apache.org) with MapReduce [45] is the widely used open source
framework in cloud computing for storing and processing large amount of data in the scalable
fashion. There have been many studies around performance of Hadoop on big data analysis. Ha-
doop with its ecosystem has been successfully deployed in many fields that require to process big

data in batch processing. Hadoop File System (HDFS) supports distributed file system with fault
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tolerance feature, which provides a large, global-view, distributed file storage using loosely con-
nected computing node disks together. MapReduce as the main parallel programming model pro-
vides a simple but typical parallel execution model that works well for applications with map-

followed-by-reduce parallel execution pattern.

Apache Spark (http://spark.incubator.apache.org) is the latest parallel computing engine working
together with Hadoop that exceeds MapReduce performance via its in-memory computing and
high level programming features. Spark is developed using Scala, which is a high-level program-
ming language that supports both functional and object oriented programming. Comparable to
DryadLINQ, Spark is equipped with an integrated environment for programming languages. Spark
created a unique data structure called Resilient Distributed Datasets (RDDs), which allows Spark
application to keep data in memory, while MapReduce relies on HDFS to keep data consistent.
RDD supports coarse grained transformation and logging them to provide fault tolerance. In time
of losing a partition RDD can re-compute information using named logs to retrieve lost dataset.
Based on RDD, Spark supports more parallel execution operations than MapReduce. Defining
RDDs via transformations and using them in various operations is the process of programming in
Spark. Since transformations are lazy in Spark they won’t compute till they are needed. Moreover,
Spark supports three high-level programming languages: Scala, Python and Java, while MapRe-
duce only supports Java. Besides batch processing, Spark also supports streaming and interactive
programming, which dramatically attracted the interests of many real-time and analytics applica-
tions developers. Spark community is very active in development, and Spark is quickly getting
popular due to its unique features. The implementation and experiments of this project are built on

top of Hadoop and Spark environment.

3.1.1.2 Implementing a Distributed Volumetric Data Analytics Toolkit on Apache Spark

The multidimensional array is a fundamental data structure that has been widely used in scientific
computing. Distributed multidimensional array is supported by most High Performance Compu-
ting (HPC) programming models either via language features or libraries. HPF, Co-Array Fortran,
UPC, X10 and others support distributed multidimensional array to allow users to explicitly spec-
ify how to distribute the array on Distributed Memory System while keeping the global address of
a multi-dimensional array. Global Array (GA) is a library-based solution that provides users a

shared memory view of distributed multi-dimensional array support. SHMEM is another solution
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that provides a partitioned global address space for distributed data structures. Significant efforts
have been put to simplify the user interface as well as to optimize the performance of distributed
multi- dimensional array via compiler and runtime. Hadoop and Spark are currently the most pop-
ular open source big data platforms that provide scalable solutions to store, query, process and
analyze big data sets. These platforms deliver dynamic, elastic and scalable data storage and ana-
lytics solutions to tackle the challenges in the big data era. These platforms allow data scientists to
explore massive datasets and extract valuable information with scalable performance. Many tech-
nologies advances in statistics, machine learning, NoSQL database, and in-memory computing

from both industry and academia continue to stimulate innovations in the data analytics field.
3.1.2 Motivation

Although there are many research works for big data cloud framework, there is, to the best of our
knowledge, no complete solution for real-time, high-volume and high-velocity battlefield stream-
ing data analytics. The solution needs a multidisciplinary approach to combine research in big data
analytics, high performance computing, real-time processing, machine learning theory, interaction
and visualization. Existing big data or HPC research yield significant performance scalability,
however, they may not meet the real-time requirements in a battlefield data analytics. Additional
breakthrough in the big data analytics platform research is needed to handle massive streaming

data in near real-time fashion.

Heterogeneous accelerator architectures, such as NVIDIA GPUs or Intel Many Core architectures,
have shown remarkable performance improvement comparing with conventional homogeneous
multicore machines. However, one of the critical challenges to fully exploit the hardware compu-
tation capabilities is the demand of productive high-level programming models. In this project, our
objectives include how to perform accelerator optimizations for big data applications with high-

level programming models.

3.1.2.1 Domain-specific Cloud for Big Data Processing and Analytics

The objective is to have a first attempt to explore and demonstrate the scalability and productivity
of using the big data and cloud computing techniques for seismic data processing. In order to
achieve the goal, a seismic analytics cloud (SAC) combining both big data platform and cloud

computing is created to deliver a domain-specific Platform as a Service (PaaS) to support seismic
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data storage, processing, analytics and visualization. We have created a variety of seismic pro-
cessing templates to simplify the programming efforts in implementing scalable seismic data pro-
cessing algorithms by hiding the complexity of parallelism. The Cloud environment will generate
a complete big data application on top of Spark based on user’s kernel program and configurations,

and deliver the required cloud resources to execute the application.

3.1.2.2 Implementing a Distributed Volumetric Data Analytics Toolkit on Apache Spark

Although multidimensional arrays are mostly used in scientific computing, many big data sets can
also be represented using multidimensional arrays, such as 3D/4D volumetric data or images. For
example, the medical image segmentation is mostly applied to 3D medical images, and the geo-
logical feature classification is applied to seismic volumes. A distributed multidimensional array
will serve as a fundamental data structure to support data analytics to these data, especially for
scalable machine learning algorithms. Despite the efforts in optimizing multi-dimensional array in
HPC platforms, there is a little effort in addressing the multidimensional array performance in any
big data analytics platform yet. In this project, we attempt to address the performance of large
distributed multidimensional array on a big data analytics platform by applying the HPC experi-
ences and practices. We are also trying to start the discussion of converging the distributed parallel
programming practices for both big data analytics applications and HPC applications. Specifically,
we present the main functionalities and implementation of a Distributed Multi-dimensional Array
Toolkit (DMAT) on top of Hadoop and Spark platform. We then use a set of large 3D seismic data
volumes as our experimental data sets and related 3D data computation algorithms to demonstrate
the performance scalability. A comprehensive performance study to analyze the performance char-

acteristics in big data platforms has been carried out.

3.1.3 Problem Formulation and Proposed Approach

We propose to build a real-time big stream data analytics cloud system dedicated to store and
process battlefield data. Fig.3 depicts the overall architecture of the cloud and its components. The
center of the cloud is Spark computation engine that supports streaming, batch and interactive in-
memory big data processing. We will extend Spark by adding our designed internal RDD to sup-
port a variety of sensor data, image and videos, and their parallel operations. The data collected
from a simulated battlefield will be constantly streamed into the Spark streaming engine to be

processed in a distributed fashion. Research will be conducted to meet the real-time requirement
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by enabling elastic computing and accelerator optimizations for better utilizing cloud resources.
Batch and interactive jobs will also be supported to allow historical data exploitation and analysis.
Besides existing machine learning, graph computation, and SQL support in Spark, we will extend
it to implement advanced battlefield data analysis algorithms based on data fusion (research thrust
3). Information exploited will be saved into scalable and high availability database for future query
and visualization. A web-based battlefield analytics interface will be implemented for user-

friendly data analysis and visualization.

Batch
e Jlong run jobs for daily reports
e more sophisticated algorithms

e care more for correctness

Streaming
e real-time reporting
¢ handle all input data with low latency

e care more for low latency than correctness

Interactive
e step-by-step reporting
e balance between latency and correctness

e flexible with users

Spark supports distributed and parallel in-memory computing in three methods: batch, streaming,
and interactive. The all-in-one computing engine not only simplifies the programming efforts to
develop big data analysis algorithms, but it also offers a huge potential for computing elasticity.

Since stream data processing rarely produces a constant and predictable workload, we will study
how to make the Spark engine to steal resources from batch and interactive jobs, and allocate

resources to stream data processing jobs when necessary.

Spark distributed computing is based on its internal data structure RDD. Currently, Spark supports

business data with mostly text formats, which are very different compared with battlefield data.
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We will design and extend Spark RDD to support variety of battlefield data, and enable native
Spark distributed computing, such as map, filter, reduce, collection, etc. The RDD design needs to
consider the typical computation and data access patterns, and define data distribution and access

functions.

We will investigate characteristics of battlefield stream data analytics algorithms, and explore how
to minimize data communication and balance workload. The collaborator Chapman's team will
focus on accelerator-based optimizations for these algorithms. Chapman's team will evaluate
NVIDIA GPUs and Intel Xeon Phi accelerators for the core computational algorithms required for
this project to improve the performance and meet the real-time response requirement. The research
needs to support runtime integration of the accelerators with Spark/Hadoop framework, and the
integration of low-level high performance image processing library and C/C++/Fortran
OpenMP/OpenACC based algorithm implementation with high-level programming interfaces

such as Scala and Java.

e Understanding characteristics of an application that suggest candidacy for stream based

parallelism as opposed to exploitation of data and/or task level parallelism

¢ Provide adequate information to the user to help partition the memory and computation

across the hardware contexts
e Minimize the communication latencies between the each computation kernel
e Effective load balancing for increased throughput
e Performance tool support for the stream model

e Processes for the efficient application of the stream based programming model along with

other complementary parallel programming models to real world applications
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Figure 3: Real-time Battlefield Data Analytics Cloud

The Spark/Hadoop runtime system used by the cloud system schedules mapper and reducer tasks,

each of which may invoke core algorithms on CPU or accelerators. The runtime system will be
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enhanced to be aware of the performance differences of the same task delivered by different archi-
tectures. We will create algorithm-aware and data-aware scheduling heuristics for the runtime sys-
tem to select the right architecture. Moreover, we will develop Spark streaming task configuration
with real-time constraints, and extend its runtime scheduler with real-time scheduling, including
clock-driving, priority-driven and weighted round-robin scheduling. We will adopt ideas from
BlinkDB [46] to enable real-time data analytics over big data to trade-off accuracy for real-time if

necessary.

Spark framework features in-memory computing through the use of aggregated memory space
from multiple distributed nodes. However, Spark tasks are not able to directly access other's data
even they are physically stored in same node memory. We will explore the potential shared-
memory optimizations by integrating the Spark in-memory computation methodology with HPC

shared memory runtime systems to explore the possibilities of reducing data movement cost.

3.1.3.1 Domain-specific Cloud for Big Data Processing and Analytics
The Architecture of Seismic Analytics Cloud

The design of SAC architecture is to emphasize twofold: one is to provide a high-level productive
programming interface to simplify the programming efforts; the other is to execute users applica-
tions with scalable performance. To achieve the first goal, we provide the web interface in which
user could manage seismic datasets, programming within a variety of templates, generate complete
source codes, compiling and then running the application and monitoring the job running status in
SAC. The interface allows users to write seismic data processing algorithms using our extracted

common seismic computation templates, which lets users focus on their kernel

algorithm implementation, and simplifies users implementation in handling seismic data distribu-

tion and parallelism.

While the most popular-used programming models in seismic data processing include MATLAB,
Python, C/C++, Fortran, Java and more, SAC supports Java, Python and Scala natively, so that
users can write their own processing algorithms directly on our platform with these three lan-
guages; For legacy applications written in other languages, SAC uses the so-called PIPE mode to
handle input and output data as standard-in and -out, which requires minor modifications of pro-
gram source code on handling input and output. SAC will generate complete Spark codes based

on users kernel codes and configurations, and then launch and monitor it on the SAC environment.
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In order to support large amount data storage and scalable I/O performance, we chose Hadoop
HDEFS as the underlying file system, which provides fault tolerance with duplicated copies and
good I/0 throughput by supporting data locality information to applications. HDFS supplies out-
of-the-box redundancy, failover capabilities, big data storage and portability. Since the size of
seismic data is very large and keeps increasing constantly, HDFS provides a good solution for the
data storage with fault tolerance property. We use Spark as the parallel execution engine to start
applications, since Spark works well on top of HDFS, Mesos and YARN, and it provides a big
data analytics computing framework with both in-memory and fault-tolerance support. Spark pro-
vides RDD as a distributed memory abstraction that lets programmers perform in-memory com-
putations on large-scale cluster/cloud in a fault-tolerant manner. To get better performance, we
need to put frequently used data into memory and processing data in memory, which is one key
performance boost comparing with MapReduce. Some other useful packages and algorithms in
data analytics, such as SQL, machine learning and graph processing, are also provided in Spark
distribution version. We also integrated some common used libraries for image processing and
signal processing, such as OpenCV, Breeze and FFTW etc., to provide a rich third party of libraries

support to speed up the development process.

Figure 4 presents the overall architecture of SAC. Based on the SAC web interface, users are able
to upload, view and manage their seismic data, which are stored on HDFS. They can then create
their application projects by selecting a template from a list of predefined templates to start their
own programming. After selected dataset and processing pattern, writing codes and compiling
successfully, users can configure the running parameters and then submit jobs to SAC. Job status
could be monitored while job is running and running results could be checked after job is finished.
On the SAC backend, a big seismic data file will be split into multi-partitions and be constructed
into RDD, which will be processed by working threads that apply users algorithm in

parallel. After all data are processed, the output data will be saved back to HDFS.
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Figure 4: The architecture of seismic analytics cloud platform

Input Data and Redirection

The SEG Y (also SEG-Y) file format is one of several standards developed by the Society of
Exploration Geophysicists (SEQG) for storing geophysical data. This kind of big seismic data needs
to be split into multiple small partitions to be processed in parallel. However, SEG Y data could
not be split directly due to its irregularity, so we preprocess the SEG Y data format into a regular
3D volume data, and store the important header in- formation into one xml file. Then the 3D vol-
ume data and xml will be feed into Spark applications. Spark uses InputFormat, which is the base
class inherited from Hadoop to split such data and construct RDD. Each split will be mapped to
one partition in RDD. The embedded InputFormat classes could not handle binary seismic data,
so we implemented SeismiclnputFormat in this project. Based on configuration defined by user
while creating project, such as how many lines each split and number of overlap lines, Seismicln-
putFormat could spilt the 3D volume and feed partition to each mapper. The data of 3D volume is
stored trace by trace in the Inline direction by default. For some algorithms that need to process

data in cross-line or time-depth direction, we also provide interfaces to transform Inline format
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RDD into cross-line or time-depth direction. In this way, we could cache Inline format RDD in

memory, thus all the transformations could be executed in memory with better performance.

Parallel Processing Templates for Seismic Data

Based on the general parallel execution patterns of seismic processing algorithms and applica-
tions, we predefined some templates to make this framework easy to program. Every template
has explicit input type and output type. The typical templates are: Pixel pattern, which use sub-
volume or one pixel as input and output one pixel; Line pattern, which treat one line as input and
one line as output; SubVolume pattern, which feed users application with sub-volume and get
output from it in sub-volume format. A high level SeismicVolume class has been implemented in
this project to provide user interface to access seismic volume. SeismicVolume class provides
functions for constructing RDD based on processing templates user had selected, applying users
algorithms on RDD, and storing the final RDD on HDFS with format defined by user. To make
it easy for programming, we provide some other functions to change the linear array into 2D ma-
trix and 3D volume class; some functional programming interface such as iteration, map/atMap,
filter and zip could be used. We also integrated commonly used high-level algorithms, such as
histogram, FFT, interpolating and filtering algorithms, so that user could put more attention on

data analytics logic instead of details for each algorithm.

Code Generation

After users created project and completed their own kernel codes, one component named Code
Generator (CG) in SAC will generate complete Spark codes for running on Spark platform. The
CG will parse configuration of users’ project and generate Spark application outlined codes,
merge them with users’ codes. User could also upload existing source codes or libraries, all of
which will be integrated into current working project managed by Simple Build Tool (SBT). CG
will also generate compiling and running scripts basing on users runtime setting. All these scripts
will be called by the web interface, on which some other information such as compiling and run-

ning status, location of output will be shown clearly.

Driver and Job Executor
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In SAC, every users project will be treated as one Spark application. CG will generate the main
driver code for each project. Each application could be submitted to SAC for running after com-
piled successfully. At execution time, driver code will setup the Spark running time environment,
call the SeismicVolume object to generate RDD and execute users algorithms on top of RDD and
then store the processed results on HDFS. It will clean up the running environment and release
resources after finished. To make it support multiple users, Spark Job- server [15] was introduced
to this platform. Based on the priority of application and computation resources requirement of an
application, an user could configure the running parameters: number of cores and memory size;
and then submit his/her own job, monitoring job status and viewing the running results. Another
big advantage of Spark Jobserver is supporting of NamedRDD that allows multiple applications
share RDD but has only one copy cached in memory. For some complicate algorithms that need
multiple steps or application running in workflow, NamedRDD is a good choice for boosting per-
formance. After job is finished, the running results cloud be discarded or be saved to users work-

space basing on users selection.

3.1.3.2 Implementing a Distributed Volumetric Data Analytics Toolkit on Apache Spark

The objective of the work is to develop a scalable Distributed Multidimensional Array Toolkit
(DMAT) on big data analytics platforms to enable scalable computation and analytics of volu-

metric data sets.
Software Stack of DMAT

The software stack of DMAT in a typical application scenario is shown in Figure 5, which simpli-
fies the development efforts for scalable and distributed computing and analytics for volumetric
data sets. It is built on top of the Apache Hadoop and Spark. The Hadoop provides a distributed
file system (HDFS) and a resource management system (Y ARN or Mesos), while Spark provides
a high-level distributed data representation via Resilient Distributed Dataset (RDD) and a data
parallelism execution engine. DMAT provides configurable data distribution fashions for multi-
dimensional data sets, as well as a variety of configurable parallel execution templates to simplify
the parallel programming efforts. Moreover, since Hadoop and Spark provide faults tolerance and
task scheduling utilities, the toolkit inherits from them to provide fault tolerance and dynamic task

scheduling for better reliability and performance.
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Figure 5: The software stack of DMAT in Big Data Analytics platform

Figure 5 shows the overall big data analytics platform used in our research with the
DMAT integrated. The bottom of the figure is the Hadoop Distributed File System
(HDFS) that stores the large volumetric data files by utilizing a large number of local
disks. The Cassandra as a NoSQL database is also used to store volumetric data, inter-
mediate results, and metadata. MLIib is included in the Spark as the machine learning
package to enable machine learning based data analytics algorithms. OpenCV is the
widely used image processing package that is used to provide image processing capabil-
ity. Breeze is the numerical processing package including linear algebra, signal pro-
cessing, statistics, and other numerical computation and optimizations written in Scala.
DLA4J (https://deeplearning4j.konduit.ai/) and Caffe (http://caffe.berkeleyvision.org) are
the deep learning packages that can be integrated into the Spark platform to apply ad-
vanced deep learning technology to volumetric data exploration. We have developed the
Volumetric RDD as the distributed multidimensional array to enable parallel operations

and machine learning algorithms on Spark.

Data and computational scientists can use DMAT to develop their scalable compu- tation
and analytics algorithms by leveraging the capability of Apache Spark, and other pack-
ages of image processing, numerical computation, volumetric data interpretation, deep
learning, and more. The main components of DMAT are shown in Figure 6, in which the

fundamental data structure is the volumetric data RDD building on Spark RDD. There
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are two kinds of APIs: one is for the basic operations on the Volume, and the other is

high-level template API that makes it easier for a user to develop applications.

Volumetric Data Applications
DMAT
DMAT API Parallel Templates
ImageProc /
Math
Libraries Volumetric Data RDD
Spark ‘ | Hadoop

Figure 6: The components of DMAT

DMAT Main Functionalities

Figure 7 shows the main functionalities (APIs) of DMAT, which include volumetric
data loading, a variety of data distributions, aggregation, re-partition, sub-volume data
accessing and transposing.

DMAT provides a few APIs to load volumetric data from HDFS and to distribute them
in any directions (X, y, and z) and granularities to fit users’ applications. Distribution with

overlapping is implemented to support stencil computation with neighbors.

Moreover, the data aggregation is supported to allow users to re-partition the distributed data dur-
ing execution. Users can use the APIs to access the distributed data in any directions. 3D volume
transposing is supported too. Users can use the APIs and pre-defined parallel templates to apply

their own kernel codes running on the Apache Spark in parallel.

Approved for Public Release; Distribution Unlimited.
24



DMAT API
loadFromFile (HDFS) sample
get trace
aggregate
repartition line
overlap
sample
S o || applyMap | 500
(usrFunc)
save (HDFS) line

Figure 7: Main Functionalities of DMAT

DMAT loads volumetric data into Apache Spark and creates VolumetricRDD with Float or Double
as internal data type. The VolumetricRDD is a derived class from Spark RDD class with a variety
of distributed fashions of volumetric data. In addition, it also provides some optional parameters
for advanced users who are already familiar with distributed system to specify the advanced data

distribution fashions.

Figure 8 shows the ow of distributing a volumetric raw file through the Hadoop file system and
Spark RDD, assuming the file has already been uploaded to Hadoop file system. All Spark RDD
operations can be applied to the VolumetricRDD. Utilizing the RDD methods provided by Spark,
developers could perform various data operations and calculations on the volumetric data in par-

allel.
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Figure 8: Volumetric Data Distribution Flow

. Aggregation and Overlapping: Practically, the volumetric data could be viewed as a gen-
eral 3D volume with Float or Double data in each point. By default, as shown in Figure 9,
DMAT distributes the volume in one specific direction slice by slice. In this case, each
slice is a single split of the whole data set. Utilizing the RDD operations provided by Spark,
we can change the distribution layout to the aggregated and overlapped fashions, as shown
in Figure 10 and Figure 11. Users can change the size of distributed splits, and set the
overlapped data areas between splits and to access the overlapped parts in each split. There-
fore, this method simplifies the stencil-style computation requiring neighbor communica-
tion, and make it easy for tuning the performance of distributed tasks, which is a big im-

provement of the simple map-reduce programming mode.

Volumetric Data Access: DMAT allows users to access any slice data in any direction of
the volume. Users can specify any index in I, J and K directions, as shown in Figure 12 to
access a sub-volume of data. Since Apache Spark does not provide arbitrary data access,
the APIs use IndexedRDD to speed up queries of sub-volumes to the master node for vis-

ualization or debugging purpose.
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Figure 9: Default distribution schema of Volumetric, planesPerMap=1, overlap=0.
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Figure 10: Aggregated distribution of Volumetric, planesPerMap=3, overlap=0
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Figure 11: Overlapped distribution of Volumetric, planesPerMap=1, overlap=1.

Figure 12: The traditional dimension definition of Volumetric Data

3. Volumetric Data Transposing: Since the volume data could only be stored in file following
one specific direction (I, J or K), developers could not access slices of the other two direc-
tions directly. To resolve this problem and to achieve reasonable performance, DMAT
SDK handles the transposing of the 3D volume data inside the getLine() API and caches
all volumetric RDD in three directions.

To explain the implementation clearly, we denote volumetric data as shown in Figure 12,
in which 1 means I slice, x means J slice and z stands for K slice. The data is stored in i-
Slice format. To resolve the transposing problem in each distribution evenly, we split the
volume to I of i-Slices in the volumetric RDD and each i-Slice is a 2D matrix. As shown
in Figure 3.11, each i-Slice matrix consists of J of i-Traces which have the length of K. An
i-Slice matrix could be iterated i-Trace by i-Trace. Since in 3D spacing, each i-Trace is
also the trace of x-Slice, for example, the i-Traces(0) is the x-Trace of the Oth x-Slice, the

i-Traces(1) is the x-Trace of 1st x-Slice, etc. Thus, we implement a map function to index
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all i-Traces of the volume. The new index is combined by index of i- Trace and index of i-
Slice. After indexing the map, we got a volume RDD with new (iTracelndex, iSlicelndex)
index as the key, trace data as the value. As we mentioned in Figure 13, to get a x-Slice,
we need group all the traces with the same iTracelndex by utilizing the group operations
of Spark RDD. After grouping, we have already got the x-Slices data in our RDD distribu-
tion map. To organize them as a x-Slices volume, all we need to do is sorting them by
iTracelndex. So far, the data in requested direction has already been stored in Volumet-

ricRDD, and developers could access any data slice data in any direction efficiently

i-traces(0~(J-1))

i - Fx-traces(n) of 0-th x-slice

K-1

n-th i-slice

Figure 13: The indexing for resolving transposing problem

User-defined Functions and Parallel Templates

DMAT allows users to define their own functions and apply to the VolumetricRDD in parallel. To
avoid involving too much parallelism details when deploying user applications, we also design
and implement series of templates for different scenarios of use cases, including apply/iterate by
sample, by trace, by line, and by overlapped subvolume. If the user has already been familiar with
the distribution system, then the function applying way is recommended since it is more flexible
for controlling distribution scheme and tuning performance. Otherwise, the application templates
will fit better since they make user deploy their programs on distribution system very quickly

without going through all the parallelism details.

1. User-defined function interface: DAMT provides applyMap to allow developers to apply
the user-de ned functions on any direction of the volume in parallel. [Volumetricln-
stance].applyMap(direction:Int, f : (T = U)). The first parameter direction indicates the

direction that users would like to apply the function on; the other parameter f : (T = U)
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is a standard spark RDD key-value pairs operation callback function, which feeds the func-
tion distributed volume with key-value forms in parallel. The data length in each key-value
function depends on the specified distribution parameters of the volume. After execution,
this function call will generate a new volume object containing the new data (Volumet-

ricRDD) output by a user-defined function.

Parallel Templates: Comparing with traditional sequential codes, the most important thing
in parallel programming is data distribution and collection, which provides a big challenge
for domain-specific experts. Data distribution also plays key role in distributed parallel
programs to achieve scalable performance. In this paper, we implemented several parallel
templates to make DMAT be easily used by domain algorithm designers other than com-
puter scientists. Template is actually a kernel function, in which the user only need to take
care of input/output on small piece of data, and the toolkit will handle data distribution/col-
lection and parallel computation automatically. These templates defines the data distribu-
tions and parallel computation so that users can simply select the right templates for their
algorithms without handling the data distribution and parallelism details. Three templates
currently include: Line (1D), Plane (2D) and Subvolume (3D). Each template can handle
one or more volumes, and will output one or more volumes. Line template is simple, in
which the input is a 2D array (dimension 1 for number of volumes and dimension 2 for 1D
line data), and output is also a 2D array. Plane template defines a 3D array as input and a
3D array as output respectively. For some computation such as stencil kernel, it not only
needs central data, but also requires neighboring data samples, and so in this case, a bigger
volume with overlap data will be the input of template. Subvolume template is a good
solution to handle data distribution with overlaps, in which both input and output are 4D
array. Users can specify parameters about how to distribute data as well as the overlapped
areas. In direction K, the whole line will always be put as input. In direction I and direction
J, however, user could define the size of center (how much data the computation will affect)
and overlap size individually. It is easier to handle the output of template, in which only

the valid data without any overlapping will be cached in RDD or persisted to file system.
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3.2 Reliable and Robust Data Collection and Aggregation

3.2.1 State-of-The-Art

3.2.1.1 Efficient privacy preserving edge computing for images and video

There is a growing trend of deploying powerful and advanced deep learning models to achieve
state-of-the-art performance in processing IoT images and videos. The deployment of the deep
learning model either only locally (on IoT edge device) or only at the server fit different scenarios
[47]. On the one hand, IoT edge device only training/ deployment is a good choice when the deep
learning model is relatively small, and it does not suffer from data privacy and security concerns
associated with sending data to the server. However, limited computational power, memory, and
energy resource of loT/mobile edge devices make it di_cult to achieve good latency and energy
consumption when training/inferencing on large models [47]. On the other hand, the server only
deployment will provide help from edge servers to loT/mobile devices via computation offloading
to handle large models. Although server only deployment achieves scalability, low cost, and sat-
isfactory quality of service (QoS), it suffers communication overhead for uploading the raw data
and downloading the outputs, which consume much bandwidth and causes unpredictable latency
due to the wireless channel [47, 48]. Also, privacy and security concerns are raised due to the

transmission of raw data.

The desire to leverage on the merit of the server only and the IoT/mobile edge device only deploy-
ment of deep learning models has necessitated a new paradigm called collaborative intelligence,
or collaborative training, or device-edge co-inference [49, 50]. In this new paradigm, the deep
learning model is split between the edge device and the server as the computation required for
earlier layers is done on the IoT/mobile edge device and the output of the layers called feature
tensors are sent to the server for further processing [51]. Despite the advantages of collaborative
intelligence in terms of less communication overhead and better data privacy, determining the
optimal computation partition point in order to achieve reduced latency and edge device energy
consumption is non-trivial because the choice of the best partition point depends on the system
factors such as wireless channel state, computation capability of edge devices and edge servers
and the deep learning model [48]. Many recent studies proposed various approaches to address
this issue, such as [48, 49] Furthermore, it is possible to compress the intermediate features before

sending them to the server instead of direct transfer [47, 51, 52].
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Several methods are proposed in the literature to address the privacy and security concerns asso-
ciated with data for training deep learning, such as homomorphic encryption [53], differential pri-
vacy [54, 55] and secure multiparty computation [56]. Furthermore, there are many authentication
and key agreement schemes that have been proposed to ensure data privacy and security in loT
systems. An authentication framework that uses a digital certificate-based signature scheme that
supports efficient signature operations with fast, modular arithmetic operations is proposed in [57].
The authors in [58] proposed ID-based cryptography (IBC) for authentication and the pseudonym-
based mechanism for conditional privacy preservation and non-repudiation in urban vehicle com-
munication. A similar authentication method for an edge-based smart grid environment which uses
one-way hash functions, XOR computations, and an elliptic curve cryptosystem (ECC), is used in
[59]. A framework that uses the cryptography based concept such as physically unclonable func-
tions (PUF) and hash operations to achieve high levels of security at minimal computational re-
source cost, without requiring storage of security keys is proposed in [60]. Although a similar
authentication scheme in [60] is proposed in [61], its uniqueness lies in the use of only one-way
secure hash function and bitw